
REAL-TIME STYLIZED RENDERING FOR LARGE-SCALE 3D SCENES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jack Pietrok

June 2021

© 2021

Jack Pietrok

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Real-time Stylized Rendering for Large-

scale 3D Scenes

AUTHOR: Jack Pietrok

DATE SUBMITTED: June 2021

COMMITTEE CHAIR: Zoe Wood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Christian Eckhardt, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Real-time Stylized Rendering for Large-scale 3D Scenes

Jack Pietrok

While modern digital entertainment has seen a major shift toward photorealism in

animation, there is still significant demand for stylized rendering tools. Stylized, or

non-photorealistic rendering (NPR), applications generally sacrifice physical accuracy

for artistic or functional visual output. Oftentimes, NPR applications focus on ex-

tracting specific features from a 3D environment and highlighting them in a unique

manner. One application of interest involves recreating 2D hand-drawn art styles in

a 3D-modeled environment. This task poses challenges in the form of spatial coher-

ence, feature extraction, and stroke line rendering. Previous research on this topic

has also struggled to overcome specific performance bottlenecks, which have limited

use of this technology in real-time applications. Specifically, many stylized rendering

techniques have difficulty operating on large-scale scenes, such as open-world terrain

environments. In this paper, we describe various novel rendering techniques for mim-

icking hand-drawn art styles in a large-scale 3D environment, including modifications

to existing methods for stroke rendering and hatch-line texturing. Our system fo-

cuses on providing various complex styles while maintaining real-time performance,

to maximize user-interactability. Our results demonstrate improved performance over

existing real-time methods, and offer a few unique style options for users, though the

system still suffers from some visual inconsistencies.

iv

ACKNOWLEDGMENTS

Thanks to:

• My family, Ted, Kim, and Jason, for their constant support and encouragement,

and for helping me realize my goals

• My advisor, Dr. Zoe Wood, for reminding me to be creative, and for showing

me the true power of computer science

• The members of my graphics group, for their endless enthusiasm and insight

• The other members of my thesis committee, Dr. Kurfess and Dr. Eckhardt, for

being excellent professors to learn from

• The graphics and computer science communities at Cal Poly, for creating a

welcoming and friendly environment for research and learning

• My former mentor Brian Schrom, for introducing me to the possibilities of

computer science and engineering

• Andrew Guenther, for uploading this template

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

1.1 Photorealism vs Non-photorealism . 1

1.2 Modern Stylized Rendering . 2

1.3 Contributions . 3

2 Background . 4

2.1 World-Space Versus Screen-Space . 4

2.2 Level-of-Detail Techniques . 5

2.3 Compute Shaders . 7

2.4 Terrain Features . 7

3 Related Works . 10

3.1 Suggestive Contours . 10

3.2 Stroke Rendering . 11

3.3 Painterly Rendering . 12

3.4 Stylized Texturing . 14

3.5 Color & Shading . 15

4 Implementation . 16

4.1 Curvature-based Strokes . 17

4.1.1 Parameterizing Orientation 17

4.1.2 Stylization Options . 18

vi

4.2 Hybrid Overlay Strokes . 22

4.2.1 ID Reference Image . 22

4.2.2 Feature Extraction . 23

4.2.3 Chaining Algorithm . 25

4.2.4 Stroke Mesh Construction . 27

4.2.5 Stroke Rendering . 30

4.3 Temporal Coherence . 30

4.3.1 Motion Field . 30

4.3.2 Adjustments to Smooth Motion Field 31

4.4 Hatching . 33

4.4.1 Dynamic Blending . 33

4.4.2 Dynamic Solid Textures . 34

4.5 Trees . 35

5 Validation & Results . 38

5.1 Performance Results . 38

5.2 Visual Results . 41

5.3 User Study . 42

6 Future Work . 53

6.1 Hatching Limitations . 53

6.2 Coherence Limitations . 54

7 Conclusion . 56

BIBLIOGRAPHY . 57

APPENDICES

A Visual Results Survey . 62

vii

LIST OF TABLES

Table Page

5.1 Performance results for various stylized rendering methods, across
different scene sizes and camera positions. Scenes represented in this
table all utilized curvature-based stroke rendering. 40

5.2 Performance results for various stylized rendering methods, across
different scene sizes and camera positions. Scenes represented in this
table all utilized hybrid-overlay stroke rendering. 40

viii

LIST OF FIGURES

Figure Page

1.1 A side-by-side example of a photorealistic image (in this case an
actual photograph) and stylized rendition of the same image. Styl-
ized images generally forgo physical accuracy for improved visual
appeal or style. Images obtained under creative commons from
http://bjornfree.com/galleries.html 2

2.1 An example of a billboard used to reduce model complexity in large-
scale scenes. The image in b replaces instances of trees that are far
away from the camera. The reduced quality is not as noticeable at
long range. 6

2.2 An early iteration of our terrain model, with contours rendered as
black lines. 9

3.1 An example mesh with highlighted edge features. Note the improve-
ment in detail when adding contours, and suggestive contours. [9] . 11

3.2 A model of Mt. Rainer, rendered using a painterly style. [4] 13

3.3 An example of real-time hatch textures, generated by overlaying
lighter tones on top of themselves at varying intervals. [29] 14

3.4 An example of toon shading, applied with various toon textures,
defined in [2]. 15

4.1 Curvature-based strokes utilize the screen-space fragment normal
(Ns) and its perpendicular counterpart (Ds) to approximate stroke
directionality. 18

4.2 Once the directionality of a stroke has been determined, the space
can be roughly parameterized along the length and width of a per-
ceived stroke. In this example, U represents the horizontal stroke
dimension, and V represents the vertical stroke dimension. 19

4.3 Two examples of stylized curvature-based strokes. The textures be-
neath each image are the same used in the images above them. While
some warping is visible, the textures mostly face the direction of the
perceived strokes. 20

ix

4.4 Contour strokes are rendered in this scene as solid black regions, with
slight alpha tapering along the edges. Curvature-based strokes are
spatially and temporally coherent, but are limited in what options
they provide for stylization. 21

4.5 A sample from a 480x270 ID reference image, used for edge extrac-
tion. Each edge is rendered as a unique RGBA value representing
its ID. Colors have been exaggerated for demonstration purposes. . 24

4.6 A diagram depicting chaining constraints. A denotes a user-specified
angle constraint for chaining, and D denotes a user-specified distance
constraint in pixels. 26

4.7 An example of how triangle strips can be formed from the list of
vertices for a given chain (right). The other images demonstrate
some example stylizations that can be applied to the strips using a
shader. [27] . 28

4.8 Three vertices are added to the ends of each stroke to create a
rounded edge. The red labeled points indicate added vertices. . . . 29

4.9 A depiction of a motion-field used to improve temporal coherence.
Each white line representation the direction that the terrain has
moved in the last ten frames . 32

4.10 An example of hatching with basic mipmapping. Note that surfaces
further from the camera become noisy and lose distinct stroke-line
visuals . 34

4.11 An example of a dynamic solid texture with a checkerboard pattern.
Each consecutive image shows a higher level of texture scaling that
can be modulated using specialized blending weights. The rightmost
image shows the combined dynamic solid texture, to be filtered and
displayed on the surface at runtime. [7] 35

4.12 An example of hatching with dynamic solid textures. Note that
stroke lines have the same size no matter how far away the surface is 36

4.13 A closeup of some tree models, rendered with basic hatch shading
and contour outlines. 37

5.1 Various terrain models & camera angles that were used to compare
performance across multiple selected styles. 39

5.2 A cartoonish style with a custom skybox. 42

x

5.3 A black and white sketch-like style with a closeup on some trees. . 43

5.4 A black and white sketch-like style with a wide-angle shot. This
version showcases hybrid-overlay strokes with a textures stroke mesh. 43

5.5 A style using terrain textures with modified contrast channels. . . . 44

5.6 An orange style using heavy cell-shading, overlay strokes, and an
overlay border. 44

5.7 A watercolor-like style created by warping texture coordinates. . . . 45

5.8 User study results regarding general aesthetic of the black-and-white
style. Users were prompted with: “Please evaluate the scene demon-
strated in this video on the following qualities” 46

5.9 User study results regarding general aesthetic of the green-terrain
style. Users were prompted with: “Please evaluate the scene demon-
strated in this video on the following qualities” 47

5.10 User study results regarding general aesthetic of the orange style.
Users were prompted with: “Please evaluate the scene demonstrated
in this video on the following qualities” 48

5.11 User study results regarding how well the black-and-white style achieved
a “hand-drawn” look. Users were prompted with: “How well do you
think this scene simulates a hand-drawn or 2D art style?” 49

5.12 User study results regarding how well the green-terrain style achieved
a “hand-drawn” look. Users were prompted with: “How well do you
think this scene simulates a hand-drawn or 2D art style?” 50

5.13 User study results regarding how well the orange style achieved a
“hand-drawn” look. Users were prompted with: “How well do you
think this scene simulates a hand-drawn or 2D art style?” 51

xi

Chapter 1

INTRODUCTION

1.1 Photorealism vs Non-photorealism

The postmodern era has brought an explosion of creativity and originality to many

aspects of our world. In particular, entertainment has been subjected to numerous

revolutions in creative vision over the last few decades, and the rise of digital en-

tertainment has provided more outlets for many to display their individuality and

imagination through the use of computer graphics. Modern cinema, animation, and

video games seek to pull their audiences in with unique and eye-catching visuals,

and this trend has prompted the advancement of multiple new fields of graphics

technology. Specifically, graphical rendering and image synthesis have expanded to

encompass increasingly realistic and complex scenes. Photorealism in rendering has

been of interest to many industries because of its potential to improve immersion and

create lifelike environments. However, non-photorealistic rendering, sometimes called

stylized rendering, has also flourished in modern entertainment due to its unique

creative applications. In contrast to photorealistic rendering, non-photorealistic ren-

dering prioritizes simplicity or artistic style over physical realism. Stylized rendering

is often used to emulate human-drawn art styles in a 3D environment; this is some-

times referred to as stroke-based rendering. Figure 1.1 shows one example of a stylized

rendition of a real-world environment.

