
MODELING AND SOLVING THE OUTSOURCING RISK MANAGEMENT

PROBLEM IN MULTI-ECHELON SUPPLY CHAINS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Industrial Engineering

by

Arian Nahangi

June 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/479135923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

© 2021

Arian Nahangi

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Modeling and Solving the Outsourcing Risk

Management Problem in Multi-Echelon

Supply Chains

AUTHOR:

Arian Nahangi

DATE SUBMITTED:

June 2021

COMMITTEE CHAIR:

Mohamed Awwad, Ph.D.

Assistant Professor of Industrial Engineering

COMMITTEE MEMBER: Reza Pouraghabagher, Ph.D.

Professor of Industrial Engineering

COMMITTEE MEMBER:

Ahmed Deif, Ph.D.

Associate Professor of Operation and Supply

Chain Management

iv

ABSTRACT

Modeling and Solving the Outsourcing Risk Management Problem in Multi-Echelon

Supply Chains

Arian Nahangi

Worldwide globalization has made supply chains more vulnerable to risk factors,

increasing the associated costs of outsourcing goods. Outsourcing is highly beneficial for

any company that values building upon its core competencies, but the emergence of the

COVID-19 pandemic and other crises have exposed significant vulnerabilities within

supply chains. These disruptions forced a shift in the production of goods from

outsourcing to domestic methods.

This paper considers a multi-echelon supply chain model with global and domestic raw

material suppliers, manufacturing plants, warehouses, and markets. All levels within the

supply chain network are evaluated from a holistic perspective, calculating a total cost for

all levels with embedded risk. We formulate the problem as a mixed-integer linear model

programmed in Excel Solver linear to solve smaller optimization problems. Then, we

create a Tabu Search algorithm that solves problems of any size. Excel Solver considers

three small-scale supply chain networks of varying sizes, one of which maximizes the

decision variables the software can handle. In comparison, the Tabu Search program,

programmed in Python, solves an additional ten larger-scaled supply chain networks.

Tabu Search’s capabilities illustrate its scalability and replicability.

v

A quadratic multi-regression analysis interprets the input parameters (iterations,

neighbors, and tabu list size) association with total supply chain cost and run time. The

analysis shows iterations and neighbors to minimize total supply chain cost, while the

interaction between iterations x neighbors increases the run time exponentially.

Therefore, increasing the number of iterations and neighbors will increase run time but

provide a more optimal result for total supply chain cost. Tabu Search’s input parameters

should be set high in almost every practical case to achieve the most optimal result.

This work is the first to incorporate risk and outsourcing into a multi-echelon supply

chain, solved using an exact (Excel Solver) and metaheuristic (Tabu Search) solution

methodology. From a practical case, managers can visualize supply chain networks of

any size and variation to estimate the total supply chain cost in a relatively short time.

Supply chain managers can identify suppliers and pick specific suppliers based on cost or

risk. Lastly, they can adjust for risk according to external or internal risk factors.

Future research includes expanding the supply chain network design, adding parts, and

considering scrap or defective products. In addition, one could incorporate a multi-

product dynamic planning horizon supply chain. Overall, considering a hybrid method

combining Tabu Search with genetic algorithms, particle swarm optimization, simulated

annealing, CPLEX, GUROBI, or LINGO, could provide better and faster results.

Keywords: Multi-echelon supply chain, globalization, supply chain risk management,

outsourcing, linear program, multi-regression, Tabu Search.

vi

ACKNOWLEDGMENTS

I am grateful for Dr. Mohamed Awwad’s service as my advisor providing valuable

guidance in this paper’s construction.

Also, I would like to acknowledge Terry Wambolt for his aid in programming the Tabu

Search algorithm presented in this paper.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES ... x

LIST OF FIGURES... xi

CHAPTER

1. INTRODUCTION .. 1

1.1 Outline.. 1

1.2 Background .. 1

1.2.1 Supply Chain Networks .. 2

1.2.2 Supply Chain Risks... 3

1.2.3 Outsourcing .. 4

1.3 Motivation .. 5

1.4 Main Contributions ... 7

2. LITERATURE REVIEW ... 8

2.1 Supply Chain Risk Management .. 8

2.2 Supply Chain Network Design... 9

2.3 Outsourcing .. 11

2.4 Metaheuristics... 14

2.5 Literature Review Summary .. 16

2.6 Literature Contributions .. 16

3. MATHEMATICAL MODEL FORMULATION ... 19

3.1 Problem Description.. 19

3.2 Key Assumptions .. 20

3.3 Limitations ... 21

3.4 Nomenclature.. 22

3.5 Decision Variables .. 23

3.6 Objective Function .. 24

3.6.1 Objective Function Costs .. 24

3.6.1.1 Domestic Supplier Cost... 25

3.6.1.2 Global Supplier Cost... 26

3.6.1.3 Plant Production Cost ... 27

viii

3.6.1.4 Plant-Warehouse Cost... 28

3.6.1.5 Warehouse-Market Cost.. 29

3.6.1.6 Market Cost.. 29

3.6.1.7 Total Supply Chain Cost ... 30

3.7 Constraints.. 30

3.8 Experimental Results... 32

4. TABU SEARCH HEURISTIC.. 37

4.1 Tabu Search .. 37

4.2 Tabu Search Pseudocode ... 38

4.2.1 Algorithm 1: Develop a Solution ... 39

4.2.2 Algorithm 2: Tabu Search ... 39

4.3 Tabu Search Problem Instances ... 39

4.4 Tabu Search Data Parameters .. 41

4.5 Tabu Search Results .. 42

5. STATISTICAL ANALYSIS ... 46

5.1 Statistical Analysis Software and Data ... 46

5.2 Regression Analysis of Total Supply Chain Cost .. 46

5.2.1 Quadratic Multi-Regression .. 47

5.2.2 Predictor Association .. 49

5.2.3 VIF and Goodness of Fit ... 51

5.2.4 Collinearity and Outliers ... 52

5.2.5 Assumptions Check .. 53

5.2.6 Stepwise Analysis ... 57

5.3 Regression Analysis of Run Time .. 60

5.3.1 Quadratic Multi-Regression .. 61

5.3.2 Predictor Association .. 62

5.3.3 VIF and Goodness of Fit ... 64

5.3.4 Collinearity and Outliers ... 65

5.3.5 Assumptions Check .. 66

5.3.6 Stepwise Analysis ... 70

5.4 Statistical Analysis Key Takeaways ... 73

6. CONCLUSION AND FUTURE RESEARCH ... 75

6.1 Conclusion.. 75

ix

6.2 Contributions .. 76

6.2.1 Research... 76

6.2.2 Practical ... 77

6.2.3 Business ... 78

6.2.4 Scientific .. 79

6.3 Future Research .. 80

REFERENCES .. 82

APPENDICES

A. Tabu Search Results for Statistical Analysis .. 88

B. Tabu Search Python Code... 94

B.1 Edge.py .. 94

B.2 Node.py .. 98

B.3 Graph.py... 104

B.4 Solution.py ... 108

B.5 Tabu.py .. 112

B.6 Tabu.py .. 114

C. Edge Data Generator Python Code .. 116

x

LIST OF TABLES

Table Page

2-1: Summary of Contributions to Literature ... 17

3-1: Model Notations and Descriptions ... 22

3-2: Model Decision Variables.. 24

3-3: Excel Solver Results.. 35

4-1: Tabu Search Problem Instances.. 40

4-2: Tabu Search Data Parameters .. 42

4-3: Tabu Search Results .. 43

5-1: Total Supply Chain Cost Regression Analysis .. 48

5-2: Correlation Analysis of Independent Variables ... 52

5-3: Unusual Observations of Total Supply Chain Cost ($) .. 53

5-4: Total Supply Chain Cost Stepwise Regression Analysis Results............................ 59

5-5: Run Time Regression Analysis .. 61

5-6: Correlation Analysis of Independent Variables ... 65

5-7: Unusual Observations of Run Time (s)... 66

5-8: Run Time Stepwise Regression Analysis Results.. 71

xi

LIST OF FIGURES

Figure Page

1-1: Typical Supply Chain (adopted from Ravindran & Warsing, 2017) 2

3-1: Base Case Schematic ... 32

3-2: Problem Instance #1 Schematic.. 32

3-3: Problem Instance #2/Base Case Schematic (Kumar et al., 2010)............................ 33

3-4: Problem Instance #3 Schematic.. 34

4-1: Tabu Search Flowchart .. 37

5-1: Total Supply Chain Cost Pareto Chart for Significant Predictors 47

5-2: Run Time Main Effects Plot .. 48

5-3: Four-in-One Plots for Total Supply Chain Cost ($) ... 52

5-4: Total Supply Chain Cost Residuals vs. Iterations Predictor Plot 53

5-5: Total Supply Chain Cost Residuals vs. Neighbors Predictor Plot 53

5-6: Total Supply Chain Cost Residuals vs. Tabu List Size Predictor Plot..................... 54

5-7: Anderson-Darling Residuals Normality Test Box-Cox Transformation 55

5-8: Total Supply Chain Cost Pareto Chart with Stepwise .. 57

5-9: Run Time Pareto Chart for Significant Predictors ... 60

5-10: Run Time Interactions x Neighbors Interaction Plot.. 61

5-11: Run Time Four-in-One Plots .. 65

5-12: Run Time Residuals vs. Iterations Predictor Plot .. 65

5-13: Run Time Residuals vs. Neighbors Predictor Plot ... 66

5-14: Run Time Residuals vs. Tabu List Size Predictor Plot... 66

5-15: Anderson-Darling Normality Test of Residuals After Outlier Removal................ 67

5-16: Run Time Pareto Chart with Stepwise .. 69

1

CHAPTER 1. INTRODUCTION

1.1 Outline

The following chapters organize this paper:

CHAPTER 1: provides background on supply chain management, supply chain

risks, and outsourcing, as well as the motivation and simplified contributions for

this paper.

CHAPTER 2: provides a detailed literature review with referenced information on

supply chain risk management, supply chain network design, outsourcing, and

metaheuristics.

CHAPTER 3: presents the problem description, key assumptions, and model

formulation for the single-objective mixed-integer linear program solved in Excel

Solver for small problem instances.

CHAPTER 4: presents a Tabu Search approach used to solve larger problem

instances with varying input parameters.

CHAPTER 5: presents a statistical analysis of the Tabu Search results to identify

significant predictors for association with total supply chain cost and run time.

CHAPTER 6: presents conclusions, contributions, and recommendations for

future work.

APPENDICES: exhibits Python code used internally for this paper.

1.2 Background

The following section provides background information on supply chain networks,

supply chain risks, and outsourcing companies.

2

1.2.1 Supply Chain Networks

A typical multi-echelon supply chain contains levels of suppliers, manufacturers,

distributors, retailers, and customers. More specifically, products, information, or funds

move between levels over a planning horizon. Modern supply chain network sizes are

increasing rapidly due to globalization and the rapid growth of global economies.

Companies rely on global supply chain models to meet demand, increase customer value,

improve responsiveness, track financials, and establish a quality network. For example, a

multi-national company contains different supply chain levels (suppliers, plants,

distribution centers, retailers, and customers) worldwide that interconnect into one

cohesive system (Ravindran & Warsing, 2017). Figure 1-1 shows an example of a multi-

echelon supply chain network.

Figure 1-1: Typical Supply Chain (adopted from Ravindran & Warsing, 2017)

3

Multi-echelon supply chains reduce costs and minimize risks from a holistic perspective.

Multi-echelon supply chains raise complexity as they take each level within the supply

chain and evaluate the flow of products, information, or funds between them (Shahraki &

Sharifi, 2019). Globalization has been a significant problem for product complexity and

high service demands for businesses. Still, perhaps the biggest issue is their heavy

reliance on multiple layers of suppliers and distribution points and outsourced

manufacturing. This nature is highly realistic as supply chain managers can make critical

decisions for the entire supply chain rather than each facility. When each facility tries to

optimize its own decisions with little regard to the impact of those decisions on other

parts of the supply chain, the overall supply chain ends up having high inventory levels

and low inventory turns. Supply chain managers minimize costs with a multi-echelon

approach by identifying problems early for the entire supply chain network rather than

each specific node.

1.2.2 Supply Chain Risks

Supply chain analysts and managers are always looking for ways to reduce costs.

Increasing quantity and quality continually increases costs along with embedded risks in

the supply chain. Embedded risks tend to hide well in every supply chain, surfacing with

great uncertainty. Embedded risks pose numerous problems as they are difficult to

pinpoint and quantify to understand their impact on the supply chain. As a result, supply

chain management is crucial to increase logistical efficiency and reduce risk factor

impact.

4

Supply chain management spends time and other resources to identify risks within a

supply chain. Each risk comes from a source with its probability and impact. According

to Ravindran and Warsing (2019), risks occur internally or externally in supply chain

systems. Externally, risks stem from the suppliers, customers, globality of the business,

or natural events; internally, risks stem from human resources, technology, management,

production, finance, or transportation. Overall, these risks are evaluated based upon their

probability of occurrence and their impact on the supply chain (occurrence/impact). Risk

events with high probability and high impact require the most immediate attention for

risk intervention. An example of a high/high risk would be losing critical suppliers or

product recalls due to quality issues. On the other hand, risk events with low probability

and low impact still require some attention but are not as important. An example of a

low/low risk would be health and safety violations or equipment breakdowns. Most risk

events contain a mix of the two parameters. These risk events require medium monitoring

and attention but can still be quite dangerous due to their ability to stack easily with high

frequency. An example of a high/low risk would be a blizzard or a logistics provider’s

failure. An example of a low/high risk would be flooding, hurricanes, tornados, union and

labor problems, or a new competitor in the market.

1.2.3 Outsourcing

Supply chains worldwide are becoming more vulnerable due to the various aspects that

can go wrong at any time. Globalization increased supply chain vulnerability in

companies starting in the 1990s. According to the United Nations Economic and Social

Council, “Globalization refers to the increasing interdependence of world economies as a

5

result of the growing scale of cross-border trade of commodities and services, the flow of

international capital and wide and rapid spread of technologies” (Shangquan, 2000, p. 3).

Companies prioritize profits and growth. Therefore, today’s companies are shifting

towards outsourcing, offshoring, long-term contracts, and relationships with just a few

suppliers. These strategies have proven to reduce supply chain costs by pinpointing issues

that cause risk vulnerability in supply chains.

Consider a business that needs raw material from a supplier. The company will consider

many supplier options and evaluate the cost and risk of obtaining the product. Generally,

global suppliers offer lower-cost products, but they may suffer from quality due to the

transportation risk during shipping. On the other hand, domestic suppliers provide more

expensive products but are more reliable when it comes to transportation uncertainties

(Olson et al., 2011).

1.3 Motivation

During the last two decades, companies have witnessed the emergence of a globally

competitive environment with manufacturing changes, crumbling international barriers,

and increased use of information technologies. An example of a global company would

be Apple. Apple has chosen to outsource its engineering work to India and outsource its

manufacturing duties to China (Kasyanenko, 2019). Apple does this to reduce costs,

increase core function control, and identify future solutions. Overall, outsourcing supply

chain processes enables companies to focus on what makes them great by efficiently

using their time, energy, and resources to maintain their core competencies. By

6

offloading most manufacturing work to other areas, Apple can put more time into

innovating new products to continue growing.

With the rise of the COVID-19 pandemic, supply chains around the world took a

significant hit. For example, multiple national lockdowns stopped the flow of raw

materials and finished goods in external parts of the world, disrupting manufacturing.

COVID-19 brought to light many of the risk factors associated with the supply chain. It

illustrated how many companies are not fully aware of the vulnerability of their supply

chain relationships to global shocks. As a result, companies are looking for new

technological solutions to strengthen their supply chains, making them more robust,

resilient, and agile. While the pandemic proved to be a deadly blow to global companies,

it was a critical and historical event that would forever change supply chains.

This paper will focus on embedding risk management with global and domestic suppliers

for multi-echelon supply chains. The motivation behind tackling this problem comes

from the lack of existing research that combines outsourcing with multi-echelon supply

chains. Most papers independently focus on outsourcing, supply chain risk management,

or multi-echelon supply chain optimization, but none effectively incorporate them all.

Therefore, this proves a need for research that combines all three industrial engineering

topics to serve as a meaningful backbone for future work.

This paper focuses on embedding risk management with global and domestic suppliers

for multi-echelon supply chains. The second section of this paper provides a literature

7

review on previous research in this field, including mathematical models and

metaheuristics. The third section presents the problem description and discusses the

modeling approach. The fourth section solves the mathematical model using a mixed-

integer linear program. The fifth section explains the steps in creating the Tabu Search

algorithm and outputs experimental results for 13 problem instances. The sixth section

conducts a multi-regression statistical analysis of results. Lastly, the seventh section

presents conclusions, contributions, and future work directions.

1.4 Main Contributions

This paper provides the following contributions, which differentiate it from current

research:

• We are modeling a multi-echelon supply chain and incorporating risk with

outsourcing.

• We are modeling and solving a single-objective liner program using Excel Solver

up to decision variable limits.

• We are building a scalable Python computer program utilizing a Tabu Search

algorithm.

• We conduct a multi-regression analysis of variance of the Tabu Search results

using Minitab.

8

CHAPTER 2. LITERATURE REVIEW

The topic of risk management in a multi-echelon supply chain has brought along

numerous avenues for research. This research provides current research findings and

better understands the academic and commercial resources used in solving supply chain

optimization problems. The following categories outline the literature research

conducted:

• Supply Chain Risk Management

• Supply Chain Network Design

• Outsourcing

• Metaheuristics

2.1 Supply Chain Risk Management

To better understand supply chain risk management (SCRM), researchers focused on one

key aspect of SCRM explicitly dealing with the delivered quantity along the supply

chain) known as its nature. SCRM is non-binary, which means that the volumes

transferred between levels do not promise supply or not. Instead, Mohib & Deif (2019)

suggest that it captures and assesses different delivery levels from other suppliers along

the different stages. A high-level sequence of steps is crucial for supply chain managers

to minimize risk probability and impact. Supply chain managers must understand and

explain the economic challenges that arise when risks spiral out of control. More

specifically, the focus on the use of risk in theory and practice, particularly the integration

of risk management in corporate systems and assessing the financial implications

(Heckmann et al., 2015).

9

The agricultural industry is an excellent example of a high-risk multi-echelon supply

chain due to seasonality uncertainties, long lead times, and goods’ perishability. Behdazi

et al., (2018) saw that the agricultural industry was new to technological solutions and

that their supply chains lacked mathematical models for optimizing profits from crops.

Behdazi et al., (2017) also identified significant gaps in the industry when researching

solutions to this problem, which include: perishability modeling, multi-period planning,

rare high-impact disruption, and the combination of them with operational uncertainty,

robust and resilient strategies, demand-side disruptions, highly integrated information-

driven supply chains, and approaches endorsed by high-level management. González-

Zapatero et al. (2020) acknowledged that supply chain risk management strategies should

fit with contextual factors like ‘fit as profile deviation’ and ‘fit as moderation,’ They

considered a sample of 106 companies to confirm the proposed model.

2.2 Supply Chain Network Design

A critical paper on the agricultural market about supply chain multi-state risk assessment

discussed using the universal generating function and compared it to other models such

as the power means, series, and parallel series (Mohib & Deif, 2019). The purpose was to

prove that their method of UGF was far superior to the other techniques when comparing

both the risk value percentage (using a quantitative mathematical method) and the

method’s ability to be applied to multi-level supply chains. Overall, Mohib & Deif (2019)

developed a new risk assessment approach that can capture the various delivery levels

10

and their associated risks for different suppliers across different stages, leading to more

comprehensive and accurate assessment results and mitigation decisions.

Aqlan & Lam (2015) provided an existing framework for risk mitigation within supply

chains using three main components. These included a survey, Bow-Tie analysis, and

fuzzy inference system (FIS). While bow-tie analysis and surveys are influential to the

problem, the FIS’s primary purpose is to reduce the risk data’s uncertainty using fuzzy

logic. This theory provides a valuable solution to understanding, quantifying, and

handling uncertain and vague risk data. Aqlan & Lam (2015) also suggested other

qualitative techniques for risk identification and risk analysis, such as failure mode and

effect analysis (FMEA), empirical analysis, process-performance modeling, and

simulation. Due to its modeling flexibility and sensitivity analysis, a simulation is an

effective tool for visualizing supply chain risks. Another practical modeling approach is

hybrid models because they utilize both qualitative and quantitative techniques. Due to

the uncertainty and the lack of risk data, hybrid modeling techniques are effective for risk

analysis, assessment, and the development of proper mitigation strategies. The most

common tools used for the mixed modeling of risks in supply chains are questionnaires,

analytic hierarchy process (AHP), fuzzy logic, fuzzy-AHP, decision tree analysis (DTA),

and cluster analysis (Aqlan & Lam, 2015).

Yan et al. (2017) introduced risk assessment and control of supply chains under the

Internet of Things. Specifically, they addressed how researchers can use programs and

applications under the Python or Tabu Search internet to create models to depict multi-

11

echelon supply chains, a rare topic to find in research today. Other research dealt with

minimizing supply chain cost with embedded risk using various computational

intelligence approaches. Kumar et al. (2010) considered a multi-echelon global supply

chain model, where raw material suppliers, manufacturers, warehouses, and markets are

in different countries. Furthermore, this paper identified all operational risk factors,

expected value and probability of occurrence, and associated additional cost amongst

domestic to global supply quantities. Computational intelligence techniques such as

genetic algorithm, particle swarm optimization, and artificial bee colony solved a supply

chain network problem to obtain a solution (Kumar et al., 2010). Many computational

approaches and metaheuristics can solve the same problem within a reasonable time.

Tabu Search will be researched later in this paper.

2.3 Outsourcing

One of the most known reasons companies outsource is to reduce costs in response to

changing economic pressure. However, as outsourcing shifts to being used for more vital

functions, it leads to losing core competencies. In global supply chains, risks constitute a

single point of failure that will disrupt the supply network.

Cha et al. (2008) presented an economic learning model for offshoring a firm’s

knowledge levels, production costs, and coordination costs. They learned that short-lived

offshoring projects might generate substantial cost savings to the domestic firm when

transfers are not sufficiently large. However, long-lived offshoring projects may disrupt

the knowledge supply chain, resulting in significant losses in the project’s later stages

12

(Cha et al., 2008). Kouvelis & Milner (2002) studied a firm’s interplay of demand and

supply uncertainty in capacity and outsourcing decisions in multi-echelon supply chains.

They found that as the market’s responsiveness to investments made by the firm

increases, the reliance on outsourcing generally increases. Furthermore, more significant

supply uncertainty increases the need for vertical integration, while more substantial

demand uncertainty increases outsourcing reliance (Kouvelis & Milner, 2002). Kroes &

Ghosh (2009) compared a firm’s outsourcing drivers and its competitive priorities and

assess the impact of unity on both supply chain performance and business performance.

They noticed that outsourcing congruence across all five competitive priorities is

positively and significantly related to supply chain performance and supply chain

performance in a firm entirely and significantly associated with its business performance

(Kroes & Ghosh, 2009).

