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ABSTRACT 

Video Based Automatic Speech Recognition Using Neural Networks  

Alvin Lin 

 

Neural network approaches have become popular in the field of automatic speech 

recognition (ASR). Most ASR methods use audio data to classify words. Lip reading 

ASR techniques utilize only video data, which compensates for noisy environments 

where audio may be compromised. A comprehensive approach, including the vetting of 

datasets and development of a preprocessing chain, to video-based ASR is developed. 

This approach will be based on neural networks, namely 3D convolutional neural 

networks (3D-CNN) and Long short-term memory (LSTM). These types of neural 

networks are designed to take in temporal data such as videos. Various combinations of 

different neural network architecture and preprocessing techniques are explored. The best 

performing neural network architecture, a CNN with bidirectional LSTM, compares 

favorably against recent works on video-based ASR. 
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1. Motivation/Approach 

Automatic speech recognition (ASR) systems use algorithms to translate spoken words to 

text. Companies, such as Google Cloud, Microsoft Azure, IBM Watson, and YouTube, 

employ ASR systems for the purposes of education, transcription, and assisting the 

disabled. These are all able to provide high quality transcripts. A study showed that 

compared to manual transcription, which has a word error rate of 17.4% [19], YouTube 

was able to transcribe with a word error rate of 28% [19]. The study however only uses 

high quality FLAC files with little background noise. With lower quality recordings and 

more background noise, word error rate would increase. Video data can be used for 

speech recognition as it is resistant to audio noise.  

Lip reading is the skill of recognizing speech with only visual information such as 

movement of the lips and face. Lip reading has many practical use cases such as 

transcription of silent films or verbal exchanges on closed circuit television (CCTV) 

cameras. This skill is useful for recognizing speech where there is no audio information 

and is commonly used by the deaf to perceive speech. For people without hearing 

impediment, this skill can be useful in very noisy environments such as restaurants. A 

study done by the University of Oklahoma shows that the lip-reading accuracy for 

humans is 45% [28]. 

The objective of this thesis to develop a speaker-independent video-based ASR algorithm 

to match or beat lip reading accuracy for humans.  

A great advantage of video-based ASR compared to audio-based ASR is its ability to 

differentiate between words that sound the same but look different when lip reading. 
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Examples are the words “fair” and “pear”. The words may sound similar at first listen, 

but the lip movements for “f” and “p” in those words are very different.  

On the other hand, a disadvantage for video-based ASR is when words sound distinct but 

have similar lip movements. For example, the words “pat” and “bat” sound very different 

but look almost the same to a lip reader. Because visemes are ambiguous compared to 

speech sounds, it has been the centerpiece of comedic videos where actual speech is 

dubbed with speech that look identical in lip reading (i.e. YouTube channel “Bad Lip 

Reading”). The ambiguity of visemes are the main challenge that contributes to a 

reduction in accuracy for video-based ASR systems.  

The traditional approach for time series data would be to use Hidden Markov Models 

(HMM). In an HMM, there are states and transition probabilities. For ASR, a state is a 

phenome, and the transition probabilities are the chances that one phenome leads to 

another phenome. Neural networks are a type of supervised learning algorithm. Its 

flexibility allows it to be adapted to many different applications, including ASR. Recent 

studies show that deep neural networks outperform the traditional HMM approach by up 

to 24% [27]. Neural networks are indeed a new paradigm when it comes to ASR. 

Convolutional neural networks (CNNs) will be used along with recurrent neural networks 

(RNNs). CNNs adjusts a set of filters for every convolutional layer to determine what the 

best filters are for determining key aspects in images. While CNNs can only handle static 

data shapes, for example images, RNNs also consider temporal data. In this thesis, 

cutting edge RNNs such as Long Short-Term Memory (LSTM) will be utilized along 

with CNNs to enhance accuracy of lip reading.  
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2. Scope of Thesis 

The overarching goal of this thesis is to experiment with different neural networks and 

signal processing methods to achieve maximum video-based ASR accuracy. 

There are many things to consider for the thesis. First, a quality and user-friendly data 

source must be obtained. The data must come from a real-world environment to ensure 

that the system will perform well in a practical real-life setting. Second, the obtained data 

is preprocessed so that our neural network can use the data. Lastly, the structure of the 

neural network needs to be modified and experimented with to maximize accuracy. 

Neural networks require time-consuming tuning processes so that it will run optimally. A 

good starting point will be well-researched architectures. Then, trial and error are needed 

to achieve better results.  

 

FIGURE 1. HIGH LEVEL FLOWCHART OF THESIS 

This thesis is roughly organized into the flowchart shown above. In chapter 4, dataset 

considerations are discussed. In chapter 6, principles and concepts such as Histogram of 

Oriented Gradients and Support Vector Machines are discussed. A practical approach 

will be discussed and implemented. In chapter 7 neural networks and the practical 

considerations, such as batch size, learning rate, and architectures, will be discussed. In 

chapter 8, the outcomes and analysis of the outcomes will be discussed. Lastly, chapter 9 

will give a summary of results, challenges faced, along with new discoveries.  
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3. Literature Review (Related Work) 

Lip Reading in the Wild (2016) [17], authored by Joon Son Chung and Andrew 

Zisserman from the University of Oxford, starts off by approaching the dataset problem. 

Different datasets have their issues that make using it as training data less than ideal. In 

this paper, they point out that most datasets are recorded in an ideal lab environment. The 

one dataset, AVICAR, which is in a car environment, has both low number of classes and 

low number of test subjects. Chung and Zisserman introduce the Lip Reading in the Wild 

dataset, which solves all the problems. It is recorded in a realistic and uncontrolled 

environment and has many classes and test subjects.  

In the same paper, they present several 3D CNN architectures that they use for video-

based ASR. The architectures that they introduce are early fusion (EF) and multiple 

towers (MT). 
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FIGURE 2. EF AND MT ARCHITECTURES AS SHOWN IN CHUNG AND ZISSERMAN’S PAPER 

[17] 

EF is similar to a classic CNN architecture where the data flows in a linear fashion. MT, 

unlike EF, starts by running a CNN for every frame, then concatenating the data so that it 

can be run on a normal CNN. It is found that the MT architecture, using grayscale 

representation for the videos instead of color, had the best testing results at 61.1% for a 

dataset of 500 words. This will be my goal to improve upon. 
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Visual Speech Recognition Using a 3D Convolutional Neural Network (2019) [25], 

authored by Matt Rochford, is a recent paper on video-based ASR. In this paper, he uses 

Dlib to extract the lips from the faces. Instead of using MATLAB to run the neural 

network, Matt uses TensorFlow and python to run his code. In total, there are six 

architectures tried. For each architecture, certain parameters such as number of filters, 

convolutional layers, and fully connected layers are tested. It is found that 2x2x2 

convolutional filters performed the best instead of the more traditional 3x3x3 

convolutional filter. However, the architectures used here did not include any zero 

padding. This means that for every convolutional layer, data is lost. 

Lipreading with Long Short-Term Memory (2016) [23], a paper written by Michael 

Wand, Jan Koutn ́ık, J ̈urgen Schmidhuber, discusses using LSTMs along with other non-

neural network methods. The dataset used is the GRID corpus, which is coincidentally 

discussed in Chung and Zisserman’s Lip Reading in the Wild paper. This dataset is 

relatively limited in classes and samples compared to LRW. There is only 52 total words 

in the dataset used. The non-neural network approach that this team uses involves feature 

extraction and classification such as Histogram of Oriented Gradients (HOG), Eigenlips, 

and Support Vector Machines (SVM). This paper also uses LSTMs but does not combine 

with CNNs. The accuracy of LSTM method is 79.6%, compared to the HOG and SVM 

method, which has an accuracy of 71.3%. The LSTM performs 8.3% better than the HOG 

and SVM method. [23] 
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FIGURE 3. CNN AND LSTM AS DETAILED BY LIP READING USING CNN AND LSTM [26] 

Lip reading using CNN and LSTM (2016) [26], a paper by Amit Garg, Jonathan Noyola, 

and Sameep Bagaida from Stanford university, discusses specifically about the CNN and 

LSTM approach to lip reading. While this paper does not discuss specifically about word 

lip reading, the LSTM and CNN architecture used is of great inspiration to me. The CNN 

used is VGGNet. VGGNet is a CNN architecture introduced in 2014 with the paper Very 

Deep Convolutional Networks for Large-Scale Image Recognition by Karen Simoyan and 

Andrew Zisserman at the University of Oxford. While heavy in memory usage, this 

neural network compares well against other CNNs such as GoogLeNet [17]. In the Lip 

reading using CNN and LSTM, VGGnet is run for every frame, then passed through a 

stacked LSTM layer. In this thesis, I will be using a similar neural network.  
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4. Data considerations 

The AVICAR corpus [29] was collected and transcribed by the University of Illinois at 

Urbana-Champaign with funding from Motorola in 2003-2004. This dataset was recorded 

using multiple camera angles and microphones within a car. The video is recorded in 

various circumstances, such as when moving and when sitting still. The words spoken 

consists of isolated numbers and letter, phone numbers, and TIMIT sentences (a speech 

corpus developed in 1993). This model introduces noise conditions that are realistic and 

real-world. However, the dataset is relatively small with low quality recording. The 

recordings are at an 360x240 pixel resolution at 30 frames per second (fps).  

 

FIGURE 4. EXAMPLE VIDEO DATA FROM THE AVICAR DATASET [29] 

MODALITY corpus [16] is a much more recent database recorded in 2015. The focus of 

this dataset was to provide high quality recordings in a studio environment. Videos are 

recorded at full HD resolution (1920x1080p resolution) and at 100 fps. Speakers consists 

of both native and non-native English speakers. Words spoken are 168 different 

commands including single words and sentences. This database is 2.1 terabytes, which is 
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significantly larger than AVICAR. However, the greatest issue is that the video data is 

not organized. The videos are organized in a way that, for a single word, all the speakers 

speak in the same video file. It would take a significant amount of time to manually clip 

the video data so that they are the same size for training. The greatest issue of this dataset 

is that the recordings are done in an ideal studio environment. This means that while a 

neural network may perform well on this dataset, it may perform poorly when put to the 

test in a real-world environment. 

 

FIGURE 5. EXAMPLE DATASET FROM THE MODALITY CORPUS DATASET [16] 

Oxford-BBC Lip Reading in the Wild (LRW) [17] dataset consists of 500 different words 

spoken with over 1000 samples each. The videos are taken from BBC 1 HD channel 

news segments and aligned with subtitles. The LRW dataset consists mainly of regular 

news segments. There is a combination of indoor and outdoor recording environments for 

regular news. BBC HD channels consists of high quality 1080p recording. LRW consists 

of thousands of hours of spoken text with over one million word instances and over one 

thousand different speakers [17]. 
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The LRW dataset is processed by both automatic and manual means. First, a linear SVM 

classifier is trained to detect the speaker is on screen, then cropped out to create the video 

data. The data is then manually checked for errors such as misalignment in audio and 

video.  

 

FIGURE 6. EXAMPLE FROM BBC’S LIP READING IN THE WILD’S DATASET 

This dataset is chosen mainly because all of the difficult and time-consuming manual 

cropping work is done already. The dataset consists of high-quality recording from 

BBC’s HD channels, and there is a large pool of words to train on. This dataset strikes 

the best balance between convenience and quality. 
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5. Software and Hardware 

At a glance, hardware and software used: 

CPU 2x AMD EPYC 7742 64 Core Processor 

GPU 2x Tesla V100, 32GB HBM2 

RAM 755GB 

TABLE 1. HARDWARE 

The computer has an AMD 64 core EPYC computer built on TSMC’s new 7 nm process. 

The NVidia Tesla V100 is a current generation graphics card that utilizes 32 gigabytes of 

fast HBM2 memory. The server also has a large pool of memory. These server 

specifications would be closest to Amazon’s p3.16xlarge instance, which would cost 

24.48 dollars an hour. 

Many thanks to the Computer Science department for providing this machine to me! 

Software: Linux (CentOS/Ubuntu), Python, Docker, Dlib, OpenCV 

The server is running on CentOS while the docker container is run on Ubuntu. Docker is 

similar to Conda, where virtual environments are created where libraries can be installed. 

This allows code to be run in those environments without directly running in the main 

system. For docker, these virtual environments are known as “containers”. Luckily, 

docker containers can be easily built by “pulling” prebuilt operating systems (Ubuntu is 

used). A TensorFlow environment can be easily set up using the same “pull” command 

[10]. Details of setting up the docker environment will be discussed later. 

