
COMPUTATIONAL BONE MECHANICS MODELING WITH FREQUENCY

DEPENDENT RHEOLOGICAL PROPERTIES AND CROSSLINKING

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Biomedical Engineering

by

Timothy Gray Moreno

February 2021

© 2021

Timothy Gray Moreno

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Computational Bone Mechanics Model-

ing with Frequency Dependent Rheological

Properties and Crosslinking

AUTHOR: Timothy Gray Moreno

DATE SUBMITTED: February 2021

COMMITTEE CHAIR: Scott Hazelwood, Ph.D.

Professor of Biomedical Engineering

COMMITTEE MEMBER: Clifford Les, DVM, Ph.D., MRCVS

Chief Scientific Officer of Pedicaris Research

COMMITTEE MEMBER: Lanny Griffin, Ph.D.

Professor of Biomedical Engineering

iii

ABSTRACT

Computational Bone Mechanics Modeling with Frequency Dependent Rheological

Properties and Crosslinking

Timothy Gray Moreno

Bone is a largely bipartite viscoelastic composite. Its mechanical behavior is deter-

mined by strain rate and the relative proportions of its principal constituent elements,

hydroxyapatite and collagen, but is also largely dictated by their geometry and topol-

ogy. Collagen fibrils include many segments of tropocollagen in staggered, parallel

sequences. The physical staggering of this tropocollagen allows for gaps known as

hole-zones, which serve as nucleation points for apatite mineral. The distance between

adjacent repeat units of tropocollagen is known as D-Spacing and can be measured by

Atomic Force Microscopy (AFM). This D-Spacing can vary in length slightly within a

bundle, but by an additional order of magnitude within the same specimen, and can

significantly alter the proportion of hydroxyapatite. Previous researchers have built

and refined a Finite Element Analysis “Complex Model” to capture the consequences

of adjusting D-Spacing and the viscoelastic parameters. This will ultimately serve

to elucidate and perhaps predict the mechanical consequences of biological events

that alter these parameters. This study aims to further refine the model’s precision

by accounting for crosslinking between fibrils, the presence of which serves to add

mechanical strength. This study also looks to refine the currently used rheological

models by way of frequency dependent parameters in the hopes of improving model

accuracy over a wider frequency range.

Hormonal factors such as estrogen can significantly determine the composition of

bone. Menopause marks a significant reduction in circulating estrogen and has been

shown to factor heavily in the development of conditions like osteoporosis. Because

iv

sheep feature a hormonal cycle and skeletal structure similar to humans, three of six

mature Columbia-Rambouillet ewes were randomly selected to undergo an ovariec-

tomy, the remainder serving as sham-operated controls. Twelve months later twenty

five beam samples were harvested from their radius bones for mechanical analysis

and other testing, including atomic force microscopy (AFM) and dynamic mechani-

cal analysis (DMA). The data gleaned from these tests provide an experimental basis

of comparison with The Complex Model.

A 2-D Finite Element Analysis model in Abaqus was first created by Miguel Mendoza,

which enforced viscoelasticity and a realistic proportion and placement of hydroxya-

patite and collagen. The viscoelasticity was modeled using a Standard Linear Solid

involving springs and a dashpot element. Crosslinks of varying number and location

were arranged within the former model configuration as node to surface tie-constraints

to explore the treatment of the FEA Model as a more realistic assembly of parts. Fre-

quencies utilized for this model included 1, 3, 9 and 12 Hz. This approach is referred

to in this research as the Intermolecular Forces (IMF) Scheme.

The model was subsequently refined by Christopher Ha and Austin Cummings. The

model was characterized by 2x100 unit half-cells, the lengths of which were randomly

generated by a Python script. This script ingested the mean and standard deviation

D-Spacing length to generate a model geometrically similar to a real specimen bear-

ing those dimensions. A frequency dependent value for the dashpot element in the

rheological model used for tropocollagen was developed using this latter FEA model,

named the Complex Model. Dashpot values explored for this variable dashpot in-

cluded 0.0125, 0.125, 0.3125, 0.45, 0.5875, 0.725, 0.8625 and 1.25 GPa-s, some values

chosen for their high performance in past studies and others to further narrow the

search for the best performing dashpot. All dashpot values were investigated over

the previously stated frequencies in addition to 2, 5, 7 and 12 Hz. The best fit dash-

v

pot values were plotted against the frequencies in which they best performed and

a polynomial trend line was fitted to establish an equation, and that equation was

used to modify an existing user material subroutine for tropocollagen to provide an

automatic frequency dependent dashpot value to Abaqus. This approach is referred

to in this research as the Variable Dashpot (VD) Scheme.

Results for the IMF scheme generally performed poorly, with the fully tie-constrained

model performing best with 0.77 and 0.024 for R2 and RMSE respectively. Of the ran-

domized crosslink models, that with the lowest number (N=20) of randomly placed

non-enzymatic crosslinks performed best with 0.81 and 0.051 for R2 and RMSE re-

spectively. Increasing the number of randomized crosslinks reduced model fit, and

the remaining three variants exhibited mean R2 and RMSE values of 0.66− 0.67 and

0.052 respectively. For the VD scheme, models running custom modified variable

dashpot UMATs yielded R2 and RMSE values of 0.87 and 0.012 for C2207, and 0.89

and 0.008 for C1809. This is a notable fit considering all other material property

parameters are held constant throughout each frequency. In the rheological model,

this research also found a striking difference between the frequency dependent viscous

element values that made each model perform best. This indicates that differences

in D-Spacing standard deviations between OVX and control may be associated with

distinct strain-rate dependent mechanical responses.

vi

ACKNOWLEDGMENTS

Thanks to:

• My advisors Dr. Hazelwood and Dr. Les, who were extremely supportive, pa-

tient and kind from the very beginning. Without their constant guidance and

feedback I’d still be spinning my tires on the early minutia of this project. Dr.

Hazelwood, hardly knowing me, vouched for me as a lateral transfer from the

College of Science and Math and paved the path for me to take coursework in

one of the greatest engineering colleges in the US, to which I owe my current

employment as an engineer, where I frequently use many of the skills I learned.

• My wife Miki, for managing everything else so I could painstakingly debug

python scripts and cautiously shift click elements in Abaqus over a capricious

remote connection for hours on end. Let’s take a vacation!

• Miguel Mendoza, Christopher Ha, Austin Cummings and Luke Thompson upon

whose shoulders I stood to get this thing done.

• A contingent of sympathetic ME masters students who dragged me by the ear

through certain graduate coursework including Matt Ichinose, Alec Henken and

Danielle Loi.

• Maaz Hussaini, for taking many hours out of his weekend time to walk me step

by step through the entire daunting experimental protocol.

• My military supervisors Nathan Foss, Danielle Hanke and Tyler Merritt for

their encouragement, generous scheduling wizardry and irrational faith that I’d

eventually graduate.

• Dr. Ashley McDonald, who sent me off with a good word and gave me a superb

head start in terminal, python and MATLAB.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER

1 Introduction . 1

1.1 Purpose of Study . 1

1.2 Bone Tissue Background . 3

1.2.1 Compact and Cancellous Bone 5

1.2.2 Composition of Bone Tissue 10

1.3 Bone Remodeling . 13

1.4 D-Spacing . 15

1.5 Viscoelasticity . 18

1.5.1 Creep and Relaxation . 18

1.5.2 Measuring Viscoelasticity . 20

1.5.3 Viscoelasticity and Bone . 23

1.5.4 A Variable Dashpot . 27

1.6 Crosslinking . 28

1.6.1 Types of Crosslinks in Bone Collagen 29

1.6.2 Crosslink Geometry . 35

1.7 Objective . 37

2 Methods . 39

2.1 Model Basis . 39

2.1.1 The Petruska and Hodge Model 39

viii

2.1.2 The Jager and Fratzl Model 40

2.1.3 The Siegmund Model . 41

2.2 The Complex Model Evolution . 44

2.2.1 The Mendoza Model . 45

2.2.2 The Cummings & Ha Model 47

2.2.3 The Thompson Model . 49

2.3 Experimental Data . 50

2.3.1 Sample Prep . 50

2.3.2 Mechanical Testing . 52

2.4 Model Description . 53

2.4.1 IMF Scheme . 53

2.4.2 Variable Dashpot Scheme . 59

2.4.3 Materials . 60

2.4.3.1 Hydroxyapatite . 60

2.4.3.2 Tropocollagen . 63

2.4.4 Boundary Conditions and Loading 72

2.4.5 Mesh Development . 79

2.4.6 Model Validation . 80

2.5 Post Processing . 80

2.5.1 Statistical Analysis . 83

3 Results . 86

3.1 IMF Scheme Results . 86

3.2 Variable Dashpot Scheme Results . 95

3.2.1 Control Cranial Specimen C2207 Results 96

3.2.2 OVX Cranial Specimen C1809 Results 105

ix

4 Discussion . 113

4.1 IMF Scheme . 113

4.2 Variable Dashpot Scheme . 117

5 Conclusion . 125

BIBLIOGRAPHY . 127

APPENDICES

A Experimental Protocol . 138

A.1 Variable Dashpot Scheme . 138

A.2 IMF Scheme . 142

B Experimental Ovine Data . 144

C Run Data . 145

D Viscoelastic Equations . 148

D.1 Creep Response . 148

D.2 Stress Relaxation . 149

E Code . 151

E.1 Abaqus Input File . 151

E.2 Richter User Material Subroutine . 151

E.2.1 Variable Dashpot UMAT . 156

E.3 Model Generation Script . 161

E.4 Node Randomization Script . 202

E.5 Python Node Retrieval Script . 208

E.5.1 Variable Dashpot Scheme . 208

E.5.2 IMF Scheme . 210

E.6 Matlab Post Processing Scripts . 212

x

LIST OF TABLES

Table Page

1.1 Anisotropic and Asymmetric Properties of Human Femoral Cortical
Bone . 7

1.2 Cancellous mechanical properties at various anatomic sites 9

2.1 Geometric Parameters of Siegmund Model 43

2.2 Cummings and Ha Models . 48

2.3 Randomized Crosslink Model Naming 58

2.4 Modified UMAT Dashpot Values 71

2.5 Loading Time Properties . 75

3.1 IMF Model Parameters . 86

3.2 IMF Model Mean Tan Delta Performance 94

3.3 Variable Dashpot Model Parameters 95

3.4 C2207 Relative Dashpot Performance 102

3.5 C1809 Relative Dashpot Performance 110

4.1 Experimental D-Spacing Mean and Standard Deviation 121

B.1 C1809 Experimental DMA Data . 144

B.2 C2207 Experimental DMA Data . 144

C.1 IMF Run Data 1 . 145

C.2 IMF Run Data 2 . 145

C.3 C2207 Dashpot Run Data . 146

C.4 C1809 Dashpot Run Data . 147

xi

C.5 Variable Dashpot Run Data . 147

xii

LIST OF FIGURES

Figure Page

1.1 Hierarchy of Cortical Bone . 4

1.2 Features of Long Bone . 6

1.3 Stress-strain behavior of human compact bone 7

1.4 3-D Structure of Cancellous Bone 8

1.5 Hierarchical Diagram of Collagen Bone 11

1.6 Diagram of Hydroxyapatite . 12

1.7 Diagram of Osteonal BMU . 14

1.8 Comparative Ovine Bone D-Spacing Distribution 17

1.9 Viscoelastic Creep . 19

1.10 Stress Relaxation . 20

1.11 Tangent Delta . 23

1.12 The Strain Rate Dependence of Bone 24

1.13 The Linear Spring and Dashpot . 26

1.14 Crosslink Scheme . 30

1.15 Lysyl Oxidase Pathway . 31

1.16 Pyridinoline Crosslinks . 32

1.17 Pyrrole Crosslink . 33

1.18 AGE Pathway . 34

1.19 The Four Enzymatic Sites . 36

1.20 Crosslink Spacial Arrangement . 37

2.1 Tropocollagen Subunit Ratios . 40

xiii

2.2 Jager and Fratzl Model . 41

2.3 Siegmund Computational Model . 42

2.4 Siegmund Model Results . 44

2.5 Mendoza Model . 46

2.6 Kelvin Voigt Standard Linear Solid 46

2.7 Cummings Ha Tangent Delta . 49

2.8 Location of Specimens . 52

2.9 Siegmund Crosslink Sites . 54

2.10 IMF Scheme Interaction Properties 55

2.11 Model Part Names . 56

2.12 Crosslink Tie Constraint Sets . 56

2.13 Randomized Crosslinks . 58

2.14 Complex Model Composition . 59

2.15 Stiffness Tensor Symmetry . 61

2.16 Plane Strain Simplification . 62

2.17 Thompson C2207 36 GPa Results 63

2.18 Kronecker Delta . 65

2.19 Thompson Effective Modulus Results 68

2.20 Mendoza Dashpot Determination 69

2.21 C1809 OVX Best Fit Dashpot v. Frequency 70

2.22 C2207 Control Best Fit Dashpot v. Frequency 71

2.23 Best Fit Dashpot Compared to Experimental 72

2.24 XSYM Boundary Condition . 73

2.25 YSYM Boundary Condition . 74

2.26 20 Cycles at 1 Hz . 75

xiv

2.27 Sinusoidal Load . 76

2.28 DMA Setup . 77

2.29 Element Selection . 80

2.30 Post Processing Plots . 83

2.31 Linear Regression Example Plot . 84

3.1 Tie Constraints Model Performance 87

3.2 Tie Constraints Model Linear Regression 87

3.3 N=20 Random Crosslinks Model Performance 88

3.4 N=20 Random Crosslinks Model Linear Regression 89

3.5 N=25 Random Crosslinks Model Performance 89

3.6 N=25 Random Crosslinks Model Linear Regression 90

3.7 N=30 Random Crosslinks Model Performance 90

3.8 N=30 Random Crosslinks Model Linear Regression 91

3.9 N=35 Random Crosslinks Model Performance 91

3.10 N=35 Random Crosslinks Model Linear Regression 92

3.11 Relative Performance of IMF Models 93

3.12 All Random Node Models vs. C2207 93

3.13 Mendoza Normal D-Spacing and Tie Constraints vs. C2207 94

3.14 C2207 1 Hz Dashpot Performance 96

3.15 C2207 2 Hz Dashpot Performance 96

3.16 C2207 3 Hz Dashpot Performance 97

3.17 C2207 5 Hz Dashpot Performance 97

3.18 C2207 7 Hz Dashpot Performance 98

3.19 C2207 9 Hz Dashpot Performance 98

xv

3.20 C2207 12 Hz Dashpot Performance 99

3.21 C2207 15 Hz Dashpot Performance 99

3.22 C2207 0.0125 GPa-s Dashpot Performance 99

3.23 C2207 0.125 GPa-s Dashpot Performance 100

3.24 C2207 0.3125 GPa-s Dashpot Performance 100

3.25 C2207 0.450 GPa-s Dashpot Performance 100

3.26 C2207 0.5875 GPa-s Dashpot Performance 101

3.27 C2207 0.725 GPa-s Dashpot Performance 101

3.28 C2207 0.8625 GPa-s Dashpot Performance 101

3.29 C2207 1.25 GPa-s Dashpot Performance 102

3.30 C2207 Variable Dashpot Performance 103

3.31 C2207 Variable Dashpot vs. Experimental Linear Regression . . . 104

3.32 Performance of C2207 Modified UMAT 104

3.33 C1809 1 Hz Dashpot Performance 105

3.34 C1809 2 Hz Dashpot Performance 105

3.35 C1809 3 Hz Dashpot Performance 105

3.36 C1809 5 Hz Dashpot Performance 106

3.37 C1809 7 Hz Dashpot Performance 106

3.38 C1809 9 Hz Dashpot Performance 106

3.39 C1809 12 Hz Dashpot Performance 107

3.40 C1809 15 Hz Dashpot Performance 107

3.41 C1809 0.0125 GPa-s Dashpot Performance 107

3.42 C1809 0.125 GPa-s Dashpot Performance 108

3.43 C1809 0.3125 GPa-s Dashpot Performance 108

3.44 C1809 0.450 GPa-s Dashpot Performance 108

xvi

3.45 C1809 0.5875 GPa-s Dashpot Performance 109

3.46 C1809 0.725 GPa-s Dashpot Performance 109

3.47 C1809 0.8625 GPa-s Dashpot Performance 109

3.48 C1809 1.25 GPa-s Dashpot Performance 110

3.49 C1809 Variable Dashpot Performance 111

3.50 C1809 Variable Dashpot vs. Experimental Linear Regression . . . 112

3.51 Performance of C1809 Modified UMAT 112

D.1 The Kelvin-Voigt Standard Linear Solid 148

xvii

Chapter 1

INTRODUCTION

1.1 Purpose of Study

Bone is a dynamic organ that supports the body in various ways, such as providing

mechanical structure, rigid points for ligament and tendon to attach to, storage for

Ca2+, and a housing for marrow, which performs the vital function of hematopoiesis

[21]. Like many biological materials bone is much more complex than it initially

appears, and any attempt at prosthetic mimicry can only hope to fulfill some portion

of its functions. This study is of particularly interested in the role bone plays in

bodily structural support, and therefore its mechanical properties.

Properties such as strength and stiffness are directly affected by many factors through-

out life and development, and these changes can be induced through the vehicles of

mechanotransduction and biochemistry. To complicate matters further, bone is an

adaptive tissue capable of altering its structure in response to mechanical impetus,

a concept which has been coined functional adaptation and is described in the much

debated Wolff’s Law [49].

Every change in the form and function of...bone[s] or of their function

alone is followed by certain definite changes in their internal architecture,

and equally definite secondary alterations in their external conformation,

in accordance with mathematical laws. -Julius Wolff

Throughout an individual’s development and life, their bone responds to myriad

pressures both in and out of their control such as genetics, diet, lifestyle and disease

1

[66]. While determining the mechanical properties of a bone are somewhat feasible,

especially postmortem, establishing reasoning behind the current state of a bone’s

structure and characteristics is more difficult.

Characteristics such as density at the micro and nanoscale play a large role in the

mechanical properties of bone such as Young’s Modulus and compressive strength

[13]. In the case of cancellous bone, some researchers suspect a cubic dependence of

bone stiffness on density as follows [64]:

E ∝ ε̇0.06ρ3 (1.1)

While this relationship certainly does not hold for all types of bone, it does indicate

that even slight changes in apparent density could have significant effects on certain

bone under certain loading conditions. Proportions of composition, geometry and

abundance of crosslinking are other large factors in mechanical outcome [49]

Osteoporosis, which literally means ”porous bone”, is a disease characterized by a

systematic loss of bone density [31]. It affects roughly 54 million Americans and the

National Osteoporosis Foundation suspects that one in two women and one in four

men over age 50 will break a bone due to osteoporosis [58]. It is responsible for $19

Billion worth of damage in costs related to broken bones every year, and can severely

limit the mobility of those affected [58]. In menopausal women, ovaries become less

responsive to Luteinizing Hormone and Follicle-Stimulating Hormone, which serve to

regulate key sex hormones such as estrogen, which in turn progressively diminishes

in concentration throughout the remainder of life [48]. The most significant factor in

accelerated bone loss is the deficiency of estrogen [66]. Further supporting this idea

is the presence of bone loss in other conditions associated with premature estrogen

deficiency such as anorexia nervosa, secondary amenorrhea and the use of inhibitors

2

of gonadotropin secretion. Estrogen deficiency can perturb the balance between bone

formation and resorption [47] and correlates with an increase in the concentration of

parathyroid hormone, further accelerating bone turnover [66].

This study hopes to shed light on the effects that a distinct hormonal change can

have on the structure of bone by evaluating it on the nanoscale level through the

utilization of Finite Element Analysis (FEA) composed of collagen and hydroxyap-

atite and experimental data. Significant work has already been accomplished in the

development of a two-dimensional FEA model that accounts for the bi-composite,

viscoelastic nature of bone. In order to further develop the biological relevance and

accuracy of the model, this study aims to account for the presence of crosslinking.

Enzymatic and non-enzymatic crosslinking has been modeled before [69], and its in-

clusion in this model should serve to help it better resemble the experimental results

and allow for a better understanding of the consequences of altering bone structure.

This research also seeks to fine tune parameters relating to the viscous elements in

bone, and to develop a relationship between the behavior of those elements and the

rate with which they are strained.

1.2 Bone Tissue Background

As a connective tissue and organ in its own right, the chief function of bone is to bear

loads for the body while resisting deformation [49]. As an optimization problem, a

synthetic replacement for bone would have to optimize strength and stiffness without

introducing too much weight and brittleness all while allowing for self-maintenance,

remodeling and repair. To understand how bone manages to accomplish these feats

simultaneously, bone needs to be evaluated on multiple scales. It is tempting to

guess at the purpose of whole bone from its geometry in terms of the direction and

3

Figure 1.1: Hierarchy of Cortical Bone [27]

magnitudes of the loads it’s meant to bear, but this simplistic look belies some of the

more interesting functions of bone, like how it manages to contend with those loads

over the course of a lifetime.

It is helpful to consider the form and function of bone in millimeters, microns and

nanometers separately at first. Bone on the visible scale fits one of two categories:

compact and cancellous, two distinct ”builds” of bone that will be expanded on

later. To the naked eye, bone appears to be quite homogeneous, or even as Frost

noted, unified as though ”poured into a mold”, but a deeper look reveals quite the

opposite, as can be seen in the wildly different organizations shown in figure 1.1

[29]. At the micron scale, bone takes the form of osteons, which are about 200 µm

in diameter and lengths of 1-3 mm. Osteons compose the fiber portion of the fiber-

reinforced composite view of bone [49]. These fibers are often oriented along directions

of principal stress, and are separated from their embedding matrix by a cement line,

a thin layer of calcified mucopolysaccharides [82]. The presence of this cement line

aids greatly in mitigating the advances of fractures and promotes energy absorption

because it is a relatively weak interface and succumbs easily to shear.

