

DSP Guitar FX Pedal

by

Stephen Rock

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

September 2021

Table of Contents

Acknowledgement

Abstract

Chapter 1: Introduction 1

Chapter 2: Project Design Engineering Requirements 3

Chapter 3: Background 5

Chapter 4: System Design 6

Chapter 5: Technology Choices and Design Approach Alternatives Considered 8

Chapter 6: Project Design Description 9

Chapter 7: Physical Construction and Integration 11

Chapter 8: Integrated System Tests and Results 12

Chapter 9: Conclusions 15

References 16

Appendix A. Senior Project Analysis 17

Appendix B. Parts List and Costs 21

Appendix C. Project Schedule 23

Appendix D. PC Layout 24

Appendix E. Program Listings 25

List of Tables

Table I: Guitar Multi-Effects Pedal Requirements and Specifications 3

Table II: DSP Guitar FX Pedal Functions (Level 0) 4

Table III: DSP Guitar FX Pedal Functions (Level 1) 6

Table IV: DSP Guitar FX Pedal Functions (Level 2) 9

Table V: Cost Estimates 21

Table VI: Bill of Materials Prototype 21

Table VII: Bill of Materials Manufacture x1000 22

Table IX: Guitar Pedal Deliverables 23

List of Figures

Figure I: DSP Guitar FX Pedal Level 0 Block Diagram 4

Figure II: DSP Guitar FX Pedal Level 1 Block Diagram 6

Figure III: DSP Guitar FX Pedal Software Level 2 Block Diagram 9

Figure IV: DSP Guitar Pedal Prototype Hardware Implementation 11

Figure V: Verification of input output waveforms through microprocessor with no effects.

Wave generation source 12

Figure VI: Verification of input output waveforms through microprocessor with no effects.

Guitar source 12

Figure VII: Verification of input output waveforms through microprocessor with clipping

effect. Wave generation source 13

Figure VIII: Verification of input output waveforms through microprocessor with clipping

effect. Guitar source 13

Figure IX: Verification of input output waveforms through microprocessor with delay

effect. Pulse generation source 14

Figure X: Verification of input output waveforms through microprocessor with delay

effect. Guitar source

 14

Figure XI: DSP Guitar FX Pedal Gantt Chart 23

Figure XII: Input Amplifier Schematic 24

Acknowledgement

Thank you to my advisor Dr. Wayne Pilkington for his guidance and support throughout the

development of this project.

Abstract

 A guitar effects (FX) pedal, also referred to as a stomp box, manipulates the electric

signal produced by guitars to produce a variety of different sounds for the application of music.

Musicians use guitar effects to produce sonically different and interesting sounds for the sake of

performance, creation, and art. Although the different types of effects are numerous, the basic

effects fall into either distortion, modulation, or delay. The use of guitar pedals allows the

musician to accurately perform desired pieces of music or compose new songs.

 The current guitar pedal market includes many effects by many manufacturers, however

many of the pedals cost over $100 and include a minimal selection of effects. Although there are

many ways to manipulate audio signals, Digital Signal Processing offers an inexpensive way to

produce multiple effects using minimal amounts of hardware. An inexpensive, good sounding

pedal that includes multiple effects would allow more musicians to use effects in their music.

1

Chapter 1: Introduction

Chapter Overview: Chapter 1 includes an introduction to the DSP Guitar FX Pedal.

Introduction

 An electric guitar produces sound through the conversion of the movement of strings into

a voltage signal. The use of signal processing circuits for the application of music followed

closely to the creation of electronic instruments. A stomp box, a unit containing knobs and

switches to adjust the effects, house the signal processing circuitry. With the developments of

digital signal processing, a single processing unit could apply multiple effects without the size or

expense of analog circuitry.

Motivation

 The purpose of this project is to create an effects pedal that will inspire musicians to play

guitar and create music. Applying effects to dry guitar signals makes the sound unique and

interesting to the listener. Customers will use this product to create and perform music. However,

many effects on the market are expensive, ill-sounding, or difficult to use, so the development of

a new FX pedal seeks to fix those issues.

Description of Potential Customer

 Potential customers include home, gigging, and recording musicians. The home musician

plays their instrument in a single location, either for personal enjoyment or learning an

instrument. The relatively stationary nature of the home musician means the gear used does not

move on regular basis. The gigging musician plays shows at venues that vary greatly from

concert halls to bars. The gigging musician performs music in front of an audience, either

performing original pieces of music or covering existing songs for artistic and entertainment

value. Recording artists record tracks in a studio setting.

Customer Needs

 Musicians compose and preform music [2], so the project must directly contribute

positively to both music composition and performance. Ideally, the sounds produced by the FX

pedal inspire musicians to create music. The other aspect of how it sounds, specifically regarding

gigging musicians, the pedal must emulate pre-existing sounds found in music.

 The cost of the FX pedal should be kept as low as possible, to give the customer the most

amount of effects, and therefore tonal adjustability, per dollar. As guitarists often use a pedal

board with multiple stomp boxes, the FX pedal must physically fit on a pedal board and work in

the middle of an effects pedal chain. The customer expects certain controls to adjust sound due to

the established market of effects pedals, so footswitches should control what effects are in use

and knobs should control the different aspects of effects. Because the musician will travel with

the FX pedal between venues, the pedal must be durable and hold up to the abuse of gigging.