Dependencies used are image processing libraries such as “opencv2”, “dlib”, and 

“imutils”. These are responsible for extracting facial features for the neural network. The 
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neural network is built using Google’s TensorFlow with Keras as a front end. Keras is a 

user-friendly front end to TensorFlow that helps in implementing neural networks.  

5.1 Docker 

Docker is a tool that allows users to set up a virtual environment that has very little 

hardware overhead. Unlike a virtual machine (VM), a docker container can fully utilize 

system resources. Users can install dependencies and libraries in a Docker container 

without adjusting anything on the base system. 

The first step in setting up a docker environment is to pull from a source [10]. Ubuntu is 

an easy to use and beginner friendly operating system. Another environment pulled is a 

prebuilt TensorFlow environment.  

After pulling the environments using docker, dependencies can be then installed in these 

containers. Dependencies such as “imutils”, “dlib” and “opencv” are extracted to perform 

preprocessing. The container can have storage from the host system mounted to it. In the 

interest of loading speeds, data files should be kept out of the container. 

The containers are run with admin privileges to install dependencies. Otherwise, when 

running programs, the tag “-u $(id -u)” is needed to access the mounted files. Special tags 

are used to enable GPU usage within the container [8].  
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6. Preprocessing of Data 

 

6.1 Digital Images and Video Representation 
 

A digital image is made of pixels. The pixel has different formats to represent different 

colors or intensities. The most common color representation for pixels is RGB. In this 

color space, there is three dimensions: red, green, and blue [3]. These values for red, 

green, and blue have values from 0 to 255 where 0 is the least intense and 255 is the most 

intense. The combination of red, green, and blue can make up millions of colors. An 

example image with 100 width and 60 height in RGB will have the following dimension 

values: 

I = (60,100,3) 

The “3” in the last dimension represents the RGB color space where red, green, and blue 

have separate values.  

 

FIGURE 7. RGB IMAGE 

For this thesis, data will be converted to grayscale for reasons explained later. Grayscale 

is a one-dimensional representation of intensity. The single dimension is the intensity of 

an image where low intensity corresponds to a darker gray color while high intensity 

corresponds to a brighter gray. An image with a height of 60 and width of 100 in 

grayscale format would have the following dimension values: 

I = (60,100,1) 
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Where the last dimension has a value of “1” due to its one-dimensional grayscale 

representation. 

 

FIGURE 8. GRAYSCALE IMAGE 

A video is the concatenation of frames to create an illusion of moving pixels. The 

measure of video data is in frames per second (fps). The fps of the video data used in the 

Lip Reading in the Wild dataset is recorded at 29 fps. Therefore, the video data 

dimension with 29 frames, 60 pixel height, and 100 pixel width in grayscale format looks 

like: 

Video = (frames, height, width, intensity) = (29,60,100,1) 

6.2 Dlib overview 

Dlib is a library written in C++ that contains a pre-trained algorithm to detect facial 

features. It detects facial features such as eyes, eyebrows, nose, lips and jawline. The pre-

trained algorithm is a histogram of oriented gradients (HOG) and linear SVM object 

detector. It achieves a 99.38% accuracy in the standard LFW (Labeled Faces in the Wild) 

face recognition benchmark, which is equivalent to other state-of-the-art face recognition 

algorithms [1]. 

6.3 Histogram of Oriented Gradients (HOGs) 

HOGs have been crucial to many feature detection algorithms. The basis of HOGs is the 

gradient. A gradient is the measure of rate of change. The mathematical expression of a 

gradient for a 2D vector is shown below. 
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𝛬𝑓(𝑝) =  

[
 
 
 
𝛿𝑓

𝛿𝑥1
(𝑝)

𝛿𝑓

𝛿𝑥2
(𝑝)

]
 
 
 

 

The direction of the gradient will always be perpendicular to the direction of greatest rate 

of change. If the change is larger, the gradient will be larger in magnitude.  

The first step of applying a HOG to an image would be to convert the image to greyscale, 

if originally in color. Then, the gradient is calculated at every pixel. Places that are likely 

to contain features are likely to be the one where there are large changes in image 

intensity. For an image, the smallest unit where change occurs is one pixel. Therefore, the 

gradient is calculated by simply take the difference between its neighbors in the x and y 

direction. The resultant vector would be the difference in the x direction as the x vector, 

and difference in the y direction as the y vector. Below is a simple example for a 

greyscale image. 

 16  

99  62 

 50  

The gradient for the middle cell would then be 

[𝑥, 𝑦] = [62 − 99,16 − 50] 

[𝑥, 𝑦] = [−37,−34] 

The angle would then be 

𝑎𝑛𝑔𝑙𝑒 =  222.58𝑜 

After gradients are calculated, a frame usually of size 8x8 is run through the image. For 

each 8x8 frame, bins are created, divided evenly over 360 degrees. The gradients are then 
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sorted in each bin. The magnitude of each bin is the sum of magnitudes of the gradients 

inside the bin. This frame is then shifted by a pixel and the process of binning is repeated. 

For every pixel, there is a bin containing the angles and magnitudes of the gradients. 

 

FIGURE 9. A QUICK DESCRIPTION OF THE HOG ALGORITHM [31] 

The HOG outputs a feature vector containing the bins and magnitude of the bins [30]. 

This feature vector can then be fed to a classification algorithm such as Support Vector 

Machines (SVM). 

6.4 Support Vector Machine (SVM) 

A support vector is a linear classifier introduced in the 1990’s by Vladimir Vapnik and 

quickly became popular due to its performance. The objective of an SVM is to find a 

hyperplane in an N dimensional space that can correctly classify the data points within.  
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FIGURE 10. SVM DECISION BOUNDARY [32] 

The goal of an SVM is to choose the best decision boundary between the data points. 

This decision boundary should be as far as possible from the different data classes as 

possible. The picture above shows the margin of the decision boundary. The goal is to 

maximize this margin [32]. The support vectors in the image are the data points that lie 

the closest to the decision boundary and have a direct effect on the optimum decision 

boundary location.  

For a two-dimensional case, as shown in the above picture, a simple linear classifier can 

classify all of the data. The equation 𝑔(𝑥) = 𝒘𝑇𝒙 + 𝑏 = 0 is the decision boundary 

where any point above it is classified as the first class and any point below is the second 

class. w represents the “slope” or weight of the decision boundary. x is the input data and 

b are the bias. 

The margin is given by the following equation 

𝒘𝑇

||𝒘||
(𝒙+ − 𝒙−) =

2

||𝒘||
 

Where x+ and x- are data points closest to the decision boundary. 
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The next step is to maximize the margin, which then becomes a constrained optimization 

problem. Since the SVM is not a key topic of this thesis, I will not go over the derivation 

of maximizing the margin. The optimized 𝑔(𝑥) simplifies to: [32] 

𝑚𝑖𝑛(
1

2
||𝑤||2) + 𝐶 ∑𝜉𝑖

𝑛

𝑖=1

 

Subject to 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 −  𝜉𝑖 

Where C controls the “hardness” of the margin. For example, a large C value would act 

as a strict margin that does not allow any misclassifications (but may have small 

margins). A small value of C would have softer margins where there are some allowed 

errors.  

Combining the histogram of oriented gradients and SVM will allow us to classify certain 

features. The HOG is responsible for extracting facial features while the SVM is 

responsible for classifying the extracted features. Dlib uses HOGs and SVMs to classify 

facial features but is of much higher complexity than the example described above. Dlib’s 

face recognition algorithm maps the human face to a 128-dimensional vector space for 

the SVM to classify. 

6.5 Dlib Library 

The Dlib shape predictor function uses before mentioned methods to extract facial 

landmarks. It is trained on the iBUG 300-W dataset using an SVM [14]. It can label the 

following facial features: mouth, right and left eyebrows, right and left eyes, nose, and 
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jaw. For the purpose of this thesis, Dlib is used to extract the mouth feature from the face 

of the video. 

 

FIGURE 11. FACIAL LANDMARK POINTS FOR THE DLIB LIBRARY [14] 

A pre-trained SVM is downloaded from the Dlib website to detect and isolate these facial 

landmark points. The facial features 49-68 correspond to the mouth facial feature desired. 

After extracting the mouth feature, OpenCV is used to crop the mouth region for 

processing. The crop size is 100x60 pixels. In the preprocessing phase, the data will be 

converted to grayscale. It may be tempting to think that providing color data to a neural 

network may increase its performance as more data is being provided to it, performance 

degrades [17]. The extra color data theoretically should improve performance, but instead 

causes overfitting of data which ultimately degrades performance. 

Lip Reading in the Wild’s dataset is conveniently clipped to 29 frames per file. Since 

there is no system memory concerns, as the server has 755 gigabytes of memory, all 29 

frames will be used. The final size of the pre-processed file is 29x100x60x1. 
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The lip detection program is responsible for extracting the lip landmarks using Dlib, 

cropping the lips in a 60x100 frame, and stacking the frames using numpy. This lip 

detection program has checks built in so that videos with multiple or no faces detected 

will not be used. 

 

FIGURE 12. EXTRACTED LIP DATA FOR THE WORD “EMERGENCY” 

6.6 Lip Frame Differences 

Another dataset is created where, instead of the raw processed data frames, the 

differences between the frames are used as inputs for the neural network. For many 

frames, the lip appears to be the same. The idea is to capture the lip motions instead of 

the lip data itself. The differences between frames should yield a video size of 

Video = (28,60,100,1) 
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There should be 28 frames after the difference is taken. However, for convenience of 

input, a blank frame with zero intensity is padded at the beginning to bring the video back 

to 29 frames. Take note in the image below that more intense (brighter) areas corresponds 

to change in between frames. 

 

FIGURE 13. EXTRACTED DIFFERENCES BETWEEN FRAMES FOR THE WORD 

“EMERGENCY” 

Ideally, this approach is supposed to capture moving lip contours of the image, where 

high intensity parts represent movement compared to the last frame. Even with good 

framing, a speaker usually nods and tilts his or her head when speaking. This means that 

the lips will shift relative to the last frame and that the whole image will have high 

intensity (change). Since this head motion when speaking differs from person to person, 

results can be inconsistent.  
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6.7 File Manipulation 

After isolation of the lip frames, the data needs to be written into a numpy format so that 

it can be input into the neural networks. Multiprocessing is used to speed up the process. 

The entire list of words is loaded, then assigned to a CPU thread (which there are 128 of). 

Once the task is finished, the next unprocessed word is loaded into a thread to be 

converted. This significantly cuts down the time needed to convert and scales almost 

linearly with the number of threads that is available. 

The raw extracted data will be categorized into four different folders. “Labels” will 

contain labels for the words. This is one hot encoded, meaning that every word is 

encoded as a “1” bit while everything else is zero. The labels are 500 bits long. 

Every single word in the database contains “train”, “val” and “test” files. After 

processing, the output is sorted into the three folders “train”, “val” and “test”. Below is 

the file structure of the dataset. 

 

FIGURE 14. FILE STRUCTURE 
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Before loading into the neural network, the video data needs to be normalized between 0 

and 1. Grayscale images have a range of 0 to 255, so the video data is divided by 255. 

TensorFlow also requires five dimensions for its input, which is reserved for the output of 

the filters. Therefore, an additional dimension is created using numpy.  

input = (filters, frames, height, width, color channels) 

The video data is then converted to FP16 to save on memory usage. The data is originally 

in FP64, or double precision. This isn’t needed and consumes a large amount of memory.  

Using FP16, or half precision (FP32 being full precision), allows for deployment for 

larger neural networks without losing much precision. Half precision floating point 

format uses four times less memory than double precision. NVidia’s Turing architectures 

can take full advantage of FP16 compute while their older architectures cannot [13].  
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7. Neural Networks 

7.1 CNN 

Neural networks in its most basic form rely on backpropagation of data to update weights 

in neurons. CNNs, or convolutional neural networks, is a neural network based on 

convolutions. In every neuron or layer, the data is passed through a convolutional filter. 

A quick explanation behind two dimensional discrete convolutions are explained below. 

