
VERIFYING CORRECTNESS OF A CHEZ SCHEME COMPILER PASS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Ian Atol

June 2021

© 2021

Ian Atol

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Verifying Correctness of a Chez Scheme

Compiler Pass

AUTHOR: Ian Atol

DATE SUBMITTED: June 2021

COMMITTEE CHAIR: John Clements, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Stephen R. Beard, Ph.D.

Assistant Professor of Computer Science

iii

ABSTRACT

Verifying Correctness of a Chez Scheme Compiler Pass

Ian Atol

We present a proof of correctness for a pass of the Chez Scheme compiler over a subset

of the Scheme programming language. To improve trust in our proof approach, we

provide two different validation frameworks. The first, created with the Coq proof

assistant, is a partial mechanization of the proof, notably implementing a formal

semantics for our subset of Scheme. This framework was designed to serve as a basis

for the future work of a complete mechanization of our proof. The second framework

uses an existing implementation of the Scheme semantics to demonstrate correctness

of the pass on a variety of individual examples. We discuss our proof and frameworks

in-depth, and give a historical background on compiler correctness proofs and their

mechanization.

iv

ACKNOWLEDGMENTS

Thanks to:

• My friends and family for supporting me unconditionally, bringing me food on

many occasions, and reminding me to step outside every now and then.

• John Clements for putting up with me borrowing books for way too long, for

being contagiously excited about programming languages, and for believing in

me.

• Aaron Keen for putting in extra effort to help me out several times, for teaching

me Rust, and for introducing me to type theory.

• Zoë Wood for pointing me exactly in the right direction, and to exactly the

right people.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Compiler Correctness . 3

2.1.1 History . 3

2.1.1.1 Proof Checkers, Intuitionistic Logic, and Mechanized
Proofs . 4

2.1.1.2 Verified Compiler Projects 6

2.2 Scheme . 7

2.2.1 Lambda Calculus, LISP, and Scheme 8

2.2.2 Scheme Verification . 9

2.2.3 The Chez Scheme compiler . 9

3 Formalizing Scheme . 11

3.1 R6RS Scheme . 11

3.1.1 Syntax . 11

3.1.1.1 Evaluation Contexts 13

3.1.2 Semantics . 14

3.1.2.1 Control Flow . 14

3.1.2.2 Lists . 17

3.1.2.3 Mutation & Reference 17

vi

3.1.2.4 Application . 17

3.1.2.5 Values & Arithmetic 18

3.1.2.6 Excluded Features 18

4 Proving correctness of convert-assignments 20

4.1 The convert-assignments pass . 20

4.1.1 Assumptions . 20

4.1.2 Intuition . 21

4.1.3 Definition . 23

4.1.4 Lemmas . 25

4.2 Proof Overview . 29

4.2.1 Deterministic Semantics . 30

4.2.2 caprog is a simulation relation 35

4.2.3 caprog is semantic preserving 40

5 Validation Frameworks . 41

5.1 Coq Framework . 42

5.1.1 Overview and Functionality 42

5.1.2 Implementation Details . 43

5.1.2.1 Capture-Free Substitution 43

5.1.2.2 Cofinite Quantification 45

5.1.2.3 Step-Indexed Functions 46

5.2 Racket Framework . 46

5.2.1 Overview and Functionality 46

5.2.2 Implementation Details . 47

5.2.2.1 Extensibility . 47

5.2.2.2 Evaluation Order . 47

vii

5.2.2.3 Testing Framework 48

6 Conclusions and Future Work . 49

6.1 Reflections . 49

6.2 Future Work . 50

6.3 Summary and Closing . 50

BIBLIOGRAPHY . 52

APPENDICES

viii

LIST OF TABLES

Table Page

2.1 Sampling of verified compiler projects 7

4.1 Definitions . 30

4.2 Notation for various ca functions 37

ix

LIST OF FIGURES

Figure Page

2.1 Example of a language definition in Nanopass 10

3.1 The syntax for our subset of Scheme 12

3.2 The evaluation contexts for our subset of Scheme 13

3.3 Control flow, list, and mutation semantics for our subset of Scheme 15

3.4 Application, value handling, and arithmetic semantics for our subset
of Scheme . 16

4.1 Example of erasing Chez Scheme term decoration. 21

4.2 Motivating example for the convert-assignments pass. 22

4.3 convert-assignments functions . 24

4.4 Simulation relation visualization . 30

4.5 Simulation of appN! . 39

4.6 Simulation of var and set! . 40

4.7 Equivalent semantic steps before and after convert-assignments. . . 40

5.1 Some examples of expression representations using the locally name-
less style. 44

5.2 Example of a Racket framework test case 48

x

Chapter 1

INTRODUCTION

As computers become increasingly ubiquitous in our lives, the software running on

them becomes even more important, but also more complex. For example, we are

lucky to live at a time where computers can help us to live longer by powering ad-

vanced medical equipment [32], but the grave consequences of errors in the software of

these devices is clear [43]. This simultaneously increasing complexity and importance

is troubling, since these two concepts are traditionally at odds.

To confront these issues, many researchers are hard at work with the goal of ensuring

reliability of software. One approach to this problem, static analysis, aims to prove

properties of programs before they are run. For example, static analysis could be

performed on a program to eliminate a certain type of error from it [5]. One approach

to static analysis uses the semantics [44] of a language to devise formal proofs about

the “meaning” of a program.

However, the journey from source code written by a human to the code that is actually

executed by a computer is not trivial. For many languages, source code must be

translated by a tool called a compiler to machine code that the computer can run.

If the compiler makes an error in translation, any proof about the behavior of that

program is now forfeit. Essentially, any proof made about the source code of a

program makes the assumption that a compiler will faithfully translate its meaning

to the computer.

As our programs grow in size and complexity, so too do our compilers, adding ad-

ditional features and optimizations. This means that our compilers themselves are

1

caught in the same troubling convergence of increasing complexity and importance.

One natural thought is to look to prove properties about the compilers themselves.

Namely, we want to prove that our compilers translate correctly — that the meaning

of any program given to them is preserved in the process of translation. For example,

the CompCert project [34] formally verifies the correctness of a compiler for a large

subset of C. If we make proofs about programs in this subset, we can be sure that

their claims are preserved through the compilation process.

In this paper, we provide a proof of correctness for a single pass of the Chez Scheme

compiler [19], called convert-assignments. To support and validate our reasoning, we

provide two different frameworks for producing evidence of our proof. The first is

a formal model of the subset of the Scheme semantics that we use to reason about

the compiler pass. Built using the Coq proof assistant [7], this model provides a

framework for using intuitionistic logic to prove properties about Scheme and Scheme

programs with a high degree of trustworthiness. This model was meant to be the

basis of a mechanization of our proof, but the full mechanization ended up being

outside of the scope of this thesis. The second framework provides a way of testing

individual programs for semantic preservation over the convert-assignments trans-

formation. This framework, created with the Racket [22] language, uses an existing

implementation of the Scheme formal semantics to validate our proof technique on

given example programs.

We hope that this work can serve as a trustworthy proof of the correctness of this

compiler pass, and more generally hope to see a future where we can wholly trust

that our compilers are translating critically important programs correctly.

2

Chapter 2

BACKGROUND

2.1 Compiler Correctness

“Can you trust your compiler?”

This quote begins the paper on the CompCert project [34], one of the largest proofs of

compiler correctness. These proofs aim to provide trust in our compilers by formally

verifying that they preserve the meaning of programs that they translate. CompCert

provides such a proof for a purpose-built compiler that translates a large subset of

C to machine code. For large languages like C, which have correspondingly large

compilers, these proofs are notoriously difficult — CompCert totals around 100,000

lines of code in the Coq proof assistant, and took over 6 years to complete [33].

In this section, we will review some background on compiler correctness proofs. To

do so, we have to look not only at the history of such proofs themselves, but also

the evolution of tooling that embeds mathematical logic systems and allows for man-

agement of large-scale proofs. Without such systems, modern, large-scale projects

such as CompCert would not be possible, so the advancement of these tools is key to

understanding the progression of compiler correctness proofs.

2.1.1 History

The first known formal proof of compiler correctness comes from John McCarthy and

James Painter [38]. In their 1967 paper, they prove that a compiler that translates

simple arithmetic expressions to machine code is correct. Despite the simplicity of the

3

example source language, the paper is very important in that it sets up a methodology

for computational proofs of compiler correctness. For example, their method of proof

by structural induction of expressions is still an oft-used strategy for reasoning about

properties of a language’s programs.

McCarthy and Painter’s proof was intentionally simple, so much so that it was able to

be manually formulated and checked. However, when dealing with larger languages,

case analysis of language expressions quickly generates too large of a proof to keep

track of by hand. Because of this complexity, modern proofs of compiler correctness

universally utilize programs called proof assistants that embed mathematical logic

systems and can computationally verify the consistency of theorems defined within

them. These assistants are necessary to aid with management of proofs at such a

large scale. As such, their creation and development has been strongly connected to

the progress of compiler correctness proofs.

