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ABSTRACT

Graph Theoretical Modelling of Electrical Distribution Grids

Iris Kohler

This thesis deals with the applications of graph theory towards the electrical distribution

networks that transmit electricity from the generators that produce it and the consumers

that use it. Specifically, we establish the substation and bus network as graph theoretical

models for this major piece of electrical infrastructure. We also generate substation and

bus networks for a wide range of existing data from both synthetic and real grids and show

several properties of these graphs, such as density, degeneracy, and planarity. We also

motivate future research into the definition of a graph family containing bus and substation

networks and the classification of that family as having polynomial expansion.
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Chapter 1

INTRODUCTION

Modern society heavily relies on electricity. Lights, air conditioning, heating, computers,

internet access, food storage, and a growing number of vehicles all require electricity to

function. Furthermore, key components of modern infrastructure, including water, medical

services, and telecommunications, rely on consistent access to electricity [51]. This heavy

reliance on the electrical system means it is critical to make sure this infrastructure keeps

running correctly.

With computer technology advancing rapidly, computer tools are used more and more to

maintain grid performance and quickly solve problems. These tools and the models they use

must be flexible, as electrical infrastructure constantly grows and new sources of energy are

introduced. In this thesis, we propose the use of a graph-theoretical model. Graph theory

is a subject of math with applications in many domains, such as transportation networks.

Since electrical infrastructure involves routing power through different components with

clear starting and ending nodes (power generators and consumers respectively), it appears

to be well-suited for this type of model.

This thesis collects relevant information to hopefully allow for future research in the graph-

theoretical applications for power grids. In Chapter 2, we give relevant background in-

formation about both about electrical infrastructure and graph theoretical properties of

interest. In Chapter 3, we discuss road networks, which is the result of applying graph

theory to roads, and existing non-graph-theoretical tools and data used in power systems

analysis. In Chapter 4, we establish a graph-theoretical model for power systems and prove

some properties about it. In Chapter 5, we examine properties of graphs we created from

pre-existing data. Finally, in Chapter 6, we propose several possible directions to continue

this research.
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Chapter 2

BACKGROUND

2.1 Electrical Grids

The electrical distribution grid refers to the infrastructure that transmits electrical power

from generators and distributes it to consumers [51]. Electrical power, measured in Watts,

has an associated voltage and current. Current, measured in Amperes, is the speed of

electrons flowing through a circuit, and voltage, measured in Volts, is the force applied on

each electron. The relationship between power, current, and voltage can be shown with

the equation P = IV , where P represents power, I represents current, and V represents

voltage.

There are two ways that electricity flows: alternating and direct current [64]. Alternating

current, or AC, refers to electrical generation and transmission circuits where the direction

of flow of electricity quickly switches direction. The direction usually changes 100 or 120

times per second, which results in 50 or 60 cycles per second (50/60 Hz). Direct current

(DC), on the other hand, refers to electrical generation and transmission circuits where

the direction of the flow of electricity stays constant. Historically, power was generated

and transmitted using DC equipment [51]. However, AC is used for most generation and

transmission today, as it is more cost-efficient. However, DC circuitry is still used to transfer

electricity over long distances.

In the United States, electricity is typically generated between 5 to 34.5 kilovolts (kV).

Because many power generators are located far away from consumers, that electricity has

to travel a long distance. However, when travelling at long distances, electricity meets a

lot of resistance, causing a loss in power. Because of this, the voltage of electrical power is

increased, or stepped up, to overcome that resistance. During transmission, the voltage is

anywhere from 69 to 765 kV, depending on how far the electricity needs to travel. It is im-

portant to note that electricity does not necessarily stay at one voltage during transmission.

Electric power may be split off, and each split comes with a decrease in voltage; this may

happen multiple times throughout transmission. At consumer level distribution networks,

2
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Figure 2.1: The interconnections of the North American bulk power system
from the North American Electric Reliability Corporation [50]

where distances are much smaller, electricity is stepped down to much safer levels–usually

between 15 and 34.5 kV.

A major independent grid where all electrical infrastructure is connected together is known

as an interconnection. Often, geographically-close interconnections may be connected using

DC circuitry. The electrical grids of the continental United States and Canada and part of

the Mexican grid are connected together in 4 distinct interconnections.

Substations are components of the electrical grid that are in charge of, among other impor-

tant tasks, stepping the voltage of electric power up or down, collecting multiple sources

into one output, and distributing power through one or more outputs [51]. This can be

generalized to substations taking one or more input power sources and having one or more

output power sources, with each input and output having an associated voltage. In other

words, substations handle stepping up, stepping down, splitting, and/or combining sources

of electrical power. An electrical grid consists of power generators passing power to one

or more substations, each of which then pass power to one or more substations, and so on

until the power is finally transferred to distribution networks.

3



Figure 2.2: Conceptual flow chart of the electricity supply chain from the U.S.
Department of Energy [51]

Substations are composed of multiple buses, which handle power coming in or out [64].

Specifically, a transmission bus routes power into a substation and a distribution bus routes

power out of a substation. As power moves from transmission buses and distribution buses

in a substation, its voltage may be stepped down or stepped up as described before.

Figure 2.3 shows a 240-bus model based on the WECC interconnection mapped to its geo-

graphic area. This small example shows the flow of electricity from generators to consumers,

and it also demonstrates how AC voltage is stepped down. The two DC lines show electrical

transfer over long distances.

2.2 Graph Properties

Since electrical distribution grids are formed of buses and substations with transmission

lines between them, they are structurally suited for a graph-theoretical representation.

Furthermore, given that these systems exist in real life, there are physical limits on the size

of the network. Every time an input is split into multiple outputs, the voltage across each

output drops to maintain current. This means there will only be so many transmission lines

attached to each substation and to each bus.

For this reason, we are interested in the properties of sparse graphs. Graph sparsity refers

to how the numbers of edges of graphs in that family grow as their numbers of vertices get

larger [18]. A graph is considered sparse if it has some sort of bound on the ratio of edges to

vertices. Many graph theoretical algorithms involve graph traversal, which involves visiting

vertices and travelling along edges to the next vertex. For this reason, algorithms on sparse

graphs can often take advantage of that sparsity in order to solve problems faster.

The following sections give definitions of graph sparsity and provide examples of properties

that can be taken advantage of by algorithms on sparse graphs. We also provide planar

graphs as an example of sparse graphs and highlight the algorithmic improvements that can

be obtained by restricting algorithms to planar graphs.