1

(a) Actual photograph of cradle mountain. (b) Stylized / NPR rendition of cradle
mountain.

Figure 1.1: A side-by-side example of a photorealistic image (in this
case an actual photograph) and stylized rendition of the same im-
age. Stylized images generally forgo physical accuracy for improved vi-
sual appeal or style. Images obtained under creative commons from
http://bjornfree.com/galleries.html

1.2 Modern Stylized Rendering

Before the advent of 3D animation, studios such as Disney and DreamWorks would

draw 2D animation frames by hand, with limited computational support. Since then,

many of these studios have shifted to 3D graphics pipelines due to their simplicity

and reduced production time. Nonetheless, there is still significant demand for 2D

animation in entertainment, both in cinema and for interactive applications. As a

result, some research in this field has been conducted to explore options for combining

3D and 2D graphics pipelines.

Some of the obstacles to this technology involve visual consistency and performance

constraints. As such, real-time applications like video games generally find it more

difficult to utilize advanced graphical techniques in this field. Yet, there is still a

large market for stylized art in games. Some examples of games which have re-

ceived widespread acclaim for their stylized art include comic-inspired games like the

2

“Borderlands” series, cartoon-inspired games like “The Legend of Zelda: Breath of

the Wild”, and watercolor-styled games like “Ōkami”. Many of these games feature

open-world environments, which can introduce unique constraints and limitations due

to the performance impact of large-scale 3D scenes. Artists are often restricted in the

level of detail they can apply to game assets, to avoid hurting performance and player

immersion. As a result, there is a need for advanced graphical systems which can pro-

vide artists with more creative freedom in game-development, while maintaining high

performance on modern commercial hardware.

1.3 Contributions

The system introduced in this paper attempts to address the challenge of real-time

stylized rendering in a large-scale 3D environment, by combining existing methods

with specific adjustments that improve usability and performance. The contributions

of this paper include implementations of hatch-line shading, contour & silhouette

rendering, and various additional features. Specifically, we implement a hatch-line

shading scheme that makes use of dynamic solids to improve texture coherence at

varying depth levels, based off of research by Praun et al. and Benard et al. [29,

7] In addition, we combine this technology with a stroke rendering algorithm that

extracts relevant feature lines from terrain and renders them with user-specified stroke

textures. These methods are applied to multiple 3D terrain meshes, with various

tree models spread throughout to provide detail commonly found in modern games.

Notably, this paper significantly improves upon existing methods’ performance in real-

time, and allows for some unique customization options. We also provide a simplified

application with an overlay GUI to demonstrate the usability of our system.

3

Chapter 2

BACKGROUND

Rendering large-scale scenes in real-time can prove to be difficult due to the large

amount of scene data that needs to be processed every frame. High-density terrain

models around 100,000 vertices, can be especially challenging to render accurately,

because of their variable yet continuous geometric structure. In addition, as dis-

tance from the viewpoint increases, the amount of visible geometry often increases

exponentially, which can result in severe performance degradation as the GPU strug-

gles to process the large amount of data. As a result of these constraints, several

standardized methods have been introduced in modern rendering systems to improve

performance and visual quality in large-scale scenes. [4, 10, 21, 29, 34] Many of these

methods can apply to both photorealistic and non-photorealistic rendering, although

our focus is primarily on their relevance to stylized techniques. In this section, we

give some background on how large scenes are rendered, and describe some high-level

strategies for managing level-of-detail and rendering performance in large scenes.

2.1 World-Space Versus Screen-Space

In terms of rendering hand-drawn styles, much of the challenge comes from blending

techniques that operate in world-space and techniques that operate in screen-space.

World-space is generally described as the 3D coordinate space in which scene objects

exist. Positions in world-space consist of and x, y, and z coordinates. Conversely,

screen-space is the 2D coordinate space defined by pixels on the screen, or in a frame.

This space has a limited size, ranging from the lowest-leftmost pixel in a frame to

4

the highest-rightmost pixel, and many shaders operate in this space on a per-pixel

basis. When targeting a hand-drawn aesthetic, operating in screen-space can often

be beneficial because it aligns with the way human artists typically draw or paint

on a flat surface. This introduces a need for techniques that can effectively translate

between world-space objects and screen-space visuals.

2.2 Level-of-Detail Techniques

A common policy for large-scale rendering is to manage visual quality of the scene

using varying levels of detail. As humans, we notice detail in objects that are closer

to us, and tend to ignore details that are farther away. Similarly in rendering, we

can artificially reduce geometric density for objects which are farther away from the

primary viewpoint, without sacrificing the visual quality of the scene. This usually

takes the form of “object proxies” or “billboarding”, which reduces vertex density of

objects or utilizes prerendered images of the objects, respectively, beyond a certain

view distance. This reduces computational cost for the majority of objects in a large

environment, and can even improve visual quality in some instances. An example of

billboarding applied to tree objects is demonstrated in Figure 2.1

Additionally, standard methods for surface texturing can be impacted by surfaces

which extend far into the distance. As geometry gets further from the camera, the

number of pixels available to represent a texture decreases, which can result in pixe-

lated or incoherent imagery at long range. A common solution is to use mipmapping,

which involves generating smaller versions of the specified textures via sub-sampling

techniques. [19] These “mipmaps” provide better quality textures for far-away sur-

faces, and are pre-calculated at load-time so they do not impact frame rate. Most

modern rendering APIs, including OpenGL, have built-in methods for automatic

5

(a) Full 3D model of a tree. (b) Captured 2D image of a tree, used for
billboarding.

Figure 2.1: An example of a billboard used to reduce model complexity in
large-scale scenes. The image in b replaces instances of trees that are far
away from the camera. The reduced quality is not as noticeable at long
range.

6

mipmapping, though usually custom mipmaps will provide more consistent visuals.

When it comes to texturing discrete features, mipmaps are sometimes insufficient,

and adjustments must be made. This is discussed in Section 3.3, with respect to

hatch-line texturing.

2.3 Compute Shaders

The GPU is a powerful resource that enables rendering processes to be efficiently

parallelized for performance. However, rendering processes are not the only tasks

that can make use of the GPU. Compute shaders provide a framework for sending

arbitrarily-defined data to the GPU for parallel processing, and retrieving it on the

CPU after completion. In this way, compute shaders allow users to utilize the power of

the GPU, without directly going through the standard render pipeline. These shaders

can be extremely useful for parallelizing tasks such as complex feature extraction

and non-uniform vertex manipulation. Given the prominence of GPUs in modern

commercial hardware, making use of parallelization tools like compute shaders is

key to improving system performance. In this paper, we utilize OpenGL’s compute

shader implementation to perform such tasks at real-time rates. Most notably, we

use compute shaders to parallelize the extraction stage of one of our stroke rendering

algorithms. This is expanded upon in Section 4.2.

2.4 Terrain Features

When it comes to stylized rendering, certain aspects of a 3D environment hold more

relevance than others. When artists draw a landscape picture, they often omit small

details like grass or tree leaves, and focus on capturing more prominent features like

key object outlines or ridges. In an attempt to replicate these tendencies, stylized

7

rendering often involves defining and extracting specific features that best represent

the most visually important aspects of the terrain. Some of these features include

silhouettes, ridges, valleys, and contours. An example of some terrain features applied

to a 3D scene is shown in Figure 2.2. Silhouettes are defined by the boundary between

an object and its background; in other words, its outline. Ridges and valleys are often

used in topological formats to distinguish regions where a surface is at a minimum

or maximum height. They provide extra detail for functional purposes, but are not

always the most visually appealing, at least in an artistic sense. Contours are defined

by regions on a surface that are nearly perpendicular to the view direction. They are

similar to silhouettes, but also include regions where parts of the surface are occluded

by itself. Contours are one of the more popular features used to represent stroke

lines, and have been expanded upon in various ways to include other surface details.

