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ABSTRACT

Exploring Material Representations for Sparse Voxel DAGs

Steven Pineda

Ray tracing is a popular technique used in movies and video games to create com-

pelling visuals. Ray traced computer images are increasingly becoming more realistic

and almost indistinguishable from real-word images. Due to the complexity of scenes

and the desire for high resolution images, ray tracing can become very expensive in

terms of computation and memory. To address these concerns, researchers have exam-

ined data structures to efficiently store geometric and material information. Sparse

voxel octrees (SVOs) and directed acyclic graphs (DAGs) have proven to be suc-

cessful geometric data structures for reducing memory requirements. Moxel DAGs

connect material properties to these geometric data structures, but experience limi-

tations related to memory, build times, and render times. This thesis examines the

efficacy of connecting an alternative material data structure to existing geometric

representations.

The contributions of this thesis include the creation of a new material representation

using hashing to accompany DAGs, a method to calculate surface normals using

neighboring voxel data, and a demonstration and validation that DAGs can be used

to super sample based on proximity. This thesis also validates the visual acuity from

these methods via a user survey comparing different output images. In comparison to

the Moxel DAG implementation, this work increases render time, but reduces build

times and memory, and improves the visual quality of output images.

iv



ACKNOWLEDGMENTS

Thanks to:

• My parents, Loren and Vicki, for always supporting me and celebrating my

achievements

• My brother, Ryan, for introducing me to Cal Poly and being such a great role

model
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Chapter 1

INTRODUCTION

Ray tracing is popular in industries like movies and video games due to its ability to

simulate realistic lighting and create visually attractive images. It enables computer-

generated scenes and environments to be rendered with real-world effects like shadows

and reflections. Unfortunately, this rendering technique performs many computations

and uses a lot of memory. As scenes gain more geometry and materials, computational

and memory limitations become more apparent and grow in severity. Consequently,

a lot of computer graphics research focuses on how to improve efficiency.

1.1 Ray Tracing

Ray tracing is a rendering technique used to create 2D images of 3D worlds [15].

In this technique, rays are shot from a virtual camera through an image plane and

intersected with scene geometry to determine lighting. Ray tracing is computationally

intensive because at least one ray is shot through each pixel in the image plane. The

color of each pixel depends on several factors like which objects are hit, what materials

are associated with the hit objects, what directions the hit surfaces are facing, and

where the light sources in the scene are located. Figure 1.1 depicts a few steps of the

ray tracing algorithm.
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Figure 1.1: A diagram of the ray tracing process, which produces a 2D
image of a 3D scene containing a sphere. By Henrik [16] and licensed
under CC BY-SA 4.0.

1.2 Geometry

One of the first steps of a ray tracing program is to read in and process the geometry

in a scene. The surface of geometric objects can be approximated by a collection of

shapes, like triangles. Figure 1.2 shows a bunny triangular mesh in Blender. Mesh

files, like the OBJ files used in this thesis, store vertex and triangle connectivity

information about 3D models. OBJ files can also reference other files with material

information.
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Figure 1.2: The surface of a bunny approximated by small triangles.

1.3 Materials

Material properties determine how light interacts with objects and affect how objects

appear. Figure 1.3 shows a model rendered with different materials. Materials specify

things like the color and smoothness of objects. They can model a wide range of

surfaces such as emerald, plastic, rubber, and glass. Like geometric information,

material information is stored in a file that needs to be parsed before ray tracing a

scene. This thesis uses MTL files to store different materials. Each triangle in the

OBJ files has a material in an MTL file associated with it.
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Figure 1.3: A model rendered with different materials [4].

1.4 Moxel DAGs

This thesis is largely inspired by Brent Williams’s work with Moxel DAGs [27].

Williams created a method to connect material information to an efficient geomet-

ric data structure, High Resolution Sparse Voxel DAGs [17]. His method allows the

successful rendering of images with material information, but experiences some mem-

ory and performance limitations. The work in this thesis extends and modifies the

Moxel DAG implementation and addresses some areas that Williams recommended

for future work.
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1.5 Contributions

This thesis presents an exploration of rendering with the ultimate goal of improving

ray tracing efficiency in terms of computation and memory. This work builds on

previously explored geometric data structures, SVOs and DAGs, and examines how

to effectively store and utilize materials and scene geometry. The main contributions

of this work are listed below:

• Creation of a new material representation based on hashing to connect to DAGs

• A method to calculate surface normals so that normals do not need to be stored

in the material data structure

• Demonstration and validation that DAGs can be used to super sample based

on proximity

• Validation of visual quality via a user survey comparing output images of dif-

ferent algorithms used throughout this thesis

5



Chapter 2

BACKGROUND

This thesis focuses on efficiently representing and storing geometric and material in-

formation for ray tracing. It is useful to be familiar with some terminology related

to these concepts. This section provides background on the bidirectional reflectance

distribution function (BRDF), voxelization, spatial data structures, and Morton cod-

ing.

2.1 BRDF

The bidirectional reflectance distribution function (BRDF) defines how light is re-

flected at a given surface in a certain direction. Wynn [28] defines a BRDF as “a

function of incoming (light) direction and outgoing (view) direction relative to a local

orientation at the light interaction point.” A surface’s orientation is typically repre-

sented by a normal vector, which is a vector that is perpendicular to the surface.

Figure 2.1 shows a surface, S, and several normal vectors throughout the surface.

BRDFs are relevant to computer graphics because they provide a way to realistically

light and render scenes. This work uses the Phong Reflection Model.

Figure 2.1: Normal vectors along the curved surface, S. By Chetvorno [5].
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2.1.1 Phong Reflection Model

The Phong Reflection Model is a special case of a BRDF and is used to locally

approximate how light interacts with a surface. This model is used to calculate the

color of object surfaces that reflect into a viewer’s eye. The reflected color can be

decomposed into three components: ambient, diffuse, and specular. Figure 2.2 depicts

the contributions of each component to a final output image. The final reflected color

can be described by the following equation:

creflected = cambient + cdiffuse + cspecular

Figure 2.2: The ambient, diffuse, and specular component contributions to
a final image rendered with the Phong Reflection Model. By Brad Smith
[23] and licensed under CC BY-SA 3.0.

Ambient reflection refers to the small amount of illumination throughout scenes that

occurs due to light bouncing everywhere. The ambient reflection at a given surface

point depends on the intensity of the ambient light and the surface material. The

ambient component can be calculated by the following equation:

cambient = Ia ∗Ka,
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where Ia is the ambient light intensity and Ka is the ambient reflection coefficient. Ka

is a material property of the object being illuminated. It has a red, green, and blue

component, which are floats in the range [0.0, 1.0]. Generally, the ambient reflection

color can be thought of as the color an object would be in a shadow.

Diffuse reflection represents light that is uniformly scattered in all directions on matte

surfaces. More light gets reflected when objects are oriented toward the light source.

In other words, the diffuse component at a particular point increases as the normal of

a surface, N , aligns with the light vector, L. L is the direction from the surface point

to the light source. Figure 2.3 shows examples of the N and L vectors for a particular

scenario. The dot product operator can be used to quantify how close two vectors

align. The dot product of the normalized normal vector, N̂ , and the normalized

light vector, L̂, will be positive when they are in the same direction, 0 when they

are perpendicular, and negative when they are in opposite directions. Figure 2.2

illustrates how the diffuse component is bigger and contributes more light for regions

on the surface directed toward the light. The diffuse component can be calculated by

the following equation:

cdiffuse =
∑

all lights

Id ∗Kd ∗ (L̂ · N̂),

where Id is the diffuse light intensity, Kd is the diffuse reflection coefficient, L̂ is

the normalized light vector, and N̂ is the normalized normal vector at the surface.

Note that this equation has a summation over all lights because each light in a scene

contributes to the diffuse reflection at a certain point. Similar to Ka, Kd is a material

property of the surface. Each has a red, green, and blue component.
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Figure 2.3: A visualization of the reflected vector, R, the view vector, V ,
the normal vector, N , the half vector, H, and the light vector, L. By Ian
Dunn [10].