4



Figure 2.3: A 240-bus model of the WECC interconnection published by the
National Renewable Energy Laboratory [47]
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2.2.1 Bounded Expansion

Let G and H be graphs. H is considered a minor of G if H can be formed by deleting

or contracting edges in G or removing vertices. H is a k-shallow minor if it is formed by

contracting pairwise-disjoint subgraphs whose minimum distance between any two points

is at most k. Note that G is a 0-shallow minor of itself, as is every subgraph of G.

For some graph G, define 5k(G) as follows:

5k(G) = max

{
E(H)

V (H)
: H is a k-shallow minor of G

}

In other words, 5k(G) gives the largest density of any k-shallow minor of G.

A family of graphs is said to have bounded expansion if there exists a function f : Z+ → R+

such that 5k(G) ≤ f(k) for all k ≥ 0 and for all G in the family.

The family of graphs with a constant bound on the maximum degree of all vertices is a

graph with bounded expansion [48]. Further examples of families with bounded expansion

are given in Sections 2.2.6 and 2.2.6.3.

2.2.2 Graph Separators

Let G be a graph with n vertices and vertex partitions A, B, and C such that, for some

function f : N→ R+ and constant 0 < k < 1:

1. |A| ≤ kn

2. |B| ≤ kn

3. |C| ≤ f(n)

4. There is no edge in G incident at a vertex in A and a vertex in B

We call C a k-separator of size O(f(n)).

6



A k-separator C that produces partitions A and B is considered balanced if |A\B| ≤ 2

3
n and

|B \ A| ≤ 2

3
n. Every graph in every class of graphs with bounded expansion has balanced

separators.

A family of graphs with balanced separators is said to have sublinear separators if there

exists some c ≥ 1 and 0 < d ≤ 1 such that, for every graph G, G has some separator C

such that |C| ≤ cn1−d.

2.2.3 Polynomial Expansion

A family with bounded expansion is said to have polynomial expansion if the function f

that bounds 5k is polynomial [18].

In 2001, Plotkin, Rao, and Smith proved the following [54]:

Theorem 1. All families of graphs with polynomial expansion have strongly sublinear

separators.

In 2015, Dvǒrák and Norin expanded on that result by proving the following [18]:

Theorem 2. A family of graphs has polynomial expansion if and only if it has strongly

sublinear separators.

2.2.4 Minor-closed Graph Families

A family of graphs is called minor-closed if, for every graph in the family, every one of its

minors is also contained in the family. In 2006, Lovász proved the following theorem: [42]

Theorem 3. Every minor-closed family of graphs can be characterized by a finite set of

graphs that cannot be members or minors of any members of that family.

Graphs in this set are known as the excluded minors or forbidden minors of the graph

family. These minors are forbidden based on the structural characteristics that define that

graph family. Section 2.2.6 shows an example of forbidden minors in the family of planar

graphs.

7



Kawarabayashi and Reed proved the following in 2010 [36]:

Theorem 4. Let F be a minor-closed family of graphs and t be the size of an excluded

minor of F . F has O(t
√
n) separators.

Note that 1 ≤ t ≤ n. Taking c and d from the definition of sublinear separators to be t and
1

2
respectively gives the following result:

Theorem 5. Every minor-closed family of graphs has sublinear separators.

Theorems 2 and 5 together result in the following conclusion:

Theorem 6. Every minor-closed graph family has polynomial expansion.

2.2.5 Separator Decompositions

Recall that, for a graph G with separator C, the removal of C creates two edge-disjoint

subgraphs A and B. Further recall that subgraphs of G are 0-shallow minors of G. This

means the removal of a separator from a graph produces two minors of that graph that are

not connected.

Suppose that G is a member of a minor-closed family. Now, the subgraphs A and B have

their own sublinear separators by Theorem 5, and removal of those separators results in

two more edge-disjoint subgraphs of each minor.

This recursive removal of separators leads to the the idea of a k-separator decomposition

of a graph [28]. This decomposition is created by identifying a k-separator in a graph,

removing the separator, and repeating the process recursively on the two partitions, with

a base case reached when a k-separator can no longer be created from a subgraph. This

creates a decomposition tree, which is a binary tree metagraph where each node represents

a subgraph of G, and a node v has children u,w if the subgraphs represented by u and w

are created by removing a k-separator from the subgraph represented by v. The root of

this decomposition tree is the original graph.

Figure 2.4 shows an example separator decomposition tree. Section 2.2.6.1 demonstrates

applications of separator decomposition.

8
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Figure 2.4: An example separator decomposition, with the root graph at the
top. The vertices of each graph’s separator are highlighted.
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2.2.6 Planar Graphs

A graph is planar if it can be drawn in R2 such that none of its edges cross each other

without intersecting at a vertex.

In 1930, Kuratowski proved the following [39]:

Theorem 7 (Kuratowski’s Theorem). A finite graph is planar if and only if it does not

contain as a subgraph any subdivision of K5 or K3,3.

In 1937, Wager proved the following: [65]

Theorem 8 (Wagner’s Theorem). A finite graph is planar if and only if it has neither K5

nor K3,3 as minors.

By this result and Theorem 3, the family of planar graphs is minor-closed. Theorem 6

shows that the family of planar graphs has polynomial expansion.

(a) K5 (b) K3,3

Figure 2.5: The two graphs referenced in Kuratowski’s Theorem

2.2.6.1 Planar Separator Decomposition

Since the family of planar graphs is minor-closed, by Theorem 5, we can expect planar graphs

to have strongly sublinear separators. In 1979, Lipton and Tarjan proved the following result

on planar graphs: [41]

10



Theorem 9 (Planar Separator Theorem). Let G be a planar graph. G has a
2

3
-separator

of size O(
√
n).

In 1995, Goodrich described an algorithm to, in O(n) time, construct a
2

3
-separator de-

composition with separators of size O(
√
n) [28]. This decomposition allows for efficient

divide-and-conquer algorithms on planar graphs, some of which are described below.