One such expansion is “suggestive contours”, which are described in Section 3.1. In

this paper, we mainly focus on contours and suggestive contours, since they usually

produce the best results for achieving hand-drawn art styles.

8

Figure 2.2: An early iteration of our terrain model, with contours rendered
as black lines.

9

Chapter 3

RELATED WORKS

The goal of stylized rendering is primarily to achieve a 2D hand-drawn look for a

scene, using standard 3D models as input. The visual quality mainly depends on

how efficiently a method can extract and convert relevant 3D geometric data to a

2D screen-space format, and match the form that a human artist might apply to

an image. Certain aspects or features of a 3D scene typically hold more relevance

in 2D than others for recognizing shape and style, including contours, silhouettes,

suggestive contours, and shaded regions. This section will address some existing

methods for extracting these features, and representing them in a two-dimensional

format. Research on this topic ranges from specific practical applications to more

theoretical approaches.

3.1 Suggestive Contours

One of the earliest techniques for representing shape in 2D involves the extraction of

“contours”, which are defined mathematically as regions on a 3D model where the

surface normal is perpendicular to the viewing direction. Contours provide a solid

representation of object outlines, beyond a simple silhouette, though they cannot

provide detailed visuals for more complex surface features. The use of contour features

has been extended by DeCarlo et al. [9], who define the term ’suggestive contours’ as

regions of a surface that are “almost contours”. To summarize, suggestive contours are

regions that would be considered contours in an adjacent viewpoint, and they provide

much a more detailed visual representation of a surface for human perception. An

10

Figure 3.1: An example mesh with highlighted edge features. Note the
improvement in detail when adding contours, and suggestive contours. [9]

example of these features is demonstrated in Figure 3.1. Contour/suggestive contour

information can be calculated on the CPU as a precomputation phase, and then used

for stylization while rendering on the GPU. Many stylization methods stem from this

topic, and explore ways to work with silhouette outlines, contours, and suggestive

contours. Some noteworthy examples include [28], [10], and [23], all of which explore

ways to render edge features similar to or based on surface contours. Also worth noting

is research by Xu and Chen [34], which generates point-based geometry from scanned

environments. Their method extracts features from a point-based environment with

a unique set of classification algorithms, and it is distinct from the usual vertex-edge

contour approach.

3.2 Stroke Rendering

No matter which terrain features are used, extraction is only the first step. Many

papers have explored rendering methods for specific edge features, in an attempt to

create longer “stroke” lines which produce a more human-made look. Northrup et

al. [27] demonstrate a hybrid approach to outlining silhouettes, adding a few more

11

steps to earlier methods which extract contour ’edges’ and construct brush strokes

from them. This method makes use of shaders to render encoded reference data

efficiently, but relies on some CPU-side involvement to retrieve relevant edges from the

geometry. While a bit less efficient, the hybrid approach is one of the more flexible and

extendable methods for determining edges for stroke generation. Further research,

such as that of Kalnins et al. [14], has largely focused on improving methods like the

hybrid approach, to provide inter-frame coherence by preserving key feature points

across many frames. These improvements also inherently improve performance by

retaining calculated data from previous frames, rather than constantly recomputing.

Aside from purely screen-space alternatives, the construction of strokes and their

placement in 3D space has been a subject of interest in stylized rendering as well.

Some methods take an artist-focused approach, like that of Kalnins et al. [15], who

implement a method for interactively applying strokes directly to the surface of 3D

models. Methods like these focus on maintaining coherence across the surface of

objects, but rely on users to place strokes and textures accurately. Other methods

including [20], [27], and [18] are generally more concerned with synthesizing brush

strokes in screen-space, after relevant features and contours have been extracted.

These techniques are less reliant on user input, and can be customized by revealing

specific parameters for editing. An excellent survey of modern surface-based stylized

rendering techniques is provided by Lawonn et al. [22].

3.3 Painterly Rendering

One popular method for obtaining artistic frames is called “painterly rendering”. This

method is originally described by Barbara J. Meier for Walt Disney Animation [26],

and involves painting several brush strokes across a frame, with colors and directions

12

Figure 3.2: A model of Mt. Rainer, rendered using a painterly style. [4]

arranged according to scene geometry. Painterly rendering simulates human drawing

patterns somewhat, by placing individual brush strokes to form an abstract represen-

tation of a scene. Further research, including [11] and [4], has extended this method

to allow for more user-customization and different scene types, including terrain en-

vironments. Unfortunately, painterly rendering is not as generalizable to styles which

rely on few discrete stroke elements, like pencil sketches or ink-silhouette painting. In

this paper, we do not focus on painterly methods specifically, but many of the ways

in which painterly methods represent strokes are applicable nonetheless. An example

of terrain rendered with a painterly technique is shown in Figure 3.2.

13

Figure 3.3: An example of real-time hatch textures, generated by overlay-
ing lighter tones on top of themselves at varying intervals. [29]

3.4 Stylized Texturing

Another technique commonly used to achieve stylized 2D output is the use of surface

texturing methods. Textures can be provided in many forms, and can directly contain

hand-drawn artifacts which contribute to stylization, if mapped properly. As an early

example, Praun et al. [29] utilize a specialized texturing method to apply cross-

hatching to shaded regions. This method generates hatching textures with some

variation, and blends corresponding densities to essentially ’stack’ the hatch marks in

regions that should be darker. This hatching method is demonstrated in Figure 3.3.

Unfortunately, the problem of mapping the texture still exists, and basic mipmapping

can sometimes cause issues for certain textures and models. Benard et al. [7] directly

address this problem by using frequency adjustments to dynamically scale and shift

textures depending on relation to the scene camera. In short, the method exploits

humans’ inability to perceive certain visual shifts to maintain texture coherence at

any distance. In this paper we combine these two technologies to achieve real-time

hatching that dynamic sizes itself based on view distance. This is discussed in detail

in Section 4.4.

14

Figure 3.4: An example of toon shading, applied with various toon tex-
tures, defined in [2].

3.5 Color & Shading

In addition to producing discrete elements for stylization, like brush strokes or hatch

lines, continuous shading and colorization are important for maintaining coherence

and creative freedom. Countless research papers have discussed shading methods in

detail, though the subjective subject matter can make it difficult to produce measur-

able results. Research by Sloan et al. and Bousseau et al. discuss shading methods

relevant to hand-drawn art styles. [31, 5] These include methods for illumination

extraction and morphology comprehension to achieve such styles as lavis watercolor

and oil painting. Another commonplace technique is to utilize cell-shading or “toon

shading” to produce cartoonish styles. Barla et al. [2] provide an excellent example of

this, shown in Figure 3.4 with extensions for multi-color gradients and backlighting.

15

Chapter 4

IMPLEMENTATION

In this chapter, we present our system for rendering large-scale terrain environments

in a stylized manner, specifically targeting pen and ink renderings. To implement

our system, we use the OpenGL API alongside a variety of helper libraries including

trimesh, GLFW, and imgui. [1, 8, 30] The final product makes use of standard GPU

functionality for rendering and computation.

Our system includes algorithms for stroke-based rendering of edge features, surface

hatching, and tree rendering. Stroke rendering refers to the representation of discrete

brush or pen strokes across certain key areas of the terrain. Strokes can improve the

hand-drawn aesthetic, since they produce similar visuals to what artists create when

drawing or painting in 2D. To accomplish this effect, we implement two different

methods, each with its own benefits and limitations. For sake of simplicity, we call

these two methods curvature-based strokes and hybrid overlay strokes. Each of these

techniques are demonstrated by the final system, and provide different style options

for users to select from.

In addition to stroke rendering, we utilize texture-based hatch-line shading to provide

additional detail to the scene, and improve the hand-drawn look of rendered frames.

Hatching replaces smooth surface tones with discrete lines, which makes it look like

someone drew directly onto each surface to represent shaded regions. Finally, we

render tree objects across the terrain with simplified versions of the aforementioned

technologies for stroke and hatch rendering. In the following sections we outline each

of these technologies and summarize their contribution to the final product.

16

4.1 Curvature-based Strokes

The first type of stroke rendering method relies on precomputed curvature values for

the terrain mesh. Specifically, we precompute principle directions, curvature, and

the derivative of curvature for the entire visible surface at load time. This process

is automatically performed by the trimesh library, following the algorithms defined

in [9]. This curvature information can be analyzed on the GPU to determine if a

given fragment is a contour or suggestive contour, for any renderable point on the

terrain mesh. For both contours and suggestive contours, a ’feature size’ parameter

can be provided to modulate the threshold between contour and non-contour points.

Rendering either of these stroke types can be done by simply coloring the contour

and suggestive contour fragments a solid color, but this is fairly restrictive to users in

terms of creative freedom. Ideally, we would like to be able to parameterize strokes

in some way, so that users can customize contour lines length-wise or apply textures.