The image data fed into CNNs is two dimensional and discrete. Convolutions are 

performed on such images by using a kernel. The principle behind the convolution, 

namely the “flip and shift” approach of one-dimensional convolutions, are similar. For 

two dimensional discrete convolutions, kernels are shifted across the image. The 

multiplied result is then summed to form the result of the convolution. The output will be 

at the center of the convolutional kernel. For a 3x3 kernel, the center where the output 

will be is at (2,2). A simple 3x3 convolution on a 3x3 pixel image will be demonstrated 

𝑖𝑚𝑎𝑔𝑒 = [
1 2 3
4 5 6
7 8 9

] 

𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙 = [
1 2 3
4 5 6
7 8 9

] 

The convolutional kernel is then multiplied by the flipped image 

[
1 2 3
4 5 6
7 8 9

] ∗ [
1 2 3
4 5 6
7 8 9

]

= 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3 + 4 ∗ 4 + 5 ∗ 5 + 6 ∗ 6 + 7 ∗ 7 + 8 ∗ 8 + 9 ∗ 9

= 285 
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Note that for this example image, the output is only one pixel. To ensure that the image 

stays the same size after convolution, some form of padding must be used. Padding adds 

some value to the edge of the image. An example of zero padding of the same image is 

shown below. 

𝑧𝑒𝑟𝑜 𝑝𝑎𝑑𝑑𝑒𝑑 =

[
 
 
 
 
0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0]

 
 
 
 

 

The convolutional kernel is also known as a convolutional filter. These convolutional 

filters are used to extract certain features from the image. An example is the Sobel filter, 

which is based on gradient calculations.  

𝑆𝑜𝑏𝑒𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = [
−1 −2 −1
0 0 0
1 2 1

] 

In a CNN, the convolutional filters are adjusted after every training epoch, or cycle. With 

enough training, the goal is to find the filter that extracts the correct features to identify 

the data. 

After convolving, a pooling layer usually follows. The pooling layer serves to condense 

the data so that the convolutional layers can extract higher level data from the images. A 

CNN usually contains many layers of convolutional and pooling layers. After 

convolutional and pooling layers come the flattening layer, where the multi-dimensional 

data is flattened into a single dimension to be processed by the fully connected layers. 

The fully connected layers act similarly to a multi-layer perceptron. The inputs, which are 

one dimensional at this stage, are mixed then output to an output layer. 
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FIGURE 15. THE FULLY CONNECTED LAYER [11] 

After convolution there is usually a pooling layer that condenses the data. Same as a basic 

neural work, weights are updated in CNNs. The weights updated in a CNN would be the 

convolutional filters. After multiple convolutional and pooling layers, CNNs feed that 

data through fully connected layers. In this layer, data is flattened into a stream of data, 

then compressed to the number of outputs desired. For example, if there are ten different 

classes, the fully connected layer should compress to ten outputs. 

The goal of a CNN, just like a basic neural network, is to continuously update the 

convolutional filters until a certain desired performance level is reached. This process can 

be adjusted through learning rates. Learning rates could be something as simple as a fixed 

number or more sophisticated such as using Nesterov momentum to have a varying 

learning rate.  

As powerful as CNNs are, there are certain limitations. Overfitting occurs when a neural 

network is overly trained for a particular dataset. The performance of an overfit neural 

network is excellent when using old data. When the neural network is tested with new 

and completely different data, the performance suffers. This can be mitigated by 
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including “dropout” rates in the neural network. At random, the neural network will drop 

neurons to prevent the neural network from over-adapting to the training data. 

 

FIGURE 16. VISUALIZATION OF FITTING IN A NEURAL NETWORK [12] 

Research has shown that, in general, a neural network with more layers will give better 

results. A research paper by Lawrence, Giles, Tsoi from the University of Queensland 

shows that as the number of hidden nodes in a neural network increases, the mean 

squared error of test data (misidentified test data) goes down [21]. However, in some 

cases a larger neural network is more susceptible to overfitting. Not only that, larger 

neural networks need to deal with vanishing gradient problem. 

The vanishing gradient problem is due to the back propagation of a neural network. Back 

propagation occurs when a neural network is so deep that back propagation results in 

almost-zero adjustments of gradients. In CNNs, since datasets tend to be very large, data 

is often converted to half precision, or FP16. Since the adjustments to the convolutional 

filters can be near zero, there may not be enough precision to represent any adjustments 

to the filters.  

The vanishing gradient problem can be solved by recurrent neural networks. This is a 

relatively recent breakthrough in neural networks. A recurrent neural network (RNN) can 
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process temporal data. RNNs can “remember” inputs and feed data backwards in the 

neural network. This reduces the vanishing gradients effect on deep neural networks.  

7.2 LSTM 

LSTMs, or Long Short-Term Memory, is a type of RNN. The most important aspect of 

LSTMs is that the LSTM cells can pass information to another LSTM cell [2].  

 

FIGURE 17. LSTM CELLS CAN CONNECT WITH ONE ANOTHER [2] 

LSTM cells take in temporal data, represented as 𝑋𝑡−1, 𝑋𝑡, 𝑋𝑡+1, and pass it through the 

LSTM module. The top row that passes through each cell is what conveys information 

between the LSTM cells. The LSTM cell itself manipulates the information passed 

through from the previous cell. The outputs of the LSTM are the cell state and output for 

a fully connected layer.  

 

FIGURE 18. THE INPUT BLOCK [2] 
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The first part of the LSTM receives the information from the previous LSTM block, 

represented as ℎ𝑡−1, and the input from the current time, 𝑥𝑡. The information ℎ𝑡−1will 

first pass through a sigmoid gate, where it will decide to forget or keep the information. 

The output for this part, 𝑓𝑡 , will be a number between 0 and 1. A “0” will mean to forget 

the information while a “1” will mean to keep this information. This number is then 

multiplied by the previous cell state 𝐶𝑡−1. This part of the LSTM is known as the “forget” 

gate. 

 

FIGURE 19. THE FORGET BLOCK [2] 

The next part of the LSTM block decides what information to store. ℎ𝑡−1, the information 

passed from the last block, is passed through a sigmoid gate and through a hyperbolic 

tangent layer. The outputs of these operations are multiplied, then added to the output of 

the previous part. The resulting output is the new cell state, 𝐶𝑡. The part with the sigmoid 

function is known as the “input gate”. 
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FIGURE 20. THE FORGET BLOCK [2] 

The last part of the LSTM updates the information passed to the next block and the 

output of the LSTM. The information output, ℎ𝑡, is the cell state 𝐶𝑡 passed through a 

hyperbolic tangent layer then multiplied by the last information input passed through a 

sigmoid gate. The output ℎ𝑡 is output to both a fully connected layer and to the 

neighboring LSTM cell. The cell state 𝐶𝑡 is passed only to the next LSTM cell. This stage 

of the LSTM cell is known as the “output” gate. 

With the combination of forget, input, and output gates, these LSTM cells can selectively 

remember and forget information passed from both the previous cell and current 

information input. LSTMs should perform well when there is temporal data involved, 

such as videos. In this thesis, since the data is temporal in nature, an LSTM architecture 

will be utilized. 

7.3 LSTM-CNN 

A specific type of neural network, the LSTM-CNN model, is designed to interface with 

video data [26]. A rough description of the model is shown below. 
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FIGURE 21. A PRACTICAL IMPLEMENTATION OF A LSTM-CNN MODEL 

A 2D CNN is run for every frame of the video in parallel. The 2D CNNs run 

independently of each other, meaning that the filters within are adjusted separately. The 

output of the 2D CNNs are flattened then concatenated. This concatenated data is passed 

to the LSTM to evaluate. Then, a dense layer combines the data for output. The dense 

layer should have the number of classes that we are evaluating. 

In this thesis, traditional CNNs will be explored along with LSTM/CNN architecture for 

performance. 

7.4 Practical Considerations  

7.4.1 Batch Size 

Batch size is defined as how many samples are processed at once. How large the batch of 

samples that can be trained is limited to memory. With more powerful hardware, larger 

batches could be assigned to the graphics card. This will speed up training per epoch (one 

training or testing cycle through the entire dataset) because more data is processed per 

batch. For example, for a dataset with 500 samples, a batch size of 100 will take 5 cycles 
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to complete an epoch. This would be faster compared to if the batch size was 5. It would 

take 20 cycles to complete an epoch compared to 5 using batch size of 100. 

While it may be tempting to maximize the amount of graphics card memory used by 

using large epoch sizes, doing so can negatively affect convergence. OpenAI, a team that 

created an AI that can defeat professional players in a video game DotA 2, has done 

extensive study on this topic.  

 

FIGURE 22. TRAINING SPEED AND EFFICIENCY COMPARED TO BATCH SIZES [24] 

What is shown here is that with a large batch, training speed is the fastest. However, 

training efficiency is the best with small batch sizes. With smaller batches, it takes less 

epochs to reach maximum accuracy [24]. There is a tradeoff to be made with training 

speed and efficiency here.  

The default batch size used by TensorFlow is 32 samples [30]. Depending on the size of 

my neural network, I could potentially use batch sizes of 1024 to fill up all the memory 

on the graphics card. Training speed per epoch may be fast, but it would be inefficient 

and take many epochs to converge to an optimum result. The optimal batch size that was 

found, ironically, is the default TensorFlow batch size of 32. 
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7.4.2 Learning Algorithm 

Learning rate is a scale factor that is applied to the back propagation during training. 

Usually, learning rate is below 1 to avoid backpropagating increasing values. The classic 

fixed learning rate used is known as the stochastic gradient descent (SGD). In 

TensorFlow, this implements a fixed learning rate with no adjustments made to it as 

training progresses. However, the fixed learning rate will take longer to reach a global 

optimum (in finding decision boundaries) compared to a more modern adaptive learning 

rate. 

 

FIGURE 23. ADAM OUTPERFORMS OTHER LEARNING RATE ALGORITHMS [18] 

More modern adaptive learning rate algorithms are AdaGrad, RMSProp, and Adam 

(Adaptive Momentum). Adam is the most recent one with it coming out in 2015. 

Theoretically, Adam has the best performance; the number of epochs to reach peak 
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validation accuracy is the smallest out of all the other adaptive learning rate algorithms 

[6]. However, in practice Adam may not always be the best learning rate algorithm to 

use.  

Finding the proper learning rate (the constant) is visualized below. 

 

FIGURE 24. EFFECT OF LEARNING RATE ON CONVERGING TO THE OPTIMUM RATE [5] 

A small learning rate will eventually approach the optimum, but it will also take longer 

than desired. Smaller learning rates could also get “stuck” on local optimums and not 

reach the global optimum solution. A large learning rate may learn quickly, but it can 

cause drastic changes that can lead to divergent behavior. Divergent behavior, for 

example, would be a neural network “unlearning” as it is run for more epochs. The 

“correct” learning rate is one that finds the optimum quickly without diverging but also 

not get stuck on local optimums.  
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FIGURE 25. VISUALIZATION OF THE OPTIMAL LEARNING RATE [5] 

Typically, learning rates are between 0.1 to 0.0001. This depends on the type of learning 

rate algorithm used. For example, stochastic gradient descent uses larger gradients such 

as 0.01 while Adam has its default set to 0.001. Adam also has other parameters to adjust, 

namely epsilon. The epsilon value is there to prevent any divide by zero in the 

implementation. The default is set at 1e-8. However, the TensorFlow documentation 

suggests using 0.1 or 1 for image neural networks [33].  

For the architectures detailed in a later section, the learning rate algorithms used will be 

SGD and Adam. The exact values of parameters will be different for every architecture.  

7.4.3 Activation Function 

For each neuron in a neural network, the input of the data is multiplied by the weight of 

the neuron to form the output. To avoid the output ballooning to a large size, the output is 

normalized by activation functions. The activation function is needed to normalize the 

output data of a neuron to be between one and zero. 
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FIGURE 26. SIGMOID FUNCTION (LEFT) AND TANH FUNCTION (RIGHT) 

Traditionally, activation functions such as hyperbolic tangent (tanh) and sigmoid are 

used. However, tanh and sigmoid is susceptible to the vanishing gradients problem, 

where for very high values of x there is no change in the output, causing the neural 

network to stop learning effectively. The solution to this is the rectified linear unit 

(ReLU) activation function. The function is linear above x equal to zero and equal to zero 

when x is negative. 
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FIGURE 27. RECTIFIED LINEAR UNIT (RELU) ACTIVATION FUNCTION 

This solves the issue of vanishing gradients as the output scales linearly with input while 

also allowing for backpropagation. This is the activation function that will be used for the 

convolutional layers. 

Since there are many classes (500 total), an activation function that accommodates multi-

class output is needed. Therefore, the only solution is to use the softmax activation 

function as it can handle many classes at once. The softmax activation function returns a 

list of possibilities for the results. This activation function should only be used in the final 

fully connected output layer of the neural network. 