2.2.6.2 Shortest Path on Planar Graphs

An example of the utility of planar graphs (and polymorphic expansion in general) is the

shortest path problem applied to planar graphs. The shortest path problem (also known as

the single-pair shortest path problem) is defined on a graph with real-valued weights on its

edges. Given two vertices u and v, the shortest path problem finds a path from u to v with

the lowest sum of edge weights compared to any other path from u to v if v is reachable

from u. Several variations of the shortest path problem exist. The single-source shortest

path problem calculates the shortest path from one vertex v to all other vertices in the graph

reachable from v. The multiple-source shortest path problem calculates, for every vertex in

the graph, the shortest path to every reachable vertex from that graph. In other words,

the multiple-source shortest path problem solves the single-source shortest path problem

for every vertex in the graph.

For this section, we will discuss the application of the problem to directed graphs. When

edge weights are required, we will consider graphs with nonnegative edge weights.

Klein et al. showed that, using planar separator decomposition, the single-source shortest

path problem can be calculated on planar graphs in linear time over the number of vertices

in the graph [38]. In the nonplanar case, Thorup showed an O(m + n log log min {n,C})
algorithm, where m is the number of edges and C is the maximal edge weight [63]. This

pseudo-polynomial algorithm uses Fibonacci heap-style integer priority queues. Note that,

even in the case where m = O(n), Thorup’s algorithm is less efficient than that proposed

by Klein et al. in the case of planar graphs.

11



2.2.6.3 Near-planarity

Near-planarity refers to graphs with certain bounds on the number of times edges can cross.

Some of these bounds are strong enough to create families with bounded or polynomial

expansion.

A graph is k-planar if any edge is allowed to cross at most k other edges for some constant

k [23]. The family of k-planar graphs has bounded expansion [48]. The family of graphs

with a constant bound on the total number of crossings has polynomial expansion, and

the family of graphs where the total number of crossings has a linear relationship with the

number of vertices has bounded expansion.

2.2.6.3.1 Crossing Minimization Problem The metro-line crossing minimization prob-

lem takes a graph as an input and outputs an embedding of the graph in R2 with the

minimum number of edges crossings [44]. This problem was defined by Marek-Sadowska

and Sarrafzadeh in 1995, and the authors proposed an O(nm2 + nε3/2)-time algorithm,

where n is the number of vertices, m the number of edges, and ε is the crossing number.

Chen and Lee presented an O(m(n+ ε))-time algorithm in 1998 [11].

2.2.6.3.2 Planarization Given G, a nonplanar graph embedded in R2, we can planarize

G by, for every pair of edges (v1, v2) and (u1, u2) that cross without intersecting at a vertex,

removing those edges, introducing a new vertex w, and adding edges (v1, w), (v2, w), (u1, w),

and (u2, w). This procedure effectively places a vertex at each edge crossing, resulting in

what is known as a planarization of G.

In 2010, Epstein et al. proved that, when a graph has O

(
n

log(c) n

)
crossings for some con-

stant c (known as restrained graphs), that graph can be planarized in linear time [21]. The

authors also describe an algorithm to use the separator decomposition of the planarization

of such a graph can be used to create a O(
√
n)-sized separator decomposition of the original

graph.
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2.3 Relevance

Modern society depends on a reliable electrical infrastructure [51]. This involves balancing

how much generators can produce, how much consumers use, and the physical limits on the

equipment that transfer power between. Failing to take this into account can lead to not

enough power being generated for all users who need it. Any improvement to the algorithms

used on electrical distribution networks could mean faster responses to power system faults,

less people left without power when things go wrong, or more accurate collection of grid

information.

Being able to show that electrical distribution grids have polynomial expansion would mean

that they have strongly sublinear separators. This would mean it may be possible to take

advantage of separator decomposition-based algorithms. As demonstrated above and in

Section 3.1, these algorithms tend to provide large improvements over algorithms that do

not rely on separator decomposition.
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Chapter 3

RELATED WORKS

3.1 Road Networks

The graph-theoretical classification of road networks is of particular interest for the efforts

to classify electrical grid networks. Both are networks that have physical limits on the size of

their graphs–road intersections can have so many roads connected to them, and substations

can only connect to so many substations.

Road networks are graphs where the vertices represent intersections between two or more

roads or dead ends and edges represent sections of road in between two intersections. Due

to spacial limitations and a need for roads to be human-friendly, the maximum degree of a

road network based on any existing road system is incredibly small. These networks are also

nonplanar, as any bridge over or tunnel under another road becomes an edge intersection

in their graph-theoretical representation.

Initial attempts at using graph theory to model road networks worked with the assumption

that these networks are planar or near-planar. This means that many problems, such as

shortest path, can benefit from fast planar graph algorithms. Due to the aforementioned

nonplanarities, research on road networks focused on finding a useful categorization of road

networks and motivating efficient algorithms given said categorization. Attempts to classify

road networks as near-planar, such as k-genus (able to be embedded without crossings in a

surface with at most k holes) and k-planar failed, as there are no bounds on the number of

crossings a single road can have [23].

Eppstein and Goodrich showed that road networks are a subgraphs of disk intersection

graphs [20]. They start by considering road networks as geometric graphs, where every

vertex is associated with a point in R2. In particular, the longitude and latitude of every

intersection and dead end of a particular road network are used as the coordinates in R2

for the geometric graph representation. Then, disks in R2 are created with a center at each

vertex and radius equal to half the length of the longest stretch of road attached to the

intersection. Eppstein and Goodrich showed that, except for a few exceptional high-radius
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disks, most disks in these neighborhoods are low ply. In other words, most points in R2

are covered by at most some constant number of disks. Then, they created disk intersec-

tion graphs, where each disk is represented by a vertex with an edge between two vertices

existing when their associated disks intersect. The authors discovered that the resulting

disk intersection graphs are supergraphs of the road networks they were built from. This

information along with an algorithm for linear time O(
√
n)-separator decomposition previ-

ously created for k-ply disk neighborhood systems by Eppstein, Miller, and Teng [24] allows

for efficient algorithms on road networks such as Voroni diagrams and shortest path [20].

However, the exceptional disks present a problem. In theory, it is not impossible to have

disk neighborhood systems with dense high-radius disk clusters, even if no real-world road

network would ever produce such a neighborhood.