2.1.1.1 Proof Checkers, Intuitionistic Logic, and Mechanized Proofs

The first large-scale attempt to mechanize mathematics, or formally define mathe-

matics in a way tractable by a computer, was Nicolaas Govert de Bruijn’s Automath

language [10]. Automath was an early example of a correspondence between logic and

programs — in the Automath language, theorems are defined as types, and proofs

consist of showing that these types are inhabited by some value. This means that

the definitions and proofs of theorems within Automath’s logical framework are rep-

resented as a computer program. This relationship between programs and logic is

also at the core of the Curry-Howard correspondence between deductive logic and the

simply-typed Lambda Calculus.

4

Research into these sorts of program-logic relations continued into the 70s and 80s,

with the development of the Intuitionistic Theory of Types [36] by Per Martin-Löf

and the polymorphic Lambda calculus [24] by Girard. These theories also rely on the

Curry-Howard correspondence to tie their dependently typed programs to statements

in intuitionistic logic.

Intuitionistic logic is a kind of logical system that requires evidence or witnesses of a

statement to prove its validity. That is, to prove that a statement A −→ B is true in

an intuitionistic logic, one must use the axioms of the logic to construct evidence that

B is true from the existing evidence that A is true. One important property of these

intuitionistic logics that follows their constructive foundation is that the law of the

excluded middle is not true in these systems — that is, we cannot perform indirect

proofs, for example by contradiction. In other words, proving that ¬A is not true

does not suffice as proof of A. In this way, intuitionistic logic requires more direct

proof of statements. In systems such as Automath, where a correspondence between

logical statements and programs is established, a constructive proof of a statement

corresponds to an algorithm that generates the program representing that statement.

Because of this strong correspondence, these constructive, intuitionistic proofs lend

themselves extremely well to automation, just as developers may automate complex

parts of a software project.

A further example of the natural connection between intuitionistic logic and depen-

dent type theory is Thierry Coquand’s Calculus of Inductive Constructions[15, 41].

This system combines Intuitionistic Type Theory and the polymorphic Lambda Cal-

culus into a single calculus that also provides support for writing specifications that

automatically come equipped with powerful induction principles.

While the Calculus of Inductive Constructions is powerful, it is unwieldy and hard

to manually construct large programs with. For this reason, the Coq proof assistant

5

[7] was devised. An extension of the original Automath language, Coq embeds the

Calculus of Inductive Constructions, and also provides a high level tactics language

[17] on top of the core calculus. This tactics language provides automation in the

form of syntactic sugar and algorithmic search of core calculus expressions to assist

in the construction of large proof terms. This tactics language greatly increase the

size of proofs that Coq can handle — indeed, Coq programmers spend the majority

of their time writing, configuring, and refactoring proofs using the tactics language,

so at a much higher level than using the calculus itself.

Because of its support for automation, its history, and a large amount of libraries and

community support, Coq is a natural choice for large-scale mechanized proofs. One

example of this is the proof of the four color theorem. This theorem was famously

unsolved until Coq’s automation features made its extensive case analysis proof fea-

sible [25]. Other projects realized in Coq include the Univalent Foundations project

[49], which attempts to build a foundation for mathematics based on a type theory,

and the CompCert project.

Finally, while we focus on Coq because of its usage in this project, a plethora of

modern proof assistants exist [23, 6]. Some examples of modern languages that are

used as proof assistants include Lean [16], Agda [8], and Idris [9]. More and more

frequently, and in various fields, these tools are used to provide mechanized proofs to

accompany research papers. In the next section, we will review some modern compiler

correctness projects, all of which use proof assistants to validate their approach.

2.1.1.2 Verified Compiler Projects

Table 2.1 gives an overview of some compiler verification projects.

6

CompCert [34] A verified compiler from C to various assembly languages,
written and proven in Coq.

CakeML [30] A verified compiler for a subset of ML, verified using Is-
abelle/HOL [40]

CertiCoq [3] A verified Coq compiler, also written and proven using Coq
VLISP [27] A verified (but not mechanized) compiler for an early ver-

sion of Scheme
ClightTSO [45] An extension of CompCert that verifies a compiler for a

C-like language that supports shared-memory concurrency.
Concurrent Java [35] A verified compiler for a subset of Java that supports

threading, formalized in Isabelle/HOL.

Table 2.1: Sampling of verified compiler projects

So concludes our background on compiler verification projects and history. In the

next section, we will review the Scheme language and its compiler, as background for

our later proof of correctness of one of its passes.

2.2 Scheme

Scheme is a functional language based on LISP. While LISP supported functional

programming (i.e., first-class functions and recursion) with a “lambda” notation [37],

Scheme was the first LISP to closely mirror the call-by-value Lambda Calculus by

utilizing static scoping for its variable bindings. In addition, as Scheme evolved and

added more features, its macro system, syntactic pattern matching, and homoiconity

made it a language suited to modelling other programming languages. Because of

this, Scheme has seen extensive use in the area of programming languages research.

In this section, we will give some historical background on Scheme, then review the

version of Scheme we chose for this project, and finally touch on the Chez Scheme

compiler itself.

7

2.2.1 Lambda Calculus, LISP, and Scheme

The Lambda Calculus is a model which Alonzo Church and his students developed

in the late 1930s [13] as a way to categorize a certain kind of number problem. It was

later famously shown to be equivalent to Turing Machines, and together define the

standard class of known computable problems [14]. While programming languages

are inherently based in computation, the Lambda Calculus was later found to be

capable of simply and accurately modeling the behavior of parts of ALGOL 60 [31],

a programming language based on procedures.

While working on a LISP-based language for modeling actor-based concurrency [48],

Steele and Sussman discovered that their new language had a strong, unexpected

connection with the Lambda Calculus. While LISP supported lambda notation for

functions, it did not handle variable naming or scoping in the same way as Church’s

original model. However, as Steele and Sussman shaped their version of LISP, they

found that they were able to greatly simplify the language by following the semantics

of the call-by-value version of the Lambda Calculus closely. The resulting language,

called Scheme, was shown to be able to effectively model a wide variety of other

programming languages, while still maintaining a small size and a tidy semantics

[47].

Because of its small size and close connection to both the well-studied Lambda Cal-

culus and popular LISP language, Scheme saw widespread usage for research in the

area of programming languages. Using Scheme’s powerful pattern matching and tools

for syntactic abstraction, researchers can quickly create a model of their work to ac-

company a more detailed paper. We use Scheme in a similar manner for our own

work in this paper (see Section 5.2).

8

Scheme has a language standard in the form of the Revisedn Report on the Algorith-

mic Language Scheme (RnRS). This standard defines a formal syntax and semantics

for a large subset of Scheme, while leaving some areas up to the specific implemen-

tation. Our work is based on one of the more recent standards for Scheme — R6RS

[46].

2.2.2 Scheme Verification

Along with its widespread usage in programming languages research, Scheme has itself

been the target of formal verification projects. One such project, VLISP [27], was

based on an earlier, denotational semantics for Scheme [1]. The initial VLISP project

led to several formally verified extensions as well as explorations into representing

Scheme using an operational semantics [26].

2.2.3 The Chez Scheme compiler

The Chez Scheme compiler is an optimizing compiler written in Scheme itself. It pro-

vides an implementation of Chez Scheme [20], which follows the R6RS standard and

adds some additional features. Notably, it is the compiler for many Scheme dialects,

including the Racket language [22]. It notably utilizes the Nanopass framework [29]

at its foundation. The framework provides a domain specific language embedded in

Scheme, designed for quickly defining languages and translations between them. An

example of a Nanopass language definition from the Chez Scheme compiler is shown

in Figure 2.1. This example shows an intermediate language (L4) that removes set!

expressions from another language that it extends (L3). We will see later that this

definition corresponds to the pass that we prove correctness of (see Section 4.1).

9

Figure 2.1: Example of a language definition in Nanopass

In this project, we build a framework for reasoning about Scheme and use it to

prove correctness of one pass of the Chez Scheme compiler. One reason we chose

to target the Chez Scheme compiler for verification was because of its usage of the

Nanopass framework. Since passes are distinctly separated and small in size by design,

correctness proofs of individual passes should be simpler, and also are able to be easily

composed to larger proofs about correctness of a sequence of passes.

10

Chapter 3

FORMALIZING SCHEME

Any proof about properties of Scheme, such as a proof about semantic preservation

over a transformation, needs to be based on a formal definition of the language.

Therefore, our first step in writing such a proof is to formally define the Scheme

language. For the sake of simplifying the proof, we excluded many features — in

general, these are features where our transformation doesn’t change very much, but

are complex enough to add substantial difficulty to our proof. These excluded features

are discussed in more detail in Section 3.1.2.6.