The nanoscale of bone is of particular interest to this study, and is dominated by

the interactions between collagen and mineral. Collagen fibers running alongside

4

each other are mineralized by hydroxyapatite and connected via enzymatic and non-

enzymatic crosslinking [69]. The arrangement of these few constituents can have

large effects on every succeeding rung on the hierarchy of bone, and deviations in the

quantity or quality of these fundamental building blocks are responsible for several

diseases including Osteogensis Imperfecta, which pertains to collagen dysfunction,

and Osteomalacia, which pertains to a lack of mineralization [49].

1.2.1 Compact and Cancellous Bone

Compact and cancellous bone have many differences which make sense in light of

their mechanical function.

Compact bone (sometimes referred to as cortical or dense bone) often forms the

outside of long bones and is typically dominated by lamellar, rather than woven

bone. It is significantly less porous (5% to 15%) than cancellous bone and includes

several unique structures such as Haversian canals, Volkmann’s canals, and lucunar-

canalicular networks, as seen in figure 1.2. Haversian canals, named after the English

physician Clopton Havers, can be found in the center of each osteon and contain

capillaries and nerve fibers. Volkmann’s canals, named after the German physiologist

Alfred Volkmann, are often orthogonal to Haversian canals, connecting them to each

other and further facilitating fluid flow throughout the bone [48]. As seen in the figure

1.2, lacunae are small spaces that contain osteocytes, and each osteocyte features

multiple dendritic processes that flow through small gaps called canaliculi which lead

to gap junctions. This is suspected to play a role in bone’s adaptation to strain via

mechanotransduction [82].

5

Figure 1.2: Features of Long Bone [49]

Compact bone adds strength to the exterior of long bones, encasing the marrow and

trabeculae within. This often correlates to the principal direction of principal strain

[49]. Oft-cited work by Reilly, Burstein, and Frankel produced the data shown in

Table 1.1, which alludes to a few key ideas about the mechanical properties of compact

bone [10]. It can be roughly considered to be a transversely isotropic material, and

exhibits greater strength and tensile-compressive moduli in the the longitudinal axis,

that is, parallel to the diaphysis of long bones [82]. While most whole bones experience

combined loads, that is some simultaneous contribution from compression/tension and

an applied moment, it makes sense that bones would be optimized to be strongest

along the longitudinal axis in compression. In long bones like the femur, mineralized

collagen fibers are nearly aligned with the diaphysis of the bone, along which it

experiences most of its loading [25]. It should be noted that in the case of the human

femur, the cortical tissue is weakest along the transverse direction in tension, as can

6

be seen in figure 1.3. Mechanical weaknesses become much more of an issue during

mutli-axial loading, such as when experiencing a fall.

Figure 1.3: Stress-strain behavior of human compact bone [40]

Table 1.1: Anisotropic and Asymmetric Properties of Human Femoral
Cortical Bone [10]

7

Cancellous bone, by contrast, is significantly less dense (more porous) than compact

bone, and can be found in the metaphyses and epiphyses of long bones. Cancel-

lous bone allows the body to optimize its load-capacity without adding a significant

amount of weight by diverting most of the load to the much stronger compact bone.

As mentioned, while it is not uncommon for the porosity of compact bone to be

less than 15%, cancellous bone can range from 40% in the femoral neck and 90% in

an elderly spine [56]. Cancellous bone looks distinct from compact bone, and while

some cancellous bone can include secondary osteons, it is mostly composed of rod

and plate-shaped forms called trabeculae which range from 50-300 µm in thickness

[82]. The structure of trabeculae varies significantly from anatomic site to site, and

trabeculae thin out significantly with age [56]. Figure 1.4 shows two ”extremes” of

the same anatomic site. Recalling Wolff’s Law, some instances of cancellous bone,

such as that found in the femoral neck, appears to have itself aligned with the lines

of principal stress [49]. While this does seem to support the idea that bone adapts to

stresses throughout an organisms lifetime, not all cancellous bone at every anatomic

site arranges itself along these lines.

Figure 1.4: Three-dimensional structure of cancellous bone from the iliac
crest in a (A) 37-year-old man with no known bone issues and (B) a 73-
year-old woman suffering from osteoporosis [57].

8

More modern studies of cancellous bone seem to indicate that it, like compact bone,

is stronger in compression than in tension given the same apparent density (a type

of density that includes voids in the material when measuring volume) [39]. The ap-

parent density of cancellous bone is 1.0-1.4 g/cm3, markedly less than compact bone

which is about 1.8-2.0 g/cm3 [49]. As alluded to in equation 1.1, small changes in

density of cancellous bone can spell dramatic results for properties such as stiffness.

Generalized mechanical properties of cancellous bone are difficult to state for several

reasons, most tied to its variation throughout the skeleton. Cancellous bone mechan-

ics depend on the properties of the bone matrix, the amount of tissue present, and

the structural organization of the trabeculae [21]. Table 1.2 reveals that though the

elastic modulus can vary greatly among anatomical sites, cancellous bone is generally

far less stiff than compact. It should be noted that while compact bone outperforms

cancellous bone when considered along the axis of stress, the off-axis arrangement

resembles a more isotropic material and allows greater stiffness in many directions.

Table 1.2: Cancellous mechanical properties at various anatomic sites, all
tested longitudinally [56]

As mentioned, bone is a spectacular material not only because of all the things that

it allows the body to do, but because of its ability to alter itself over a lifetime of

growth and loading. It accomplishes this with the help of a few key cells via processes

called Modeling and Remodeling.

9

1.2.2 Composition of Bone Tissue

It is appropriate to refer to bone as a fiber reinforced composite material featuring

mineral and an organic matrix of water and collagen [49]. Water is often omitted

in this description but plays an important role in bone tissue’s viscoelasticity, and

dehydrated bone samples have very different mechanical properties [82]. While there

are several methods for quantifying each of these substances individually, the best

predictions of mechanical behavior require architectural information. Gravimetric

analysis and heating of samples to dehydrate them serve as reliable ways to establish

the mineralization of the sample. While the average density of compact bone (ρbone)

can be found with Archimedes’s Principle, this is more difficult in cancellous bone

where marrow and fat can hide more easily between the trabeculae. In this case,

the apparent density (ρapparent) is found by machining out a cylinder or cube of the

cancellous bone and dividing the weight of the sample by its overall volume [49]. The

porosity (P) is the the percentage of the total sample volume that’s not occupied by

actual bone tissue and can be found by equation 1.2:

P = 1− ρapparent
ρbone

(1.2)

Porosity is contrasted with bone volume fraction (BV/TV), which is simply the per-

centage of volume in a sample occupied by the bone matrix. The smallest spaces in

bones are generally ignored as potential porosities in the calculation of BV/TV, but

Haversian and Volkmann’s canals are often included in the bone matrix portion of

the BV/TV calculation.

The organic phase of bone mostly consists of type I collagen (98% by weight) with the

remainder composed of noncollagenous proteins and cells [82]. Type I collagen is the

10

most abundant collagen in the body and is not exclusive to bone. Type I collagen is

formed from three trimers forming a triple helix–two identical α1 chains and one α2

chain [73]. This triple-helical strand is formally known as tropocollagen, and many

tropocollagen fibers together form a collagen fiber. Collagen features much posttrans-

lational modification including crosslinking, hydroxylation, and glycosylation, some

of which helps determine its triple-helix arrangement as shown in figure 1.5. As a

matter of fact, collagen trimers are bound together by crosslinking [73].

Figure 1.5: Hierarchical Diagram of Type I Collagen in Bone [21].

The mechanical properties of hierarchically arranged microscopic substances such as

collagen are difficult to determine, but some mechanical testing has been performed

on type I collagen fibrils found in rat tails, concluding a Young’s modulus between 3.7

and 11.5 GPa [81]. The authors credit the wide range of results yielded by Atomic

Force Microscopy (AFM) nano-indentation to the natural variation in mechanical

fibril properties, the calibration of the cantilever, and the varying degrees to which

their samples were hydrated [75]. Assumptions were also made about the material

being homogeneous, isotropic and linear, which are not entirely accurate [6].

11

Figure 1.6: Diagram of Hydroxyapatite Lattice [77]

Aside from water, the other major component of bone is its mineral phase, which

is almost entirely composed of a poorly crystalline apatite material known as hy-

droxyapatite, or (Ca10PO4)6(OH)2. Hydroxyapatite is found on, around and between

collagen fibers within fibrils in a topology further discussed in Section 1.4. Hydroxya-

patite, while brittle on its own, has a Young’s Modulus of roughly 80 GPa and adds

much needed stiffness to bone tissue [17]. Figure 1.6 shows the chemical structure of

hydroxyapatite.

Hydroxyapatite is heavily substituted, meaning that many ions other than Ca2+ can

be ionically bonded, such as strontium, lead, carbonate and fluoride [49]. The degree

to which the mineral is substituted is affected by the surrounding tissue and can

vary greatly with time, having an effect on mechanical properties such as hardness

and brittleness [49]. Mineral has also been found to become more crystalline as it

matures, and in tandem with changing ionic substitutions can change such things as

lattice solubility, diminish crystal growth, and alter fragility [55].

12

To achieve the important mechanical properties of bone, especially the strain-rate

dependent ones discussed in Section 1.5, the partitioning of organic and mineral phase

must be carefully meted. Bone that has too much collagen and not enough mineral will

likely resist fracture (to a point) but deform too much to properly transmit loads and

provide structure, whereas bone that is too heavily mineralized has greater stiffness

but is very vulnerable to the propagation of cracks, which lead to fracture. The

sometimes great disparity of this portioning that can be seen within the skeleton, such

as in the ear bones vs the femur, often speaks to the various selective pressures that

shaped these bones. While collagen is universal among many other phyla, the mineral

utilized is much more commonly silica or calcium carbonate, and only chordates

(and a few crustaceans) seem to deposit calcium phosphate mineral directly on and

around the osteoid (which is essentially bone without hydroxyapatite mineral) to

adjust mechanical properties[19]. Most other phyla employ the mineral phase as

isolated spicules [19]. Interestingly, arthropods use chitin fibrils bound together by

highly crosslinked proteins to produce a composite that performs extremely well for

its weight, but cannot be resorbed and must instead be periodically molted [19].

1.3 Bone Remodeling

Much has been said so far of bone’s ability to self-regulate by cells responding to me-

chanical stimulus. Bone undergoes changes via two major processes: modeling and

remodeling, though it should be noted that many orthopedists and bone scientists

categorize both processes as simply ”remodeling” [49]. While both processes involve

osteoclasts (cells specialized to resorb bone) and osteoblasts (cells specialized to cre-

ate bone), modeling is distinct from remodeling and is more associated with bone

growth [49]. Modeling mostly happens during adolescence and is associated with the

the change of a bone’s size and/or shape. As bones grow in length and diameter,

13

osteoblasts must lay down new bone, but bone must also be removed by osteoclasts

to properly shape the bones as they increase in size. For long bones, this resorption

is typically applied to the periosteal surface of the metaphysis to size it correctly.

For bones such as the skull, resorption occurs on the inner surface just as formation

occurs on the outer surface [48]

Bone remodeling, on the other hand, occurs for much longer in the lifetime of an indi-

vidual and is responsible for the repair of microscopic damage and prevents potential

fatigue fracture by clearing out fatigue damage [31]. It does this by periodically

removing portions of old bone while simultaneously replacing it with a brand new

Haversian system. Remodeling is only accomplished by the coupled behavior of os-

teoblasts and osteoclasts together, which execute their respective duties as part of

a Basic Multicellular Unit or BMU, which can be seen in figure 1.7 [29]. The fact

that bone remodeling has been discovered to occur in a discrete, measurable packet

has led Parfitt to describe this process as the ”quantum concept of bone remodeling”

[59]. Remodeling can create what appears to be a ditch on the surface of a bone,

which is typical in cancellous bone, or it can bore straight through a bone as is typical

in compact bone. BMUs bore out a tunnel of about 200 µm in diameter that can

ultimately produce a secondary osteon about 3-9 mm in length over the course of

about 4-6 months [49].

Figure 1.7: Diagram of Osteonal BMU. Darker cells are osteoblasts and
spotted cells are osteoclasts [49].

14

The life of a BMU is described by the A-R-F sequence, which stands for activation,

resorption, and formation [49]. Activation takes approximately 3-5 days to occur and

involves the fusion of monocytes to create osteoclasts. This is triggered by either a

biochemical signal or mechanotransduction. Resorption describes the activity of the

osteoclasts breaking down composite bone at a rate of about 40 µ/day, forming a

leading ”resorption edge” that will eventually be trailed by formation. After a period

of time, osteoblasts appear around the rim of the bored-out bone and begin laying

down osteoid. This is done in a circular pattern from the outside in resulting in

the lamellar patterns seen in Haversian systems [48]. A 40-50 µm diameter channel

is left open in the middle called a Haversian canal, which allows for blood vessels,

which facilitate nourishment and the transport of essential minerals. After about 10

days, mineralization of the collagen matrix occurs, placing hydroxyapatite within the

hole-zones and around the fibers themselves, the entire process taking more than a

year.

If there is more bone resorption than formation in a bone it can lead to osteoporosis,

and it is possible for BMUs to create a volume of bone that is temporarily osteoporotic

considering the lag time between resorption and formation [29]. It should also be

noted that it takes significant time to mineralize all the osteoid in a new Haversian

system, and that unmineralized bone has its own distinct mechanical properties [49].

1.4 D-Spacing

There are two types of spaces in collagen fibrils which serve to be filled with hydrox-

yapatite. The first run longitudinally, parallel to the collagen fibers are known as

”pores” and are roughly 35 nm in diameter [49]. As shown in figure 1.5, the individ-

ual collagen fibers are ”quarter-staggered”, leaving gap zones known as hole-zones,

15

which were first discovered in 1942 [25]. As discussed in section 1.2.2, the degree of

mineralization can have a serious effect on the mechanical properties of bone–in fact

Currey declares that while many factors lead to the mechanical properties of bone,

”the main determinant of mechanical properties is mineral content” [17]. Tissue min-

eralization is thought to positively correlate with stiffness, but negatively correlates

with toughness [17].

Just as collagen fibers are arranged into fibrils, collagen fibrils can be considered to

be arranged into bundles. Fang et al. considered fibrils to be in the same bundle

if they were adjacent and roughly going in the same direction [26]. While the mean

D-Spacing in type I collagen fibrils across a tissue is roughly 67 ± 10 nm in humans,

the standard deviation within a bundle itself has been found to be consistently less

than 1 nm through AFM investigation [26]. Observing where D-Spacing is similar

within a tissue allows researchers to ponder the exact mechanism of fibrillogenesis–

the process by which collagen fibers are made. Some factors thought to affect the

variation in D-Spacing are substitutions of one amino acid to another, as well as both

enzymatic and non-enzymatic crosslinking [26]. As an example of the former, Osteo-

genesis Imperfecta is mostly caused by a mutation substituting glycine with cysteine

within the collagen α helices, causing steric hindrance and preventing proper folding

[79]. Crosslinking and other effects are applied after fibrillogenesis however, and it

is still a subject of debate exactly when and how D-Spacing is initially determined,

but considering the findings of Fang et al. it seems likely that collagen bundles are

assembled together, likely by adjacent cells with the same instructions under the same

conditions [26]. Another potential question raised by larger D-Spacing between bun-

dles is that perhaps different bundles are meant to serve slightly different mechanical

purposes, because bone is after all an anisotropic material that is responsible for

frequent, complex loading states [78].

16

Osteoporosis is a disease that affects millions of people and is characterized hormon-

ally by the abrupt absence of estrogen. When Wallace et al. conducted AFM testing

on sheep that had undergone randomized ovariectomy to measure a mean D-Spacing

as compared to the control, the difference was noted as ”striking” [78]. This finding

alludes to the possibility of using AFM analysis from a biopsy to aid in the early de-

tection of osteoporosis, with the assumption that Bone Mineral Density analysis can

be incorrect and may exhibit changes before those observed in collagen D-Spacing.

This study also establishes a reliable mean and standard deviation in D-Spacing for

sham vs. OVX ovine bone tissue for the sake of building our Complex Model, as will

be discussed in Section 2.1 [78]. Comparative distributions of D-Spacing measured

between the two experimental groups can be seen in figure 1.8.

Figure 1.8: Comparative ovine bone D-Spacing distribution between OVX
and Sham, indicating a lower mean for OVX samples [78]

Fang et al. also found OVX D-Spacing within bone exhibited a narrower distribution,

raising several questions about the mechanism for that narrowing [25]. It is difficult to

determine whether the hormonal change brought on by the ovariectomy had selected

for a subset of osteoblasts that all produced fibrils of similar D-Spacing, or if instead

17

the biochemical signal that osteoblasts were getting post ovariectomy had caused

some kind of conformity across every kind of osteoblast.

1.5 Viscoelasticity

1.5.1 Creep and Relaxation

Idealized, linearly elastic materials deform to a fixed extent when a constant stress is

applied to them. Viscoelastic materials treated to the same constant stress undergo a

slow and continuous deformation, a behavior known formally as creep [28]. Creep can

occur from any form of stress (axial, shear, combined, etc) and is noticeable in many

occurrences, including the fact that human beings are typically slightly taller in the

morning than they are just before resting, the slow softening of some seat cushions,

or a less obvious example: why the Roman Empire removed chariot wheels when not

in use [33].

Strain in this case needs to be decomposed into two parts: the instantaneous elastic

strain εe, which is constant and the creep strain εc which is variable [28]. The sum

of these two parts is known as total strain, and is time dependent. An important

parameter in these measurements is the strain rate or ε̇, which is easily found by

differentiating the creep strain with time. The strain rate is also sometimes called

the creep rate. Creep causes total strain to manifest in three phases as shown in

figure 1.9: the first phase is a slow straining with a decreasing creep rate, the second

a relatively linear strain region, and the third an accelerated rate due to necking. As

mentioned, viscoelastic properties including the strain rate can be greatly affected by

temperature.

18

Figure 1.9: The Three Typical Phases of Viscoelastic Creep for the Strain
and Strain Rate [28]

When linearly elastic materials are deformed to a constant strain, the stress too stays

constant, as in a cold steel cable strained well within its elastic limits. Viscoelastic

materials however exhibit something called relaxation–their stress reduces over time

in a constant strain, as seen in figure 1.10 [28]. An extreme example of this could be

stretching putty or pizza dough. Guitar strings also provide a good example, espe-

cially those in classical guitars made of nylon. The frequency produced by strumming

a guitar string is a function of the length and the tensile stress in the string, and the

latter relaxes in spite of being strung at a constant strain, requiring the strings to be

re-tuned over time.

19

Figure 1.10: Stress Relaxation: The gradual decrease of stress under con-
stant strain [28]

It should be noted that creep and relaxation can happen independently or simul-

taneously, the latter likely being the case for biological materials such as collagen.

The combination of these concepts leads to interesting experimental responses and

complex formulas that attempt to capture them.

1.5.2 Measuring Viscoelasticity

While static bending and torsion tests can determine familiar elastic properties such

as the elastic and shear modulus of many materials, other means must be employed

to test complex materials that exhibit creep and relaxation. Creep and relaxation

can be observed for certain materials over the course of many seconds, hours days

or even years, but experiments that involve measuring stress responses over much

shorter times need to be explored via oscillating loading [28]. One popular experi-

mental method for assessing viscoelasticity is known as Dynamic Mechanical Analysis

(DMA), which allows oscillating loading across a range of frequencies. DMA is com-

20

monly used for plastics and metals, but has also been shown repeatedly to be a

valuable tool for testing compact bone as well [83] [44].

Three important results of DMA experiments are known as the storage modulus E1,

the lesser used loss modulus E2, and the loss factor tanδ. They are described and

derived below and paraphrased from Findley et al [28].

If a constant amplitude (Fo) oscillatory force is applied to a material at a constant

angular frequency (ω) it can be described by Eq 1.3.

F = Fo cosωt (1.3)

If the material is being vibrated continuously and only displaces in one direction via

a single mode of movement, a variation in stress at a given point in the material can

be described by Eq 1.4, where σo is the stress amplitude and ω is the frequency of

the vibration.

σ = σo cosωt (1.4)

If the material is truly viscoelastic, the strain response will also be sinusoidal, share

the same frequency as the stress but lag behind it by a phase angle δ, shown by the

strain response in Eq 1.5.

ε = εo cos(ωt− δ) (1.5)

21

Applying knowledge of ordinary differential equations and Euler’s formula yields a

definition of a complex modulus of the material, E∗. E∗ can be decomposed into real

and imaginary components E1 and E2 respectively.

E∗ = E1 + iE2 (1.6)

E1 is known as the storage modulus, typically thought of as a measure of a material’s

ability to store energy during oscillatory loading. It can be thought of as an analogue

to the elastic modulus of non-oscillatory tests and can be expressed as follows [44]:

E1 =
σo
εo

cos δ (1.7)

E2 on the other hand is known as the loss modulus and indicates a materials ability

to dissipate energy, usually in the form of heat. It is expressed as follows:

E2 =
σo
εo

sin δ (1.8)

Rearranging these equations gives another expression of the loss factor, which is

thought of as a general measurement of a materials ability to dampen oscillatory

stress [44]:

tan δ =
E2

E1

(1.9)

22

Tanδ, also known as the loss tangent, is associated with the internal friction of the

material and is simply the tangent of the phase angle of the lag between stress and

strain as shown in figure 1.11.