2

Context

 As a stomp box, this project caters toward live sound solutions. This pedal would operate

in live music venues, such as concert halls, restaurants, amphitheaters, bars, outdoor venues, etc.

The pedal should be able to operate with a customer’s extended pedal board and guitar rig (the

equipment a guitarist uses including but not limited to a guitar, pedals, and an amplifier), to

apply other effects to the sound not included in this pedal. However, musicians still use stomp

boxes in home and recording sessions of music practice and performance, but regardless of the

location the stomp box must integrate with the rest of the guitarist rig.

Alternative Solution (Competition) and What sets this Project Apart

 Other manufacturers make guitar effects pedals, but few make multi-effect pedals that

include different kinds of effects. The leading company in DSP effects pedals is Strymon, but

each individual pedal cost greater than $300. Boss also makes reasonably priced effect pedals but

does not have multi effect pedals in the $100 range.

3

Chapter 2: Project Design Engineering Requirements

Chapter Overview: Chapter 2 includes a customer needs assessment, project requirements and

specification, and a table outlining the DSP Guitar FX Pedal requirements and specifications.

Functional and Feature Requirements

 The application of the guitar FX pedal justifies the requirements for the project. As listed

in Table I, the requirements detail normal market standard features such as 9 Volt power and

pedal board compatibility, while also including the requirements that fit the goal of the project,

making an inexpensive, multi-effects platform.

Performance Specifications
 Table I details the specifications for the DSP Guitar FX Pedal and relates each specification to a

corresponding requirement.

TABLE I

GUITAR MULTI-EFFECTS PEDAL REQUIREMENTS AND SPECIFICATIONS

Marketing

Requirements

Engineering

Specifications
Justification

6 1. Device is powered by 9 Volt DC

power supply

Most pedals currently on the market use 9

Volt DC power

1 2. Pedal includes multiple selectable

effects

Multiple effects increase flexibility and

adjustability for the desired sound

2 3. Pedal uses knobs, switches, and

footswitches to control selecting

the effects.

For live performances, the pedal must be

fully controllable without use of an external

device such as a laptop

8 4. Small processing audio effects time The pedal must react quickly to allow instant

feedback for the player and to maintain in

time for performing songs

4 5. Total pedal does not exceed the

dimensions of: # in x # in x # in

This size allows the pedal to fit on a pedal

board and allow use of other gear and effects

10 6. Pedal must hold up to abuse of

possible dropping and spilled

contaminants, along with the

normal wear and tear of use (being

stepped on)

The pedal must continually work within the

possible environments of use and withstand

to transportation

7 7. Pedal retails for around $100 to

$150

Most single effect pedals on the market have

a competitive price point of around $100

Marketing Requirements

1. Multiple built-in effects

2. Simple controls

3. Fits on pedal board (size)

4. Top mounted jacks for easy pedal board wiring

5. Standard 9 Volt power

6. Cost Effective (Number of FX per dollar)

7. Responsive/Reactive to playing

8. Non-noisy standby mode

9. Durable

4

Functional Decomposition (Level 0)

FIGURE I: DSP GUITAR FX PEDAL LEVEL 0 BLOCK DIAGRAM

TABLE II

DSP GUITAR FX PEDAL FUNCTIONS (LEVEL 0)

Module Guitar FX Pedal

Input

Audio Signal In

• Input audio signal from guitar or leading effects pedals.

Footswitches

• Switches to toggle activation of applied effects.

Control Knobs

• Knobs modify aspects of the signal processing effects

to change the sound.

Device Power

• Powers components withing the pedal

Output

Audio Signal Out

• Modified audio signal to amplifier or following effects

pedals.

Functionality

The DSP Guitar FX Pedal manipulates the Audio Signal in

with audio effects controlled with the footswitches and control

knobs and outputs the signal to audio signal out.

User Interface

 Customers will interact with the product through a combination of knobs and foot

switches. The foot switches will control whether audio processing effects will be on or off. The

control knobs will vary factors of the audio processing, such as volume, clipping level, or

frequency of modulation effects.

5

Chapter 3: Background

 At this project’s most basic form, the purpose of a guitar pedal is to modify the sound of

the instrument. The electric guitar produces sound through an electric signal run into an amplifier

and a speaker. The vibration of guitar strings over pickups, wound coils of wire around a magnet,

causes an electric signal. This electric signal typically produces a clean electric audio signal.

However, in music, musicians use effects to modify the signal to produce more interesting

sounds. While many effects exist, there are a few overall categories. Distortion or overdrive

replicate the sound of pushing amplifiers or other hardware to the maximum rail voltage it can

support. Modulation manipulates the waveform by modulating the signal with some other

waveform, such as amplitude modulation to produce the tremolo effect. Reverb and delay echo

the original guitar signal, either in set intervals of time and decay, or to replicate the acoustics of

a room. While many other effects exist, they will not be covered in the scope of this project.

 A stomp box describes a device for containing these effects. Often referred to as guitar

pedals, stomp boxes contain the circuitry to manipulate incoming signal with the desired effect.

The musician controls the effect through a series of knobs, buttons, and switches, and activates

or deactivates the effect with a main switch. The pedals sit on the floor so the guitarist can

operate the effects while having both hands occupied by the guitar.