4.1.1 Parameterizing Orientation

To accomplish this, we introduce a way to estimate directionality and stroke-width

for contours entirely within a fragment shader. For a given fragment, the available

surface normal is converted to screen-space using available transform matrices. Since

contours usually occur in regions where the normal is perpendicular to the view di-

rection, we can use the screen-space normal to approximate the direction of a contour

stroke. A perpendicular direction vector is obtained by performing the cross prod-

uct between this normal and the camera direction. This direction vector can then

define a texture coordinate space along the stroke, where the ‘U’ coordinate follows

the primary vector direction, and the ‘V’ coordinate follows the screen-space normal

17

Figure 4.1: Curvature-based strokes utilize the screen-space fragment nor-
mal (Ns) and its perpendicular counterpart (Ds) to approximate stroke
directionality.

direction. An example of this is shown in Figure 4.2. In this way, we parameterize

the “stroke-space” in both the length and width dimensions.

4.1.2 Stylization Options

Using arbitrary scaling factors for each dimension, a user-generated texture can then

be applied to provide more customizability to contour strokes. This method is only

an estimation of a true texture-space, and is distinctively non-linear, though in most

cases it comes close enough to be reasonably coherent. This can be seen in Figure 4.3.

18

Figure 4.2: Once the directionality of a stroke has been determined, the
space can be roughly parameterized along the length and width of a per-
ceived stroke. In this example, U represents the horizontal stroke dimen-
sion, and V represents the vertical stroke dimension.

19

Figure 4.3: Two examples of stylized curvature-based strokes. The tex-
tures beneath each image are the same used in the images above them.
While some warping is visible, the textures mostly face the direction of
the perceived strokes.

Other stylization aside from textures can be used as well, including alpha tapering

along the width, or periodic warping. While this method is spatially and temporally

coherent, the representation does not provide any information on stroke endpoints,

since it only approximates directionality on a per-fragment basis. As a result, this

method is limited to the use of stroke textures that are tileable in both directions,

since obtaining an accurate linear representation of stroke length and width is difficult

without more information. In addition, suggestive contours cannot use this method

since their directionality does not correlate with surface normals in the same way. An

example scene using curvature-based strokes is shown in Figure 4.4.

20

Figure 4.4: Contour strokes are rendered in this scene as solid black re-
gions, with slight alpha tapering along the edges. Curvature-based strokes
are spatially and temporally coherent, but are limited in what options they
provide for stylization.

21

4.2 Hybrid Overlay Strokes

Curvature-based strokes provide a solid baseline for representing coherent edge fea-

tures, but they still lack customizability in some areas. We don’t have an under-

standing of stroke endpoints and the rough parameterization is only suitable for tilable

textures and approximating directionality. The second type of stroke rendering imple-

mented in this paper resolves these issues by providing a fully linearly-parameterized,

texturable stroke mesh to work with. However, it is a much more involved process

with a higher performance impact. This method includes a hybrid approach that com-

bines various screen-space and world-space operations to properly orient and display

discrete stroke lines in the scene. This process involves three steps:

• Feature Extraction

• Edge Chaining

• Rendering and Stylization

In summary, contour edges are extracted from the scene via multiple shader passes,

then connected together to form coherent chains, and finally rendered to the screen

with various stylizations. In the following sections, we describe each of these stages

in detail, along with our methodology for improving temporal coherence.

4.2.1 ID Reference Image

Feature extraction is the first stage of the hybrid overlay stroke system, and involves

finding specific edges and contours of the visible surface to pass down the pipeline.

To do this, we extend [20] and [27] to utilize the concept of an ID reference image.

22

Specifically, we render each “contour-edge” as a single line segment with a color that

uniquely identifies the edge. For our implementation, we represent the ID using

a combination of the edge’s two end-point positions, encoded into a 32-bit RGBA

value. Since no two edges share exactly the same two endpoints, every ID is unique.

In this context, a “contour-edge” is defined as any visible edge which joins a front-

facing edge with a back-facing edge. This pass is performed using a geometry shader,

with a pre-rendered depth map used to enforce occlusion, so only visible portions

of an edge are rendered. In addition, this reference image can be rendered at a

lower resolution than the other passes without losing much accuracy. We obtain a

significant performance increase for large-scale scenes by reducing the resolution of

the ID image to 480x270 pixels. For a full rendered scene at 1920x1080 pixels, using

a 480x270 ID image reduces computational complexity for this stage by a factor of

16, and can result in a framerate increase anywhere between 10 to 30 FPS depending

on the scene. An example ID image mock-up can be seen in Figure 4.5.

4.2.2 Feature Extraction

Rendering the ID reference image allows each contour edge to be converted into

screen-space via the rendering process. Next, each edge must be extracted from this

ID image into a usable list of edges. This task can be extremely slow sequentially,

so we use an OpenGL compute shader to parallelize the process. For each pixel in

the scene that has a color value greater than zero, we encode the ID as a 32-bit

integer and append it to a list of edges. This list gets passed to the CPU afterwards,

and each non-duplicate edge is decoded and prepared for the next stage. At the end

of this extraction stage we have a list of edges, represented by their maximum and

minimum screen-space positions. We could render each edge as its own stroke line,

23

Figure 4.5: A sample from a 480x270 ID reference image, used for edge
extraction. Each edge is rendered as a unique RGBA value representing
its ID. Colors have been exaggerated for demonstration purposes.

24

but in practice this results in poor visual coherence, so we employ a complex chaining

algorithm, described in the next section.

4.2.3 Chaining Algorithm

Rendering each edge as its own stroke produces a bunch of small inconsistent seg-

ments. Edges must be joined together end-to-end in order to form longer chains that

are coherent across all ranges. For this, we implement a chaining algorithm which

selects candidate edges that meet some criteria to be chained together in a doubly-

linked list format. We traverse the entire list of available edges, and scan nearby pixel

locations for each edge to find potential chaining candidates. Specifically, we select a

neighboring edge for chaining if it is within some specified distance D, has an angular

difference less than A, is not overlapping the selected edge, and has not already been

joined to another edge. If these criteria are met by multiple neighbors, we select the

neighboring edge that minimizes the distance and angle difference. For our final im-

plementation, we select a value of 4.0 pixels for D and 60 degrees for A. The diagram

in Figure 4.6 demonstrates this process. Below is a pseudo-code implementation of

the candidate selection process.

25

Figure 4.6: A diagram depicting chaining constraints. A denotes a user-
specified angle constraint for chaining, and D denotes a user-specified dis-
tance constraint in pixels.

26

for each edge E in l i s t o f edges

{

for each ne ighbor ing edge N nearby

{

i f (d i s t anc e (E,N) < D &&

angle (E,N) < A &&

E & N not over lapp ing)

{

cha in edge s (E,N)

} } }

Once a chaining candidate is chosen for a given edge, the two edges are linked together

in a doubly-linked list structure, and the four endpoints (2 from each edge) are stored

in a list based on the order of chaining. Each generated chain is appended to a list of

all chains, which gets passed to the draw call at render time. If one edge is already

part of a chain, the other will simply be linked to the existing structure, and its two

endpoints will be added. If both edges are part of a chain, the two chain structures

will be merged into one, replacing the existing chains. Finally, once all edges have

been matched with any suitable chaining candidates, any edge which has found no

partners is converted to a standalone chain and added to the list. At the end of this

stage, we have converted all extracted contour edges to longer chains which provide

a more stroke-like appearance.

4.2.4 Stroke Mesh Construction

The input to the draw call for stroke mesh objects is a list of chains, which each contain

their own list of segment endpoints. In practice, each of these vertices generally define

one vertex of the stroke mesh. However, we need to provide the vertex chain with

27

Figure 4.7: An example of how triangle strips can be formed from the list
of vertices for a given chain (right). The other images demonstrate some
example stylizations that can be applied to the strips using a shader. [27]

some width to be able to render it with stylizations. To do this, we apply a few

modifications to the structure and smooth out the transitions between edges.

First, we define a stroke direction for each vertex in the list, as the difference between

the current vertex in the chain and the next. Triangle strips are then formed by

extending each vertex outward along the direction perpendicular to this stroke direc-

tion. In this way, two new vertices can be generated for each existing vertex in the

chain, on either sides of the stroke. This expansion is shown in Figure 4.7. The width

of each stroke mesh is defined by the user, and the length is defined by the sum of

the distances between each vertex and its following counterpart in the chain. We also

track the relative lengths of each segment in the stroke, to more evenly parameterize

the surface lengthwise. As a final addition, we round off the endpoints of each stroke

through the addition of six vertices; three at each end. The vertices are arranged in

a triangle pattern, shown in Figure 4.8, to create a rounded edge for each stroke.

28

Figure 4.8: Three vertices are added to the ends of each stroke to create
a rounded edge. The red labeled points indicate added vertices.