Figure 1.11: Tangent Delta: When applying a sinusoidal load to a vis-
coelastic material the strain response lags behind the applied stress to an
extent described by phase angle δ [43]

A very useful form of Eqs 1.4 and 1.5 that will be used in experimental post-processing

scripts include frequency f and are as follows:

σ = σo sin(2πft) (1.10)

ε = εo sin(2πft− δ) (1.11)

1.5.3 Viscoelasticity and Bone

Bone, like tendon, ligament and cartilage is considered a viscoelastic material because

its mechanical properties depend on the rate at which it is loaded [52]. This behavior

23

is not limited to wet, biological materials however–plastics, wood, concrete and even

metals (if the temperature is elevated) exhibit these time dependent properties as well

[28]. Carter and Hayes asserted that bone’s mechanical properties do not depend on

strain rate nearly as strongly as something like apparent density [14], but an increased

strain rate does stiffen and strengthen bone to deal with the heightened stresses of

physical activity and superphysiological or ”traumatic” loading [21]. Courtney et al

even found that the strain rate dependence of bone can account for up to 20% of

the strength of a human femur when loaded at high frequencies [15]. This concept

can also be seen clearly in figure 1.12, which is from a classic experiment on the

viscoelastic properties of compact bone [52]. As the strain rate becomes faster, the

bone becomes more stiff, but more brittle as well. Martin et al. notes that the energy

absorbed to failure is greatest in the range of 0.01-1.0 per second and ponders its

implications on function [49].

Figure 1.12: The Strain Rate Dependence of Bone: Human cortical bone
was loaded at different rates parallel to the osteons [52]

Accounting for viscoelasticity can quickly become complicated–no mathematical for-

mula is absolutely perfect at capturing the stress-strain behavior exhibited by these

materials. For example, equation 1.12 is the most basic version of Hooke’s Law, very

familiar to Physics and Engineering students, and only somewhat capable of captur-

24

ing the linear segment of a stress-strain behavior in certain materials. It models the

material being stressed as though it were a simple spring with a ”spring constant”

E, also known as Young’s Modulus. It has no accounting for strain rate at all, and

doesn’t hold true for anything other than a linear elastic solid [28]. This equation

represents a spring that exhibits instantaneous elasticity and instantaneous recovery,

meaning that the strain response to applied stress is immediate and that the strain

response to the stress removal is also immediate [28].

σ = Eε (1.12)

Many materials cannot be modeled in this way simply because their strain behavior

is time dependent. To help capture the effects of time dependence, a linear dashpot

model is employed. A dashpot can be roughly thought of as a medical syringe–steadily

and slowly applying force to the injector requires much less effort than applying it

quickly. To be more exact, when a dashpot is strained at a constant rate as a result of

a constant stress, but when it is subjected to an instantly applied constant strain, the

stress will spike up, and then gradually subside to zero as shown in part (e) of figure

1.13 [28]. Equation 1.13 shows a simple formula for a linear dashpot, stating that

the stress is proportionate to the strain rate times η, also known as the coefficient of

viscosity.

σ = η
dε

dt
= ηε̇ (1.13)

25

Figure 1.13: The Linear Spring and Dashpot: (a) shows a linear spring
model represented by Hooke’s law, with (b) showing its instantaneous
elasticity and recovery. (c) shows a linear viscous dashpot model, with (d)
and (e) showing the constant strain rate resulting from a constant stress,
and stress relaxation resulting from a constant strain [28]

Separately, springs and dashpots are insufficient to capture the behavior of real life

biological materials like collagen and cartilage but can be combined to form somewhat

accurate rheological models for such materials. Springs and dashpots can be added

in parallel or end to end in a series, each producing different responses. For collagen,

this particular study has found that the Kelvin-Voigt version of the Standard Linear

Solid offers the least amount of complexity to sufficiently capture the behavior of the

materials in question, including creep and stress relaxation.

26

1.5.4 A Variable Dashpot

The three previous theses have all speculated on the potential need to investigate what

they called a ”variable dashpot” [35][16][74]. Discussed more in the section 2.4.3.2,

the viscoelastic behavior exhibited by bone can be characterized by rheological models

that relate stress and strain. In general, these models feature purely elastic ”springs”

and strain-rate dependent viscous ”dashpots” in various quantities and configurations

[28]. Several dashpot values have been explored, and while a few of these values are

clear winners for most of the frequencies investigated, values of an entirely different

order of magnitude perform far better at lower frequencies.

Thompson ran a very extensive number of tests on the Complex Model just adjusting

the rheological parameters used by the Complex Model to find not only the best

performing values, but to also monitor the effects of each tweak on Tangent Delta

[74]. Thompson found no clear, linear relationship when adjusting tropocollagen’s

elastic moduli values on tangent delta, and therefore no clear relationship to either

the loss or storage modulus (if the elastic moduli varied with just one and not the

other, tangent delta would be steerable).

The previous is true because the rheological model for the viscoelastic behavior of

tropocollagen used in these theses involves a Standard Linear Solid, which features

a lone spring element, as well as a spring element in parallel with a dashpot element

to help model the strain rate dependent behavior of collagen. This configuration

ensures that the spring and dashpot in parallel experience the same strain, but dif-

ferent stresses. It may be possible to determine a relationship between the viscosity

and tangent delta by finding the best performing dashpots at each frequency and

establishing a relationship between frequency and the most suitable dashpot value.

27

It is known that collagen and bone exhibit viscoelastic behaviors but it is not known,

to a great degree of certainty, which features in biology one ought to attribute this

behavior to, let alone which biological feature corresponds to which specific rheological

parameter. It is another aim of this research to characterize the performance of these

dashpots and how they differ between specimen to provide clues about how different

biology might correlate, whether it be by geometry (D-Spacing), the presence of

hormone (or lack thereof), the degree of mineralization, the presence of crosslinks,

etc. Several of the aforementioned differences have been quantified between specimen,

and some others could at least be surmised [44].

1.6 Crosslinking

Much has been said about large factors in bone’s mechanical behavior like mineral

density and porosity, but studies are still exploring the contribution from collagen at

the hierarchy of the fibrils themselves, which can have large effects on bone’s post yield

properties [69]. To explore further, the way that collagen fibrils are connected to each

other must be considered. In addition to being ”cemented” together with hydrox-

yapatite, collagen fibrils are often bound together via biochemical posttranslational

crosslinks. Crosslinks are simply peptide residues that, given the correct biochemical

and spatial conditions, connect with each other and affect the mechanical properties

of the bodies they are attached to.

While subtle differences in the amount and placement of crosslinking is of interest

to this thesis, it should be noted that some serious disorders can trace their effects

to issues with crosslinks as well. Life-altering heritable disorders are often caused by

incorrect posttranslational collagen modification that prevents normal occurrences

of crosslinking. Ehlers-Danlos syndrome type VI is characterized by the absence of

28

lysyl hydroxylase, an enzyme that mediates the creation of crosslinks, producing se-

vere symptoms such as osteoporosis and arterial rupture [42]. Overhydroxylation of

collagen, on the other hand, can severely affect bone strength and is typical of osteo-

genesis imperfecta [42]. Incorrect crosslinking is also implicated in cases of Marfan’s

Syndrome and Cutis Laxa [22]. These are examples of how even though crosslinking

occurs extracellularly, that is after the collagen peptides created from ribosomes and

ejected from the cell, modifications to particular residues such as lysine just after

translation can dictate the type and amount of crosslinks ultimately formed [42].

1.6.1 Types of Crosslinks in Bone Collagen

Crosslinks in bone can be categorized at two different hierarchies: generally enzymatic

and non-enzymatic, and within enzymatic immature and mature [23].

Enzymatic crosslinks are ubiquitous in bone tissue and take various forms depending

on their level of maturity. Figure 1.14 shows the general progression of crosslinks

maturation in collagen. Two enzymes play a prominent role in crosslink formation:

lysyl oxidase and lysyl hydroxylase. Lysyl hydroxylase (LH) acts within the cell before

the collagen peptides are secreted into the intercellular matrix to hydroxylate lysine

residues [67]. One major determination of mechanical properties between genetically

identical collagen fibers is the extent to which its lysine residues are converted by

LH into hydroxylysine, because that distinction forks into different crosslinking paths

[67].

29

Figure 1.14: The Crosslink Maturation Scheme (DeH-DHLNL: dehydro-
dihydroxylysinoleucine, deH-HLNL: dehydro-hydroxylysinonorleucine,
deh-LNL: dehydro-lysinorleucine) [67]

It is said that while LH’s actions control tissue specific crosslinking, Lysyl oxidase

(LOX) controls the overall amount of enzymatic crosslinking [67]. LOX aggregates

collagen molecules into collagen fibers by converting certain lysine and hydroxylysine

residues within the telopeptide domains of said collagen molecules after they leave

the intracellular space. More specifically LOX catalyzes the oxidative deamination

of the ε-amino group of lysine and hydroxylysine [11]. Vitamin B6 and tyrosyl-lysine

quinone serve as cofactors to LOX, and a lack of vitamin B6 has been shown to

reduce the number of immature LOX mediated crosslinks. LOX activity was also

shown to decrease in mice by 75% 3 days after an ovariectomy because estrogen is

a known positive regulator, and this effect was fully reversed by the application of

estradiol.[67]. LOX also plays an important wound in tissue healing because it is

responsible for forming collagen fibers at injury sites, and can be seen to increase at

said sites [11].

30

Figure 1.15: The Lysyl Oxidase Pathway for common enzymatic crosslinks
in Type I collagen [24]

31

After the lysine and hydroxylysine residues have been deaminated, the residues now

feature relatively unstable aldehyde functional groups, with lysine becoming allysine

and hydroxylysine becoming hydroxyallysine as seen in figures 1.14 and 1.15. It should

be noted that in tissues that bear large mechanical loads like bone the hydroxyallysine

route is far more commonly expressed [22] These aldehyde groups will then react either

through Schiff’s base formation or aldol condensation to form immature crosslinks

with neighboring lysine or other aldehydes, which are shown in the middle column

of 1.14 [11]. These pairings are known as immature divalent crosslinks, taking the

form of deH-DHLNL, deH-HLNL, or deH-LNL, which have been shown to decrease

in number in bone as humans age [67].

Figure 1.16: Pyridinoline Crosslinks in Bone. (a) Hydroxylysyl Pyridino-
line (HL-Pyr, also called PYD), (b) Lysyl Pyridinoline (L-Pyr, also called
DPD) [42]

Some portion of these immature crosslinks will undergo further reaction and mature

into several possible trivalent crosslinks as seen in figures 1.14 and 1.15. Pyridinoline

(PYD), Pyrrololine (PYL), Deoxy-pyridinoline (DPD) and Deoxy-pyrrololine (DPL)

are are possible mature crosslinks that appear as a result of various reactive combina-

tions involving existing immature crosslinks and sometimes also adjacent lysine and

hydroxylysine residues [67]. These mature trivalent crosslinks generally accumulate

in human bone until 10-15 years and remain about constant throughout a person’s

32

life [69]. A common guess as to why this is the case is that mineralization immo-

bilizes collagen molecules and prevents them from undergoing the necessary motion

for rapid crosslinking seen in osteoid [42]. The pyridinoline crosslinks, as seen in Fig

1.16, are much more abundant than the pyrroles in bone, and an increased PYD/DPD

ratio has been associated with compressive strength and stiffness in bone [5]. DPD

is typically on the order of 5 times more abundant in human beings than PYD [5].

Figure 1.17: Pyrrole crosslink structure in bone [42]

While the pyrrole crosslinks (figure 1.17) are less abundant in mature bone, it has

been argued that they are of more mechanical importance, and that an increase in

lysyl hydroxylation correlates with a decrease in pyrrole content and bone strength

[42].

Crosslinks can also be formed with glucose via the process of glycation, and these

are generally referred to as non-enzymatic crosslinks [5]. Bailey describes the gly-

cation of collagen as a more random occurrence than the aforementioned chemical

pathways in enzymatic crosslinks [5]. The specific reaction of glycation is the reac-

tion of aldehydes on the open form of glucose reacting with lysine, which happens to

be the Maillard reaction, the same reaction that occurs when bread forms a crust.

This forms glucosyl-lysine. Bailey notes that while there are many arginine and ly-

sine residues in proteins to provide nucleophilic attack on any glucose aldehydes that

33

come by, most residues are not glycated, causing one to ponder the site specificity

of glycation [5]. While Bailey does field some guesses as to what the criteria may

be, Siegmund found the glycation placement to be random enough that they spread

glycation derived crosslinks randomly throughout the length of their computational

model of collagen [69].

Figure 1.18: AGE Pathway via Glycation [5]

After glucosyl-lysine or N-Glucosylamine is formed, the residue may undergo sponta-

neous Amadori rearrangement into aminodeoxyketose [5] as seen in Fig 1.18. From

there either the glocosyl-lysine or aminodeoxyketose may undergo any number of

subsequent reactions to form Advanced Glycation End-Products, or AGEs, which is

a catchall phrase for many different final end products that started from glycation,

which can include 3-deoxyglucosone, pentosidine, and carboxymethyllysine, among

others [5].

Fibrous collagen is subject to the formation of intermolecular glycation crosslinks over

time, which makes it less flexible and more resistant to enzyme activity [5]. Because

collagen is such a long lived protein, it tends to accumulate AGEs over time and while

this has serious effects on the function of collagen in the eyes, kidneys and heart, its

effects on the properties in bone may be more complicated [5]. AGEs are inversely

34

correlated with bone toughness, creep rate and strain to failure in general, with more

specific AGEs having showing other specific correlations [71]. Because the appearance

of AGEs depends on the presence of glucose, AGEs can accumulate more quickly in

diabetic tissues, but also due to increased oxidative stress [67].

1.6.2 Crosslink Geometry

While the exact specificity of crosslinking is an active area of research, some re-

searchers have educated guesses for the likely placement patterns of each type of

crosslink [22]. It is this information that ultimately informs the placement of crosslinks

in computational models such as our Complex Model, as well as those that Siegmund

applied to borrowed models [69] [38].

While many enzymatic crosslinks are located at the collagen termini, most agree that

there are an additional two universal sites about 90 residues inward from the telopep-

tide region, and while some call these sites ”helical”, it should be noted that collagen

molecules are often around 1400 peptides long, so these sites are still relatively ter-

minal, though not so close to the edge that they should appear in Siegmund’s model,

which only shows the terminal crosslink because by rough calculation the helical

crosslink is about 19 nm from the end, which is out of bounds for Siegmund’s model

[22] [69]. As shown in figure 1.19, ”helical” sites are hydroxylysine residues and when

collagen is packed into fibrils, these sites align with neighboring collagen molecules in

a staggered fashion, producing the roughly 67 nm D Spacing that was introduced in

Section 1.4 [22]. The telopeptide sites are aldehydes.

35

Figure 1.19: The Four Sites: Four common enzymatic loci are universal
across collagen molecules of type I, II, and III. The upper portion of the
figure denotes their location along the residue and the exact conserved
peptide sequences, and the bottom portion illustrates how terminal and
helical crosslinks can pair, producing 67 nm D-Spacing [22]

Figure 1.20 shows a common diagram of two adjacent collagen fibers being connected

by mature trivalent crosslinks located near the ends of the individual collagen fibers,

with non-enzymatic crosslinks randomly scattered throughout [5].

36

Figure 1.20: Crosslink Spacial Arrangement: A very simplified diagram of
the differing arrangements of crosslinks. Immature Enzymatic |; Mature
Enzymatic); and Non-Enzymatic l [5]

1.7 Objective

The overarching objective of this research is to develop a version of The Complex

Model that better fits experimental data. The Complex Model is an established FEA

that models an arrangement of tropocollagen and hydroxyapatite at the nanoscale

with loading and boundary conditions that mimic DMA.

This will be a two pronged approach. The first scheme, called the Inter Molecular

Forces scheme, will focus on achieving greater fidelity through a more robust account-

ing of biological interface between tropocollagen molecules and mineral. This will in-

clude one fixed position enzymatic crosslink and a variable number of non-enzymatic

crosslinks placed at random locations. The second scheme, called the variable dash-

pot theme, will seek to test a new suite of rheological dashpot parameter values,

assess their fitness across eight frequencies, and establish a best dashpot value as a

37

function of frequency. This relationship will then be injected into a modified version

of Richter’s subroutine, which will enable superior model performance.

38

Chapter 2

METHODS

2.1 Model Basis

”All models are wrong” in some way because if they were not, they would be the

thing itself. Enough simplifications need to made to allow the model to be tractable,

but leaving enough complexity to still bear meaningful and useful resemblance to the

subject being modeled. The desired parameters are: a typical arrangement (quarter

staggered) of collagen molecules, variable size within reasonable statistical boundaries,

and viscoelastic material properties for hydroxyapatite and collagen, the two materials

in play. The Complex Model seeks to be a somewhat scalable, modifiable and realistic

representation of parallel collagen molecules within cortical bone.

2.1.1 The Petruska and Hodge Model

The advantages of developing such a model have been well known for some time and

attempts are not new. In 1964 researchers at Caltech successfully developed a sub

unit model for tropocollagen [60]. This model would shed light on the conserved

composition within the collagen molecule subunits, revealing that α1 and α2 are

composed of subunits σ1 and σ2, respectively, and that these sub units came together

in a ratio of 7:5 to allow the tropocollogen macromolecule to terminate in unison as

seen in figure 2.1 [60].

39

Figure 2.1: Tropocollagen Subunit Ratios: Petruska and Hodge illustrate
how two sub units of distinct length combine in a ratio of 7:5 to allow the
different alpha chains to have a common length [60]

Petruska and Hodge attempted to relate the length of each subunit to the D-Spacing

within the fibril, which they assume as 690 Å, or 69.0 nm, but the most notable con-

tribution of the model is the conclusion that the use of polypeptide subunits ensures

macromolecules of a common length with minimal genetic programming requirements

[60].

2.1.2 The Jager and Fratzl Model

Jager and Fratzl then created a mechanical model by adopting some of Hodge and

Petruska’s findings, specifically the staggering of collagen. They conceived of a model

that encompassed mineral and collagen in order to study the positive correlation of

stiffness and fracture stress with the degree of mineralization in the collagen matrix

[38].

40

Figure 2.2: Arrangements of Mineral Platelets: Jager and Fratzl demon-
strate the various arrangements of mineral platelets allowed by 67 nm
D-Spacing. [38]

Jager and Fratzl speculated that the gap regions provide the initial nucleation points

for nascent mineral platelets, which are very narrow (about 2-4 nm wide) but poten-

tially as long as 100 nm [38]. In their model (figure 2.2), the stiffness of hydroxya-

paptite is assumed to be infinite, an assumption that the Complex Model does not

share. Jager and Fratzl concluded that their model was an improvement on existing

estimations of mechanical behavior because it accounts for staggering, and that the

use of FEA could improve accuracy [38].

2.1.3 The Siegmund Model

Like Jager and Fratzl’s model, the Siegmund model attempted to capture the typical

two-dimensional arrangements of mineral and collagen at the fibril scale, but took

things further by accounting for crosslinking and leveraging FEA [69]. This model is

the basis of this study and its various predecessors.

41

Figure 2.3: Siegmund Computational Model: (a) staggered array model of
collagen molecules interspersed with mineral (b) overall view of the matrix
in tension (c) a ”unit-cell” of period 67 nm and (d) a half-unit cell actually
used in computation [69]

This model takes 67 nm as the D-Spacing and uses it to define the period p. Other

important geometric aspects can be seen in figure 2.3 and include collagen helix

diameter d, number of collagen helices n, the mineral platelet length L, thickness t,

distance between between platelets along the fibril a and across the fibril b.

One of several advantages that this model offers is the ability to easily calculate the

mineral volume fraction due to the symmetry and consistent length of the unit cell.

The mineral volume fraction V m
V is easily calculated as

V m
V =

Lt

(L+ a)(3d+ t)
(2.1)

Given the other dimensions are held constant throughout the model, the mineral

volume fraction is 0.30 and agrees with assumptions in other work [17] [19]. The spe-

42

cific remaining geometric parameters used in the Siegmund model were summarized

by Luke Thompson in Table 2.1, many of which were adopted by iterations of The

Complex Model [74].

Table 2.1: Geometric Parameters of Siegmund Model [69][74]

As mentioned in Section 1.6.2, Siegmund’s model is essentially a study about the

effects that different crosslinking has on the mechanical properties of bone, which is

why it is highly informative for this research. Before even considering the effects of

crosslinking, Siegmund’s model defines the cohesive forces at each kind of interface

in terms of cohesion energy [69]. Cohesion of the mineral-collagen interface is stated

as being mostly due to structural water. Siegmund reasons that given the assumed

diameter of collagen, the bond energy of a hydrogen bond, and the number of hydro-

gen bonds per length of collagen molecule that the cohesive energy between mineral

and collagen, here named φm−c0 , is roughly 1.5 × 10−7 J/µm2 [69].

Siegmund also accounted for the binding forces of crosslinks between adjacent col-

lagen molecules and grouped them as either enzymatic or non-enzymatic, with the

former being placed deliberately at the collagen overlap position and the latter being

arranged randomly in accordance with the insights of researchers such as Eyre [69]

[22]. Crosslinks are modeled as strong local bonds between collagen molecules con-

sisting mostly of C-N and C-C bonds within a single molecule [42]. Based on research

43

about the mechanical strength of the aforementioned covalent bonds, Siegmund takes

the force of rupture to be Fu = 1.5 nN and after dividing over the appropriate model

area settles on an ultimate stress of 3000 MPa [69][7].