Specular reflection models shiny, smooth surfaces and produces specular highlights

on surfaces. Light bounces off specular surfaces like a mirror so specular reflection

is strongest along the direction of the reflected light vector, R. The view vector, V ,

is the direction from the surface point to the viewer. Figure 2.3 shows what these

vectors look like for a particular scenario. The specular component is maximized

when R = V . Its equation is

cspecular =
∑

all lights

Is ∗Ks ∗ (V̂ · R̂)α,

where Is is the specular light intensity, Ks is the specular reflection coefficient, V̂ is the

normalized view vector, R̂ is the light’s reflected vector along the surface normal, and

α is a shininess coefficient that controls the sharpness and shininess of the specular

highlights. Both Ks and α are properties of a surface’s material.

After substituting the equations for each component, the entire Phong Reflection

Model is denoted by the following equation:

creflected = Ia ∗Ka +
∑

all lights

(Id ∗Kd ∗ (L̂ · N̂)) + (Is ∗Ks ∗ (V̂ · R̂)α)
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The Phong Reflection Model is described to familiarize readers with and build an

understanding of the values associated with materials. In the equation, Ka, Kd, Ks,

and α are constants used to represent a specific material. Figure 2.4 shows the Ka,

Kd, Ks, and α values for a brass material.

Figure 2.4: The shine constant and the ambient, diffuse, and specular
reflection coefficients for a brass material. By Ostfold University College
Department for Information Technology [22].

2.2 Voxelization

A voxel, or volume element, is a single unit in a 3D grid and can be used to visualize

volumetric data. It can be thought of as the 3D equivalent of a 2D pixel. Voxels

are a useful generic representation for geometry because they break up complex ob-

jects into small building blocks. Voxel-based rendering also has great potential to

efficiently render large and detailed scenes since high-resolution voxel data can be

stored compactly and hierarchically as sparse voxel octrees (SVOs) [3].

Voxelization is the process of converting models into individual voxels that approx-

imate the objects. To voxelize a mesh, each triangle in the mesh is voxelized. One

way to voxelize a triangle is to do the following [27]:

• Calculate the bounding box around a given triangle

• Calculate the minimum and maximum x, y, and z indices into the 3D voxel grid

from the triangle’s bounding box
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• Use the minimum and maximum x, y, and z voxel indices to loop through a

subset of the voxels in the 3D voxel grid

• Test if the triangle intersects with each voxel and mark the voxel as occupied if

an intersection exists

When an intersection occurs between a triangle and a voxel, the corresponding cell in

a 3D voxel grid can be updated to store useful information. For example, the entire

base primitive (i.e., the actual triangle) and its material properties can be associated

with an occupied cell. Other methods may store the triangle’s normal coordinates

and material properties, but not the geometric representation of the triangle; these

methods use the voxel as the base primitive instead. The size of a voxel unit in a

3D voxel grid determines how detailed and accurate object approximations will be.

Smaller voxels produce better approximations but require more memory since the

number of voxels in the 3D grid increases. Figure 2.5 shows the result of voxelizing a

triangle at different resolutions. As the voxel size decreases, the edges of the triangle

become smoother.

Figure 2.5: Triangle voxelization with varying voxel sizes. The voxel size
decreases from left to right.
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2.3 Spatial Data Structures

During the ray tracing process, it is necessary to determine if each ray hits an object

in the scene. One way to do this is to loop through each object for a given ray and

perform a ray-object intersection check. However, this process can become very time

consuming as the number of objects increases. Spatial data structures attempt to

optimize the process of finding ray-object intersections by organizing objects based

on their locations in the scene. By grouping objects based on location, spatial data

structures contain information on which objects are far away from a given ray. Thus,

some objects can be skipped entirely when checking for intersections. Two common

spatial data structures are bounding volume hierarchies and octrees.

2.3.1 Bounding Volume Hierarchies

A bounding volume hierarchy (BVH) encloses the scene geometry in a series of nested

volumes [11]. It can be represented as a binary tree of bounding boxes, with each

bounding box enclosing all of the geometry beneath it. Each node stores left and

right pointers to nodes representing smaller regions of space. The leaf nodes of this

tree are individual objects and the root node is a bounding box containing all the

objects. A BVH can be constructed by sorting the objects by their center coordinates

and then splitting the object list into two groups. Each group is assigned to the left

or right attribute of a node. The subdivision repeats until each object is a leaf in the

tree. Figure 2.6 shows how a scene can be represented with a BVH. Ray tracing a

BVH can save time because the data structure prevents further traversal in parts of

the tree if a ray does not intersect with the bounding box encapsulating that subtree.
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Figure 2.6: A scene with bounding volumes (left) and a bounding volume
hierarchy graph for that scene (right). By Ian Dunn and Zoë Wood [11].

2.3.2 Octrees

An octree is another data structure that allows spatial queries. It is a tree in which

each internal node has eight children. Like bounding volume hierarchies, octrees have

nodes that correspond with specific locations in a scene. Each node represents a

cube that bounds all the geometry beneath it. To produce eight children, a node is

subdivided into eight equal-sized cubes. Figure 2.7 depicts the subdivision of certain

nodes in an octree. Octrees can be used to represent 3D voxel grids by having each

leaf node correspond to one voxel in the grid. During ray tracing, a ray is first tested

for intersection with the root node’s bounding box. If there is no intersection, then

the ray does not intersect with any of the voxels beneath the root node. If there is

an intersection, then intersections are recursively checked on the child nodes.
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Figure 2.7: Octree subdivision (left) and the corresponding octree (right).
By WhiteTimberwolf [26] and licensed under CC BY-SA 3.0.

2.4 Morton Codes

Morton encoding is a technique that maps multidimensional data into one dimension

while preserving data locality. With this method, 2D and 3D coordinates can be

converted into a single number. Furthermore, nearby coordinates’ Morton codes will

be close in value to each other. Figure 2.8 shows the process of constructing the

Morton codes from 2D points. Note that this process can be generalized to any

dimension of data. Morton codes are created by converting each coordinate to binary

and interleaving the bits. Morton order is sometimes referred to as Z-order because

the ordering of the data points makes a Z pattern.
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Figure 2.8: The Morton codes for 2D coordinates. Incrementally following
the produced Morton codes creates a Z pattern. By David Eppstein [13].

Morton codes are relevant to this thesis because they can be used to identify voxels in

a 3D grid. They also aid in constructing spatial data structures like octrees because

they provide an explicit ordering of the child nodes. Figure 2.9 depicts a quadtree

representing a 2D grid. The leaf nodes are in Morton order and each leaf corresponds

to a cell in the 2D grid. Due to the spatial locality provided by Morton coding, nearby

cells have similar Morton codes and are therefore located closely in the tree.
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Figure 2.9: A quadtree representing a 2D grid. The leaf nodes follow
Morton order and correspond to the grid cells. By Baert et al. [3].
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Chapter 3

RELATED WORK

A lot of ray tracing research goes into examining useful data structures because

data structures are important to decrease memory and render times. This section

presents relevant research on octrees, Sparse Voxel DAGs, Moxel DAGs, material

data structures, and compression techniques. High Resolution Sparse Voxel DAGs

[17] and Moxel DAGs [27] are described in a little more detail since this work primarily

builds off them.

3.1 Octrees

An octree is a 3D hierarchical spatial data structure containing nodes that can be

subdivided into eight equal and smaller regions. Each internal node has a pointer

to each of its eight children. In “Efficient Processing of Large 3D Point Clouds,”

Elseberg et al. [12] implemented an efficient octree capable of storing one billion

data points collected by autonomous robots with laser scanners. They used an octree

because they wanted a structure that stores raw data, has fast access, is memory

efficient, and allows efficient ray tracing.

3.1.1 Sparse Voxel Octrees (SVOs)

Sparse Voxel Octrees (SVOs), a popular extension of octrees, are memory efficient

because they do not need to encode empty regions of space. Sparsity can be achieved

by setting child pointers to null when the child nodes represent empty space. Null
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child pointers prevent further subdivision down empty routes. Kämpe et al. [17]

show that nodes can alternatively be implemented with a childmask and pointers to

the non-empty children. An SVO node’s childmask is eight bits where bit i is set if

child i contains geometry. The use of childmasks eliminates the need to store unused

child pointers.