Relying on external experts creates ability empowerment and f alse security. The

pharmaceutical industry outsources many products to India and China due to the constant

challenges with manufacturing processes. While outsourcing builds core competencies, it

also brings risks. Mokrini et al. (2016) presented a decision model that considers the

dangers of outsourcing logistics in the pharmaceutical supply chain using risk

identification and a multi-criteria risk assessment model using ELECTRE TRI. In

addition, König & Spinler (2016) presented a conceptual risk management framework,

showing the effect of logistics outsourcing on shippers’ supply chain vulnerability. They

found that raw material suppliers increasingly use logistics outsourcing. Still, its relation

to supply chain risk management is rarely covered as logistics outsourcing can have an

13

ambiguous effect on shippers influencing random internal and external factors (König &

Spinler, 2016)

Lee & Hong (2018) explored both established and emerging risks that may arise from

outsourcing and designed a simulation model to have a quantitative chance of

outsourcing activities in the supply chain network. The proposed method involved a

qualitative risk analysis known as the Supply Chain Risk - Failure Mode and Effect

Analysis (SCR-FMEA). SCR-FMEA integrates risk identification, research, and

mitigation actions to evaluate supply chain outsourcing risk (Lee & Hong, 2018). In

addition, Lee et al. (2002) considered an advanced planning and scheduling model in

which each customer order has a due date and outsourcing is available in a manufacturing

supply chain. They solved the model using a genetic algorithm heuristic approach and

found that the method efficiently solved the model. It produced the best process plans for

operation sequence and machine selection with outsourcing and schedules for all orders

(Lee et al., 2002). Another essential process involved in supply chain outsourcing is a

prior evaluation of potential partners for expected costs and risks. Olson & Wu (2011)

specifically used a DEA simulation model and a Monte Carlo simulation using a risk-

adjusted cost concept. They found numerous potential outsourcing strategies to China and

other nations under various risk forms. Hernandez & Haddud (2018) aimed to unveil the

areas that required more focus, considering the point of view of Chinese manufacturers

and driving the effectiveness of SCRM strategies. The study showed the main factors that

impacted value creation in industry, forcing other elements such as transportation,

financial, and information to require more attention (Hernandez & Haddud, 2018).

14

2.4 Metaheuristics

One of the most widely used metaheuristics is Tabu Search. According to Glover et al.

(2007), “Tabu search (TS) is a metaheuristic that guides a local heuristic search

procedure to explore the solution space beyond local optimality.” Gendreau (2003)

mentions Tabu Search as a highly effective metaheuristic used to solve large optimization

problems. While other solution methodologies like Ant Colony Optimization, Particle

Swarm Optimization, Artificial Immune Systems, Genetic Algorithms have increased in

popularity due to their natural analogies, Tabu Search allows local search methods to

overcome local optima. Tabu Search’s basic principle is to pursue local search whenever

it encounters a local optimum by not allowing non-improving moves through tabu lists

(Gendreau, 2003).

Mohammed & Duffuaa (2020) utilize a Tabu Search algorithm combined with supply

chain network optimization to demonstrate the scalability of larger and more complex

problem instances. Then, they used CPLEX to solve the multi-objective linear program to

obtain an optimal solution. Mohammed & Duffuaa (2020) found that the developed Tabu

Search algorithm can obtain high-quality solutions, short computational times, and

solution diversity. The same authors used simulated annealing as a different approach

(Mohammed & Duffuaa, 2019). Fatehi-Kivi et al. (2021) developed a three-echelon

supply chain structure and solved their mixed-integer linear program using three different

metaheuristics: Harmony Search, Tabu Search, and Genetic Algorithm. They used an

ANOVA statistical analysis to compare results and found that harmony search provided

15

the best quality solution (Fatehi-Kivi et al., 2021). Lee & Ozsen (2020) used three

metaheuristics to solve an integrated location-inventory problem. However, this paper

focused heavily on incorporating operational and tactical aspects such as lead times and

safety stock. They developed a Lagrangian algorithm, a Genetic Algorithm, and a Tabu

Search algorithm by introducing a novel concept known as the indirect cost ratio used to

evaluate candidate facilities. They concluded that the proposed Tabu Search heuristic

yielded near-optimal solutions and outperformed the other two in computational

efficiency, solution quality, and robustness. Lee & Kwon (2010) implemented the Tabu

Search metaheuristic to solve a supply chain optimization problem and compared results

to other methods. This single-objective optimization problem was solved using CPLEX

and a Tabu Search algorithm adopted from the literature that draws arcs from DC’s to

other nodes based on a priority index known as Unit Cost Ratio (Lee & Kwon, 2010).

After obtaining the results, Braido et al. (2016) expanded and found an 81.03% reduction

of the average processing time but an increase of 4.98% in the average cost of the

solutions compared to the optimal results. They concluded their work to be successful

due to their ability to solve large-scale supply chain optimization problems with less

computational time than previous literature (Braido et al., 2016). Melo et al. (2012)

claimed to be the first to investigate the suitability of Tabu Search for tackling large-scale

multi-period, multi-objective supply chain networks. They used CPLEX to solve the

smaller problem instances but use the Tabu Search algorithm to solve large-scale

problems with a shorter computational time. Once again, they compare their linear

program CPLEX results with Tabu Search results with a gap ratio/percentage and find

they can reach solutions within 1% of the linear relaxation bound in reasonable

16

computational times (Melo et al., 2012). Lastly, Shahraki & Sharifi (2019) used a multi-

level, multi-period supply chain network problem in agile organizations only. Each level

of a company’s production, storage, and transportation requires efficient decision-

making. Their goal was to minimize overall operating costs across the entire supply chain

and improve customer satisfaction. In addition to Tabu Search, they used a Lagrange

algorithm to solve the problem. After analyzing the results, they found that answers were

within 3% of the optimal solution achieved (Shahraki & Sharifi, 2019).

2.5 Literature Review Summary

In summary, research on supply chain risk management, supply chain network design,

outsourcing, and metaheuristics (specifically Tabu Search) provided insight into potential

literature gaps. Although current literature contains a few topics in each paper, no one has

combined all four topics into one cohesive report with a mathematical model and Tabu

Search approach.

This paper aims to solve a comprehensive supply chain network optimization problem

with outsourcing and embedded risk. Furthermore, we propose a mixed-integer linear

programming model and use a Tabu Search algorithm to solve small, medium, and large

problem instances. Lastly, we conduct a multi-regression statistical analysis.

2.6 Literature Contributions

Table 2-1 explicitly differentiates the topics and solution approaches found in literature

research from work completed in this paper. The contributions that differentiate this

17

paper from others are solving a single-objective linear program with Excel Solver and

Tabu Search for small, medium, and large multi-echelon supply chain networks with

embedded risk and outsourcing. While other optimization software may be more suitable

to solve large-scale problems, Excel Solver demonstrates the difficulty in scaling and

replicating a typical supply chain network. To establish a scalable model, a computer

program utilizing the Tabu Search algorithm is a more promising computational approach

for solving large-scale optimization problems in minimal time. Lastly, a multi-regression

statistical analysis provides critical findings within the data.

Table 2-1: Summary of Contributions to Literature

Source Topic Solution Approach

Reference

S
u

p
p

ly
 C

h
a
in

 O
p

ti
m

iz
at

io
n

O
u

ts
o

u
rc

in
g

R
is

k
 M

a
n

a
g
em

e
n
t

M
a
th

 M
o

d
e
l

S
im

u
la

ti
o

n

T
a
b

u
 S

e
a
rc

h

G
e
n

e
ti

c
 A

lg
o
ri

th
m

S
im

u
la

te
d

 A
n

n
e
al

in
g

P
a
rt

ic
le

 S
w

a
rm

 O
p

ti
m

iz
at

io
n

A
rt

if
ic

ia
l
B

e
e

C
o

lo
n
y

S
ta

ti
st

ic
a
l A

n
a
ly

si
s

Aqlan & Lam, 2015 [2] x x x

Behzadi et al., 2018 [3] x x x

Behzadi et al., 2017 [4] x x x

Braido et al., 2016 [6] x x x

Lee et al., 2018 [7] x x x x

18

Cha et al., 2008 [8] x x x

Fatehi Kivi et al., 2021 [10] x x x x x

González-Zapatero et al., 2020 [14] x x x

Heckmann et al., 2015 [15] x x x

Hernandez & Haddud, 2018 [16] x x x

König & Spinler, 2016 [18] x x x x

Kouvelis & Milner, 2002 [19] x x x x

Kroes & Ghosh, 2009 [20] x x x

Kumar et al., 2010 [21] x x x x x x x

Lee & Ozsen, 2020 [22] x x

Lee & Kwon, 2010 [23] x x x x

Lee et al., 2002 [24] x x x x

Melo et al. 2012 [26] x x x

Mohammed & Duffuaa, 2020 [28] x x x x

Mohammed & Duffuaa, 2019 [29] x x x x

Mohib & Deif, 2019 [30] x x x

Mokrini et al., 2016 [31] x x x

Olson & Wu, 2011 [32] x x x x

Shahraki & Sharifi, 2019 [35] x x x

Williamson, 2008 [38] x x x

Yan et al., [39] x x x

Present Study (this paper) x x x x x x

19

CHAPTER 3. MATHEMATICAL MODEL FORMULATION

3.1 Problem Description

Supply chain risk management has been an increasingly researched topic in the past

decade, especially in multi-echelon supply chains. Multi-echelon supply chains drive

lower costs, reduce capital assets, and get products to market more efficiently than the

competition. They do this by evaluating supply levels and risk probabilities for each

possible path between suppliers, plants, warehouses, distributors, and retailers at each

level. Rather than a binary matter of receiving the entire supply or not from one source all

at once, multi-echelon supply chains assess all supplier avenues and solutions for the

final product farthest downstream, which is a better representation of real-life supply

chains. Also, many supply chains are incredibly vulnerable to different risk factors that

constantly influence operations with the rise of globalization. Costs are often associated

with each risk factor when allocating specific goods at the required quality, quantity,

place, and time. These issues tie into issues involving outsourcing semi-finished or

finished products when in-house production risks are very high. Incorporating this

concept into the already established and well-researched topic of multi-echelon supply

chain poses a complex challenge that requires solving.

As a result, this paper addresses the need for an updated model and method that presents

an accurate depiction of outsourcing in global, multi-echelon supply chains where

mitigating risks and minimizing costs are critical. Overall, this paper considers a multi-

echelon supply chain network with global and domestic raw material suppliers,

manufacturing plants, warehouses, and markets. The objective function aims to minimize

20

the total cost of the supply chain network with embedded risk. The problem is modeled

and solved as a mixed-integer linear program with a commercial solver and solved using

a Tabu Search algorithm for small, medium, and large problems.

The mixed-integer linear program presented in this section extends the work of Kumar et

al. (2010) in formulating the optimization problem for multi-echelon supply chains with

embedded risk. Table 3-1, Table 3-2, and Equations 1-28 summarize nomenclature,

parameters, and equations used in this paper’s model respectfully adopting similar

principles used by Kumar et al. (2010). This paper’s work expands previous literature by

including outsourced suppliers in the model and solving the model with a Tabu Search

approach.

3.2 Key Assumptions

The mathematical model carries the following assumptions:

• All raw material suppliers operate domestically or globally.

• The supply chain has multiple suppliers, plants, warehouses, and markets in a

global supply chain network.

o A supply chain level cannot transfer material to the same level (i.e.,

plant→plant)

• Each supply chain level must fulfill the order quantity for the next level.

• The material never gets lost in the supply chain network.

o Random market demand determines the quantities transferred (a normal

distribution with a minimum and maximum value plus/minus six*sigma).

21

• All products are homogeneous produced at a 1:1 ratio whose quality and quantity

depend on the raw material suppliers and location country.

o Finished products are kept in the warehouses and incur an inventory cost.

o All transactions converge into a common currency through exchange rates.

o All decisions are for one exclusive planning horizon.

3.3 Limitations

This section outlines the limitations of the mathematical model presented in this paper:

• The mathematical model considers a static planning horizon, but in reality, supply

chains are constantly sending material/products between echelons in a dynamic

approach.

• The mathematical model only considers risk probability and impact along the

supply chain system; however, literature has shown risk mitigation strategies as a

key parallel topic when discussing risk management.

• The mathematical model disregards quality management principles. In reality,

material/products are lost in transferring between echelons.

• The mathematical model considers only one homogeneous product. In reality,

supply chains contain hundreds to thousands of products made up of millions of

parts in a mathematically complex Material Requirements Planning (MRP)

system.

• The mathematical model picks random values according to the data parameter

range given; however, it would be beneficial to conduct a sensitivity analysis to

understand the impact of risk probability and reliability on total supply chain cost.

22

• The mathematical model considers a single-objective cost function with

embedded risk. Supply chain managers may want to separate risk and total cost

into two different objective functions in practice.

3.4 Nomenclature

Table 3-1 provides a comprehensive list of notations frequently used throughout the

model:

Table 3-1: Model Notations and Descriptions

Notation Description

𝑆𝐷 Domestic suppliers

𝑆𝑂 Global suppliers

𝑃 Plants

𝑊 Warehouses

𝑀 Markets

𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃 Raw material supplied from domestic supplier 𝑖 to plant 𝑗

𝑟𝑠𝑂𝑖𝑗
𝑆𝑂𝑃 Raw material supplied from global supplier 𝑖 to plant 𝑗

𝑟𝑠𝑖𝑗
𝑆𝑃 Raw materials supplied from supplier 𝑖 to plant 𝑗

𝑞𝑖𝑗
𝑃𝑊 quantity supplied from plant 𝑖 to warehouse 𝑗

𝑞𝑖𝑗
𝑊𝑀 quantity supplied from warehouse 𝑖 to market 𝑗

𝑄𝑖
𝑃 Total quantity supplied to plant 𝑖

𝑄𝑖
𝑊 Total quantity supplied to warehouse 𝑖

𝑄𝑖
𝑀 Total quantity supplied to market 𝑖

𝑄𝑚𝑎𝑥

𝑃𝑗
 Maximum production capacity of plant 𝑗, where 𝑗 𝜖 {1,2, 3,… 𝑃}

𝑄𝑚𝑎𝑥

𝑊𝑗
 Maximum production capacity of warehouse 𝑗, where 𝑗 𝜖 {1,2,3, …𝑊}

𝑀𝑑𝑗 Mean demand of market 𝑗

𝑀𝑑𝑚𝑖𝑛
𝑗

 Minimum demand to be satisfied for market 𝑗, where 𝑗 𝜖 {1,2, 3,… 𝑀}

𝑀𝑑𝑚𝑎𝑥
𝑗 Maximum demand to be satisfied for market 𝑗, where 𝑗 𝜖 {1,2, 3, …𝑀}

𝑢𝑐𝑖
𝑃 Cost of unit production for plant 𝑖

𝑓𝑐𝑖
𝑃 Fixed cost of operation for plant 𝑖

𝑖𝑐𝑖
𝑊 Inventory cost for warehouse 𝑖

23

𝑡 Time

𝐷𝑆𝐿𝑡𝑗
𝑖 Lead time for domestic supplier 𝑖 to deliver raw material to plant 𝑗

𝑂𝑆𝐿𝑡𝑗
𝑖 Lead time for global supplier 𝑖 to deliver raw material to plant 𝑗

𝑃𝐿𝑡𝑗
𝑖 Lead time for plant 𝑖 to deliver to warehouse 𝑗

𝑊𝐿𝑡𝑗
𝑖 Lead time for warehouse 𝑖 to deliver to market 𝑗

𝐶𝑆𝐷𝑖𝑗 The cost function per unit of raw materials supplied domestically 𝑖 to plant 𝑗

𝐶𝑆𝑂𝑖𝑗 The cost function per unit of raw materials supplied outsourcing 𝑖 to plant 𝑗

𝐶𝑃𝑖𝑗 The cost function of supply for plant 𝑖 to warehouse 𝑗

𝐶𝑊𝑖𝑗 The cost function of supply for warehouse 𝑖 to market 𝑗

Ƞ𝐷𝑖𝑗
𝑆𝐷𝑃 Set of all scenarios of lead times for delivering raw materials from domestic supplier 𝑖 to plant 𝑗

Ƞ𝑂𝑖𝑗
𝑆𝐷𝑃 Set of all scenarios of lead times for delivering raw materials from global supplier 𝑖 to plant 𝑗

Ƞ𝑃𝑖𝑗
𝑃𝑊 Set of all scenarios of lead times for delivering supply from plant 𝑖 to warehouse 𝑗

Ƞ𝑊𝑖𝑗
𝑊𝑀 Set of all scenarios of lead times for delivering supply from warehouse 𝑖 to market 𝑗

𝛺𝑖
𝑆𝐷 Set of all scenarios for domestic suppliers 𝑖

𝛺𝑖
𝑆𝑂 Set of all scenarios for global suppliers 𝑖

𝛺𝑖
𝑃 Set of all scenarios for plants 𝑖

𝛼𝑖
𝑆𝐷 Reliability for domestic supplier 𝑖

𝛼𝑖
𝑆𝑂 Reliability for global supplier 𝑖

𝛼𝑖
𝑃 Reliability for plant 𝑖

𝑝 Probability

𝐿 Loss function in terms of ordered quantity of supply due to failure

𝐿𝑡 Lead Time

𝑒𝑟𝑖
𝑆𝐷 Exchange rate for domestic supplier 𝑖

𝑒𝑟𝑖
𝑆𝑂 Exchange rate for global supplier 𝑖

𝑒𝑟𝑖
𝑃 Exchange rate for plant 𝑖

𝑒𝑟𝑖
𝑊 Exchange rate for warehouse 𝑖

𝑒𝑟𝑖
𝑀 Exchange rate for market 𝑖

𝑅𝑖
𝐶 Inventory cost for an excess of supply

𝐺𝑖
𝐶 Goodwill loss cost for a shortage of supply

𝑓𝑗(𝑑) Probability density function market 𝑗 demand

𝐷𝑆𝐶 Total global supplier cost

𝑂𝑆𝐶 Total global supplier cost

𝑃𝐶 Total plant production cost

𝑃𝑊𝐶 Total plant-warehouse cost

𝑊𝑀𝐶 Total warehouse-market cost

𝑀𝐶 Total market cost

3.5 Decision Variables

24

Table 3-2 shows the decisions variables of all quantities supplied and transferred across

the supply chain network:

Table 3-2: Model Decision Variables

Notation Description

𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃 Raw material supplied from domestic supplier 𝑖 to plant 𝑗

𝑟𝑠𝑂𝑖𝑗
𝑆𝑂𝑃 Raw material supplied from global supplier 𝑖 to plant 𝑗

𝑞𝑖𝑗
𝑃𝑊 Quantity supplied from plant 𝑖 to warehouse 𝑗

𝑞𝑖𝑗
𝑊𝑀 Quantity supplied from warehouse 𝑖 to market 𝑗

3.6 Objective Function

This model aims to optimize the quantities transferred among all combinations between

suppliers-plants, plants-warehouses, and warehouses-markets while minimizing the

expected cost of operations with embedded risk. The cost and risk functions considered in

this problem are assumed to be known and given based upon historical data found on all

suppliers, plants, warehouses, and markets.

3.6.1 Objective Function Costs

The following sub-costs total up to the supply chain’s total cost:

• Domestic Supplier Cost

• Global Supplier Cost

• Plant Production Cost

• Plant-Warehouse Cost

• Warehouse-Market Cost

• Market Cost

25

3.6.1.1 Domestic Supplier Cost

At the start of the supply chain network, suppliers supply raw materials to plants. Each

domestic supplier incurs a cost-dependent lead time. Equation 1 shows the cost of raw

materials for domestic suppliers below:

 ∑ ∑ ∑ 𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃 × 𝐶𝑆𝐷𝑗

𝑖(𝑡) × 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃)

max 𝐷𝑆𝐿𝑡
𝑖

𝑗

𝑡≥min𝐷𝑆𝐿𝑡
𝑖

𝑗

𝑃

𝑗=1

𝑆𝐷

𝑖=1

 × 𝑒𝑟𝑖
𝑆𝐷

(1)

The raw materials’ quality is a risk factor, which is always associated with the domestic

suppliers. Equation 2 shows the risk factor for the quality of raw materials for domestic

suppliers:

 ∑ 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃) × (α𝑖

SD.)

Ω𝑖
𝑆𝐷

× 𝑒𝑟𝑖
𝑆𝐷

(2)

Risk at any level in the supply chain is directly dependent on the level previously

established. For example, the production of goods at the plant level depends on the

quality and quantity supplied from the supplier level. There is also a risk cost due to the

supplier’s failure to deliver the raw materials within the maximum allowed lead time.