While this model is extremely informative for our own, Siegmund’s model is ask-

ing different questions and produces a distinct output. While the Complex Model

measures viscoelastic parameters such as tangent delta in hopes of correlating with

experimental DMA testing, Siegmund’s model is interested in localized displacement

and possible fracture of a half-unit cell (just half of figure 2.3c). Research goals aside,

iterators of the Complex Model like Luke Thompson have noted that such a model

would have increased fidelity by adding many more unit cells [74]. Lastly, Siegmund’s

methods include executing the model with perfectly bonded interfaces only, much

like those so far utilized in the Complex Model, and notes a largely linear mechanical

response [69]. Figure 2.4 shows a strained mineralized half cell with randomly placed

crosslinks, which provided extremely strong bonds in the Siegmund model [69].

Figure 2.4: Siegmund Model Results: Plot of displacement in the load
direction uy within a strained mineralized half cell with a high level of
enzymatic crosslinks (black circles) [69]

2.2 The Complex Model Evolution

Taking insight and inspiration from the aforementioned models, the Hazelwood Re-

search Lab set out to develop the Complex Model beginning with Miguel Mendoza’s

thesis published in 2013 [54]. The general trajectory of the graduate research projects

would follow an effort to more closely match experimental values by adjusting the ge-

44

ometric size of the model, adding a statistically informed Gaussian distribution to

D-Spacing, and adjusting the rheological values and/or formulas of hydroxyapatite

and collagen [54][35][16][74].

2.2.1 The Mendoza Model

Mendoza was the first to embark on building a model in Abaqus inspired by Sieg-

mund’s in order to analyze the effects of D-Spacing on viscoelastic properties. A

base model was chosen to resemble a half-cell with 67 nm D-Spacing as seen in figure

2.5, with additional models created to test alternative D-Spaces of 73 nm and 61

nm based on the distribution observed from the ovine samples [46]. The geometric

arrangement of collagen and hydroxyapatite was identical to the ”staggered arrange-

ment” identified by Jager and Fratzl in figure 2.2 [38]. Mendoza ultimately employed

seven model variants each with different goals, some adjusting periodic unit length,

others maintaining mineral dimension, and others maintaining collagen dimension,

giving rise to variable mineral volume fraction.

45

Figure 2.5: Mendoza Model: (a) ”Normal” D-Spacing model where the
red cell is mineral and the grey cells are collagen. (b) Coordinate axis
shown for testing. (c) Sinusoidal tensile loads and symmetric boundary
conditions [54]

While Mendoza elected to treat hydroxyapatite as elastic, his most important first

contribution was accounting for the fact that collagen is viscoelastic [54]. In order

to capture this behavior within the Complex Model, Mendoza adopted research from

Frank Richter to write user defined material (UMAT) code for Abaqus that employs

the stress and relaxation behavior of a Standard Linear Solid as mentioned in Section

1.5.3 and is pictured in figure 2.6 [65].

Figure 2.6: Kelvin-Voigt Form Standard Linear Solid: On the left a one-
dimensional version of two springs and a dash pot, on the right a three
dimensional version that includes shear and bulk moduli [54]

46

Though the actual DMA testing was conducted from 1 to 20 Hz in 0.2 Hz increments,

Mendoza tested and correlated 1, 3, 9 and 15 Hz, which would become standard in

subsequent models [54]. Mendoza opted to change a single dimension at a time

to identify the Complex Model parameters that agreed with experimental values the

most [74][54]. It should be noted that this model and each subsequent model assumed

that the interfaces were bonded perfectly together for the sake of simplicity. It was

reasoned that the approximation was sensible because DMA testing caused strains

that were below yield [54].

Mendoza concluded that D-Spacing did appear to affect the tangent δ of bone, but

the experiments highlighted the large effect that small changes in mineral volume

fraction could have as well which could be affected by D-Spacing. Mendoza called for

improving model accuracy in his Discussion, and suggested the consideration of a 3D

model [54].

2.2.2 The Cummings & Ha Model

Austin Cummings and Christopher Ha realized that Mendoza’s half-cell model was

derived directly from Siegmund’s and that the simplicity in geometry made for conve-

nient experimentation, but that a more accurate representation should test the cells

interacting in parallel and in series [35][16]. Cummings notes that the reason they

thought it made sense to make the model longer is because research shows the peri-

odicity patterns extending for a full 40 microns[54]. Cummings also chose to study

cranial specimens, arguing that ”there is a precedent for research on this section in

tension” [16][35]. Cummings and Ha thus set out to expand the model to fifty inter-

connected half cells, with two long rows and a hundred columns [16]. To accomplish

this they wrote a python script to construct a model directly into Abaqus. Referenc-

ing AFM data for the cranial and caudal sections of bone measured by the University

47

of Michigan, Ann Arbor, Ha wrote the script to vary D-Spacing in accordance with

realistic means and standard deviations [35][16]. Utilizing this script produced a total

of eight models and were loaded and bound as Mendoza had before, mimicking DMA

testing. Collagen material properties utilized Richter’s UMATs and hydroxyapatite

was modeled as an elastic isotropic solid (E=100 GPa and ν=0.28) [65].

Table 2.2: Cummings and Ha Model Lengths: This table shows the length
of each row in all eight of the models. Length discrepancies between rows
within a model were remedied by the inclusion of a collagen spacer to
make the ends even. [35][16]

Because the D-Spacing was variable, the top and bottom rows ultimately terminated

in different lengths. To remedy this, their script would automatically add a collagen

spacer to ensure that the rows were even within a model for the sake of symmetric

loading. Table 2.2 shows the row lengths of each model in microns.

At a glance, the Cummings and Ha model achieved greater agreement with experi-

mental data at lower frequencies, as can be seen in figure 2.7. Because this new model

included replicates it allowed the quantification of experimental error. The authors

conducted multiple two-way ANOVA testing. They also tested for any confounding

interaction between model type and frequency and found that they were statistically

insignificant and so their contributions to tangent delta could be assumed indepen-

48

dent [35][16]. They also cite a larger correlation coefficient when compared with

experimental tangent deltas.

Cummings and Ha noted limitations on the study that were largely similar to Men-

doza’s, but also alluded to the idea that more accurate modeling of the material

properties of hydroxyapatite may achieve even greater agreement with experimental

results, but lamented that the literature exhibits a great variation in measured elastic

properties of the mineral [35][16]. They also suggested a fine tuning of the rheological

properties in general.

Figure 2.7: Cummings Ha Tangent Delta: Plot showing the interaction
between model type and test frequency [35][16]

2.2.3 The Thompson Model

Looking for ways to further refine the model’s accuracy, Luke Thompson decided

to maintain the new and expanded Complex Model but to more closely scrutinize

the individual parameters of the rheological model [74]. Thompson decided that the

common literature value of collagen’s elastic modulus of 2 GPa should by represented

by the effective modulus (Eeffective) as defined in the following equation [21]:

49

Eeffective =
E1E2

E1 + E2

(2.2)

This meant that he assigned values of E1 and E2 that would yield an effective modulus

of 2 GPa. Thompson ultimately settled on 3 GPa and 6 GPa respectively, noting

both that Siegmund’s linear elastic model used 5 GPa and that correlating biological

significance to individual pieces in a Kelvin-Voigt body was somewhat ambiguous

[74][69].

Thompson also ran experiments with an effective modulus of 5 GPa, but the increase

reduced coincidence with experimental tangent delta. For future work Thompson

suggested exploring lower effective moduli such as 1 GPa with spring element values

of 1.5 and 3, noting that collagen values in literature vary wildly, even in similar

anatomical contexts [74]. He also speculated that it may help the Complex Model be

less conservative in its estimation of Tangent Delta in general to lower the effective

modulus, noting this trend in his and preceding studies. He also recommended the

exploration of variable dashpot values to help model agreement near lower frequencies.

2.3 Experimental Data

2.3.1 Sample Prep

Sample prep was a combined effort between multiple schools, though it should be

stated that no physical experimentation or sample prep took place at Cal Poly San

Luis Obispo.

In accordance with the Institutional Animal Care and Use Committee guidance, 12

5 year-old Columbia-Rambouillet sheep were the subject of a joint study involving

50

the Department of Orthopaedic Surgery at Henry Ford Hospital, The College of Vet-

erinary Medicine and Biomedical Sciences at Colorado State University Ft. Collins,

and the Department of Biostatistics and Research Epidemiology, part of the Henry

Ford Health System [46]. As noted previously, ewes provide a reasonable biologi-

cal analogue to human beings particularly for the study of osteoporosis for several

key reasons: sheep are larger than commonly used specimen such as mice which

makes them more compatible with common surgical procedures, older sheep exhibit

Haversian bone remodeling, they have more genetic similarity to humans than other

commonly chosen species, and ewes ovulate spontaneously and have a sex hormone

profile similar to that of women [85].

The last similarity is especially important in consideration of those factors discussed

in Section 1.1, namely that acute, chronic estrogen loss is thought to be the largest

factor behind bone density loss during and after menopause and that performing

an ovariectomy on humans and sheep causes a hormonal response very similar to

menopause [48].

All variables that could be controlled including diet and locale were, with the ewes

kept at an altitude of 1600m and fed alfalfa and grass hay. Of the twelve, half were

randomly selected for anesthesia and ovariectomy (OVX) and the remaining six were

given a sham surgery (Control) [46]. To allow for the effects of hormonal differences

to take place, the ewes were allowed to live for one year before they were sacrificed

via intravenous barbiturate overdose. The left radius of each ewe was harvested and

stored at -20◦C.

51

Figure 2.8: Location of Specimens: a ewe’s fused left radius and ulna at
mid-diaphysis. [46]

After removing the ulna, thin beams (2 x 2 x 19 mm) were taken from six different

sections of the radius (craniomedial, cranial, craniolateral, caudomedial, caudal, and

caudolateral as pictured in figure 2.8) and stored in saline solution [46]. This was

accomplished using Exact Technologies Inc. equipment at Henry Ford Hospital.

2.3.2 Mechanical Testing

One beam from each sector was randomly selected for mechanical testing. Mechanical

testing was conducted at Henry Ford Hospital in three-point bending in a 0.9% saline

solution on a Perkin-Elmer DMA7a, wherein the cranial side was loaded in relative

tension. A static load of 550 mN was tested as well as a dynamic load of 500 mN over

a frequency scan from 1 and 20 Hz at 0.2 Hz intervals, but previous studies in the

Hazelwood research group have focused on results from 1, 3, 9 and 15 Hz [46]. In vivo

stresses were interpreted based on the anatomical location of the beam with cranial

sections in tension and caudal section in compression. Because collagen is modeled

in tension in the Complex Model, the cranial sector was of particular interest.

52

2.4 Model Description

In an effort to further refine the fidelity of the Complex Model, this thesis involved a

sequence of two approaches. The first approach sought to model the intermolecular

forces (IMFs) in a less general way than was done in previous studies and the latter

approach sought to rein in on a variable dashpot value mentioned by Luke Thompson

[74]. Moving forward this former approach will be called the IMF scheme and the

latter the Variable Dashpot scheme. These approaches have very different methods

and results, with the most immediate distinction being the respective models they are

refining: The IMF scheme is a modification of the shorter, roughly 67 nm Mendoza

model, and the Variable Dashpot scheme is a parameter adjustment and optimization

of the longer Complex Model developed by Cummings and Ha, the same version of the

model against which Thompson did his in depth statistical analysis. This section will

bifurcate when distinction is necessary to avoid confusion and will give description

to all components typical of a Finite Element Model, including involved material

properties, loads and boundary conditions, mesh development, and model validation.

The finite element analysis software used for this research is Abaqus 6.14, both be-

cause the flexibility allowed with user written material subroutines (UMATs) and for

continuity within the research group. Upwards of 160 testing runs were executed

during this research on appropriately equipped computers provided by Dr. Scott

Hazelwood.

2.4.1 IMF Scheme

As stated in section 2.1.3, the Siegmund model is a half unit cell model that sought

to investigate the relationship between the quantity and placement of crosslinks and

53

mechanical failures such as delamination between layers [69]. Siegmund’s model took

care to model multiple intermolecular forces, including hydrogen bonding, electro-

static interactions, and both enzymatic and non-enzymatic crosslinking described

in section 1.6. Citing the the same sources found in that section such as Petruska

and Hodge and Eyre, Siegmund recognized that in the half unit cell only one enzy-

matic crosslink would appear in a specific place, and that a number of non-enzymatic

crosslinks would occur along the interfaces between collagen molecules [22][60]. Sieg-

mund ran experiments involving no crosslinks, one enzymatic crosslink, and one enzy-

matic crosslink plus either 1, 5, 10 or 20 non-enzymatic crosslinks. Figure 2.9 shows

an example of a model created with 10 non-enzymatic crosslinks.

Figure 2.9: Siegmund Crosslink Sites: Black dots represent randomly ar-
ranged non-enzymatic crosslink sites, the lone red dot represents a single
enzymatic crosslink site. [69]

While Siegmund explored output properties as strength and toughness, this research

approach endeavoured to clarify how a more robust accounting of the intermolecular

forces would affect the Complex Model’s correlation to experimental data. All pre-

vious iterations of the Complex Model in this research group, regardless of length,

have been treated in Abaqus as a single continuous part. This means that the dif-

ferent sections of the model are really only distinguished by their assigned materials

(collagen or hydroxyapatite) and are fused together as one piece for the purposes of

stress propagation, a configuration Siegmund refers to as ”perfectly bonded” [69].

Mendoza’s model very closely resembles Siegmund’s but introduces some geometric

variability by adjusting its total length to model a few different D-Spacing configura-

tions including 61, 67 and 73 nm, all following the basic layout shown in figure 2.5.

54

For the sake of simplicity the IMF scheme utilized the 67 nm D-Spacing Mendoza

model, but constructed each section out of separate parts to control interaction forces

between each. This would provide a starting basis of comparison to established model

performance to validate robust intermolecular force modeling as a viable approach.

In a fashion described in later sections, each part was assigned a material, the assembly

was meshed and given boundary conditions and an applied sinusoidal load in the exact

configuration used by Mendoza for the basis of regression testing. To prevent an FEA

phenomenon known as overclosure wherein nodes from different parts erroneously

cross over into each other, basic normal and tangential mechanical rules were applied

to every surface in the model as seen in figure 2.10.

Figure 2.10: IMF Scheme Interaction Properties: General interaction
properties assigned to prevent overclosure.

Inspired by Siegmund’s method of randomly located non-enzymatic crosslinks, multi-

ple surface and node sets were created in Abaqus to be attached together. While there

are several ways to constrain surfaces and nodes together in Abaqus, tie constraints

were chosen to represent both kinds of crosslinks, which disallow relative translation

between two adjacent nodes, surfaces, or a mixture between the two. Tie constraints

55

were chosen both for their simplicity, and because modeling failure criteria such as

delamination between parts is not an objective of the IMF scheme or the Complex

Model, so accounting for things like failure criteria involved in some other constraints

was not necessary. It should also be noted that crosslinks are considered very strong

bonds, composed of either N-C (347 kJ/mol) or C-C (305 kJ/mol) bonds, which

Siegmund estimates to feature an ultimate stress of about 3000 MPa [69].

Figure 2.11: Model Part Names: The IMF scheme assembly has four parts
named as they are above, which are reused in scripts to specify the location
of nodes and surfaces

Parts in the IMF scheme were named as seen in figure 2.11. A surface set known

as XLINKBTMSURF was created along the entire top surface of the part Collagen

Half, and XLINKTOPSURF was created along the entire top surface of Collagen Full.

Node sets were then created along the entire bottom surfaces of Collagen Small and

Mineral, named XLINKNODETOP, and along the entire bottom surface of Collagen

Full, named XLINKNODEBOTTOM, as seen in figure 2.12.

Figure 2.12: Crosslink Tie Constraint Sets: a) Surface sets to accept tie
constraints from randomly selected nodes on the opposite surface. b) Node
sets containing every candidate node on the surface of a part that could be
randomly assigned to have a tie constraint representing a non-enzymatic
crosslink.

56

A job was then created, and from that job an Abaqus input file was generated for the

purposes of further manipulation. An input file is a text file that contains all informa-

tion about an Abaqus job, to include all parts within an assembly, all surfaces, element

and node sets, interaction properties, boundary conditions, mesh assignments, loads,

output instructions, etc. It is necessarily a large file because it encompasses every-

thing created in Abaqus up to this point, and is all that is required to execute a job

from the command line using Abaqus and our user material subroutine.

Expressing the job entirely in terms of plain unformatted text opens up the possibility

of manipulation via python script, as fully featured in Appendix E.4. A python script

was used to scrape the input file regular expression matches to the names of node

sets such as XLINKNODEBOTTOM, ingest the following node numbers, randomly

select a set number of them (dictated by how many total non-enzymatic crosslinks

were desired), and rewrite brand new randomized node sets and finally inject said sets

into the correct location in the input file. The python script also safeguarded against

undesired crosslink distribution edge cases (e.g. all crosslinks on top surfaces and none

on bottom surfaces) by ensuring a reasonable distribution between top and bottom

and partially tying the probability that a node will be selected along a particular

surface to the length of that surface so that generally longer surfaces generally have

more crosslinks. Figure 2.13 shows a model with 15 randomly placed non-enzymatic

crosslinks along the top and bottom interfacial surfaces.

57

Figure 2.13: Randomized Crosslinks: Red dots represent three different
node sets collectively containing a total of N = 15 randomized nodes,
which can conveniently pair with adjacent surfaces for tie constraints.

After the python script adjusted the input file with new randomized node sets, Abaqus

was relaunched and the model was rebuilt using the input file, now featuring the

randomized nodes for the purposes of selection. Tie Constraints were made for each

of the three node sets against the surfaces previously created, permanently attaching

them there throughout the duration of the job.

While only one fully tie-constrained model was created and tested, for N=20, 25,

30 and 35, three models were generated and tested for each non-enzymatic crosslink

count, with their tangent delta performance averaged for each frequency. This was

done to prevent skewed data from a model with unusual crosslink distribution. Table

2.3 shows the naming convention used for each randomized node model. Between

the tie-constrained model and the randomized crosslink models there were a total of

thirteen distinct FEA models tested over four frequencies each with each frequency

having been post-processed ten times, producing a total of 520 tangent delta values

averaged.

Table 2.3: Randomized Crosslink Model Naming Convention

58

2.4.2 Variable Dashpot Scheme

The Variable Dashpot Scheme sought to further refine the fidelity of the Complex

Model generated by Christopher Ha and Austin Cummings leveraging the findings of

Thompson’s extensive parameter testing [74][35][16]. As such it was necessarily based

on their model which was much longer than Mendoza’s (generally about 0.67 microns

in length instead of 6.7 nm) and twice as tall, composed of 2 x 100 half cells seen in

Siegmund’s research. Its geometry is also generated from a python script which, after

taking in parameters such as mean and standard deviation of D-Spacing, generates

all nodes and elements based on a Gaussian distribution, allowing the collagen fibril

to resemble the variability in D-Spacing that it does in literature, which is shown to

persist for up to 40 µm in collagen fibrils [25]. This empowers the experimenter to

import aforementioned parameters from those recorded in DMA experimental results,

resulting in a model that more closely mimics that geometry.

Figure 2.14: Complex Model Composition: This zoomed image of the
Complex Model terminus illustrates that it is made up of 2 X 100 half
unit cells arranged in two rows which are generated sequentially [74].

59

Because the model generation script generates the top and bottom rows of half unit

cells sequentially and with semi-random dimensions, their ultimate lengths will dif-

fer. If that difference is below an acceptable threshold, the model will be deemed

biologically relevant, and a tropocollagen spacer will be inserted to bring the lengths

to parity, if not, the script will be run again. The spacer can be seen in figure 2.14.

In contrast with the IMF Scheme, this scheme does not require the experimenter to

generate an input, manipulate it, and rebuild a model, all remaining segments of the

job can be accomplished in the following order before finally generating an input.

2.4.3 Materials

Materials were identically employed for both schemes with the exception of alter-

ing dash pot values for the Variable Dashpot Scheme. These models used just two

different materials: tropocollagen and hydroxyapatite (sometimes referred to as min-

eral), as first discussed in Section 1.2.2. Spatial assignment of tropocollagen and

hydroxyapatite was deliberate and mimics biology. The materials bear significantly

distinct properties, many of which were treated as dependent variables in this and

each preceding thesis.

2.4.3.1 Hydroxyapatite

Hydroxyapatite in this and preceding studies is modeled as an isotropic linear elastic

solid, which is a solid that obeys Hooke’s law in that the stress tensor varies linearly

with the strain tensor [28].

σij = Cijklεkl (2.3)

60

Shown in equation 2.3 are the stress tensor, the stiffness tensor, and the strain tensor.

The stiffness tensor, sometimes called the elasticity tensor, is a 4th order tensor

with 81 elements that describes the elastic moduli, which are constant for a given

temperature and other environmental variables. Accounting for energy conservation

and because all tensors involved are symmetric including the stiffness tensor (C12 =

C21), the total independent constants in the stress tensor sum to 36 for the worst case

scenario but much more commonly 21 for general isotropic materials[28][49].

Figure 2.15: Stiffness Tensor Symmetry: Accounting for energy conser-
vation, off diagonal elements of the 4th order stiffness tensor are equal,
significantly reducing independent constants [49].

The number of independent stiffness constants in a material can vary, but symmetry

within a material can help cull their numbers further, as seen in figure 2.15. While

materials such as bone and wood are anisoptropic, meaning that the relationships

between the stress or strain tensor is dependent on the direction of loading, mineral

here is modeled as isotropic. Modeling the mineral as isotropic reduces the constants

down to just two constants known as Lamé constants, λ and G (the elasticity in

shear), which are sometimes used in lieu of more familiar constants such as Poisson’s

ratio because of they are more tractable in tensor math calculations.