Baert et al. [3] discovered an out-of-core algorithm to convert a triangle mesh into an

intermediate high-resolution 3D voxel grid. They used this voxel grid to construct an

SVO. Their algorithm handles “extremely large” triangle meshes and uses less memory

than in-core algorithms. Laine and Karras [19] created an efficient sparse voxel octree

(ESVO) to represent complex scenes on modern GPUs. They store contour data in

each voxel to help approximate the geometry. The contour data is a pair of parallel

planes matching the orientation of the surface. This additional data allows better

rendering performance because traversals of their data structure do not need to go

as deep in the tree if the current voxel’s contour provides a sufficient approximation.

Crassin et al. [6] use dynamic SVOs on the GPU to render large volumetric data

sets. Their tree structure stores a constant value or a pointer to a brick, which is a

small voxel grid that approximates the original volume at that node. The authors

state that their method achieves “interactive to real-time rendering performance for

several billion voxels.”

3.2 High Resolution Sparse Voxel DAGs

One of the core papers extended in this thesis is “High Resolution Sparse Voxel

DAGs” by Kämpe et al. [17]. Kämpe et al. first encode an N3 binary voxel grid

as an SVO. N is the number of voxels that make up the width of the voxel grid. A

binary voxel grid is a structure in which each cell is represented by one bit; the bit
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is 0 if the voxel is empty or 1 if the voxel contains geometry. An SVO can represent

an N3 voxel grid by recursively dividing an octree L times, where N = 2L. L, the

max level of the tree, is the number of levels below the root node. Each leaf node

corresponds to one voxel in the 3D grid. Figure 3.1 shows an N3 voxel grid where

N = 4 and the corresponding octree where L = 2.

Figure 3.1: An N3 voxel grid where N = 4 (left) and the corresponding
octree with 2 levels (right).

Although SVOs are an efficient geometric representation, memory becomes a bot-

tleneck for SVOs in high resolution scenes. Kämpe et al. [17] take SVOs one step

further and convert them into directed acyclic graphs (DAGs). They found that

Sparse Voxel DAGs represent binary voxel grids orders of magnitude more efficiently

than SVOs since SVOs can have a large number of redundant subtrees. To convert

SVOs into DAGs, the authors merge common subtrees, which resemble identical re-

gions of space. This merging of subtrees allows different nodes to point to the same

child. Consequently, duplicate subtrees can be removed, freeing up memory. The

authors’ algorithm to transform an SVO into a DAG does not interfere with the ray

tracing process because the traversal path from the root node to a specific leaf node

remains the same.

To reduce an SVO into a DAG, the authors propose the following method:
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• Merge identical leaf nodes

• Update the child pointers in the level above to reference the unique leaves

• Repeatedly go to the next level above and merge nodes with identical childmasks

and pointers

Figure 3.2 shows a diagram for this process.

Figure 3.2: The bottom-up algorithm to reduce an SVO into a DAG. a)
The original SVO. b) Merge identical leaf nodes and update the parent
pointers c) Reduce non-unique nodes in the level above the leaves d) The
final DAG. By Kämpe et al. [17].

Although this work cleverly constructs a memory-efficient geometric representation,

Sparse Voxel DAGs do not store material information (i.e., shine constant or ambient,

diffuse, and specular reflection coefficients). To obtain material information when ray

tracing primary rays, the authors had to query a traditional SVO that contained

the necessary material information. DAGs cannot directly store material information

because there is not a one-to-one correspondence between DAG leaf nodes and voxels

in the 3D scene. In other words, a DAG leaf node can represent the geometry for

several voxels in a scene. In contrast, an SVO leaf node represents a single, unique

voxel. Thus, SVO nodes can store a reference to material information specific to each

voxel. In following sections, some follow-on works are discussed that have explored

finding a separate material representation to accompany Sparse Voxel DAGs. This

thesis proposes a material representation based on hashing.
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Several researchers have built upon and extended different areas of Sparse Voxel

DAGs. Kämpe et al. [18] used the Sparse Voxel DAG binary voxel representation to

generate precomputed voxelized shadows. They also sped up DAG construction times

and found improved algorithms for subtree merging. Dolonius [8] notes that the faster

construction and further compressing of DAGs potentially allows the recomputation

of the DAG during run time for slowly moving shadows. Villanueva et al. [24]

also extend the work with Sparse Voxel DAGs by further merging subtrees deemed

identical through a similarity transform. They claim that their method achieves a

more efficient and lossless compression of the geometry.

3.3 Moxel DAGs

The other core paper referenced throughout this work is Brent Williams’s “Moxel

DAGs: Connecting Material Information to Sparse Voxel DAGs” [27]. Williams ex-

tended the work in [17] by creating a material representation for DAGs. His Moxel

DAG allows equivalent renders to those with traditional SVOs while using less mem-

ory.

To connect material information to DAGs, Williams added data to each DAG node

and an external table to store materials for filled voxels. The material table is ordered

by Morton code such that the material information for the voxel with the smallest

Morton code is the first element in the table. Williams’s method stores empty node

counts in each DAG node so that upon traversal of the DAG, an index into the external

material table can be calculated. The empty count associated with a particular node

represents the number of empty leaf voxels on the max level of the tree that come

before the current voxel. In Williams’s implementation, a Moxel DAG node contains

a childmask and a set of pointers to the non-empty children. The mask is allocated
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eight bytes to keep byte alignment despite only needing one byte. Williams uses

the seven unused bytes in the mask to store empty node counts for every filled child

except the rightmost child; the rightmost filled child does not need to store empty

counts because its empty count is not used in any calculations. Figure 3.3 shows the

structure of a Moxel DAG node. After reducing an SVO into a DAG, Williams’s work

traverses the DAG again to calculate and set the appropriate empty counts.

Figure 3.3: The structure of a Moxel DAG node. By Brent Williams [27].

During the ray tracing of the Moxel DAG, Williams’s algorithm keeps track of two

running sums: one for the voxel number, which is also the voxel’s Morton code,

and one for the number of empty nodes before that voxel. Both of these sums are

dependent on what path is taken through the DAG. If a ray-voxel intersection occurs,

an index into an external material table can be calculated by subtracting the empty

count from the voxel index; Williams named this offset the moxel index. The moxel

index is used to retrieve a particular voxel’s material information.

moxelIdx = voxelIdx − emptyCount
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Figure 3.4 shows the process for calculating the moxel index of voxel J2. Note

that there is a voxel named J1 and another one named J2 because there are two

different paths to leaf node J in the DAG. Voxel J1 is reached through the path

A→B→D→G→J. Voxel J2 is reached through the path A→C→F→G→J. Each filled

voxel has a cell for its material information in the Moxel Table. Since voxel J2 has a

voxel number of 14 and an empty count sum of 8, its moxel index is 6 and its material

information is stored in cell 6 of the Moxel Table.

Figure 3.4: The steps to calculate voxel J2’s moxel index. By Brent
Williams [27].

Although Williams’s implementation successfully connects a material representation

to High Resolution Sparse Voxel DAGs, it experiences some drawbacks in terms of

memory, build times, and render times. For example, the storage of empty counts for

each pointer becomes problematic in high resolution scenes since the number of empty

nodes can reach large numbers. Williams also notes that the rendering time is 1.7
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times longer with Moxel DAGs than with Sparse Voxel DAGs, and that a considerable

amount of time is taken to construct the Moxel DAG and Moxel Table. The work in

this thesis is motivated by Williams’s suggestion in his Future Work section to build

another material representation based on hashing so that empty counts no longer

need to be stored.

3.4 Other Material Structures and Material Compression

A few other papers have explored material structures to accompany Sparse Voxel

DAGs. In “Geometry and Attribute Compression for Voxel Scenes,” Dado et al.