Equation 3 shows a loss of production and associated profit loss below:

∑ ∑(1 −

𝑃

𝑗=1

𝑆𝐷

𝑖=1

∑ 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃))

𝑡≥max𝐷𝑆𝐿𝑡
𝑖

𝑗

 × 𝐿(𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃) × 𝑒𝑟𝑖

𝑆𝐷

(3)

Equation 4 summarizes the domestic supplier cost below:

26

𝐷𝑆𝐶 = (∑ ∑ ∑ 𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃 × 𝐶𝑆𝐷𝑗

𝑖(𝑡) × 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃)

max𝐷𝑆𝐿𝑡
𝑖

𝑗

𝑡≥min𝐷𝑆𝐿𝑡
𝑖

𝑗

𝑃

𝑗=1

𝑆𝐷

𝑖=1

 × 𝑒𝑟𝑖
𝑆𝐷)

÷ (∑ 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃) × (α𝑖

SD.) × 𝑒𝑟𝑖
𝑆𝐷

Ω𝑖
𝑆𝐷

)

+ (∑ ∑(1 −

𝑃

𝑗=1

𝑆𝐷

𝑖=1

 ∑ 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃))

𝑡≥max𝐷𝑆𝐿𝑡
𝑖

𝑗

 × 𝐿(𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃)

× 𝑒𝑟𝑖
𝑆𝐷)

(4)

3.6.1.2 Global Supplier Cost

Global suppliers incur different raw material costs and risk factors that influence their

mathematical approach. Equation 5 shows the cost of the raw materials for global

suppliers below:

 ∑ ∑(1 −

𝑃

𝑗=1

𝑆𝐷

𝑖=1

∑ 𝑝(𝜂𝐷𝑖𝑗
𝑆𝐷𝑃))

𝑡≥max𝐷𝑆𝐿𝑡
𝑖

𝑗

 × 𝐿(𝑟𝑠𝐷𝑖𝑗
𝑆𝐷𝑃) × 𝑒𝑟𝑖

𝑆𝐷

 (5)

The raw materials’ quality is a risk factor, which is always associated with the global

suppliers. Equation 6 shows the risk factor for the quality of raw materials for global

suppliers below:

∑ 𝑝(𝜂𝑂𝑖𝑗

𝑆𝑂𝑃) × (α𝑖
SO)

Ω𝑖
𝑆𝑂

× 𝑒𝑟𝑖
𝑆𝑂

(6)

27

Like the domestic supplier cost, Equation 7 shows the loss of production and associated

profit loss for global supplier cost below:

 ∑ ∑(1 −

𝑃

𝑗=1

𝑆𝑂

𝑖=1

 ∑ 𝑝(𝜂𝑂𝑖𝑗
𝑆𝑂𝑃))

𝑡≥max𝑂𝑆𝐿𝑡
𝑖

𝑗

 × 𝐿(𝑟𝑠𝑂𝑖𝑗
𝑆𝑂𝑃) × 𝑒𝑟𝑖

𝑆𝑂

(7)

Equation 8 summarizes the global supplier cost below:

𝑂𝑆𝐶 = (∑ ∑ ∑ 𝑟𝑠𝑂𝑖𝑗
𝑆𝑂𝑃 × 𝐶𝑆𝑂𝑗

𝑖(𝑡) × 𝑝(𝜂𝑂𝑖𝑗
𝑆𝑂𝑃)

max𝑂𝑆𝐿𝑡
𝑖

𝑗

𝑡≥min𝑂𝑆𝐿𝑡
𝑖

𝑗

𝑃

𝑗=1

𝑆𝑂

𝑖=1

 × 𝑒𝑟𝑖
𝑆𝑂)

÷ (∑ 𝑝(𝜂𝑂𝑖𝑗
𝑆𝑂𝑃) × (α𝑖

SO) × 𝑒𝑟𝑖
𝑆𝑂

Ω𝑖
𝑆𝑂

)

+ (∑ ∑(1 −

𝑃

𝑗=1

𝑆𝑂

𝑖=1

 ∑ 𝑝(𝜂𝑂𝑖𝑗
𝑆𝑂𝑃))

𝑡≥max𝑂𝑆𝐿𝑡
𝑖

𝑗

 × 𝐿(𝑟𝑠𝑂𝑖𝑗
𝑆𝑂𝑃) × 𝑒𝑟𝑖

𝑆𝑂)

(8)

3.6.1.3 Plant Production Cost

Each plant participating in the supply chain has a defined cost per unit of production and

fixed cost of operation. Fixed costs may not always be present. Equation 9 shows the

plant production cost below:

 ∑ ((∑ qij
PW × 𝑢𝑐𝑖

𝑃

𝑊

𝑗=1

) + 𝑓𝑐𝑖
𝑃)

𝑃

𝑖=1

(9)

The geographical location and other factors among the participating plants significantly

impact the quality and quantity of products produced. Equation 10 shows the plant

quality risk factor below:

28

∑ 𝑝(ȠPij

SP) × (α𝑖
P)

Ω𝑖
𝑃

(10)

Equation 11 summarizes the plant production cost below:

 𝑃𝐶 = (∑ ((∑ qij
PW × 𝑢𝑐𝑖

𝑃

𝑊

𝑗=1

) + 𝑓𝑐𝑖
𝑃)

𝑃

𝑖=1

) ÷ (∑ 𝑝(ȠPij
SP) × (α𝑖

P)

Ω𝑖
𝑃

)
(11)

3.6.1.4 Plant-Warehouse Cost

The cost between the plants and warehouses participating in the supply chain includes the

logistics costs between them and their associated risk cost due to supply failure . Equation

12 shows the plant-warehouse transportation cost below:

 ∑ ∑ ∑ 𝑞𝑖𝑗
𝑃𝑊 × 𝐶𝑃𝑗

𝑖(𝑡) × 𝑝(𝜂𝑃𝑖𝑗
𝑃𝑊)

max𝑃𝐿𝑡
𝑖

𝑗

𝑡≥min𝑃𝐿𝑡
𝑖

𝑗

𝑊

𝑗=1

𝑃

𝑖=1

 × 𝑒𝑟𝑖
𝑃

(12)

Equation 13 shows the risk cost associated with disruption of supply between plant and

warehouse below:

 (∑ ∑(1 −

𝑊

𝑗=1

𝑃

𝑖=1

 ∑ 𝑝(

max𝑃𝐿𝑡
𝑖

𝑗

t≥min𝑃𝐿𝑡
𝑖

𝑗

𝜂𝑃𝑖𝑗
𝑃𝑊)) × 𝐿(𝑞𝑖𝑗

𝑃𝑊) × 𝑒𝑟𝑖
𝑃)

(13)

Equation 14 summarizes the plant-warehouse cost below:

𝑃𝑊𝐶 = (∑ ∑ ∑ 𝑞𝑖𝑗
𝑃𝑊 × 𝐶𝑃𝑗

𝑖(𝑡) × 𝑝(𝜂𝑃𝑖𝑗
𝑃𝑊)

max𝑃𝐿𝑡
𝑖

𝑗

𝑡≥min𝑃𝐿𝑡
𝑖

𝑗

𝑊

𝑗=1

𝑃

𝑖=1

 × 𝑒𝑟𝑖
𝑃) +

(∑ ∑(1 −

𝑊

𝑗=1

𝑃

𝑖=1

 ∑ 𝑝(

max 𝑃𝐿𝑡
𝑖

𝑗

t≥min𝑃𝐿𝑡
𝑖

𝑗

𝜂𝑃𝑖𝑗
𝑆𝑃)) × 𝐿(𝑞𝑖𝑗

𝑃𝑊) × 𝑒𝑟𝑖
𝑃)

(14)

29

3.6.1.5 Warehouse-Market Cost

The plant-warehouse supply cost is like the warehouse-market supply cost. Equation 15

shows the warehouse-market transportation cost below:

 ∑ ∑ ∑ 𝑞𝑖𝑗
𝑊𝑀 × 𝐶𝑊𝑗

𝑖(𝑡) × 𝑝(𝜂𝑊𝑖𝑗
𝑊𝑀)

max 𝑊𝐿𝑡
𝑖

𝑗

𝑡≥min𝑊𝐿𝑡
𝑖

𝑗

𝑀

𝑗=1

𝑊

𝑖=1

 × 𝑒𝑟𝑖
𝑊

(15)

Equation 16 shows the risk cost associated with disruption of supply between warehouse

and market below:

 (∑ ∑(1 −

𝑀

𝑗=1

𝑊

𝑖=1

 ∑ 𝑝(

max𝑊𝐿𝑡
𝑖

𝑗

t≥min𝑊𝐿𝑡
𝑖

𝑗

𝜂𝑊𝑖𝑗
𝑊𝑀)) × 𝐿(𝑞𝑖𝑗

𝑊𝑀) × 𝑒𝑟𝑖
𝑊)

(16)

Equation 17 summarizes the warehouse-market cost:

 𝑊𝑀𝐶 = (∑ ∑ ∑ 𝑞𝑖𝑗
𝑊𝑀 × 𝐶𝑊𝑗

𝑖(𝑡) × 𝑝(𝜂𝑊𝑖𝑗
𝑊𝑀)

max 𝑊𝐿𝑡
𝑖

𝑗

𝑡≥min𝑊𝐿𝑡
𝑖

𝑗

𝑀

𝑗=1

𝑊

𝑖=1

 × 𝑒𝑟𝑖
𝑊) +

(∑ ∑(1 −

𝑀

𝑗=1

𝑊

𝑖=1

 ∑ 𝑝(

max𝑊𝐿𝑡
𝑖

𝑗

t≥min𝑊𝐿𝑡
𝑖

𝑗

𝜂𝑊𝑖𝑗
𝑊𝑀)) × 𝐿(𝑞𝑖𝑗

𝑊𝑀) × 𝑒𝑟𝑖
𝑊)

(17)

3.6.1.6 Market Cost

The market cost appears if there is an excess of supply or a shortage of supply. The

market cost for an excess of supply will be:

30

(∑ ∑(𝑄𝑖
𝑀 − 𝑀𝑑𝑗)

𝑀

𝑗=1

𝑄

𝑖=1

 × 𝑓𝑗(𝑑) × 𝑅𝑖
𝑐)

(18)

The market cost for a shortage of supply will be:

 ∑ ∑(𝑀𝑑𝑗 − 𝑄𝑖
𝑀)

𝑀

𝑗=1

𝑄

𝑖=1

 × 𝑓𝑗(𝑑) × 𝐺𝑖
𝑐

(19)

Equation 20 summarizes the market cost:

 𝑀𝐶 = (∑ ∑(𝑄𝑖
𝑀 − 𝑀𝑑𝑗)

𝑀

𝑗=1

𝑄

𝑖=1

 × 𝑓𝑗 (𝑑) × 𝑅𝑖
𝑐) + (∑ ∑(𝑀𝑑𝑗 − 𝑄𝑖

𝑀)

𝑀

𝑗=1

𝑄

𝑖=1

 × 𝑓𝑗 (𝑑) × 𝐺𝑖
𝑐)

(20)

There can only be an excess of supply cost or a shortage of supply cost in any model

depending on if the total quantity supplied to market j is under or over the expected

market demand. If market demand is over satisfied, the excess market cost will be

present, and supply shortage will not and vice versa.

3.6.1.7 Total Supply Chain Cost

As noted previously, the objective function is to minimize the domestic supplier cost,

global supplier cost, plant-warehouse cost, warehouse-market cost, and market cost of the

entire supply chain. Equation 21 illustrates the objective function:

𝑀𝑖𝑛 𝑇𝐶 = 𝐷𝑆𝐶 + 𝑂𝑆𝐶 + 𝑃𝐶 + 𝑃𝑊𝐶 + 𝑊𝑀𝐶 + 𝑀𝐶

(21)

3.7 Constraints

31

 𝑄𝑖
𝑀 = ∑ 𝑞𝑖𝑗

𝑊𝑀

𝑊

𝑖=1

(22)

 𝑄𝑖
𝑊 = ∑ 𝑞𝑖𝑗

𝑃𝑊

𝑃

𝑖=1

(23)

 𝑄𝑖
𝑃 = ∑ 𝑟𝑠𝑖𝑗

𝑆𝑃

𝑆

𝑖=1

(24)

 ∑ 𝑞𝑖𝑗
𝑊𝑀 ≤

𝑀

𝑖=1

𝑄𝑚𝑎𝑥

𝑊𝑗

(25)

 ∑ 𝑞𝑖𝑗
𝑃𝑊 ≤

𝑊

𝑖=1

𝑄𝑚𝑎𝑥

𝑃𝑗

(26)

 ∑ 𝑀𝑑𝑚𝑖𝑛
𝑗

 ≤

𝑀

𝑗=1

 ∑ 𝑞𝑖𝑗
𝑊𝑀

𝑀

𝑖=1

(27)

 ∑ 𝑀𝑑𝑚𝑎𝑥
𝑗

 ≥

𝑀

𝑗=1

 ∑ 𝑞𝑖𝑗
𝑊𝑀

𝑀

𝑖=1

(28)

Equations 22 through 28 depict constraints of the mathematical model. Equation 22

ensures that the total quantity supplied to markets equals the quantities released from

warehouses. Equation 23 ensures that the total quantity supplied to warehouses equals the

quantities released from plants. Equation 23 ensures that the raw material supplied to

plants equals the quantities released from suppliers. Plant capacities are limited in

32

Equation 25. Warehouse capacities are limited in Equation 26. Equation 27 ensures that

all markets’ minimum demand is less than the total quantities delivered from warehouses-

markets. Lastly, Equation 28 ensures that all markets’ maximum demand is greater than

the total quantities delivered from warehouses-markets.

3.8 Experimental Results

To examine the capability of obtaining an optimal solution of the mixed-integer linear

model, we use Excel Solver, a downloadable commercial solver for optimization

problems (Excel Solver, 2019). The single-objective linear program solves to optimality

three problem instances that test the capability of Excel Solver. These instances were

solved using a Windows laptop with 16 GB RAM supported by an AMD Ryzen 4700U

processor with eight cores and eight threads, a max boost clock up to 4.1 GHz, and a 4

MB cache size (AMD, 2020).

The following section describes the three problem instances. The proposed model begins

with the base case schematic of the supply chain network shown in Figure 3-1, adapted

from Kumar et al. (2010). The base model, also identified as problem instance #2, entails

five suppliers (S), two plants (P), and three warehouses (W), and six markets (M). The

proposed model splits the five suppliers into domestic and global suppliers. Therefore,

suppliers 1, 2, 3 are domestic suppliers (SD), and suppliers 4 and 5 (SO) are global

suppliers that provide the plants’ raw materials in the next stage. Suppliers 1-5 may

operate in different countries under different environments. The model considers all risk

types, including supplier side risks, logistics risks, manufacturer risks, distribution risks,

33

market risks, and demand risks. Each level of the resilient supply chain carries risk, but

holistically they impact the transfer of goods from one level to another and impact the

entire supply chain. In addition, the supply chain network incurs costs along the way in

terms of the following: raw materials costs, quality costs, supplier costs, production costs,

fixed costs, transportation costs, inventory costs, goodwill loss costs, excess supply costs,

and shortage supply costs. The purpose of this mathematical model is to minimize the

total risk and total costs of the entire supply chain while satisfying demand over a single

given planning period.

Figure 3-1: Base Case Schematic

Given the mathematical model, Excel Solver solves three problem instances. In problem

instance #1, the supply chain schematic contains one domestic supplier, one global

supplier, one plant, one warehouse, and one market. Problem instance #1 acts as a proof

of concept to verify and validate the equations and mathematical calculations presented in

Chapter 3 of this paper. Figure 3-2 depicts problem instance #1:

34

Figure 3-2: Problem Instance #1 Schematic

Problem instance #2 involves three domestic suppliers, two global suppliers, two plants,

three warehouses, and six markets. Figure 3-3 depicts the base case of problem instance

#2:

Figure 3-3: Problem Instance #2/Base Case Schematic (Kumar et al., 2010)

Problem instance #3 maximizes the number of decision variables that Excel Solver can

handle (200 decision variables) with six domestic suppliers, six global suppliers, five

plants for production, seven warehouses, and fifteen markets. Figure 3-4 depicts problem

instance #3:

35

Figure 3-4: Problem Instance #3 Schematic

The mixed-integer linear model was manually scaled and replicated for all three problem

instances. The model utilized the previously noted decision variables, constraints, and

objective function to obtain an optimal total cost solution using the Simplex LP option in

Excel Solver. Table 3-3 displays a comprehensive list of the commercial solver’s results.

Table 3-3: Excel Solver Results

Problem Instance SD SO P W M Total Supply Chain Cost (USD)

1 1 1 1 1 1 $167,707.90

2 3 2 2 3 6 $723,519.52

3 6 6 5 7 15 $1,939,812.60

36

In all three problem instances, Excel Solver was able to find a global minimum solution

for total supply chain cost (United States Dollar). Although we reached an optimal

solution with one replication, it is essential to acknowledge Excel Solver’s limitations in

scalability and replicability. Problem sizes exceeding 200 decision variables prove

problematic for the Excel Solver software. Therefore, we present a Tabu Search heuristic

in the following chapter.

37

CHAPTER 4. TABU SEARCH HEURISTIC

4.1 Tabu Search

Once again, “Tabu search (TS) is a metaheuristic that guides a local heuristic search

procedure to explore the solution space beyond local optimality” (Glover et al., 2007).

The Tabu Search algorithm prevents moves that take the solution into previously visited

search spaces known as tabu. While tabu search does accept non-improving solutions,

specific parameters prevent the program from getting stuck in local minimums. Tabu

Search utilizes short-term memory based on recency of occurrence. Short-term memory

returns suitable components to localize and intensify a search known as intensification

(Liang, 2020). It accomplishes this by creating a tabu list. The tabu list is an input

parameter to access short-term memory. Tabu list solution moves are kept within the list

on a countdown timer as they are not visited more than once.

The Tabu Search program contains three key input parameters: iterations number,

neighbor size, and tabu list size. Iterations number serves as the stopping criterion and

indicates a maximum amount of trial runs. Each provides a total cost preventing the

program from being stuck in a continuous loop. The number of neighbors is the number

of branches the program chooses to diversify its potential solutions pool. Increasing the

number of neighbors increases the total amount of differing solutions. Lastly, the tabu list

size parameter stores a limited amount of previously visited solutions and the best

solution. Once the tabu list size parameter is full, it ejects older solutions. It brings in

38

newly visited solutions to keep a running list of solutions that the program may not

revisit. The program uses a static tabu list.

A flowchart, depicted in Figure 4-1, helps visualize the steps taken in creating the Tabu

Search algorithm:

Figure 4-1: Tabu Search Flowchart

4.2 Tabu Search Pseudocode

39

First, we start with developing an initial solution. Then, we execute the Tabu Search

algorithm to explore the local search.

4.2.1 Algorithm 1: Develop a Solution

1: Read in node and edge data.
2: Initialize solution parameters
3: For each market:

4: While market demand ≠ 0, choose random path:
5: If warehouse path already chosen, select new path

6: If market demand > warehouse capacity, take available capacity and
select path

7: Else, satisfy remaining market demands and update warehouse quantities

8: For each warehouse:
9: While warehouse demand ≠ 0, choose a random path:
10: If plant path already chosen, select new path

11: If warehouse demand > plant capacity, take available capacity and
select path

12: Else, satisfy remaining warehouse demands and update plant quantities
13: For each plant:
14: Choose random suppliers and update supplier quantities
15: Calculate single-objective function

16: Return solution

4.2.2 Algorithm 2: Tabu Search

1: Initialize Tabu Search parameters: iterations, neighbors, and tabu list size.
2: Generate initial solution 𝑆0
3: Run Tabu Search algorithm
4: While iterations ≤ stopping criterion:
5: Generate neighborhood of solutions 𝑁(𝑆0)
6: Select best, unique solution (S’) and add to tabu list
7: Update tabu list with most recent solutions and current best solution

8: Return current best solution

4.3 Tabu Search Problem Instances

In addition to solving the three problem instances in the Excel Solver model, larger cases

of a similar supply chain reflect reality more closely. Scaling the supply chain network

40

proves difficult for a mathematical model that is solved using Excel Solver as only 200

decision variables can be considered. Even for other mathematical model solvers, scaling

the variables, parameters, and constraints can be repetitive and time-consuming. As a

result, a computer program would be highly beneficial for scaling this problem to any

supply chain network size or variation. A Tabu Search computer program demonstrates a

reliable solution methodology of any supply chain size.

In addition to the previous problem instances (#1-3), the Tabu Search computer program

uses ten other instances that exceed 200 decision variables. Each problem instance runs

with differing values for iterations, neighbors, and tabu list size. Each problem instance

runs with ten replications. Table 4-1 presents a comprehensive list of problem instances

below:

Table 4-1: Tabu Search Problem Instances

Problem
Instance

SD SO P W M Iterations Neighbors Tabu List Size

1.1 1 1 1 1 1 100 150 50

1.2 1 1 1 1 1 200 300 100

1.3 1 1 1 1 1 400 600 200

2.1 3 2 2 3 6 100 150 50

2.2 3 2 2 3 6 200 300 100

2.3 3 2 2 3 6 400 600 200

3.1 6 6 5 7 15 100 150 50

3.2 6 6 5 7 15 200 300 100

3.3 6 6 5 7 15 400 600 200

4.1 9 9 7 10 22 100 150 50

4.2 9 9 7 10 22 200 300 100

4.3 9 9 7 10 22 400 600 200

41

5.1 13 13 10 15 33 100 150 50

5.2 13 13 10 15 33 200 300 100

5.3 13 13 10 15 33 400 600 200

6.1 19 19 15 22 49 100 150 50

6.2 19 19 15 22 49 200 300 100

6.3 19 19 15 22 49 400 600 200

7.1 28 28 22 33 73 100 150 50

7.2 28 28 22 33 73 200 300 100

7.3 28 28 22 33 73 400 600 200

8.1 42 42 33 49 109 100 150 50

8.2 42 42 33 49 109 200 300 100

8.3 42 42 33 49 109 400 600 200

9.1 63 63 49 73 163 100 150 50

9.2 63 63 49 73 163 200 300 100

9.3 63 63 49 73 163 400 600 200

10.1 94 94 73 109 244 100 150 50

10.2 94 94 73 109 244 200 300 100

10.3 94 94 73 109 244 400 600 200

11.1 141 141 109 163 366 100 150 50

11.2 141 141 109 163 366 200 300 100

11.3 141 141 109 163 366 400 600 200

12.1 211 211 163 244 549 100 150 50

12.2 211 211 163 244 549 200 300 100

12.3 211 211 163 244 549 400 600 200

13.1 316 316 244 366 823 100 150 50

13.2 316 316 244 366 823 200 300 100

13.3 316 316 244 366 823 400 600 200

4.4 Tabu Search Data Parameters

Two types of comma-separated values files make up the Tabu Search data input. They

are node and edge data. First, the node data files contain data pertinent to each specific

node, including exchange rate, plant max capacity, warehouse max capacity, market

demand, market variance, market goodwill loss cost, market excess inventory cost, and

plant production cost per unit. Second, the edge data files contain data pertinent to the

42

arcs made between each supply chain node, including edge cost per unit, probability of

supply, reliability of supply, and exchange rate at all levels.

We manually generate node data comma-separated values, but edge data files pose

difficulty due to their massive factorial scaling. Therefore, a comma-separated value

program coded in Python generates the edge data files.

Data values are chosen randomly according to a preset parameter range. This parameter

range closely mirrors a range of maximum and minimum data values drawn from

literature. In addition, market demand fluctuates with each run of the program. Table 4-2

summarizes the range of numerical outcomes for node and edge data parameters.

Table 4-2: Tabu Search Data Parameters

Parameter Parameter Range

Exchange Rate U [0.10; 2.50]

Plant Max Capacity U [10000; 10000]

Warehouse Max Capacity U [7000; 10000]

Market Demand Mean U [1800; 2500]
Market Demand Variance U [100; 300]

Market Goodwill Loss cost U [3; 5]

Market Excess Inventory Cost U [3; 5]

Plant Production Cost U [20; 50]

Edge Cost U [10; 60]

Probability U [0.60; 0.95]

Reliability U [0.80;1.00]

4.5 Tabu Search Results

A computer program using Python version 3.9.1, an open-source programming language,

generated optimal solutions utilizing the Tabu Search algorithm (Liang, 2020). Several

43

generated instances of the problem tested the capability of the Tabu Search model. A

Windows laptop with 16 GB RAM supported by an AMD Ryzen 4700U processor (8

cores and eight threads with max boost clock of up to 4.1 GHz and 4 MB cache size) ran

the computer program (AMD, 2020).

The 13 problem instances have differing supply chain network sizes and three different

parameter values: iterations, neighbors, and tabu list size. In addition, each problem

instance ran with ten replications displaying a minimum, maximum, and mean total

supply chain cost ($) and run time (s). This makes 13*3*10 = 390 total runs. Table 4-3

presents a comprehensive list of results for the Tabu Search program below:

Table 4-3: Tabu Search Results

Problem
Instance

 Total Supply
Chain Cost ($)

Minimum

 Total Supply
Chain Cost ($)

Maximum

Total Supply
Chain Cost ($)

Avg.

Run Time (s)
Minimum

Run Time (s)
Maximum

Run Time (s)
Avg.