λ =
Eν

(1 + ν)(1− 2ν)
(2.4)

61

G =
E

2(1 + ν)
(2.5)

Examining the previous two equations reveals that to know Poisson’s ratio ν and

Young’s modulus E, is to know the Lamé constants as well. For isotropic materials

the stress-strain equation becomes:

σij =
Eν

(1 + ν)(1− 2ν)
εkkδij +

E

1 + ν
εij (2.6)

It should be noted that the model is limited to plane strain (strain in only two di-

mensions), which provides yet more opportunity for simplification in these equations,

as seen in figure 2.16.

Figure 2.16: Plane Strain Simplification: Accounting for strain in only two
dimensions means that any entries involving the z dimension in the strain
tensor are zero, facilitating the removal of the corresponding columns (3,
4, and 5) in the stiffness matrix [50].

These significant reductions eliminate the choice for anything beyond Poisson’s ratio

and Young’s Modulus. While it is difficult to find a biologically relevant (large enough)

sample of hydroxyapatite to submit to testing, clues of its material properties in vivo

can be gleaned from specimen of highly mineralized bone in the animal kingdom.

Monodon monoceuos, a whale species, is of particular interest because in spite of

having a generally low density skeleton, the rostrum is, by contrast, very dense with

mineral. It has been found that the rostrum has an elastic modulus of 31 GPa when

62

86% mineral and 46 GPa when 96% mineral [86]. These insights provided previous

theses in the group with an order of magnitude for selecting the elastic modulus.

The most recent effort identified 36 and 100 GPa as promising values, and after sig-

nificant testing concluded that while holding the other test parameters that produced

the best fit constant, the choice of 36 GPa yielded the lowest Root Mean Square Error

(RMSE) value and highest correlation coefficient when compared to other plausible

values of mineral elastic modulus as seen in figure 2.17 [74].

Figure 2.17: Thompson C2207 36 GPa results: A simple linear regression
of the Complex Model’s tangent delta value while using best fit dashpot
values and 36 GPa for mineral elastic modulus (mislabeled as C2219) [74]

2.4.3.2 Tropocollagen

Recall that the main feature of Mendoza’s work was to bring a more sophisticated

material definition of tropocollagen to the Siegmund model, and that basic rheo-

logical framing has been sustained through each subsequent thesis [54]. Mendoza

accomplished this by adopting a user-defined material subroutine written by Richter

[65].

63

As discussed in section 1.5, bone exhibits the earmarks of viscoelasticity, such as a

rate dependent strain response. Since hydroxyapatite is generally modeled as a linear

elastic solid, this viscoelasticity is likely derived from the tropocollagen. There are

many choices for modeling creep and relaxation [28]. The rheological configuration

utilized here is the Kelvin-Voigt form of the Standard Linear Solid, as pictured in

figure 2.6. While it’s possible to utilize many more elements, overfitting is an ever

present danger and comes at the cost of additional computation time, and a difficulty

in attributing biological significance to each additional parameter.

Richter’s formulation was three dimensional, but the form of his UMAT that was

adopted was one dimensional. Recall that a constitutive equation for a specific mate-

rial is one that, if all other variables are held relatively constant, relate the stress to

the strain [41]. Consider the following three dimensional constitutive equation that

relates to figure 2.6:

(
1 +

GKe

GE

)
σij +

(
KKe

KE

+
GKe

GE

)
σkk
3
δij +

ηs
Ge

σ̇ij +

(
ηb
KE

+
ηs
Ge

)
σ̇kk
3
δij

= 2GKeεij + (3KKe − 2GKe)
εkk
3
δij + 2ηsε̇ij + (3ηb − 2ηs)

ε̇kk
3
δij (2.7)

Terms in equation 2.7: σij and εij are the stress and strain tensors. A dot over either

term indicates that it’s a time derivative of the term (e.g. σ̇ij is the stress rate). δij

is known as the kronecker delta and is equivalent to I or the identity matrix found in

Linear Algebra as seen in figure 2.18, because when i = j the kronecker delta equals

one, but when i 6= j it equals zero, producing a matrix with ones along the diagonal

and zeroes elsewhere.

64

Figure 2.18: Kronecker Delta: The Kronecker delta is equivalent to the
Identity Matrix [41]

The subscripts i and j in indicial notation represent the index of a tensor, in this case

either the stress or strain tensor. The subscripts kk represent the trace of a tensor.

Using the trace of the stress tensor as an example:

σkk = σxx + σyy + σzz (2.8)

or alternately using numbered indices:

σkk = σ11 + σ22 + σ33 (2.9)

Again referencing figure 2.6, K and G represent the bulk modulus and shear mod-

ulus in the 3D formulation. The subscripts Ke and E indicate the spring element

within the Kelvin Voigt body (the parallel configuration in figure 2.6) or the lone

spring element. The shear modulus was already mathematically defined in terms

of Young’s modulus and Poisson’s ratio in equation 2.5, the bulk modulus can be

similarly formulated:

K =
E

3(1− 3ν)
(2.10)

65

That covers the elastic components, but in the 3D formulation there are also viscous

components ηb and ηs, or the bulk and shear viscosity. Here they are formulated

in terms of Poisson’s ratio and what will be called from this point forward as the

dashpot parameter or simply ”dashpot” η1:

ηb =
η1

3(1− 3νη1)
(2.11)

ηs =
η1

2(1 + νη1)
(2.12)

Mendoza notes that if the Poisson’s ratio for each of the elements and perpendicu-

lar components of the stress and strain tensors are set to zero, the 3D formulation

simplifies down to one dimension as follows [54]:

σ +
η1

E1 + E2

σ̇ =
η1

1 + E1

E2

ε̇+
1

1
E1

+ 1
E2

ε (2.13)

Equation 2.13 is completely in terms of the coefficients found on the left side of figure

2.6, coefficients which are a bit more intuitive than the 3D formulation. There are a

few more refinements made to this governing equation before it’s a functional UMAT

recognized by Abaqus, and the code can be seen in Appendix E.2.

It is a task of this research group to choose sensible values for the remaining pa-

rameters (E1, E2, η1 and their respective Poisson’s ratios): namely those values that

provide the greatest correlation with experimental DMA results without running afoul

of literature.

66

The choice for Poisson’s ratio for all three Poisson’s ratios in the UMAT was set for

simplicity as 0.2, the approximate value of hydrated collagen tissue [69].

Values for Young’s Moduli both within the body are slightly more complicated, espe-

cially because they do not have easily correlated natural features. There are numerous

starting points to guess at a good value for in vivo tropocollagen, but how is a single

elastic modulus value to be made compatible with two parameters in the Kelvin-Voigt

Standard Linear Solid rheological model (Appendix D) [49][6][46]? Mendoza notes

that creep and relaxation are both viscoelastic behaviors that are modeled as expo-

nential functions, and when the loading conditions are applied for a sufficiently long

time the resultant elastic modulus, if measured at that time, is a combination of both

moduli (E1 and E2) known as the equilibrium or effective modulus Eeq.

Eeq =
E1E2

E1 + E2

(2.14)

This equation allows for multiple configurations of both springs for a single Eeq, so

for example if literature suggested a modulus of 2 GPa, the choice of 3 GPa for E1

and 6 GPa for E2 would equate to the effective modulus and vice versa, but it should

be noted that because the springs occupy different locations in the rheological model,

the ordering of these values absolutely matters, as preceding experiments confirmed

[74]. Mendoza utilized an effective modulus of 2 GPa, and though Cummings and Ha

subsequently suggested the exploration of values lower than this, Thompson concluded

that a combination of 3 GPa and 6 GPa produced the greatest correlation with

experimental results in C2207 and C1809, the sham and OVX cranial samples tested

in this thesis [54][16][35][74]. Luke Thompson’s results for this treatment can be seen

in figure 2.19. For this reason these moduli were chosen for this thesis in both the

IMF and Variable Dashpot schemes.

67

Figure 2.19: Thompson Effective Modulus Results: Thompson found that
while using the best fitting and most experimentally sensible mineral elas-
tic modulus of 36 GPa, an Eeq equal to 2 GPa with the ordering of 3 GPa
and 6 GPa produced the best results for C1809 and C2207 [74]

This leaves just one final parameter in tropocollagen to inspect for the chosen rheolog-

ical model: the dashpot value η1, perhaps most difficult to find a literature value for.

Mendoza selected his dashpot last, holding other parameters constant and executing

the graphical approach shown in figure 2.20 [54]. Knowing the mean tangent delta for

control animals, he adjusted his model’s dashpot until his tangent delta matched that

of the control’s DMA performance at 15 Hz, ultimately selecting a dashpot of 1.25

68

GPa-s [54]. 1.25 GPa-s turned out to be an effective choice for subsequent research,

and is the value of choice for the IMF scheme for the sake of simplicity.

Figure 2.20: Mendoza Dashpot Determination: Graphical approach used
by Mendoza to select a η1 value of 1.25 GPa-s. [54]

Subsequent research found however that a careful consideration of the dashpot value

could yield significant results and that altering it changed tangent delta values signif-

icantly. Thompson elected to study 0.0125, 0.125, and 1.25 GPa-s as values going off

of what Mendoza had chosen to discover what changing the order of magnitude of the

dashpot might reveal, and additionally used 0.3125 GPa-s for its respectable perfor-

mance in previous studies [74]. Thompson found that in the upper frequencies 0.3125

GPa-s seemed to produce the greatest fit, but at 1 Hz several other values produced

better fit: when 36 GPa was used for mineral elastic modulus, 1.25 GPa-s worked

best, for a mineral elastic constant of 100 GPa, 1.00 GPa-s won out [74]. Because

different dashpot values best suited different frequencies, Thompson suggested the

exploration of additional dashpot values and in general a study of a dashpot viscosity

that is driven by the loading condition (i.e. frequency) [74].

69

In the Variable Dashpot scheme, samples C1809 and C2207 were tested against ad-

ditional frequencies in attempt to identify spikes in fit, and additional dashpots to

select even better fits. Models were run at loading conditions of 2, 5, 7, and 12 Hz in

addition to the original 1, 3, 9 and 15 Hz used in preceding studies. Dashpot values

spanned the gaps of values that performed well in previous reports. Dashpot values

0.0125, 0.125, 0.3125, 0.45, 0.5875, 0.725, 0.8625, and 1.25 GPa-s were studied.

After identifying a best fit dashpot for each frequency, plots were generated to es-

tablish a relationship between loading frequency and dashpot value selection. A

polynomial best fit line was extracted (figures 2.21 and 2.22), and used as a conver-

sion formula within a modified version of Richter’s UMAT. When editing the input

file, instead of entering a dashpot value in the usual place, the user enters the desired

loading condition frequency so that the modified UMAT takes that as an independent

variable and calculates a best fit η1 value for that particular frequency.

Figure 2.21: C1809 OVX Best Fit Dashpot v. Frequency: Plotting the
dashpot values that performed the best at each frequency allows the fitting
of a polynomial equation.

70

Figure 2.22: C2207 Control Best Fit Dashpot v. Frequency: Plotting the
dashpot values that performed the best at each frequency allows the fitting
of a polynomial equation.

If the polynomial had a perfect correlation coefficient, the resulting variable dashpot

performance would look like figure 2.23, where every best dashpot for both models

at each frequency are plotted alongside experimental data. Table 2.4 show the exact

values outputted by the modified Richter UMAT used (section E.2.1) with the ex-

ception of the negative values: the absolute value of all values were taken to avoid

nonsensical negative dashpot values. All outputs were subsequently divided by 1000

to provide Abaqus with the proper units of MPa-s. It should be noted that while

these outputs were close, they were not perfectly aligned with the best performing

dashpot values exhibited in figures 2.21 and 2.22.

Table 2.4: Modified UMAT Dashpot Values: Values outputted by modified
Richter UMAT used by Abaqus. All dashpots are in units of GPa-s.

71

Figure 2.23: Best Fit Dashpot Compared to Experimental: Performance
of a hypothetical perfect variable dashpot as compared to experimental
DMA data for Sham and OVX

Two models were built (C1809 and C2207) and eight dashpot values were tested over

eight frequencies with post-processing scripts run over node displacements ten times

each, generating a total of 1280 tangent delta values to be averaged.

2.4.4 Boundary Conditions and Loading

Though the geometry of the IMF and Variable Dashpot schemes differ, boundary

conditions and loading were applied exactly the same way between the two.

Boundary conditions were applied to mimic biology, the Siegmund experiments, and

to simplify the analysis of the model [69]. The general approach was to have a long

structure that experienced horizontal but not vertical displacement when loaded on

an unrestricted right edge (referred to as model terminus). Regardless of exact model

geometry or D-Spacing, the entire left edge was selected as one surface and a boundary

condition named XSYM was applied, which restricted displacement in X or rotation

about Y or Z. Restricting the left edge this way as shown in figure 2.24 allowed cells

72

of the model, when loaded from the right side, to experience tension the same way

they would in vivo.

Figure 2.24: XSYM Boundary Condition: The highlighted triangles on
the model left edge represent a restriction in horizontal displacement

Similarly, a boundary condition named YSYM was applied to the entire bottom sur-

face of the model to restrict displacement in Y or rotation about X or Z as shown

in figure 2.25. This allowed for meaningful measurements of terminal node displace-

ment and made sense in the biological context of rows of tropocollagen and mineral

surrounded by other rows of tropocollagen and mineral.

73

Figure 2.25: YSYM Boundary Condition: The highlighted triangles on
the model left edge represent a restriction in vertical displacement, but
does allow horizontal displacement in reaction to loading.

The unrestricted right edge of the models had a sinusoidal load applied to it to induce

uniaxial tension reminiscent of experimental DMA. The load consisted of 20 cycles

with 20 increments each, making for a total of 400 steps. These 20 cycles were applied

at frequencies at 1, 2, 3, 5, 7, 9, 12 and 15 Hz, though the real DMA data spanned 1

through 20 Hz in increments of 0.2 Hz [46]. Table 2.5 shows how long each step took

at each test frequency configuration run in these experiments and figure 2.26 shows

the typical sinusoidal displacement pattern traced out by the terminal nodes.

74

Table 2.5: Step time and angular frequency for each test frequency

Figure 2.26: 20 Cycles at 1 Hz: Plot of all ending nodes displacement v.
time for the IMF scheme model. Note that the plot ordinate is in units of
microns.

75

Figure 2.27: Sinusoidal Load: A 20 cycle sinusoidal load was applied to
the entire right edge of the model to induce uniaxial tension.

The load amplitude was 3.36 MPa regardless of testing configuration or scheme, which

was meant to mimic the approximate stress of bone samples in the real DMA testing.

This was applied to the terminal end of the model as seen in figure 2.27. Three point

bending dynamic mechanical testing was performed on each specimen including the

two used in this thesis, which were 15mm x 1.75mm x 1.75mm using the arrangement

shown in the figure 2.28.

76

Figure 2.28: DMA Setup: Each specimen underwent 3 point bending
DMA with b and h = 1.75mm and L = 15mm.

550 mN static and 500 mN dynamic loads were applied. The amplitude of the sinu-

soidal wave value chosen in Abaqus was derived from considering the equation for the

maximum resultant stress from a bending moment:

σmax =
Mmaxy

I
(2.15)

Where Mmax is the bending moment halfway along the length of the specimen, y is

the vertical distance from the neutral axis (middle of the specimen in this case) to

the specimen edge, and I is the moment of inertia. For an object of this shape, the

moment of inertia equals

I =
bh3

12
(2.16)

and filling in dimensions gives

77

I =
(1.75 · 10−3m)(1.75 · 10−3m)3

12
= 7.82 · 10−13m4 (2.17)

To determine the maximum moment, the static and dynamic forces were summed.

The static force was straightforward. The dynamic loading condition was written as

a function of length from halfway along the length of the specimen and the time at

which the dynamic force was at a maximum (recall that it’s oscillating). Measuring

the dynamic load at a force maximum halfway along the length of the specimen:

Fdynamic = F (0, tmax) =
500 · 10−3N

4
(2.18)

and combining this with the static force gave

ΣF = Fstatic + Fdynamic =
550 · 10−3N

2
+

500 · 10−3N

4
= 400 · 10−3N (2.19)

and so the maximum bending moment was

Mmax = ΣF · d = 400 · 10−3N · (7.5 · 10−3m) = 3 · 10−3Nm (2.20)

and so the maximum stress experienced anywhere in the specimen at peak loading

time was

σmax =
Mmaxy

I
=

(3 · 10−3Nm)(1.75·10
−3m

2
)

7.82 · 10−13m4
= 3.36 · 106Pa (2.21)

78

2.4.5 Mesh Development

Mesh choice in Finite Element Analysis is of utmost importance because it can not

only affect accuracy, but also computation time. The latter is particularly salient

in the Variable Dashpot Scheme, where models featured about 21,900 elements and

required run times of about 2.5 hours for each job. At a certain element and node

count in a FEA model, accuracy comes at starkly diminished returns in spite of

increased computation time. Because this exact geometric format of the Complex

Model has undergone convergence studies through various theses, a seed size of 0.5

nm was chosen which correlates to about 1.3 million degrees of freedom [35][16][74].

Smaller seed sizes caused Abaqus to crash or did not confer significant increases in

accuracy.

The Complex Model’s simple two-dimensional shape made for a straightforward choice

of element type. Plane-strain element types were chosen because the model is based off

of that used by Siegmund, and quadratic quadrilateral elements were chosen because

they offered increased accuracy and because of their appropriateness for uniaxial

tension (no bending moments) [69]. The exact configuration settings can be seen in

figure 2.29.

79

Figure 2.29: Element Selection: Quadratic Quadrilateral Plane Strain el-
ements (Abaqus code CPE8) were chosen for every model considered

No fatal errors related to mesh or element types occurred in any of the models.

2.4.6 Model Validation

Both the IMF and Variable Dashpot schemes use models whose specific geometry

have been validated both in practice and by hand calculation for several iterations.

Confirmation of the viscoelastic parameters of collagen were done via hand calculation

by way of creep and stress relaxation equations. These equations and their derivations

can be viewed in Appendix D.

2.5 Post Processing

A completed model run results in the creation of several files, most notably the output

database (.odb) file. This file contains all the data that was previously requested

during job creation for every step of the computation. It can be opened within the

80

Abaqus GUI to view such things as replay animations, graphical representations of

stress and strain, or plots of things such as node displacement like those seen in figure

2.5. In the service of more streamlined repeatable experiments, odbs are also fully

accessible via python scripts by way of the odbAccess package so long as the python

script is run within an Intel 64 Visual Studio command prompt window. A typical

experimental run is done via batch file as seen in the following code.

call abaqus job=%jobname% interactive user=RichterUMATv2.f cpus=8

md %jobname%

cd %jobname%

call ..\abq_cleanup

call abaqus python postprocessing_TGM.py %jobname%.odb

erase postprocessing_TGM.py

cd ..\

After each job is complete the batch file moves the .odb into a specific directory so

that a python node retrieval file is run against it. For the IMF scheme this file can

be viewed in Appendix E.5.2 and iterates through each part in the model to grab

horizontal displacements from nodes in a pre-specified set named TERMINUS. The

Variable Dashpot scheme used a separate file (Appendix E.5.1) which required an

input of nine equally spaced nodes on the terminus of the model. These nodes were

different between sham and OVX models because each had a different geometry and

therefore different node and element placements. Either python script created one

text file per node and wrote a total of 400 displacement values, one per step, for later

ingestion into Matlab post processing scripts.

The data was then read in by a Matlab script (Appendix E.6) where the Tangent

Delta was computed. Each file was named, imported, and the contents were arranged

81

into arrays. The average nodal displacement for each time step was then used to

fill a new 400 x 1 array, which was important because if some part of the model

terminus was moving significantly more or less than the rest of the terminus, this

would skew the data. This array was then divided by the total length of the model

to compute the average strain, which in the IMF scheme was exactly 67 nm (input

as 0.067 microns) and in the Variable Dashpot scheme something in the ballpark of

6.7 microns, depending on the geometric output of the Model Generation Script.

The proper frequency parameter was un-commented so that a 200 x 1 time array

was created with the correct start, stride and termination for each step based on the

chosen frequency. The Matlab optimization function fminsearch was used to minimize

the function CurveFit to fit a sinusoidal curve to the plotted displacements and then

produce an Error Sum of Squares between the fitted curve and the actual data.

Recall that

σ = σosin(2πf) (2.22)

and

ε = εosin(2πf − δ) (2.23)

One of the outputs returned by fminsearch was the phase shift from that normal

sine function, and this phase shift is tangent delta. The strain curve was computed

by inputting the phase shift and the amplitude of the sine function returned by

fminsearch into equation 2.23. A visual output of this can be seen in figure 2.30.

The function rsquare was used to compute the correlation coefficient and root mean

square error between the newly generated strain curve and the displacements from the

initially imported data. The RMSE, R2 and tangent delta values were recorded. The

script was replayed 10 times and the three aforementioned parameters were averaged

for plotting and comparison purposes.

82

Figure 2.30: Post Processing Plots: The left plot shows the red fitted
curve applied over the data (blue dots) providing a correlation coefficient
and a tangent delta value. The right figure shows the stress and strain
curves being offset by a value equal to tangent delta.

2.5.1 Statistical Analysis

To determine the performance of each model configuration both for comparison be-

tween experimental tan delta values and those generated by previous studies, simple

linear regression was employed to provide visual distinction as well as R2 and RMSE

values.

83

Figure 2.31: Linear Regression Example Plot: An example of a basic linear
regression plot showing a fitted linear equation and an R2 value.