In an effort to make a more accurate classification of road networks, Eppstein and Gupta

focused on the crossing graphs of road networks [23]. Given a graph G embedded in R2,

the crossing graph of G is a graph where every edge in G has a vertex in the crossing graph

and two vertices in the crossing graph share an edge if the associated edges in G cross each

other. The authors also considered the degeneracy of road network crossing graphs. The

degeneracy of a graph is the maximum of the minimum degree over all subgraphs of that

graph. A d-degenerate graph also contains a d-core, and d is the largest value for which

the graph has a core. They showed empirically that crossing graphs of real-world networks

are very sparse and have a bounded constant degeneracy before proving that the family

of graphs whose crossing graphs have bounded degeneracy has polynomial expansion. The

authors finally investigated planarizing road networks by replacing crossings with vertices

and discovered that this process introduces a sublinear number of new vertices. Using

the previously-described linear-time planarization algorithm [21] and linear-time planar

separator decomposition [28], the authors showed how planar graph algorithms can be

applied to road networks.

3.2 Power Systems Research

Given the importance of power systems to society, much research has been done on power

systems. This has lead to the creation of several tools and much synthetic network data.
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3.2.1 Tools

In 1997, MATPOWER, an open source power systems simulation tool, was initially pub-

lished in 1997 [69]. It has since grown into a large MATLAB library. It has built-in libraries

to solve optimization problems, including optimal power flow, on electrical grids. Zimmer-

man et. al described the system in their 2011 publication.

RTE, the main transmisison grid operator in France, created and maintains a tool known

as Convergeance [59]. It is the main network analysis tool of the company and provides

simulation for over the French transmission grid [34].

The Pan European Grid Advanced Simulation and state Estimation (PEGASE) project was

a four-year project from the European Commission meant to build a representation of the

high and extra high voltage transmission networks in the European mainland developed

between 2008 and 2012 [13]. It defined state estimation, optimization, and simulation

frameworks for this pan-European grid and provided funding for researchers working on the

data. The result was a number of models for dynamic simulation over the network designed

to help operators make decisions based on current load.

The European Commission also created the Innovative Tools for Electrical System Security

within Large Areas (ITESLA) project from January 1st, 2012, to March 31st, 2016 [14].

Its purpose was to increase coordination among the many network operators throughout

Europe, define security limits of the pan-European network, and develop tools to assess the

security of the network and dynamically model parts of the grid. The result is online and

offline platforms for time-based simulation, a model-validation software, and toolboxes for

security assessment of networks.

3.2.2 Synthetic Electrical Grids

Real-world electrical grid data is often confidential and therefore hard to obtain. Because

of this, much research has focused on generating synthetic representations of electrical

grids as well as developing validation criteria to determine how well those grids represent

reality. A synthetic grid refers to a synthetically-generated electrical grid that is in some

way representative of a real-life electrical grid.
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In 1979, the Application of Probability Methods Subcommittee of the IEEE Power Systems

Engineering Committee published a 24-bus synthetic grid known as the IEEE Reliability

Test System (later called RTS-79) [56]. This was created to help test methods of power

system reliability testing. RTS-79 was expanded by Allan et. al in 1986 to create RTS-86 [1].

This modernized the test system as well as added additional data about power generation

to the system. Grigg et. al added another update, RTS-96, in 1996 [31]. This again

modernized RTS data, added operating cost and constraint data to the power generators,

and added different methods of power transfer to the system. In 2019, Barrows et. al

through the Grid Modernization Lab Consortium added more modifications to IEEE-96,

creating IEEE RTS-GMLC [6]. They modernized generator data to account to account for

changes in the amount of nuclear, wind, and solar production as well as energy storage.

Fliscouhakis et al. published a modified synthetic version of the PEGASE network similar

in size and complexity to the original [26].

In 2017, Birchfield et al. presented a creation and validation methodology for generating

synthetic grid test cases [9, 10]. To create these synthetic grids, substations are placed

geographically based on publicly-available information about populations and locations of

electricity generators before adding buses and creating the connections in between them.

The authors describe several structural characteristics that characterize real power grids

and can be used to verify large synthetic grids.

MATPOWER contains a number of test cases based on both syntehtic and real grids [69].

As additional test cases have been published, they have been included in MATPOWER’s

collection of test data, including the iTesla, PEGASE, RTE, RTS-79, RTS-GMLC, and AC-

TIVSg data. The full list of data included in the MATPOWER is described in Section 5.2.

In 2016, Josz et al. published synthetic data from the iTesla, PEGASE, and RTE projects

described above in the MATPOWER data format [34].
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Chapter 4

THEORY

4.1 Substation Networks

Definition 1. The substation network of an electrical grid is a directed graph where each

vertex represents a substation and an edge (u, v) exists if power flows from the substation

represented by u to the substation represented by v.

Each edge in a substation network is weighted with the voltage carried between the asso-

ciated substations. This network represents a significant part of an electrical grid, since

substations do the operations necessary to make power usable by consumers. For this rea-

son, substation networks will show the entire flow of power from power generators to the

substations that convert power for consumer use. By the definition of an substation network,

any vertices with indegree 0 represent substations connected directly to power sources, and

any vertices with outdegree 0 represent substations connected directly to distribution grids.

4.2 Bus Networks

Definition 2. The bus network of an electrical grid is a directed graph where each vertex

represents a bus and an edge (u, v) exists if power flows from the bus represented by u to

the bus represented by v.

Like a substation network, each edge is weighted with the voltage carried between buses.

Each bus is also labeled with the substation it belongs to.

Figures 4.1 and 4.2 show the substation graph and and bus graph, respectively, of the

200-bus ACTIVSg200 synthetic grid [9, 10]. Buses close to each other of the same color

in Figure 4.2 belong to the same substation, which is the substation that shares the same

color in Figure 4.1.
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Theorem 10. Given an electrical grid, the substation network GS representing that grid,

and the bus network GB representing that grid, GS is a minor of GB.

Proof. Color the vertices in GB such that two vertices u and v in GB have the same color

if and only if u and v represent buses belonging to the same substation. Then, for each

edge (w, x) such that w and x have the same color, contract that edge. Finally, remove any

resulting loops and multiple edges. The result of is process of a simple directed graph G′B,

a minor of GB, such that every vertex color is assigned to exactly one vertex. By definition

of the vertex coloring, this means there is exactly one vertex in G′B for each substation, and

the edge (u′, v′) exists in G′B if and only if the substation that u′ represents transfers power

to the substation that v′ represents. Thus, by definition, G′B is the substation network of

the grid. �

Theorem 11. Let GS be a substation network and GB be a bus network representing the

same grid. If GB is planar, then GS is planar.