1.1 $305,460 $326,294 $314,422 0.33 0.38 0.34

1.2 $304,364 $327,735 $320,471 0.83 1.42 1.10

1.3 $306,968 $324,564 $318,132 4.06 6.02 4.87

2.1 $1,077,963 $1,171,826 $1,117,712 0.63 1.08 0.94

2.2 $1,053,617 $1,144,854 $1,094,059 2.52 4.21 2.97

2.3 $1,055,294 $1,109,314 $1,079,856 11.92 14.65 13.00

3.1 $2,503,313 $2,938,476 $2,709,974 1.45 2.42 1.84

3.2 $2,355,350 $2,716,719 $2,562,071 5.90 9.45 6.58

3.3 $2,383,256 $2,573,289 $2,464,563 25.65 28.11 26.14

4.1 $3,899,179 $4,412,494 $4,194,970 2.17 3.74 2.62

4.2 $3,741,042 $4,222,904 $4,020,527 9.52 12.70 9.94

4.3 $3,522,076 $4,027,994 $3,827,620 37.88 39.99 38.64

5.1 $6,226,103 $6,936,944 $6,610,386 3.31 3.81 3.69

5.2 $6,285,264 $6,653,756 $6,493,455 14.43 16.13 15.28

5.3 $5,939,232 $6,355,414 $6,172,603 60.60 66.27 63.25

6.1 $10,338,557 $11,150,236 $10,832,441 5.61 6.74 6.46

6.2 $10,264,711 $10,944,850 $10,566,577 25.76 29.31 26.66

6.3 $10,083,162 $10,693,942 $10,372,145 99.62 144.87 113.69

44

7.1 $16,391,687 $17,269,007 $16,984,429 11.35 13.37 12.22

7.2 $16,246,583 $16,910,571 $16,630,000 44.26 51.10 46.90

7.3 $15,416,666 $16,642,086 $16,070,246 186.04 268.39 222.37

8.1 $26,201,790 $27,264,122 $26,620,216 26.82 45.18 38.16

8.2 $25,345,720 $26,385,159 $25,985,267 96.29 123.56 106.58

8.3 $24,864,534 $26,084,910 $25,518,667 319.14 420.11 342.77

9.1 $39,839,482 $42,361,909 $41,112,681 45.23 53.76 48.30

9.2 $40,208,504 $41,413,436 $40,801,821 182.97 244.63 207.55

9.3 $39,604,987 $40,735,450 $40,207,018 671.26 815.27 712.78

10.1 $62,945,738 $64,668,437 $63,961,829 94.49 96.86 95.87

10.2 $61,624,101 $64,393,809 $63,023,551 377.49 627.91 474.63

10.3 $61,348,360 $63,217,919 $62,330,256 1434.08 1505.77 1464.51

11.1 $95,394,999 $98,786,202 $97,603,802 182.93 193.27 190.39

11.2 $94,585,572 $98,231,104 $96,512,490 733.60 965.25 838.62

11.3 $94,735,479 $97,703,745 $95,880,657 3056.28 3657.82 3325.13

12.1 $148,203,306 $151,274,641 $150,316,410 411.75 570.55 475.83

12.2 $147,235,790 $150,375,322 $148,938,278 1639.41 2159.51 1800.40

12.3 $144,892,645 $149,403,846 $146,851,716 6500.93 7219.12 6658.20

13.1 $225,188,483 $238,267,389 $231,626,673 928.72 948.13 936.04

13.2 $225,338,416 $230,066,993 $228,642,490 3458.73 3741.92 3625.64

13.3 $221,615,252 $229,373,830 $226,103,637 14831.43 18926.27 16969.45

To quantify the improvement in total supply chain cost ($), we calculate a difference

value in percentage. We calculate this by subtracting the previous total supply chain cost

average from the new total supply chain cost average, then dividing it all by the previous

total supply chain cost. We then multiply by 100 to represent the fraction as a percentage.

Using the total cost difference (%) result, we analyze the improvements in every problem

instance. The Tabu Search algorithm found an improving total cost average after

increasing the Tabu Search input parameters in almost every problem instance. However,

results show that an exception occurred in problem instance one. Problem instance one

acts as a proof-of-concept with one node of each level. As a result, the random market

demand in a tiny supply chain network highly influences the total cost. Because only one

45

market is present in problem instance one, the algorithm struggles to find a better solution

for an ever-changing market demand when there is only one random path it must take.

46

CHAPTER 5. STATISTICAL ANALYSIS

5.1 Statistical Analysis Software and Data

A statistical analysis method using the Tabu Search results identifies variation in this

section. Minitab version 19.2020.1 (64-bit) conducted the statistical analysis (Minitab,

2019). A Windows laptop with 16 GB of RAM supported by an AMD Ryzen 4700U

processor (eight cores and eight threads, a max boost clock up to 4.1 GHz, and a 4 MB

cache size) ran the statistical model (AMD, 2020).

We conducted a statistical analysis using a different experimental problem that contains

six domestic suppliers, six global suppliers, five plants, seven warehouses, and 15

markets. The results of the program contain every combination of iterations (100, 200,

400), neighbors (150, 300, 600), and tabu list size (50, 100, 200). There are three

different outcomes of three varying input parameters (3*3*3 = 27 combinations). Each

outcome contains ten replications, equaling 270 total runs in one problem.

5.2 Regression Analysis of Total Supply Chain Cost

A quadratic multi-regression approach describes the relationship between the input

parameters (iterations, neighbors’ number, and tabu list size) and the response (total

supply chain cost ($)). The input parameters act as independent continuous predictors,

while the response serves as a continuous dependent variable. Equation 29 describes the

regression equation with both linear, quadratic, and interaction terms.

47

𝐸(𝑌) = 𝛽0 + 𝛽1 𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽11 𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 +

𝛽12 𝑋1𝑋2 + 𝛽13 𝑋1𝑋3 + 𝛽23𝑋2𝑋3 + 𝛽123 𝑋1𝑋2𝑋3

 (29)

In Equation 29, 𝐸(𝑌) represents the expected response value. 𝛽0 is the constant intercept,

𝛽𝑖 , where 𝑖 = 1, 2, 3, are the coefficients of the non-interaction terms, 𝛽𝑖𝑖 , where 𝑖 =

1, 2, 3, are the coefficients of the quadratic terms, 𝛽𝑖𝑗, where 𝑖 = 1, 2, 3 and 𝑗 = 1, 2, 3,

are the coefficients of the two-way interaction terms, and 𝛽𝑖𝑗𝑘𝑊here 𝑖 = 1, 2, 3 𝑗 =

1, 2, 3 𝑘 = 1, 2, 3, are the coefficients of the three-way interaction term. 𝑋𝑖 , where 𝑖 =

1, 2, 3, represents the three Tabu Search input parameters. The method of least squares

obtains the results for the regression analysis.

5.2.1 Quadratic Multi-Regression

First, we conduct a multi-regression analysis with quadratic and linear interaction terms

shown in Table 5-1. Then, we analyze if the regression model is significant. We use

Minitab version 19 to conduct the regression analysis with a significance level (denoted

as α) of 0.05. The regression’s p-value is less than 5%, meaning we have a significant

regression model. In addition, we test for the significance of the model’s constant. The

model constant’s p-value is less than 5%, meaning we have a non-zero constant intercept.

48

Table 5-1: Total Supply Chain Cost Regression Analysis

Regression Equation

Total Supply Chain Cost

($)

= 2924406 - 1540 Iterations - 422 Neighbors

- 386 Tabu List Size

+ 1.865 Iterations*Iterations

+ 0.151 Neighbors*Neighbors

- 0.39 Tabu List Size*Tabu List Size

- 0.058 Iterations*Neighbors
+ 1.79 Iterations*Tabu List Size

- 0.29 Neighbors*Tabu List Size

+ 0.00145 Iterations*Neighbors*Tabu List Size

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 2924406 91301 32.03 0.000

Iterations -1540 452 -3.40 0.001 68.25

Neighbors -422 302 -1.40 0.163 68.25

Tabu List Size -386 905 -0.43 0.670 68.25

Iterations*Iterations 1.865 0.738 2.53 0.012 49.00

Neighbors*Neighbors 0.151 0.328 0.46 0.646 49.00

Tabu List Size*Tabu List Size -0.39 2.95 -0.13 0.895 49.00

Iterations*Neighbors -0.058 0.621 -0.09 0.926 36.00

Iterations*Tabu List Size 1.79 1.86 0.96 0.338 36.00

Neighbors*Tabu List Size -0.29 1.24 -0.24 0.814 36.00

Iterations*Neighbors*Tabu List

Size

0.00145 0.00469 0.31 0.758 48.25

Model Summary

S R-sq R-sq(adj) R-sq(pred)

112250 32.54% 29.93% 27.21%

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 10 1.57404E+12 1.57404E+11 12.49 0.000

 Iterations 1 1.45919E+11 1.45919E+11 11.58 0.001

 Neighbors 1 24687330199 24687330199 1.96 0.163

 Tabu List Size 1 2290034582 2290034582 0.18 0.670

 Iterations*Iterations 1 80481369454 80481369454 6.39 0.012

 Neighbors*Neighbors 1 2659595076 2659595076 0.21 0.646

 Tabu List Size*Tabu List Size 1 221015477 221015477 0.02 0.895

 Iterations*Neighbors 1 108465129 108465129 0.01 0.926

 Iterations*Tabu List Size 1 11588120667 11588120667 0.92 0.338

 Neighbors*Tabu List Size 1 696023913 696023913 0.06 0.814

 Iterations*Neighbors*Tabu List
Size

1 1202252366 1202252366 0.10 0.758

Error 259 3.26340E+12 12599997398

 Lack-of-Fit 16 2.20485E+11 13780288705 1.10 0.355

 Pure Error 243 3.04291E+12 12522282744

Total 269 4.83744E+12

49

5.2.2 Predictor Association

We utilize the p-value to identify significant predictors. We compare the p-value for the

term to the significance level to assess the null hypothesis. The null hypothesis is that

there is no association between the term and the response. According to Table 5-1 and

Figure 5-1, only the first term (iterations) and its quadratic form (iterations x iterations)

show a statistically significant association with total cost as its p-value is less than alpha.

We can conclude that the coefficients for iterations and iterations x iterations predictors

do not equal zero. In addition, the coefficients of iterations and iterations x iterations are

negatively correlated to the total cost, meaning they are highly influential in reducing the

total cost function.

On the other hand, all other predictors are insignificant in association with total cost.

Neighbors number, the next closest p-value, misses the mark with a large p-value. While

neighbors’ number shows no statistically significant association with the total cost,

altering the accepted significance level can allow neighbors’ number to associate with the

total cost significantly. Tabu list size seems to have little effect on influencing the total

cost value.

50

Figure 5-1: Total Supply Chain Cost Pareto Chart for Significant Predictors

None of the interaction effects are significant, so main effects and quadratic main effects

become the next central area of focus. Figure 5-2 further explains with main effect plots

for iterations, neighbors, and tabu list size. The graphs illustrate iterations and neighbors’

contributions to reducing the total supply chain cost ($). In iterations and neighbors, the

main effect plot reduces the mean total cost, while tabu list size virtually stays flat.

Iterations repeatedly loop, generating more neighbors in the Tabu Search algorithm. Tabu

list size serves as an external, unrelated array of continuously changing solutions, so this

confirms our predictions.

51

Figure 5-2: Run Time Main Effects Plot

5.2.3 VIF and Goodness of Fit

According to Table 5-1, each predictor contains a variance inflation factor (VIF). With

high VIF values, we lose reliability amongst the regression results. The results display a

VIF above ten which indicates a high correlation and is cause for concern. This concern

applies more to prediction (not used in this paper) rather than estimation of predictors.

However, we address this concern in the stepwise analysis.

Next, we look at the goodness of fit values. The goodness of fit values, 𝑅2 = .3254 and

𝑅2(𝑎𝑑𝑗) = .2993, imply that the joint presence of independent variables (iterations,

neighbors, and tabu list size) explains the reported percentage of the dependent variable

Y (total cost) variability in the model. The higher the percentage value, the better the

52

model fits the data (Frost, 2020). In a practical case, this 𝑅2(𝑎𝑑𝑗) value would not be

acceptable as it is less than 50%. As a result, the model’s small sample size does not fit

the data well in the conducted experiment. As expected, 𝑅2(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) is always a few

percentage points lower than 𝑅2(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙).

5.2.4 Collinearity and Outliers

Now, we check for collinearity amongst the independent variables. When using the same

0.05 as the significance level, we see from the results in Table 5-2 that the p-values are

all greater than 5%, meaning there is inconclusive evidence about the significance of the

association between the variables. In addition, the near-zero correlation coefficients for

all three variables do not allow us to conclude any correlation between iterations,

neighbors, and tabu list size.

Table 5-2: Correlation Analysis of Independent Variables

Pairwise Pearson Correlations

Sample 1 Sample 2 N Correlation 95% CI for ρ P-Value

Neighbors Iterations 270 -0.000 (-0.119, 0.119) 1.00000

Tabu List Size Iterations 270 -0.000 (-0.119, 0.119) 1.00000

Tabu List Size Neighbors 270 -0.000 (-0.119, 0.119) 1.00000

Following the multi-regression output, Cook’s Distance provides interesting data to

identify potential outliers. An outlier must have a value greater than 0.50. None of

Cook’s Distance values were larger than 0.50 than this value, so no outliers present.

However, Minitab’s regression output displays unusual observations gathered from data

shown in Table 5-3. While these unusual observations diminish the validity of the

regression model and skew results, they are vital data points in Tabu Search’s goal to

53

minimize total cost. Observations with large distance values relative to other observations

can be influential. Unpredictability and random variability within Tabu Search algorithms

contribute as well.

Table 5-3: Unusual Observations of Total Supply Chain Cost ($)

Fits and Diagnostics for Unusual Observations

Obs

Total

Supply

Chain

Cost ($) Fit Resid Std Resid

10 2938476 2697767 240709 2.17 R

31 2336459 2648843 -312383 -2.79 R

58 2782644 2554157 228487 2.07 R

65 2794657 2550995 243662 2.21 R

72 2326729 2597138 -270409 -2.42 R

77 2304209 2597138 -292929 -2.62 R

91 2355350 2594719 -239369 -2.12 R

119 2386180 2642380 -256200 -2.28 R

122 2879316 2632311 247005 2.20 R

124 2343080 2632311 -289230 -2.57 R

143 2251411 2499398 -247987 -2.21 R

161 2268141 2629454 -361313 -3.24 R

231 2311227 2551020 -239793 -2.16 R

269 2196313 2503795 -307482 -2.75 R

R Large residual

5.2.5 Assumptions Check

Typically, a linear regression analysis has two purposes: to predict the value of the

dependent variable for individuals or to estimate the effect of some explanatory variable

on the dependent variable. We do not wish to use regression to predict values but to

analyze the effect on iterations, neighbors, and tabu list size on total supply chain cost

($). As a result, we must check the multi-regression model assumptions.

First, we check for linearity and additivity between the dependent and independent

variables. Figure 5-4, Figure 5-5, and Figure 5-6 display residuals versus predictor

54

values. The three plots display symmetrically distributed data points around the

horizontal line. In addition, a roughly constant variance validating linearity and

additivity.

Second, we check the model’s residuals normality. The residuals probability plot

dissatisfies the normality of residuals assumption shown in Figure 5-3. Although most of

the data points lie close to the red diagonal line, the Anderson-Darling p-value was less

than 0.005, meaning the data does not come from a normal distribution. In addition, the

bow-shaped pattern of deviations from the diagonal indicates that the residuals have

excessive skewness (they are not symmetrically distributed, with too many large errors in

one direction). The non-normality of residuals poses a significant concern for any

regression model by reducing its validity. Tabu Search’s essential goal of minimizing

total cost may be a leading reason and the limited sample size of ten replications per

combination. Therefore, we require a data transformation of the response variable to

make the residuals demonstrate a normal distribution. We conducted a Box-Cox data

transformation to adjust the normality of residuals’ p-value to be greater than our 5%

significance level (Bland & Altman, 1996). This adjustment significantly alters the

statistical analysis results and will be depicted in the stepwise regression section.

Third, we check for homoscedasticity. We verify this assumption by observing the

residuals versus fits plot in Figure 5-3. The data points in the plot show even distributions

above and below the horizontal line.

55

Figure 5-3: Four-in-One Plots for Total Supply Chain Cost ($)

Figure 5-4: Total Supply Chain Cost Residuals vs. Iterations Predictor Plot

56

Figure 5-5: Total Supply Chain Cost Residuals vs. Neighbors Predictor Plot

Figure 5-6: Total Supply Chain Cost Residuals vs. Tabu List Size Predictor Plot

57

5.2.6 Stepwise Analysis

Model reduction is an effective tool to enhance the statistical significance of a term. The

elimination of statistically insignificant terms increases the precision of predictions from

the model. An alpha to enter and an alpha to remove of 0.15 or 15% is recommended in

the statistical significance criterion (Minitab, 2019). We apply the statistical significance

criterion automatically with Minitab’s algorithmic procedure, known as stepwise

regression. Stepwise regression improves the validity of our regression analysis;

however, it is essential to acknowledge that it does not always produce the best model. In

addition, we set the stepwise to require a hierarchy model.

To normalize the residuals, we conducted a Box-Cox data transformation of the response

variable, total supply chain cost ($). First, we conducted a Box-Cox data transformation

using natural log (where lambda = 0), but this did not change the residuals' normality.

After increasing lambda significantly (where lambda = 4.25), we obtain an Anderson-

Darling normality test p-value of 0.051, meaning we fail to reject the null hypothesis that

the residuals follow a normal distribution. Figure 5-7 depicts the Anderson-Darling

normality results after data transformation.

58

Figure 5-7: Anderson-Darling Residuals Normality Test Box-Cox Transformation

Table 5-4 and Figure 5-8 show the final multi-regression stepwise results. The algorithm

chose to reduce the model down to iterations x iterations, neighbors, and iterations as the

only remaining significant factors. Iterations x iterations contain a positive coefficient,

while iterations and neighbors alone contain a negative coefficient. In addition, their VIF

values remained the same as we expect collinearity amongst iterations and iterations x

iterations. The 𝑅2 and 𝑅2(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) values increased by approximately 2% proving that

the data now fits the model better than before; however, we would still consider an

𝑅2(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) value lower than 50% to be unacceptable in practical use (Frost, 2020).

Overall, iterations, neighbors, and iterations x iterations have a significant impact in

influencing total supply chain cost ($). The stepwise analysis displays the final regression

model equation in Table 5-4.

59

Table 5-4: Total Supply Chain Cost Stepwise Regression Analysis Results

Method

Box-Cox

transformation

λ = 4.25

Stepwise Selection of Terms

α to enter = 0.15, α to remove = 0.15

The stepwise procedure added terms during the procedure in order to maintain a hierarchical

 model at each step.

Regression Equation

(Total Supply Chain Cost ($)^λ-1)/(λ×g^(λ-

1))

= 915233 - 1412 Iterations

- 321.1 Neighbors

+ 2.063 Iterations*Iterations

(λ = 4.25, g = 2562046 is the geometric mean of Total Supply Chain Cost ($))

Coefficients for Transformed Response

Term Coef SE Coef T-Value P-Value VIF

Constant 915233 41635 21.98 0.00000000

Iterations -1412 383 -3.68 0.00027739 49.00

Neighbors -321.1 36.5 -8.80 0.00000000 1.00

Iterations*Iterations 2.063 0.738 2.80 0.00553735 49.00

Model Summary for Transformed Response

S R-sq R-sq(adj) R-sq(pred)

112219 32.20% 31.44% 30.22%

Analysis of Variance for Transformed Response

Source DF Adj SS Adj MS F-Value P-Value

Regression 3 1.59105E+12 5.30350E+11 42.11 0.000

Iterations 1 1.70977E+11 1.70977E+11 13.58 0.000

Neighbors 1 9.74154E+11 9.74154E+11 77.36 0.000

Iterations*Iterations 1 98506062749 98506062749 7.82 0.006

Error 266 3.34975E+12 12593033484

Lack-of-Fit 23 3.18507E+11 13848118100 1.11 0.334

Pure Error 243 3.03124E+12 12474239467

Total 269 4.94080E+12

60

Figure 5-8: Total Supply Chain Cost Pareto Chart with Stepwise

5.3 Regression Analysis of Run Time

A quadratic multi-regression approach describes the relationship between the input

parameters (iterations, neighbors’ number, and tabu list size) and the response (run time

(s)). The input parameters act as independent continuous predictors, while the response

serves as a continuous dependent variable. Equation 30 describes the regression equation

with both linear, quadratic, and interaction terms.

𝐸(𝑌) = 𝛽0 + 𝛽1 𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽11 𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 +

𝛽12 𝑋1𝑋2 + 𝛽13 𝑋1𝑋3 + 𝛽23𝑋2𝑋3 + 𝛽123 𝑋1𝑋2𝑋3

 (30)

In Equation 30, 𝐸(𝑌) represents the expected response value. 𝛽0 is the constant intercept,

𝛽𝑖 , where 𝑖 = 1, 2, 3, are the coefficients of the non-interaction terms, 𝛽𝑖𝑖 , where 𝑖 =

1, 2, 3, are the coefficients of the quadratic terms, 𝛽𝑖𝑗, where 𝑖 = 1, 2, 3 and 𝑗 = 1, 2, 3,

are the coefficients of the two-way interaction terms, and 𝛽𝑖𝑗𝑘 where 𝑖 = 1, 2, 3 𝑗 =

61

1, 2, 3 𝑘 = 1, 2, 3, are the coefficients of the three-way interaction term. 𝑋𝑖 , where 𝑖 =

1, 2, 3, represents the three Tabu Search input parameters. The method of least squares

obtains the results for the regression analysis.

5.3.1 Quadratic Multi-Regression

First, we conduct a multi-regression analysis with quadratic and linear interaction terms.

Then, we analyze if the regression model is significant. We use Minitab version 19 to

conduct the regression analysis with a significance level (denoted as α) of 0.05. The

regression’s p-value is less than 5%, meaning we have a significant regression model. In

addition, we test for the significance of the model’s constant. The model constant’s p -

value is less than 5%, meaning we have a non-zero constant intercept.

Table 5-5: Run Time Regression Analysis

Regression Equation

Run Time (s) = 0.656 - 0.00174 Iterations - 0.00244 Neighbors

- 0.00020 Tabu List Size

- 0.000003 Iterations*Iterations + 0.000001 Neighbors*Neighbors

- 0.000019 Tabu List Size*Tabu List Size

+ 0.000117 Iterations*Neighbors

+ 0.000020 Iterations*Tabu List Size
+ 0.000013 Neighbors*Tabu List Size

- 0.000000 Iterations*Neighbors*Tabu List Size

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 0.656 0.575 1.14 0.255

Iterations -0.00174 0.00285 -0.61 0.542 68.25

Neighbors -0.00244 0.00190 -1.28 0.201 68.25

Tabu List Size -0.00020 0.00570 -0.04 0.972 68.25

Iterations*Iterations -

0.000003

0.000005 -0.60 0.547 49.00

Neighbors*Neighbors 0.000001 0.000002 0.59 0.555 49.00

Tabu List Size*Tabu List Size -

0.000019

0.000019 -1.01 0.315 49.00

Iterations*Neighbors 0.000117 0.000004 29.81 0.000 36.00

Iterations*Tabu List Size 0.000020 0.000012 1.72 0.087 36.00

Neighbors*Tabu List Size 0.000013 0.000008 1.66 0.099 36.00

Iterations*Neighbors*Tabu List
Size

-
0.000000

0.000000 -1.74 0.083 48.25

Model Summary

S R-sq R-sq(adj) R-sq(pred)

0.706531 99.09% 99.06% 99.01%

62

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 10 14112.8 1411.28 2827.16 0.000

Iterations 1 0.2 0.19 0.37 0.542

Neighbors 1 0.8 0.82 1.65 0.201

Tabu List Size 1 0.0 0.00 0.00 0.972

Iterations*Iterations 1 0.2 0.18 0.36 0.547

Neighbors*Neighbors 1 0.2 0.17 0.35 0.555

Tabu List Size*Tabu List Size 1 0.5 0.51 1.01 0.315

Iterations*Neighbors 1 443.7 443.66 888.78 0.000

Iterations*Tabu List Size 1 1.5 1.47 2.94 0.087

Neighbors*Tabu List Size 1 1.4 1.37 2.74 0.099

Iterations*Neighbors*Tabu List

Size

1 1.5 1.51 3.03 0.083

Error 259 129.3 0.50

Lack-of-Fit 16 9.8 0.61 1.24 0.235

Pure Error 243 119.5 0.49

Total 269 14242.1

5.3.2 Predictor Association

We utilize the p-value to identify significant predictors. A 5% significance level indicates

the percent risk of concluding that an association exists when there is no actual

association. We compare the p-value for the term to the significance level to assess the

null hypothesis. The null hypothesis is that there is no association between the term and

the response. A significance level of 0.05 indicates a 5% risk of concluding that an

association exists when there is no actual association.