R2 or the correlation coefficient is widely used in regression and could roughly be

defined as a metric of the ”tightness” of a relationship in data and is displayed on

equation of fit in plots generated in excel such as in figure 2.31. It is more specifically

the percentage of the variability between data that is explained by the fitted line

[34]. This is not to be confused with something like the F value produced by two

way ANOVA, which established whether or not, beyond a reasonable doubt, there is

a relationship between data, not to what extent. The correlation coefficient has an

intuitive scaling from 0 to 1, with zero being no relationship whatsoever to 1 being a

perfect fit between the data and the trend line, the latter being suspicious in its own

right.

The RMSE on the other hand is the square root of the variance of the residuals, or

alternatively worded: the standard deviation of the unexplained variance [34]. Unlike

R2, it is not a percentage or fraction but shares the same units as the response variable

(in this case tangent delta). Lower RMSE means better fit, and RMSE is especially

handy in regression models with many predictors because while the correlation coef-

84

ficient increases with each added predictor in a regression equation, the RMSE is an

absolute value and will not be affected by this. For the regression performed in this

research, both values are worth noting because this regression equation is simple and

has only one predictor: that the experimental value will predict the theoretical value.

85

Chapter 3

RESULTS

Results are split into two major sections: the first being for the IMF scheme and the

second for the Variable Dashpot scheme, the latter of which contains a subsection

dedicated to results captured using newly modified versions of Richter’s UMATs [65].

3.1 IMF Scheme Results

All IMF models were geometrically identical to Mendoza’s ”Normal D-Spacing” 67

nm length model, and use the parameters specified in Table 3.1 [54]. All IMF scheme

models were run at 1, 3, 9 and 15 Hz for the basis of comparison with previous model

approaches, and were all compared against experimental control cranial specimen

C2207. Each model is presented with a Tangent Delta v. Frequency plot alongside

corresponding experimental values as well as a simple Linear Regression plot against

aforementioned experimental values.

Table 3.1: Parameter values used for all IMF scheme model runs

86

The first model to be run was named the Tie Constraints Model, which acted as

a baseline to see how a model performed that was made of the four separate parts

specified in figure 2.11. Each of these parts were tied together at every node using tie

constraints in Abaqus, and this was expected to behave closely to previous single-part

models.

Figure 3.1: Tie Constraints Model Performance: Fully tie-constrained
model tangent delta performance

Figure 3.2: Tie Constraints Model vs C2207 Linear Regression

Figure 3.1 reveals that while the tie constraints model yields very similar tan delta

values at 1 Hz, the numbers quickly diverge, almost converging again at 15 Hz. Overall

87

performance at mid-frequency is poor, and figure 3.2 shows an unimpressive R2 value

of 0.7704.

The next phase of experimentation involved generating a single enzymatic crosslink at

the vertex of the Collagen Small, Collagen Full and Mineral parts (fig 2.11) in addition

to a set number of non-enzymatic crosslinks randomly arranged as detailed in section

2.4.1. These model iterations included N=20, 25, 30 and 35 non-enzymatic crosslinks.

Each of these four configurations included three distinct models with different random

node assignments to ensure that a skewed random assignment would solely represent

the configuration, and the tangent delta values for each model was averaged and

plotted against C2207.

Figure 3.3: N=20 Random Crosslinks Model Performance

88

Figure 3.4: N=20 Random Crosslinks Model vs C2207 Linear Regression

Figure 3.5: N=25 Random Crosslinks Model Performance

89

Figure 3.6: N=25 Random Crosslinks Model vs C2207 Linear Regression

Figure 3.7: N=30 Random Crosslinks Model Performance

90

Figure 3.8: N=30 Random Crosslinks Model vs C2207 Linear Regression

Figure 3.9: N=35 Random Crosslinks Model Performance

91

Figure 3.10: N=35 Random Crosslinks Model vs C2207 Linear Regression

Generally the randomized crosslink models performed poorly when compared to Men-

doza’s approach of using a single part, and when compared to the fully tie constrained

model as shown in figure 3.11. Surprisingly, the best performing randomized node

model according to correlation coefficient was the N=20 model (fig 3.3 and 3.4), with

N=25 (fig 3.5 and 3.6) N=30 (fig 3.7 and 3.7) and N=35 (fig 3.9 and 3.10) all per-

forming much worse, sporting correlation coefficients less than 0.67. It should again

be noted that the middle frequencies on average performed noticeably worse than 1

and 15 Hz.

92

Figure 3.11: Relative Performance of IMF Models

Figure 3.12: All Random Node Models vs. C2207

93

Figure 3.13: Mendoza Normal D-Spacing and Tie Constraints vs. C2207
[54]

Table 3.2: Mean Tangent Delta values of each IMF model and their RMSE
vs. experimental and Mendoza Normal-D Spacing model. Includes T.C.
(Fully Tie Constrained) and RX (Random Crosslink) models [54].

Each IMF model variant (e.g. Tie Constrained, N=20 Crosslinks etc.) were run

with three different random arrangements and their average tangent delta values

are shown in Table 3.2. Note that while the correlation coefficients were somewhat

similar between models, the RMSE value for the fully Tie Constrained model is much

lower than other IMF models and indicates a better fit. Figure 3.13 shows a linear

regression of the fully tie constrained model against C2207, as well as Mendoza’s

Normal D-Spacing model against C2207 [54].

94

3.2 Variable Dashpot Scheme Results

Variable Dashpot Models were generated in the same fashion as the most recent

study conducted by Luke Thompson: with a model generation script inputted with

mean and standard deviation values for D-Spacing that correspond to the specimen

of interest [74]. In the case of this study, the specimen of interest were cranial control

specimen C2207 and cranial OVX specimen C1809. The cranial portion of the ewe

radius was suspected to be of particularly good fit for the Complex Model because it is

predominately in a state of tension, and the model’s boundary conditions and applied

load are meant to simulate uniaxial tension. Models built against these geometries

were tested with dashpot values of 0.0125, 0.125, 0.3125, 0.450, 0.5875, 0.725, 0.8625,

and 1.25 GPa-s across 1, 2, 3, 5, 7, 9, 12 and 15 Hz. All parameters were held constant

with the exception of dashpot values as shown in Table 3.3.

Table 3.3: Parameter values used for all VD scheme model runs

95

3.2.1 Control Cranial Specimen C2207 Results

Figure 3.14: C2207 1 Hz Dashpot Performance

Figure 3.15: C2207 2 Hz Dashpot Performance

96

Figure 3.16: C2207 3 Hz Dashpot Performance

Figure 3.17: C2207 5 Hz Dashpot Performance

97

Figure 3.18: C2207 7 Hz Dashpot Performance

Figure 3.19: C2207 9 Hz Dashpot Performance

98

Figure 3.20: C2207 12 Hz Dashpot Performance

Figure 3.21: C2207 15 Hz Dashpot Performance

Figure 3.22: C2207 0.0125 GPa-s Dashpot Performance

99

Figure 3.23: C2207 0.125 GPa-s Dashpot Performance

Figure 3.24: C2207 0.3125 GPa-s Dashpot Performance

Figure 3.25: C2207 0.450 GPa-s Dashpot Performance

100

Figure 3.26: C2207 0.5875 GPa-s Dashpot Performance

Figure 3.27: C2207 0.725 GPa-s Dashpot Performance

Figure 3.28: C2207 0.8625 GPa-s Dashpot Performance

101

Figure 3.29: C2207 1.25 GPa-s Dashpot Performance

Table 3.4: C2207 Relative Dashpot Performance

ηvariable = −6.61581 · 10−5f 5 + 2.972 · 10−3f 4 − 5.016075 · 10−2f 3+

3.960115 · 10−1f 2 − 1.461599f + 2.344206 (3.1)

Table 3.4 illustrates the overall performance of each dashpot value for each frequency,

with the best performing values highlighted in green. Figures 3.14 through 3.21 dis-

play the tangent delta of the various dashpots at each tested frequency with the

C2207 Complex Model against C2207 DMA values at that same frequency. It should

be emphasized that the blue marks depict performance of the model, and the orange

line in each plot represents the experimental DMA tangent delta value at that partic-

102

ular frequency and is expressed as a horizontal line only for ease of visual comparison.

Figures 3.22 through 3.29 show the performance of each dashpot value across every

frequency, with the experimental tangent delta values in orange. Figure 3.30 shows

the performance of the C2207 Complex Model run with the modified Richter UMAT

detailed in Appendix E.2.1. The UMAT used a fifth order conversion polynomial

(equation 3.1) that takes frequency input and outputs the dashpot value that was

found to work best at that frequency, and was derived as described in section 2.4.3.2.

It is noteworthy that the variable dashpot model produces very similar tangent delta

values for the first three frequencies in spite of utilizing fairly different dashpot val-

ues via the polynomial employed: 1.23, 0.649 and 0.394 GPa-s for frequencies 1, 2,

and 3 Hz respectively. Figure 3.31 shows the linear regression of the aforementioned

results against the experimental DMA values. Figure 3.32 shows how the polynomial

modified UMAT performed. If the polynomial achieved a perfect fit and the UMAT

perfectly copied the polynomial, the R2 would equal 1.

Figure 3.30: C2207 Variable Dashpot Performance

103

Figure 3.31: C2207 Variable Dashpot vs. Experimental Linear Regression
(RMSE: 0.012)

Figure 3.32: Performance of C2207 Modified UMAT: Linear Regression of
Aggregate Tangent Delta values from Best Dashpots vs. Output of Model
Running C2207 Modified UMAT

104

3.2.2 OVX Cranial Specimen C1809 Results

Figure 3.33: C1809 1 Hz Dashpot Performance

Figure 3.34: C1809 2 Hz Dashpot Performance

Figure 3.35: C1809 3 Hz Dashpot Performance

105

Figure 3.36: C1809 5 Hz Dashpot Performance

Figure 3.37: C1809 7 Hz Dashpot Performance

Figure 3.38: C1809 9 Hz Dashpot Performance

106

Figure 3.39: C1809 12 Hz Dashpot Performance

Figure 3.40: C1809 15 Hz Dashpot Performance

Figure 3.41: C1809 0.0125 GPa-s Dashpot Performance

107

Figure 3.42: C1809 0.125 GPa-s Dashpot Performance

Figure 3.43: C1809 0.3125 GPa-s Dashpot Performance

Figure 3.44: C1809 0.450 GPa-s Dashpot Performance

108

Figure 3.45: C1809 0.5875 GPa-s Dashpot Performance

Figure 3.46: C1809 0.725 GPa-s Dashpot Performance

Figure 3.47: C1809 0.8625 GPa-s Dashpot Performance

109

Figure 3.48: C1809 1.25 GPa-s Dashpot Performance

Table 3.5: C1809 Relative Dashpot Performance

ηvariable = 9.0877 · 10−5f 5 − 2.45779 · 10−3f 4 + 1.53295 · 10−2f 3+

6.84851 · 10−2f 2 − 0.83055f + 1.97746 (3.2)

Table 3.5 illustrates the overall performance of each dashpot value for each frequency,

with the best performing values highlighted in green. Figures 3.33 through 3.40 dis-

play the tangent delta of the various dashpots at each tested frequency with the

C1809 Complex Model against C1809 DMA values at that same frequency. Figures

3.41 through 3.48 show the performance of each dashpot value across every frequency,

with the experimental tangent delta values in orange. Figure 3.30 shows the perfor-

110

mance of the C1809 Complex Model run with the modified Richter UMAT detailed in

Appendix E.2.1. The UMAT used a fifth order conversion polynomial (equation 3.2)

that took frequency inputs and outputted the dashpot value that was found to work

best at that frequency, and was derived as described in section 2.4.3.2. Like C2207, a

tangent delta plateau expands across the lowest frequencies, with the dashpot values

utilized being 1.20, 0.617, and 0.24 for 1, 2, and 3 Hz respectively. Figure 3.50 shows

the linear regression of the aforementioned results against the experimental DMA

values. Finally, figure 3.51 shows how the polynomial modified UMAT performed. If

the polynomial achieved a perfect fit and the UMAT perfectly copied the polynomial,

the R2 would equal 1.

Figure 3.49: C1809 Variable Dashpot Performance

111

Figure 3.50: C1809 Variable Dashpot vs. Experimental Linear Regression
(RMSE: 0.008)

Figure 3.51: Performance of C1809 Modified UMAT: Linear Regression of
Aggregate Tangent Delta values from Best Dashpots vs. Output of Model
Running C1809 Modified UMAT

112

Chapter 4

DISCUSSION

4.1 IMF Scheme

There were two primary hopes for evolving the Complex Model into the IMF scheme:

that it would make the model more biologically realistic and that it would produce

tangent deltas more reminiscent of real world DMA values. The latter proved to

not be the case, and it is not clear as to whether the former was fully accomplished

either, which is a discussion worth having because the two hopes are probably not

independent of each other in the statistical sense. Having a model that somehow

perfectly captures the behavior of bone at this scale would undoubtedly converge on

better tangent delta performance, but the partial or incomplete implementation of

intermolecular forces could very well exacerbate rather than improve model fidelity.

On the continuum towards realism it is possible that the model’s performance could

get worse before it gets better.

The IMF model that performed most closely to Mendoza’s Normal D-Spacing model

was the fully tie-constrained model, and this was completely expected because it

allowed for the least amount of sliding between the nodes–every single adjacent node

pair between parts was bound together like a single part just as all past iterations of

the model were. Figures 3.1 and 3.2 reveal that the tie-constrained model performed

very well at 1 Hz, performed very poorly in the middle frequencies and seems to

be drifting back towards experimental at 15 Hz. High performance at 1 Hz was very

surprising to see for this model, especially considering the Eeffective of 2 GPa, because

past studies generally required some overall lower performing spring values to achieve

113

tangent deltas higher than about 0.055. While it is tempting to attribute more of

the performance to the rheological parameter choices, the fidelity of the subsequent

IMF models makes clear that the prime culprit of performance output lies in the

methodology of attaching the separate parts.

The rest of the IMF models involved using the node randomization script (Appendix

E.4) to implement different numbers of total crosslinks and Table 3.11 shows an overall

poor performance when compared to experimental data and to the tie constraints

model. While the R2 value for the N=20 case clocks in at a slightly higher value than

the rest of the randomized node models (roughly 0.81 vs 0.66), this isn’t substantial

and should be taken with a grain of salt. It should also be considered in light of

the RMSE, which is more than double the fully tie-constrained model indicating

significantly shoddier performance. It was of interest to this study to take stock

of any delta in performance caused by the number of crosslinks. It was predicted

that the greater number of crosslinks would result in tangent delta values closer to

Mendoza’s model and/or the fully tie-constrained model because the model would

more closely resemble a configuration in which every adjacent surface was attached

and could not move. This turned out to not be the case, with all randomized node

RMSE values bearing a standard deviation of 0.000332, from N=20 to N=35, so those

fifteen additional points of attachment did not seem to make a significant difference.

It bears repeating that each total crosslink count (e.g. N=20) had three separate

models created in Abaqus with three separate randomized configurations of crosslink

nodes. The performance of each model at each frequency was then averaged. This

eliminated the possibility of heavily skewed node randomization producing bad data,

and along with the uniformity of the RMSE for randomized node models makes the

case that the IMF scheme approach needs improvement.

114

Approaches from Siegmund et al. were adopted for various reasons, but one important

one was that the research managed to show a clear relationship between the number

of non-enzymatic crosslinks and mechanical properties such as elastic moduli and

toughness and I thought it likely that these clear differences would also manifest

as differences in the viscoelastic properties in the Complex Model [69]. While it

is difficult to deduce a relationship between toughness and viscoelastic properties,

there are some clues about what crosslinking ought to do to the Complex Model’s

performance. In industrial rheology, especially in the studies of composites, it is

generally found that crosslinking and additional attachments can have serious effects

on viscoelasticity: crosslinks contribute a materials ability to ”store” energy (i.e.

resist displacement via elasticity) [63]. In terms of the viscoelastic properties stated

in section 1.5, this means that a crosslinked material’s complex modulus E∗, or its

overall resistance to deformation, is composed of a larger E ′ or storage modulus

component, sports a smaller phase angle δ, and a smaller tangent delta value than

its non-crosslinked counterpart, all else being equal. All else being equal is important

to remember because while it is initially tempting to try and make comparisons

between the tie-constrained model and the randomized crosslink models it should

be emphasized that the randomized crosslink models are not just the tie-constrained

models with more connections–in fact they are only connected at their enzymatic

crosslink sites whereas the tie-constrained model is connected at every adjacent node

pair between parts. It is a shame then that the results showed a negligible difference

in tangent delta performance between the IMF models with varying node counts, but

there a few things that might readily be blamed for that.

The major potential pitfall are the differences in implementation itself of crosslink-

ing between Siegmund’s research and that conducted for this thesis. The former

implementation was varied in its accounting of all present forces and each was rel-

atively sophisticated in implementation [69]. Siegmund et al. accounted for various

115

forces, including a layer of structural water between the mineral and collagen that

facilitates hydrogen bonding, collagen to collagen weak interactions mediated by hy-

drogen bonding, non-collagenous proteins and general electrostatic interactions, and

of course enzymatic and non-enzymatic crosslinks [69]. Interactions in the model

are defined across interfaces by a cohesive law that utilizes tractions and a potential

function, which is a level of complexity that would require writing custom contact

property equations in Abaqus to reproduce [69]. Each kind of interaction is intel-

ligently placed spatially based on biology, and because this was primarily a study

about failure each kind of interaction is rated at a sensible value for maximum shear

and tensile stress based on literature values for hydrogen bond, N-C and C-C bond

strength [69][70]. Because mechanical failure and delamination are not focuses of the

Complex Model, accounting for such things as ultimate bond strength and tractions

were not attempted to be implemented, and crosslinks were modeled as unbreakable

tie constraints, with surfaces between them allowed to slide with basic default contact

properties that allowed for friction and prevented overclosure between interfaces.

Considering the complexity and number of interactions happening in vivo between

tropocollagen and minerals, it is possible that in a model unconcerned with mechani-

cal failure, treating a half unit cell or long sequence of them as a single part may more

closely approximate real intermolecular forces than eliminating those intermolecular

forces and reintroducing them in a flawed or partial way. There do seem to be ways

in Abaqus to better account for more of these forces in more elegant ways by way of

custom interaction equations, but this approach requires considerable knowledge and

skill, both of Abaqus and of modeling interactions. It remains an unfortunate fact

that as long as the Complex Model is expressed as a single perfectly bonded part, no

research involving a non-uniform distribution of strong interactions like crosslinks on

viscoelastic performance is possible.

116

While it is tempting to encourage more research in this direction, there are serious

caveats to prescribe. This approach deviates from the evolutionary trajectory of

the Complex Model substantially in an approach laden with enough complexity and

requisite effort that it might eclipse the practical timeline of any one Masters thesis.

This is underlined by the fact that the IMF scheme was only carried out on the

half-unit cell scale. Had it shown more promising performance, adopting utilities to

the 2x100 Complex Model like the model generation script (Appendix E.3) and node

randomization script (Appendix E.4) would prove to be colossal undertakings.

4.2 Variable Dashpot Scheme

Various previous studies have encouraged the investigation of a variable dashpot

[35][74][16]. The most recent of these efforts executed extensive analysis on many

different values of EHA, E1 and E2 and achieved some configurations with very good

fit, but still suggested that the dashpot value needed tuning and that it appeared to

be frequency dependent because when holding all other rheological parameter values

static, certain dashpot values yielded far better performance for different frequencies

[74]. In the biased opinion of this researcher this seems like a smart suggestion

for several reasons. In a system with multiple adjustable parameters such as the

Complex Model, when choosing values it is only natural to start with what you

know and move towards what you do not. As a start, the model’s geometry, the

boundary conditions and applied load are somewhat realistic and easy enough to

correlate to real anatomy and DMA testing. Of the material values, if we allow for

the interpretation of literature collagen modulus values as Eeffective and we suppose

that EHA can be extrapolated from studying highly mineralized bone, what’s left is

the dashpot value for hydrated, in vivo tropocollagen, a value that’s a lot harder to

extract from literature [86].

117

It is with that reasoning that models for sham and OVX of the cranial region were

generated with the purpose of exploring more dashpot values across more frequencies,

hoping to get a general sense of performance trends. Considering that the complex

modulus E∗ is composed of viscous and elastic components and that tangent delta is

the ratio of the loss (viscous) over the storage (elastic) modulus, we would expect that

increasing the dashpot value, all else being equal, would cause the tangent delta value

to increase as seen in equation 4.1. For many viscoelastic materials it is observed that

the components of E∗ change their relative contributions as the loading frequency in-

creases, and for bone we see tangent delta decreasing as the storage modulus increases

and the loss modulus decreases as seen in equation 4.2. The material overall becomes

more elastic and stiffens, which can help to prevent plastic flow (fracture).

Tan δ ↑ =
Loss Modulus ↑
Storage Modulus

(4.1)

Tan δ ↓ =
Loss Modulus

Storage Modulus ↑
(4.2)

Unfortunately as past researchers have discovered, the explanatory power of the pre-

ceding relationships becomes limited when you consider them in light of the standard

linear solid. The Kelvin Voigt version of the standard linear solid used in Richter’s

UMAT is useful for modeling viscoelastic properties like creep and stress relaxation,

but it also has one of its spring elements in parallel with the dashpot that’s being

changed in this research [65]. Claiming that increasing the dashpot value should allow

for a steerable, straightforward decrease of tangent delta is misleading in a system

like this because being in parallel with a spring means that while the stress between

the spring and the dashpot can be different, the strains are equivalent between the

two. The strain of the dashpot is dictated by its viscosity value and the strain rate

118

applied to it, which means that the strain of the spring is also dependent on the

viscosity value, which means the storage modulus is dependent on the viscosity value.

So in short, tangent delta will change but not in a predictable manner, especially over

different frequencies.