3.1 R6RS Scheme

Fortunately, Scheme is already well-defined. The R6RS language standard [46] pro-

vides a formal specification of Scheme’s syntax and semantics, and also gives an

implementation of the semantic model in the PLT Redex language. As previously

mentioned, we excluded many features from this formal definition for ease of reason-

ing. Below is our modified version of R6RS Scheme

3.1.1 Syntax

Figure 3.1 shows an EBNF representation of the syntax for our subset of Scheme.

11

P ::= (store (sf ...) e)

sf ::= (x v)

| (pp (cons v v))

e ::= nonproc

| proc

| (begin e e ...)

| (if e e e)

| (e e ...)

| (set! x e)

| (values v)

| x

v ::= nonproc

| proc

nonproc ::= pp

| null

| n

| #t

| #f

proc ::= (lambda (x) e)

| (lambda () e)

| car

| cdr

| cons

| set-car!

| set-cdr!

| +

| -

| /

| *

pp ::= [pair pointers]

x ::= [variables]

n ::= [integers]

Figure 3.1: The syntax for our subset of Scheme

Variables and pair pointer names are restricted to exclude keywords.

12

3.1.1.1 Evaluation Contexts

While we have presented a syntax for programs in our language, as we will see in

the next section, our semantics operates on programs decomposed into an evaluation

context and a reducible expression.

Evaluation contexts utilize a syntax of holes and contexts to isolate certain sub-

expressions in order to apply semantic rules on them.

For example, we can decompose the following program to allow for evaluation of the

expression in the e1 position of the if expression.

(store (sf . . .) (if ((lambda (x) #t) 5) #t #f)) = C[((lambda (x) #t) 5)] where

C = (store (sf . . .) (if [] #t #f).

The key feature of evaluation contexts is that they can control where evaluation

occurs. These contexts cleverly enforce a canonical order of evaluation by placement

of the holes in their syntactic form.

Since we have removed many features, we use only the evaluation contexts relevant

to expressions that are still in our language:

C ::= (store (sf ...) F∗)
F ::= []

| (v ... F◦ v ...)

| (if F◦ e e)

| (set! x F◦)
| (begin F∗ e e ...)

F∗ ::= []∗
| F

F◦ ::= []◦
| F

Figure 3.2: The evaluation contexts for our subset of Scheme

13

Here, F∗ and F◦ refer to contexts that perform promotion or demotion between single

values and (values v) expressions. The relevant semantics rules are presented in Figure

3.4. Though we do not support multiple values, we wanted to preserve this feature

of the formal semantics to increase extensibility of our subset, as well as ensure that

our semantics is a true subset of the R6RS semantics. It also means that our proofs

will be more easily adaptable if the language is modified to include multiple values.

3.1.2 Semantics

Figures 3.3 and 3.4 show the operational semantics for our subset of Scheme.

We define x being “assigned to” as x being the target of a set! expression.

Some discussion of our semantic rules and how they work together to evaluate Scheme

programs is required.

3.1.2.1 Control Flow

beginC works by removing values from the front of a (begin . . .) expression. To-

gether with the begin evalaution context, beginC evaluates and removes each sub-

expression in a (begin . . .) expression until it has only a single sub-expression re-

maining. Then, the beginD rule applies to consider that expression alone. This

is how the requirement that Scheme begin expressions return the value of the last

sub-expression is enforced.

ifT and ifF behave as expected, with the minor quirk that any value that is not #f

is considered true.

14

Figure 3.3: Control flow, list, and mutation semantics for our subset of
Scheme

15

Figure 3.4: Application, value handling, and arithmetic semantics for our
subset of Scheme

16

3.1.2.2 Lists

cons, car, and cdr handle pairs (and therefore lists) in our language. Notably, cons

places pairs into the store and returns a pointer to the store location in return. car

and cdr therefore take a pair pointer as their argument to access the first and second

values of the pair respectively.

3.1.2.3 Mutation & Reference

var, set!, set-car!, and set-cdr! handle assignment in the language. var is a fairly

straightforward step that takes a variable referring to a store location and returns the

value at that location. The assignment functions replace values in a store location in a

similar way. One thing to note is that set! requires that its variable argument already

exists in the store. As we are not considering top-level variables (see Section 3.1.2.6),

set! can only modify existing store locations created during lambda application.

3.1.2.4 Application

mark isolates un-evaluated sub-expressions from an application. By lifting an ex-

pression into a single application, either the appN or appN! will then be applicable.

Note that our version of mark enforces a left to right evaluation order.

appN! is the application semantic rule for lambda expressions that contain assign-

ment in their bodies. We use the curly brace notation to mean capture-free substitu-

tion. Since naive assignment into such lambda expressions would result in erroneous

expressions like (set! 4 5), appN! first creates a fresh store location containing the

value to be substituted and then performs substitution with a pointer to that location

rather than with the value itself. Then, assignments inside the lambda expression’s

17

body can properly evaluate. The appN rule applies naive substitution in lambda

expressions that do not contain assignment. As we will see in Section 4.1, excluding

these non-assigned variables from the store is integral to our proof of correctness of

the compiler pass we are considering.

3.1.2.5 Values & Arithmetic

Finally the promote and demote rules deal with wrapping values to satisfy the

requirements of their evaluation contexts. While this feature is vestigial in our se-

mantics, we include it for purposes of extensibility.

The following rules present a fairly typical system for performing integer arithmetic.

Note the side conditions for ensuring no division by zero takes place.

3.1.2.6 Excluded Features

In the interest of shortening a potentially extensive proof, we chose to remove many

features from the formal R6RS semantics. Additionally, some features of Scheme

were not originally included in the formal R6RS semantics, likely due to complexity

of formalization.

The features we chose to exclude were: quote, multiple argument lambda expressions

(and generally multiple values as arguments), exceptions, equivalence testing, call/cc

and dynamic wind, and letrec. I/O, the macro system, and the numerical tower were

originally excluded from the R6RS semantics. While this list certainly contains major

features of Scheme, we believe we have captured enough of the language to accurately

represent and prove correctness of our transformation.

18

Another quirk of the formal R6RS semantics is that evaluation order of expressions

is left up to the implementation. However, this means that without modification,

the semantics are non-deterministic — application of their version of the mark rule

results in a set of steps each representing a different choice of evaluation order. In

our semantics, we modify mark to follow a left-to-right evaluation order. While our

transformation shouldn’t be affected by a different evaluation order, it is theoretically

possible that an implementation of Scheme could enforce an evaluation order that

would invalidate our results. Finally, while set! expressions that mutate top-level

variables are present in Scheme, these top-level set! expressions are converted to

“set-top-level!” expressions in a pass prior to the one we are considering. Therefore,

we can assume that all set! terms we encounter refer to variables in their local scope.

Further, handling top-level variables in general turned out to be a major difficulty

in modeling this pass. Since top-level variables are not affected by this pass, we are

not including them in our subset. Therefore, we do not include letrec, as this is how

top-level variables are implemented by the semantics.

19

Chapter 4

PROVING CORRECTNESS OF CONVERT-ASSIGNMENTS

While the entire Chez Scheme compiler translates Scheme to machine code, the

convert-assignments pass performs a single intermediate step in this process by per-

forming a Scheme-to-Scheme transformation on some expressions. As its name sug-

gests, the purpose of the convert-assignments pass is to convert variable assignment

expressions to a different form.

We will first review the pass itself and the transformation that it performs. Then,

we will define our notion of semantic preservation, and use some properties of the

semantics as well as some relations defined atop it to show that the transformation

does indeed preserve the semantics of a program.

4.1 The convert-assignments pass

4.1.1 Assumptions

One important note about convert-assignments is that it uses special, decorated ex-

pressions in both its source and target languages. Since we do not have a formal

framework for asserting the meaning of these decorated Chez Scheme expressions, we

make the critical assumption that they abide to the relevant rules of the R6RS formal

semantics. From observation, this assumption seems to hold true, as the decorated

expressions can be consistently erased down to normal Scheme expressions (see Figure

4.1 for an example of a term in the source language of convert-assignments compared

to its erased version in the language defined by the formal semantics).

20

Figure 4.1: Example of erasing Chez Scheme term decoration.

Another area where we must make an assumption is in developing a model of convert-

assignments to reason about. The code for actually executing the pass contains and

operates on expressions that are not covered by the R6RS semantic model. Therefore,

we attempt to faithfully recreate the effects of the transformation on the expressions

in subset of the formal semantics that we are considering. Our analogous convert-

assignments function was created through careful examination of the source code and

observation of input and output of the pass for various examples.

4.1.2 Intuition

The convert-assignments pass removes indefinite-extent assignments and replaces

them with assignments that have a defined scope. This pass is quite small, defined

in about 40 lines in the production Chez Scheme compiler. The size of our proof and

accompanying frameworks relative to the size of the transformation is a testament to

the difficulty of verifying compilation correctness.