[7] decouple voxel material attributes from the geometry. Instead of storing empty

counts like in [27], the authors store offsets in the child pointers of DAG nodes. These

offsets are based on a depth-first ordering of the nodes in the initial SVO. The offsets

allow the calculation of an index into an external attribute array, which is compressed

separately using a palette compression technique. Similar to Dado et al., Dolonius

et al. [9] in “Compressing Color Data for Voxelized Surface Geometry” decouple

geometry from material attributes and examine compression techniques. Instead of

storing a value per pointer, the authors found a way to store a value per node;

their work stores the number of voxels contained in the node’s subgraph. For color

compression, the authors incorporated an image compression technique by mapping

a 1D array of colors onto a 2D image.
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Chapter 4

IMPLEMENTATION

This chapter presents the implementation of our data structures and algorithms for

ray tracing scenes with voxelized geometry. The primary goal of these structures and

algorithms is to improve ray tracing efficiency in terms of memory and performance.

Specifically, this chapter shows a new material representation that can be connected

to Sparse Voxel DAGs. The material representation hashes voxel indices to material

properties (i.e., normal coordinates and reflectance properties). In contrast to the

structures in previous works, this material representation does not require additional

information to be stored in DAG nodes. To further reduce memory usage, a method

is implemented to calculate a voxel’s normal based on surrounding voxels. Since each

voxel’s normal is calculated with this method, the material representation no longer

needs to store normals. Lastly, this work shows that DAGs can be used to figure out

when rays intersect with closer voxels. This information allows the use of anti-aliasing

on closer objects in the scene.

4.1 Starting Code Workflow

The ray tracer used in this work was constructed from scratch using C++. Triangle

voxelization, SVO construction, DAG construction, and Moxel DAG construction

were taken from and improved upon Williams’s Moxel DAG implementation [1]. By

starting where Williams left off, this work could directly extend the Moxel DAG

implementation and immediately experiment with new features.
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The ray tracing program’s starting workflow is listed below:

1. Read and parse an OBJ file storing the scene geometric information

2. Read and parse an MTL file storing the scene material information

3. Voxelize the scene

4. Build an SVO to represent the filled voxels

5. Reduce the SVO into a Sparse Voxel DAG

6. Calculate and set the empty counts to convert DAG nodes into Moxel DAG

nodes

7. Build the Moxel Table with an entry for each filled voxel in the scene

8. Ray trace the scene with 1 ray per pixel

(a) Use the Moxel DAG for geometric queries

(b) Use the Moxel Table for normals and material information

4.2 Connecting a New Material Representation Using Hashing

Hashing is a technique that maps keys to values. In the context of this work, a

voxel index can be used as a key in a hash table to retrieve the voxel’s normal and

material information, which act as the value. Accessing the normal and material

information through a voxel’s voxel index is beneficial because no additional data

needs to be stored in each DAG node or pointer. The Sparse Voxel DAG geometric

representation can be used without any modifications since there is no longer a need

to calculate empty counts or convert DAG nodes into Moxel DAG nodes. The hash

table also eliminates the need to build the ordered Moxel Table.
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4.2.1 The Voxel Index

The voxel index can be thought of as the number of leaf nodes that come before the

voxel (from left to right) in a full SVO. For example, in a two-level SVO with every

voxel filled, the voxel with index 0 is the leftmost leaf node and the voxel with index

63 is the rightmost leaf node. Figure 4.1 displays all voxel index labels for a full,

two-level SVO.

Figure 4.1: Labeled voxel indices for each leaf node in a full, two-level
SVO. By Brent Williams [27].

As described in [27], a voxel’s index can be calculated by keeping a running sum

throughout the traversal of an SVO or a DAG. The calculation is the same for both

the SVO and DAG because the traversal path to a specific leaf voxel is equivalent

for both structures. Traversal starts at the root node and the running sum starts at

0. A value is added to the sum each time a child node is traversed to. This value

represents the number of leaf nodes before the current node that would exist in a

full SVO. In other words, it represents the number of voxels that have smaller voxel

indices than any future voxel being traversed to. This value is calculated with the

following equation:

v = c ∗ (8n−p−1),

where v is the value added to the running sum, c is the child index (0 ≤ c ≤ 7 for

an octree), n is the max level, and p is the level of the parent node (0 ≤ p ≤ n− 1).

Figure 4.2 exemplifies how to calculate the voxel index for a particular voxel in an

SVO.
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Figure 4.2: The process to calculate a voxel’s index in a two-level SVO
(n = 2). The green node represents the current node and the node circled
in red represents the target node. (a) The current node starts as the
root node and the running sum starts at 0. (b) There is a traversal to
the index 4 child (c = 4 and p = 0) and 4 ∗ (82−0−1) = 32 is added to the
running sum. (b) There is a traversal to the index 6 child (c = 6 and p = 1)
and 6 ∗ (82−1−1) = 6 is added to the running sum. The final voxel index is
32 + 6 = 38. By Brent Williams [27].

4.2.2 Hash Table Details

The tbb::concurrent unordered map container with keys of type uint64 t (un-

signed 64-bit integer) and values of custom-type ShadingData is used to implement

the hash table. This structure was chosen because it supports concurrent insertion.

The support for concurrent insertion is necessary for multithreading during triangle

voxelization since this is when entries are added into the hash table. Multithread-

ing also occurs during the actual ray tracing since this is when material informa-

tion is retrieved from the hash table. The retrieval operation for this structure is

concurrency-safe because data is only being read.

The ShadingData class has a glm::vec3 attribute for a voxel’s normal and an

unsigned int for a voxel’s material index. Since several voxels share the same mate-
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rial properties, one copy of each unique material is stored in a vector to save memory.

This vector is indexed with a material index and constructed when the MTL file is

parsed at the start of the ray tracing program. The material properties are repre-

sented by a float for the shininess constant and glm::vec3s for the ambient, diffuse,

and specular reflectance coefficients. Figure 4.3 shows how the hash table connects

voxels to material data.

The hash table material representation is constructed during triangle voxelization.

Each triangle being voxelated has three vertices and a material index. When a triangle

is found to intersect with a voxel, an entry is added to the hash table that maps the

voxel index to the voxel material information. The voxel index can be determined by

converting the x, y, and z coordinates of the hit voxel into a Morton code through

Morton encoding. The material information put into the hash table includes the

triangle’s normal and the triangle’s material index. The normal is calculated by

taking the cross product of two of the triangle’s edges.
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Figure 4.3: The process to get a voxel’s material information. (a) The
original SVO with labels for each voxel’s voxel index. The colored nodes
represent filled voxels and the white nodes represent empty voxels. The
traversal path to the voxel with index 4 is shown in red. (b) The result
of reducing the SVO into a DAG. The same traversal path for the SVO
is shown in red in the DAG to the voxel with index 4. (c) To find the
material information for this voxel, its voxel index, 4, is put through a
hash function and matched with a key in the hash table. The value, n4, 0,
contains the voxel’s normal, n4, and its material index, 0. The material
index is used to retrieve the material properties, M0, from a Material Table
that stores each unique material.
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4.3 Calculating Normals from Surrounding Voxels

In the Moxel DAG implementation, a large portion of the total used memory is due to

the material information stored in the Moxel Table. One way to reduce this memory is

to decrease the amount of information stored. In the following subsections, algorithms

are presented that calculate voxel normals based on the occupancy of neighboring

voxels. As a result, the hash table material representation no longer needs to store

normals for the filled voxels.

4.3.1 Immediate Neighbor Gradient Approach

First, a simple approach was examined to determine the plausibility of using the

Sparse Voxel DAG to calculate voxel normals. Since the DAG encodes a binary

voxel grid, it stores information on which voxels contain geometry; each voxel is

represented by 1 bit (1 if the voxel contains geometry and 0 if the voxel is empty).

When calculating a surface’s normal, it is particularly helpful to determine which

regions (i.e., voxels) around the surface are part of the surface.

This method uses information from six immediate voxel neigbors: left, right, bottom,

top, back, and front. Figure 4.4 shows a diagram of a voxel and these immediate

neighbors.
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Figure 4.4: The left, right, bottom, top, back, and front neighbors of a
particular voxel. The current voxel is colored red and the neighbors are
colored blue.