Proof. Suppose GB is planar. By Theorem 8, the family of planar graphs has a finite set

of excluded minors. By Theorem 3, the family of planar graphs is minor-closed. Because

GS is a minor of GB by Theorem 10, GB is planar, and the family of planar graphs is

minor-closed, GS must be planar. �

4.3 Discussion

The result of Theorem 10 shows that, for any electrical grid, its substation network is a

minor of its bus network. Because of this, any minor-closed graph family that contains all

bus networks will also contain all substation networks.
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Figure 4.1: The substation network based on ACTIVSg200 [9, 10]
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Figure 4.2: The bus network based on ACTIVSg200 [9, 10]
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Chapter 5

EXPERIMENTS

With the graph-theoretical models defined, we created the bus and substation networks for

existing grids (both real and synthetic). We analyzed every grid’s average vertex degree,

maximum vertex degree, degeneracy, density, and planarity. Each of these properties could

give an idea on how sparse or dense the graphs may be.

5.1 Tools

For graph property analysis, we used the python-igraph network analysis package [33]. This

is a graph theory package that allows for the analysis of graph properties and transformation

of graphs.

For statistical analysis, we used the spreadsheet program LibreOffice Calc.

5.2 Data

The following is a description of all data used in the thesis. All 72 test cases were sourced

from MATPOWER’s collection of test cases, which combines grid data from many real life

and synthetic grids [69]. We refer to the names of each network as given in the MATPOWER

test collection. The ACTIVSg networks are synthetic grids based on several regions of

the United States, with SyntheticUSA being representative of the national grid [9, 10].

The PEGASE networks come from the PEGASE project described before [34]. The RTE

data comes from RTE’s Convergence tool [34]. The Polish grid snapshots were provided

by Roman Korab and published by the MATPOWER maintainers [69]. The Caracas,

Venezuela data is a distribution network published by Khodr et. al [37]. Ramalinga Raju

et. al published a portion of the East Indian Power Distribution System [58]. The New

England data was published by Bills et. al, and Pai made modifications using data from

Athay et. al [3, 8, 52, 55]. The portion of the PG&E distribution system was published

by Baran and Wu [5]. The Power Systems Test Case Archive is an archive of grid data and
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contains several test cases [19]. The RTS-79 and RTS-GMLC networks are as described in

Section 3.2.2 [56, 6]. Alsac and Stott published a 30-bus case, and Ferrero, Shahidehpour,

and Ramesh added generator costs and limits [2, 25]. All other networks were published by

the authors cited in Tables 5.1 to 5.3

Out of the test cases, we could only find substation data for ACTIVSg70k and Syntheti-

cUSA. No other test cases had substation data, so most of our experiments will focus on

just the bus networks for each grid.

5.3 Maximum Degree

The maximum degree of a graph is the largest number of edges that can be connected to

each vertex. As discussed in Section 2.2.1, the family of graphs with bounded maximum

degree has bounded expansion.

9241pegase and 13659pegase had the highest maximum degree of 46. The average was 9.694,

and the median was 6.5. Some graphs with large |V | had larger maximum degrees. For

example, the 9241pegase network had a maximum degree of 46 with 9,241 vertices. However,

this increase is not guaranteed; for example, the 3120sp network had 3120 vertices and a

maximum degree of 9. SyntheticUSA had a maximum degree of 23 with 82,000 vertices.

The Pearson correlation coefficient between the factors was 0.444, implying a moderate

correlation. This suggests that, while a high |V | allows for the possibility of a high maximum

degree, it is not guaranteed. There is no evidence to show that the maximum degree has a

constant bound.

The full results are listed in Table 5.1.

5.4 Average Degree

The average degree of a graph gives an idea of how many edges will be connected to most

of its vertices. A bounded average degree could suggest sparse graphs, as it would show

that these networks maintain a relatively low number of edges connected to each vertex as

the number of vertices grows.
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The network with the highest average degree was Caracas, Venezuela (141) network, with

6.248. The mean was 2.499 and the median was 2.440. Note that a high average degree does

not necessarily mean a high maximum degree and vice versa; 9241pegase and 13659pegase

have average degrees of 3.473 and 2.997, respectively.

Calculating the Pearson correlation coefficient between |V | and the average degree resulted

in 0.0541, implying an extremely weak correlation between |V | and average degree. This

suggests a possible constant bound on the average degree of bus networks.

The full results are listed in Table 5.1.

5.5 Degeneracy

9241pegase and 13659pegase had the maximum degeneracy over all graphs, with 22. All

others had a degeneracy less than or equal to 7. The average degeneracy was 3.32, and the

median was 2. The Pearson coefficient correlation between |V | and graph degeneracy was

0.370, implying a moderate correlation. However, this is not enough evidence to suggest a

bound on degeneracy.

The full results are listed in Table 5.1.

Table 5.1: Average and max degree and degeneracy grouped by data source

Network |V | |E| average degree max degree degeneracy

ACTIVSg [9, 10]

ACTIVSg200 200 245 2.45 11 2

ACTIVSg500 500 597 2.388 16 2

ACTIVSg2000 2000 3206 3.206 17 9

ACTIVSg10k 10000 12706 2.5412 20 5

ACTIVSg25k 25000 32230 2.5784 23 6

ACTIVSg70k 70000 88207 2.5202 23 7

SyntheticUSA 82000 104121 2.53954 23 9

PEGASE [34]

89pegase 89 210 4.7191 15 8

1354pegase 1354 1991 2.94092 17 5

2869pegase 2869 4582 3.19414 17 8
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Network |V | |E| average degree max degree degeneracy

9241pegase 9241 16049 3.47343 46 22

13659pegase 13659 20467 2.99685 46 22

RTE [34]

1951rte 1951 2596 2.6612 17 5

1888rte 1888 2531 1.88889 4 1

2848rte 2848 3776 2.65169 17 5

2868rte 2868 3808 2.65551 17 5

6468rte 6468 9000 2.78293 17 5

6470rte 6470 9005 2.78362 17 5

6495rte 6495 9019 2.77721 17 5

6515rte 6515 9037 2.77421 17 5

Polish grid snapshots [69]

2383wp 2383 2896 2.43055 9 2

2746wp 2746 3514 2.55936 10 2

2746wop 2746 3514 2.55936 10 2

2737sop 2737 3506 2.56193 10 2

2736sp 2736 3504 2.5614 10 2

3012wp 3012 3572 2.37185 10 2

3120sp 3120 3693 2.36731 9 2

3375wp 3374 4161 2.46651 13 5

Caracas, Venezuela [37]