21

The intuition for the pass is best acquired through observing an example of a trans-

formation on a small program:

caprog(store ((x v1)) (lambda (y)
(begin

(set! y v2)
(+ x y)))) =

(store ((ppx (cons v̂1 null))) (lambda (t)
((lambda (y)

(begin
(set-car! y v̂2)
(+ (car ppx) (car y))))

(cons t null))))
Where â means the appropriate convert-assignments function applied to a.

Figure 4.2: Motivating example for the convert-assignments pass.

We can immediately see the primary action of the pass — to remove set! expressions.

We can see that the set! expression inside the begin expression is transformed to a

set-car! expression. Notice also the recursive call on the value of the set! expression.

Depending on if a variable is in the store or enclosed in a lambda, we may transform

it into a pointer or not, as shown by the transformation that occurs to the variables

x and y respectively.

We can also see how lambda expressions are modified to support the transformation

of set! expressions. Since its arguments are now assumed to be cons cells, we have to

first wrap its arguments inside of a list. This is also the reason we do not change y

to ppy, as at this point it is still an argument to the lambda expression.

Finally, we can see how ca deals with store locations of partially evaluated programs.

Since the appN! rule is the only one that can create new non-list store locations,

we can assume that variables in the store correspond to previously evaluated lambda

abstractions. Therefore, we must treat variables and set! expressions that refer

to store locations as transformation targets. We also retroactively convert these

22

previously evaluated store locations. In this case, we do change x to ppx, so that

expressions that contain it can properly evaluate.

4.1.3 Definition

Figure 4.3 defines our model of the transformation as functions on the syntax of our

language. For notational brevity, we assume that each function has access to the

store and a list of all names that are the target of a set! in the program.

23

Definition 1. caprog — Programs
caprog((store (sf . . .) e)) = (store (casf (sf) . . .) cae(e))

Definition 2. casf — Store Locations
casf ((x v)) = (ppx (cons cae(v) null))
casf ((pp (cons v1 v2))) = (pp (cons cae(v1) cae(v2))

Definition 3. cae — Expressions
cae((set! x e)) = (set-car! ppx cae(e))

where x is in the store.
cae((set! x e)) = (set-car! x cae(e))

where x is not in the store.
cae(x) = (car ppx)

where x is in the store.
cae(x) = (car x)

where x is not in the store, but is assigned to somewhere in the program.
cae(x) = x

where x is not in the store or assigned to.
cae((lambda (x) e)) = (lambda (t) ((lambda (x) cae(e)) (cons t null)))

where x is assigned to, t is fresh.
cae((lambda (x) e)) = (lambda (x) cae(e))

where x is not assigned to.
cae((begin e1 e2 . . .)) = (begin cae(e1) cae(e2) . . .)
cae((e1 e2 . . .)) = (cae(e1) cae(e2) . . .)
cae((if e1 e2 e3)) = (if cae(e1) cae(e2) cae(e3))
cae((values v)) = (values cae(v))
All other expressions are unchanged by cae.

Finally, we define cactx for use in applying the pass to decomposed programs.

Definition 4. cactx — Evaluation Contexts
cactx((store (sf . . .) F∗)) = (store (casf (sf) . . .) cactx(F∗))
cactx((v1 . . . F◦ v2 . . .)) = (cae(v1) . . . cactx(F◦) cae(v2) . . .)
cactx((if F◦ e1 e2)) = (if cactx(F◦) cae(e1) cae(e2))
cactx((set! x F◦)) = (set-car! ppx cactx(F◦))

where x is in the store.
cactx((set! x F◦)) = (set-car! x cactx(F◦))

where x is not in the store.
cactx((begin F∗ e1 e2 . . .)) = (begin cactx(F∗) cae(e1) cae(e2) . . .)
cactx([]) = []
cactx([]∗) = []∗
cactx([]◦) = []◦

Figure 4.3: convert-assignments functions

24

4.1.4 Lemmas

Here we prove some properties of the convert-assignments functions that are necessary

for our later proofs.

Lemma 1. Transformation Preserves Values

If v is a value, then cae(v) is a value.

Proof. By induction on the structure of our value expressions.

For most values, cae makes no changes. For these cases, cae(v) is trivially a value.

The only value expression which is modified by cae is (lambda (x) e), where x is the

target of a set! inside of e. We can observe the transformation:

cae((lambda (x) e)) = (lambda (t) ((lambda (x) cae(e)) (cons t null)))

We can clearly see that this is still a value, since it is of the form (lambda (t) e′),

where e′ = ((lambda (x) cae(e))(cons t null))

Therefore, we have shown that cae preserves the value status of values that it trans-

forms.

Lemma 2. Transformation Preserves Expressions

If e is a non-value expression, then cae(e) is a non-value expression.

Proof. The non-value expressions that get transformed beyond recursive calls on sub-

expressions (which trivially preserves non-value status) are the following:

1. x

25

2. (set! x v)

cae(x) transforms to either (car x), (car ppx), or just x, all of which are still expres-

sions.

(set! x v) similarly transforms to either (set-car! x v̂) or (set-car! ppx v̂), which are

both still expressions.

Therefore, if e is a non-value expression, cae(e) will always be a non-value expression.

Lemma 3. Transformation Preserves Decomposition

caprog(C[e]) = cactx(C)[cae(e)]

for all evaluation contexts C and expressions p.

Proof. We proceed by induction on the structure of our evaluation contexts.

Consider the cases of C: (store(sf...)F∗)

and the cases of F∗: []∗, F .

If F∗ is a hole, then we must show that

caprog((store(sf...) e)) = cactx((store(sf...)[(cae(e))]))

which follows from the definitions of caprog and cactx.

Otherwise, consider the cases of F: [], (v . . . F◦ v . . .), (if F◦ e e), (set! x F◦), and

(begin F∗ e e . . .).

[] follows by definitions as before.

26

In the case of (v . . . F◦ v . . .), (if F◦ e e), (begin F∗ e e . . .), cactx makes no struc-

tural changes to the context other than the expected calls to cactx and cae on sub-

expressions. Therefore, it follows from our induction principle and the definitions of

cactx, cae that the transformation preserves decomposition in these cases.

The interesting case, (set! x F◦), has a transformation occur in the evaluation context.

There are two possibilities for the transformation of (set! x F◦):

1. cactx((set! x F◦)) = (set-car! ppx cactx(F◦)) if x is in the enclosing store.

2. cactx((set! x F◦)) = (set-car! x cactx(F◦)) if x is not in the store (i.e., if x is

bound by a lambda expression in some enclosing context).

In case 1, we need to show that:

caprog((store (sf . . .) (set! x F◦[p]))) = cactx((store (sf . . .) (set! x cactx(F◦)[cae(p)])))

Since we know x must be in the store,

caprog((store (sf . . .) (set! x F◦[p]))) = (store (casf (sf) . . .) (set-car! ppx cae(F◦[p]))).

This case follows by definition of cae and cactx, and by our induction principle.

Case 2 follows similarly, except that x is not in the store, so

caprog((store (sf . . .) (set! x F◦[p]))) = (store (casf (sf) . . .) (set-car! x cae(F◦[p]))).

Therefore, we have shown that our transformation preserves decomposition for all

cases.

Lemma 4. Transformation Preserves Directly Stuck Expressions

If e is a directly stuck expression, the caprog(e) is as well.

27

Where directly stuck expressions are one of the following:

• (set! x v) where x is not in the store.

• (set-car! pp v) where pp is not in the store.

• (set-car! e v) where e is not a pair pointer.

• An application expression not of the form of one of our semantic rules.

Proof. By case analysis on directly stuck expressions.

We first consider the set! case. Here, x will transform to ppx. However, since x

was not in the store, there will be no corresponding ppx in the store. Therefore, the

expression is directly stuck by definition.

Next, in the first set-car! case, no effect other than a recursive call on v will occur.

Therefore, it is still directly stuck.

For the second set-car! case, there is no transformation that will take e to a pair

pointer. Therefore, this expression will still be directly stuck.

Finally, for application expressions, we can see by lemmas 1 and 2 that the application

will still be the same mix of values and non-values. In the case where the application

is stuck and has non-value expressions, this preservation is enough to see that it will

still be stuck. In the value case, we have to ensure that the values aren’t transformed

in a way that makes a step possible. We can see by our proof of lemma 1 that values

keep their same form (i.e., lambdas are still lambdas). Therefore, if an application

was already stuck, then it will continue to be stuck after transformation.

28

4.2 Proof Overview

To prove that caprog preserves the semantics of programs that it transforms, we must

consider what we mean by semantic preservation. Since caprog entirely removes an

expression, set!, we cannot expect the transformed program to take exactly the same

steps. It seems reasonable, then, to say that a program’s semantics are preserved over

a transformation if the transformed program takes equivalent steps.

To formalize this informal definition, we must first define a way for a program to take

multiple steps:

Definition 5. Transitive, reflexive closure of

1. a c if a b and b c (Transitivity)

2. a a (Reflexivity)

3. a b if a b (Closure)

The intuition for the reflexive, transitive closure of is that it relates expressions

that have zero or more single steps between them.