Gradients in the x, y, and z directions can be calculated to approximate the normal

by using the binary voxel information stored in the DAG; the left and right voxel

neighbors can determine the normal’s x-value, the bottom and top voxel neighbors

can determine the normal’s y-value, and the front and back voxel neighbors can

determine the normal’s z-value. The idea behind this method is that a surface’s

normal will have a higher magnitude in the direction where there is no geometry. For

example, the normal of an XZ plane would be strong in the y-direction. The following

formulas are used to calculate a voxel’s normal:

normalx = voxelleft − voxelright

normaly = voxelbottom − voxeltop
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normalz = voxelback − voxelfront

normal = normalize(< normalx, normaly, normalz >)

The value of a voxel in the formulas is the value of its bit in the Sparse Voxel DAG.

Thus, if voxelleft is filled and voxelright is empty, then voxelleft = 1, voxelright = 0,

and normalx = voxelleft−voxelright = 1−0 = 1. Morton coding enables a simple way

to determine the desired neighbors and access each neighbor’s bit of information in

the DAG. As mentioned earlier, the voxel index of the current voxel can be calculated

by keeping a running sum throughout traversal of the DAG. The voxel index is also

the voxel’s Morton code. A voxel’s x, y, and z coordinates in a 3D voxel grid can

be extracted by decoding the Morton code. With the x, y, and z coordinates of the

current voxel, the x, y, and z coordinates of the desired neighbors can be determined.

For example, the right voxel neighbor would have the coordinates x+1, y, and z. The

neighbor coordinates can be converted back into a Morton code, which represents the

neighbor’s voxel index. Lastly, the DAG is traversed to the neighbor voxel index to

determine if the target voxel is filled or not. The process for finding a current voxel’s

neighbor in the DAG is summarized below:

• Convert the current voxel’s index (Morton code) into x, y, and z values

• Determine the x, y, and z coordinates of the desired neighbor relative to the cur-

rent voxel’s x, y, and z coordinates. For example, the top neighbor’s coordinates

are x, y+1, z

• Convert the neighbor voxel’s x, y, and z coordinates into a voxel index (Morton

code)

• Traverse the DAG to the neighbor’s voxel index to determine if the neighbor

has geometry or is empty

33



Figure 4.5 shows an image rendered with the immediate neighbor gradient technique.

The lighting and shading of the bunny indicates that the calculated normals for each

voxel are generally in the correct direction. However, the shading is not smooth.

One limitation of this approach is that normals can only have discrete values since

each dimension before normalization is either -1, 0, or 1. Another limitation is that

diagonal neighbors and further neighbors are not taken into account. Although the

image does not look too appealing, it serves as a proof of concept for calculating

normals from voxel data. Since this idea showed potential, other research efforts were

explored. In the next subsection, this work presents a method that approximates

surface normals more accurately.

Figure 4.5: A render of a bunny that has its normals calculated with the
immediate neighbor gradient approach. This output image shows a lot
of noise and shading discontinuities, but it demonstrates the potential to
approximate voxel normals from surrounding voxels.
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4.3.2 Tangent Plane Approach

The next method implemented was inspired by [21] and [14]. Both of these works

construct tangent planes that approximate geometric surfaces. The building of tan-

gent planes is applicable to this work because the tangent plane’s normal can be used

as an approximation for the surface normal at a given voxel.

This work closely follows Ernerfeldt’s algorithm [14], which fits a plane to a list of

noisy 3D points. Ernerfeldt’s method is summarized below:

1. Calculate the centroid of a list of points

2. Calculate the covariance matrix of the points relative to the centroid

3. Perform a linear regression on each axis (x, y, and z)

4. Weight the results of the regression by the square of the determinant

To use this algorithm, a list of points had to be constructed to approximate the

surface around the voxel of interest. This list of points was created by including the

x, y, and z coordinates for the filled neighbor voxels within a certain-sized voxel radius

from the current voxel. The voxels within a voxel radius can be thought of as voxels

within a (2 ∗ radius + 1)x(2 ∗ radius + 1)x(2 ∗ radius + 1) bounding cube centered

at the current voxel. For example, a voxel radius of 1 (3x3x3 bounding cube) would

include all the voxels shown in Figure 4.4. For each eligible neighbor, the Sparse Voxel

DAG is traversed to determine if the neighbor voxel is filled or not. If the neighbor

voxel is filled, then its x, y, and z coordinates are added to the list. Empty voxels

are ignored since the algorithm is only interested in the voxels that approximate the

surface. Neighbor voxels that do not fit inside the boundaries of the 3D voxel grid

are also ignored.
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The left image in Figure 4.6 shows the initial render with this method to calculate

normals. The shading looks smoother than the shading from the first method, but

some regions of the bunny look incorrect. Muniz et al. [21] point out that tangent

planes can have another normal by inverting all signs of the original normal vector. To

see if the render had some normals in the wrong direction, the image on the right in

Figure 4.6 was created by flipping all the normals. The two images indicate that the

incorrectly shaded bunny regions in one image can be fixed by flipping the normals

for those regions.

Figure 4.6: Using the tangent plane normals (left) and inverting the tan-
gent plane normals (right).

Muniz et al. [21] choose the appropriate normal by casting two additional rays in

the direction of both normals. They pick the direction that goes through less solid

material. Instead of casting two more rays, this work determines which voxel cube

face that the ray intersects with and picks the direction that makes the normal go

toward this face. For example, if a ray intersects with the right face of a voxel, the

normal vector with the positive x-value is chosen. Figure 4.7 shows the image with

corrected normals.
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Figure 4.7: Bunny image with the appropriate normal directions chosen.

As mentioned earlier, the number of neighbor voxels to consider when calculating the

tangent plane is configurable. Figure 4.8 shows renders with voxel radii of 1 and 2.

(a) voxel radius = 1 (b) voxel radius = 2

Figure 4.8: Calculating normals using neighbors within one voxel of the
current voxel (left) vs. calculating normals using neighbors within two
voxels of the current voxel (right).
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4.4 Super Sampling by Proximity

Since each pixel is a square and its color is determined by a single ray, the edges on

ray traced objects can appear noisy or jagged (See Figure 4.9).

Figure 4.9: The dragon image without super sampling and a closeup of
the jagged edges.

One way to reduce aliasing is through super sampling. For the super sampling method,

an individual pixel is divided into an n x n grid. A ray is shot through each cell in

the pixel and the colors from the n2 rays are averaged for each pixel. With super

sampling, edge colors blend with background colors to produce smoother transitions.

Figure 4.10 shows the dragon image created by using a 4x4 grid of super samples for

each pixel.

38



Figure 4.10: The dragon image with super sampling and a closeup of the
smoother and blended edges.

Although super sampling produces subjectively better images, it increases the com-

putational cost since more rays have to be processed. Super sampling with a 4x4 grid

of super samples for each pixel is predicted to be 16 times the original work. This

work proposes to only perform super sampling on certain parts of the scene to reduce

some computation. It would be ideal if input OBJ files specified which areas to give

more attention and detail. Since there is no such specification, a general approach

was implemented to perform super sampling on pixels that represent closer locations

in the scene. Once an intersection is detected, Morton decoding is used on the voxel

index to figure out the x, y, and z coordinates of the hit voxel. Since each coordinate

ranges from 0 to n − 1, where n is the number of voxels that span one side of the

3D voxel grid, it is possible to determine which voxels’ z coordinates are close to the

virtual camera. A voxel’s z coordinate is in the top 50% of closest z coordinates for

the entire voxel grid if the z coordinate is greater than (n−1)/2. If the current voxel’s

z coordinate is greater than (n− 1)/2, the pixel is super sampled and the colors from

all the rays are averaged. If the z coordinate is less than or equal to (n− 1)/2, then

the color from the single ray sample is used.
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Figure 4.11 shows a scene with the closest voxels colored in red and the same scene

with super sampling on the red region.

Figure 4.11: Sponza scene showing the locations that get super sampled.
The red region represents filled voxels in the front half of the 3D voxel grid
(left). The right image shows the same Sponza scene with super sampling
performed on the red region.