 The effects are either achieved through analog circuitry or digital processing. Analog

circuitry uses analog filters, amplifiers, and other circuitry to produce the audio effect. Digital

processing uses digital implementation of microprocessors, digital signal processing chips or

FPGA implementation. Digital processing requires conversion of the analog signal to digital

values, manipulates the signal through programmed algorithms, then converts the digital signal

back to an analog waveform to be played by the amplifier and speaker.

6

Chapter 4: System Design

Functional Decomposition (Level 1)

FIGURE II: DSP GUITAR FX PEDAL LEVEL 1 BLOCK DIAGRAM

TABLE III

DSP GUITAR FX PEDAL (LEVEL 1)

Module Input Amplifier

Input
Audio Signal In

• Guitar input signal: < 0.8 V peak

Output
Amplifier Input Signal

• Amplified guitar signal: 1.5 V peak

Functionality

The input Amplifier amplifies the input guitar signal to a larger

peak voltage so the Analog to Digital Converter reads the

signal with better resolution.

Module Analog to Digital Converter

Input
Amplifier Input Signal

• Amplified guitar signal: 1.5 V peak

Output
Digital Signal

• Digital representation of input signal

Functionality

The Analog to Digital Converter read the amplified guitar

signal and converts the signal to digital representation such

that the signal can be digitally processed.

7

Module Microprocessor

Input

Digital Signal

• Digital representation of input signal

Footswitches

• Digital inputs to select effect

Control knobs

• Variable inputs to determine effect values

Output
Digitally Processed Signal

• Output digital signal post processing

Functionality
The microprocessor takes in the digital inputs and manipulates

the signal. The effects are applied at this stage.

Module Digital to Analog Converter

Input
Digitally Processed Signal

• Output signal post processing

Output

Audio Signal Out

• Analog output signal to Guitar Amplifier or other

Pedals

Functionality

The Digital to Analog Converter takes the digital signal

produced by the microprocessor and converts the values to an

analog signal.

Module Power Supply

Input
Device Power

• Wall or battery power 9 V

Output
DC Voltage

• 5 Volt power for circuitry and microprocessor

Functionality
The power supply takes in external power and supplies the

circuitry and microprocessor with 5 V.

8

Chapter 5: Technology Choices and Design Approach Alternatives Considered

Signal Processing Implementation

For this project, I decided to implement the audio signal processing by use of a DSP

Chip. Analog circuitry, FPGA implementation, or use of a microprocessor also can produce

audio effects. For analog implementation, each audio effect takes its own designed circuit, which

both extends design time and final size of the pedal if multiple effects are implemented. With

Digital Processing, FPGA implementation has longer development time in comparison to

microprocessors or DSP chips. Microprocessor/DSP chip implementation has the quickest

development time, relatively low costs, and easy ability for post development product support.

My comfort with C programming over Verilog also contributed to the use of a DSP chip. The

decision for a DSP chip over a microprocessor considered the application of signal processing,

and therefore decided the DSP chip is better suited for processing than a generic microcontroller.

Software

For testing the signal processing algorithms to be implemented in the final build of the

pedal, MATLAB, specifically with the addition of the Audio Toolbox, works optimally for this

process. MATLAB and the Audio Toolbox allows for real time processing from sampled audio

files and allows for a computer without extra hardware to run the algorithms under test.

The compiler selected is Code Composer Studio (CCS) running C as the programming

language. The use of the C2000 Microcontroller Launchpad Development Kit by Texas

Instruments heavily influenced the use of CCS for best compatibility between controller and

compiler.

Components

The main components for digital signal processing are an analog-to-digital converter

(ADC), the DSP chip, and a digital-to-analog converter (DAC).

 Due to time restraints and minimal manpower, I decided to use Texas Instrument’s

C2000 Microcontroller Launchpad Development Kit LAUNCHXL-F28379D that utilizes the

TMS320F28379D microprocessor. The effort required to put together custom hardware with a

hand selected chip and ADC and DAC would not result in a completed project. The C2000 line

of processors is specifically designed for real time processing, Including 200MHz CPUs, 1 MB

Flash, and 12-bit ADCs and 12-bit DACs. All components easily operate at above 44.1 kHz

required for standard audio sampling.

 While other development boards from Analog Devices were considered, the TI

development was selected due to its price, clock speed, integrated components, and compiler

compatibility.

9

Chapter 6: Project Design Description

Functional Decomposition (Level 2)

FIGURE III: DSP GUITAR FX PEDAL SOFTWARE LEVEL 2 BLOCK DIAGRAM

TABLE IV

DSP GUITAR FX PEDAL (LEVEL 2)

Module Clipping Effect

Input
Input Data

• Digital Signal input from ADC

Output
Digital Signal

• Post Algorithm data

Functionality

The clipping effect takes in the input digital signal and limits

the maximum and minimum value of the signal. This is a

distortion effect.

Module Delay Effect

Input
Input Data

• Digital Signal input previous algorithm

Output
Digital Signal

• Post Algorithm data

Functionality
The delay effect takes in the digital signal values and stores the

values in a buffer to output past and current values.

10

Module Tremolo Effect

Input
Input Data

• Digital Signal input previous algorithm

Output
Digital Signal

• Post Algorithm data

Functionality
The tremolo effect modulates the amplitude of the input signal

to adjust the volume of the signal. This is a modulation effect.