141 141 140 6.24828 20 7

Portion of East Indian Power Distribution System [58]

22 22 21 1.90909 3 1

New England [8, 52, 3, 55]

39 39 46 2.35897 5 2

Portion of the PG&E distribution system [5]

69 69 68 1.97101 4 1

Power Systems Test Case Archive [19]

14 14 20 1.98582 4 1

ieee30 30 41 2.73333 7 2

57 57 80 2.80702 6 2

118 118 186 3.15254 12 3
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Network |V | |E| average degree max degree degeneracy

145 145 453 2.85714 5 2

300 300 411 2.74 12 2

RTS-79 [56]

24 ieee rts 24 38 3.16667 5 2

RTS-GMLC [6]

RTS GMLC 73 120 3.28767 6 2

Grainger and Stevenson [30]

4gs 4 4 2 2 2

Zimmerman et. al [69]

4 dist 4 3 1.5 2 1

Li and Bo [40]

5 5 6 2.4 3 2

Wood and Wollenberg [66]

6ww 6 11 3.66667 5 3

Schulz, Turner, and Ewart[61]

9 9 9 2 3 2

9Q 9 9 2 3 2

9target 9 9 2 3 2

Baghzouz and Ertem [4]

10ba 10 9 1.8 2 1

Das, Nagi, and Kothari [17]

12da 12 11 1.83333 2 1

28da 28 27 1.92857 3 1

Das, Kothari, and Kalam [16]

15da 15 14 1.86667 4 1

16am 15 14 1.86667 4 1

85 85 84 1.97647 4 1

Battu, Abhyankar, and Senroy [7]

15nbr 15 14 1.86667 4 1

18nbr 18 17 1.88889 3 1

Civanlar et. al [12, 68]

16ci 16 16 2 3 2

Mendoza et. al [45]
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Network |V | |E| average degree max degree degeneracy

17me 17 16 1.88235 3 1

Grady, Samotyj, and Noyola [29]

18 18 17 2.68114 17 5

Alsac & Stott and Ferrero, Shahidehpour, & Ramesh [2, 25]

30 30 41 2.73333 7 2

30pwl 30 41 2.73333 7 2

30Q 30 41 2.73333 7 2

Baran and Wu [5]

33bw 33 37 2.24242 3 2

Kashem et. al [35]

33mg 33 37 2.24242 3 2

Salama and Chikhani [60]

34sa 34 33 1.94118 3 1

Singh and Misra [62]

38si 38 37 1.94737 3 1

Gampa and Das [27]

51ga 51 50 1.96078 3 1

Hengsritawat et. al [32]

51he 51 50 1.96078 3 1

Das [15]

70da 70 76 2.17143 3 2

Myint and Naing [46]

74ds 74 73 1.97297 3 1

Pires, Antunes, and Martins [53]

94pi 94 93 1.97872 4 1

Zhang et. al [67]

118zh 118 132 2.23729 4 2

Mantovani et. al [43]

136ma 136 156 2.29412 8 2
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5.6 Density

Density is calculated by dividing the total number of edges in each network by the total

possible number of edges on a directed graph with the same number of vertices using the

equation

De =
|E|

2
(|V |

2

)
This results in densities as high as 0.36... and as low as 1.5× 10−5. However, we observed

that networks with fewer buses tend to have a higher density than networks with more

buses. We hypothesized that De ∼
1

|V |
.

To confirm this hypothesis, we considered D−1e for each graph. Doing this allowed us to

run a linear correlation test on our data. The Pearson correlation coefficient comparing |V |
with D−1e was 0.99949, implying a high correlation between the number of vertices with

D−1e . This then implies a correlation between a large |V | and a small De.

With this knowledge, we created a trend line to predict the edge density of a bus network

based on |V |. We found the trend line D−1e = 0.787261|V | − 78.30860, with R2 = 0.99898

showing that this predicts D−1e extremely well. Thus, we can predict edge density with

99.898% certainty using

De = (0.787261|V | − 78.30860)−1 =
1.270226774

|V | − 99.468670322

Interestingly, for cases based on real life data or synthetic data derived from real networks,

density measurements seem to be very similar across the world. For example, 9241pegase,

a 9, 241-bus network, has a density of 1.880 × 10−4; ACTIVSg10k, a 10, 000-bus network,

has a density of 1.2707 × 10−4; and 13659pegase, a 13, 659-bus network, has a density of

1.097×10−4. ACTIVSg10k’s number of vertices is between 9421pegase’s and 13659pegase’s,

and its density is between 13659pegase’s and 9421pegase’s. Similarly, 89pegase has 89

vertices and a density of 2.681 × 10−2, the Carcas, Venezuela case has 141 vertices and a

density of 7.092 × 10−3, and ACTIVSg200 has 200 vertices and a density of 6.156 × 10−3.

Similarly, the East Indian case has 22 vertices with a density of 4.545 × 10−2, the New

England case has 39 vertices and a density of 3.104 × 10−2, and the PG&E case has 69

vertices and a density of 1.449× 10−2. The fact that this relationship is present seemingly
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independent of geographic location is very promising, as it suggests that this may be a

universal property of real-life electrical grids.

The full results of edge density testing are listed in Table 5.2.

Table 5.2: Edge density and inverse edge density grouped by data source

Network |V | |E| De D−1e

ACTIVSg [9, 10]

ACTIVSg200 200 245 0.006155778894472 162.448979591837

ACTIVSg500 500 597 0.002392785571142 417.922948073703

ACTIVSg2000 2000 3206 0.000801900950475 1247.03680598877

ACTIVSg10k 10000 12706 0.000127072707271 7869.51046749568

ACTIVSg25k 25000 32230 5.15700628025121E-05 19391.09525287

ACTIVSg70k 70000 88207 1.80016857383677E-05 55550.3531465756

SyntheticUSA 82000 104121 1.54851680225726E-05 64577.923761777

PEGASE [34]

89pegase 89 210 0.026813074565884 37.295238095238

1354pegase 1354 1991 0.001086812936076 920.121546961322

2869pegase 2869 4582 0.000556859187788 1795.78611959843

9241pegase 9241 16049 0.000187956364236 5320.38382453735

13659pegase 13659 20467 0.000109710495407 9114.89822641325

RTE [34]