7.4.4 ARCHITECTURE THEORY 

In theory, a larger and more complicated neural network should perform better than a 

shallower and simpler neural network. In a paper by Steve Lawrence, C. Lee Giles, Ah 

Chung Tsoi, What Size Neural Network Gives Optimal Generalization? Convergence 
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Properties of Backpropagation [21], it is found that deeper neural networks with more 

hidden layers generally produce lower testing error. 

 

FIGURE 28. NEURAL NETWORK DEPTH COMPARED TO TEST ERROR [21] 

The paper concludes that a simple explanation for improved performance for deeper 

neural networks is that “the extra degrees of freedom can aid divergence, i.e. the addition 

of extra parameters can decrease the chance of becoming stuck in local minima or on 

‘plateaus’”. A CNN with more filters can form more complex decision boundaries for 

classification. In this thesis, deeper architectures will be compared to shallower ones to 

explore this theory. 

7.4.5 OVERFITTING 

Overfitting is caused by the neural network overly adapting to one set of test data. Since 

neural networks are often run for more than 30 epochs, the filters in the neural network 

often overfit. A simple way to combat overfitting is to reduce the number of fully 

connected layers in a neural network in the dense layers towards the end.  
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FIGURE 29. A STANDARD NEURAL NETWORK COMPARED TO A NEURAL NETWORK WITH 

DROPOUT APPLIED [22] 

Dropout prevents overfitting by randomly dropping connections in the fully connected 

layers at the end of a neural network. The downside in using dropout is that the neural 

network will train slower. A balance between training speed and overfitting will need to 

be made for the neural network architectures in this thesis [22]. 

7.5 Architectures 

7.5.1 Architecture #1: 3D-CNN 

This architecture is the same as Matt Rochford’s thesis that had the highest testing 

accuracy in his results. This architecture consists of five convolutional and four pooling 

layers that are passed through a flatten layer, then to three fully connected layers, each 

with decreasing amounts of outputs. The architecture is detailed below. 

Layer Filters Strides Kernel Output 

Convolution 3D 16 1 2x2x2 28x59x99x16 

Max Pooling 3D - 1x2x2 1x2x2 28x29x49x16 

Convolution 3D 32 1 2x2x2 27x28x48x32 

Max Pooling 3D - 1x2x2 1x2x2 27x14x24x32 

Convolution 3D 64 1 2x2x2 26x13x23x64 

Max Pooling 3D - 1x2x2 1x2x2 26x6x11x64 

Convolution 3D 128 1 2x2x2 25x5x10x128 
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Max Pooling 3D - 1x2x2 1x2x2 25x2x5x128 

Convolution 3D 256 1 2x2x2 24x1x4x256 

Flatten - - - 24576 

FC1 (dropout=.5) - - - 1024 

FC2 (dropout=.5) - - - 512 

FC3 - - - 500 

TABLE 2. ARCHITECTURE #1 

This architecture is unique in that it uses 2x2x2 convolutional blocks. Most 3D CNNs use 

3x3x3 convolutional blocks as there is a clear center to this block. Since this architecture 

does not include zero padding at the edges when convolving, the image gets smaller by 

one pixel in the frame, pixel width and height dimension every time when convolving. 

For a dataset of 100 words, the neural network has a 64.86% accuracy. For the full 

dataset, this figure should be significantly lower. This architecture will serve as the 

baseline result to compare to for my other architectures.  

The optimal learning algorithm is found to be the stochastic gradient descent (SGD) with 

a learning rate of 0.02 and Nesterov momentum applied. The Nesterov momentum 

adjusts the learning rate by changing its value based on a momentum term. This 

architecture is run for 30 epochs. 

7.5.2 Architecture #2: 3D CNN with 5 Fully Connected Layers 

The idea of this architecture is to add more fully connected layers at the end of this neural 

network. The idea is to test the idea that a deeper neural network with more hidden nodes 

will produce less error [21]. The data, after being passed through the convolutional and 

flatten layers, are passed through more fully connected layers. Perhaps the extra fully 

connected layers will fine-tune the output of the convolutional layers more. Three extra 

fully connected layers with 1024 outputs are added in this architecture.  
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Layer Filters Strides Kernel Output 

Convolution 3D 16 1 2x2x2 28x59x99x16 

Max Pooling 3D - 1x2x2 1x2x2 28x29x49x16 

Convolution 3D 32 1 2x2x2 27x28x48x32 

Max Pooling 3D - 1x2x2 1x2x2 27x14x24x32 

Convolution 3D 64 1 2x2x2 26x13x23x64 

Max Pooling 3D - 1x2x2 1x2x2 26x6x11x64 

Convolution 3D 128 1 2x2x2 25x5x10x128 

Max Pooling 3D - 1x2x2 1x2x2 25x2x5x128 

Convolution 3D 256 1 2x2x2 24x1x4x256 

Flatten - - - 24576 

FC1 - - - 1024 

FC2 - - - 1024 

FC3 - - - 1024 

FC4 (dropout=.5) - - - 1024 

FC5 (dropout=.5) - - - 512 

FC6 - - - 500 

TABLE 3. ARCHITECTURE #2 

The learning algorithm used in this architecture is Adam with default learning rate and an 

epsilon of 0.1. Only the last two dense layers will have dropout included. This 

architecture is run for 30 epochs. 

7.5.3 Architecture #3: VGG-16 based architecture 

VGG-16 is a classic image classification CNN. This architecture needed to be adapted to 

3D to run for video data. The detail of the original architectures and its variations are 

shown below. 
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FIGURE 30. THE ORIGINAL VGG NEURAL NETWORK ARCHITECTURE CONFIGURATIONS 

[20] 

Shown above are the different configurations of VGGNet, with configuration A having 

11 layers and configuration E having 19 layers. VGG-16 is known to be a very large and 

cumbersome neural network with many filters. The number of filters and convolutional 

layers means that the VGG neural network has many parameters. Since video data is 

much larger than image data per batch, adjustments to the number of filters were made to 

avoid going over the graphics card memory limit. The adjustments are shown below. 

Layer Filters Strides Kernel Output 

Convolution 3D 16 1 3x3x3 29x60x100x16 

Max Pooling 3D - 1x2x2 1x2x2 29x30x50x16 

Convolution 3D 32 1 3x3x3 29x30x50x32 

Max Pooling 3D - 1x2x2 1x2x2 29x15x25x32 

Convolution 3D 64 1 3x3x3 29x15x25x64 
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Convolution 3D 64 1 3x3x3 29x15x25x64 

Max Pooling 3D - 1x2x2 1x2x2 29x7x12x64 

Convolution 3D 128 1 3x3x3 29x7x12x128 

Convolution 3D 128 1 3x3x3 29x7x12x128 

Max Pooling 3D - 1x2x2 1x2x2 29x3x6x128 

Convolution 3D 128 1 3x3x3 29x3x6x128 

Convolution 3D 128 1 3x3x3 29x3x6x128 

Max Pooling 3D - 1x2x2 1x2x2 29x1x3x128 

FC1 - - - 2048 

FC2 - - - 1024 

FC3 - - - 500 

TABLE 4. ARCHITECTURE #3 

The learning algorithm used is Adam with a learning rate of 0.001 (default learning rate) 

and epsilon of 0.1, as suggested from the TensorFlow documentation. For this neural 

network, no dropout is applied as per the original VGG algorithm. This architecture is run 

for 30 epochs. 

7.5.4 Architecture #4: Multiple Towers 

Multiple towers (MT) is an architecture introduced in Chung and Zisserman’s Lip 

Reading in the Wild. The frames are processed individually through 2D CNNs before 

concatenating them. After concatenation, the data is passed through a 3D CNN similar to 

the previous architectures.  

This architecture delays the time-domain operations until after the first convolutional and 

pooling layers. This gives some tolerance for errors in lip tracking in between frames. For 

example, the lip detection algorithm could frame the lips differently for every frame. The 

first frame could have the lips centered properly while the next frame could have the lips 

offset by a significant margin. This architecture is meant to be resilient to these failures. 

Theoretically, if the lip detection and framing process is done perfectly, this architecture 

should not affect accuracy results much. 
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Layer Filters Strides Kernel Output 

Convolution 2D 16 1 3x3 60x100x16 

Max Pooling 2D - 1x2x2 1x2 30x50x16 

Concatenate - - - 29x30x50x16 

Convolution 3D 32 1 3x3x3 29x30x50x32 

Max Pooling 3D - 1x2x2 1x2x2 29x15x25x32 

Convolution 3D 64 1 3x3x3 29x15x25x64 

Convolution 3D 64 1 3x3x3 29x15x25x64 

Max Pooling 3D - 1x2x2 1x2x2 29x7x12x64 

Convolution 3D 128 1 3x3x3 29x7x12x128 

Convolution 3D 128 1 3x3x3 29x7x12x128 

Max Pooling 3D - 1x2x2 1x2x2 29x3x6x128 

Convolution 3D 128 1 3x3x3 29x3x6x128 

Convolution 3D 128 1 3x3x3 29x3x6x128 

Max Pooling 3D - 1x2x2 1x2x2 29x1x3x128 

FC1 - - - 2048 

FC2 - - - 1024 

FC3 - - - 500 

TABLE 5. ARCHITECTURE #4 

Keras makes running 2 dimensional CNNs for each frame trivial. The function 

TimeDistributed() allows a 2D-CNN to be run for every frame with just using one line of 

code [34].  

The learning algorithm used is Adam with the default learning rate and an epsilon of 0.1. 

Since MT is based off architecture #3 (VGG based), no dropout will be included. This 

architecture is run for 30 epochs. 

7.5.5 Architecture #5: LSTM-CNN 

This architecture is known as the CNN-LSTM architecture. A 2-dimensional CNN is run 

for every frame. Afterwards, the data from the CNNs are concatenated, then fed through 

the LSTM modules explained in the above sections. Keras function TimeDistributed() is 

once again used to run the 2D-CNNs in parallel. The outputs are flattened then 

concatenated to be input to the LSTM modules. The LSTM modules can have many 
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outputs to connect to a fully connected layer [4]. With trial and error, the best results 

were found to be using LSTM output dimension of 1024.  

In this architecture, a stacked LSTM layer is used instead of just a single layer. The 

output of the LSTM layers is then fed to a fully connected layer with 500 outputs 

corresponding to the number of classes.  

Layer Filters Strides Kernel Output 

Convolution 2D 16 1 3x3 60x100x16 

Max Pooling 2D - 1x2 1x2 30x50x16 

Convolution 2D 32 1 3x3 30x50x32 

Max Pooling 2D - 1x2 1x2 15x25x32 

Convolution 2D 64 1 3x3 15x25x64 

Convolution 2D 64 1 3x3 15x25x64 

Max Pooling 2D - 1x2 1x2 7x12x64 

Convolution 2D 128 1 3x3 7x12x128 

Convolution 2D 128 1 3x3 7x12x128 

Max Pooling 2D - 1x2 1x2 3x6x128 

Convolution 2D 128 1 3x3 3x6x128 

Convolution 2D 128 1 3x3 3x6x128 

Max Pooling 2D - 1x2 1x2 1x3x128 

Flatten - - - 384 

Concatenate - - - 29x384 

LSTM - - - 29x1024 

LSTM    1024 

FC    500 

TABLE 6. ARCHITECTURE #5 

Theoretically, because LSTMs were designed specifically for temporal data, it should 

outperform 3D-CNNs and the MT architecture. LSTMs are more suited for prediction of 

future data using past data. This can include lyric writing and orchestral composition, 

where past data and context are important in predicting future data. Therefore, the gains 

in accuracy is expected to improve over 3D-CNNs and MT, but not by a significant 

margin. 
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The learning algorithm used is Adam with the default learning rate and an epsilon of 0.1. 

Since this architecture is based off architecture 4 (VGG based), no dropout will be 

included. This architecture is run for 100 epochs.  

7.5.6 Architecture #6: CNN and Bidirectional LSTM 

This architecture is very similar to architecture #5, but with bidirectional LSTM layers. 

For a unidirectional LSTM, information only flows in one direction. Therefore, 

unidirectional LSTMs only preserves information from the past. Bidirectional LSTMs 

will take inputs and run it in both directions, meaning that it can take into account past 

information and future information. Since information flows both ways in a bidirectional 

LSTM, the amount of LSTM cells needed are doubled. One can create a bidirectional 

LSTM by using two unidirectional LSTMs. One unidirectional LSTM will have 

information flow one way and the other LSTM the opposite way. The two LSTM layers 

are then concatenated to form a bidirectional LSTM. Luckily, TensorFlow has a built-in 

function that performs this task. 