Our definition of step equivalence uses the idea of simulation. That is, if a relation

is a simulation relation, then related programs take equivalent semantic steps. The

intuition for such a relation is shown by Figure 4.4. We formally define our notion of

a simulation relation in Section 4.2.2.

If we can show that caprog is a simulation, then we know that P and caprog(P) take

equivalent steps and therefore that caprog preserves the semantics of the programs it

transforms.

As a summary, our definitions so far are as follows:

29

P P ′ . . . P ′′

caprog(P) caprog(P
′) . . . caprog(P

′′)

Figure 4.4: Simulation relation visualization

Symbol Definition
A single, standard, reduction step
defined by the semantics.
The reflexive, transitive closure of

caprog ca on programs.
cactx ca on evaluations contexts.
casf ca on store locations.
cae ca on expressions.

Table 4.1: Definitions

Our proof is structured as follows:

1. Show that our semantics is deterministic (Section 4.2.1).

2. Prove that caprog is a simulation relation (Section 4.2.2).

4.2.1 Deterministic Semantics

An implicit assumption made by Figure 4.4 is that our programs only have one

potential step to take. That is, that a program P will always step to the same P’.

Another way of stating this is by saying that our semantics are deterministic.

Definition 6. Deterministic Relation

If a relation R is deterministic then,

∀a b1 b2, a R b1, a R b2 ⇒ b1 = b2.

30

In the context of our semantics, we state this theorem as follows:

Theorem 1. Single Step Deterministic

∀P P1 P2, P P1, P P2 ⇒ P1 = P2

To prove Theorem 1, we will first show a property of all programs called the VSR

property. This property states that P is either a Value, Stuck, or Reducible. In the

context of our semantics, we say that that P is reducible if it can be decomposed

into a context C and expression e such that C[e] C ′[e′] for some C ′[e′] on the

right hand side of a semantic step. To show that our semantics are deterministic,

we strengthen this property to require uniqueness of the evaluation context C that P

decomposes into.

Lemma 5. VSR Property for Programs

All programs P are one of the following:

1. P = (store (sf . . .) v) — Value

2. ∃ unique C, P = C[e], where e is a directly stuck expression — Stuck

3. ∃ unique C, P = C[e], C[e] C ′[e′] — Reducible

where directly stuck expressions are one of the following:

• (set! x v) where x is not in the store.

• (set-car! pp v) where pp is not in the store.

• (set-car! e v) where e is not a pair pointer.

• An application expression not of the form of one of our semantic rules.

31

Proof.

By definition, P must be of the form (store (sf . . .) e).

We can see that the VSR property holds for a program if the following is true about

the program’s expression:

If e is a value, then P = (store (sf . . .) v).

If e is directly stuck, then P is stuck by definition.

Finally, if e = F [e′] such that e′ is a reducible expression, then C[e] = C[F [e′]] has a

valid semantic step. We refer to this as e being reducible.

We proceed by induction on e.

If e is a value, then we are done.

Otherwise, if e is not a value, consider the cases:

Case 1: e = (begin e1 e2 . . .)

We know by induction hypothesis that all ei in the body of the begin expression are

either values, directly stuck, or reducible.

Consider when e2 . . . is empty. Therefore, e = (begin e1). Hence, we can directly

apply the beginD rule. Therefore, e is reducible, and the unique context is simply

the store and an empty hole.

If e2 . . . is not empty, then consider the case where e1 is a value. Then, we can

decompose e into F [v], where F = (begin []∗ e2 e3 . . .). The promote rule is

applicable here, and there is no other decomposition we can perform on e. Therefore,

this case falls under reducible. Next, consider when e1 is stuck. Similar to the

value case, the evaluation context for begin applies to e, but since e1 is not a value,

32

promote is not applicable. Therefore, we are stuck, since P can only decompose into

a begin evaluation context and e1, which is directly stuck. Finally, consider the case

where e1 is reducible. Since e1 is not a value, promote again cannot apply. Then,

we can decompose e into F [e′1], where F = (begin [] e2 e3 . . .). Since promote and

beginD are not applicable, F is the unique decomposition, with whichever reduction

step F [e′1] takes being the only applicable step.

Case 2: e = (if e1 e2 e3)

If e1 is a value, then either ifT or ifF are applicable, and e is clearly reducible, with

the unique context just being the store and an empty hole.

Otherwise, if e1 is stuck and not a value, then P is stuck since it can only decompose

using the if evaluation context.

Similarly, if e1 is reducible, then e is reducible:

e = F [e1], where F = (if [] e2 e3).

Case 3: e = (e1 e2 . . .)

Again, we know that all ei in the body of e are either values, directly stuck, or

reducible.

Consider when all ei are values. Then, there can be various rules applied, depending

on the specific value of each ei: cons, car, cdr, set-car!, set-cdr!, appN!, appN,

app0 and all of the arithmetic rules are potentially applicable here. If none of these

rules are applicable, then e is stuck by definition.

If all of ei are stuck non-values, then e can take the mark step and is therefore

reducible. The same follows if all of ei are reducible non-values, except it will continue

to take steps after.

33

Now, consider if ei are a mix of stuck, reducible, and value expressions. There are

three possible cases here:

1. e can be decomposed into F [e′], where F = (v . . . F◦ v . . .).

2. The mark rule is applicable.

3. e is directly stuck.

We know this because mark is the only semantic rule applicable to (e1 e2 . . .) ex-

pressions with non-value sub-expressions. However, due to the requirement of mark

that e2 . . . contains a non-value expression, it is never the case that mark can be ap-

plicable and e can be decomposed using the (v . . . F◦ v . . .) evaluation context at the

same time. If mark is not applicable, and a decomposition into the (v . . . F◦ v . . .)

evaluation context is not possible, then e is directly stuck by definition.

Therefore, consider the possibilities of e′ in the decomposition case. e′ cannot be a

value, since then all of ei would be values, which contradicts our assumption. If e′

is reducible by some semantic step, then that is the semantic step that e must take.

Otherwise, if e′ is stuck, then e is stuck, since all other ei are values.

Case 4: e = (set! x e1)

If x is not in the store, e is directly stuck by definition, so we consider the case where

x is in the store.

By induction principle, e1 must be a value, directly stuck, or reducible.

If e1 is a value, the set! rule is applicable.

Otherwise, if not, e is directly stuck if e1 is, or reducible if e1 is, with the (set! x F◦)

evaluation context being the only possible decomposition, and therefore unique.

34

Case 5: e = (values v)

If e is in a []◦ context, then demote is applicable, and e is therefore reducible.

Otherwise, it is stuck.

Case 6: e = x

If x is in the store, then var is applicable, and e is therefore reducible. Otherwise, e

is directly stuck by definition.

By showing this property for all cases of P and e, we have proven it is true for all

programs by induction principle.

Since we have shown that if a program reduces, it does so by decomposing uniquely

into an evaluation context and a reducible expression, Theorem 1 follows from Lemma

5. That is, if P = C[e], P P1, and P P2, then P1 = P2 = C ′[e′] by Lemma

5.

4.2.2 caprog is a simulation relation

In this section we show that the relation defined by the convert-assignments pass is

a simulation relation. First, we formally define our notion of simulation:

Definition 7. Simulation Relation

If a relation R is a simulation, and aRb, then:

a a′ ⇒ ∃ b′, b b′, a′Rb′

That is, if a and b are related by a simulation relation, and a a′, then there must

exist b′ such that b b′ and that a′ is related to b′. Thus, to show that ca is a

35

simulation relation, we must show that if P P ′, then there exists a P ∗ such that

caprog(P) P ∗, caprog(P
′) = P ∗.

Therefore, if we can show that for each possible single semantic step, that transforming

the left hand side and then stepping a finite number of times always arrives at the

transformation of the right hand side, then we have shown that caprog is a simulation

relation.

One thing to note is that since we are considering the decomposed programs that

operates on, we make implicit use of Lemma 1 throughout our proof to relate

these findings back to caprog.

Theorem 2. Step Theorem

P P ′ implies

exists P ∗ such that

caprog(P) P ∗ and

caprog(P
′) = P ∗.

Proof. By induction on the structure of P .

By Lemma 5, P must either a Value, Stuck, or Reducible.

If P is a Value, our step theorem follows by contradiction.

If P is Stuck, our step theorem follows similarly, but we are also ensured by Lemma

4 that P̂ is also Stuck

Otherwise, if it is Reducible, P must be in the form of the left hand side of one of the

semantic rules. Our proof follows by case analysis of the semantic rules.

36

The most interesting example comes from the rule appN!. This is because appN!

operates on lambda applications that contain assignments, and caprog removes all

assignments. Indeed, we will confirm from the steps that correspond to appN! that

assignments are removed.