Both Sham and OVX best fit dashpot values produced lower tangent delta values,

almost reaching an invisible ceiling in the case of 1, 2, and 3 Hz of about 0.55. The

maximum value itself is not surprising–Luke Thompson found that models that used

effective moduli of 2 GPa, while overall performed better if used across all frequencies,

limited 1 Hz tangent delta values similarly. For some of the dashpot performance it

is tempting to get the impression that a global best fit has been found, in the case of

C2207 2 Hz (figure 3.15), which features what appears to be a gradual sloping up to

a maximum value, but in other figures such as C2207 1 Hz (figure 3.14) it seems that

there may yet be an untested value greater than 1.25 GPa-s yielding a new maximum,

or in the case of C2207 9 Hz (figure 3.19) a better fitting dashpot value could be found

by visual inspection.

Consulting figures 3.41 through 3.48 makes it easier to visualize how one particular

dashpot value compares against DMA over every frequency. Most plots show in-

teresting maximum behavior in the lower frequencies where a peak is observed, but

eventually slope downwards towards zero as the frequency increases and elastic be-

havior begins to dominate. These maximum tangent deltas are the point at which

the storage modulus overtakes the loss modulus, and the derivative of tangent delta

is negative. A general trend for increasing dashpot values is that these maximums

tend to occur at lower frequencies until the peak for the 1.25 GPa-s dashpots seem

to be out of focus at a frequency closer to zero, which is contrary to what would have

been expected: it would have been expected that for the same storage modulus, a

larger dashpot value would mean a larger loss modulus, delaying the frequency at

119

which the loss modulus is overtaken. It is also easy to see that basically all chosen

dashpots give poor performance in the low frequencies with the possible exception of

1.25 GPa-s, and for higher frequencies why values like 0.3125 GPa-s were such strong

performers in past studies, especially for C2207. It is hopeful in a sense to see some

of the irregularities and hints of unseen global maxima, because if the the variable

dashpot is going to account for the low performance in low frequencies while using

an effective modulus of 2 GPa, it seems likely that testing many more frequencies of

dashpots, especially at 1 Hz, is necessary.

These very best performing dashpots were taken and plotted against frequency for

C1809 (figure 2.21) and C2207 (figure 2.22) and a fifth order polynomial was fit for

each and used to modify Richter’s original UMAT. The UMAT would now take fre-

quency as an input for that particular run, run it through the fitting polynomial, and

pass Abaqus a dashpot value that had been shown to work best at that frequency.

Figures 3.32 and 3.51 show how closely the modified UMAT managed to mimic the

numbers of Tan Delta values that were aggregated from the best fit dashpots. It is

immediately obvious that there are some imperfections with the line fit, especially

with C1809. It is also obvious that C1809’s best fit dashpot v. frequency plot looks

significantly different from C2207’s. Both plots indicate that drastically higher dash-

pots are better suited for 1 Hz, but where C2207 settles into mostly being covered by

0.3125 GPa-s, C1809 is better served by values above and below that, and at 15 Hz

a much higher dashpot value of 1.25 GPa-s works best. Consulting figures 3.40 and

3.48 show that an even better, higher dashpot value is probably waiting to be tested

for C1809 at 15 Hz and that 1.25 GPa-s coincides best with experimental DMA values

at that frequency because it is one of the first dashpot values to cause a tangent delta

peak in the lower frequencies, slowly drifting towards zero from early on.

120

Such stark differences between all of these plots between C1809 and C2207 is inter-

esting, because Wallace et al. found that for specimen in the same anatomical region,

the distinct difference between sham and OVX D-Spacing was not so much the mean

but the variance [78]. Specifically the D-Spacing for sham C2207 used to build the

model was a mean of 67.44± 1.16 nm compared to 67.15± 2.00 nm, which is a mean

percent difference of just 0.43% but a standard deviation percent difference of 42%.

This trend holds throughout the DMA data set. Table 4.1 shows that in general there

is a significantly greater percent difference when comparing the standard deviations

of sham vs. OVX than when comparing their means, in every case at least an order of

magnitude greater. While this research has shown that there is much greater variabil-

ity in the best fit dashpot values for OVX vs. sham, a natural next question would

be: does this trend hold if more OVX and sham specimen models were generated

and tested that share the same anatomical site? If this pattern persisted, it would

definitely be tied to the difference in standard deviation of D-Spacing between sham

and OVX, and it would fall to biologists to interpret why this might be the case.

Table 4.1: Experimental D-Spacing Mean and Standard Deviation: Av-
erages were taken for the D-Spacing Means and Standard Deviations for
each sector for a basis of comparison between sham and OVX with units
in nm

Research from Les et al. has found that at frequencies 3 Hz and below, bone from

OVX and Sham share small statistically significant differences in storage modulus and

121

by extension tangent delta, but that in higher frequencies the three year effects of

ovariectomy the efficiency of damping oscillatory stresses in OVX trailed significantly

[44]. This general pattern can be observed in figure 2.23, which shows both the models

and the experimental values compared side by side and provides a sanity check for

this research.

Zooming out, the original intention of the Complex Model is to establish a model of

particular geometry, forces and material that matches experimental DMA results as

closely as possible. The variable dashpot model has done so with respectable R2 and

RMSE values, which should be evaluated in the following context: while previous

results have yielded higher fit, said results were aggregates of best fit values for the

highest performing variables from all of the major adjustable material parameters

(E1, E2, EHA and η1) in the Complex Model, which prompted Luke Thompson to

remind readers that you can get the model to fit if you force it [74]. The variable

dashpot scheme does manage something special in that material constants in the input

file are held constant throughout every frequency for a given model. Using Kelvin

Voigt standard linear solids to capture the viscoelastic behavior has great utility,

but the model is still probably not ready to deduce biological insights from, because

attributing spring and dashpot values in series and parallel to biological structures

can prove dubious, even when zooming out to the storage and loss modulus because

of the interdependent nature of E2 and η1.

There are a few areas for improvement and further research with the Complex Model,

large and small endeavors. In the short term there is ample room for more digging

to find an even more optimized dashpot values at each frequency. As previously

mentioned, while many of the dashpot performance figures in the results section

appear to present at least a local (and hopefully global) maximum tangent delta

value, some of the figures seem to suggest that the maximum has not yet been found

122

and that with some more searching with existing utilities and input files a better

polynomial could be achieved, perhaps one that could break the tangent delta upper

limits seemingly imposed on the lower frequencies. Another short term approach

that would use the current VD scheme would be to build models with D-Spacing

values from specimen from other sectors. This would confirm or refute aforementioned

suspicions about the differences between sham and OVX highlighted in table 4.1

manifesting stark differences in the best dashpot values vs. frequency for a model,

and therefore the required polynomial. Showing that this is a trend across all specimen

would make for a more compelling biological mystery to be solved.

For longer term investigations, the same treatment of frequency dependency could

be applied to the effective modulus. On the upside, doing so would probably be a

surefire way to break the tangent delta thresholds seen in the lower frequencies, as

earlier studies were able to do so using lower values for the springs, in some cases

going as low as 200 MPa [74]. The issues with doing this are that unlike the dashpot

value, the springs values are, with some poetic interpretation, informed by material

properties found in literature and interpreted into this model by way of an effective

modulus. It might make a biological interpretation even more difficult, and it might

cause the cycle of calibration to continue: imperfections in a fit of such a variable

effective modulus would provoke tinkering of variable dashpot polynomials, and so

on.

Any additional investigation would be greatly aided by a deeper knowledge and appli-

cation of computer science. A large portion of the effort undertaken in this research

involves the switching between scripts, file types, programs, in a lengthy workflow

that is ripe for skilled streamlining. For the full-bore 2x100 half unit cell Complex

Model, output database files are generally around 4.6 GB in size and take about 2.5

hours to run. So for example, exploring the performance of a new dashpot value

123

across eight frequencies for a particular model with all else held constant takes 20

hours of Abaqus computation time alone on the existing dedicated workstations,

probably even longer on a virtual machine. This research made great use of things

like batch files for running multiple jobs, but a skilled researcher could write scripts

to do much more. The IMF scheme demonstrated some finicky but capable python

scripts that read in parts of an input file, did some light calculations, and wrote the

results, properly formatted, back into the input file. Using these same functions a

python script could (and should) be written to take an input file devised for one fre-

quency loading condition and generate input files for every other frequency loading

condition. Currently, mercifully, batch scripts run successive Abaqus jobs, call other

scripts to move around data and extract terminal node displacements from the ODB

file to generate displacement text files for MATLAB post processing scripts, which

are currently run manually, ten times, for every frequency, and the tangent delta

value is manually copied to a spreadsheet for analysis. All of that could absolutely be

done with python because it’s possible to call MATLAB via python. Implementing

some or all of these shortcuts would save a huge amount of time, and would reduce

a currently daunting multi-step process into something that an undergrad with FEA

coursework could easily execute and probably even troubleshoot.

This study has provided insight into the specific performance of dashpot values across

a large spectrum and their marked differences between sham and OVX, and has

generated variable dashpot UMATs that provide good fit with all other material

constants held static. It has also highlighted the difficulty and nuance of modeling

multiple intermolecular forces at randomized locations for even simple finite element

models in Abaqus. It has also highlighted clear areas of future study and improvement

in the service of a higher fidelity computational model of bone mechanics.

124

Chapter 5

CONCLUSION

The purpose of this undertaking and conception of the Complex Model in general was

to better characterize the many factors that contribute to bone’s mechanical behavior

on the macroscale so that diseases like osteoporosis can be better understood by the

nanoscale spatial changes that they are associated with, something relevant to a huge

swath of the global population. A highly predictive and tractable model would allow

for researchers to make predictions about how changes in material constants, geom-

etry, and the mechanisms and number of interconnections would affect macroscale

properties such as toughness and force dampening.

The study of viscoelastic composite materials is an incredibly complex endeavour.

Bone being biological adds a number of new wrinkles including the difficulty of finding

relevant literature values for material constants, attributing model behaviors to bio-

logical structures, and assuming that in vivo behavior can be reasonably reproduced

in testing. The scale of the study also introduces issues for testing and assumptions

about whether or not bone can be treated as a continuum, or whether to classify it

as orthotropic or anisotropic.

An attempt to model the various forces that adhere collagen and tropocollagen to-

gether was explored, with clear lessons learned about the best direction for future

developments of the Complex Model. Additionally at the suggestion of past re-

searchers of the Complex Model a frequency dependent dashpot scheme was sought

out, with eight dashpot values tested over eight frequencies between two models.

Resultant experimental data were used to formulate a model-specific custom UMAT

125

whose dashpot value changed with frequency. This achieved models that fit C1809

OVX and C2207 Control experimental data with R2 values of 0.89 and 0.87 and

RMSE values of 0.008 and 0.012, respectively. These values were achieved by keeping

all other material constants throughout eight frequencies.

It was found that the dashpot values that performed best at each frequency when

compared to the control specimen were fairly consistent with the exception of the

lower frequencies needing significantly larger dashpot values. The dashpot values that

performed best at each frequency when compared against the sham specimen were

much more variable than the control specimen. While the sham model also favored

higher dashpot values at very low frequencies, 15 Hz also required a relatively large

dashpot value. These stark differences in optimal dashpot values between control and

OVX models suggest that a difference in D-Spacing standard deviation can change

bone’s ability to store and dissipate energy.

These details open doors for further research into the increased tuning of the Com-

plex Model by way of refinement of the variable dashpot fits, variable dashpot fits

for more specimen, biological interpretation of dashpot performance differences be-

tween control and OVX specimen, and a streamlining of the disparate portions of the

protocol, hopefully evolving into a unified, highly usable program for predicting the

macroscale viscoelastic behavior of bone.

126

BIBLIOGRAPHY

[1] National Academy, National Academy, and United States. A Subunit Model for

the Tropocollagen Macromolecule Author (s): John A . Petruska and

Alan J . Hodge Source : Proceedings of the National Academy of Sciences

of the United States of America , Published by : National Academy of

Sciences Stable URL : http. 51(5):871–876, 2020.

[2] F Akyildiz, R S Jones, and K Walters. Short Communications On the

spring-dashpot representation of linear viscoelastic behaviour. Technical

report, 1990.

[3] Yuehuei H. An. Mechanical properties of bone. In Mechanical Testing of Bone

and the Bone-Implant Interface, pages 41–64. 1999.

[4] Asylum Research. Atomic Force Microscopes - MFP-3D Manual. pages 1–321,

2008.

[5] Allen J. Bailey, Robert Gordon Paul, and Lynda Knott. Mechanisms of

maturation and ageing of collagen. Mechanisms of Ageing and

Development, 106(1-2):1–56, dec 1998.

[6] Donald Bartel, Dwight Davy, and Tony M Keaveny. Orthopaedic Biomechanics:

Mechanics and Design in Musculoskeletal Systems. Pearson, 1st editio

edition, 2007.

[7] Martin K. Beyer. The mechanical strength of a covalent bond calculated by

density functional theory. The Journal of Chemical Physics,

112(17):7307–7312, may 2000.

127

[8] Orlaith Brennan, Julia S. Kuliwaba, T. Clive Lee, Ian H. Parkinson, Nicola L.

Fazzalari, Laoise M. McNamara, and Fergal J. O’Brien. Temporal Changes

in Bone Composition, Architecture, and Strength Following Estrogen

Deficiency in Osteoporosis. Calcified Tissue International, 91(6):440–449,

dec 2012.

[9] P.E. Bunney, A.N. Zink, A.A. Holm, C.J. Billington, and C.M. Kotz. Orexin

activation counteracts decreases in nonexercise activity thermogenesis

(NEAT) caused by high-fat diet. Physiology & Behavior, 176(3):139–148,

jul 2017.

[10] Albert H Burstein and Donald T Reilly. The elastic and ultimate properties of

compact bone tissue. Journal of Biomechanics, 8(6):393–405, 1975.

[11] Linyi Cai, Xin Xiong, Xiangli Kong, and Jing Xie. The Role of the Lysyl

Oxidases in Tissue Repair and Remodeling: A Concise Review. Tissue

engineering and regenerative medicine, 14(1):15–30, feb 2017.

[12] Carter. Bone Compressive Strength : The Influence of Density and Strain Rate

Author (s): Dennis R . Carter and Wilson C . Hayes.

194(4270):1174–1176, 2014.

[13] D R Carter and W C Hayes. The compressive behavior of bone as a two-phase

porous structure. The Journal of bone and joint surgery. American volume,

59(7):954–62, oct 1977.

[14] Dennis R Carter and Wilson C Hayes. Bone Compressive Strength: The

Influence of Density and Strain Rate. Science, 194(4270):1174–1176, 1976.

[15] A. C. Courtney, E. F. Wachtel, E. R. Myers, and W. C. Hayes. Effects of

loading rate on strength of the proximal femur. Calcified Tissue

International, 55(1):53–58, 1994.

128

[16] Austin Cummings. A Finite Element Analysis on the Viscoelasticity of

Postmenopausal Compact Bone Utilizing a Complex Collagen D-Spacing

Model. Master’s thesis, California Polytechnic State University, 2015.

[17] John Currey. Incompatible mechanical properties in compact bone. Theoretical

Biology, 231:569–580, 2004.

[18] John D. Currey. The mechanical adaptations of bones. Princeton University

Press, 1984.

[19] John D. Currey. The Mechanical Properties of Bone from The Mechanical

Adaptations of Bones. Princeton University Press, 1984.

[20] C. R. Deuel, A. A. Jamali, S. M. Stover, and S. J. Hazelwood. Alterations in

femoral strain following hip resurfacing and total hip replacement. Bone &

Joint Journal, 91-B(1), 2008.

[21] C. Ross Ethier and Craig A. Simmons. Introductory Biomechanics. Cambridge

University Press, Cambridge, 1st edition, 2007.

[22] D. Eyre. Cross-Linking in Collagen and Elastin. Annual Review of

Biochemistry, 53(1):717–748, jan 1984.

[23] D. R. Eyre, I. R. Dickson, and K. Van Ness. Collagen cross-linking in human

bone and articular cartilage. Age-related changes in the content of mature

hydroxypyridinium residues. Biochemical Journal, 252(2):495–500, 1988.

[24] David R. Eyre and Jiann-Jiu Wu. Collagen Cross-Links. In Topics in Current

Chemistry, volume 247, pages 207–229. apr 2005.

[25] Ming Fang, Elizabeth L. Goldstein, A. Simon Turner, Clifford M. Les,

Bradford G. Orr, Gary J. Fisher, Kathleen B. Welch, Edward D. Rothman,

and Mark M. Banaszak Holl. Type i collagen D-spacing in fibril bundles of

129

dermis, tendon, and bone: Bridging between nano- and micro-level tissue

hierarchy. ACS Nano, 6(11):9503–9514, 2012.

[26] Ming Fang, Kaitlin G Liroff, A Simon Turner, Clifford M Les, Bradford G Orr,

and Mark M Banaszak Holl. Estrogen depletion results in nanoscale

morphology changes in dermal collagen. The Journal of investigative

dermatology, 132(7):1791–7, 2012.

[27] Liang Feng. Multi-scale characterization of swine femoral cortical bone and long

bone defect repair by regeneration. PhD thesis, University of Illinois, 2010.

[28] William Findley, James Lai, and Kasif Onaran. Creep and Relaxation of

Nonlinear Viscoelastic Materials. Dover Publications, Inc., New York, NY,

1989.

[29] Harold M. Frost. Bone Remodelling Dynamics. Charles C Thomas, 1963.

[30] Patrick Garnero, Olivier Borel, Evelyne Gineyts, Francois Duboeuf, Helene

Solberg, Mary L. Bouxsein, Claus Christiansen, and Pierre D. Delmas.

Extracellular post-translational modifications of collagen are major

determinants of biomechanical properties of fetal bovine cortical bone.

Bone, 38(3):300–309, mar 2006.

[31] Amit Gefen and Ramat Aviv. Skeletal Aging and Osteoporosis, volume 5.

Volume 5 edition, 2013.

[32] Ronald F. Gibson, Yu Chen, and Hui Zhao. Improvement of Vibration

Damping Capacity and Fracture Toughness in Composite Laminates by the

Use of Polymeric Interleaves. Journal of Engineering Materials and

Technology, 123(3):309–314, jan 2001.

130

[33] J E Gordon. Structures or Why things don’t fall down. Springer US, Boston,

MA, 1978.

[34] Alan Grafen and Rosie Hails. Modern Statistics for the Life Sciences. Oxford

University Press, New York, NY, 2002.

[35] Christopher Ha. Modeling Viscoelastic Behavior in Compact Bone through a

Distribution of Collagen D-Spacing: A Finite Element Analysis. Master’s

thesis, California Polytechnic State University, San Luis Obispo, 2015.

[36] Daniel Wayne Hale. The Effects of Bisphosphonates on Bone Remodeling:

Analysis of Microdamage Targeting by BMUs, BMU Velocity and Crack

Surface Density. PhD thesis, California Polytechnic State University, San

Luis Obispo, California, jun 2008.

[37] Elham Hamed, Yikhan Lee, and Iwona Jasiuk. Multiscale modeling of elastic

properties of cortical bone. Acta Mechanica, 213(1-2):131–154, 2010.

[38] Ingomar Jäger and Peter Fratzl. Mineralized Collagen Fibrils: A Mechanical

Model with a Staggered Arrangement of Mineral Particles. Biophysical

Journal, 79(4):1737–1746, oct 2000.

[39] Saul J. Kaplan, Wilson C. Hayes, John L. Stone, and Gary S. Beaupré. Tensile

strength of bovine trabecular bone. Journal of Biomechanics,

18(9):723–727, jan 1985.

[40] T M Keaveny and W C Hayes. A 20-year perspective on the mechanical

properties of trabecular bone, volume 115. American Society of Mechanical

Engineers, nov 1993.

[41] Tariq A Khraishi and Yu-lin Shen. Continuum Mechanics Basic Principles of

Vectors, Tensors, and Deformation. Cognella Academic Publishing, 2015.

131

[42] Lynda Knott and A. J. Bailey. Collagen cross-links in mineralizing tissues: A

review of their chemistry, function, and clinical relevance. Bone,

22(3):181–187, 1998.

[43] Roderic S. Lakes. Viscoelastic Materials. Cambridge University Press, New

York, NY, 2009.

[44] C. M. Les, J. L. Vance, G. T. Christopherson, A. S. Turner, G. W. Divine, and

D. P. Fyhrie. Long-term ovariectomy decreases ovine compact bone

viscoelasticity. Journal of Orthopaedic Research, 23(4):869–876, jul 2005.

[45] C. M. Les, J. L. Vance, G. T. Christopherson, A. S. Turner, G. W. Divine, and

D. P. Fyhrie. Long-term ovariectomy decreases ovine compact bone

viscoelasticity. Journal of Orthopaedic Research, 23(4):869–876, jul 2005.

[46] C.M. Les, C.A. Spence, J.L. Vance, G.T. Christopherson, B. Patel, A.S.

Turner, G.W. Divine, and D.P. Fyhrie. Determinants of ovine compact

bone viscoelastic properties: effects of architecture, mineralization, and

remodeling. Bone, 35(3):729–738, sep 2004.

[47] Stavros C. Manolagas. The Role of IL-6 Type Cytokines and Their Receptors

in Bonea a. Annals of the New York Academy of Sciences, 840(1):194–204,

may 1998.

[48] Elaine N. Marieb and Katja N. Hoehn. Human Anatomy and Physiology.

Benjamin-Cummings Publishing Company, 9th edition, 2012.

[49] R. Bruce Martin, David B. Burr, Neil A. Sharkey, and David P. Fyhrie.

Skeletal Tissue Mechanics. Springer New York, New York, NY, second

edition, 2015.

132

[50] G Mase and George Mase. Continuum Mechanics for Engineers. CRC Press,

third edit edition, jun 1999.