 

FIGURE 31. BIDIRECTIONAL FLOW OF INFORMATION OF A BIDIRECTIONAL LSTM [15] 

It is difficult to say for sure if results will improve using a bidirectional LSTM compared 

to a unidirectional LSTM. Because bidirectional LSTMs take into account both past and 

future information, it should in theory be able to understand context better than 
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unidirectional LSTMs. Perhaps by feeding both future and past lip frames into the LSTM, 

accuracy may improve. However, one can argue that accuracy will not improve because 

there is little need for context to predict words based on lip frame data.  

The CNN used for this architecture is simply architecture #3, which is the VGG based 

architecture. The results will be discussed in the next section. 

Layer Filters Strides Kernel Output 

Convolution 2D 16 1 3x3 60x100x16 

Max Pooling 2D - 1x2 1x2 30x50x16 

Convolution 2D 32 1 3x3 30x50x32 

Max Pooling 2D - 1x2 1x2 15x25x32 

Convolution 2D 64 1 3x3 15x25x64 

Convolution 2D 64 1 3x3 15x25x64 

Max Pooling 2D - 1x2 1x2 7x12x64 

Convolution 2D 128 1 3x3 7x12x128 

Convolution 2D 128 1 3x3 7x12x128 

Max Pooling 2D - 1x2 1x2 3x6x128 

Convolution 2D 128 1 3x3 3x6x128 

Convolution 2D 128 1 3x3 3x6x128 

Max Pooling 2D - 1x2 1x2 1x3x128 

Flatten - - - 384 

Concatenate - - - 29x384 

Bi-LSTM - - - 29x2048 

Bi-LSTM    2048 

FC    500 

TABLE 7. ARCHITECTURE #6 
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8. Results 

8.1 Preprocessing result 

Most of the videos output from our lip detection algorithm is valid. As a reminder, any 

video with more than one face or no face are not used. A chart of the results is shown 

below. 

File Valid Videos Total Videos Valid Percentage 

train 473,847 500,000 95% 

val 24,241 25,000 97% 

test 24,194 25,000 97% 

TABLE 8. PREPROCESSING RESULTS 

Since the number of invalid videos are relatively small (less than 5% for all data types), I 

believe that there is no need to investigate the small portion of invalid results. 

8.2 Neural Network results  

For a classification task with 500 different words, a correct random guess would have a 

probability of 0.2%. With such a large number of classes, a 50% correct identification 

would be considered good (This is compared to other similar words, such as Chung and 

Zisserman’s Lip Reading in the Wild). My target is to surpass human lip-reading accuracy 

(45%) and Chung and Zisserman’s work (61.1%).  

8.2.1 Architecture #1: 3D-CNN 

Matt Rochford’s best architecture ends up with a final testing accuracy of 53.02%. This 

surpasses human lip-reading accuracy but does not surpass Chung and Zisserman’s work. 

This architecture will be my baseline to improve upon. 

Peak Training 

Accuracy 

Peak Validation 

Accuracy 

Testing 

Accuracy 

Learning Algorithm 

79.86% 55.03% at epoch 19 53.02% SGD, LR=0.02, 

Nesterov Momentum 
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TABLE 9. ARCHITECTURE #1 RESULTS 

 

FIGURE 32. ACCURACY CHANGES PER EPOCH FOR ARCHITECTURE #1 

8.2.2 Architecture #2: 3D CNN with 5 Fully Connected Layers 

More fully connected layers should give more parameters to adjust so that a more fine-

tuned decision boundary can be made. The results of this architecture compared to 

baseline is worse by roughly 5%.  

An explanation for the worse performance is that the increased number of dense layers at 

the end does nothing for the neural network itself. The dense layers at the end merely 

“mixes” the output of the convolutional layers and seems to have a negative effect if 

there are too many layers. A large amount of work is done by the convolutional filters for 
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the video data. Increasing the number of convolutional layers instead of dense layers may 

increase performance. 

Peak Training 

Accuracy 

Peak Validation 

Accuracy 

Testing 

Accuracy 

Learning Algorithm 

95.27% 48.87% at epoch 16 47.77% 

 

SGD, LR=0.02, 

Nesterov Momentum 

TABLE 10. ARCHITECTURE #2 RESULTS 

  

FIGURE 33. ACCURACY CHANGES PER EPOCH FOR ARCHITECTURE #2 

8.2.3 Architecture #3: VGG-16 Based Architecture 

The VGG-16 based architecture comes very close to Chung and Zisserman’s multiple 

towers architecture accuracy of 61.1%.  
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This somewhat supports the theory discussed earlier about deeper neural network 

architectures yielding better accuracy. There are simply more convolutional filters to 

adjust, which lets the neural network have a more fine-tuned decision boundary. 

Compared to the baseline architecture, there is an improvement of around 7%. 

Peak Training 

Accuracy 

Peak Validation 

Accuracy 

Testing 

Accuracy 

Learning Algorithm 

99.15% 61.02% at epoch 22 59.95% Adam, LR=0.001,  

Epsilon = 0.1 

TABLE 11. ARCHITECTURE #3 RESULTS 

 

FIGURE 34. ACCURACY CHANGES PER EPOCH FOR ARCHITECTURE #3 
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8.2.4 Architecture #4: Multiple Towers 

This architecture improves upon architecture #3 (VGG based) by a small amount. Since 

this architecture is based on architecture #3, the difference in the results should be minor. 

The objective of the MT architecture is to increase the error tolerance of our neural 

network. Since the test accuracy between architecture #3 and multiple towers is very 

similar (MT is better by 0.5%), this implies that the preprocessing of video data is 

relatively error free. 

Peak Training 

Accuracy 

Peak Validation 

Accuracy 

Testing 

Accuracy 

Learning Algorithm 

99.27% 61.05% at epoch 28 60.43% 

 

Adam, LR=0.001,  

Epsilon = 0.1 

TABLE 12. ARCHITECTURE #4 RESULTS 
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FIGURE 35. ACCURACY CHANGES PER EPOCH FOR ARCHITECTURE #4 

8.2.5 Architecture #5: LSTM-CNN 

It took many trials and errors to find out the number of epochs to run for this neural 

network. In the end, 100 epochs were found to be the right number of epochs to use. 

Towards the end, training accuracy was reaching 100%, meaning that more training 

would not increase accuracy any longer. For 100 epochs, this neural network took the 

second longest to run out of all the different architectures at 34 hours. While training time 

is long, testing time is similar to other neural network architectures. 

Despite the lengthened run time, this neural network outperformed the best non-LSTM 

architecture by a significant margin. It outperformed the baseline architecture by a 

staggering 14% and outperformed the best CNN only architecture by 7%.  

Peak Training 

Accuracy 

Peak Validation 

Accuracy 

Testing 

Accuracy 

Learning Algorithm 

100% 68.17% at epoch 96 67.14% 

 

Adam, LR=0.005,  

Epsilon = 0.1 

TABLE 13. ARCHITECTURE #5 RESULTS 
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FIGURE 36. ACCURACY CHANGES PER EPOCH FOR ARCHITECTURE #5 

8.2.6 Architecture #6: CNN and Bidirectional LSTM 

The bidirectional LSTM architecture performed better than the CNN-LSTM architecture, 

if only by a bit. Similar to architecture #5 (CNN-LSTM), this architecture is run for 100 

epochs with the same learning algorithm. This took the longest to run out of all the 

architecture because of the number of epochs needed to run as well as the added 

complexity compared to architecture #5. This architecture outperformed the CNN-LSTM 

architecture by 0.7%, which is a small but appreciable gain. 

 



55 
 

Peak Training 

Accuracy 

Peak Validation 

Accuracy 

Testing 

Accuracy 

Learning Algorithm 

100% 68.88% at epoch 93 67.93% 

 

Adam, LR=0.005,  

Epsilon = 0.1 

TABLE 14. ARCHITECTURE #6 RESULTS 

 

FIGURE 37. ACCURACY CHANGES PER EPOCH FOR ARCHITECTURE #6 

8.2.7 Comparison of Different Architectures 

Architecture Test Accuracy Parameters 

Matt’s 53.02% 26,296,932 

Matt’s + Extra Dense 

Layers 

47.77% 28,396,132 

VGG based 3D CNN 59.95% 27,148,372 

Multiple Towers with VGG 60.43% 27,148,084 

LSTM + VGG 67.14% 15,253,300 

Bi-LSTM + VGG 67.93% 37,293,376 

TABLE 15. OVERALL TEST ACCURACY AND PARAMETERS 
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For the architectures, architecture #6 performed the best while architecture #2 

performed the worse. Despite the extra layers for architecture #2, performance is not 

good. For the non-LSTM results, the architecture #4 had the highest accuracy. While it 

is shown that our lip framing algorithm is good, the MT architecture manages to catch 

some errors, giving a 0.5% improvement in accuracy over architecture #3.  

The Bi-LSTM architecture also took the longest to run. Having the greatest number of 

parameters meant that it took just under two days to fully run 100 epochs. The 

improvement over the regular LSTM architecture nets around 0.8%, which is a small 

but appreciable gain. 

The learning rates for each architecture had to be carefully tuned. Other than the first 

architecture where the classic SGD optimizer is used, the Adam optimizer is used for 

everything else. Following TensorFlow’s suggestion to use epsilon equal to 0.1 for 

image training helped immensely and was used for all architectures that utilized Adam. 

The learning rates used were typically the default value of 0.001. The LSTM module 

needed a slightly higher learning rate or 0.005 than others to learn effectively. For 

LSTM, there were issues when learning rate was too high and learning began to 

diverge. In one case, the LSTM architecture “unlearned” everything halfway through 

training. 

8.3 Using Difference of Frames 

Data Type Peak Training Accuracy Peak Validation Accuracy 

Raw grayscale 100% 68.17% 

Frame Difference 100% 66.66% 

TABLE 16. COMPARING TWO DIFFERENT DATASET TYPES 
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The different datasets were run using the best performing architecture, which is 

architecture #6. The raw grayscale data performed 1.5% better overall compared to 

taking the frame differences.  

8.4 Confusion Matrix 

The confusion matrix is used to check for commonly confused word pairs. The python 

script runs both evaluate()and predict() to evaluate the accuracy and to predict the results 

given the data. Using the scikit-learn library, the output of predict() is then plotted against 

actual results for the confusion matrix. The output of the confusion matrix function is 

printed to a text file, which is then read by MATLAB. Since there are so many classes, 

the analysis of the confusion matrix is done in MATLAB.  

 

FIGURE 38. CONFUSION MATRIX FOR 500 CLASSES 

The top ten confused word pairs are (note that many words are tied in rank): 
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1 MILLION BILLION 

2 HOUSING HOUSE 

3 HAPPENED HAPPEN 

4 REPORT REPORTS 

4 PRICE PRESS 

4 SPENT SPEND 

4 LIVING GIVING 

5 STILL UNTIL 

5 INDUSTRY HISTORY 

5 PARENTS POWERS 

TABLE 17. MOST CONFUSED WORD PAIRS 

The first category of confused words are words that are plurals of each other. An example 

is “benefit” and “benefits”. Another category of confused words are words that share all 

the same syllables except for a single word. An example is “billion” and “million”, where 

the “illion” part of the words are shared. The last category of confused words is when 

spoken sound is done with tongue movement instead of lip movement. This includes 

words like “parents” and “powers”, where the “ts” and “ers” sounds are produced by 

tongue movement instead of lip movement.  

8.5 Failed approaches not included in results 

One failed approach, which is not shown in the results, were to use a pre-built neural 

network architecture in Keras as a front end to the LSTM modules. Architectures tried 

were: DenseNet201, InceptionV3, and ResNet50. These all have high image recognition 

accuracy and I expected that to carry over to video classification accuracy. However, 

there are limitations to these pre-built neural networks. For example, Google’s 

InceptionV3 is not able to take images smaller than 75x75, which one of our dimensions 

is 60 pixels, making it incompatible with Inception V3. The results for ResNet50 and 

DenseNet201 performed far worse than even our worst model at around 40% accuracy. 

This is not to mention the added complexity of neural networks such as ResNet50 and 
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DenseNet201 that significantly increases runtime. It took almost two hours to run a single 

epoch compared to the usual 45 minutes to one hour per epoch for the other architectures.  

Another failed approach would be my custom implementation of Google’s Inception 

module. I implemented the Inception V3 module shown below. 