First, we define some convenient notation in Table 4.2:

P̂ = caprog(P)

Ĉ = cactx(C)

ŝf = casf (sf)
ê = cae(e)

Table 4.2: Notation for various ca functions

Now, consider the semantic step appN!, taking P to P ′:

P = (store (sf . . .)F [((lambda (x) e) v)])

P ′ = (store (sf . . . (p v)) F [({x −→ p} (lambda () e))]) (p fresh, x assigned to in e)

P transforms to P̂ :

P̂ = (store (ŝf . . .)F̂ [((lambda (t) ((lambda (x) ê)(cons t null)) v̂))]) (t fresh)

P ′ transforms to P̂ ′:

P̂ ′ = (store (ŝf . . . (pp (cons v̂ null))F̂ [({x −→ pp} (lambda () ê))])

If ca is a simulation, P̂ must take a finite amount of steps and arrive at a P ∗ such

that P ∗ = P̂ ′.

37

We propose that P̂ will take 5 steps to get to P ∗.

1. We first apply the appN rule to P̂ , since t is fresh.

(store (ŝf . . .)F̂ [((lambda (t) ((lambda (x) ê)(cons t null)) v̂))])

(store (ŝf . . .)F̂ [((lambda () ((lambda (x) ê)(cons v̂ null))))])

2. Then, we apply app0.

(store (ŝf . . .)F̂ [((lambda () ((lambda (x) ê)(cons v̂ null))))])

(store (ŝf . . .)F̂ [(begin ((lambda (x) ê)(cons v̂ null)))])

3. Now, we apply beginD.

(store (ŝf . . .)F̂ [(begin ((lambda (x) ê)(cons v̂ null)))])

(store (ŝf . . .)F̂ [((lambda (x) ê)(cons v̂ null))])

4. At this point, to apply the cons rule, we must first decompose our program

into an evaluation context and a reducible expression. We do so as follows:

(store (ŝf . . .)F̂ [((lambda (x) ê)(cons v̂ null))]) =

(store (ŝf . . .)F̂+[(cons v̂ null)])

where F̂+ = F̂ [((lambda (x) ê)[])].

38

We can then reduce using the cons rule:

(store (ŝf . . .)F̂+[(cons v̂ null)])

(store (ŝf . . . (pp (cons v̂ null)))F̂+[pp])

And expand our context:

(store (ŝf . . . (pp (cons v̂ null)))F̂+[pp]) =

(store (ŝf . . . (pp (cons v̂ null)))F̂ [((lambda (x) ê) pp)]

5. Finally, we can apply appN again, since pp is fresh.

(store (ŝf . . . (pp (cons v̂ null)))F̂ [((lambda (x) ê) pp)])

(store (ŝf . . . (pp (cons v̂ null)))F̂ [({x −→ pp} (lambda () ê))])

Comparing this result to P̂ ′, we can see they are the same. Therefore, if P takes step

appN!, P̂ takes the steps appN, app0, beginD, cons, appN in order to arrive at

a P ∗ that satisfies our simulation definition. Figure 4.5 visualizes this relationship.

P P ′

P̂ P 1 P 2 P 3 P 4 P ∗
appN app0 beginD cons appN

appN!

Figure 4.5: Simulation of appN!

This is the only case where more than one equivalent step is needed. In the cases of

var and set!, P̂ takes a different step, but still only one (see Figure 4.6).

39

P P ′

P̂ P ∗
car

var
P P ′

P̂ P ∗
set-car!

set!

Figure 4.6: Simulation of var and set!

For all other steps, since the ca functions do not affect the LHS in a meaningful way,

caprog(P) takes the same step that P does.

This relationship is shown in Figure 4.7:

Semantic Step Steps for P̂ to reach P ∗

appN! appN, app0, beginD, cons, appN
var car
set! set-car!

All other steps Same step

Figure 4.7: Equivalent semantic steps before and after convert-
assignments.

Therefore, we have shown that caprog is a simulation relation.

4.2.3 caprog is semantic preserving

Now that we know that caprog is a simulation relation, we can see that it preserves

semantics.

For example, if P P ′, then by Theorems 1 & 2 and induction on the number of

steps taken by P , we can easily see that caprog(P) caprog(P
′). Therefore, if P

gets stuck, gets to a value, or continues infinitely, caprog(P) will take equivalent steps

and get to the transformed version of the stuck expression, of the value expression,

or of an arbitrary expression in the infinite sequence.

40

Chapter 5

VALIDATION FRAMEWORKS

In Chapter 4, we gave our “paper” proof of the correctness of the convert-assignments

pass. However, we still need to verify that our proof is correct. While we have

carefully checked our assumptions and the overall chain of logic of our paper proof, it

is always possible to make mistakes or overlook logical flaws when manually reviewing.

Fortunately, as covered in Section 2.1.1.1, there are powerful proof assistants available

that can aid in mechanizing proofs such as ours. In addition, we have the luxury of

having access to an existing implementation of the R6RS semantics that allows us to

test examples to ensure that caprog satisfies the requirements of being a simulation

relation.

Our initial goal for this project was to provide a full formal mechanization of our

proof using the Coq proof assistant. However, the advanced detail required made a

complete mechanization out of the scope of this thesis work. Still, we successfully

implemented a portion of the R6RS semantics as well as a model of the pass itself in

Coq. We will show later in the section some details of the implementation as well as

how it could be extended to complete formalization of our proof, and therefore prove

to a high degree of certainty the correctness of the convert-assignments pass.

Although we were not able to completely formalize the proof in Coq, we wanted to

have empirical evidence of the validity of our proof. To do so, we provide a testing

framework based on an existing implementation of the R6RS semantics. We use this

testing framework to show that the convert-assignments pass is, in fact, a simulation

relation for a variety of Scheme programs. We use Scheme itself for this framework, as

41

it is highly adaptable to modeling syntactic transformations like convert-assignments,

and we have access to an existing implementation of the R6RS semantics.

5.1 Coq Framework

5.1.1 Overview and Functionality

We provide an implementation of a subset of the R6RS formal semantics as well as a

model of the convert-assignments pass. In addition, we prove some properties of the

semantics, such as the property that substituting a fresh variable in an expression

returns that same expression. Whereas in our paper proof, we may assume that

this is trivially correct, Coq requires you to explicitly prove the validity of seemingly

obvious properties such as this one. For example, at one part in our paper proof of

the VSR property for programs (Lemma 5 in Section 4.2.1), we needed to show that

a program not in the form of any semantic step is stuck. In our paper proof, we do

not provide much detail, as it fairly obvious that a program that does not match a

semantic step has no applicable semantic steps. However, in Coq, we would need to

explicitly show that if a program not in such a form could step, then it would lead to

a logical inconsistency. Further, we would have to show this same contradiction for

all of the different possible stuck programs. While Coq provides powerful automation

tools that can aid in proving such a property, it is still true that mechanization of

a proof at this scale requires an amount of detail that is simply not considered in

a paper proof. Therefore, while we have a formal model of our subset of the R6RS

semantics and some properties of the semantics verified, there are many more minor

properties that need to be proven to be able to formally verify the overall correctness

of the pass.

42

In terms of present functionality, our implementation does provide a way of manually

applying semantic steps, and we show some simple examples by proving, for example,

that (car (cons v1 v2)) = v2 for all v1, v2. Again, while this is quite a trivial proof on

paper, Coq requires explicit evidence of its truth, which we show by stepping through

the appropriate semantic steps in a systematic way.

Finally, implementing the semantics and pass in Coq required some specific nuance

unique to Coq and the context of programming language metatheory proofs. We

discuss these implementation details in Section 5.1.2.

5.1.2 Implementation Details

Our implementation of an operational semantics for Scheme programs follows closely

from the implementation included with R6RS — however, encoding this semantics in

Coq presents challenges unique to the intricacies of the Coq language.

5.1.2.1 Capture-Free Substitution

Historically, handling variable bindings has been a major hurdle in proofs about

programming language metatheory [11]. Specifically, the issue of implementing a

substitution operation while avoiding unwanted capture of variables is extremely im-

portant, but can be difficult to accomplish in mechanized proofs. If a semantic model

uses named variables, the proof authors must now reason about all possible names in

every relevant lemma that they prove. Since programming languages tend to allow

developers close to free reign with defining names for variables, trying to reason about

all possible names in expressions quickly becomes intractable.

43

In paper proofs, this problem is dealt with by freely applying α-conversion if capture

would occur, or simply by using the same variables and assuming that no capture

occurs. This means that in paper proofs, and in our minds, we tend to implicitly

work with α-equivalence classes of expressions rather than directly with expressions

themselves. For example, we naturally consider expressions (λ (x) x) and (λ (y) y)

as both equivalent to the identity function.

To remedy the problem of reasoning over all possible names, and more closely emulate

our intuition and the typical form of reasoning seen in paper proofs, we use the locally

nameless style of variable bindings in our formal model. This style uses de Bruijn

indices for bound variables (hence locally nameless), and names for free variables.