The input amplifier is an inverting op amp configuration with offset to put the input range from 0

to 3 volts for the ADC. Figure XII shows the schematic of the amplifier. The gain of the

amplifier is designed to be around 1.5.

11

Chapter 7: Physical Construction and Integration

Physical Layout

 The physical layout of the of the prototype platform includes the Launchpad development

board connected to the input amplifier circuit and audio jacks laid out on a breadboard. The

Launchpad Board includes the Analog to Digital Converter and the Digital to Analog Converter

along with the 5 Volt power supply and pinouts needed for inputs and outputs.

Packaging

 The prototype packaging did not end up matching the initially proposed stomp box

packaging enclosed in a metal box with appropriate knobs and foot switches exposed due to time

constraints. The current packaging involves the exposed development board and bread board

with the amplifier circuits and audio jacks as shown in Figure IV.

FIGURE IV: DSP GUITAR FX PEDAL PROTOTYPE HARDWARE IMPLEMENTATION

12

Chapter 8: Integrated System Tests and Results

Design Verification

For the microprocessor to serve as a platform for digital audio effects, it must accurately read

and reconstruct audio signals.

Figure V: verification of input output waveforms through microprocessor with no effects. Wave

generation source

Figure VI: verification of input output waveforms through microprocessor with no effects. Guitar

source

13

The following figures show the verification of the clipping effect. As shown, the amplitude of

the waveforms is limited to the set rail value.

Figure VII: verification of input output waveforms through microprocessor with clipping effect.

Wave generation source

Figure VIII: verification of input output waveforms through microprocessor with clipping effect.

Guitar source

14

In the following figure, the output waveform is shown for the delay effect.

Figure IX: verification of input output waveforms through microprocessor with delay effect.

Pulse generation source

Figure X: verification of input output waveforms through microprocessor with delay effect.

Guitar source

Unfortunately, while the delay algorithm works in theory, the limitations in device memory

mean only very short delays may be implemented.

15

Chapter 9: Conclusions

 While the proposed specifications of the guitar FX pedal project promised a fully

packaged multi-effects unit, the actual project fell short of expectations but did show promise.

The project shows working digital processing of real-world signals in form of a guitar input. The

current prototype has a working clipping effect and brief delay (referred to as slap-back) and is

adjustable through values in the software. The major shortcomings of the project were caused by

underestimating the timeline for some tasks. Since I was unfamiliar with the specific

microprocessor selected, the setup for the basic digital platform to start implementing effects ran

over schedule. The design options made were made to increase production time, and familiar

hardware would not perform as needed to serve as a real time digital processor. Therefore, I do

not believe that any design adjustments could be made to resolve the main issue in development.

 Improvements to be made on the current state of the prototype can be made by following

through with development to meet the proposed specifications. Given more development time, I

can add more effects to the effects pedal and spend time packaging the hardware in a proper

stomp box format. Additions to the current prototype need input knobs and switches to control

the effects.

16

References
[1] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-Hill,

2007, p. 37 IEEE Std 1233, 1998 Edition, p. 4 (10/36), DOI: 10.1109/IEEESTD.1998.

[2] Merriam-Webster, “Musician,” Merriam-Webster. [Online]. Available:

https://www.merriam-webster.com/dictionary/musician. [Accessed: 02-Sep-2021].

[3] “Silicon shortage expected to continue through 2022,” Frankenstein Computers,

Austintatious IT Support, 05-Apr-2021. [Online]. Available:

https://www.fcnaustin.com/silicon-shortage-expected-to-continue-through-2022/.

[Accessed: 02-Sep-2021].

[4] “Universal waste: BATTERIES,” EPA. [Online]. Available:

https://archive.epa.gov/epawaste/hazard/web/html/batteries.html. [Accessed: 04-Sep-2021].

17

Appendix A. Senior Project Analysis

Project Title: DSP Guitar FX Pedal

Student’s Name: Stephen Rock Student’s Signature: Stephen Rock

Advisor’s Name: Wayne Pilkington Advisor’s Initials: Date: September 3, 2021

• 1. Functional Requirements Summary

The DSP Guitar FX Pedal manipulates an audio signal from a guitar input to create varied and

interesting sounds. Therefore, the device must take in an electrical audio signal, process the

signal with desired effects, and output the signal to either other guitar pedals or a guitar

amplifier. The pedal must have adjustments to the effects and operable by use of a footswitch

as standard for guitar pedals.

• 2. Primary Constraints

Table I: Guitar Multi-Effects Pedal Requirements and Specifications outlines the project

specifications. The constraints placed on the project stem from operation and current product

market expectations. Most pedals on the market use 9 Volt power supplies. The connections

for guitar rigs use ¼ inch jacks and must physically fit with other effect pedals on a pedal

board. The customer must also be able to turn toggle effects by operation of their foot, due to

having both hands occupied by an instrument when using the effects pedal. While some pedals

use computer programming to adjust the effects, for ease of use the customer must be able to

adjust the effect parameters on the pedal, done through a series of control knobs and switches.