 

FIGURE 39. INCEPTION MODULE WITH DIMENSION REDUCTION [35] 

This neural network is much more complicated compared to VGG-16. Instead of one 

linear CNN, the Google Inception module is comprised of a few parallel CNNs 

concatenated at the end. I was only able to implement a single module due to the memory 

requirements for the complicated Inception V3 architecture. For that, many inception 

modules are needed along with global pooling layers. With 27 layers, it is far deeper than 

any neural network I have. This custom version of Inception has 405,825,210 parameters, 

making it significantly heavier compared to other neural networks I implemented. 

The performance was disappointing, probably due to the massively scaled downsize of 

the Inception implementation. Running on my sample dataset (10 words instead of the 

full 500-word library) only yielded 83% accuracy, compared to architecture #6 that 

scored 95% in my sample dataset, the results are very poor.  
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It is difficult to explain why these more complex and deep pre-built neural networks 

would perform so poorly compared to the relatively simple neural networks I concocted. 

The only explanation I can offer is that the neural networks are simply just not 

compatible for usage with video data. Google’s Inception is more suitable for classifying 

images rather than detecting movement of lips. 
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9. Conclusion 

9.1 Summary 
 

This thesis has detailed different approaches to pre-processing and neural network 

architecture types. The best results came from pre-processing the images to be grayscale 

and using a stacked LSTM neural network. During testing, the accuracy was 67.14%, 

higher than human lip-reading ability (around 45%) and higher than recent works 

(61.1%). Other works that utilize LSTMs achieve higher accuracy than my thesis does 

but uses a far smaller word pool.  

The hardware provided by the computer science department allowed me to spend 

resources freely, especially system RAM and graphics card memory. The whole dataset 

of 500 words, preprocessed, used up to 160 gigabytes of RAM. To put that in 

perspective, a high-end desktop computer usually has 32 gigabytes of RAM, far less than 

the 160 gigabytes I needed. The graphics memory allowed me to explore deeper 

architectures and use larger batch sizes to speed up training.  

For this thesis, I was able to fully utilize the entire LRW dataset of 500 words. Because 

of this, I am able to compare my work directly to Chung and Zisserman’s work. 

Compared to other datasets, LRW provided high quality recordings and was the easiest to 

work with. All of the videos are cut to be exactly 29 frames long and are already sorted to 

test, training, and validation groups.  

The lip frames extraction program run using Dlib had over 95% success rate overall. 

Because the number of dropped videos is low, no further investigation into the error was 
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done. The images are first processed to be grayscale, then some other effects are done to 

potentially enhance the images for the neural network.  

The focus of this thesis is the research of different neural network architectures and the 

effect that different parameters has. Parameters such as learning algorithm, batch size, 

convolutional kernel size, and dropout are adjusted to find what is optimal. Overall, the 

Adam optimizer is found to the best learning algorithm for a majority of the neural 

networks. The optimal batch size is simply the default size. Most architectures utilized a 

3x3 convolutional kernel. Some dropout is used to balance between training speed and 

overfit reduction.  

Many different architectures are tested in this thesis. The best 3D-CNN architecture, the 

multiple towers architecture, has around 60.43% test accuracy. This architecture is based 

off the VGG16 architecture. While it is no longer a cutting-edge architecture, its simple 

structure makes it ideal to implement. The VGG architecture is notorious for being 

memory intensive, so the number of filters used per layer is reduced. From testing, what 

makes the difference in accuracy is convolutional layers and not fully connected layers. 

Fully connected layers have little relevance in finding filters that detect lip features while 

convolutional layers do. Since my lip frames are of size 60x100 pixels, the maximum 

number of pooling layers that can be done is five. 

My LSTM architecture trumps the best 3D-CNN architecture by a large margin, having 

67.14% test accuracy. The 3D-CNN’s ability to perceive temporal data is primarily 

through the kernel size used. A 3x3x3 convolutional cube only considers data one frame 

ahead and behind it. However, an LSTM can consider all past frames input. Because it is 
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able to look further behind, or ahead in the case of bidirectional LSTMs, the results are 

far superior to 3D-CNNs. 

9.2 Challenges 

On the preprocessing end, the approach of taking differences between frames in order to 

obtain lip movement did not work well as an input for the neural network. The accuracy 

dropped by around 4 percent compared to using raw grayscale data. Since people tend to 

move when they speak, the lips move along with the face. Taking the difference between 

frames may not only capture lip movement but also facial movement. Perhaps aligning 

the lips so that the edges of the lips are in the same locations for every frame may solve 

this issue. However, I was not able to find a way to achieve this. 

Adjusting the neural network took a lot of time. To adjust a small parameter such as 

learning rate, the neural network data must be loaded into memory, then the graphics card 

needs to run the neural network. To combat this, I created a smaller dataset with only 10 

words. This allowed me to prototype different parameters such as learning rate, batch 

size, and even neural network architecture much quicker than loading the entire 500 word 

dataset. Small adjustments to learning rate was made, usually in increments of 0.005, to 

find what is optimal for a certain neural network. For larger and deeper neural networks, 

it seems that larger learning rates were needed. After testing a variety of batch sizes, it 

seems that the default batch size of 32 was the best in terms of the number of epochs to 

fully train and time per epoch.  

In the failed attempts section, I discuss several obstacles of implementing deeper and 

more complex neural networks to feed into the LSTM. CNNs such as DenseNet201 and 

ResNet50 all suffered in accuracy when in theory a more complex neural network is 
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supposed to give me better results. I attempted a customized implementation of Google’s 

InceptionV3. This neural network ended up being large in size while having lower 

accuracy than a much simpler implementation. Here, a theoretically superior CNN than 

my custom VGG16 model performed worse when processing video data. I’m unsure of 

why that is the case. The only reason that I have is that these neural networks are simply 

not compatible with my data type as they are meant to classify images, not a series of 

images (video). 

9.3 Future Work 

There are an almost infinite number of neural network architectures that can be tried. 

While there are general rules and guidelines to follow for a good neural network, there 

are no “best” combination of neural network layers to use. Moreover, a CNN does not 

have to be linear in structure, as demonstrated by Google’ s Inception modules. Although 

my attempts have not worked in implementing a parallel type CNN such as Google’s 

Inception, I believe that one can make this type of neural network function well for video 

data. Also, a more popular approach to LSTMs recently have been to include attention 

modules.  

Attention modules are usually placed after LSTM modules. Its purpose is to decide which 

parts of the input data are more important than others. For example, certain words in a 

sentence are more important than others in deciphering its meaning. The attention 

module’s job is to decide what those words are and assign more weight to the key words 

and assign less weight to less important words. Attention modules are much more recent 

in development, therefore there is no consensus on a “best” type of attention module. In 

research papers, people often write their own customizations of the attention module.  
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A paper written in 2017, Attention is All You Need, addresses the main concern with 

LSTMs: speed of training. Since LSTMs reads data sequentially, they take longer to train. 

Transformers instead reads all data at once. Attention modules are used to assign weights 

to all input data. For example, for video-based ASR, weight matrices are assigned to 

every frame, weighing the frame data to each other with the weight matrix. The 

transformer not only outperforms LSTMs, but also requires less computation to train. A 

transformer system adapted to video-based ASR will be a great option to explore in the 

future. 

Ideally, video-based ASR systems will be integrated with audio-based ASR systems. 

Video based ASR is resistant to audio noise and audio-based ASR is resistant to visual 

noise. Combining both types of ASR systems will result in an overall more robust 

system. There are two ways to integrate these systems. There is an approach that 

combines both video and audio data using LSTMs with attention modules. The video and 

audio data are processed separately via LSTMs (audio data) and LSTM and CNNs (video 

data). These outputs are combined, passed through an attention module, then through an 

LSTM module into a multi-layer perceptron. The attention module weights the outputs of 

the video and audio-based ASR separately. The audio and video data are combined to 

decipher a word. 

Another approach, which is simpler, would be to process audio and video data separately. 

A decision will be made based on how much we trust the different systems to accurately 

decipher the data. Since audio-based ASRs are more researched and have higher 

accuracy, more weight can be given to audio-based ASRs compared to video-based ASRs 
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when making a decision based on the input data. In this approach, audio and video data 

are kept separately and are only used when deciding the word.  

Extending beyond single word recognition would be to perform ASR on phrases or even 

sentences. Knowing the context of a word in a sentence can potentially reduce the 

misidentification chance of similar words.  
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APPENDIX 

 

A. LIP DETECTION MODULE 

1. ##############################################################################   

2.    

3. # Lip Detector Module   

4. # Alvin Lin   

5. # This file defines extracts lip landmarks, then crops it using OpenCV   

6. # Includes the option to take the difference between lip frames   

7. # Returns lip frames. Should be grayscale and cropped!   

8.    

9. ##############################################################################   

10.    

11. # Import the necessary packages   

12. from imutils import face_utils   

13. import numpy as np   

14. import cv2   

15. import dlib   

16. import time   

17.    

18. ##############################################################################   

19.    

20. # Define path to dlib predictor   

21. predictor_path = 'shape_predictor_68_face_landmarks.dat'   

22.    

23. ##############################################################################   

24.    

25. fgbg = cv2.createBackgroundSubtractorMOG2(history=10,varThreshold=2,detectShadows=False)   

26.    

27. # Lip detection function   

28. def lip_detector(video_path):   

29.    

30.     # Initialize dlib's face detector (HOG-based) and create facial landmark predictor   

31.     detector = dlib.get_frontal_face_detector()   

32.     predictor = dlib.shape_predictor(predictor_path)   

33.    

34.     # Read video in as mp4 file   

35.     video = cv2.VideoCapture(video_path)   

36.    

37.     # Check if video opened   

38.     if (video.isOpened()==False):   

39.         print('Error opening video file: ' + video_path)   

40.         return # Return from function if video does not open   

41.    

42.     lip_frames = [] # Initialize variable to store lip frames   

43.     count = 0 # Initialize counter to track frames   

44.    

45.     # Read video frame by frame   

46.     while(video.isOpened()):   

47.    

48.         ret, frame = video.read() # Capture frame   

49.         if ret == True: # if frame exists   

50.    

51.             count = count + 1 # Increment counter   

52.    

53.             # Convert frame to grayscale and resize to a standard size   

54.             frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)   

55.             frame = cv2.resize(frame,(224,224))   
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56.                

57.             # detect face in the image   

58.             faces = detector(frame, 1)   

59.    

60.             if len(faces) > 1: # If more than one face detected print error and return   

61.                 #print('Error: Multiple faces detected in video')   

62.                 return 2 # Return error code 2   

63.             elif len(faces) == 0: # If no face detected print error and return   

64.                 #print('Error: No face detected in video')   

65.                 return 0 # Return error code 0   

66.                

67.             else: # If one face detected perform lip cropping   

68.                 for face in faces:   

69.                        

70.                     # Determine facial landmarks for the face region and convert to a NumPy array   

71.                     shape = predictor(frame, face)   

72.                     shape = face_utils.shape_to_np(shape)   

73.                        

74.                     # Extract the lip region as a separate image   

75.                     (x, y, w, h) = cv2.boundingRect(np.array([shape[48:68]]))   

76.                     margin = 10 # Extra pixels to include around lips   

77.                     lips = frame[y-margin:y + h + margin, x-margin:x + w + margin]   

78.                     lips = cv2.resize(lips,(90,90))   

79.    

80.                     # Create a stack of extracted frames   

81.                     if len(lip_frames) == 0:   

82.                         lip_frames = lips   

83.                     else:   

84.                         lip_frames = np.dstack(((lip_frames),(lips)))   

85.         else: # If no frame left break from loop   

86.             break   

87.    

88.     # Release video object   

89.     video.release()   

90.    

91.     # Close any open windows   

92.     cv2.destroyAllWindows()   

93.    

94.     # Reshape array for CNN layer compatibility   

95.     lip_frames = np.moveaxis(lip_frames,-1,0)   

96.    

97.    

98.     # This segments subtracts the lip frames and pads with an empty frame   

99.     # sub_lips = np.zeros([29,60,100])   

100.    
101.     # for i in range (1,29):   

102.     #   temp = np.subtract(lip_frames[i,:,:],lip_frames[i-1,:,:])   

103.     #   sub_lips[i,:,:] = temp   

104.    
105.     # sub_lips = sub_lips[1:28,:,:]   

106.    
107.    

108.     return lip_frames   

109.    

110. ##############################################################################   

111.    