Hence, locally nameless lambda expressions are syntactically equivalent if they are in

the same α-equivalence class.

Figure 5.1 shows some simple examples of de Bruijn indexed expressions.

(lambda (bvar 0)) is the identity function
(lambda (lambda (+ (bvar 0) (bvar 1)))) is an addition function.
(lambda (+ (bvar 0) x)) adds its argument to a variable from the store.

Figure 5.1: Some examples of expression representations using the locally
nameless style.

Notice that lambda expressions have no formal arguments. This is because bound

variables are “nameless” in this system. Instead, the index of a bound variable refers

to the level of abstraction. So (bvar 0) refers to a variable bound by the immedi-

ately surrounding abstraction. Whereas (bvar 1) refers to a variable bound by an

abstraction surrounding the immediate abstraction. We use free variables to repre-

sent variables that are already in the store, because of the previous evaluation of a

lambda abstraction.

44

While the locally nameless style is convenient for reasoning about lambda calculus

terms at a formal level, we must note that Scheme is not defined using the locally

nameless style. Therefore, we also need to handle converting between the two. To do

so, we replace the bound variables at each level with some fresh name, for example

to apply a semantic rule that takes a Scheme expression to another.

Finally, because there exist locally nameless expressions that do not correspond to

Scheme expressions (for example the expression (bvar 1) outside of an abstraction),

we have to define a well-formedness property for locally nameless expressions, and

enforce that translation is only performed on such well-formed expressions.

5.1.2.2 Cofinite Quantification

Cofinite quantification is a small stylistic change to the normal way of defining sub-

stitution that allows us to have a slightly more powerful induction principle when

dealing with fresh variable substitution.

Traditionally, a fresh variable is generated by simply picking (existential quantifica-

tion) a single variable not in the set of free variables of the expression it is being

substituted in. In the cofinite quantification style, we use universal rather than exis-

tential quantification to reason about all fresh variables instead of a single one. That

is, our definition of freshness generalizes to say all variables x not in some set L are

fresh. In our definition for freshness of a variable with respect to an expression, we

say the set L is the set of free variables in the expression. Because of this, where we

would reason about a single fresh variable, we instead are reasoning about the set of

all fresh variables, which can help with showing that a variable that is fresh in an

expression is also fresh in its sub-expressions.

45

The combination of locally nameless and cofinite quantification styles for formal se-

mantics engineering was pioneered by Aydemir, et al. [4].

5.1.2.3 Step-Indexed Functions

To reason about non-terminating programs while still satisfying the requirement that

all Coq functions terminate, we use step indexing on many of our functions. This

means that our functions are given an index to keep track of how many “steps”

they have taken, with a limit that causes termination after the index exceeds it.

This ensures that all of our functions are terminating, while being flexible enough

to account for large programs For functions dealing with nested sub-expressions, our

step index usually refers to recursion depth rather than actual steps taken, so very

large terms can be handled without necessarily setting a large step limit.

5.2 Racket Framework

5.2.1 Overview and Functionality

While our Coq framework approaches validation of our proof from the perspective

of static analysis, our Racket framework instead provides a more “dynamic” means

of checking validity of our proof against specific examples. Given a valid program in

our subset of Scheme, our Racket framework uses an existing implementation of the

R6RS formal semantics to perform a semantic step on the program. Then, it executes

caprog on the original program and verifies that stepping a finite number of times (in

our case up to 5) corresponds to the result from the single semantic step.

46

5.2.2 Implementation Details

5.2.2.1 Extensibility

Because we are using the full R6RS semantics here, we can easily extend this frame-

work to test examples outside of the scope of our original proof. All that needs to

be done to add new kinds of expressions to the framework is extending the frame-

work’s implementation of caprog to appropriately recurse on these new expression’s

sub-expressions. While this is not a substitute for a formal proof, one can reasonably

assure themselves that our proof technique holds over a set of examples that include

such new expressions. By constructing the framework in this way, we continue the

pattern of high extensiblity in our reasoning.

5.2.2.2 Evaluation Order

As mentioned in Section 3.1.2.6, we assume a left-to-right evaluation order in our

proof. However, as we also mention, the R6RS semantics provides a way for imple-

mentations to specify the evaluation order by modifying the mark semantic rule.

In this framework, we are of course relying on the un-modified mark rule, since we

are directly applying the formal R6RS semantics. However, we circumvent this by

simply choosing the path that corresponds to a left-to-right evaluation in all cases. A

possible extension to this framework would be to consider all evaluation orders when

testing an example for adherence to our proof technique. However, since we do not

prove this in our paper proof, we kept the assumption of left-to-right evaluation for

this framework.

47

Figure 5.2: Example of a Racket framework test case

5.2.2.3 Testing Framework

As previously mentioned, the purpose of this framework is to give a means of testing

the validity of our proof by simulation approach. An example of this testing is shown

by Figure 5.2. It should be noted that we do not perform this validation by manual

examination.

Figure 5.2 is a text-based visualization of the process that our testing framework uses

to validate our proof approach. In the full version of our test, we step until a limit

is reached or no further steps are applicable and test the simulation relation for each

step.

One very important detail of this framework can also be observed in Figure 5.2 — that

the terms we expect to match are not syntactically equivalent, but instead equal over

α-equivalence. To counteract this, in our test suites, we first normalize programs such

that they are syntactically equal to all programs in their α-equivalence class before

comparing them. That way, we get positive results for comparing programs that are

entirely the same except for a difference in naming. However, this also means that

implicit shadowing or freshness of variables that have the same name is not allowed

in this framework. Indeed, this makes it so that this framework does not typically

mesh well with examples that include recursion, such as the Y-combinator.

48

Chapter 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude and summarize the project, reflect on our process of proof

and in building our validation frameworks, and discuss future work on this project.

6.1 Reflections

The original intent of this work was to provide a full mechanization of the proof in

Coq. To that end, some of the features removed were done so with the motivation of

simplifying the Coq formalization. As we discuss in Section 5.1, Coq requires a large

amount of detail and specific proof of things that are seemingly given or obvious in

a paper proof. For example, we prove in our framework that substitution of a fresh

variable is the identity for the locally nameless Scheme representation in our Coq

framework, something that we take as given in our paper proof.

As our project’s scope shifted to no longer target a full mechanization, some features

were added back into our model, but a project started with the intention of a paper

proof only likely could have included the entire R6RS semantics, as the features

we excluded are largely unaffected by caprog. While complicated features like quote

would have added some complexity to the proof, the convert-assignments pass does

not modify quoted expressions. Therefore, the only additional complexity would

be altering our various definitions to support these new features, for example by

performing the correct recursive calls on sub-expressions.

49

Another feature, exceptions, may have actually aided our proof by giving an even

stronger definition for stuck programs. However, it is clear to see that convert-

assignments would behave no differently with this change, so its exclusion presents

no threat to the overall validity of our claim of correctness.

6.2 Future Work

There are a few paths for potential future work on this project. The first would be

extending the paper proof in one of two ways: extending the language we prove over,

and/or proving correctness of another pass.

The second future work would be to continue the original scope of this project in

fully mechanizing the current proof. This work would entail proving various lemmas

to definitively prove Theorems 1 and 2 inside of our Coq framework. While our

framework provides definitions for the syntax and semantics of our R6RS subset and

some of the auxiliary lemmas, extending it to fully mechanize our proof would likely

take some fine-tuning of the definitions, or more specific definitions of, for example,

well-formed expressions, which we assume extensively throughout our paper proof.

6.3 Summary and Closing

In this work, we detailed the proof of correctness of our representation of the convert-

assignments pass, caprog. Most of our proof follows by induction on the structure

of our programs and expressions, with extensive case analysis on programs formed

such that a semantic step is applicable to them. We also provide frameworks in Coq

and Racket for validation of our proof through computer-checked proof and testing

of specific examples respectively. While we consider a subset of the R6RS semantics

50

in all of our proofs, each has the possibility of extension to include a more complete

version, though this would likely be quite difficult in the case of the Coq framework.

Overall, we believe this work provides a reasonably trustworthy proof of correctness

of the convert-assignments pass of the Chez Scheme compiler.

51

BIBLIOGRAPHY

[1] IEEE standard for the scheme programming language. IEEE Std 1178-1990,

pages 1–, 1991.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques.

Addison wesley, 7(8):9, 1986.

[3] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S.

Belanger, M. Sozeau, and M. Weaver. Certicoq: A verified compiler for coq.

In The third international workshop on Coq for programming languages

(CoqPL), 2017.

[4] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.

Engineering formal metatheory. Acm sigplan notices, 43(1):3–15, 2008.

Publisher: ACM New York, NY, USA.

[5] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix. Using

static analysis to find bugs. IEEE software, 25(5):22–29, 2008.

[6] H. Barendregt and H. Geuvers. Proof-assistants using dependent type systems.

Handbook of automated reasoning, 2:1149–1238, 2001.