29

4.2.5 Stroke Rendering

Rendering the stroke mesh is fairly straightforward after it is appropriately generated.

For simplicity, each pixel coordinate is converted to a world-space position, with a

depth of zero to ensure that the stroke renders in front of all other objects in the

scene. These stroke meshes exist in the same space as the terrain model itself, but

are close enough to the camera that they will always appear as if they are overlayed

on top of the scene, like brush strokes on the screen. Since the mesh surface is fully

parameterized along the length and width, various shader techniques can be used to

stylize the strokes from the GPU. In our implementation we demonstrate a simple

alpha and width taper at the ends of each stroke, and apply pre-made stroke textures

to add detail. This rendering method is heavily based off of [27], and some examples

of possible stylizations are shown in Figure 4.7.

4.3 Temporal Coherence

Feature extraction occurs on a frame-by-frame basis, and features such as contour

edges can often be present in one frame but absent or significantly altered in the next.

This results in a considerable amount of visual noise when a user moves throughout

the scene while hybrid overlay strokes are enabled. To address this, we implement

a few techniques to help mask the noise, and smooth transitions between multiple

frames. Further exploration on this topic is discussed in Section 6.

4.3.1 Motion Field

To help transition stroke vertices between frames, we implement a screen-space motion

field that emulates optical flow. In our scene, the only significantly moving object

30

is the camera, so mapping ego-motion is sufficient. Trees have slight movement do

to animation as well, but they do not utilize hybrid-overlay strokes, so temporal

coherence is not a concern for them. This mapping is done by tracking view matrices

from previous frames and using them to determine the change in position between

pixels over time. Specifically, we determine a screen-space motion vector v for a

given pixel by transforming the current world-space position at that pixel by both

the current view matrix V and the old view matrix Vo. The two resulting vectors

are then converted into screen-space and subtracted from each other to obtain v. An

example depiction of a motion field is presented in Figure 4.9. For our system, we

use the view matrix from ten frames prior for Vo, and we only perform a full stroke

update every tenth frame. This does not completely remove visual noise, since there

are new features being introduced and removed on update; however, it does reduce

the frequency of flickering and other visual artifacts.

4.3.2 Adjustments to Smooth Motion Field

The motion field produced by this method is not perfect, especially when dealing with

edges that become occluded or drastically change. For example, when the camera

rotates too quickly, motion vectors have a tendency to overcompensate and have too

great a magnitude. To help reduce this effect, our implementation detects camera

rotation above a certain threshold and performs a full stroke update anytime it is

too high. Thankfully, visual noise produced by the increased update frequency is

largely unnoticeable in situations where the view is changing quickly. In addition,

motion vector computations will produce incorrect values for pixels which do not

contain the primary terrain surface (i.e. pixels which render the horizon/sky). We

resolve this by supplying a large box mesh around the scene which provides world-

space coordinates to the motion field process, but remains invisible during the final

31

Figure 4.9: A depiction of a motion-field used to improve temporal co-
herence. Each white line representation the direction that the terrain has
moved in the last ten frames

32

render pass. This addition helps keep silhouette edges from growing to infinity or

disappearing completely.

4.4 Hatching

Aside from stroke rendering methods, surface texturing can play a large role in de-

picting stylized environments. A useful tool for achieving a hand-drawn look via line

shading is a texturing technique called “hatching”. The idea is to provide surface

detail by applying hatch marks to a surface, much like how an artist might shade

a region by crosshatching. The hatch lines can be used to replace or supplement

continuous shading methods, providing a more natural look. The baseline for this

technology stems from [29], and has been improved by adapting the Dynamic Solids

technology from [7].

4.4.1 Dynamic Blending

Before running the program, multiple hatch textures can be provided by the user,

each with a different hatch mark density. These textures can be produced using a

separate program, user generated, or obtained by overlaying lighter textures on top

of each other with some arbitrary offset. Textures meant to represent darker shades

can be overlayed on top of each other more times to achieve a more dense distribution

of lines. At runtime, the textures are dynamically blended together by interpolating

between them; this is modulated by the diffuse light level, or “tone”, at a given surface

point. Using only the hatching textures for shading can create a jarring look, so the

blended hatch textures are used in conjunction with traditional shading methods to

smooth out the appearance of terrain surfaces.

33

Figure 4.10: An example of hatching with basic mipmapping. Note that
surfaces further from the camera become noisy and lose distinct stroke-line
visuals

4.4.2 Dynamic Solid Textures

One issue that arises when using textures that display discrete elements, such as hatch

lines, is a gradual loss of detail as scene depth increases. Smaller mipmap levels do

not have enough space to represent distinct lines, so textures gradually fade to a solid

color as the range increases. In addition, all stroke and hatch lines should ideally be of

similar width, regardless of their distance to the camera, to more realistically portray

a hand-drawn visual style. Traditional mipmaps are not sufficient for conserving these

discrete visual elements, so we turn to another approach.

The Dynamic Solid method outlined in [7] provides a solution to all of these issues.

In summary, the dynamic solids method utilizes 3D textures and specific frequency

shifts to provide an “infinite zoom mechanism.” Two-dimensional hatch textures can

easily be pre-loaded into a 3D format by duplicating the image for each ’layer’ in

34

Figure 4.11: An example of a dynamic solid texture with a checkerboard
pattern. Each consecutive image shows a higher level of texture scaling
that can be modulated using specialized blending weights. The rightmost
image shows the combined dynamic solid texture, to be filtered and dis-
played on the surface at runtime. [7]

the 3D structure. An example of how textures can be stored and blended using this

method is shown in Figure 4.11. Then at runtime, the world space position (x, y, z)

of a given surface point can be used to index into the dynamic solid texture using

specialized blending weights to obtain the pixel color. This provides accurate, depth-

modulated texture scaling that better approximates how hatch lines would look on a

2D surface. For the discrete hatch line textures, a binary filter is applied after using

the dynamic solid method, to prevent the lines from blurring together. Examples of

scenes with and without the dynamic solid implementation are shown in Figures 4.10

and 4.12, respectively.

4.5 Trees

Modern open-world games typically include many different types of objects in ad-

dition to standard terrain models. To more accurately portray a scene as it would

be in modern entertainment, we render a number of procedurally placed tree mod-

els alongside our standard terrain mesh. These trees make use of some of the same

technologies discussed in previous sections, while also utilizing a few specific optimiza-

tions. Specifically, the various tree models are rendered with solid black contour-based

silhouettes and light hatch textures applied in shaded areas. Because the tree models

are relatively small and have a medium-sized vertex count, we determined that basic

35

Figure 4.12: An example of hatching with dynamic solid textures. Note
that stroke lines have the same size no matter how far away the surface is

contour outlines are the best option, both visually and with respect to performance.

For similar reasons, only one shade of hatch marks are applied, based on the diffuse

coefficient at each surface point. In order to include many trees in the scene, we em-

ploy a billboarding strategy to reduce model complexity at long range. This involves

replacing tree meshes beyond a certain depth with a simple quad structure that al-

ways faces the camera and renders a precaptured image of the tree in question. We

also provide basic animation to tree leaves, in the form of slight vertical & horizontal

oscillation, to add some motion to the scene.

36

Figure 4.13: A closeup of some tree models, rendered with basic hatch
shading and contour outlines.

37

Chapter 5

VALIDATION & RESULTS

This paper outlines a framework for stylized rending in real-time that combines mul-

tiple existing methods with some novel techniques. Our implementation provides

improved performance and creative flexibility compared to previous methods, due to

the adjustments described in previous sections. Additionally, we showcase multiple

options for stroke rendering which provide varying degrees of customizability and

performance impact. In this section, we describe our results in detail, including the

various visual and performance-focused validation methods that we used.

5.1 Performance Results

A major focus of this project was to achieve stylized rendering in real-time, specifically

for large-scale environments. As described in previous sections, multiple techniques

were used to improve performance for scenes with a large vertex count, in order to

maintain interactive frame rates. Previous papers on this topic vary significantly in

terms of available GPU power and the hardware that is used for testing. Some of

the papers that we use as a foundation, including [29] and [27], are much older and

bottlenecked by the architectures of their time. For the most part, our implementation

significantly improves upon the performance of previous methods, primarily via the

use of compute shaders and adjustments to stroke and hatch rendering algorithms.

All of our testing was performed on medium-range commercial hardware, and our

timing results were recorded using an AMD Ryzen 5 3600X CPU, and an NVIDIA

GeForce 1050Ti GPU. We tested multiple styles and camera angles using both the

38

(a) Wide angle shot used for performance
testing (shown with GN style).

(b) Low angle shot used for performance
testing (shown with BW style).

Figure 5.1: Various terrain models & camera angles that were used to
compare performance across multiple selected styles.

curvature-based and hybrid-overlay stroke rendering techniques, in order to evaluate

the impact of each. Tables 5.1 and 5.2 show the average frame timings across multiple

tested scenes, along with the corresponding frame rates. The black-and-white, green

terrain, and orange styles are referred to here as “BW Style”, “GN Style”, and “OR

Style”, respectively. In addition, a baseline render is provided via a standard Phong

shading implementation. Figure 5.1 shows some of the scenes used for testing.