4.5 Final Code Workflow

This work has examined new ways to represent and connect the geometry and ma-

terials used for ray tracing voxelized scenes. First, this work created a hash table

material structure to accompany Sparse Voxel DAGs during ray tracing. The new

material representation eliminates the need to construct a Moxel Table and calculate

empty counts. This work also implemented a method to calculate voxel normals using

the Sparse Voxel DAG to optimize memory usage. Lastly, this work demonstrated

the ability to super sample certain regions of a scene, allowing anti-aliasing on closer

objects.

The updated and final workflow of this work’s ray tracing program is listed below:

1. Read and parse an OBJ file storing the scene geometric information
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2. Read and parse an MTL file storing the scene material information

3. Voxelize the scene and construct the hash table

4. Build an SVO to represent the filled voxels

5. Reduce the SVO into a Sparse Voxel DAG

6. Ray trace the scene with multiple rays for closer voxels

(a) Use the Sparse Voxel DAG for geometric queries and to calculate normals

(b) Use the hash table for material information
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Chapter 5

RESULTS AND VALIDATION

This thesis has presented a new material representation for Sparse Voxel DAGs, a

method to approximate normals, and a technique to super sample certain regions

of a scene. This section analyzes how each part of this work affects memory and

performance and provides comparisons with Moxel DAGs. This section also includes

the results of a user survey regarding the visual quality of this work’s output images.

5.1 Test Environment

The ray tracing program was run on a 2020 MacBook Air with 16 GB of RAM and

a 1.1 GHz Quad-Core Intel Core i5 processor. Like the Moxel DAG implementation,

the code for this thesis is written in C++ and uses Threading Building Blocks for

multithreading.

5.2 Comparisons

This work is compared with the Moxel DAG implementation to contextualize the

effectiveness (or ineffectiveness) of the changes presented in this thesis. The Moxel

DAG code [1] was ran on the same laptop to control for the testing environment. A

few modifications were made to Williams’s code so that the implementations could be

compared more accurately. For example, the ray generation functionality was altered

so that both ray tracers would shoot rays to the same locations in each pixel. The

Moxel DAG ray tracer was also changed to produce images that matched this work’s
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output image sizes (640 x 480) so that both ray tracers would trace the same number

of rays. Lastly, the Moxel DAG ray tracer was modified to use a single light source.

5.3 Benchmark Scenes

The results were collected by using five different benchmark scenes: Bunny, Buddha,

Dragon, Sponza, and Conference Room. Figure 5.1 shows the renders of these bench-

mark scenes using the hash table material representation, normals calculated for each

voxel, super sampling for all pixels, and one point light.

The bunny, Buddha, and dragon scenes contain remeshed Stanford models. These

test scenes were taken directly from the Moxel DAG code base [1]. Note that the Toy

Store scene from the Moxel DAG implementation was not used because it was not

included in the GitHub repository. To test the ray tracers on bigger scenes with more

geometry and materials, the Dabrovic Sponza and Conference Room meshes were

acquired from the McGuire Computer Graphics Archive [20]. Blender was used to

import both of these meshes, edit out some geometry, and orient the models. Blender

was also used to subdivide the Sponza model to increase its triangle count. Table 5.1

provides specific information about each benchmark scene.

Table 5.1: The number of triangles and materials for each benchmark
scene.

Scene Number of Triangles Number of Materials
Bunny 29,822 1
Buddha 100,014 1
Dragon 100,012 5
Sponza 328,131 19
Conference 322,457 32
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(a) Bunny (b) Buddha

(c) Dragon

(d) Sponza (e) Conference Room

Figure 5.1: The benchmark scenes used for testing the ray tracer.
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5.4 Analysis

In the following sections, the main three parts of this thesis are analyzed with a focus

on memory and running times.

5.4.1 Part 1: Hash Table Material Representation

This part examines how the hash table material representation compares to the Moxel

DAG implementation in terms of memory, build times, and render times. Both ray

tracers were run on the five benchmark scenes at three different voxel resolutions

(2563, 5123, and 10243). Each timing statistic is an average of three program runs.

5.4.1.1 Memory

The memory results are shown in Table 5.2. The left table compares the Sparse Voxel

DAG in this work to the Moxel DAG in Williams’s implementation. The results show

that the Sparse Voxel DAG memory is only a fraction of the Moxel DAG memory in

all scenarios. An advantage of the hash table material representation is that no extra

data needs to be stored in each node to retrieve the correct material information. In

contrast, Moxel DAGs store empty counts for each pointer so that an offset can be

calculated into the external Moxel Table. The difference in memory between Sparse

Voxel DAGs and Moxel DAGs is solely due to the empty counts.

The right part of Table 5.2 shows the memory comparisons between the hash table

and Moxel Table. In all scenarios, the hash table uses more memory than the Moxel

Table. The increased memory is due to the fact that hash tables have to store keys

along with the values. The hash table has keys of type uint64 t (unsigned 64-bit

integer) because each key is a voxel index. Since both tables have an entry for every
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voxel that has geometry, the hash table increasingly uses more memory than the

Moxel Table as the number of filled voxels increases. It is important to note that the

material representations use significantly more memory than the DAGs. In Table 5.2,

the material representations are measured in MB whereas the DAGs are measured

in KB. The memory saved by using Sparse Voxel DAGs without empty counts is not

nearly enough to counteract the increased memory resulting from the hash table’s

storage of keys for filled voxels. Overall, this work’s method uses roughly 1.49 times

the memory of the Moxel DAG implementation.

Table 5.2: Comparing the memory requirements between this work’s im-
plementation (Sparse Voxel DAG, Hash Table) and Williams’s implemen-
tation (Moxel DAG, Moxel Table) on different scenes at different resolu-
tions.

(a) Sparse Voxel DAG vs. Moxel DAG Memory (b) Hash Table vs. Moxel Table Memory

5.4.1.2 Build Times

The build times for this work’s data structures are shown in Table 5.3. The timings

for voxelization, hash table construction, and DAG construction are included. Note
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that voxelization and hash table construction are timed together since the hash table

material representation is constructed during voxelization.

The build times for Williams’s data structures are shown in Table 5.4. This ta-

ble includes the time for voxelization, Moxel DAG construction, and Moxel Table

construction. Williams does not build a hash table material representation in his

voxelization step, but he does create another map structure that this work’s voxeliza-

tion algorithm does not; when a triangle intersects with a voxel, Williams’s method

maps the voxel index to the triangle’s index in a vector of all triangles. Williams’s

work later uses this map to fill the Moxel Table with material information for each

voxel that contains geometry.

Table 5.3: My build times
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Table 5.4: Moxel build times

This work’s build times for each benchmark scene are significantly faster than the

Moxel implementation build times. It was particularly interesting that this work’s

voxelization times were roughly two to four times faster than Williams’s voxelization

times. Since both algorithms perform the same intersection tests on each triangle

and construct maps with voxel indices as keys, the times were expected to be similar.

After examining both algorithms more closely, a few differences were found that likely

contributed to the time difference. First, during triangle voxelization, the Moxel DAG

implementation constructs a bigger bounding cube around the triangle than this work

does. Consequently, the Moxel DAG implementation performs several more voxel-

triangle intersection tests. As another difference, the Moxel DAG implementation
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uses a custom Vec3 class to represent 3D vectors whereas this work uses the GLM

library.

The results also show that Moxel DAG and Moxel Table construction take a large

percentage of the total build time. As expected, the Moxel DAG construction takes

longer than the Sparse Voxel DAG construction. The Moxel DAG build time consists

of the time to build the Sparse Voxel DAG and the time to traverse the Sparse Voxel

DAG to fill it with empty counts. The Moxel Table construction time is so large

because it loops through every single voxel, tests if the voxel contains geometry, and

writes the material information into the table if the voxel is full.

Overall, this work’s method to connect material information to the Sparse Voxel

DAG with a hash table produces a big speedup in build times. A big advantage of

this method is that the material representation can be constructed quickly during

voxelization. The timings even show that the voxelization, hash table construction,

and Sparse Voxel DAG construction times together are only a percentage of the Moxel

Table construction times.