[7] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,

H. Herbelin, G. Huet, C. Munoz, C. Murthy, and others. The Coq proof

assistant reference manual: Version 6.1. PhD Thesis, Inria, 1997.

[8] A. Bove, P. Dybjer, and U. Norell. A brief overview of agda–a functional

language with dependent types. In International Conference on Theorem

Proving in Higher Order Logics, pages 73–78. Springer, 2009.

52

[9] E. Brady. Idris, a general-purpose dependently typed programming language:

Design and implementation. J. Funct. Program., 23(5):552–593, 2013.

[10] N. G. d. Bruijn. A Survey of the Project Automath**Reprinted from: Seldin,

J. P. and Hindley, J. R., eds., To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism, p. 579-606, by courtesy of

Academic Press Inc., Orlando. In R. P. Nederpelt, J. H. Geuvers, and

R. C. d. Vrijer, editors, Selected Papers on Automath, volume 133 of

Studies in Logic and the Foundations of Mathematics, pages 141–161.

Elsevier, 1994. ISSN: 0049-237X.

[11] A. Charguéraud. The locally nameless representation. Journal of automated

reasoning, 49(3):363–408, 2012. Publisher: Springer.

[12] A. Chlipala. A verified compiler for an impure functional language. ACM

Sigplan Notices, 45(1):93–106, 2010.

[13] A. Church. An unsolvable problem of elementary number theory. American

journal of mathematics, 58(2):345–363, 1936.

[14] B. J. Copeland. The Church-Turing Thesis. In E. N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, Summer 2020 edition, 2020.

[15] T. Coquand and G. Huet. The calculus of constructions. PhD Thesis, INRIA,

1986.

[16] L. de Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer. The lean

theorem prover (system description). In International Conference on

Automated Deduction, pages 378–388. Springer, 2015.

53

[17] D. Delahaye. A tactic language for the system Coq. In International

Conference on Logic for Programming Artificial Intelligence and Reasoning,

pages 85–95. Springer, 2000.

[18] R. K. Dybvig. The Scheme Programming Language, 4th Edition. The MIT

Press, 4th edition, 2009.

[19] R. K. Dybvig et al. Chez scheme, 2011.

[20] R. K. Dybvig and B. T. Smith. Chez Scheme Reference Manual: Version 1.0.

1983.

[21] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT

Redex. The MIT Press, 1st edition, 2009.

[22] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay,

J. McCarthy, and S. Tobin-Hochstadt. The racket manifesto. In 1st

Summit on Advances in Programming Languages (SNAPL 2015). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[23] H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–25,

2009.

[24] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de

l’arithmétique d’ordre supérieur. PhD Thesis, Éditeur inconnu, 1972.

[25] G. Gonthier. Formal proof–the four-color theorem. Notices of the AMS,

55(11):1382–1393, 2008.

[26] J. D. Guttman, J. D. Ramsdell, and V. Swarup. The VLISP Verified Scheme

System, pages 33–110. Springer US, Boston, MA, 1995.

54

[27] J. D. Guttman, J. D. Ramsdell, and M. Wand. VLISP: A Verified

Implementation of Scheme. In VLISP A Verfied Implementation of

Scheme: A Special Issue of Lisp and Symbolic Computation, An

International Journal Vol. 8, Nos. 1 & 2 March 1995, pages 5–32. Springer

US, Boston, MA, 1995.

[28] J. Kang, Y. Kim, Y. Song, J. Lee, S. Park, M. D. Shin, Y. Kim, S. Cho,

J. Choi, C.-K. Hur, and K. Yi. Crellvm: Verified Credible Compilation for

LLVM. SIGPLAN Not., 53(4):631–645, June 2018. Place: New York, NY,

USA Publisher: Association for Computing Machinery.

[29] A. W. Keep and R. K. Dybvig. A nanopass framework for commercial compiler

development. In Proceedings of the 18th ACM SIGPLAN international

conference on Functional programming, pages 343–350, 2013.

[30] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml: a verified

implementation of ml. ACM SIGPLAN Notices, 49(1):179–191, 2014.

[31] P. J. Landin. Correspondence between algol 60 and church’s lambda-notation:

part i. Communications of the ACM, 8(2):89–101, 1965.

[32] I. Lee, G. Pappas, R. Cleaveland, J. Hatcliff, B. Krogh, P. Lee, H. Rubin, and

L. Sha. High-confidence medical device software and systems. Computer,

39(4):33–38, 2006.

[33] X. Leroy. Formal Verification of a Realistic Compiler. Commun. ACM,

52(7):107–115, July 2009. Place: New York, NY, USA Publisher:

Association for Computing Machinery.

[34] X. Leroy. The CompCert C verified compiler: Documentation and user’s

manual. PhD thesis, Inria, 2019.

55

[35] A. Lochbihler. Verifying a compiler for java threads. In European Symposium

on Programming, pages 427–447. Springer, 2010.

[36] P. Martin-Löf. An intuitionistic theory of types. Twenty-five years of

constructive type theory, 36:127–172, 1998.

[37] J. McCarthy. Recursive functions of symbolic expressions and their

computation by machine, part i. Communications of the ACM,

3(4):184–195, 1960.

[38] J. Mccarthy and J. Painter. Correctness of a compiler for arithmetic

expressions. pages 33–41. American Mathematical Society, 1967.

[39] R. Milner and R. W. Weyhrauch. Proving compiler correctness in a mechanised

logic. Machine Intelligence, 7:51–73, 1972.

[40] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for

higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[41] C. Paulin-Mohring. Introduction to the calculus of inductive constructions.

College Publications, 2015.

[42] B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu,

V. Sjöberg, and B. Yorgey. Software foundations. Webpage: http://www.

cis. upenn. edu/bcpierce/sf/current/index. html, 2010.

[43] K. Sandler, L. Ohrstrom, L. Moy, and R. McVay. Killed by code: Software

transparency in implantable medical devices. Software Freedom Law

Center, pages 308–319, 2010.

[44] D. A. Schmidt. Programming language semantics. ACM Computing Surveys

(CSUR), 28(1):265–267, 1996.

56

[45] J. Ŝevčik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell.

Relaxed-memory concurrency and verified compilation. In Proceedings of

the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 43–54, 2011.

[46] M. Sperber, R. K. Dybvig, M. Flatt, A. Van Straaten, R. Findler, and

J. Matthews. Revised6 Report on the Algorithmic Language Scheme.

Journal of Functional Programming, 19(S1):1–301, 2009. Publisher:

Cambridge University Press.

[47] G. L. Steele Jr and G. J. Sussman. The revised report on scheme: A dialect of

lisp. Technical report, Massachusetts Inst of Tech Cambridge Artificial

Intelligence Lab, 1978.

[48] G. J. Sussman and G. L. Steele. The First Report on Scheme Revisited.

Higher-Order and Symbolic Computation, 11(4):399–404, Dec. 1998.

[49] V. Voevodsky. Univalent foundations project. NSF grant application, 2010.

[50] R. Wilhelm, H. Seidl, and S. Hack. Compiler design: syntactic and semantic

analysis. Springer Science & Business Media, 2013.

57

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Compiler Correctness
	2.1.1 History
	2.1.1.1 Proof Checkers, Intuitionistic Logic, and Mechanized Proofs
	2.1.1.2 Verified Compiler Projects

	2.2 Scheme
	2.2.1 Lambda Calculus, LISP, and Scheme
	2.2.2 Scheme Verification
	2.2.3 The Chez Scheme compiler

	3 Formalizing Scheme
	3.1 R6RS Scheme
	3.1.1 Syntax
	3.1.1.1 Evaluation Contexts

	3.1.2 Semantics
	3.1.2.1 Control Flow
	3.1.2.2 Lists
	3.1.2.3 Mutation & Reference
	3.1.2.4 Application
	3.1.2.5 Values & Arithmetic
	3.1.2.6 Excluded Features

	4 Proving correctness of convert-assignments
	4.1 The convert-assignments pass
	4.1.1 Assumptions
	4.1.2 Intuition
	4.1.3 Definition
	4.1.4 Lemmas

	4.2 Proof Overview
	4.2.1 Deterministic Semantics
	4.2.2 caprog is a simulation relation
	4.2.3 caprog is semantic preserving

	5 Validation Frameworks
	5.1 Coq Framework
	5.1.1 Overview and Functionality
	5.1.2 Implementation Details
	5.1.2.1 Capture-Free Substitution
	5.1.2.2 Cofinite Quantification
	5.1.2.3 Step-Indexed Functions

	5.2 Racket Framework
	5.2.1 Overview and Functionality
	5.2.2 Implementation Details
	5.2.2.1 Extensibility
	5.2.2.2 Evaluation Order
	5.2.2.3 Testing Framework

	6 Conclusions and Future Work
	6.1 Reflections
	6.2 Future Work
	6.3 Summary and Closing

	BIBLIOGRAPHY