As demonstrated by the data, our rendering system performs better when less terrain

is visible. This is a common pattern in computer graphics due to view-frustum culling

preventing non-visible data from being processed by the GPU, thus saving frame-

time. However, it’s likely that our implementation for stroke rendering exacerbates

this problem. As the number of edges that are on-screen increases, the amount of

work that needs to be performed by the chaining algorithm increases, especially for

edges that are close to each other in screen space. As a result, wider-angle camera

shots impact performance more heavily because more edges are visible and the edges

are smaller and closer together on the screen. Curvature-based stroke methods do not

have this restriction because they do not depend on the number of edges on-screen.

Each method was tested against three scenes, two with a 90,000 vertex model, and

one with a 275,000 vertex model. The two scenes using model #1 are differentiated

39

Table 5.1: Performance results for various stylized rendering methods,
across different scene sizes and camera positions. Scenes represented in
this table all utilized curvature-based stroke rendering.

Curvature-Based Strokes

Model #1 Wide Angle Shot Avg Frame Time (ms) Avg Frame Rate (FPS)
Phong Shading (Baseline) 7.92 126.26
BW Style 14.65 68.26
GN Style 12.81 78.06
OR Style 14.65 68.26

Model #1 Low Angle Shot Avg Frame Time (ms) Avg Frame Rate (FPS)
Phong Shading (Baseline) 5.73 174.52
BW Style 8.67 115.34
GN Style 7.44 134.41
OR Style 8.71 114.81

Model #2 Mountain Shot Avg Frame Time (ms) Avg Frame Rate (FPS)
Phong Shading (Baseline) 16.53 60.50
BW Style 20.42 48.97
GN Style 23.34 42.84
OR Style 20.57 48.61

Table 5.2: Performance results for various stylized rendering methods,
across different scene sizes and camera positions. Scenes represented in
this table all utilized hybrid-overlay stroke rendering.

Hybrid-Overlay Strokes

Model #1 Wide Angle Shot Avg Frame Time (ms) Avg Frame Rate (FPS)

Phong Shading (Baseline) 7.92 126.26
BW Style 25.72 38.88
GN Style 23.65 42.28
OR Style 25.37 39.42

Model #1 Low Angle Shot Avg Frame Time (ms) Avg Frame Rate (FPS)

Phong Shading (Baseline) 5.73 174.52
BW Style 16.71 59.84
GN Style 15.51 64.47
OR Style 16.53 60.49

Model #2 Mountain Shot Avg Frame Time (ms) Avg Frame Rate (FPS)

Phong Shading (Baseline) 16.53 60.50
BW Style 36.97 27.05
GN Style 41.25 24.24
OR Style 37.97 26.34

40

by the breadth of the camera shot, and consequently the amount of visible terrain in

terms of surface area. The lowest observed frame rate for Model #1 was around 40FPS

using the chaining-based stroke rendering, which lines up with the “wide-angle shot”

trial in Figure 8. Model #2 was largely used as a stress-test, and saw significantly

lower frame rates overall; however the difference between our implementation and the

baseline rendering method was comparable.

The impact of the different stroke-rendering styles varies depending on the scene,

but as expected the hybrid-overlay (or chaining) method performs worse overall. For

model #1, the curvature-based method obtained around 30 more frames per second

than the chaining method, equivalent to around 10ms of additional frame time. Sim-

ilarly, the larger model #2 saved around 15ms of frame time by using the curvature-

based method, likely due to the increased number of edges present in the scene. These

results are indicative of the increased complexity of the chaining algorithm used by

the hybrid-overlay method, though both methods still demonstrate interactive frame

rates when rendering modest amounts of geometry.

5.2 Visual Results

Visually, the topic of stylized rendering is inherently subjective, as it deals with

human-borne concepts including style and visual appeal. As a result, proper valida-

tion of visual output is tricky and often done purely through demonstration of output

frames. However, for this project we also employ a short user study to provide basic

confirmation of our visual results and gauge comparability to hand-drawn art through

a human lens. The following screenshots were rendered using various style parameters

at a resolution of approximately 1920x1080. Figures 5.2 and 5.3 show a few different

41

Figure 5.2: A cartoonish style with a custom skybox.

styles that utilize hatching and curvature-based stroke rendering. Figures 5.4, 5.5,

5.6, and 5.7 demonstrate other style options that utilize hybrid-overlay strokes.

5.3 User Study

While evaluation of stylized visuals is inherently subjective, we performed a short

user study to gather general feedback on our results, and allow us to compare a few

different style options. We collected around 30 responses across two versions of a

feedback form. Both versions contained the same 4 styles presented via short video

clips, each with the same follow-up questions. The only difference between the two

versions was that one used curvature-based strokes, and the other used hybrid-overlay

strokes to render contours in the scene. These versions were distributed to different

user groups, so that we could independently evaluate differences between the two

stroke rendering technologies. Figures 5.8, 5.9, and 5.10 show results from our study

regarding general visual appeal for various styles, in which users were expected to

42

Figure 5.3: A black and white sketch-like style with a closeup on some
trees.

Figure 5.4: A black and white sketch-like style with a wide-angle shot. This
version showcases hybrid-overlay strokes with a textures stroke mesh.

43

Figure 5.5: A style using terrain textures with modified contrast channels.

Figure 5.6: An orange style using heavy cell-shading, overlay strokes, and
an overlay border.

44

Figure 5.7: A watercolor-like style created by warping texture coordinates.

rate each scene based on overall aesthetic, color balance, and clarity. Figures 5.11,

5.12, and 5.13 show results regarding how well users thought the style achieved a

hand-drawn or 2D look.

Overall, users who participated in our study mostly enjoyed the styles presented and

thought that each style had at least a decent degree of comparability to hand-drawn

art styles. This is evidenced by the fact that user responses for hand-drawn ap-

pearance was generally higher for the stylized scenes, than it was for the baseline

Phong shaded scene. Additionally, our user study revealed some interesting pat-

terns between the different styles and rendering technologies. Across the board, the

styles with hybrid-overlay strokes scored lower than the styles with curvature-based

strokes, both in terms of hand-drawn aesthetic and general appeal. This was partially

expected due to the fact that hybrid-overlay strokes are visually noisy and don’t have

the same level of temporal coherence as curvature-based strokes. The only significant

45

(a) An example frame of the black-and-white style video shown to users. .

(b) User results using the hybrid-overlay stroke rendering method.

(c) User results using the curvature-based stroke rendering method.

Figure 5.8: User study results regarding general aesthetic of the black-
and-white style. Users were prompted with: “Please evaluate the scene
demonstrated in this video on the following qualities”

46

(a) An example frame of the green-terrain style video shown to users. .

(b) User results using the hybrid-overlay stroke rendering method.

(c) User results using the curvature-based stroke rendering method.

Figure 5.9: User study results regarding general aesthetic of the green-
terrain style. Users were prompted with: “Please evaluate the scene
demonstrated in this video on the following qualities”

47

(a) An example frame of the orange style video shown to users. .

(b) User results using the hybrid-overlay stroke rendering method.

(c) User results using the curvature-based stroke rendering method.

Figure 5.10: User study results regarding general aesthetic of the orange
style. Users were prompted with: “Please evaluate the scene demonstrated
in this video on the following qualities”

48

(a) User results using the hybrid-overlay stroke rendering method.

(b) User results using the curvature-based stroke rendering method.

Figure 5.11: User study results regarding how well the black-and-white
style achieved a “hand-drawn” look. Users were prompted with: “How
well do you think this scene simulates a hand-drawn or 2D art style?”

49

(a) User results using the hybrid-overlay stroke rendering method.

(b) User results using the curvature-based stroke rendering method.

Figure 5.12: User study results regarding how well the green-terrain style
achieved a “hand-drawn” look. Users were prompted with: “How well do
you think this scene simulates a hand-drawn or 2D art style?”

50

(a) User results using the hybrid-overlay stroke rendering method.

(b) User results using the curvature-based stroke rendering method.

Figure 5.13: User study results regarding how well the orange style
achieved a “hand-drawn” look. Users were prompted with: “How well
do you think this scene simulates a hand-drawn or 2D art style?”

51

exception to this pattern was for the orange style, where hybrid-overlay stroke ren-

dering scored better in relation to its hand-drawn appearance. It is difficult to say

whether this pattern is influenced by color palette or other aspects intrinsic to the

orange-style scene; however, it’s worth noting that some styles may lend themselves

better to different stroke rendering methods.

52

Chapter 6

FUTURE WORK

Much of the implementation described in this paper is focused on obtaining unique

stylized visuals while maintaining real-time performance. Modern CPUs and GPUs

are improving significantly in terms of manageable workload and real-time perfor-

mance, and this may open future options for more complex rendering algorithms to

be used in this field. This includes using advanced curve-fitting algorithms to perform

edge chaining, which currently costs too much in the way of computational resources.