According to Table 5-5 and Figure 5-9, only the first interaction term (iterations x

neighbors association) shows a statistically significant association with run time (s) as its

p-value is less than alpha. We can conclude that this interaction’s coefficient does not

equal zero. Its presence indicates that iterations on run time (s) vary at different predictor

variable values (neighbors). In other words, the unique effect of iterations on run time (s)

is not limited to iterations but also depends on neighbors' values.

63

Figure 5-9: Run Time Pareto Chart for Significant Predictors

As a result of one of the interaction effects being significant, we ignore the main effects

and explain the interaction effect. Figure 5-10 further illustrates an interaction plot

between iterations and neighbors. The combination of iterations x neighbors’ number

dramatically increases the run time (s). Although other interactions also increase run time

(s), iterations x neighbors impact the response exponentially because iterations loop

repeatedly, generating more neighbors in the Tabu Search algorithm. Tabu list size serves

as an external, unrelated array of continuously changing solutions.

64

Figure 5-10: Run Time Interactions x Neighbors Interaction Plot

5.3.3 VIF and Goodness of Fit

According to Table 5-5, each predictor contains a variance inflation factor (VIF). With

high VIF values, we lose reliability amongst the regression results. The results display a

VIF above ten which indicates a high correlation and is cause for concern. This concern

applies more to prediction (not used in this paper) rather than estimation of predictors.

However, we address this concern in the stepwise analysis.

Next, we look at the goodness of fit values. The goodness of fit value, 𝑅2 = .9909 and

𝑅2(𝑎𝑑𝑗) = .9906, imply that the joint presence of independent variables (iterations,

neighbors, and tabu list size) explains the reported percentage of the dependent variable

Y (run time) variability in the model. The higher the percentage value, the better the

model fits the data (Frost, 2020). In a practical case, this 𝑅2(𝑎𝑑𝑗) would be acceptable.

65

As a result, the model’s small sample size does fit the data well in the conducted

experiment. As expected, 𝑅2(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) is always a few percentage points lower than

𝑅2(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) .

5.3.4 Collinearity and Outliers

Now, we check for collinearity amongst the independent variables. When using the same

0.05 as the significance level, we see from the results in Table 5-6 that the p-values are

all greater than 5%, meaning there is inconclusive evidence about the significance of the

association between the variables. In addition, the near-zero correlation coefficients for

all three variables do not allow us to conclude any correlation between iterations,

neighbors, and tabu list size.

Table 5-6: Correlation Analysis of Independent Variables

Pairwise Pearson Correlations

Sample 1 Sample 2 N Correlation 95% CI for ρ P-Value

Neighbors Iterations 270 -0.000 (-0.119, 0.119) 1.00000

Tabu List Size Iterations 270 -0.000 (-0.119, 0.119) 1.00000

Tabu List Size Neighbors 270 -0.000 (-0.119, 0.119) 1.00000

Following the multi-regression output, Cook’s Distance provides interesting data to

identify potential outliers. An outlier must have a value greater than 0.50. None of

Cook’s Distance values were larger than 0.50 than this value, so no outliers present.

However, Minitab’s regression output displays unusual observations gathered from data

shown in Table 5-7. While these unusual observations diminish the validity of the

regression model and skew results, they are vital data points in Tabu Search’s goal of

minimizing total cost. Observations with large residual values relative to other

66

observations can be influential. Unpredictability and random variability within Tabu

Search algorithms contribute as well.

Table 5-7: Unusual Observations of Run Time (s)

Fits and Diagnostics for Unusual Observations

Obs Run Time (s) Fit Resid Std Resid

21 5.330 3.590 1.741 2.49 R

22 5.250 3.590 1.661 2.38 R

23 5.511 3.590 1.922 2.75 R

51 9.018 6.754 2.264 3.29 R

61 9.072 6.485 2.587 3.76 R

81 9.156 6.838 2.317 3.33 R

91 9.453 6.782 2.670 3.80 R

101 9.248 6.792 2.457 3.50 R

151 14.984 13.233 1.751 2.50 R

171 15.103 13.375 1.728 2.48 R

181 28.114 26.387 1.727 2.55 R

201 9.039 6.769 2.270 3.33 R

211 9.125 7.007 2.119 3.10 R

221 28.788 26.541 2.247 3.24 R

231 14.986 13.308 1.678 2.42 R

241 15.487 13.467 2.021 2.91 R

251 9.111 6.580 2.531 3.63 R

261 14.916 13.196 1.720 2.47 R

R Large residual

5.3.5 Assumptions Check

Like total supply chain cost ($), we must check the multi-regression model assumptions

for run time (s). First, we check for linearity and additivity between the dependent and

independent variables. Figure 5-13 and Figure 5-14 display residuals versus predictor

values. The three plots display some points not symmetrically distributed around the

horizontal line. Most points lie below zero. Occasionally, long run times occurred, which

may be due to external factors, such as the hardware or software environment. These

factors must be acknowledged but are challenging to eliminate. Therefore, the linearity

and additivity assumption restriction can be slightly relaxed.

67

Second, we check the model’s residuals normality. The residuals probability plot

dissatisfies the normality of the residuals assumption shown in Figure 5-11. Most of the

data points deviate significantly from the red diagonal line. The Anderson-Darling p-

value was less than 0.005, meaning the data does not come from a normal distribution. In

addition, the bow-shaped pattern of deviations from the red diagonal indicates that the

residuals have excessive skewness (they are not symmetrically distributed, with too many

large errors in one direction). The non-normality of residuals poses a significant concern

for any regression model. Tabu Search’s essential goal of minimizing total cost may be a

leading reason and the limited sample size of ten replications per combination. The first

replication in each set of 10 replications per problem instance outputted a run time (s)

result that was an unusual observation compared to the other nine replications’ values.

This issue stems from the files scanning and still being in the operating system’s file

cache system, so it does not require as much disk access as the first run (Clements &

Singhal, 2013). Therefore, we identified these outliers and more to be removed because

they negatively influence the data results. When eliminating 62 out of the 270 data points,

the p-value of the Anderson-Darling normality test raises above 5%, meaning that the

residuals now come from a normal distribution (Bland & Altman, 1996). This adjustment

significantly alters the statistical analysis results and will be depicted in the stepwise

regression section. Note: Data transformation methods were considered before removing

outliers but did not affect making the run time (s) residuals normal.

68

Third, we check for homoscedasticity. The residuals versus fits plot in Figure 5-11 shows

most points below or above the horizontal line, but occasionally we see long run times

with large residuals. Once again, this may be due to external factors, such as the hardware

or software environment.

Figure 5-11: Run Time Four-in-One Plots

69

Figure 5-12: Run Time Residuals vs. Iterations Predictor Plot

Figure 5-13: Run Time Residuals vs. Neighbors Predictor Plot

70

Figure 5-14: Run Time Residuals vs. Tabu List Size Predictor Plot

5.3.6 Stepwise Analysis

Like total supply chain cost ($), the run time (s) utilizes the same stepwise analysis with

the same statistical significance criterion. To normalize the residuals, we eliminated 62

unusual observations out of the 270 total data points before conducting stepwise. Figure

5-15 depicts an Anderson-Darling p-value of 0.129, meaning that the run time (s)

residuals now come from a normal distribution.

71

Figure 5-15: Anderson-Darling Normality Test of Residuals After Outlier Removal

Table 5-8 and Figure 5-16 show the multi-regression stepwise results. The algorithm

chose to reduce the model down to the three-way interaction of iterations x neighbors x

tabu list size as the remaining significant factor of the model. The hierarchy principle

forces the appearance of the main and interaction effects for iterations, neighbors, and

tabu list size because of the three-way interaction significance of iterations x neighbors x

tabu list size. Because we removed 62 data points, the VIF values increased, and the 𝑅2

and 𝑅2(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) values remain relatively high indicating strong data that fits the

regression model well (Frost, 2020). The stepwise analysis displays the final regression

model equation in Table 5-8.

Table 5-8: Run Time Stepwise Regression Analysis Results

72

Regression Equation

Run Time (s) = 0.092 + 0.000102 Iterations - 0.003177 Neighbors

+ 0.00221 Tabu List Size

- 0.000004 Iterations*Iterations + 0.000002 Neighbors*Neighbors

- 0.000021 Tabu List Size*Tabu List Size

+ 0.000116 Iterations*Neighbors

+ 0.000015 Iterations*Tabu List Size

+ 0.000012 Neighbors*Tabu List Size

- 0.000000 Iterations*Neighbors*Tabu List Size

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 0.092 0.184 0.50 0.616

Iterations 0.000102 0.000889 0.11 0.909 76.33

Neighbors -

0.003177

0.000567 -5.60 0.000 68.80

Tabu List Size 0.00221 0.00176 1.25 0.211 72.57

Iterations*Iterations -

0.000004

0.000001 -3.03 0.003 52.87

Neighbors*Neighbors 0.000002 0.000001 3.85 0.000 49.99

Tabu List Size*Tabu List Size -

0.000021

0.000006 -3.83 0.000 49.31

Iterations*Neighbors 0.000116 0.000001 101.20 0.000 34.82

Iterations*Tabu List Size 0.000015 0.000004 4.12 0.000 36.32

Neighbors*Tabu List Size 0.000012 0.000002 5.29 0.000 36.43

Iterations*Neighbors*Tabu List

Size

-

0.000000

0.000000 -5.19 0.000 46.00

Model Summary

S R-sq R-sq(adj) R-sq(pred)

0.185377 99.94% 99.94% 99.93%

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 10 11087.1 1108.71 32262.99 0.000

 Iterations 1 0.0 0.00 0.01 0.909

 Neighbors 1 1.1 1.08 31.35 0.000

 Tabu List Size 1 0.1 0.05 1.57 0.211

 Iterations*Iterations 1 0.3 0.32 9.19 0.003

 Neighbors*Neighbors 1 0.5 0.51 14.83 0.000

 Tabu List Size*Tabu List Size 1 0.5 0.51 14.70 0.000

 Iterations*Neighbors 1 352.0 351.97 10242.18 0.000

 Iterations*Tabu List Size 1 0.6 0.58 16.94 0.000

 Neighbors*Tabu List Size 1 1.0 0.96 28.03 0.000

 Iterations*Neighbors*Tabu List

Size

1 0.9 0.92 26.90 0.000

Error 197 6.8 0.03

 Lack-of-Fit 16 4.2 0.26 18.39 0.000

 Pure Error 181 2.6 0.01

Total 207 11093.9

73

Figure 5-16: Run Time Pareto Chart with Stepwise

5.4 Statistical Analysis Key Takeaways

To summarize the steps in the statistical analysis, we first identified the significance of

the regression model and its intercept coefficient. Then, we analyzed the association of

the predictors with two different responses, computed various values, checked

assumptions, transformed data or removed outliers, and performed stepwise analysis to

improve results displaying a final regression model. After running Minitab’s software,

the model was significant, and we learned about potential concerns to investigate further.

First, we learned that iterations, neighbors, and iterations x iterations influence the

minimization of total supply chain cost the most. Then, we learned that the interaction

between iterations x neighbors x tabu list size influences the run time the most. These

discoveries mean that increasing iterations and neighbors will decrease the total supply

74

chain cost, and increasing iterations, neighbors, and tabu list size will increase run time.

From a design and practical sense, these discoveries align with our predictions and are

not surprising. Iterations loop repeatedly to find more solutions and works cohesively

with neighbors’ number to explore new search spaces and locate more optimal solutions.

Tabu list size keeps track of previously visited solutions to ensure the program makes an

improving move. All inputs increase run time.

This paper’s Tabu Search algorithm identifies a random route initial solution, branches to

other neighboring route solutions, and repeats over a specified number of iterations.

Iterations prove vital to the Tabu Search algorithm because it explores and exploits the

possible search spaces providing ample attempts to obtain a good solution. In addition,

neighbors’ number exponentially increases the pool of potential solutions exploring

search spaces never visited before. The tabu list serves as the cornerstone in constructing

any Tabu Search program. The treasured tabu list prevents recently seen solutions from

being revisited, saving time from a practical sense. From a statistical and design sense, all

inputs are vital to the performance of the Tabu Search program. In almost any real-world

scenario, paying a small price of longer run times seems like a decent tradeoff to decrease

total supply chain costs.

75

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH

This chapter provides an overall summary, a brief narrative of conclusions, contributions,

and suggestions for future research.

6.1 Conclusion

The primary motivation behind this research is the rise of the COVID-19 pandemic.

COVID-19 impacted every supply chain around the world. Although the virus slowed or

shut down supply chains worldwide, it was highly beneficial for companies to view their

supply chains differently. Overall, the pandemic accentuated the existing issues within

supply chains and increased efforts in risk management to reduce costs.

This paper successfully created a multi-echelon supply chain network using domestic and

global suppliers with embedded risk cost functions. A mixed-integer linear model

illustrates these networks. First, the mathematical model was programmed and solved in

Excel Solver for three smaller problems. Then, we modeled the problem with a Tabu

Search algorithm for larger problem instances. While exact methods like Excel Solver

can solve problems to optimality, they struggle with scaled problems. Given data for

nodes and edges, the Tabu Search algorithm can solve any size problems and does a great

job finding a quality solution amongst a large pool of possible solutions within a

relatively short time. The purpose of using a commercial solver and Tabu Search was not

to compare the two results of similar problem instances. Instead, the objective was to

illustrate that a commercial solver like Excel Solver is incapable of solving large-scale

76

supply chain optimization problems. Thus, Tabu Search is a viable alternative to good

results with a relatively fast run time, illustrating scalability and replicability.

Based on the statistical analysis results, we learned that iterations, neighbors, and

iterations x iterations influence the minimization of total supply chain costs. Then, we

learned that the interaction between iterations x neighbors x tabu list size influences the

run time the most. These discoveries mean increasing iterations and neighbors will

decrease the total supply chain cost, and increasing iterations, neighbors, and tabu list

size will increase run time. From a design and practical sense, these discoveries align

with our predictions and are not surprising. Iterations repeatedly loop, giving neighbors

the chance to explore unique search spaces for more optimal solutions. In comparison,

the tabu list holds the better solutions and prevents already visited solutions from being

tried again. Overall, all three inputs take up time.

6.2 Contributions

This paper offers research, practical, business, and scientific contributions to current

literature. The following section organizes these contributions.

6.2.1 Research

This paper makes several contributions from a research perspective:

• From a research point of view, this paper identifies gaps found in research. These

gaps include using an Excel Solver linear program and Tabu Search algorithm to

77

solve a single-objective supply chain cost function with embedded risk and

outsourcing.

• This paper relaxes many of the complex assumptions found in literature. The

supply chain network problems only consider one static planning horizon. In

addition, the problems only consider one SKU finished good made at a 1:1 ratio

with parts. The model for this paper does not evaluate quality management

principles such as scrap rate, defective parts, or logistical anomalies.

• In addition, we simplify the construction of the supply chain network leaving only

suppliers (domestic and global), plants, warehouses, and markets. Literature often

depicts other supply chain networks, including ones with distribution centers,

retailers, and manufacturers.

• Both nodes and edges within the supply chain network incur risks and costs. A

single-objective function analyzes the supply chain from a holistic perspective by

summing each echelon and inter-echelon cost with embedded risk.

6.2.2 Practical

This paper makes several contributions from a practical perspective:

• This paper offers an exact solution methodology that applies to problems

consisting of less than 200 decision variables from a practical perspective. Supply

chain managers in the industry will have experience working with Excel Solver

and easily understand the model from a high-level perspective.

• Only node data is needed to generate edge data using the edge data Python

program. Both node and edge data are required to generate Tabu Search results.

78

The Tabu Search may not provide the most optimal results, but the program

applies to any size problems.

• This work allows users to estimate the total supply chain cost of their unique

supply chain network efficiently and effectively. It also enables supply chain

managers to analyze specific level costs higher or lower than expected.

• Also, the mathematical model allows supply chain managers to pick more

advantageous suppliers in terms of cost or risk. The same applies to plants and

warehouses.

• This paper offers the ability for users to adjust for risk depending on external

factors impacting their supply chain. Users can increase risk percentages to reflect

a buoyant economy or decrease risk percentages to reflect a struggling economy.

• Lastly, the multi-regression statistical analysis informs programmers of the most

critical Tabu Search input parameters. A programmer should allocate equal

amounts of time in practice when incorporating iterations, neighbors, and tabu list

size.

6.2.3 Business

This paper makes several contributions from a business perspective:

• Various departments within a company can utilize the paper’s work. First, the

supply chain department can use the supplier selection process to identify cheaper

and more dependable suppliers in the production of their products. In addition, the

product development team plays a key role as they determine the product build

complexity. As the complexity of the product increases, the business will require

79

more dependable suppliers, but for a simple product, the cheapest supplier may

suffice. Product development determines a resilient process to reduce the time to

market for products to remain competitive.

• Second, businesses could integrate the logistics and inventory management

departments. The logistics team could identify cheaper or more dependable

transportation methods to transfer material/products between echelons efficiently.

In addition, inventory management is concerned with ensuring the right stock at

the right cost and time. Lastly, the inventory management team could identify

warehousing solutions to reduce work-in-process (WIP) or inventory holding

costs and increase salvage values or inventory turns.

• Third, customer service management interprets the relationship between a

company and its customers. This department ties into this paper’s supply chain

principles because they act as the main source of customer information providing

real-time information for product availability through its supply chain interfaces.

Successful organizations establish and maintain customer rapport and induce

positive feelings in customer purchases.

6.2.4 Scientific

This paper makes several contributions from a scientific perspective:

• This paper embeds risk management into a single-objective total supply chain

cost function with a Tabu Search solution.

• In addition, this paper contributes to outsourcing by considering two different

types of suppliers: domestic and global suppliers, each with their unique cost

80

function calculations and data parameters. Global suppliers carry higher risk and

lower material costs than domestic suppliers with lower risk but higher material

costs.

• Also, this paper develops several test problems to investigate the improvements in

total supply cost and run time. We accomplish this by running small, medium, and

large problem sizes with varying Tabu Search input parameters to identify cost

savings and run time increases.

• Test results and statistical analysis of the metaheuristic’s performance are

numerically and mathematically interesting. For this paper’s model only,

increasing iterations and neighbors will decrease the total supply chain cost, and

increasing iterations, neighbors, and tabu list size will increase run time.

6.3 Future Research

A few future research directions could expand the contributions presented in this paper:

• In this paper’s studied problems, only one SKU of product moves from level to

level. Only one part is needed to manufacture the one finished good. It would be

interesting to expand on this assumption and perform a similar analysis on a

supply chain network with multiple parts and finished goods.

• Only suppliers (domestic and global), plants, warehouses, and markets make up

the supply chain network in this paper. It would be interesting also to consider

other supply chain states such as retailers, distribution centers, or manufacturers.

• 100% of materials/goods transfer to the next echelon in the supply chain network

in the studied problems. It would be interesting to account for quality, specifically

81

incorporating scrapped or missing transit parts to simulate real-world logistical

issues.

• The model in this paper identifies supply chain network paths based on the cost it

incurs to take such a path. It would be interesting to assume that the cost for

multiple routes is equal, and some other deciding factor must be considered, such

as loyalty, convenience, or locality of products.

• The solution methodologies chosen to solve this problem include Excel Solver

and Tabu Search. It would be interesting to solve this problem with other methods

such as CPLEX, Gurobi, LINGO, MATLAB, or SAS combined with simulation,

simulated annealing, genetic algorithm, or particle Swarm optimization. In

addition, a results comparison of alternative strategies with Tabu Search would be

a valuable contribution.

82

REFERENCES

[1] AMD Ryzen™ 7 4700U Specs. Advanced Micro Devices. (2020, June 1).

 https://www.amd.com/en/products/apu/amd-ryzen-7-4700u.

[2] Aqlan, F., & Lam, S. S. (2015). A fuzzy-based integrated framework for supply

chain risk assessment. International Journal of Production Economics, 161,

54–63. https://doi.org/10.1016/j.ijpe.2014.11.013

[3] Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2018). Agribusiness

supply chain risk management: A review of quantitative decision models. Omega,

79, 21–42. https://doi.org/10.1016/j.omega.2017.07.005

[4] Behzadi, G., O’Sullivan, M. J., Olsen, T. L., Scrimgeour, F., & Zhang, A. (2017).

Robust and resilient strategies for managing supply disruptions in an

agribusiness supply chain. International Journal of Production Economics, 191,

207–220. https://doi.org/10.1016/j.ijpe.2017.06.018

[5] Bland, J. M., & Altman, D. G. (1996). Transformations, means, and confidence

intervals. BMJ (Clinical research ed.), 312(7038), 1079.

 https://doi.org/10.1136/bmj.312.7038.1079

[6] Braido, G. M., Borenstein, D., & Casalinho, G. D. (2016). Supply chain network

 optimization using a Tabu Search based heuristic. Gestão & Produção,

23(1), 3- 17.

[7] C. Lee, Y. Yeung, and Z. Hong, (2018). “Managing the risks of outsourcing in

supply chain networks,” First International Technology Management Conference,

San Jose, CA, 2011, pp. 488-494, doi: 10.1109/ITMC.2011.5996017.

83

[8] Cha, H., Pingry, D., & Thatcher, M. (2008). Managing the Knowledge Supply

Chain: An Organizational Learning Model of Information Technology

Offshore Outsourcing. MIS Quarterly, 32(2), 281.

https://doi.org/10.2307/25148841

[9] Clements, J., & Singhal, P. (2013, October 30). Why do Python programs run

very slow the first time? [web log].

 https://stackoverflow.com/questions/19684408/why-do-python-programs-

run- very-slow-the-first-time.

[10] Fatehi Kivi, A., Mehdizadeh, E., Tavakkoli-Moghaddam, R., & Najafi, S. E.

(2021). Solving a Multi-Item Supply Chain Network Problem by Three

Meta-heuristic Algorithms. Journal of Optimization in Industrial

Engineering, 14(2), 145-151.

[11] Frost, J. (2020, April 23). How To Interpret R-squared in Regression Analysis.

Statistics by Jim. https://statisticsbyjim.com/regression/interpret-r-squared-

regression/.

[12] Gendreau, M. (2003). An Introduction to Tabu Search in Handbook of

Metaheuristics (pp. 37-54). Springer, Boston, MA.

[13] Glover, F., Laguna, M., & Marti, R. (2007). Principles of tabu search.

Approximation algorithms and metaheuristics, 23, 1-12.

[14] González-Zapatero, C., González-Benito, J., Lannelongue, G., & Ferreira, L. M.

(2020). Using fit perspectives to explain supply chain risk management

efficacy. International Journal of Production Research, 1–12.

 https://doi.org/10.1080/00207543.2020.1776412

84

[15] Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain

risk – Definition, measure, and modeling. Omega, 52, 119–132.

 https://doi.org/10.1016/j.omega.2014.10.004

[16] Hernandez, D. F., & Haddud, A. (2018). Value creation via supply chain risk

 management in global fashion organizations outsourcing production to

China. Journal of Global Operations and Strategic Sourcing, 11(2), 250–272.

 https://doi.org/10.1108/jgoss-09-2017-0037

[17] Kasyanenko, S. (2019, July 22). iPhone Made in India: Apple Outsourcing

Strategy. Medium. https://medium.com/@Ralabs/iphone-made-in-india-

apple-outsourcing- strategy-fff490580cf9.