5.4.1.3 Render Times

The rendering times in Table 5.5 represent how long it took to ray trace and produce

a 640x480 output image with five samples per pixel.
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Table 5.5: Sparse Voxel DAG vs. Moxel DAG render times

Similar to Williams’s finding, the Moxel DAG takes on average about 1.7 times longer

to render images than the Sparse Voxel DAG. The difference in times can be attributed

to the different methods for retrieving material information. For this work’s imple-

mentation, a running sum is kept during DAG traversal to determine the voxel index.

This voxel index is used to retrieve materials from a hash table. For the Moxel DAG

implementation, two running sums are kept during DAG traversal for the voxel index

and the empty counts. These values are used to calculate an offset to index into the

Moxel Table.

5.4.1.4 Part 1 (Hash Table) Summary

The use of a hash table allows the use of the Sparse Voxel DAG without any changes,

enables elements to be inserted in any order, and reduces the number of calculations
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during ray tracing. The results show that the hash table material representation

performs better than the Moxel DAG in terms of build times and render times for all

benchmark scenes and all voxel resolutions.

On the other hand, the hash table material representation uses more memory than the

Moxel DAG implementation. Initially, it was predicted that the hash table method

would save memory overall by removing the need to store empty counts in the DAG.

Although the Sparse Voxel DAG did use less memory than the Moxel DAG, the

hash table took up much more memory than expected. The material data structures

(hash table and Moxel Table) use significantly more memory than the geometric data

structures (Sparse Voxel DAG and Moxel DAG). Since this work’s method increased

the memory of the material data structure, the reduced memory from the geometric

structure proved insignificant. The large memory requirements of the hash table

inspired Part 2 of this work, in which the hash table’s memory footprint is reduced.

5.4.2 Part 2: Calculating Own Normals

This section analyzes the effects of calculating normals from surrounding voxels in-

stead of saving normals in the hash table. For these results, a voxel radius of two

was used when calculating a voxel’s normal. Build times are not included in the

analysis since the hash table construction only required a minor change and the DAG

construction required no changes.

5.4.2.1 Memory

The memory of the hash table material representation without normals is shown in

Table 5.6. In comparison to the hash table with normals and the Moxel Table (See

Table 5.2), the hash table without normals uses significantly less memory. It uses
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about 50% of the hash table with normals memory and about 75% of the Moxel

Table memory. Storing normals in the material data structure is memory expensive

because it requires three float values for every voxel with geometry.

Table 5.6: The memory for the hash table without normals. This updated
hash table maps a voxel index to a material index.

5.4.2.2 Render Times

Although calculating normals for each voxel saves a bunch of memory, it comes at

the cost of rendering time. Previously, voxel normals were quickly retrieved from the

hash table. The process of calculating a voxel’s normal requires traversing the DAG

several times to determine which neighbor voxels are full for approximating a tangent

plane. The updated render times with this process are included in Table 5.7. The

timings reveal that the normal calculations increase the render time in all scenarios

when compared to the Part 1 implementation render times (See Table 5.5). When

compared to the Moxel DAG render times (Table 5.5), the updated render times

are somewhat similar, but slightly larger, for most of the benchmark scenes. One

exception is the Sponza benchmark as the updated render times are smaller than the

Moxel DAG render times for all three voxel resolutions. One likely explanation is that

more ray-voxel intersections occur in the Sponza scene since most of the visible space
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in the image is filled by geometry. As a result, the Moxel DAG implementation would

spend more time calculating the running sum for empty counts during ray tracing.

Table 5.7: The render times for the ray tracer when calculating normals
for each filled voxel instead of retrieving saved normals in the hash table.

5.4.2.3 Visual Quality

Ray tracing with calculated normals from surrounding voxels altered the output im-

ages in terms of visual quality. Figure 5.2 shows what one of the benchmark scenes

looks like before and after this modification.

(a) Before (b) After

Figure 5.2: Using triangle face normals saved in the hash table (left) vs.
calculating normals from surrounding voxels (right).
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The left image uses the normals saved in the hash table. The saved normal for a

particular voxel is the face normal of the triangle that intersected with that particular

voxel. Thus, voxels that approximate the same triangle get the same normal. Several

areas in the left image, like the Buddha’s belly, are segmented and shaded flatly since

the voxels that make up each triangle use the same normal. The right image has a

smoother look because normals are being calculated for each specific voxel, allowing

a more accurate approximation of the surface.

5.4.2.4 Part 2 (Calculating Own Normals) Summary

The Part 2 results indicate that calculating normals from surrounding voxels instead

of saving the triangle face normals in the hash table saves a significant amount of

memory. However, calculating normals is extra work that causes the render time to

become slightly slower than the render times with Moxel DAGs for most benchmark

scenes. It was also shown that calculating normals for each voxel alters the shading

on the output images. Part 3 of this work also affects the visual quality of the output

images.

5.4.3 Part 3: Super Sampling

Figure 4.10 exemplified how super sampling a scene could produce smoother and

blended edges. Super sampling times are presented here to quantify the cost of super

sampling and to compare full super sampling to this work’s method of super sampling

by proximity.
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5.4.3.1 Render Times

Table 5.8 shows the super sampling timings for this work’s program executions. The

scenes were timed with 1 sample per pixel (spp) as a baseline. Timings with 16 spp

for every pixel and 16 spp for pixels representing geometry in the closest 50% of voxels

were also collected.

Table 5.8: The render times with different levels of super sampling (1 spp,
16 spp, and 16 spp for the closest 50% of voxels).
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The timing results reveal that super sampling is a computationally expensive process.

They also validate the expectation of the render time to increase by a factor of the

number of ray samples per pixel. For example, super sampling with 16 samples per

pixel roughly increases the render time by a factor of 16. This finding makes sense

intuitively since ray tracing 16 rays per pixel versus one ray per pixel is 16 times the

work.

The results also show that only super sampling pixels with close ray-voxel intersections

reduces the time compared to super sampling all pixels. The super sampling by

proximity method takes about half the time for all benchmark scenes except the

Sponza scene.

The Sponza scene differs from the other benchmark scenes in that a large percentage

of the rendered image is closer to the virtual camera. Figure 5.3 displays the regions

in red that are super sampled for each of the benchmark scenes. The Sponza image

is mostly red, indicating that most of the image is nearby geometry. Note that the

bunny and Buddha images contain red regions around the models. These red outlines

occur because the bunny and Buddha models are encapsulated in a box. Although

super sampling the closest geometry does well for the Sponza and Conference scenes,

this method has limitations. For example, none of the Buddha model gets super

sampled since it is spatially located in the back half of the scene.
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(a) Bunny (b) Buddha

(c) Dragon

(d) Sponza (e) Conference Room

Figure 5.3: Regions that get super sampled for each benchmark scene with
the super sampling by proximity method are colored in red.
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5.4.3.2 Qualitative Comparison

Some of the results from super sampling by proximity can be seen in Figure 5.4.

The left column contains ray traced images using 16 samples per pixel on nearby

geometry. The right column contains ray traced images using 16 samples per pixel

for every pixel. The images are placed next to each other to highlight any differences.

After an initial glance, the two techniques seem to produce nearly identical images.

It is difficult to find differences on the full-sized images by eyeballing them. This

difficulty reveals that super sampling by proximity can produce comparable renders.

Although not examined in this thesis, one method to identify differences is to compare

the pixel values between the two images. Zooming into specific regions in the back half

of scenes reveals that the fully super sampled approach reduces noise and produces

smoother images; the head and neck outlines of the dragon appear less jagged, the

half-circle ridges in the back seem smoother in the Sponza image, and the back chairs

seem to be blended more smoothly in the Conference scene.

5.4.3.3 Part 3 (Super Sampling) Summary

Overall, the results show that ray tracing with more rays significantly increases ren-

dering time. If speed is a concern, super sampling by proximity is a viable method.