Similarly, it may be interesting to explore rendering methods that employ machine

learning, including style-transfer networks which map certain art styles to arbitrary

frames.

6.1 Hatching Limitations

The dynamic solid method for hatching used in this paper is limited in the kinds

of textures that can be used. Often times textures with distinct curved lines or

images become blurry when accessed from a dynamic solid, and they can sometimes

lose important visual features as a result. Additionally, hatch textures can only be

applied in a few global directions, due to the requirement of dynamic solids that

inputs be continuous in world-space. Our implementation is able to represent a

selection of hatch textures that add hand-drawn detail to the scene, but it would

be interesting to see how improvements to the dynamic solid method might enable

more flexibility. Some possible extensions to this technology include integration with

53

patch-based surface texturing, advanced surface interpolation methods, and screen-

space alternatives.

Additionally, our implementation doesn’t focus much on the creation of hatch-line

textures, merely their placement in the scene. It might be beneficial to provide

users with an easier way to generate novel hatch-line textures, including automatic

generation of various shades or tones. In Section 4 we describe one method for

overlaying hatch textures on top of each other to obtain darker shades, however a

more complex blending method might provide coherence for a wider range of texture

styles, such as stipple textures or high-detail images.

6.2 Coherence Limitations

The most noticeable limitation of this work is the visual noise produced by the overlay

stroke rendering algorithm. As discussed in Section 4.3, temporal coherence is difficult

to achieve in a setting where features change significantly between frames. We imple-

ment a few methods for masking noise, but a more comprehensive implementation of

optical flow would likely help significantly. Some past papers, such as [24], introduce

a more complex algorithm for temporally coherent stroke rendering; however, some

considerations need to be made for integration with large-scale environments and

performance limitations, as is the focus of this paper. In general, stylized rendering

methods that have better temporal coherence often sacrifice customizability or per-

formance, often due to the necessary shift towards sequential screen-space algorithms.

We hope to see future works explore this area in more detail with respect to real-time

rendering.

Another avenue for future exploration could be using intermediate representations for

stroke-lines, such as parameterized curves, to more accurately track them in world

54

space. This idea is used in [15] to allow users to interactively place stroke lines on

the surface of an object. However, this may be extended to automatic stroke line

placement. Representing strokes as curves in world-space may allow the renderer to

treat them as normal objects, and present them coherently over time. The challenge

of determining when and how to update stroke lines will still remain, but perhaps it

would be an easier task with intermediate stroke representations. Time constraints

prevented us from exploring this topic in-depth, but we believe it could be a worth-

while endeavor for future research.

55

Chapter 7

CONCLUSION

In this paper we demonstrate an implementation of stylized rendering for large-scale

environments, using various stroke rendering and shading techniques. Our imple-

mentation combines multiple existing technologies into a unified system for real-time

rendering, including two different stroke rendering algorithms, hatch-line texturing

with dynamic solids, and custom shading options. By using compute shaders and

an improved chaining algorithm, we demonstrate improved performance over existing

methods for stroke rendering, achieving interactive frame rates ranging from 40-70

FPS for average-sized scenes. In addition, we analyzed the visuals produced by our

algorithm using a short user study, which highlighted some interesting patterns and

differences between various styles and rendering technologies. Our hybrid-overlay

strokes produced more distracting visuals than curvature-based strokes, likely due to

a lack of temporal coherence, though they provide more flexibility in terms of cre-

ativity stylization options. Overall, we believe our system acts as an example of how

stylized rendering systems can combine multiple complex technologies for feature ex-

traction and representation, all while maintaining real-time frame rates for interactive

entertainment applications. Art and style in computer graphics is an evolving field,

and we hope to see such works expanded as related industries move forward.

56

BIBLIOGRAPHY

[1] glfw/glfw. https://github.com/glfw/glfw, June 2021. original-date:

2013-04-18T15:24:53Z.

[2] P. Barla, J. Thollot, and L. Markosian. X-toon: an extended toon shader. In

Proceedings of the 4th international symposium on Non-photorealistic

animation and rendering, NPAR ’06, pages 127–132, New York, NY, USA,

June 2006. Association for Computing Machinery.

[3] L. Bavoil and K. Myers. Order independent transparency with dual depth

peeling. Technical report, 2008.

[4] S. Bhattacharjee and P. Narayanan. Real-Time Painterly Rendering of

Terrains. In 2008 Sixth Indian Conference on Computer Vision, Graphics

Image Processing, pages 568–575, Dec. 2008.

[5] A. Bousseau, M. Kaplan, J. Thollot, and F. X. Sillion. Interactive watercolor

rendering with temporal coherence and abstraction. In Proceedings of the

4th international symposium on Non-photorealistic animation and

rendering, NPAR ’06, pages 141–149, New York, NY, USA, June 2006.

Association for Computing Machinery.

[6] P. Bénard, A. Bousseau, and J. Thollot. THOLLOT J.: Dynamic solid textures

for real-time coherent stylization. In In Proceedings of the 2009 ACM

SIGGRAPH symposium on Interactive 3D Graphics and Games, pages

121–127. ACM press.

[7] P. Bénard, A. Bousseau, and J. Thollot. Dynamic solid textures for real-time

coherent stylization. In Proceedings of the 2009 symposium on Interactive

57

https://github.com/glfw/glfw

3D graphics and games - I3D ’09, page 121, Boston, Massachusetts, 2009.

ACM Press.

[8] O. Cornut. Dear Imgui. https://github.com/ocornut/imgui, June 2021.

original-date: 2014-07-21T14:29:47Z.

[9] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive

Contours for Conveying Shape. page 8, 2003.

[10] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and

D. Weiskopf. Real-time volume graphics. In ACM SIGGRAPH 2004

Course Notes, SIGGRAPH ’04, pages 29–es, New York, NY, USA, Aug.

2004. Association for Computing Machinery.

[11] A. Hertzmann. Painterly rendering with curved brush strokes of multiple sizes.

In Proceedings of the 25th annual conference on Computer graphics and

interactive techniques - SIGGRAPH ’98, pages 453–460, Not Known, 1998.

ACM Press.

[12] A. Hertzmann. A survey of stroke-based rendering. IEEE Computer Graphics

and Applications, 23(4):70–81, July 2003.

[13] T. Judd, F. Durand, and E. Adelson. Apparent ridges for line drawing. ACM

Transactions on Graphics, 26(3):19–es, July 2007.

[14] R. D. Kalnins, P. L. Davidson, L. Markosian, and A. Finkelstein. Coherent

Stylized Silhouettes. page 6.

[15] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee, P. L.

Davidson, M. Webb, J. F. Hughes, and A. Finkelstein. WYSIWYG NPR:

Drawing Strokes Directly on 3D Models. page 8.

58

https://github.com/ocornut/imgui

[16] H. Kang, S. Lee, and C. K. Chui. Coherent line drawing. In Proceedings of the

5th international symposium on Non-photorealistic animation and

rendering, NPAR ’07, pages 43–50, New York, NY, USA, Aug. 2007.

Association for Computing Machinery.

[17] H. Kang, S. Lee, and C. K. Chui. Flow-Based Image Abstraction. IEEE

Transactions on Visualization and Computer Graphics, 15(1):62–76, Jan.

2009. Conference Name: IEEE Transactions on Visualization and

Computer Graphics.

[18] H. W. Kang, C. K. Chui, and U. K. Chakraborty. A unified scheme for

adaptive stroke-based rendering. The Visual Computer, 22(9-11):814–824,

Sept. 2006.

[19] A. W. Klein, W. Li, M. M. Kazhdan, W. T. Corrêa, A. Finkelstein, and T. A.

Funkhouser. Non-photorealistic virtual environments. In Proceedings of the

27th annual conference on Computer graphics and interactive techniques -

SIGGRAPH ’00, pages 527–534, Not Known, 2000. ACM Press.

[20] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev, R. Barzel, L. S.

Holden, and J. F. Hughes. Art-based rendering of fur, grass, and trees. In

Proceedings of the 26th annual conference on Computer graphics and

interactive techniques - SIGGRAPH ’99, pages 433–438, Not Known, 1999.

ACM Press.

[21] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized rendering

techniques for scalable real-time 3D animation. In Proceedings of the first

international symposium on Non-photorealistic animation and rendering -

NPAR ’00, pages 13–20, Annecy, France, 2000. ACM Press.

59

[22] K. Lawonn, I. Viola, B. Preim, and T. Isenberg. A Survey of Surface-Based

Illustrative Rendering for Visualization: Surface-Based Illustrative

Rendering. Computer Graphics Forum, 37(6):205–234, Sept. 2018.