• 3. Economic

The initial cost estimation of the project incudes labor, development equipment, and materials

for manufacturing and totals $17,943.29 using PERT cost analysis [1]. The initial costs may

either be covered by the development team or investors. The development equipment required

only an oscilloscope that totaled $399.00. The materials outlined in Table VI: Bill of Materials

Prototype total $44.29. The original estimated development time of the project was based on

working 6-8 hours per week on the project for 20 weeks. The actual development time for a

complete project would expand past the initial estimate, but the original estimate developed

the project to its current state.

• 4. If manufactured on a commercial basis

If manufactured on a commercial basis, say 1,000 units, the costs would reflect Table VII: Bill

of Materials Manufacture x1000. The difficulties in manufacturing would include relying on

suppliers to for the components and manufactures to produce the circuit boards. However, the

current silicon shortage as described in [3] increases costs and decreases availability of silicon-

based products such as processors and ICs that are required to manufacture this product.

However, using the calculations from [1] the profits of manufacturing and selling 1,000 units

18

would be $37,767, selling each unit at a onetime retail cost of $100 as specified by the project

specifications.

• 5. Environmental

Two main concerns arise with environmental impacts of use and manufacturing of the guitar

FX pedal. Firstly, either wall power or a battery powers the device. While wall power does put

some load on the power grid, the main concern with battery power relates to the waste

produced by using multiple single use batteries. The EPA considers spent batteries as

hazardous waste [4] and can therefore cause harm to the environment if improperly disposed

of and used in excess. However, the use of rechargeable batteries or wall power reduces the

number of disposable batteries used with this product. The second environmental concern

relates to the manufacturing of circuit boards and the components used in the product. Circuit

boards and silicone chip manufacturing can use chemicals toxic to the environment and other

wastes. So, board manufacturing must be selected carefully to ensure that the manufacturing

handles waste byproducts safely and minimizes wastes.

• 6. Manufacturability

As stated before, the silicon shortage currently occurring limits manufacturability of this

product as it is dependent on silicon chips. This either makes the manufacturing of the product

more expensive or limits the total number of units manufactured. The process for

manufacturing the pedal should not prove an issue as the process is typical circuit board

manufacturing and soldering, with easy packaging for the electronics.

• 7. Sustainability

Maintaining the guitar FX pedal should occur if the inevitable defects come from wear and

tear of replaceable components such as switches or cable jacks. On the other hand, failure of

any on board components such as the processor or signal converters results in difficult to fix

issues, and therefore the entire product ceases to function. However, due to the durability and

simplicity of the pedal, the pedal should be able to last for at least 10 years. Another impact on

the sustainability of this product, the manufacturing uses silicon, copper, and other non-

renewable resources. The current silicon shortage as described in [3] calls into question the

sustainability of many silicon based products, and lasting production of the guitar FX pedal

would be no exception. While the hardware cannot be upgraded postproduction, firmware

updates released can upgrade the software and effects included in the original product.

19

• 8. Ethical

According to the IEEE Code of Ethics, upholding integrity and responsible behavior in the

use, development, and research of technology while treating all persons fairly without

discrimination. The use of this product aligns with the IEEE Code of Ethics regarding

maintaining the safety of customers, as the device does not operate at any damaging voltage

and current and all electronics are packaged to eliminate contact with any unauthorized

modification. Improper use of the device in periphery with other amplifiers can cause hearing

damage if played at unreasonable volume for the venue for extended periods of time, but that

risk is caused by the environment of the product and not the product itself. In reference to

ethical code 5 and 6 concerning technical honesty and improvement, only those of which

understand the product, which includes the original development team, can modify the product

after sale through firmware updates to maintain knowledgeable development of the product

based on customer feedback.

• 9. Health and Safety

Manufacturing condition may cause some health concerns, as electronics manufacturing

involves production of wastes materials and toxic chemicals. However, working with

responsible manufacturers reduces the health risks involved in manufacturing the guitar pedal.

The other risk involved in using the product possibly causes hearing damage. When used in

conjunction with the rest of a musician’s rig, exposure to excessive volume from the guitar,

effects, and amplifier damages not only the hearing of the user but also the audience of the

performance.

• 10. Social and Political

The design and use of the product do not pose any social or political concerns, however the

nature of developing a product for music production meant that the music produces with use of

the guitar effects could cause unease due to the sensitive and controversial topics often

discussed in music.

20

• 11. Development

The development of the DSP Guitar FX Pedal included concepts of analog circuit design,

microprocessor implementation, programming, signal processing, and project management.

The design of the analog circuitry and the verification of the current prototype required

knowledge of Op Amps and the use of oscilloscopes. I improved my knowledge and

application of Code Composer Studio and the C2000 line of microprocessors that I was only

minimally familiar with. Learning the new processor was the most difficult and time-

consuming aspect of the project. During the theoretical testing of effect algorithms, I learned

the audio design toolbox of the MATLAB software. For the final implementations of the

effects, I used C coding and software design methods to write and test the product. Time and

cost estimation and time management are new skills I developed throughout this project as

complications did arise that modified the optimistic schedule of completing the project.

21

Appendix B. Parts List and Costs

Cost Estimations: The project cost estimates in Table V, broken down in this section provide

several optimistic, pessimistic, and likely costs associated with the project. The PERT analysis

from [1], further focuses the cost estimations by providing a likely cost based on best, worst,

and likely scenarios. The labor rate used is $35 dollars and hour working 40, 15, and 10 hours

a week for worst, realistic, and best-case scenario respectively.