[18] König, A., & Spinler, S. (2016). The effect of logistics outsourcing on the supply

chain vulnerability of shippers. The International Journal of Logistics

Management, 27(1), 122–141. https://doi.org/10.1108/ijlm-03-2014-0043

[19] Kouvelis, P., & Milner, J. M. (2002). Supply chain capacity and outsourcing

decisions: the dynamic interplay of demand and supply uncertainty. IIE

Transactions, 34(8), 717–728. https://doi.org/10.1080/07408170208928907

[20] Kroes, J. R., & Ghosh, S. (2009). Outsourcing congruence with competitive

priorities: Impact on supply chain and firm performance. Journal of

Operations Management, 28(2), 124–143.

https://doi.org/10.1016/j.jom.2009.09.004

[21] Kumar, S. K., Tiwari, M. K., & Babiceanu, R. F. (2010). Minimization of supply

chain cost with embedded risk using computational intelligence

85

 approaches. International Journal of Production Research, 48(13), 3717-

3739.

[22] Lee, K., & Ozsen, L. (2020). Tabu search heuristic for the network design model

with lead time and safety stock considerations. Computers & Industrial

Engineering, 148, 106717.

[23] Lee, Y. H., & Kwon, S. G. (2010). The hybrid planning algorithm for the

distribution center operation using tabu search and decomposed optimization.

Expert systems with applications, 37(4), 3094-3103.

[24] Lee, Y. H., Jeong, C. S., & Moon, C. (2002). Advanced planning and scheduling

with outsourcing in the manufacturing supply chain. Computers & Industrial

 Engineering, 43(1-2), 351–374. https://doi.org/10.1016/s0360-

8352(02)00079-7

[25] Liang, F. (2020, July 27). Optimization Techniques - Tabu Search.

 https://towardsdatascience.com/optimization-techniques-tabu-search-

 36f197ef8e25.

[26] Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2012). A tabu search heuristic

for redesigning a multi-echelon supply chain network over a planning

horizon. International Journal of Production Economics, 136(1), 218-230.

[27] Data Analysis, Statistical & Process Improvement Tools. Minitab. (2019, January

19). https://www.minitab.com/en-us/.

[28] Mohammed, A. M., & Duffuaa, S. O. (2020). A tabu search based algorithm for

the optimal design of multi-objective multi-product supply chain networks.

Expert Systems with Applications, 140, 112808.

86

[29] Mohammed, A., & Duffuaa, S. (2019, January). A meta-heuristic algorithm based

on simulated annealing for designing multi-objective supply chain systems.

In 2019 Industrial & systems engineering conference (ISEC) (pp. 1-6).

IEEE.

[30] Mohib, A. M. N., & Deif, A. M. (2019). Supply chain multi-state risk assessment

using universal generating function. Production Planning & Control, 31(9), 699–

708. https://doi.org/10.1080/09537287.2019.1680891

[31] Mokrini, A. E., Dafaoui, E., Berrado, A., & Mhamedi, A. E. (2016). An approach

to risk Assessment for Outsourcing Logistics: Case of Pharmaceutical Industry.

IFAC- PapersOnLine, 49(12), 1239–1244.

https://doi.org/10.1016/j.ifacol.2016.07.681

[32] Olson, D. L., & Wu, D. (2011). Risk management models for supply chain: a

scenario analysis of outsourcing to China. Supply Chain Management: An

International Journal, 16(6), 401–408.

https://doi.org/10.1108/13598541111171110

[33] Python Release 3.9.1. Python.org. (2020, December 7).

 https://www.python.org/downloads/release/python-391/.

[34] Ravindran, A. R., & Warsing, D. P. (2017). Supply chain engineering: models and

 applications. CRC Press.

[35] Shahraki, M., & Sharifi, A. (2019). Multi-period Multi-level Supply Chain

Network Design in Agile Manufacturing with Tabu Search Algorithm.

Roshd-E-Fanavari. https://www.sid.ir/en/journal/ViewPaper.aspx?id=666076

87

[36] Shangquan, G. (2000). Economic globalization: trends, risks and risk prevention.

 Economic & Social Affairs, CDP Background Paper, 1, 1-8.

[37] Solver Add-in in Excel. Microsoft Office Support. (2019).

 https://support.microsoft.com/en-us/office/load-the-solver-add-in-in-excel-

 612926fc-d53b-46b4-872c-e24772f078ca#OfficeVersion=Windows.

[38] Williamson, O. E. (2008). Outsourcing: Transaction Cost Economics and Supply

Chain Management. The Journal of Supply Chain Management, 44(2), 5–16.

 https://doi.org/10.1111/j.1745-493x.2008.00051.

[39] Yan, B., Wang, X., & Shi, P. (2017). Risk assessment and control of agricultural

supply chains under Internet of Things. Agrekon, 56(1), 1–12.

 https://doi.org/10.1080/03031853.2017.1284680.

88

APPENDICES

This section displays pertinent information in creating this paper’s solution

methodologies, including complete Tabu Search statistical analysis results, Tabu Search

Python code, and the Edge Data Generator Python code used in this paper’s solution

methodologies.

A. Tabu Search Results for Statistical Analysis

Problem
Instance

Iterations Neighbors Tabu List Size Total Supply Chain Cost ($) Run Time (s)

3.1.1 100 150 50 $ 2,810,381.94 2.422032

3.1.2 100 150 50 $ 2,503,313.15 2.422190

3.1.3 100 150 50 $ 2,658,991.69 2.390801

3.1.4 100 150 50 $ 2,683,623.54 2.227513

3.1.5 100 150 50 $ 2,791,746.96 1.463760

3.1.6 100 150 50 $ 2,798,885.56 1.454639

3.1.7 100 150 50 $ 2,527,585.65 1.540746

3.1.8 100 150 50 $ 2,530,405.61 1.456596

3.1.9 100 150 50 $ 2,856,329.46 1.500123

3.1.10 100 150 50 $ 2,938,476.14 1.552166

3.2.1 100 150 100 $ 2,785,597.27 2.770565

3.2.2 100 150 100 $ 2,548,811.82 2.844427

3.2.3 100 150 100 $ 2,826,139.63 1.928448

3.2.4 100 150 100 $ 2,836,203.61 1.564704

3.2.5 100 150 100 $ 2,806,060.04 1.702705

3.2.6 100 150 100 $ 2,779,321.15 1.793548

3.2.7 100 150 100 $ 2,757,536.76 1.725237

3.2.8 100 150 100 $ 2,585,702.81 1.779196

3.2.9 100 150 100 $ 2,781,563.78 1.626938

3.2.10 100 150 100 $ 2,783,214.94 1.659796

3.3.1 100 300 50 $ 2,583,148.07 5.330456

3.3.2 100 300 50 $ 2,707,031.07 5.250223

3.3.3 100 300 50 $ 2,656,928.18 5.511345

3.3.4 100 300 50 $ 2,743,718.28 3.432258

3.3.5 100 300 50 $ 2,710,679.33 3.566567

3.3.6 100 300 50 $ 2,557,045.94 3.709438

3.3.7 100 300 50 $ 2,727,201.85 3.694258

89

3.3.8 100 300 50 $ 2,597,751.23 3.444149

3.3.9 100 300 50 $ 2,574,924.56 3.181881

3.3.10 100 300 50 $ 2,566,719.43 3.207320

3.4.1 200 150 50 $ 2,336,459.41 4.812177

3.4.2 200 150 50 $ 2,467,533.42 4.346443

3.4.3 200 150 50 $ 2,707,441.90 2.998491

3.4.4 200 150 50 $ 2,743,199.61 3.250366

3.4.5 200 150 50 $ 2,565,692.35 3.391022

3.4.6 200 150 50 $ 2,777,280.82 3.334674

3.4.7 200 150 50 $ 2,426,568.84 3.401417

3.4.8 200 150 50 $ 2,693,755.28 3.331921

3.4.9 200 150 50 $ 2,622,745.61 3.429552

3.4.10 200 150 50 $ 2,706,258.75 3.540490

3.5.1 100 150 200 $ 2,577,641.02 2.406997

3.5.2 100 150 200 $ 2,649,209.04 2.411347

3.5.3 100 150 200 $ 2,694,720.76 2.440887

3.5.4 100 150 200 $ 2,634,197.62 1.844236

3.5.5 100 150 200 $ 2,709,502.57 1.462712

3.5.6 100 150 200 $ 2,722,061.14 1.603703

3.5.7 100 150 200 $ 2,562,377.81 1.449252

3.5.8 100 150 200 $ 2,676,152.70 1.494683

3.5.9 100 150 200 $ 2,801,060.77 1.509804

3.5.10 100 150 200 $ 2,640,666.65 1.525093

3.6.1 100 600 50 $ 2,598,842.62 9.018140

3.6.2 100 600 50 $ 2,686,933.38 6.010422

3.6.3 100 600 50 $ 2,413,944.04 6.332910

3.6.4 100 600 50 $ 2,598,368.78 6.328052

3.6.5 100 600 50 $ 2,632,535.62 6.275338

3.6.6 100 600 50 $ 2,573,282.19 6.349621

3.6.7 100 600 50 $ 2,640,776.15 6.351651

3.6.8 100 600 50 $ 2,782,643.76 6.373649

3.6.9 100 600 50 $ 2,641,375.05 6.440240

3.6.10 100 600 50 $ 2,528,329.21 6.383341

3.7.1 400 150 50 $ 2,474,724.20 9.072139

3.7.2 400 150 50 $ 2,418,617.64 5.743211

3.7.3 400 150 50 $ 2,682,122.49 6.124894

3.7.4 400 150 50 $ 2,518,730.90 6.108091

3.7.5 400 150 50 $ 2,794,656.79 6.196726

3.7.6 400 150 50 $ 2,668,468.29 6.340147

3.7.7 400 150 50 $ 2,530,315.25 6.189712

3.7.8 400 150 50 $ 2,645,657.61 6.330341

3.7.9 400 150 50 $ 2,471,161.80 6.244940

3.7.10 400 150 50 $ 2,507,308.80 6.401817

90

3.8.1 100 300 200 $ 2,455,601.31 4.873938

3.8.2 100 300 200 $ 2,326,728.62 4.282253

3.8.3 100 300 200 $ 2,384,932.09 2.955189

3.8.4 100 300 200 $ 2,743,330.71 3.064344

3.8.5 100 300 200 $ 2,617,624.39 3.211437

3.8.6 100 300 200 $ 2,726,602.44 3.188015

3.8.7 100 300 200 $ 2,304,209.31 3.195366

3.8.8 100 300 200 $ 2,738,844.15 3.170059

3.8.9 100 300 200 $ 2,811,122.80 3.193635

3.8.10 100 300 200 $ 2,495,153.01 3.176357

3.9.1 100 600 100 $ 2,492,896.13 9.155627

3.9.2 100 600 100 $ 2,357,303.25 6.067322

3.9.3 100 600 100 $ 2,546,345.13 6.729661

3.9.4 100 600 100 $ 2,608,123.96 6.541926

3.9.5 100 600 100 $ 2,339,061.81 6.387528

3.9.6 100 600 100 $ 2,643,026.42 6.385821

3.9.7 100 600 100 $ 2,427,653.43 6.401028

3.9.8 100 600 100 $ 2,463,567.20 6.435246

3.9.9 100 600 100 $ 2,668,377.40 6.512711

3.9.10 100 600 100 $ 2,513,287.41 6.541953

3.10.1 200 300 100 $ 2,355,349.99 9.452547

3.10.2 200 300 100 $ 2,688,100.00 5.904876

3.10.3 200 300 100 $ 2,505,374.00 6.254898

3.10.4 200 300 100 $ 2,631,223.46 6.186296

3.10.5 200 300 100 $ 2,487,275.44 6.276699

3.10.6 200 300 100 $ 2,709,000.73 6.346617

3.10.7 200 300 100 $ 2,716,718.89 6.403676

3.10.8 200 300 100 $ 2,535,900.94 6.332244

3.10.9 200 300 100 $ 2,465,511.87 6.341187

3.10.10 200 300 100 $ 2,526,252.42 6.324001

3.11.1 200 300 50 $ 2,622,660.16 9.248458

3.11.2 200 300 50 $ 2,578,416.93 5.855817

3.11.3 200 300 50 $ 2,528,363.45 6.315549

3.11.4 200 300 50 $ 2,575,598.12 6.234230

3.11.5 200 300 50 $ 2,547,165.11 6.371948

3.11.6 200 300 50 $ 2,663,986.17 6.290070

3.11.7 200 300 50 $ 2,507,939.47 6.290531

3.11.8 200 300 50 $ 2,702,915.78 6.434482

3.11.9 200 300 50 $ 2,573,957.71 6.382848

3.11.10 200 300 50 $ 2,393,401.16 6.485961

3.12.1 200 150 100 $ 2,679,370.52 4.864567

3.12.2 200 150 100 $ 2,709,499.23 4.218264

3.12.3 200 150 100 $ 2,514,521.60 3.114843

91

3.12.4 200 150 100 $ 2,671,714.35 3.151644

3.12.5 200 150 100 $ 2,733,057.21 3.192018

3.12.6 200 150 100 $ 2,450,673.57 3.156667

3.12.7 200 150 100 $ 2,605,927.14 3.119183

3.12.8 200 150 100 $ 2,627,852.19 3.179243

3.12.9 200 150 100 $ 2,386,180.25 3.203338

3.12.10 200 150 100 $ 2,632,026.80 3.208221

3.13.1 100 300 100 $ 2,733,885.78 4.946941

3.13.2 100 300 100 $ 2,879,315.60 4.360466

3.13.3 100 300 100 $ 2,665,578.70 2.896233

3.13.4 100 300 100 $ 2,343,080.42 3.171965

3.13.5 100 300 100 $ 2,776,589.56 3.236274

3.13.6 100 300 100 $ 2,705,236.45 3.201621

3.13.7 100 300 100 $ 2,735,510.91 3.192358

3.13.8 100 300 100 $ 2,598,266.02 3.219644

3.13.9 100 300 100 $ 2,697,958.03 3.212792

3.13.10 100 300 100 $ 2,618,188.05 3.212682

3.14.1 200 300 200 $ 2,424,195.27 5.966114

3.14.2 200 300 200 $ 2,713,630.72 6.989409

3.14.3 200 300 200 $ 2,541,561.17 6.654664

3.14.4 200 300 200 $ 2,613,425.84 6.777885

3.14.5 200 300 200 $ 2,461,820.66 7.042371

3.14.6 200 300 200 $ 2,696,927.70 7.033228

3.14.7 200 300 200 $ 2,706,361.65 7.357241

3.14.8 200 300 200 $ 2,661,452.84 6.738442

3.14.9 200 300 200 $ 2,586,789.90 6.417601

3.14.10 200 300 200 $ 2,589,789.62 6.487606

3.15.1 200 600 100 $ 2,303,832.37 13.140545

3.15.2 200 600 100 $ 2,461,927.07 13.686624

3.15.3 200 600 100 $ 2,251,410.87 13.658180

3.15.4 200 600 100 $ 2,601,904.00 13.568366

3.15.5 200 600 100 $ 2,498,018.57 13.945855

3.15.6 200 600 100 $ 2,424,001.20 14.075522

3.15.7 200 600 100 $ 2,494,949.96 13.849741

3.15.8 200 600 100 $ 2,278,009.35 13.802432

3.15.9 200 600 100 $ 2,496,427.30 14.473623

3.15.10 200 600 100 $ 2,399,554.38 13.974960

3.16.1 400 300 100 $ 2,608,371.93 14.983908

3.16.2 400 300 100 $ 2,412,999.71 12.996577

3.16.3 400 300 100 $ 2,532,628.90 12.918465

3.16.4 400 300 100 $ 2,709,477.49 12.989075

3.16.5 400 300 100 $ 2,542,261.21 12.968303

3.16.6 400 300 100 $ 2,675,507.76 12.804771

92

3.16.7 400 300 100 $ 2,583,572.57 12.794361

3.16.8 400 300 100 $ 2,520,342.23 12.683185

3.16.9 400 300 100 $ 2,512,246.18 12.962710

3.16.10 400 300 100 $ 2,572,986.85 12.767680

3.17.1 200 150 200 $ 2,268,141.13 4.788189

3.17.2 200 150 200 $ 2,658,704.26 4.372335

3.17.3 200 150 200 $ 2,734,683.03 2.824300

3.17.4 200 150 200 $ 2,536,923.09 3.048129

3.17.5 200 150 200 $ 2,609,190.88 3.175019

3.17.6 200 150 200 $ 2,478,897.16 3.246758

3.17.7 200 150 200 $ 2,698,681.32 3.173235

3.17.8 200 150 200 $ 2,592,546.08 3.296063

3.17.9 200 150 200 $ 2,734,856.80 3.220226

3.17.10 200 150 200 $ 2,681,645.52 3.198278

3.18.1 200 600 50 $ 2,421,911.76 15.103373

3.18.2 200 600 50 $ 2,568,316.81 13.122953

3.18.3 200 600 50 $ 2,476,326.32 13.197468

3.18.4 200 600 50 $ 2,652,075.24 13.056958

3.18.5 200 600 50 $ 2,480,639.07 13.067214

3.18.6 200 600 50 $ 2,608,794.41 13.056877

3.18.7 200 600 50 $ 2,450,895.33 13.037468

3.18.8 200 600 50 $ 2,523,542.63 13.973391

3.18.9 200 600 50 $ 2,291,338.39 13.109920

3.18.10 200 600 50 $ 2,630,471.30 13.226190

3.19.1 400 600 200 $ 2,573,288.62 28.113967

3.19.2 400 600 200 $ 2,534,113.29 25.656367

3.19.3 400 600 200 $ 2,383,586.90 25.648063

3.19.4 400 600 200 $ 2,457,460.92 26.082668

3.19.5 400 600 200 $ 2,456,477.75 26.244642

3.19.6 400 600 200 $ 2,383,256.43 25.782938

3.19.7 400 600 200 $ 2,498,216.35 25.979803

3.19.8 400 600 200 $ 2,457,963.11 25.928905

3.19.9 400 600 200 $ 2,441,306.40 25.912183

3.19.10 400 600 200 $ 2,459,960.98 26.006798

3.20.1 400 600 50 $ 2,402,626.55 27.828020

3.20.2 400 600 50 $ 2,378,852.49 26.027953

3.20.3 400 600 50 $ 2,426,135.66 26.011958

3.20.4 400 600 50 $ 2,506,914.04 26.050097

3.20.5 400 600 50 $ 2,371,448.72 26.148700

3.20.6 400 600 50 $ 2,387,831.15 26.187899

3.20.7 400 600 50 $ 2,480,280.17 26.168214

3.20.8 400 600 50 $ 2,456,152.16 26.230785

3.20.9 400 600 50 $ 2,307,104.35 26.064329

93

3.20.10 400 600 50 $ 2,397,993.11 26.451970

3.21.1 400 150 200 $ 2,525,802.03 9.039482

3.21.2 400 150 200 $ 2,629,470.60 6.006670

3.21.3 400 150 200 $ 2,592,912.11 6.681447

3.21.4 400 150 200 $ 2,602,752.10 6.396171

3.21.5 400 150 200 $ 2,681,695.74 6.467551

3.21.6 400 150 200 $ 2,681,492.56 6.528052

3.21.7 400 150 200 $ 2,671,478.93 6.473262

3.21.8 400 150 200 $ 2,597,993.00 6.486534

3.21.9 400 150 200 $ 2,633,149.28 6.574112

3.21.10 400 150 200 $ 2,425,275.45 6.522104

3.22.1 100 600 200 $ 2,361,846.37 9.125489

3.22.2 100 600 200 $ 2,559,156.72 6.215641

3.22.3 100 600 200 $ 2,530,189.34 6.528771

3.22.4 100 600 200 $ 2,502,524.02 6.656929

3.22.5 100 600 200 $ 2,554,020.27 6.617924

3.22.6 100 600 200 $ 2,437,275.31 6.568041

3.22.7 100 600 200 $ 2,564,987.56 6.696728

3.22.8 100 600 200 $ 2,665,846.15 6.792324

3.22.9 100 600 200 $ 2,467,454.64 6.623905

3.22.10 100 600 200 $ 2,498,409.61 6.666246

3.23.1 400 600 100 $ 2,497,731.69 28.787656

3.23.2 400 600 100 $ 2,624,613.42 26.752624

3.23.3 400 600 100 $ 2,518,654.44 26.803709

3.23.4 400 600 100 $ 2,549,754.71 26.721809

3.23.5 400 600 100 $ 2,248,329.83 26.806524

3.23.6 400 600 100 $ 2,439,887.09 27.023788

3.23.7 400 600 100 $ 2,500,693.31 26.740969

3.23.8 400 600 100 $ 2,485,715.24 26.794943

3.23.9 400 600 100 $ 2,208,553.80 26.763962

3.23.10 400 600 100 $ 2,452,374.24 26.611413

3.24.1 400 300 200 $ 2,311,227.04 14.986168

3.24.2 400 300 200 $ 2,571,873.54 12.908228

3.24.3 400 300 200 $ 2,510,382.14 12.956515

3.24.4 400 300 200 $ 2,620,125.67 13.079292

3.24.5 400 300 200 $ 2,353,557.28 13.140552

3.24.6 400 300 200 $ 2,578,068.24 13.200511

3.24.7 400 300 200 $ 2,636,858.48 13.075453

3.24.8 400 300 200 $ 2,541,697.59 13.188831

3.24.9 400 300 200 $ 2,534,808.53 13.176685

3.24.10 400 300 200 $ 2,649,114.93 13.570455

3.25.1 200 600 200 $ 2,586,203.00 15.487477

3.25.2 200 600 200 $ 2,542,025.94 13.416498

94

3.25.3 200 600 200 $ 2,532,678.52 13.377644

3.25.4 200 600 200 $ 2,551,324.20 13.457172

3.25.5 200 600 200 $ 2,440,895.17 13.408860

3.25.6 200 600 200 $ 2,486,853.52 13.694931

3.25.7 200 600 200 $ 2,499,751.98 13.742482

3.25.8 200 600 200 $ 2,555,402.13 13.604627

3.25.9 200 600 200 $ 2,476,261.54 13.457328

3.25.10 200 600 200 $ 2,393,743.81 13.357771

3.26.1 400 150 100 $ 2,650,593.76 9.110517

3.26.2 400 150 100 $ 2,481,359.68 6.160920

3.26.3 400 150 100 $ 2,650,269.50 6.609956

3.26.4 400 150 100 $ 2,454,511.02 6.574247

3.26.5 400 150 100 $ 2,563,116.57 6.624607

3.26.6 400 150 100 $ 2,585,760.57 6.700196

3.26.7 400 150 100 $ 2,604,732.79 6.675251

3.26.8 400 150 100 $ 2,691,456.70 6.673651

3.26.9 400 150 100 $ 2,633,488.18 6.589311

3.26.10 400 150 100 $ 2,436,400.20 6.639394

3.27.1 400 300 50 $ 2,422,117.42 14.916207

3.27.2 400 300 50 $ 2,481,003.25 12.866817

3.27.3 400 300 50 $ 2,482,540.47 12.930660

3.27.4 400 300 50 $ 2,456,033.54 12.916416

3.27.5 400 300 50 $ 2,437,548.01 12.944416

3.27.6 400 300 50 $ 2,696,919.73 12.919948

3.27.7 400 300 50 $ 2,410,111.34 13.082640

3.27.8 400 300 50 $ 2,619,625.40 12.957825

3.27.9 400 300 50 $ 2,196,312.74 12.938493

3.27.10 400 300 50 $ 2,647,211.78 12.842269

B. Tabu Search Python Code

This section displays the Tabu Search Python code used in this paper’s solution

methodologies.