[23] H. Lee, S. Kwon, and S. Lee. Real-time pencil rendering. In Proceedings of the

4th international symposium on Non-photorealistic animation and

rendering, NPAR ’06, pages 37–45, New York, NY, USA, June 2006.

Association for Computing Machinery.

[24] L. Lou, L. Wang, and X. Meng. Stylized strokes for coherent line drawings.

Computational Visual Media, 1(1):79–89, Mar. 2015.

[25] L. Markosian. Art-based modeling and rendering for computer graphics. phd,

Brown University, USA, 2000. AAI9987803 ISBN-10: 0599941634.

[26] B. J. Meier. Painterly rendering for animation. In Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques -

SIGGRAPH ’96, pages 477–484, Not Known, 1996. ACM Press.

[27] J. D. Northrup and L. Markosian. Artistic silhouettes: a hybrid approach. In

Proceedings of the first international symposium on Non-photorealistic

animation and rendering - NPAR ’00, pages 31–37, Annecy, France, 2000.

ACM Press.

[28] Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines on meshes via

implicit surface fitting. In ACM SIGGRAPH 2004 Papers, SIGGRAPH

’04, pages 609–612, New York, NY, USA, Aug. 2004. Association for

Computing Machinery.

[29] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching. In

Proceedings of the 28th annual conference on Computer graphics and

60

interactive techniques - SIGGRAPH ’01, page 581, Not Known, 2001. ACM

Press.

[30] S. Rusinkiewicz. trimesh2. https://gfx.cs.princeton.edu/proj/trimesh2/.

[31] P.-p. J. Sloan, W. Martin, A. Gooch, and B. Gooch. The Lit Sphere: A Model

for Capturing NPR Shading from Art. 2001.

[32] M. Webb, E. Praun, A. Finkelstein, and H. Hoppe. Fine tone control in

hardware hatching. page 7.

[33] B. Whited, E. Daniels, M. Kaschalk, P. Osborne, and K. Odermatt.

Computer-assisted animation of line and paint in Disney’s Paperman. Aug.

2012.

[34] H. Xu and B. Chen. Stylized rendering of 3D scanned real world environments.

In Proceedings of the 3rd international symposium on Non-photorealistic

animation and rendering - NPAR ’04, page 25, Annecy, France, 2004. ACM

Press.

61

https://gfx.cs.princeton.edu/proj/trimesh2/

APPENDICES

Appendix A

VISUAL RESULTS SURVEY

62

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 1/8

Style #1 -- Black & White (https://youtu.be/dn_ziibSqro)

http://youtube.com/watch?v=dn_ziibSqro

1.

Mark only one oval per row.

2.

Mark only one oval.

Very Poorly

1 2 3 4 5 6 7 8 9 10

Very Well

Stylized Rendering Feedback Form
The intention of this survey is to evaluate the visual appeal of various stylization techniques in
a 3D scene.

Please watch the video below and respond to the questions that follow. Pay attention to
aspects of the scene which catch your eye, or look interesting/distracting. Feel free to zoom
in if it's difficult to see the video (sometimes full screen does not work). Thanks for your time!

Please evaluate the scene demonstrated in this video on the following qualities

Very Low Somewhat Low Decent Somewhat High Very High

Overall Aesthetic

Color Balance

Simplicity / Clarity

Overall Aesthetic

Color Balance

Simplicity / Clarity

How well do you think this scene simulates a hand-drawn or 2D art style?

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 2/8

3.

4.

Mark only one oval.

No, it was smooth & easy to look at

Yes, it was somewhat disorienting

Yes, it was very disorienting

5.

Stylized
Rendering
Feedback
Form - 2 of
4

Please watch the video below and respond to the questions that follow. Pay attention
to aspects of the scene which catch your eye, or look interesting/distracting. Feel free
to zoom in if it's difficult to see the video. Thanks for your time!

What aspects of the style contributed or detracted from a hand-drawn or 2D
appearance?

Did you find the style distracting or disorienting?

What is/are your favorite aspect(s) of the scene? (optional)

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 3/8

Style #2 -- Green Terrain (https://youtu.be/u15szLA0lg0)

http://youtube.com/watch?v=u15szLA0lg0

6.

Mark only one oval per row.

7.

Mark only one oval.

Very Poorly

1 2 3 4 5 6 7 8 9 10

Very Well

Please evaluate the scene demonstrated in this video on the following qualities

Very Low Somewhat Low Decent Somewhat High Very High

Overall Aesthetic

Color Balance

Simplicity / Clarity

Overall Aesthetic

Color Balance

Simplicity / Clarity

How well do you think this scene simulates a hand-drawn or 2D art-style?

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 4/8

8.

9.

Mark only one oval.

No, it was smooth & easy to look at

Yes, it was somewhat disorienting

Yes, it was very disorienting

10.

Stylized
Rendering
Feedback
Form - 3 of
4

Please watch the video below and respond to the questions that follow. Pay attention
to aspects of the scene which catch your eye, or look interesting/distracting. Feel free
to zoom in if it's difficult to see the video. Thanks for your time!

What aspects of the style contributed or detracted from a hand-drawn or 2D
appearance?

Did you find the style distracting or disorienting?

What is/are your favorite aspect(s) of the scene? (optional)

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 5/8

Style #3 -- Simple Shading (https://youtu.be/Dat5rE9EygY)

http://youtube.com/watch?v=Dat5rE9EygY

11.

Mark only one oval per row.

12.

Mark only one oval.

Very Poorly

1 2 3 4 5 6 7 8 9 10

Very Well

Please evaluate the scene demonstrated in this video on the following qualities

Very Low Somewhat Low Decent Somewhat High Very High

Overall Aesthetic

Color Balance

Simplicity / Clarity

Overall Aesthetic

Color Balance

Simplicity / Clarity

How well do you think this scene simulates a hand-drawn or 2D art style?

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 6/8

13.

14.

Mark only one oval.

No, it was smooth & easy to look at

Yes, it was somewhat disorienting

Yes, it was very disorienting

15.

Stylized
Rendering
Feedback
Form - 4 of
4

Please watch the video below and respond to the questions that follow. Pay attention
to aspects of the scene which catch your eye, or look interesting/distracting. Feel free
to zoom in if it's difficult to see the video. Thanks for your time!

What aspects of the style contributed or detracted from a hand-drawn or 2D
appearance?

Did you find the style distracting or disorienting?

What is/are your favorite aspect(s) of the scene? (optional)

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 7/8

Style #4 -- Orange/Blue Shift (https://youtu.be/WA8VdPSM3iA)

http://youtube.com/watch?v=WA8VdPSM3iA

16.

Mark only one oval per row.

17.

Mark only one oval.

Very Poorly

1 2 3 4 5 6 7 8 9 10

Very Well

Please evaluate the scene demonstrated in this video on the following qualities

Very Low Somewhat Low Decent Somewhat High Very High

Overall Aesthetic

Color Balance

Simplicity / Clarity

Overall Aesthetic

Color Balance

Simplicity / Clarity

How well do you think this scene simulates a hand-drawn or 2D art-style?

5/21/2021 Stylized Rendering Feedback Form

https://docs.google.com/forms/d/10WJW92OviRAMY7zvZHib8Om6HMLnbMwwQ54Id5YwPeI/edit 8/8

18.

19.

Mark only one oval.

No, it was smooth & easy to look at

Yes, it was somewhat disorienting

Yes, it was very disorienting

20.

This content is neither created nor endorsed by Google.

What aspects of the style contributed or detracted from a hand-drawn or 2D
appearance?

Did you find the style distracting or disorienting?

What is/are your favorite aspect(s) of the scene? (optional)

 Forms

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Photorealism vs Non-photorealism
	1.2 Modern Stylized Rendering
	1.3 Contributions

	2 Background
	2.1 World-Space Versus Screen-Space
	2.2 Level-of-Detail Techniques
	2.3 Compute Shaders
	2.4 Terrain Features

	3 Related Works
	3.1 Suggestive Contours
	3.2 Stroke Rendering
	3.3 Painterly Rendering
	3.4 Stylized Texturing
	3.5 Color & Shading

	4 Implementation
	4.1 Curvature-based Strokes
	4.1.1 Parameterizing Orientation
	4.1.2 Stylization Options

	4.2 Hybrid Overlay Strokes
	4.2.1 ID Reference Image
	4.2.2 Feature Extraction
	4.2.3 Chaining Algorithm
	4.2.4 Stroke Mesh Construction
	4.2.5 Stroke Rendering

	4.3 Temporal Coherence
	4.3.1 Motion Field
	4.3.2 Adjustments to Smooth Motion Field

	4.4 Hatching
	4.4.1 Dynamic Blending
	4.4.2 Dynamic Solid Textures

	4.5 Trees

	5 Validation & Results
	5.1 Performance Results
	5.2 Visual Results
	5.3 User Study

	6 Future Work
	6.1 Hatching Limitations
	6.2 Coherence Limitations

	7 Conclusion
	BIBLIOGRAPHY
	A Visual Results Survey