TABLE V

COST ESTIMATE

Item Worst Realistic Best Case

Labor $28,000 $17,500 $7,000

Analog Discovery 2 $399.00 $399.00 $399.00

Parts as detailed in B.O.M. $44.29 $44.29 $44.29

Total $28,443.29 $17,943.29 $7,443.29

PERT Cost Estimate $17,943.29

Parts List:

TABLE VI

BILL OF MATERIALS PROTOTYPE

Item Description Quantity Price

per Unit

Total Price

LAUNCHXL-

F28379D

C2000 Delfino MCU F28379D

LaunchPad™ development kit

1 $33.79 $33.79

Resistor 1 MΩ 1 MΩ Through Hole ¼ W 1% 3 $0.10 $0.30

Resistor 10 kΩ 10 kΩ Through Hole ¼ W 1% 1 $0.10 $0.10

Resistor 27 kΩ 27 kΩ Through Hole ¼ W 1% 1 $0.10 $0.10

Resistor 420 kΩ 420 kΩ Through Hole ¼ W 1% 1 $0.10 $0.10

Capacitor 10 µF 10 µF Ceramic 20% 2 $0.10 $0.20

LMC6484IN Operational Amplifier CMOS

Quad

1 $3.25 $3.25

¼ Inch Audio Jack Mono ¼ Inch Audio Jack 2 $6.45 $6.45

 Total: $44.29

22

TABLE VII

BILL OF MATERIALS MANUFACTURE X1000

Item Description Quantity Price

per Unit

Total Price

LAUNCHXL-

F28379D

C2000 Delfino MCU F28379D

LaunchPad™ development kit

1,000 $33.79 $33,790.00

Resistor 1 MΩ 1 MΩ Through Hole ¼ W 1% 3,000 $0.014 $42.00

Resistor 10 kΩ 10 kΩ Through Hole ¼ W 1% 1,000 $0.014 $14.00

Resistor 27 kΩ 27 kΩ Through Hole ¼ W 1% 1,000 $0.014 $14.00

Resistor 420 kΩ 420 kΩ Through Hole ¼ W 1% 1,000 $0.014 $14.00

Capacitor 10 µF 10 µF Ceramic 20% 2,000 $0.014 $28.00

LMC6484IN Operational Amplifier CMOS

Quad

1,000 $1.78 $1,780.00

¼ Inch Audio Jack Mono ¼ Inch Audio Jack 20

pack

50 (2,000) $10.99 $549.50

 Total: $36,231.50

23

Appendix C. Project Schedule

Project Schedule Overview: This section includes a project planning statement and a table

with project deliverables and dates. The Gantt chart further details the tasks and timeline of the

project.

Project Planning Statement

 This section breaks down deliverable due dates, and work breakdown. The deliverable

due dates presented in Table IV cover the general outline of overall important dates related to

project delivery and progress. The project Gantt chart in Figure III has a detailed breakdown of

project tasks and timeframes.

TABLE IX

GUITAR PEDAL DELIVERABLES

Delivery

Date
Deliverable Description

1/22/2021 Design Review

2/26/2021 EE 461 demo

3/12/2021 EE 461 report

8/30/2021 EE 462 demo

9/3/2021 ABET Sr. Project Analysis

9/3/2021 EE 462 Report

FIGURE XI: DSP GUITAR FX PEDAL GANTT CHART

24

Appendix D. PC Layout

Schematics:

FIGURE XII: INPUT AMPLIFIER SCHEMATIC

25

Appendix E. Program Listings

Software Overview: The shown MATLAB code and diagrams are used for experimental

proof of concept algorithms to later be implemented in the final build of the pedal.

Tremolo
File = dsp.AudioFileReader('guitar.mp3');
Fs = File.SampleRate;
%initialize device writer
Out = audioDeviceWriter('SampleRate', Fs);
%initialize spectrum analyzer
Spectrum = dsp.SpectrumAnalyzer('SampleRate', Fs, 'PlotAsTwoSidedSpectrum',

false, 'FrequencyScale', 'Log');

%parameters
depth = 0.2;
speed = 1;

i = 0.000001;

tic
while toc < 120
 %read block
 x = step(File);

 %tremolo
 ampmod = depth*sin(pi*i*speed).*x;
 y = x + ampmod;
 i = i + 0.000001;
 if i >= 2
 i = 0.000001;
 end

 %write block to output
 step(Out,y);

 %plot
 figure(1)
 plot(x)
 drawnow
 %visualize spectrum
 step(Spectrum, [x(:,1),y(:,1)])
end

26

Flanger

File = dsp.AudioFileReader('guitar.mp3');
Fs = File.SampleRate;
%initialize device writer
Out = audioDeviceWriter('SampleRate', Fs,'SupportVariableSizeInput',true);
%initialize spectrum analyzer
Spectrum = dsp.SpectrumAnalyzer('SampleRate', Fs, 'PlotAsTwoSidedSpectrum',

false, 'FrequencyScale', 'Log');

%parameters
depth = 0.015; %range of variable time delay
speed = 100; %

i = 0.00001;

tic
while toc < 120
 %read block
 x = step(File);