112. # REFERENCES:   

113. # Code for reading and editing video files is adapted from 'Learn OpenCV'   

114. # https://www.learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-python/   

115. # Code for lip detection is based off Dlib library and an implementation from PyImageSearch   

116. # https://www.pyimagesearch.com/2017/04/10/detect-eyes-nose-lips-jaw-dlib-opencv-python/   
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B. LIP FRAMES TO NUMPY  

1. ####################################################################################### 

2.    

3. # Video Preprocessing Framework   

4. # Alvin Lin   

5. # This is the main function that implements the lip detector on each video   

6. # This file creates the labels to label each file    

7. # file and stores the output numpy arrays. Also includes all helper functions.   

8. # Utilize multiprocessing for speed increases   

9.    

10. ####################################################################################### 

11.    

12. # Import modules   

13. from lip_detector import lip_detector   

14. from multiprocessing import Pool   

15. import os   

16. import numpy as np   

17. import time   

18.    

19. ####################################################################################### 

20.    

21. # Define Paths   

22. input_folder = '../Thesis/images/lipread_mp4/' # Path to folders of each class   

23. output_folder = '../Thesis/images/lipread_npy/' # Included for help when storing output numpy arrays   

24.    

25. ####################################################################################### 

26.    

27. # This function forms a subset of the LRW dataset consisting of the first 100 classes.   

28. # The output is a list of each class name to then be used in deciding which classes   

29. # to process.   

30.    

31. def data_subset():   

32.    

33.     # Initialize counter f   

34.     i = 0   

35.    

36.     # Initialize array for storing class names   

37.     subset_strings = []   

38.    

39.     # Loop through each class directory e.g. ABOUT, ABSOLUTELY, ACCESS   

40.     for directory in os.listdir(input_folder):   

41.            

42.         # Only include the first 100 classes   

43.         if i < 500:   

44.             subset_strings.append(directory)   

45.            

46.         # Increment counter   

47.         i = i + 1   

48.    

49.     # Return list of 100 class strings   

50.     return subset_strings   

51.    

52. ####################################################################################### 

53.    

54. # This function applies the lip detector function to all the files in the input folder   

55. # and saves the output numpy files to the output folders.   

56. # This function is modified to include labeling of classes   

57.    

58. def process_videos(directory):   

59.    
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60.     # Form list of subset strings   

61.     mult_faces = 0   

62.     no_faces = 0   

63.     face = 0   

64.     # Loops over each word directory Ex. ABOUT, ABSOLUTELY, ACCESS, etc.   

65.     # If class is in the 100-class subset   

66.     if directory in subset:   

67.            

68.         # Loops over each sub directory, test train val   

69.         for sub_directory in os.listdir(input_folder+directory):   

70.    

71.             # Loops over each file in final directory   

72.             for file in os.listdir(input_folder+directory+'/'+sub_directory):   

73.                    

74.                 # Only use mp4 files   

75.                 if file.endswith('.mp4'):   

76.                        

77.                     # Generate label for output data file   

78.                     label = os.path.splitext(file)[0] # Grab file base name   

79.                     label = label + '.npy'   

80.    

81.                     # Check if file has already been processed and update counter   

82.                     if os.path.exists(output_folder+sub_directory+'/'+label):   

83.                         face = face + 1   

84.    

85.                     # Otherwise process file   

86.                     else:   

87.                         # Form full input path using directory and individual file   

88.                         path = input_folder+directory+'/'+sub_directory+'/'   

89.    

90.                         # Perform lip detection and return data array   

91.                         data_array = lip_detector(path+file)   

92.    

93.                         # If face detection error, keep track for evaluation   

94.                         if isinstance(data_array,int):   

95.    

96.                             if data_array == 2:   

97.                                 mult_faces = mult_faces + 1   

98.                             elif data_array == 0:   

99.                                 no_faces = no_faces + 1   

100.                            
101.                         # If face was detected successfully   

102.                         else:   

103.    

104.                             # Update counter   

105.                             face = face + 1   

106.    
107.                             # This part adds the extra dimentions   

108.                             # Multithreads the build_4D_arrays_and_labels partially, done for speed   

109.                             # Add 4th dimension to numpy array for CNN layer compatibility   

110.                             data_array = np.expand_dims(data_array,axis=-1)   

111.    

112.                             # Normalize training data to 0~1 range   

113.                             data_array = data_array / 255.0   

114.    
115.                             # Convert to shortest float for memory allocation demands   

116.                             data_array = np.float16(data_array)   

117.    

118.                             # Define path to output folder   

119.                             path = output_folder+sub_directory+'/'   

120.                                
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121.                             # Save output numpy array to output folder   

122.                             np.save(path+label,data_array)   

123.    
124. ###############################################################################  

125.    
126. # This function creates labels for each class (e.g. AFRICA, AMERICA) and saves them as .npy files   

127. # This is written to the output file called "labels"   

128. # Before feeding into the NN, this file is combined with videos processed   

129.    
130. def label_maker():   

131.    
132.     print('Creating labels...')   

133.     # Make string of classes to be used in dataset   

134.     subset = data_subset()   

135.    
136.     # Initialize counter for label making   

137.     i = 0   

138.    

139.     # Loops over each word directory Ex. ABOUT, ABSOLUTELY, ACCESS, etc.   

140.     for directory in subset:   

141.    
142.         # Hard code label of size 10 for each word in dataset subset   

143.         # Change to 500 if using entire LRW dataset   

144.         label = np.zeros((500), dtype=int)   

145.    
146.         # Assign value of 1 at proper location   

147.         label[i] = 1   

148.    

149.         # Create name for label file   

150.         name = directory+'_label.npy'   

151.    
152.         # Create path to labels folder   

153.         path = output_folder+'labels/'   

154.    

155.         # Save numpy file to labels folder   

156.         np.save(path+name,label)   

157.    
158.         # Increment counter   

159.         i = i + 1   

160.    

161. ###############################################################################  

162.    

163. # This function builds a 4D data array to use for model training. Key is which dataset to be   

164. # assembled: test, train, or val. The output is one array of the entire dataset with ordered   

165. # labels.   

166.    

167. def build_4D_arrays_and_labels(key):   

168.    

169.     # Generate string of classes for data subset   

170.     subset = data_subset()   

171.     i = 0   

172.        

173.     # Initialize arrays for data and labels   

174.     dataset = []   

175.     labels = []   

176.    

177.     # Define path to proper dataset folder: test,train,val   

178.     path = output_folder+key+'/'   

179.    
180.     # For each numpy array file from lip detector output   

181.     for file in os.listdir(path):   
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182.         name = file.split('_')   

183.    

184.         # Only add files in data subset   

185.         if name[0] in subset:   

186.    
187.             # Load numpy array   

188.             data = np.load(path+file)   

189.    

190.             # Grab correct frames if full video was processed earlier   

191.             #if data.shape[0] != 11:   

192.             #   data = data[9:20,:,:]   

193.    

194.             # Grab file base word   

195.             #word = file.split('_')[0]   

196.    
197.             # Make label file string   

198.             label_file = name[0]+'_label.npy'   

199.                

200.             # Load label array   

201.             label = np.load(output_folder+'labels/'+label_file)   

202.    
203.             # Append data to list   

204.             dataset.append(data)   

205.             labels.append(label)   

206.    
207.     # Convert lists to numpy arrays   

208.     dataset = np.stack(dataset)   

209.     labels = np.stack(labels)   

210.    
211.     # Print output stats   

212.     print(key+' dataset size and label size')   

213.     print(dataset.shape)   

214.     print(labels.shape)   

215.    

216.     # Save numpy arrays to save processing time when no new data is added   

217.     np.save(key+'_datasq.npy',dataset)   

218.     np.save(key+'_labelssq.npy',labels)   

219.     print('done')   

220.    
221. ##############################################################################   

222.    
223. if __name__ == "__main__":   

224.        
225.     t0 = time.time()   

226.     # Initialize variables for per class evaluation   

227.     mult_faces = 0   

228.     no_faces = 0   

229.     face = 0   

230.     subset = data_subset()   

231.        

232.     # #file labeling   

233.     label_maker()   

234.    
235.     #maximum of 100 threads to use   

236.     pool = Pool(processes=100)    

237.    

238.     #process multiple subsets at a time (e.g. 'AFRICA' and 'AMERICA' at the same time)   

239.     for i in range(len(subset)):   

240.         print(subset[i])   

241.         pool.apply_async(process_videos, args = (subset[i], ))   

242.    
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243.     pool.close()   

244.     pool.join()   

245.    
246.     # Build validation dataset   

247.     print('Building validation dataset')   

248.     build_4D_arrays_and_labels('val')   

249.        
250.     # Build training dataset   

251.     print('Building training dataset')   

252.     build_4D_arrays_and_labels('train')   

253.    
254.     # Build testing dataset   

255.     print('Building testing dataset')   

256.     build_4D_arrays_and_labels('test')   

257.    
258.     t1 = time.time()   

259.     total = t1-t0   

260.     print('Processing time: '+str(total))   

C. BI-DIRECTIONAL LSTM-CNN 

1. # bi-LSTM-CNN   

2. # Alvin Lin   

3. # This file creates tensor slices using the dataset   

4. # Defines an bidirectional LSTM   

5. # Trains, validates, and tests data   

6. # Also outputs text files for confusion matrix   

7.    

8. ######################################################################################  

9.    

10. # Import tensorflow and ignore some errors   

11. import os   

12. os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'   

13. import tensorflow as tf   

14. tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)   

15.    

16. # Import other modules   

17. from keras.preprocessing.image import ImageDataGenerator   

18. from keras.models import Sequential, load_model   

19. from keras.layers import TimeDistributed, Attention   

20. from keras.layers.core import Dense, Dropout, Activation, Flatten   

21. from keras.layers.convolutional import Convolution2D, MaxPooling2D   

22. from keras.layers import Dense, Dropout, LSTM, BatchNormalization, Bidirectional   

23. from keras import optimizers   

24.    

25. # Plot data   

26. from matplotlib import pyplot as plt   

27.    

28. # Confusion Matrix   

29. from sklearn.metrics import classification_report, confusion_matrix   

30. import itertools   

31.    

32. # Handy things to have   

33. import numpy as np   

34. import time   

35.    

36. ######################################################################################  

37.    

38. # This function forms a subset of the LRW dataset consisting of the first 100 classes.   

39. # The output is a list of each class name to then be used in deciding which classes   
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40. # to process.   

41.    

42. def data_subset():   

43.    

44.     input_folder = '../Thesis/images/lipread_mp4/' # Path to folders of each class   

45.     # Initialize counter f   

46.     i = 0   

47.    

48.     f = open("datasubset.txt","w")   

49.    

50.     # Loop through each class directory e.g. ABOUT, ABSOLUTELY, ACCESS   

51.     for directory in os.listdir(input_folder):   

52.            

53.         # Only include the first 100 classes   

54.         if i < 500:   

55.             f.write(str(directory) + '\n')   

56.            

57.         # Increment counter   

58.         i = i + 1   

59.    

60.     # Return list of 100 class strings   

61.     f.close()   

62.    

63. ######################################################################################  

64.    

65. # This function is used to load a dataset that was already assembled using the   

66. # 'build_4D_arrays_and_labels' function. Used to save time when no changes to dataset   

67. # have been made.   

68.    

69. def load_dataset(key):   

70.        

71.     BATCH_SIZE = 32   

72.     #SHUFFLE_BUFFER_SIZE = 10000   

73.    

74.     dataset = np.load(key+'_datasub.npy')   

75.     labels = np.load(key+'_labelssub.npy')   

76.    

77.     # Convert away from one-hot encoding   

78.     # Uncomment to train   

79.     notonehot = tf.argmax(labels,axis=1)   

80.    

81.     assert dataset.shape[0] == labels.shape[0]   

82.    

83.     # Use tf.data.Dataset to create tensor slices   

84.     dataset = tf.data.Dataset.from_tensor_slices((dataset,labels)).batch(BATCH_SIZE)   

85.     #shuffled = combined.shuffle(SHUFFLE_BUFFER_SIZE)   

86.    

87.    

88.     return dataset   

89.    

90. ####################################################################################### 

91.    

92. # Function to initialize Bidirectional LSTM-CNN (Architecture #6) 

93. # Time Distributed to process video per frame   

94. # Bidirectional LSTM   

95. # Returns model summary, including number of parameters   

96.    

97.    

98. def model_init():   

99.        