B.1 Edge.py

from typing import List

Constants for Edge data csv

COLS = 8

95

TYPE = 0

NAME = 3

EDGE_COST_PER_UNIT = 4

PROBABILITY = 5

RELIABILITY = 6

EXCHANGE_RATE = 7

Might have to save edge data at node level

SUPPLIER_TO_PLANT = 0

PLANT_TO_WAREHOUSE = 1

WAREHOUSE_TO_MARKET = 2

class Edge:

 def __init__(self, row_data: List):

 if len(row_data) < COLS:

 raise EdgeDataError

 self.name = row_data[NAME]

 self.edge_cpu = row_data[EDGE_COST_PER_UNIT]

 self.probability = row_data[PROBABILITY]

 self.reliability = row_data[RELIABILITY]

 self.exchange_rate = row_data[EXCHANGE_RATE] # exchange rate

of A in AB

 self.edge_coefficient = (

 self.edge_cpu * self.probability * self.reliability *

self.exchange_rate

)

 def __str__(self):

 return f"Edge: {self.name}"

 def __repr__(self):

 return f"Edge(name:{self.name}, edge_cpu:{self.edge_cpu},

probability:{self.probability}, reliability:{self.reliability},

exchange_rate:{self.exchange_rate})"

 def __eq__(self, other):

 return (

 isinstance(other, Edge)

 and other.name == self.name

 and other.edge_cpu == self.edge_cpu

 and other.probability == self.probability

 and other.reliability == self.reliability

 and other.exchange_rate == self.exchange_rate

)

 @classmethod

 def create_edge(cls, row_data: List):

 """List -> Edge

 creates the appropriate edge"""

 type_ = row_data[TYPE]

 if type_ == SUPPLIER_TO_PLANT:

 return SupplierToPlantEdge(row_data)

 elif type_ == PLANT_TO_WAREHOUSE:

 return PlantToWareEdge(row_data)

 elif type_ == WAREHOUSE_TO_MARKET:

96

 return WareToMarkEdge(row_data)

 else:

 raise InvalidEdgeError

class WareToMarkEdge(Edge):

 def __init__(self, row_data: List):

 super().__init__(row_data)

 # warehouse to market transportation cost

 # warehouse to market risk cost

 # warehouse to market total cost

 self.wh_to_mk_trans_cost = self.edge_cpu * self.probability *

self.exchange_rate

 self.wh_to_mk_risk_cost = (

 self.edge_cpu * (1 - self.probability) * self.exchange_rate

)

 self.wh_to_mk_total_cost = self.wh_to_mk_trans_cost +

self.wh_to_mk_risk_cost

 def __str__(self):

 return f"WareToMark: {self.name} {self.wh_to_mk_total_cost}\n"

 def __repr__(self):

 return f"WareToMarkEdge(wh_to_mk_trans

cost:{self.wh_to_mk_trans_cost},

wh_to_mk_risk_cost:{self.wh_to_mk_risk_cost},

wh_to_mk_total_cost{self.wh_to_mk_total_cost} {super().__repr__()})"

 def __eq__(self, other):

 return (

 isinstance(other, WareToMarkEdge)

 and other.wh_to_mk_trans_cost == self.wh_to_mk_trans_cost

 and other.wh_to_mk_risk_cost == self.wh_to_mk_risk_cost

 and other.wh_to_mk_total_cost == self.wh_to_mk_total_cost

 and super(WareToMarkEdge, self).__eq__(other)

)

class PlantToWareEdge(Edge):

 def __init__(self, row_data: List):

 super().__init__(row_data)

 self.pl_to_wh_trans_cost = self.edge_cpu * self.probability *

self.exchange_rate

 self.pl_to_wh_risk_cost = (

 self.edge_cpu * (1 - self.probability) * self.exchange_rate

)

 self.pl_to_wh_total_cost = self.pl_to_wh_trans_cost +

self.pl_to_wh_risk_cost

 def __str__(self):

 return f"PlantToWare: {self.name}"

 def __repr__(self):

 return f"PlantToWareEdge(wh_to_mk_trans cost:

{self.pl_to_wh_trans_cost}, pl_to_wh_risk_cost:

{self.pl_to_wh_risk_cost}, pl_to_wh_total_cost:

{self.pl_to_wh_total_cost}\n\t{super().__repr__()})\n"

97

 def __eq__(self, other):

 return (

 isinstance(other, PlantToWareEdge)

 and other.pl_to_wh_trans_cost == self.pl_to_wh_trans_cost

 and other.pl_to_wh_risk_cost == self.pl_to_wh_risk_cost

 and other.pl_to_wh_total_cost == self.pl_to_wh_total_cost

 and super(PlantToWareEdge, self).__eq__(other)

)

class SupplierToPlantEdge(Edge):

 def __init__(self, row_data: List):

 super().__init__(row_data)

 self.supplier_raw_material_cost = (

 self.edge_cpu * self.probability * self.exchange_rate

)

 self.supplier_quality_risk_cost = (

 self.probability * self.reliability * self.exchange_rate

)

 self.supplier_failure_cost = (

 self.edge_cpu * (1 - self.probability) * self.exchange_rate

)

 self.supplier_total_cost = None

 # TODO: change later to NOne

 def __str__(self):

 return f"SupplierToPlantEdge: {self.name}"

 def __repr__(self):

 return f"SupplierToPlant(supplier_raw_material_cost:

{self.supplier_raw_material_cost}, supplier_quality_risk_cost:

{self.supplier_quality_risk_cost}, supplier_failure_cost:

{self.supplier_failure_cost} supplier_total_cost:

{self.supplier_total_cost}\n\t{super().__repr__()})\n"

 def __eq__(self, other):

 return (

 isinstance(other, SupplierToPlantEdge)

 and other.supplier_raw_material_cost ==

self.supplier_raw_material_cost

 and other.supplier_quality_risk_cost ==

self.supplier_quality_risk_cost

 and other.supplier_failure_cost ==

self.supplier_failure_cost

 and other.supplier_total_cost == self.supplier_total_cost

 and super(SupplierToPlantEdge, self).__eq__(other)

)

class EdgeDataError(Exception):

 def __init__(self):

 self.message = f"Invalid arguements passed to Edge during

initialization"

 super().__init__(self.message)

98

class InvalidEdgeError(Exception):

 def __init__(self):

 self.message = f"Edge is not of valid type"

 super().__init__(self.message)

B.2 Node.py

import math

import random as rd

from datetime import datetime

from typing import Dict, List

from scipy.stats import norm

Constants for Node data csv

MAX_COLS = 8

Columns in each row -> see NodeDataCSV.csv

TYPE = 0

NAME = 1

EXCHANGE_RATE = 2

MAX_CAPACITY = 3

MEAN_DEMAND = 4

VARIANCE_OF_DEMAND = 5

GOODWILL_LOSS_COST_PER_UNIT = 6

EXCESS_INV_SUPPLY_COST_PER_UNIT = 7

PRODUCTION_COST_PER_UNIT = 8

OUTSOURCED = 1

DOMESTIC = 0

PLANT = 2

WAREHOUSE = 3

MARKET = 4

class Node:

 def __init__(self, row_data: List):

 if len(row_data) < MAX_COLS:

 raise NodeDataError

 self.exchange_rate = row_data[EXCHANGE_RATE]

 self.max_capacity = row_data[MAX_CAPACITY]

 self.mean_demand = row_data[MEAN_DEMAND]

 self.var_demand = row_data[VARIANCE_OF_DEMAND]

 self.g_cpu = row_data[GOODWILL_LOSS_COST_PER_UNIT]

 self.e_cpu = row_data[EXCESS_INV_SUPPLY_COST_PER_UNIT]

 self.prod_cost = row_data[PRODUCTION_COST_PER_UNIT]

 def __str__(self):

 return f"Node:{self.exchange_rate}, {self.max_capacity},

{self.mean_demand}, {self.var_demand}, {self.g_cpu}, {self.e_cpu},

{self.prod_cost}"

 def __repr__(self):

 return f"Node(exchange_rate:{self.exchange_rate},

max_capacity:{self.max_capacity}, mean_demand:{self.mean_demand},

99

var_demand:{self.var_demand}, g_cpu:{self.g_cpu}, e_cpu:{self.e_cpu},

{self.prod_cost})"

 def __eq__(self, other):

 return (

 isinstance(other, Node)

 and other.exchange_rate == self.exchange_rate

 and other.max_capacity == self.max_capacity

 and other.mean_demand == self.mean_demand

 and other.var_demand == self.var_demand

 and other.g_cpu == self.g_cpu

 and other.e_cpu == self.e_cpu

 and other.prod_cost == self.prod_cost

)

 @classmethod

 def create_node(cls, row: List):

 """Returns appropriate Node based on the row data from Node CSV

data """

 type_: int = row[0]

 if type_ == DOMESTIC or type_ == OUTSOURCED: # domestic

supplier

 return Supplier(row)

 elif type_ == PLANT:

 return Plant(row)

 elif type_ == WAREHOUSE:

 return Warehouse(row)

 elif type_ == MARKET:

 return Market(row)

 else:

 raise InvalidNodeError

class Supplier(Node):

 domestic_count = 0

 outsourced_count = 0

 def __init__(self, row_data: List):

 super().__init__(row_data)

 if row_data[TYPE] == DOMESTIC:

 Supplier.domestic_count += 1

 self.name = f"SD{Supplier.domestic_count}"

 self.is_domestic = True

 elif row_data[TYPE] == OUTSOURCED:

 Supplier.outsourced_count += 1

 self.name = f"SO{Supplier.outsourced_count}"

 self.is_domestic = False

 def __str__(self):

 return f"Supplier:{self.name}"

 def __repr__(self):

 return f"Supplier(name:{self.name},

is_domestic:{self.is_domestic},\n\t{super().__repr__()})\n"

 def __eq__(self, other):

 return (

100

 isinstance(other, Supplier)

 and other.name == self.name

 and other.is_domestic == self.is_domestic

 and super(Supplier, self).__eq__(other)

)

class Plant(Node):

 plant_count = 0

 def __init__(self, row_data: List):

 super().__init__(row_data)

 Plant.plant_count += 1

 self.name: str = f"P{Plant.plant_count}"

 self.plant_mfg_cost = self.prod_cost

 self.warehouse_paths: Dict[str, int] = dict()

 self.supplier_paths: Dict[str, int] = dict()

 self.plant_risk_cost = None

 self.plant_total_cost = None

 def __str__(self):

 return f"Plant:{self.name}"

 def __repr__(self):

 return f"Plant(name:{self.name},

manufacturing_cost:{self.plant_mfg_cost},

risk_cost:{self.plant_risk_cost} {super().__repr__()})\n"

 def __eq__(self, other):

 return (

 isinstance(other, Plant)

 and other.name == self.name

 and other.plant_mfg_cost == self.plant_mfg_cost

 and other.warehouse_paths == self.warehouse_paths

 and other.supplier_paths == self.supplier_paths

 and other.plant_risk_cost == self.plant_risk_cost

 and other.plant_total_cost == self.plant_total_cost

 and super(Plant, self).__eq__(other)

)

 def init_plant_node(self, suppliers: List, warehouses: List,

edge_data: Dict):

 """List, Dict -> None

 initializes the plant node dictionary, plant risk cost and

plant total cost

 """

 self._init_plant_to_warehouse_dict(warehouses, edge_data)

 self._init_supplier_to_plant_dict(suppliers, edge_data)

 self._init_plant_risk_cost(edge_data)

 # self._init_plant_total_cost()

 # TODO: make this more efficient and ensure its right, do something

like this

 def _init_plant_to_warehouse_dict(self, warehouses: List,

edge_data):

 myDict = dict()

101

 for node in warehouses:

 edge_name = f"{self.name}{node.name}"

 try:

 temp_edge_data = edge_data[edge_name]

 except:

 temp_edge_data = None

 myDict.update({edge_name:

temp_edge_data.pl_to_wh_total_cost})

 self.warehouse_paths = myDict

 def _init_supplier_to_plant_dict(self, suppliers: List, edge_data):

 myDict = dict()

 for node in suppliers:

 edge_name = f"{node.name}{self.name}"

 # print(edge_name)

 try:

 temp_edge_data = edge_data[edge_name]

 except:

 print(f"Failed to find: {edge_name}")

 temp_edge_data = None

 myDict.update({edge_name:

temp_edge_data.supplier_total_cost})

 self.supplier_paths = myDict

 def _init_plant_risk_cost(self, edge_data):

 counter = 0

 for path in self.warehouse_paths.keys():

 edge = edge_data[path]

 probability = edge.probability

 reliability = edge.reliability

 exchange_rate = edge.exchange_rate

 counter += probability * reliability

 self.plant_risk_cost = counter

 def _init_plant_total_cost(self):

 self.plant_total_cost = self.plant_mfg_cost /

self.plant_risk_cost

class Warehouse(Node):

 warehouse_count = 0

 def __init__(self, row_data: List):

 super().__init__(row_data)

 Warehouse.warehouse_count += 1

 self.name: str = f"W{Warehouse.warehouse_count}"

 self.market_paths: Dict[str, int] = dict()

 self.plant_paths: Dict[str, int] = dict()

 def __str__(self):

 return f"Warehouse:{self.name}\n"

 def __repr__(self):

 return f"Warehouse(name:{self.name}, {super().__repr__()}\n"

 def __eq__(self, other):

 return (

102

 isinstance(other, Warehouse)

 and other.name == self.name

 and super(Warehouse, self).__eq__(other)

)

 def init_warehouse_node(self, plant_nodes, market_nodes,

edge_data):

 self._init_plant_to_warehouse_dict(plant_nodes, edge_data)

 self._init_warehouse_to_market_dict(market_nodes, edge_data)

 def _init_plant_to_warehouse_dict(self, plant_nodes: List,

edge_data):

 myDict = dict()

 for node in plant_nodes:

 edge_name = f"{node.name}{self.name}"

 try:

 temp_edge_data = edge_data[edge_name]

 except:

 temp_edge_data = None

 myDict.update({edge_name:

temp_edge_data.pl_to_wh_total_cost})

 self.plant_paths = myDict

 def _init_warehouse_to_market_dict(self, market_nodes: List,

edge_data):

 myDict = dict()

 for node in market_nodes:

 edge_name = f"{self.name}{node.name}"

 # print(edge_name)

 try:

 temp_edge_data = edge_data[edge_name]

 except:

 temp_edge_data = None

 myDict.update({edge_name:

temp_edge_data.wh_to_mk_total_cost})

 self.supplier_paths = myDict

class Market(Node):

 market_count = 0

 def __init__(self, row_data: List):

 super().__init__(row_data)

 Market.market_count += 1

 self.name: str = f"M{Market.market_count}"

 self.six_sigma = 6 * math.sqrt(self.var_demand)

 self.market_min = self.mean_demand - self.six_sigma # market

demand range

 self.market_max = self.mean_demand + self.six_sigma

 self.market_pdf = 1 - norm.pdf(

 self.mean_demand, self.mean_demand,

math.sqrt(self.var_demand)

) # not sure

 self.market_demand = rd.randint(int(self.market_min),

int(self.market_max))

 self.surplus_supply_cost = (

103

 (self.market_demand - self.mean_demand) * self.market_pdf *

self.e_cpu

)

 self.shortage_supply_cost = (

 (self.mean_demand - self.market_demand) * self.market_pdf *

self.g_cpu

)

 self.is_surplus = True if (self.surplus_supply_cost > 0) else

False

 self.warehouse_paths: Dict[str, int] = dict() # later will be

a dict

 # acts as a placeholder, need functions to check that sum of

values matches market_demand

 # TODO: this is dependent on markets being last in the Node

data csv

 # NOTE: IDK why we made this comment

 def __str__(self):

 return f"Market:{self.name} {self.surplus_supply_cost}

{self.shortage_supply_cost}\n"

 def __repr__(self):

 return f"Market(name:{self.name}, six-sigma:{self.six_sigma},

market-min:{self.market_min}, market-max:{self.market_max},

pdf:{self.market_pdf}, market demand:{self.market_demand}, surplus-

cost:{self.surplus_supply_cost}, shortage-

cost:{self.shortage_supply_cost}, is_surplus:

{self.is_surplus}\n\t{super().__repr__()})\n"

 def __eq__(self, other):

 return (

 isinstance(other, Market)

 and other.name == self.name

 and other.six_sigma == self.six_sigma

 and other.market_min == self.market_min

 and other.market_max == self.market_max

 and other.market_pdf == self.market_pdf

 and super(Market, self).__eq__(other)

)

 def init_market_node(self, warehouse: List[Warehouse], edge_data:

Dict):

 self._init_market_available_paths(warehouse, edge_data)

 def _init_market_available_paths(self, warehouses: List[Warehouse],

edge_data):

 """initalizes the dictionary for the edges available to the

market node at the time."""

 # returns a dictionary

 myDict = dict()

 for node in warehouses:

 edge_name = f"{node.name}{self.name}"

 try:

 temp_edge_data = edge_data[edge_name]

 except:

 temp_edge_data = None

104

 myDict.update({edge_name:

temp_edge_data.wh_to_mk_total_cost})

 self.warehouse_paths = myDict

class NodeDataError(Exception):

 def __init__(self):

 self.message = f"Invalid arguements passed to Node during

creation"

 super().__init__(self.message)

class InvalidNodeError(Exception):

 def __init__(self):

 self.message = f"Node is not of type [Supplier, Plant,

Warehouse, Market]"

 super().__init__(self.message)

B.3 Graph.py

from typing import List, NewType, Optional, TypeVar, Union

import matplotlib.pyplot as plt

import networkx as nx

import pandas as pd

from networkx.drawing.nx_agraph import graphviz_layout

from supply_network.edge import *

from supply_network.node import *

from .edge import *

from .node import *

"""

Notes:

 __attribute -> private

_attribute -> protected

"""

SOURCE = "source"

SINK = "sink"

class SupplyGraph:

 # could probably do a json of all this

 supplier_nodes: List = []

 plant_nodes: List = []

 warehouse_nodes: List = []

 market_nodes: List = []

 supplier_to_plant_edges: List = []

 plant_to_warehouse_edges: List = []

 warehouse_to_market_edges: List = []

 paths: List = []

105

 edges: dict = {}

 G: nx.DiGraph = nx.DiGraph()

 def __init__(self, nodeDataFile: str, edgeDataFile: str):

 self.node_data_file = nodeDataFile

 self.edge_data_file = edgeDataFile

 def build_graph(self):

 """ builds graph and saves into G attribute """

 self._add_nodes_to_graph()

 self._build_edge_data_dict() # TODO: make this special

 self._init_market_nodes(self.warehouse_nodes, self.edges)

 self._init_warehouse_nodes(self.plant_nodes, self.market_nodes,

self.edges)

 self._init_plant_nodes(self.supplier_nodes,

self.warehouse_nodes, self.edges)

 self.total_market_demand = self._calc_total_market_demand()

 # print(self.total_market_demand)

 def _add_nodes_to_graph(self):

 """ adds nodes from CSV data into the graph G """

 node_df = pd.read_csv(self.node_data_file)

 for row in node_df.values:

 node = Node.create_node(row)

 self.G.add_node(node.name, data=node, name=node.name)

 self._store_node(node)

 self._connect_source_to_suppliers()

 self._connect_suppliers_to_plants()

 self._connect_plants_to_warehouses()

 self._connect_warehouse_to_markets()

 self._connect_markets_to_sink()

 self.paths = list(nx.all_simple_paths(self.G, source=SOURCE,

target=SINK))

 # NOTE: consider leaving this as a generator object for later

tabu search

 def _build_edge_data_dict(self):

 """ reads in edge data CSV and builds a dictionary of their

names to the edge object with the data """

 edge_df = pd.read_csv(self.edge_data_file)

 for row in edge_df.values:

 edge = Edge.create_edge(row)

 self.edges.update({edge.name: edge})

 self._store_edge(edge)

 def _store_node(self, node):

 """ adds nodes to appropriate node list in graph """

 if type(node) == Supplier:

 self.supplier_nodes.append(node)

 elif type(node) == Plant:

 self.plant_nodes.append(node)

 elif type(node) == Warehouse:

 self.warehouse_nodes.append(node)

 elif type(node) == Market:

 self.market_nodes.append(node)

106

 # node._init_market_available_paths(self.warehouse_nodes,

self.edges)

 else:

 raise InvalidNodeError

 def _store_edge(self, edge):

 """ stores edges in the appropriate list for the graph """

 if type(edge) == SupplierToPlantEdge:

 self.supplier_to_plant_edges.append(edge)

 elif type(edge) == PlantToWareEdge:

 self.plant_to_warehouse_edges.append(edge)

 elif type(edge) == WareToMarkEdge:

 self.warehouse_to_market_edges.append(edge)

 else:

 raise InvalidEdgeError

 def get_node_by_name(self, nodeName: str):

 """

 nodeName : str -> Node

 returns the Node with the given name

 """

 first_char = nodeName[0]

 if nodeName[0] == "S": # supplier

 for node in self.supplier_nodes:

 if nodeName == node.name:

 return node

 if nodeName[0] == "P": # plant

 for node in self.plant_nodes:

 if nodeName == node.name:

 return node

 elif nodeName[0] == "W": # warehouse

 for node in self.warehouse_nodes:

 if nodeName == node.name:

 return node

 elif nodeName[0] == "M": # market

 for node in self.market_nodes:

 if nodeName == node.name:

 return node

 return None

 def get_edge_by_name(self, name):

 try:

 target = self.edges[name]

 return target

 except:

 return None

 def _get_node_constraint_data(self):

 """ returns a dictionary of the node names and their

constraints """

 constraint_dict = dict()

 for plant in self.plant_nodes:

 constraint_dict.update({plant.name: plant.max_capacity})

 for warehouse in self.warehouse_nodes:

 constraint_dict.update({warehouse.name:

warehouse.max_capacity})

107

 return constraint_dict

 def _get_market_demand_data(self):

 """ returns a dictionary of the node names and their demands

"""

 demand_dict = dict()

 for market in self.market_nodes:

 demand_dict.update({market.name: market.market_demand})

 return demand_dict

 def _calc_total_market_demand(self):