 %Flanger
 delay = depth*sin(pi*speed*i);
 i = i + 0.000000001;
 if i >= 2
 i = 0.000000001;
 end
 %y[n] = x[n] + decay*x[n-delay*Fs]
 Dk=round(delay*44100);
 echo_filter_hn=[1 zeros(1,Dk(end)-1)];
 echo_filter_hn(Dk+1)=1;

 xnL=length(x);
 hnL=length(echo_filter_hn);
% calculate optimal length M
 M=xnL+hnL-1;
% for speed force to 2^N, where N is returned by nextpow2
 Mpow2=2^nextpow2(M);
% fft both input and unit sample response
 FTX=fft(x(:,1).',Mpow2);
 Flang=fft(echo_filter_hn,Mpow2);

27

% linear-convolution in time is multiplication in DFT:
 FTY=FTX.*Flang;
% inverse transform with same N-point for speed
 ynPad=abs(ifft(FTY,Mpow2));
% splice out the extra zeros created by speed padding
 y=ynPad(1:M).';

 %write block to output
 step(Out,y);

 %plot
 figure(1)
 plot(x)
 drawnow
 %visualize spectrum
 %step(Spectrum, [x(:,1),y(:,1)])
end

Delay

28

Software Overview: The shown C code written in Code Composer Studio is prototype

implementation on the C2000 TMS320F28379D Launchpad.

//
// Included Files
//
#include "F28x_Project.h"
#include "CLAmath.h"
#include <stdio.h>

//
// Defines
//
#define RESULTS_BUFFER_SIZE 1 //256
#define DLOG_SIZE 1 //256
#define REFERENCE_VDAC 0
#define REFERENCE_VREF 1
#define DACA 1
#define DACB 2
#define DACC 3
#define REFERENCE REFERENCE_VREF
#define CPUFREQ_MHZ 200
#define DAC_NUM DACA

//
// ADC Globals
//
Uint16 AdcaResults[RESULTS_BUFFER_SIZE];
//Uint16 resultsIndex;
//volatile Uint16 bufferFull;

//
// DAC Globals
//
Uint16 DataLog[DLOG_SIZE];
#pragma DATA_SECTION(DataLog, "DLOG");
volatile struct DAC_REGS* DAC_PTR[4] = {0x0,&DacaRegs,&DacbRegs,&DaccRegs};
Uint32 samplingFreq_hz = 98000;

Uint16 val_out = 0;
Uint16 ndx = 0;
float freqResolution_hz = 0;
float cpuPeriod_us = 0;
Uint32 interruptCycles = 0;
float interruptDuration_us = 0;
float samplingPeriod_us = 0;

float dc_offset = 0x0810;

bool clipping = false;
float clip_max = 0x0D70;
float clip_min = 0x02C8;
/*

29

bool tremelo = false;
Uint32 speed = 20; // Frequency of Trem in Hz
float depth = 0x0001;
Uint32 sine_size = 1; // Number of samples @fsample for sine wave of frquency speed
float sine_lookup[100];
Uint32 pointer = 0;
float temp_Angle;
*/
bool delay = true;
float delay_time = 0.01; //seconds
Uint32 delay_num_samples = 1; //delay_time * samplingFreq_hz;
Uint16 delay_sample_buffer[980];//Uint16 delay_sample_buffer[delay_num_samples];
//buffer for samples
Uint32 pointer2 = 0;

//
// Function Prototypes
//
static inline void dlog(Uint16 value);
void configureDAC(Uint16 dac_num);
void ConfigureADC(void);
//extern void AdcSetMode(Uint16 adc, Uint16 resolution, Uint16 signalmode);
interrupt void cpu_timer0_isr(void); // ADC+DAC
//void Update_Tremelo_Lookup_Table(Uint32 speed, float depth, Uint32
samplingFreq_hz);
//float CLAsin(float fAngleRad);

//
// Main
//
void main(void)
{
//
// Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the F2837xD_SysCtrl.c file.
//
 InitSysCtrl();

//
// Disable CPU interrupts
//
 DINT;

//
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags are cleared.
// This function is found in the F2837xD_PieCtrl.c file.
//
 InitPieCtrl();

//
// Clear all interrupts and initialize PIE vector table:

30

//
 IER = 0x0000;
 IFR = 0x0000;
 InitPieVectTable();

//
// Map Cpu Timer0 and Timer1 interrupt function to the PIE vector table
//
 EALLOW;
 PieVectTable.TIMER0_INT = &cpu_timer0_isr;
 EDIS;

//
// Initialize variables
//
 cpuPeriod_us = (1.0/CPUFREQ_MHZ);
 samplingPeriod_us = (1000000.0/samplingFreq_hz);

//
// Initialize datalog
//
 for(ndx=0; ndx<DLOG_SIZE; ndx++)
 {
 DataLog[ndx] = 0;
 }
 ndx = 0;

//
// Configure DAC
//
 configureDAC(DAC_NUM);

//
// Configure ADC
//
 ConfigureADC();

//
// Initialize Cpu Timers
//
 InitCpuTimers();

//
// Configure Cpu Timer0 to interrupt at specified sampling frequency
//
 ConfigCpuTimer(&CpuTimer0, CPUFREQ_MHZ, samplingPeriod_us);

//
// Initialize Sine lookup table for Tremelo Effect
//
 //Update_Tremelo_Lookup_Table(speed, depth, samplingFreq_hz);