100.     print('Initializing CNN Model using Keras')   
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101.        
102.     model = Sequential()   

103.    
104.     model.add(TimeDistributed(Convolution2D(input_shape=(29,60,100,1),filters=16,kernel_size=3,strides=1,

padding='same',activation='relu')))   

105.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

106.    
107.     model.add(TimeDistributed(Convolution2D(filters=32,kernel_size=3,strides=1,padding='same',activation='r

elu')))   

108.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

109.    
110.     model.add(TimeDistributed(Convolution2D(filters=64,kernel_size=3,strides=1,padding='same',activation='r

elu')))   

111.     model.add(TimeDistributed(Convolution2D(filters=64,kernel_size=3,strides=1,padding='same',activation='r

elu')))   

112.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

113.    
114.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

115.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

116.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

117.    
118.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

119.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

120.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

121.    
122.     model.add(TimeDistributed(Flatten()))   

123.        
124.     model.add(Bidirectional(LSTM(1024, return_sequences=True, dropout=0.2)))   

125.     model.add(Bidirectional(LSTM(1024, dropout=0.2)))   

126.        

127.     model.build((32,29,60,100,1))   

128.     print(model.summary())   

129.    
130.     # model.add(Dense(2048, activation='relu'))   

131.     # model.add(Dense(1024, activation='relu'))   

132.     model.add(Dense(500, activation='softmax'))   

133.        
134.     return model   

135.    
136. ################################################################################ 

137. # Main function for training the keras model. This function creates training labels,   

138. # calls array building functions, initializes model, and then trains it.   

139.    
140. def train_model():   

141.        
142.     # Build training dataset   

143.     print('Building training dataset')   

144.        

145.     # Load training dataset   

146.     train = load_dataset('train')   

147.     #train_data,train_labels = load_dataset('train')   

148.        

149.     # Build validation dataset   

150.     print('Building validation dataset')   

151.        
152.     #switch to load_dataset for quicker reruns!   

153.     val = load_dataset('val')   
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154.     #val_data,val_labels = load_dataset('val')   

155.    

156.     print('Finished loading datset')   

157.        

158.     # Use if one GPU is taken   

159.     with tf.device("/GPU:0"):   

160.         # Initialize Keras model   

161.         model = model_init()   

162.            
163.         # Load Keras model (use if you want to continue training on an already made model)   

164.         #model = load_model("model.h5")   

165.    

166.         # Adam optimizer   

167.         sgd = optimizers.Adam(lr=.005, epsilon=0.1)   

168.            
169.         # Compile using categorical cross entropy loss function   

170.         history = model.compile(optimizer=sgd,loss='categorical_crossentropy',metrics=['accuracy'])   

171.    

172.         # Train model using keras fit   

173.         print('Training Keras Model')   

174.            
175.         # Train model   

176.         history = model.fit(train,epochs=100,validation_data=(val),verbose=1)   

177.    

178.         model.save('model_biLSTMsub.h5')   

179.        

180.     print('Done training')   

181.    

182.     # Returns plot of accuracy and validation over epochs   

183.     # Plot Model   

184.     print(history.history.keys())   

185.     # Accuracy plot   

186.     plt.figure(0)   

187.     plt.plot(history.history['accuracy'])   

188.     plt.plot(history.history['val_accuracy'])   

189.     plt.title('model accuracy')   

190.     plt.ylabel('accuracy')   

191.     plt.xlabel('epoch')   

192.     plt.legend(['train', 'val'], loc='upper left')   

193.     # Save plot   

194.     plt.savefig('biLSTMsub_accuracy.png')   

195.     # Loss plot   

196.     plt.figure(1)   

197.     plt.plot(history.history['loss'])   

198.     plt.plot(history.history['val_loss'])   

199.     plt.title('model loss')   

200.     plt.ylabel('loss')   

201.     plt.xlabel('epoch')   

202.     plt.legend(['train', 'val'], loc='upper left')   

203.     # Save plot   

204.     plt.savefig('biLSTMsub_loss.png')   

205.    

206. ##############################################################################   

207. #This function is for testing of trained model   

208.    
209. def test_model():   

210.    
211.     # Build testing dataset   

212.     print('Building testing dataset')   

213.        

214.     # returns test data and non-onehot labeled data for confusion matrix   
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215.     test, labelnotonehot = load_dataset('test')   

216.        

217.     # Load model   

218.     model = load_model("model_biLSTM.h5")   

219.        
220.     # Evaluate model with test dataset   

221.     [loss,accuracy] = model.evaluate(test)   

222.     accuracy = accuracy*100   

223.    
224.     # Predict data for confusion matrix   

225.     print('Predicting...')   

226.     predictions = model.predict_classes(test)   

227.     confuse = confusion_matrix(labelnotonehot,predictions)   

228.     np.savetxt("confusion_LSTMsub.txt",np.rint(confuse))   

229.    
230.     # Print test results   

231.     print('Testing loss: '+str(loss))   

232.     print('Testing accuracy: '+str(accuracy))   

233.    
234.    

235. ##############################################################################   

236.    

237. if __name__ == '__main__':   

238.        

239.     t0 = time.time()   

240.     train_model()   

241.     #test_model()   

242.     t1 = time.time()   

243.     total = t1-t0   

244.     print('Processing time: '+str(total))   

D. LSTM-CNN 

1. # Function to initialize LSTM-CNN (Architecture #5)   

2. # Only input to function is the shape of the input numpy array used for training.   

3. # Returns the tensorfow model object and prints the model summary.   

4.    

5.    

6. def model_init():   

7.        

8.     print('Initializing CNN Model using Keras')   

9.        

10.     model = Sequential()   

11.    

12.     model.add(TimeDistributed(Convolution2D(input_shape=(29,60,100,1),filters=16,kernel_size=3,strides=1,

padding='same',activation='relu')))   

13.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

14.    

15.     model.add(TimeDistributed(Convolution2D(filters=32,kernel_size=3,strides=1,padding='same',activation='r

elu')))   

16.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

17.    

18.     model.add(TimeDistributed(Convolution2D(filters=64,kernel_size=3,strides=1,padding='same',activation='r

elu')))   

19.     model.add(TimeDistributed(Convolution2D(filters=64,kernel_size=3,strides=1,padding='same',activation='r

elu')))   

20.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

21.    

22.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   
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23.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

24.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

25.    

26.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

27.     model.add(TimeDistributed(Convolution2D(filters=128,kernel_size=3,strides=1,padding='same',activation=

'relu')))   

28.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

29.    

30.     model.add(TimeDistributed(Flatten()))   

31.        

32.     model.add(LSTM(1024, return_sequences=True, dropout=0.2))   

33.     model.add(LSTM(1024, dropout=0.2))   

34.        

35.     # model.add(Dense(2048, activation='relu'))   

36.     # model.add(Dense(1024, activation='relu'))   

37.     model.add(Dense(500, activation='softmax'))   

38.    

39.     model.build((32,29,60,100,1))   

40.    

41.     print(model.summary())   

42.        

43.     return model   

E. Multiple Towers 

1. # Function to initialize Multiple Towers (Architecture #4)   

2. # Only input to function is the shape of the input numpy array used for training.   

3. # Returns the tensorfow model object and prints the model summary.   

4.    

5.    

6. def model_init():   

7.        

8.     print('Initializing CNN Model using Keras')   

9.        

10.     model = Sequential()   

11.    

12.     model.add(TimeDistributed(Convolution2D(input_shape=(29,60,100,1),filters=16,kernel_size=3,strides=1,padd

ing='same',activation='relu')))   

13.     model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2),strides=(2,2))))   

14.    

15.     model.add(Convolution3D(filters=32,kernel_size=3,strides=1,padding='same',activation='relu'))   

16.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

17.    

18.     model.add(Convolution3D(filters=64,kernel_size=3,strides=1,padding='same',activation='relu'))   

19.     model.add(Convolution3D(filters=64,kernel_size=3,strides=1,padding='same',activation='relu'))   

20.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

21.    

22.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

23.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

24.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

25.    

26.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

27.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

28.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

29.    

30.     model.add(Flatten())   

31.     model.add(Dense(2048, activation='relu'))   

32.     model.add(Dense(1024, activation='relu'))   
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33.     model.add(Dense(500, activation='softmax'))   

34.    

35.     model.build((32,29,60,100,1))   

36.     print(model.summary())   

37.        

38.     return model   

F. VGG-16 Based Architecture 

1. # Function to initialize VGG-16 based architecture (Architecture #3)   

2. # Only input to function is the shape of the input numpy array used for training.   

3. # Returns the tensorfow model object and prints the model summary.   

4.    

5.    

6. def model_init():   

7.        

8.     print('Initializing CNN Model using Keras')   

9.        

10.     model = Sequential()   

11.    

12.     model.add(Convolution3D(input_shape=(29,60,100,1),filters=16,kernel_size=3,strides=1,padding='same',activa

tion='relu'))   

13.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

14.    

15.     model.add(Convolution3D(filters=32,kernel_size=3,strides=1,padding='same',activation='relu'))   

16.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

17.    

18.     model.add(Convolution3D(filters=64,kernel_size=3,strides=1,padding='same',activation='relu'))   

19.     model.add(Convolution3D(filters=64,kernel_size=3,strides=1,padding='same',activation='relu'))   

20.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

21.    

22.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

23.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

24.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

25.    

26.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

27.     model.add(Convolution3D(filters=128,kernel_size=3,strides=1,padding='same',activation='relu'))   

28.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

29.        

30.     model.add(Flatten())   

31.     model.add(Dense(2048, activation='relu'))   

32.     model.add(Dense(1024, activation='relu'))   

33.     model.add(Dense(500, activation='softmax'))   

34.        

35.     print(model.summary())   

36.        

37.     return model   

G. Extended 3D-CNN 

1. # Function to initialize extended 3D CNN (Architecture #2) 

2. # Only input to function is the shape of the input numpy array used for training.   

3. # Returns the tensorfow model object and prints the model summary.   

4.    

5.    

6. def model_init():   

7.        

8.     print('Initializing CNN Model using Keras')   

9.        
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10.     model = Sequential()   

11.    

12.     model.add(Convolution3D(input_shape=(29,60,100,1),filters=16,kernel_size=2,strides=1,activation='relu'))   

13.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

14.    

15.     model.add(Convolution3D(filters=32,kernel_size=2,strides=1,activation='relu'))   

16.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

17.    

18.     model.add(Convolution3D(filters=64,kernel_size=2,strides=1,activation='relu'))   

19.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

20.    

21.     model.add(Convolution3D(filters=128,kernel_size=2,strides=1,activation='relu'))   

22.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

23.    

24.     model.add(Convolution3D(filters=256,kernel_size=2,strides=1,activation='relu'))   

25.        

26.     model.add(Flatten())   

27.     model.add(Dense(1024, activation='relu'))   

28.     model.add(Dense(1024, activation='relu'))   

29.     model.add(Dense(1024, activation='relu'))   

30.     model.add(Dropout(0.5))   

31.     model.add(Dense(512, activation='relu'))   

32.     model.add(Dropout(0.5))   

33.     model.add(Dense(500, activation='softmax'))   

34.        

35.     print(model.summary())   

36.        

37.     return model   

H. 3D-CNN 

1. # Function to initialize 3D CNN (Architecture #1)   

2. # Only input to function is the shape of the input numpy array used for training.   

3. # Returns the tensorfow model object and prints the model summary.   

4.    

5.    

6. def model_init():   

7.        

8.     print('Initializing CNN Model using Keras')   

9.        

10.     model = Sequential()   

11.    

12.     model.add(Convolution3D(input_shape=(29,60,100,1),filters=16,kernel_size=2,strides=1,activation='relu'))   

13.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

14.    

15.     model.add(Convolution3D(filters=32,kernel_size=2,strides=1,activation='relu'))   

16.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

17.    

18.     model.add(Convolution3D(filters=64,kernel_size=2,strides=1,activation='relu'))   

19.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

20.    

21.     model.add(Convolution3D(filters=128,kernel_size=2,strides=1,activation='relu'))   

22.     model.add(MaxPooling3D(pool_size=(1,2,2),strides=(1,2,2)))   

23.    

24.     model.add(Convolution3D(filters=256,kernel_size=2,strides=1,activation='relu'))   

25.        

26.     model.add(Flatten())   

27.     model.add(Dense(1024, activation='relu'))   

28.     model.add(Dropout(0.5))   

29.     model.add(Dense(512, activation='relu'))   
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30.     model.add(Dropout(0.5))   

31.     model.add(Dense(500, activation='softmax'))   

32.        

33.     print(model.summary())   

34.        

35.     return model   

 