It works best when the most important objects are located closer in the scene, but

the algorithm can easily be tuned to super sample localized regions other than the

front half. For example, the algorithm can be modified to super sample the right

side of images or the top-right corner. Although super sampling every pixel produces

subjectively higher quality images, selectively super sampling by proximity reduces

render time and produces comparable output images.
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Super Sampling by Proximity Super Sampling Every Pixel

Figure 5.4: Images created by super sampling pixels that represent ge-
ometry in the front half of the scene (left) vs. images created by super
sampling all pixels (right).
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5.5 Visual Quality Survey

Since several of this work’s algorithms affect the quality of the output images, a survey

was crafted and dispensed to learn about how people would rank the techniques. A

Google Forms survey was sent to people in the Cal Poly Graphics Group, some

students in a Cal Poly introductory computer science course (CPE 101), and a few

friends. Respondents were allowed and encouraged to send out the survey link to any

of their friends. The survey had a total sample size of n = 31.

5.5.1 Survey Content

The survey consists of five main parts (one for each benchmark scene). In each part,

four images of a cropped and zoomed in region of each benchmark scene were dis-

played. Each image was rendered using one of four configurations: using the triangle

face normals (baseline), calculating normals with a voxel radius of one (neighbor1),

calculating normals with a voxel radius of two (neighbor2), and super sampling every

pixel with 16 rays per pixel (super sampling). The baseline configuration is the one

used in the Moxel DAG implementation [27]. The neighbor1 and neighbor2 configu-

rations are the ones used in this thesis to approximate the tangent plane of a surface

from surrounding voxels. The super sampling configuration calculates normals with

a voxel radius of two and sends 16 rays per pixel to determine each pixel’s color.

The order of the four images was randomized in each part of the survey. Respondents

were asked to rank the images in terms of visual quality from best to worst. Since

visual quality was never explicitly defined and the act of ranking images is a subjective

process, respondents were asked to explain the criteria they used for their best image

choices. The entire Visual Quality Survey is provided in Appendix A.
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5.5.1.1 Survey Results

Below are the ranking results from the Visual Quality Survey for each benchmark

scene.

Figure 5.5: Bunny survey results

Figure 5.6: Buddha survey results
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Figure 5.7: Dragon survey results

Figure 5.8: Sponza survey results

Figure 5.9: Conference survey results
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5.5.1.2 Survey Analysis

The survey results indicate that super sampling produced the best images followed by

the neighbor2 method. The baseline approach and the neighbor1 method received the

lowest rankings. The baseline approach ranked worst for the Sponza and Conference

benchmarks, and neighbor1 scored the worst for the Bunny and Dragon scenes. Both

methods scored equally for second worst and worst on the Buddha scene.

After each ranking question, respondents were asked to explain the criteria or factors

they used to choose the best images. Most of the survey participants stated that

they judged images based on smoothness; they ranked images higher if the images

appeared smoother than the others. Many focused on the blending of colors and the

smoothness of the object outlines and edges. The people who did not choose super

sampling as the best method often indicated that the more rough and grainy images

looked more realistic, detailed, and textured. Some participants even indicated that

the smoother and blended images appeared blurry.

The survey results validated some expectations and produced insight on design deci-

sions. Since neighbor1 always ranked lower than neighbor2, it can be deduced that

the neighbor1 approach did not consider enough voxel neighbors to accurately con-

struct tangent planes and normals for each surface. A voxel radius of two seems to be

a good choice since neighbor2 consistently scored higher than the baseline method.

The results also show that super sampling scored the best on all benchmarks. How-

ever, some responses indicated that super sampling sometimes produced blurriness

or removed sharpness from images. Future work could examine the effect of different

super sampling rates on image quality. It would have also been interesting to learn

about if people could tell a difference between a fully super sampled image versus a

partially super sampled image by proximity.
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Chapter 6

CONCLUSION

This thesis presented a new way to connect material information to Sparse Voxel

DAGs during ray tracing. This work exemplifies several tradeoffs between memory,

performance, and visual quality. Although the hash table material representation

decreased build and render times and allowed the DAG to use less memory than

a Moxel DAG, the hash table structure caused this work to use significantly more

memory than the Moxel DAG implementation. To decrease memory requirements,

surface normals for each voxel were approximated by calculating a tangent plane from

surrounding voxels. This method greatly reduced memory and improved the visual

quality of images, but the extra calculations increased the render times for most

benchmark scenes. Lastly, super sampling was implemented and further improved

visual quality at the cost of rendering time.

In comparison to the Moxel DAG implementation, the final implementation in this

work overall decreased memory usage, decreased build times, improved visual quality,

and increased render times. Although the rendering time of this work was slower, the

added rendering time was smaller than the the build time saved. In other words, the

total build and render times for this work were faster than the Moxel DAG build and

render times.

6.1 Future Work

The ray tracing implementation used in this work only traces primary rays and shades

with the Phong BRDF so future work could explore how to incorporate other features
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efficiently with the Sparse Voxel DAG and hash table representation. Some features

to examine include shadows and textures.

Similar to the findings in the Moxel DAG implementation, a majority of memory

usage is due to the material data representation. For large resolution scenes and

scenes with many more materials, it would be necessary to implement algorithms for

material data compression.

Another direction of future work is tuning the different parameters of this imple-

mentation to find the best configurations. Some parameters of interest are the voxel

radius for approximating surface normals, the voxels used for super sampling, and

the number of rays to super sample with.
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APPENDICES

Appendix A

VISUAL QUALITY SURVEY

For my thesis, I implemented different techniques that affect the quality of output

images. I created this survey to see how people would perceive and compare the

techniques. This survey asks you to rank images based on visual quality and to

explain your choices. Thank you for your time!
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(1/5) Rank the bunny images in terms of visual quality in the next question. Please
zoom in to see the differences if necessary.



Rank the bunny images in terms of visual quality from best to worst.

Best Second Best Second Worst Worst

Bunny Image 1

Bunny Image 2

Bunny Image 3

Bunny Image 4

Bunny Image 1

Bunny Image 2

Bunny Image 3

Bunny Image 4

For the bunny image that you chose as "Best", what criteria did you use and/or
what factors made this image better than the others?

Your answer



(2/5) Rank the Buddha images in terms of visual quality in the next question.
Please zoom in to see the differences if necessary.



Rank the Buddha images in terms of visual quality from best to worst.

Best Second Best Second Worst Worst

Buddha Image 1

Buddha Image 2

Buddha Image 3

Buddha Image 4

Buddha Image 1

Buddha Image 2

Buddha Image 3

Buddha Image 4

For the Buddha image that you chose as "Best", what criteria did you use and/or
what factors made this image better than the others?

Your answer



(3/5) Rank the dragon images in terms of visual quality in the next question.
Please zoom in to see the differences if necessary.



Rank the dragon images in terms of visual quality from best to worst.

Best Second Best Second Worst Worst

Dragon Image 1

Dragon Image 2

Dragon Image 3

Dragon Image 4

Dragon Image 1

Dragon Image 2

Dragon Image 3

Dragon Image 4

For the dragon image that you chose as "Best", what criteria did you use and/or
what factors made this image better than the others?

Your answer



(4/5) Rank the Sponza images in terms of visual quality in the next question.
Please zoom in to see the differences if necessary.



Rank the Sponza images in terms of visual quality from best to worst.

Best Second Best Second Worst Worst

Sponza Image 1

Sponza Image 2

Sponza Image 3

Sponza Image 4

Sponza Image 1

Sponza Image 2

Sponza Image 3

Sponza Image 4

For the Sponza image that you chose as "Best", what criteria did you use and/or
what factors made this image better than the others?

Your answer



(5/5) Rank the conference room images in terms of visual quality in the next
question. Please zoom in to see the differences if necessary.



Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Rank the conference room images in terms of visual quality from best to worst.

Best Second Best Second Worst Worst

Conference
Image 1

Conference
Image 2

Conference
Image 3

Conference
Image 4

Conference
Image 1

Conference
Image 2

Conference
Image 3

Conference
Image 4

For the conference room image that you chose as "Best", what criteria did you
use and/or what factors made this image better than the others?

Your answer

Additional comments or feedback on anything (optional)

Your answer

Submit

 Forms
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