1951rte 1951 2596 0.000682358816649 1465.50462249615

1888rte 1888 2531 0.000710425031213 1407.60806005532

2848rte 2848 3776 0.000465698172332 2147.31355932204

2868rte 2868 3808 0.000463116335115 2159.28466386555

6468rte 6468 9000 0.00021516401379 4647.61733333334

6470rte 6470 9005 0.000215150463165 4647.91004997224

6495rte 6495 9019 0.000213829168537 4676.63044683446

6515rte 6515 9037 0.000212942382085 4696.10600863118

Polish grid snapshots [69]

2383wp 2383 2896 0.000510190958697 1960.05041436464

2746wp 2746 3514 0.000466185622538 2145.06829823563

2746wop 2746 3514 0.000466185622538 2145.06829823563

2737sop 2737 3506 0.000468188801073 2135.89047347405
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Network |V | |E| De D−1e

2736sp 2736 3504 0.000468263895571 2135.54794520548

3012wp 3012 3572 0.000393863492118 2538.95072788354

3120sp 3120 3693 0.000379497866673 2635.06092607636

3375wp 3374 4161 0.000365625347634 2735.04013458303

Caracas, Venezuela [37]

141 141 140 0.00709219858156 141

Portion of East Indian Power Distribution System [58]

22 22 21 0.045454545454546 22

New England [8, 52, 3, 55]

39 39 46 0.031039136302294 32.2173913043478

Portion of the PG&E distribution system [5]

69 69 68 0.014492753623188 69

Power Systems Test Case Archive [19]

14 14 20 0.10989010989011 9.09999999999999

ieee30 30 41 0.047126436781609 21.2195121951219

57 57 80 0.025062656641604 39.9

118 118 186 0.013472403302912 74.2258064516128

145 145 453 0.021695402298851 46.092715231788

300 300 411 0.004581939799331 218.248175182482

RTS-79 [56]

24 ieee rts 24 38 0.068840579710145 14.5263157894737

RTS-GMLC [6]

RTS GMLC 73 120 0.022831050228311 43.8

Grainger and Stevenson [30]

4gs 4 4 0.333333333333333 3

Zimmerman et. al [69]

4 dist 4 3 0.25 4

Li and Bo [40]

5 5 6 0.3 3.33333333333333

Wood and Wollenberg [66]

6ww 6 11 0.366666666666667 2.72727272727272

Schulz, Turner, and Ewart[61]

9 9 9 0.125 8
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Network |V | |E| De D−1e

9Q 9 9 0.125 8

9target 9 9 0.125 8

Baghzouz and Ertem [4]

10ba 10 9 0.1 10

Das, Nagi, and Kothari [17]

12da 12 11 0.083333333333333 12

28da 28 27 0.035714285714286 28

Das, Kothari, and Kalam [16]

15da 15 14 0.066666666666667 15

16am 15 14 0.066666666666667 15

85 85 84 0.011764705882353 85.0000000000003

Battu, Abhyankar, and Senroy [7]

15nbr 15 14 0.066666666666667 15

18nbr 18 17 0.055555555555556 18

Civanlar et. al [12, 68]

16ci 16 16 0.066666666666667 15

Mendoza et. al [45]

17me 17 16 0.058823529411765 17

Grady, Samotyj, and Noyola [29]

18 18 17 0.055555555555556 18

Alsac & Stott and Ferrero, Shahidehpour, & Ramesh [2, 25]

30 30 41 0.047126436781609 21.2195121951219

30pwl 30 41 0.047126436781609 21.2195121951219

30Q 30 41 0.047126436781609 21.2195121951219

Baran and Wu [5]

33bw 33 37 0.035037878787879 28.5405405405405

Kashem et. al [35]

33mg 33 37 0.035037878787879 28.5405405405405

Salama and Chikhani [60]

34sa 34 33 0.029411764705882 34.0000000000001

Singh and Misra [62]

38si 38 37 0.026315789473684 38

Gampa and Das [27]
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Network |V | |E| De D−1e

51ga 51 50 0.019607843137255 51

Hengsritawat et. al [32]

51he 51 50 0.019607843137255 51

Das [15]

70da 70 76 0.015734989648033 63.5526315789475

Myint and Naing [46]

74ds 74 73 0.013513513513514 74.0000000000001

Pires, Antunes, and Martins [53]

94pi 94 93 0.01063829787234 94.0000000000002

Zhang et. al [67]

118zh 118 132 0.009561060408518 104.590909090909

Mantovani et. al [43]

136ma 136 156 0.008496732026144 117.692307692308

5.7 Planarity

Out of all the bus networks, fifty-five are planar and seventeen are nonplanar. By Theo-

rem 11, we knew the substation networks associated with those planar bus networks had to

be planar as well. Out of the seventeen nonplanar bus networks, we only had the substation

data for ACTIVSg70k and SyntheticUSA; we found that those networks are also not pla-

nar. For the remaining fifteen nonplanar bus networks, we could not experimentally test the

planarity of their associated substation networks, as we did not have access to substation

data for those cases. Overall, there is no guarantee that bus and substation networks will

always be planar or nonplanar.

The full results of planarity testing are listed in Table 5.3.
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Table 5.3: Bus and substation network planarity grouped by data source

Network |V | |E| Bus planar? Substation planar?

ACTIVSg [9, 10]

ACTIVSg200 200 245 True True∗

ACTIVSg500 500 597 True True∗

ACTIVSg2000 2000 3206 True True∗

ACTIVSg10k 10000 12706 True True∗

ACTIVSg25k 25000 32230 True True∗

ACTIVSg70k 70000 88207 False False†

SyntheticUSA 82000 104121 False False†

PEGASE [34]

89pegase 89 210 False ?

1354pegase 1354 1991 True True∗

2869pegase 2869 4582 False ?

9241pegase 9241 16049 False ?

13659pegase 13659 20467 False ?

RTE [34]

1951rte 1951 2596 True True∗

1888rte 1888 2531 True True∗

2848rte 2848 3776 False ?

2868rte 2868 3808 True True∗

6468rte 6468 9000 False ?

6470rte 6470 9005 False ?

6495rte 6495 9019 False ?

6515rte 6515 9037 False ?

Polish grid snapshots [69]

2383wp 2383 2896 True True∗

2746wp 2746 3514 False ?

2746wop 2746 3514 False ?