31

//
// Setup number of samples needed for delay
//
 delay_num_samples = delay_time * samplingFreq_hz;
 //delay_sample_buffer[delay_num_samples] = {0};

//
// Start Cpu Timer0
//
 CpuTimer0Regs.TCR.all = 0x4000;

//
// Enable interrupt
//
 IER |= M_INT1;
 PieCtrlRegs.PIEIER1.bit.INTx7 = 1;
 EINT;
 ERTM;

 while(1)
 {
 }
}

//
// dlog - Circular DataLog. DataLog[0] contains the next index to
// be overwritten
//
static inline void dlog(Uint16 value)
{
 DataLog[ndx] = value;
 if(++ndx == DLOG_SIZE)
 {
 ndx = 0;
 }
 DataLog[0] = ndx;
}

//
// Update Tremelo Sine Lookup Table
//
/*void Update_Tremelo_Lookup_Table(Uint32 speed, float depth, Uint32
samplingFreq_hz){
 sine_size = samplingFreq_hz/speed;
 for(pointer = 0; pointer < sine_size; pointer = pointer + 1){
 temp_Angle = (2*3.14*pointer)/sine_size;
 sine_lookup[pointer] = CLAsin(temp_Angle);
 }
}*/

//
// ConfigureADC - Write ADC configurations and power up the ADC for both
// ADC A and ADC B

32

//
void ConfigureADC(void)
{
 EALLOW;

 //
 //write configurations
 //
 //AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);
 AdcaRegs.ADCSOC0CTL.bit.CHSEL = 3; //SOC0 will convert ADCINA3
 AdcaRegs.ADCSOC0CTL.bit.ACQPS = 24; //SOC0 will use sample duration of 24
SYSCLK cycles
 AdcaRegs.ADCSOC0CTL.bit.TRIGSEL = 1; //SOC0 will begin conversion on CPU1 Timer
0

 //
 //power up the ADC
 //
 AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;

 //
 //delay for 1ms to allow ADC time to power up
 //
 DELAY_US(1000);

 EDIS;
}

//
// configureDAC - Enable and configure the requested DAC module
//
void configureDAC(Uint16 dac_num)
{
 EALLOW;

 DAC_PTR[dac_num]->DACCTL.bit.DACREFSEL = REFERENCE;
 DAC_PTR[dac_num]->DACOUTEN.bit.DACOUTEN = 1;
 DAC_PTR[dac_num]->DACVALS.all = 0;

 DELAY_US(10); // Delay for buffered DAC to power up

 EDIS;
}

//
// cpu_timer0_isr - Timer ISR that writes the sine value to DAC, log the sine
// value, compute the next sine value, and calculate interrupt
// duration
//
interrupt void cpu_timer0_isr(void)
{
 //
 // Start Cpu Timer1 to indicate begin of interrupt

33

 //
 CpuTimer1Regs.TCR.all = 0x0000;

 //
 // Take in ADC input value(s)
 //
 AdcaResults[0] = AdcaResultRegs.ADCRESULT0;

 //
 // PROCESSING
 //
 val_out = AdcaResults[0];
 // Clipping effect
 if (clipping == true){
 //val_out = val_out - 2081; // 2081 Decimal 1.5 V offset
 if (val_out > clip_max){
 val_out = clip_max;
 }
 if (val_out < clip_min){
 val_out = clip_min;
 }
 //val_out = val_out + 2081;
 }

 // Tremelo effect
 /*if (tremelo == true){
 val_out = val_out * sine_lookup[pointer];
 pointer = pointer + 1;
 if (pointer == sine_size){
 pointer = 0;
 }
 }*/

 // delay effect
 //float delay_time = 0.5; //seconds
 //Uint16 delay_num_samples = 1; //delay_time * samplingFreq_hz;
 //Uint16 delay_sample_buffer[delay_num_samples]; //buffer for samples
 if (delay == true){
 //fill up delay buffer
 //delay_num_samples = delay_time * samplingFreq_hz;

 //chaser pointers in delay buffer for delay
 if (pointer2 > delay_num_samples){
 pointer2 = 0;
 }
 delay_sample_buffer[pointer2] = val_out;
 if (pointer2 == 0){
 val_out = delay_sample_buffer[pointer2] +
delay_sample_buffer[delay_num_samples - 1];
 }
 else{
 val_out = delay_sample_buffer[pointer2] + delay_sample_buffer[pointer2
- 1];

34

 }
 pointer2 = pointer2 + 1;
 }

 //
 // Write current output value to buffered DAC
 //
 DAC_PTR[DAC_NUM]->DACVALS.all = val_out;

 //
 // Log current DAC value
 //
 dlog(val_out);

 //
 // Acknowledge this interrupt to receive more interrupts from group 1
 //
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

 //
 // Stop Cpu Timer1 to indicate end of interrupt
 //
 CpuTimer1Regs.TCR.all = 0x0010;

 //
 // Calculate interrupt duration in cycles
 //
 interruptCycles = 0xFFFFFFFFUL - CpuTimer1Regs.TIM.all;

 //
 // Calculate interrupt duration in micro seconds
 //
 interruptDuration_us = cpuPeriod_us * interruptCycles;

 //
 // Reload Cpu Timer1
 //
 CpuTimer1Regs.TCR.all = 0x0030;
}

//
// End of file
//