 """

 calculates the total market cost for the supply chain network

 Total market cost is broken down into excess cost and shortage

cost

 """

 total_market_demand = 0

 for market in self.market_nodes:

 total_market_demand += market.market_demand

 return total_market_demand

 def _connect_source_to_suppliers(self):

 for supplier in self.supplier_nodes:

 self.G.add_edge(SOURCE, supplier.name)

 def _connect_suppliers_to_plants(self):

 for supplier in self.supplier_nodes:

 for plant in self.plant_nodes:

 self.G.add_edge(supplier.name, plant.name)

 def _connect_plants_to_warehouses(self):

 for plant in self.plant_nodes:

 for warehouse in self.warehouse_nodes:

 self.G.add_edge(plant.name, warehouse.name)

 def _connect_warehouse_to_markets(self):

 for warehouse in self.warehouse_nodes:

 for market in self.market_nodes:

 self.G.add_edge(warehouse.name, market.name)

 def _connect_markets_to_sink(self):

 for market in self.market_nodes:

 self.G.add_edge(market.name, SINK)

 def show_graph(self):

 self.G.remove_node(SOURCE)

 self.G.remove_node(SINK)

 graph_pos = graphviz_layout(self.G, prog="dot", args="-

Grankdir=LR")

 nx.draw(self.G, with_labels=True, pos=graph_pos)

 plt.show()

 self.G.add_node(SOURCE)

 self.G.add_node(SINK)

 self._connect_source_to_suppliers()

 self._connect_markets_to_sink()

 def show_full_graph(self):

108

 graph_pos = graphviz_layout(self.G, prog="dot", args="-

Grankdir=LR")

 nx.draw(self.G, with_labels=True, pos=graph_pos)

 plt.show()

 def _print_all_paths(self):

 print(self.paths)

 def _get_edge(self, node1, node2):

 """ accesses the edge dictionary based on the corresponding

edge, returns an edge """

 target_edge = node1.name + node2.name

 return self.edges[target_edge]

 def _init_market_nodes(self, warehouse_nodes, edge_data):

 for market_node in self.market_nodes:

 market_node.init_market_node(warehouse_nodes, edge_data)

 def _init_warehouse_nodes(self, plant_nodes, market_nodes,

edge_data):

 for warehouse_node in self.warehouse_nodes:

 warehouse_node.init_warehouse_node(plant_nodes,

market_nodes, edge_data)

 def _init_plant_nodes(self, supplier_nodes, warehouse_nodes,

edge_data):

 for plant_node in self.plant_nodes:

 plant_node.init_plant_node(supplier_nodes, warehouse_nodes,

edge_data)

 # NOTE: O(N^2)

B.4 Solution.py

import random

from .graph import SupplyGraph

class Solution:

 def __init__(

 self, total_market_demand, market_demand_data,

node_constraint_data, sg

):

 self.total_market_demand = total_market_demand

 self.market_demand_data = market_demand_data

 self.constraints = node_constraint_data.copy()

 self.sg = sg

 self.edge_data = sg.edges

 # quantities at each edge

 # coefficient

 self.wares_to_markets_quantities = {} # edge_name -> quant

 self.warehouse_demands = {}

 self.plants_to_wares_quantities = {}

 self.plant_demands = {}

 self.suppliers_to_plants_quantities = {}

109

 self.total_supply_cost = None

 self.total_plant_production_cost = None

 self.total_plant_warehouse_cost = None

 self.total_warehouse_market_cost = None

 self.total_market_cost = None

 self.solution = None

 def __str__(self):

 return f"\n \

 Solution:\n \

 Supplier->Plant:

{self.suppliers_to_plants_quantities}\n \

 Plant->Warehouse: {self.plants_to_wares_quantities}\n \

 Warehouse->Market: {self.wares_to_markets_quantities}\n

\

 Market Demand: {self.market_demand_data}\n\n \

 Total Supply Cost: {self.total_supply_cost}\n \

 Total Plant Production Cost:

{self.total_plant_production_cost}\n \

 Total Plant Warehouse Cost:

{self.total_plant_warehouse_cost}\n \

 Total Warehouse Market Cost:

{self.total_warehouse_market_cost}\n \

 Total Market Cost: {self.total_market_cost}\n \

 Objective Function: {self.solution}\n\n \

 Total Market Demand: {self.total_market_demand}\n"

 # TODO: test this

 def __gt__(self, other):

 return self.solution > other.solution

 def show_demands(self):

 print(

 f"\

 Demands:\n\n\

 Plant Demands: {self.plant_demands}\n\

 Warehouse Demands: {self.warehouse_demands}\n\

 Market Demands: {self.market_demand_data}\n\

 "

)

 def calc_objective_function(self, market_nodes, plant_nodes,

edge_data):

 """ returns our objective function """

 self._calc_total_supply_cost(edge_data)

 self._calc_total_plant_production_cost(plant_nodes)

 self._calc_total_plant_warehouse_cost(edge_data)

 self._calc_total_warehouse_market_cost(edge_data)

 self._calc_total_market_cost(market_nodes)

 self.solution = (

 self.total_supply_cost

 + self.total_plant_production_cost

 + self.total_plant_warehouse_cost

 + self.total_warehouse_market_cost

 + self.total_market_cost

)

110

 return self

 # TODO: break down, write tests

 def calc_ware_to_market_quants(self, market_nodes,

warehouse_nodes):

 """ setting the warehouse to market quantity amounts """

 random.shuffle(market_nodes)

 for market in market_nodes:

 market_demand = market.market_demand

 path = []

 while market_demand != 0:

 entries = list(market.warehouse_paths.items())

 path_choice = random.choice(entries)[0]

 if path_choice in path:

 continue # try again

 ware_node = path_choice.replace(market.name, "") # W1

 available_quant = self.constraints[ware_node]

 if market_demand > available_quant:

 self.wares_to_markets_quantities.update(

 {path_choice: available_quant}

)

 market_demand -= available_quant

 self.constraints[ware_node] = 0

 else:

 self.wares_to_markets_quantities.update(

 {path_choice: market_demand}

)

 self.constraints[ware_node] -= market_demand

 market_demand = 0

 path.append(path_choice)

 def set_warehouse_demands(self, market_nodes, warehouse_nodes):

 wh_demand = dict()

 for node in warehouse_nodes:

 wh_demand.update({node.name: 0})

 for key in self.wares_to_markets_quantities.keys():

 target_warehouse = key[: key.find("M")]

 wh_demand[target_warehouse] +=

self.wares_to_markets_quantities[key]

 self.warehouse_demands = wh_demand

 # TODO: break down, write tests, abstract them too

 def calc_plant_to_ware_quants(self, plant_nodes, warehouse_nodes):

 """ setting the warehouse to market quantity amounts """

 random.shuffle(warehouse_nodes)

 for warehouse in warehouse_nodes:

 warehouse_demand = self.warehouse_demands[warehouse.name]

 path = []

 while warehouse_demand != 0:

 entries = list(warehouse.plant_paths.items())

 # entries = list(pal.warehouse_paths.items())

 path_choice = random.choice(entries)[0]

 if path_choice in path:

 continue # try again

 plant_node = path_choice.replace(warehouse.name, "") #

P1

111

 # ware_node = path_choice.replace(market.name, "") #

W1

 available_quant = self.constraints[plant_node]

 if warehouse_demand > available_quant:

 self.plants_to_wares_quantities.update(

 {path_choice: available_quant}

)

 warehouse_demand -= available_quant

 self.constraints[plant_node] = 0

 else:

 self.plants_to_wares_quantities.update(

 {path_choice: warehouse_demand}

)

 self.constraints[plant_node] -= warehouse_demand

 warehouse_demand = 0

 path.append(path_choice)

 def set_plant_demands(self, warehouse_nodes, plant_nodes):

 pl_demand = dict()

 for node in plant_nodes:

 pl_demand.update({node.name: 0})

 for key in self.plants_to_wares_quantities.keys():

 target_warehouse = key[: key.find("W")]

 pl_demand[target_warehouse] +=

self.plants_to_wares_quantities[key]

 self.plant_demands = pl_demand

 # TODO: break down, write tests, abstract them too

 def calc_supplier_to_plant_quants(self, supplier_nodes,

plant_nodes):

 """ setting the warehouse to market quantity amounts """

 random.shuffle(plant_nodes)

 for plant in plant_nodes:

 plant_demand = self.plant_demands[plant.name]

 entries = list(plant.supplier_paths.items())

 path_choice = random.choice(entries)[0]

 plant_node = path_choice.replace(plant.name, "") # S1

 self.suppliers_to_plants_quantities.update({path_choice:

plant_demand})

 # plant_demand = 0

 def _calc_total_supply_cost(self, edge_data):

 self.total_supply_cost = 0

 for quant_edge in self.suppliers_to_plants_quantities.keys():

 quant_edge_data = self.sg.get_edge_by_name(quant_edge) #

might break

 # SupplierToPlantEdge

 raw_material_coefficient =

quant_edge_data.supplier_raw_material_cost

 failure_coefficient = quant_edge_data.supplier_failure_cost

 quality_risk_cost =

quant_edge_data.supplier_quality_risk_cost

 quantity = self.suppliers_to_plants_quantities[quant_edge]

 self.total_supply_cost += (

 raw_material_coefficient * quantity / quality_risk_cost

) + (failure_coefficient * quantity)

112

 def _calc_total_plant_production_cost(self, plant_nodes):

 self.total_plant_production_cost = 0

 for node in self.plant_demands.keys():

 node_data = self.sg.get_node_by_name(node)

 # PlantNode

 coefficient = node_data.plant_mfg_cost

 quantity = self.plant_demands[node]

 self.total_plant_production_cost += (

 coefficient * quantity

) / node_data.plant_risk_cost

 def _calc_total_plant_warehouse_cost(self, edge_data):

 self.total_plant_warehouse_cost = 0

 for quant_edge in self.plants_to_wares_quantities.keys():

 quant_edge_data = self.sg.get_edge_by_name(quant_edge) #

might break

 # PlantToWareEdge

 coefficient = quant_edge_data.pl_to_wh_total_cost

 quantity = self.plants_to_wares_quantities[quant_edge]

 self.total_plant_warehouse_cost += coefficient * quantity

 def _calc_total_warehouse_market_cost(self, edge_data):

 self.total_warehouse_market_cost = 0

 for quant_edge in self.wares_to_markets_quantities.keys():

 quant_edge_data = self.sg.get_edge_by_name(quant_edge) #

might break

 # WareToMarkEdge

 coefficient = quant_edge_data.wh_to_mk_total_cost

 quantity = self.wares_to_markets_quantities[quant_edge]

 self.total_warehouse_market_cost += coefficient * quantity

 def _calc_total_market_cost(self, market_nodes):

 self.total_market_cost = 0

 for node in self.market_demand_data.keys():

 node_data = self.sg.get_node_by_name(node)

 # MarketNode

 quantity = self.market_demand_data[node]

 if node_data.is_surplus:

 coefficient = node_data.surplus_supply_cost

 else:

 coefficient = abs(node_data.shortage_supply_cost)

 self.total_market_cost += coefficient

B.5 Tabu.py

import sys

import time

from supply_network.graph import SupplyGraph

from .graph import SupplyGraph

from .solution import Solution

class Tabu:

113

 def __init__(

 self,

 node_data: str,

 edge_data: str,

 iterations: int,

 num_neighbors: int,

 tabu_list_size: int,

):

 """ node_data.csv edge_data.csv iterations """

 self.iterations = int(iterations)

 self.num_neighbors = int(num_neighbors)

 self.tabu_list_size = int(tabu_list_size)

 self.graph = SupplyGraph(node_data, edge_data)

 self.graph.build_graph()

 self.total_market_demand = self.graph.total_market_demand

 self.market_demand_data = self.graph._get_market_demand_data()

 self.node_constraints = self.graph._get_node_constraint_data()

 self.initial_solution = None

 self.best_solution = None

 self.tabu_list = None

 self.time = None

 def __str__(self):

 return f"\n\

 Tabu Search Results:\n\

 Stopping Criterion: {self.iterations}\n\

 Candidate list size: {self.num_neighbors}\n\

 Tabu list size: {self.tabu_list_size}\n\

 Tabu Search Time: {self.time} seconds\n\

 Best Solution:\n{self.best_solution}\n"

 def run(self):

 start_time = time.time()

 self.initial_solution = self._calc_initial_solution()

 self.best_solution = self.run_tabu_search()

 end_time = time.time()

 self.time = end_time - start_time

 print(self)

 # print(self.graph.supplier_to_plant_edges)

 def _calc_initial_solution(self):

 """ calculates the initial solution for tabu search """

 return self.calc_solution()

 def calc_solution(self):

 solution = Solution(

 self.total_market_demand,

 self.market_demand_data,

 self.node_constraints,

 self.graph,

)

 solution.calc_ware_to_market_quants(

 self.graph.market_nodes, self.graph.warehouse_nodes

)

 solution.set_warehouse_demands(

 self.graph.market_nodes, self.graph.warehouse_nodes

)

114

 solution.calc_plant_to_ware_quants(

 self.graph.plant_nodes, self.graph.warehouse_nodes

)

 solution.set_plant_demands(self.graph.warehouse_nodes,

self.graph.plant_nodes)

 solution.calc_supplier_to_plant_quants(

 self.graph.supplier_nodes, self.graph.plant_nodes

)

 solution.calc_objective_function(

 self.graph.market_nodes, self.graph.plant_nodes,

self.graph.edges

)

 return solution

 def _get_neighbor_solutions(self, source_solution):

 """ returns a list of neighboring solutions """

 neighbor_solutions = []

 for i in range(self.num_neighbors):

 solution = self.calc_solution()

 neighbor_solutions.append(solution)

 return neighbor_solutions

 def run_tabu_search(self):

 tabu_list = {}

 iter_num = 0

 curr_solution = self.initial_solution

 while iter_num <= self.iterations: # stopping criterion

 neighbors = self._get_neighbor_solutions(curr_solution)

 best_neighbor = min(neighbors)

 while best_neighbor in tabu_list:

 neighbors.pop(best_neighbor)

 best_neighbor = min(neighbors)

 self._update_tabu_list(tabu_list, best_neighbor)

 curr_solution = min(curr_solution, best_neighbor)

 iter_num += 1

 self.tabu_list = tabu_list

 self.best_solution = curr_solution

 return curr_solution

 def _update_tabu_list(self, tabu_dict: dict, solution: Solution):

 """ updates the tabu tenure of the tabu list """

 for key in list(tabu_dict):

 tabu_dict[key] -= 1

 if tabu_dict[key] <= 0:

 tabu_dict.pop(key)

 tabu_dict.update({solution: self.tabu_list_size}) # adding

 return tabu_dict

B.6 Tabu Test.py

import sys

import random

import time

from supply_network.tabu import Tabu

from supply_network.graph import SupplyGraph

115

random.seed()

ARGS = 6

def main(argv):

 # NOTE: revisit where to best place timing, class resets,

 # depending on how to more fairly time each iteration, then do it

efficiently i.e build graph each time

 times = 1

 try:

 if "-a" in argv:

 times = int(argv[-1])

 except:

 times = 1

 total_time = 0

 total_sum = 0

 total_time_start = time.time()

 for _ in range(times):

 start_time = time.time()

 # node data, edge data, iterations, neighbor list size, tabu

list size

 tabu = Tabu(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4],

sys.argv[5])

 tabu.run()

 total_time += time.time() - start_time

 total_sum += tabu.best_solution.solution

 print(

 f"Total program runtime: {time.time() - total_time_start}

seconds, average time: {total_time/times}, average answer:

{total_sum/times}"

)

 if "-v" in argv:

 print("Visualizing graph")

 tabu.best_solution.visualize_solution()

if __name__ == "__main__":

 if len(sys.argv) < ARGS:

 print(

 "Invalid arguements:\nUsage: main.py <csvNodeData>

<csvEdgeData> <number of iterations> <neighbor list size> <tabu list

size> [[-v] | [-a <number>]]"

)

 elif len(sys.argv) == ARGS and "-v" in sys.argv:

 print(

 "Invalid arguements:\nUsage: main.py <csvNodeData>

<csvEdgeData> <number of iterations> <neighbor list size> <tabu list

size> [[-v] | [-a <number>]]"

)

 elif (len(sys.argv) == ARGS + 1 and sys.argv[-1] != "-v") or (

 len(sys.argv) == ARGS + 2 and sys.argv[-2] != "-a" and

sys.argv[-1].isnumeric()

):

 print(

116

 "Invalid arguements:\nUsage: main.py <csvNodeData>

<csvEdgeData> <number of iterations> <neighbor list size> <tabu list

size> [[-v] | [-a <number>]]"

)

 else:

 main(sys.argv)

C. Edge Data Generator Python Code

import argparse

import random as rd

import sys

from typing import List, Tuple

import pandas as pd

class EdgeDataGenerator:

 """

 A class used for creating EdgeDataCSV.csv files from nodde data

csvs.

 ...

 Attributes

 file : str

 The filepath of the Node Data csv file

 c_range : List[float]

 The range of values to randomly populate the Edge Cost/Unit

column in the Edge Data csv

 (default is [1, 100])

 p_range : List[float]

 The range of values to randomly populate the Probability column

in the Edge Data csv

 (default is [0.0, 1.0])

 r_range : List[float]

 The range of values to randomly populate the Reliability column

in the Edge Data csv

 (default is [0.0, 1.0])

 e_range : List[float]

 The range of values to randomly populate the ER (exchange rate)

column in the Edge Data csv

 (default is [0.0, 1.0])

 supply_nodes : List[str]

 Contains the names of all of the supply nodes in the Node data

csv file

 plant_nodes : List[str]

 Contains the names of all of the plant nodes in the Node data

csv file

117

 warehouse_nodes : List[str]

 Contains the names of all of the warehouse nodes in the Node

data csv file

 market_nodes : List[str]

 Contains the names of all of the market nodes in the Node data

csv file

 """

 def __init__(

 self,

 file: str,

 c_range: List[int],

 p_range: List[float],

 r_range: List[float],

 e_range: List[float],

):

 """

 Parameters

 file : str

 The filepath of the Node Data csv file

 c_range : List[float]

 The range of values to randomly populate the Edge Cost/Unit

column in the Edge Data csv

 (default is [1, 100])

 p_range : List[float]

 The range of values to randomly populate the Probability

column in the Edge Data csv

 (default is [0.0, 1.0])

 r_range : List[float]

 The range of values to randomly populate the Reliability

column in the Edge Data csv

 (default is [0.0, 1.0])

 e_range : List[float]

 The range of values to randomly populate the ER (exchange

rate) column in the Edge Data csv

 (default is [0.0, 1.0])

 """

 self.file = file

 self.c_range = sorted(c_range)

 self.p_range = sorted(p_range)

 self.r_range = sorted(r_range)

 self.e_range = sorted(e_range)

 self.supply_nodes: List[str] = []

 self.plant_nodes: List[str] = []

 self.warehouse_nodes: List[str] = []

 self.market_nodes: List[str] = []

 def create_csv(self):

118

 """

 Runs the Edge Data Generator Object creating appropriate csv

file

 """

 self.read_file(self.file)

 file_name = self.create_file_name(self.file)

 column_names = [

 "Type",

 "Start Node",

 "End Node",

 "Edge Name",

 "Edge Cost/Unit",

 "Probability",

 "Reliability",

 "ER",

]

 data = self.create_rows(

 self.supply_nodes,

 self.plant_nodes,

 self.warehouse_nodes,

 self.market_nodes,

 self.c_range,

 self.p_range,

 self.r_range,

 self.e_range,

)

 edges = pd.DataFrame(data, columns=column_names)

 edges.to_csv(file_name, index=False)

 def create_file_name(self, nodeDataFile: str) -> str:

 """

 Creates the corresponding file name of the nodeDataFile

 """

 return nodeDataFile.replace("Node", "Edge")

 def create_rows(

 self,

 suppliers,

 plants,

 warehouses,

 markets,

 c_range: List[int],

 p_range: List[float],

 r_range: List[float],

 e_range: List[float],

) -> List[List]:

 dataframe = []

 for s in suppliers:

 for p in plants:

 entry = self.create_row(

 0,

 s,

 p,

 rd.randint(c_range[0], c_range[1]),

 round(rd.uniform(p_range[0], p_range[1]), 2),

 round(rd.uniform(r_range[0], r_range[1]), 2),

 round(rd.uniform(e_range[0], e_range[1]), 2),

119

)

 dataframe.append(entry)

 for p in plants:

 for w in warehouses:

 entry = self.create_row(

 1,

 p,

 w,

 rd.randint(c_range[0], c_range[1]),

 round(rd.uniform(p_range[0], p_range[1]), 2),

 round(rd.uniform(r_range[0], r_range[1]), 2),

 round(rd.uniform(e_range[0], e_range[1]), 2),

)

 dataframe.append(entry)

 for w in warehouses:

 for m in markets:

 entry = self.create_row(

 2,

 w,

 m,

 rd.randint(c_range[0], c_range[1]),

 round(rd.uniform(p_range[0], p_range[1]), 2),

 round(rd.uniform(r_range[0], r_range[1]), 2),

 round(rd.uniform(e_range[0], e_range[1]), 2),

)

 dataframe.append(entry)

 return dataframe

 def create_row(

 self,

 edge_type: int,

 node1: str,

 node2: str,

 cpu: int,

 probability: float,

 reliability: float,

 exchange: float,

) -> List:

 return [

 edge_type,

 node1,

 node2,

 node1 + node2,

 cpu,

 probability,

 reliability,

 exchange,

]

 def read_file(self, filepath: str) -> None:

 node_df = pd.read_csv(filepath)

 node_lists = self.get_node_names(node_df)

 self.supply_nodes = node_lists[0]

 self.plant_nodes = node_lists[1]

 self.warehouse_nodes = node_lists[2]

 self.market_nodes = node_lists[3]

120

 def get_node_names(

 self,

 dataframe: pd.DataFrame,

) -> List[List[str]]:

 """

 Reads Node Data CSV file and places the name of each node in

the appropriate list

 """

 supply_nodes: List[str] = []

 plant_nodes: List[str] = []

 warehouse_nodes: List[str] = []

 market_nodes: List[str] = []

 curr_line = 2

 for row in dataframe.values:

 nodeType, nodeName = row[0], row[1]

 if nodeType == 0 or nodeType == 1:

 supply_nodes.append(nodeName)

 elif nodeType == 2:

 plant_nodes.append(nodeName)

 elif nodeType == 3:

 warehouse_nodes.append(nodeName)

 elif nodeType == 4:

 market_nodes.append(nodeName)

 else:

 print("ERROR")

 raise Exception("Unknown node type on line " +

str(curr_line))

 curr_line += 1

 return [supply_nodes, plant_nodes, warehouse_nodes,

market_nodes]

def main():

 args = parse_args(sys.argv)

 e_gen = EdgeDataGenerator(

 args.nodeDataFile,

 args.cost_range,

 args.probability,

 args.reliability,

 args.exchange_rate,

)

 e_gen.create_csv()

 print(f"Done generating edge data from file: {e_gen.file}\n")

 exit()

def parse_args(args) -> argparse.Namespace:

 parser = argparse.ArgumentParser()

 parser.add_argument("nodeDataFile", help="Node data csv file to

generate Edge Data")

 parser.add_argument(

 "-c",

 "--cost_range",

 nargs=2,

 default=[10, 60],

 required=False,

 help="Edge cost per unit range to be used",

121

 type=int,

)

 parser.add_argument(

 "-p",

 "--probability",

 nargs=2,

 default=[0.60, 0.95],

 required=False,

 help="Probability range to be used",

 type=float,

)

 parser.add_argument(

 "-r",

 "--reliability",

 nargs=2,

 default=[0.80, 1.0],

 required=False,

 help="Reliability range to be used",

 type=float,

)

 parser.add_argument(

 "-e",

 "--exchange_rate",

 nargs=2,

 default=[0.1, 2.5],

 required=False,

 help="Exchange rate range to be used",

 type=float,

)

 args = parser.parse_args()

 return args

if __name__ == "__main__":

 main()