2737sop 2737 3506 False ?

2736sp 2736 3504 False ?

∗ determined by Theorem 11

† determined by testing substation data

? unable to find substation data for this network or apply Theorem 11
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Network |V | |E| Bus planar? Substation planar?

3012wp 3012 3572 True True∗

3120sp 3120 3693 True True∗

3375wp 3374 4161 False ?

Caracas, Venezuela [37]

141 141 140 True True∗

Portion of East Indian Power Distribution System [58]

22 22 21 True True∗

New England [8, 52, 3, 55]

39 39 46 True True∗

Portion of the PG&E distribution system [5]

69 69 68 True True∗

Power Systems Test Case Archive [19]

14 14 20 True True∗

ieee30 30 41 True True∗

57 57 80 True True∗

118 118 186 True True∗

145 145 453 False ?

300 300 411 True True∗

RTS-79 [56]

24 ieee rts 24 38 True True∗

RTS-GMLC [6]

RTS GMLC 73 120 True True∗

Grainger and Stevenson [30]

4gs 4 4 True True∗

Zimmerman et. al [69]

4 dist 4 3 True True∗

Li and Bo [40]

5 5 6 True True∗

Wood and Wollenberg [66]

6ww 6 11 True True∗

∗ determined by Theorem 11

† determined by testing substation data

? unable to find substation data for this network or apply Theorem 11
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Network |V | |E| Bus planar? Substation planar?

Schulz, Turner, and Ewart[61]

9 9 9 True True∗

9Q 9 9 True True∗

9target 9 9 True True∗

Baghzouz and Ertem [4]

10ba 10 9 True True∗

Das, Nagi, and Kothari [17]

12da 12 11 True True∗

28da 28 27 True True∗

Das, Kothari, and Kalam [16]

15da 15 14 True True∗

16am 15 14 True True∗

85 85 84 True True∗

Battu, Abhyankar, and Senroy [7]

15nbr 15 14 True True∗

18nbr 18 17 True True∗

Civanlar et. al [12, 68]

16ci 16 16 True True∗

Mendoza et. al [45]

17me 17 16 True True∗

Grady, Samotyj, and Noyola [29]

18 18 17 True True∗

Alsac & Stott and Ferrero, Shahidehpour, & Ramesh [2, 25]

30 30 41 True True∗

30pwl 30 41 True True∗

30Q 30 41 True True∗

Baran and Wu [5]

33bw 33 37 True True∗

Kashem et. al [35]

33mg 33 37 True True∗

∗ determined by Theorem 11

† determined by testing substation data

? unable to find substation data for this network or apply Theorem 11
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Network |V | |E| Bus planar? Substation planar?

Salama and Chikhani [60]

34sa 34 33 True True∗

Singh and Misra [62]

38si 38 37 True True∗

Gampa and Das [27]

51ga 51 50 True True∗

Hengsritawat et. al [32]

51he 51 50 True True∗

Das [15]

70da 70 76 True True∗

Myint and Naing [46]

74ds 74 73 True True∗

Pires, Antunes, and Martins [53]

94pi 94 93 True True∗

Zhang et. al [67]

118zh 118 132 True True∗

Mantovani et. al [43]

136ma 136 156 True True∗

∗ determined by Theorem 11

† determined by testing substation data

? unable to find substation data for this network or apply Theorem 11

5.8 Discussion

We hypothesize that bus networks are either a minor-closed family or can be shown to be

part of some existing minor-closed family. The heavily-decreasing edge density and bounded

average degree suggest that they could belong to a family with bounded expansion, possibly

with polynomial expansion. Table 5.3 clearly shows that bus networks cannot universally be

included in the family of planar graphs, so other properties must be considered to provide

a classification.
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Chapter 6

CONCLUSIONS

We have established the bus network and substation network as graph-theoretical models

for electrical distribution grids and proved that the substation network of an electrical

distribution grid is a minor of the bus network of the same grid. We have also created bus

and substation networks from existing grid data and analyzed properties of those graphs.

Establishing a graph-theoretical model for electrical distribution grids provides several ben-

efits. As demonstrated in Sections 2.2 and 3.1, graph theoretical analysis can allow for

efficient algorithms. As we learn more about the properties of these networks, this could

lead to the fast solving of problems on electrical distribution grids.

6.1 Future Research

Proving that bus and substation networks are part of a graph family with polynomial ex-

pansion would be extremely helpful for future research, as demonstrated in Sections 2.2.1

and 2.2.6. The possibly constant bound average degree and sharply decreasing edge density

as |V | grows both show promise for bounded or even polynomial expansion. Though most

networks did not have substation data, Theorem 10 shows that any minor-closed graph

family that contains all bus networks will also contain all substation networks. This means

it is not necessary to have substation network data for any research regarding graph clas-

sification. Generating and testing the properties of all k-shallow minors of all the test case

would be helpful in describing a graph family containing bus networks.

Among the graph families that would be helpful to examine is the family of graphs with

crossing graphs with bounded degeneracy described by Eppstein and Gupta [23]. The road

datasets used in their study contained real-world coordinates that allowed them to greedily

find the crossing number of their road networks and create crossing graphs. The fact that

the test data we used did not have associated location information prevents us from using

the same technique as Eppstine and Gupta. As mentioned in Section 2.2.6.3.1, this is a
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hard problem, and we did not have access to enough computational power to test the bus

networks and their minors for bounded degeneracy in crossing graphs.
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11(3):150–159, 2000.

[44] M. Marek-Sadowska and M. Sarrafzadeh. The crossing distribution problem [ic

layout]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 14(4):423–433, 1995.

[45] J. E. Mendoza, D. A. Morales, R. A. Lopez, E. A. Lopez, J.-C. Vannier, and C. A.

Coello Coello. Multiobjective location of automatic voltage regulators in a radial

distribution network using a micro genetic algorithm. IEEE Transactions on

Power Systems, 22(1):404–412, 2007.

[46] S. M. Myint and S. W. Naing. Network reconfiguration for loss reduction and voltage

stability improvement of 74-bus radial distribution system using particle swarm

optimization algorithm. International Journal of Electrical, Electronics and Data

Communication, 3(6):32–38, 2015.

[47] National Renewable Energy Laboratory. Test Case Repository for High Renewable

Study.

https://www.nrel.gov/grid/test-case-repository.html#paneld14e119_3.
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