[51] H Mcelhaney and West Virginia. Dynamic response . 2018.

[52] J H McElhaney. Dynamic response of bone and muscle tissue. Journal of

Applied Physiology, 21(4):1231–1236, jul 1966.

[53] J H McElhaney. Dynamic response of bone and muscle tissue. Journal of

Applied Physiology, 21(4):1231–1236, dec 2017.

[54] Miguel Mendoza. The Effects of Variation in Collagen D-Spacing on Compact

Bone Viscoelasticity: A Finite Element Analysis. Master’s thesis,

California Polytechnic State University, San Luis Obispo, 2013.

[55] Lisa M. Miller, Vidyasagar Vairavamurthy, Mark R. Chance, Richard

Mendelsohn, Eleftherios P. Paschalis, Foster Betts, and Adele L. Boskey. In

situ analysis of mineral content and crystallinity in bone using infrared

micro-spectroscopy of the ν4 PO43- vibration. Biochimica et Biophysica

Acta - General Subjects, 1527(1-2):11–19, 2001.

[56] Elise F Morgan and Tony M Keaveny. Dependence of yield strain of human

trabecular bone on anatomic site. Journal of Biomechanics, 34(5):569–577,

may 2001.

[57] Ralph Müller, H. Van Campenhout, B. Van Damme, G. Van Der Perre,

J. Dequeker, T. Hildebrand, and P. Rüegsegger. Morphometric analysis of

human bone biopsies: A quantitative structural comparison of histological

sections and micro-computed tomography. Bone, 23(1):59–66, 1998.

[58] National Osteoporosis Foundation. Learn What Osteoporosis Is and What It’s

Caused by, 2019.

133

[59] A. M. Parfitt. Quantum concept of bone remodeling and turnover:

Implications for the pathogenesis of osteoporosis. Calcified Tissue

International, 28(1):1–5, dec 1979.

[60] John A. Petruska and Alan J. Hodge. A SUBUNIT MODEL FOR THE

TROPOCOLLAGEN MACROMOLECULE. Proceedings of the National

Academy of Sciences, 51(5), 1964.

[61] G. E. Piérard, T. Hermanns-Lê, P. Paquet, and C. Piérard-Franchimont. Skin

viscoelasticity during hormone replacement therapy for climacteric ageing.

International Journal of Cosmetic Science, 36(1):88–92, feb 2014.

[62] G. E. Piérard, C. Piérard-Franchimont, S. Vanderplaetsen, N. Franchimont,

U. Gaspard, and M. Malaise. Relationship between bone mass density and

tensile strength of the skin in women. European Journal of Clinical

Investigation, 31(8):731–735, 2001.

[63] G.U. Raju, C.G. Rajeswari, R. Balannavar, and K.G. Kodancha. An

investigation of fracture toughness and dynamic mechanical analysis of

polymer nano-composites. International Journal of Engineering, Science

and Technology, 10(2):30, 2018.

[64] J.C. Rice, S.C. Cowin, and J.A. Bowman. On the dependence of the elasticity

and strength of cancellous bone on apparent density. Journal of

Biomechanics, 21(2):155–168, jan 1988.

[65] Frank Richter. Upsetting and Viscoelasticity of Vitreous SiO2: Experiments,

Interpretation and Simulation. PhD thesis, Technischen Universität, Berlin,

2006.

[66] R. Rizzoli, J. P. Bonjour, and S. L. Ferrari. Osteoporosis, genetics and

hormones. Journal of Molecular Endocrinology, 26(2):79–94, 2001.

134

[67] Mitsuru Saito and Keishi Marumo. Effects of Collagen Crosslinking on Bone

Material Properties in Health and Disease. Calcified Tissue International,

97(3):242–261, 2015.

[68] D.W. Saunders. Creep and relaxation of nonlinear viscoelastic materials,

volume 19. Dover Publications, Inc., 1978.

[69] Thomas Siegmund, Matthew R. Allen, and David B. Burr. Failure of

mineralized collagen fibrils: Modeling the role of collagen cross-linking.

Journal of Biomechanics, 41(7):1427–1435, jan 2008.

[70] Thomas Siegmund, Matthew R. Allen, and David B. Burr. Failure of

mineralized collagen fibrils: Modeling the role of collagen cross-linking.

Journal of Biomechanics, 41(7):1427–1435, jan 2008.

[71] Tang S.Y. and D. Vashishth. The relative contributions of non-enzymatic

glycation and cortical porosity on the fracture toughness of aging bone.

Journal of Biomechanics, 44(2):330–336, jan 2011.

[72] S Y Tang, U Zeenath, and D Vashishth. Effects of non-enzymatic glycation on

cancellous bone fragility. Bone, 40(4):1144–51, apr 2007.

[73] R. V. Thakker. Genetics of bone biology and skeletal disease. Academic Press,

2013.

[74] Luke Stanwood Thompson. The Effects of Hydroxyapatite and Tropocollagen’s

Material Constants on Compact Bone Viscoelasticity: A Finite Element

Analysis. Master’s thesis, California Polytechnic State University, San Luis

Obispo, 2017.

135

[75] Joseph M. Wallace. Applications of atomic force microscopy for the assessment

of nanoscale morphological and mechanical properties of bone. Bone,

50(1):420–427, 2012.

[76] Joseph M. Wallace. Applications of atomic force microscopy for the assessment

of nanoscale morphological and mechanical properties of bone. Bone,

50(1):420–427, 2012.

[77] Joseph M. Wallace. Skeletal Hard Tissue Biomechanics. In Basic and Applied

Bone Biology, pages 115–130. Elsevier, 2014.

[78] Joseph M. Wallace, Blake Erickson, Clifford M. Les, Bradford G. Orr, and

Mark M. Banaszak Holl. Distribution of type I collagen morphologies in

bone: Relation to estrogen depletion. Bone, 46(5):1349–1354, 2010.

[79] Joseph M. Wallace, Bradford G. Orr, Joan C. Marini, and Mark M Banaszak

Holl. Nanoscale morphology of Type I collagen is altered in the Brtl mouse

model of Osteogenesis Imperfecta. Journal of Structural Biology,

173(1):146–152, 2011.

[80] Xiaodu Wang, L. I. Xiaoe, Xinmei Shen, and C. Mauli Agrawal. Age-Related

Changes of Noncalcified Collagen in Human Cortical Bone. Annals of

Biomedical Engineering, 31(11):1365–1371, 2003.

[81] Marco P.E. Wenger, Laurent Bozec, Michael A. Horton, and Patrick

Mesquidaz. Mechanical properties of collagen fibrils. Biophysical Journal,

93(4):1255–1263, 2007.

[82] Beth Winkelstein. Orthopaedic Biomechanics. CRC Press, dec 2012.

[83] Junro Yamashita, Benjamin R. Furman, H. Ralph Rawls, Xiaodu Wang, and

C. Mauli Agrawal. The use of dynamic mechanical analysis to assess the

136

viscoelastic properties of human cortical bone. Journal of Biomedical

Materials Research, 58(1):47–53, 2001.

[84] Ji Yean, Hisashi Naito, Takeshi Matsumoto, and Masao Tanak. Osteocyte

Apoptosis-Induced Bone Resorption in Mechanical Remodeling Simulation

- Computational Model for Trabecular Bone Structure. In Apoptosis and

Medicine. InTech, aug 2012.

[85] M R Zarrinkalam, H Beard, C G Schultz, and R J Moore. Validation of the

sheep as a large animal model for the study of vertebral osteoporosis.

European spine journal : official publication of the European Spine Society,

the European Spinal Deformity Society, and the European Section of the

Cervical Spine Research Society, 18(2):244–53, feb 2009.

[86] P. Zioupos, J. D. Currey, A. Casinos, and V. De Buffrénil. Mechanical

properties of the rostrum of the whale Mesoplodon densirostris, a

remarkably dense bony tissue. Journal of Zoology, 241(4):725–737, 1997.

137

APPENDICES

Appendix A

EXPERIMENTAL PROTOCOL

A.1 Variable Dashpot Scheme

The following is for generating a 2x100 half-unit cell model, against which the VD

scheme was tested, though the variable dashpot modified Richter UMAT can be

used on the smaller model as well, or any model with tropocollagen custom user

material with six variable inputs. This protocol has remained mostly unchanged

since originally conceived by Cummings and Ha [16][35].

1. Open Command Line Window: Start→ Intel 64 Visual Studio 2010 Model

2. Set directory path: Type “cd <directory path here>”, then hit enter. Copy

the path by selecting the desired directory in the Windows Explorer and copying

the path in the address bar at the top of the window. When pasting into the

command line, right-click, then select “Paste”. When Abaqus is opened, the

working directory will automatically be set to this directory.

3. Open Abaqus CAE: Type “abaqus cae” and hit enter. This will open the

GUI for Abaqus CAE. Select “With Standard/Explicit Model” under Create

Model Database

4. Running Model Generation Script: File → Run Script. Select desired

Python script (.py). Currently this is “FINALPYTHONEDIT.py”. A Model

will be generated and a message display at in the Messages area of the GUI (at

138

the bottom of the window). The model can be used if “Model is now valid; Good

for Analysis” is displayed. If “Reject model: Currently Biologically Invalid” is

displayed, repeat step 4 until a biologically valid model is generated. Record

the “LengthF = <number>”, which will be used later. D-spacing distribution

can be manually changed by editing the python script file. Editors used include

WordPad, NotePad, and Notepad++ and Sublime.

5. Completing the model: The generated model is not completed. Due to the

Gaussian distribution of d-spacings and random generation, the material prop-

erties for Collagen and Hydroxyapatite/mineral must be manually assigned.

This is time consuming. The properties and sections have been created for each

material already. Under the “Property” Module select “Assign Section”, then

select all regions for one of the two materials (Shift+click each one). Once all

regions for the first material are selected, click “Done” at the bottom of the

Viewport. This will bring up the Edit Section Assignment window. Under

Section, select the chosen material and “Thickness Assignment: From Section”,

then hit OK. The selected regions will now turn turquoise. Select the regions

associated with the other material and assign sections. Under the “Load” Mod-

ule, create a new Boundary Condition called “YSYM” that is Mechanical and

“Symmetry/Antisymmetry/Encastre” that is applied during the “Apply Load”

step, then press “Continue. . . ”. Select the entire bottom edge of the model

and click “Done”. Next check the “YSYMM (U2=UR1=UR3=0)” option in

the Edit Boundary Condition window, then select OK. Now create a new Load,

still under the “Load” Module. Name it “PRESSURE” and select the “APPLY

LOAD” step, check the mechanical option under property, and select Pressure

for types of Selected Step, then click “Continue. . . ”. Select the entire right

edge of the model in the viewport and click “Done”. Leaving the Distribu-

tion as “Uniform”, enter -3.36E-6 for Magnitude, then select “SINUSOIDAL”

139

from the Amplitude dropdown menu, and press OK. Now under the “Mesh”

Module, select Seed Part, which brings up the “Global Seeds” window. Set

“Approximate global size” to 0.0005. Accept the other default settings and

click ok. Under the “Mesh” dropdown menu, select “Element Type. . . ”, select

the entire model, and click “Done”. This opens the “Element Type Window”.

Select the follow options: Element Library=Standard, Family=Plane Strain,

Geometric Order=Quadratic, Quad=deselect both Hybrid formulation and Re-

duced Integration and accept the other default options. This should create a

CPE8 (8-node biquadratic plan strain quadrilateral) element type. Click OK.

A message window may come up, select OK again, the “Done”. Select “Mesh

Part” and “OK”. The model set up has now been completed.

6. Creating an input file: Under the “Job” module, select “Create Job”. Name

the file according to treatment, location, version, frequency, modulus, and other

specifying parameters. Select the just made model under “Source” dropdown

menu, then “Continue. . . ”. The “Edit Job” window opens, accept all default

settings, and click OK. Expand the ”Job” tree under “Analysis” and right click

on the job name, then select “Write Input”. This will create an input file (.inp)

in the current working directory. This input file can be edited using one of the

previously mentioned editors. Due to the length of these files, using the Find

and Replace command is very useful for making edits.

Areas to update:

(a) *Amplitude Line

(b) *User Material

(c) ** STEP: APPLY LOAD

(d) Then add 400 steps

140

7. Running the input file: Open a new command line window (Start -¿ Intel

64 Visual Studio 2010 Model). Using the cd command, copy the path to the

directory with the input file and hit enter. Also within that directory, place the

“RichterUMATv2.f” file, which is the user-subroutine that defines how the colla-

gen viscoelasticity will be calculated. Make any further changes to the input file

now that are desired, then save the file. Once the input file is reading to be ran,

type in the command “abaqus job=<input file name> user=RichterUMATv2.f

cpus=8” then press enter. The cpus=8 command will allow all 8 processor units

to be ran at a higher rate. If multiple jobs are desired to be ran one after the

other, such as during the night, there is an easy way to do this, but I will add it

in later. Bring up the Task Manager to see that the file is being compiled (an

executive process should be running and taking up roughly 13% of the CPUs

during pre-processing and up to 99% once the standard.exe process begins).

This will take several hours to run, depending on the size of the file and the

computer you are using (as of now it takes about 2.5-3 on FEA 3 and FEA 4,

and around 5.5-6 on FEA 1). Within the directory, multiple files of different

type should have been created, the important one being the Output Database

(.odb) file, which will grow in memory to about 4.5 GB.

8. Extracting the Displacement Data, Post processing, and MATLAB:

Open the ODB in Abaqus and check the nodes at the end of the model and

make a node of their node number. Put these numbers into whichever postproc-

cessing.py file is being used, and also make sure the file includes the path to your

recently created .odb file. Open that in Abaqus in File - ”Run Script”, (can

also from Abaqus Command cd to dir containing your .odb and type abaqus

cae noGui=postprocessing vTGM.py) It will make a folder with all the nodes

when it is finished. Move that main folder somewhere safe (it will get replaced

if not moved). Put the 3 matlab files into that folder. Update the main Matlab

141

file accordingly with the nodes. Play the file 10 times and record each Tangent

Delta number in excel. Save the excel sheet.

A.2 IMF Scheme

The IMF approach differed most in the initial steps because a custom model needs

to be made in dimensions reminiscent of Mendoza’s original models, which of course

are based on Siegmund’s [54][69]. Read the all the steps before starting.

1. Make a model with specific dimensions and make sure the material assignments,

seed length element type, boundary conditions and loads are all the same as

the VD approach. Make sure that everything is a separate part or instance

with in the assembly. Make sure the names match what the noderandomizer.py

requires. Select all the nodes at the top and bottom of the surfaces of the

parts and name them as a set in accordance with the noderandomizer.py script.

Across from those node sets, make a surface to tie to eventually.

2. Create it as a job and choose the option to write to input.

3. Edit the noderandomizer.py script to make sure that it’s opening the right input

file, that the instance and node set names match.

4. Run the script in a terminal in the directory with the input file.

5. Check the input file. New node sets should have been created.

6. Open the model again back in Abaqus using the option to import from input

file.

7. Set up general surface contact as seen in the Methods section. Use tie constraints

to tie the newly created random crosslink node sets to the adjacent surface.

142

This protocol then dovetails into step 6 of the VD protocol with minor, intuitive

adjustments to post proccessing.

143

Appendix B

EXPERIMENTAL OVINE DATA

Table B.1: C1809 Experimental DMA Data

Table B.2: C2207 Experimental DMA Data

144

Appendix C

RUN DATA

Table C.1: IMF Run Data 1

Table C.2: IMF Run Data 2

145

Table C.3: C2207 Dashpot Run Data

146

Table C.4: C1809 Dashpot Run Data

Table C.5: Variable Dashpot Run Data

147

Appendix D

VISCOELASTIC EQUATIONS

As stated in methods, the rheological choice for this model is known as the Kelvin-

Voigt Standard Linear Solid (figure D.1) and it accounts for both creep and stress

relaxation.

Figure D.1: The Kelvin-Voigt Standard Linear Solid

Governing Equation:

ηE1ε̇+ E1E2ε = ησ̇ + (E1 + E2)σ (D.1)

D.1 Creep Response

Creep behavior is defined as a continued displacement of a material with time in spite

of a constantly applied stress, meaning that the stress rate σ̇ = 0, which simplifies

the governing equation, which once integrated gives:

148

ε =
σ0
E1

+
σ0
E2

[1− e(
−t
τ)] (D.2)

The retardation time τ of a viscoelastic material is defined as a delayed response to

an applied force and formulated as:

τ =
η

E2

(D.3)

And so equation C.2 can be rewritten as:

ε =
1

E1

+
1

E2

[1− e(
−t
τ)]σ0 (D.4)

D.2 Stress Relaxation

Stress relaxation is a property of a viscoelastic behavior where stress diminishes over

time during the application of constant strain due to a change in the material’s

internals. This means that the strain rate ε̇ = 0 which allows the governing equation

to be integrated in the following way:

σ =
E1ε0

E1 + E2

[E2 + E1 · e(
−t
τ)] (D.5)

The relaxation time τ is the amount of time that it takes the stress to reach an

equilibrium value after the strain is initially applied. It can be formulated as:

τ =
η

E1 + E2

(D.6)

149

Which allows the SLS stress to be solved as:

σ =
E1

E1 + E2

[E2 + E1 · e(
−t
τ)]ε0 (D.7)

150

Appendix E

CODE

E.1 Abaqus Input File

E.2 Richter User Material Subroutine

1 C

2 C SDVINI SUBROUTINE TO INITIALIZE AND KEEP TRACK OF STRESS INCREMENTS

3 C FROM THE PREVIOUS CALCULATION

4 C

5 SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,

6 1 LAYER,KSPT)

7 C

8 INCLUDE 'ABA_PARAM.INC'

9 C

10 DIMENSION STATEV(NSTATV),COORDS(NCRDS)

11 C

12 C STATEV 1, 2, AND 3 CORRESPOND TO DSTRES 1, 2, AND 3 IN THAT ORDER

13 C WRITE STATEMENTS WERE UTILIZED FOR DEBUGGING PURPOSES

14 C

15 STATEV(1) = 0.0

16 STATEV(2) = 0.0

17 STATEV(3) = 0.0

18 C

19 RETURN

20 END

21 C

22 C 3D FORMULATION OF THE STANDARD LINEAR SOLID (KELVIN BODY)

23 C

24 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

25 1 RPL,DDSDDT,DRPLDE,DRPLDT,

26 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

27 3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

28 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

151

29 C

30 INCLUDE 'ABA_PARAM.INC'

31 C

32 CHARACTER*8 CMNAME

33 DIMENSION STRESS(NTENS),STATEV(NSTATV),

34 1 DDSDDE(NTENS,NTENS),

35 2 DDSDDT(NTENS),DRPLDE(NTENS),

36 3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

37 4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

38 DIMENSION DSTRES(6),D(3,3)

39 REAL K_E, G_E,

40 1 K_Ke, G_Ke,

41 2 Eta_B, Eta_S

42 C

43 C ADDITIONAL CONSTANTS ARE LISTED AS FOLLOWS:

44 C K_E IS THE BULK MODULUS OF THE SPRING

45 C G_E IS THE SHEAR MODULUS OF THE SPRING

46 C K_Ke IS THE BULK MODULUS OF THE SPRING IN THE KELVIN BODY

47 C G_Ke IS THE SHEAR MODULUS OF THE SPRING IN THE KELVIN BODY

48 C Eta_B IS THE BULK VISCOCITY OF THE DASHPOT IN THE KELVIN BODY

49 C Eta_S IS THE SHEAR VISCOSITY OF THE DASHPOT IN THE KELVIN BODY

50 C

51 C CALCULATE MATERIAL PROPERTIES BASED ON USER DEFINED CONSTANTS

52 C

53 K_E = PROPS(1)/(3*(1 - 2*PROPS(4)))

54 G_E = PROPS(1)/(2*(1 + PROPS(4)))

55 K_Ke = PROPS(2)/(3*(1 - 2*PROPS(5)))

56 G_Ke = PROPS(2)/(2*(1 + PROPS(5)))

57 Eta_B = PROPS(3)/(3*(1 - 2*PROPS(6)))

58 Eta_S = PROPS(3)/(2*(1 + PROPS(6)))

59 C

60 C USER DEFINED CONSTANTS REFER TO:

61 C PROPS(1): THE ELASTIC MODULUS OF THE SPRING

62 C PROPS(2): THE ELASTIC MODULUS OF THE SPRING IN THE KELVIN BODY

63 C PROPS(3): THE VISCOCITY OF THE DASHPOT IN THE KELVIN BODY

64 C PROPS(4): POISSONS RATIO OF THE SPRING

65 C PROPS(5): POISSONS RATIO OF THE SPRING IN THE KELVIN BODY

66 C PROPS(6): POISSONS RATIO OF THE DASHPOT IN THE KELVIN BODY

67 C

68 C EVALUATE NEW STRESS TENSOR

69 C

152

70 EV = 0

71 DEV = 0

72 SV = 0

73 DSV = 0

74 C

75 C WRITE(*,*) 'KINC = ',KINC

76 C WRITE(*,*) 'KSTEP = ',KSTEP

77 C

78 DO K1=1,NDI

79 EV = EV + STRAN(K1)

80 DEV = DEV + DSTRAN(K1)

81 SV = SV + STRESS(K1)

82 DSV = DSV + STATEV(K1)

83 END DO

84 C

85 C WRITE(*,*) 'EV = ',EV

86 C WRITE(*,*) 'DEV = ',DEV

87 C WRITE(*,*) 'SV = ',SV

88 C WRITE(*,*) 'DSV = ',DSV

89 C

90 C EVALUATE DIRECT STRESS COMPONENTS

91 C

92 TERM1A = (6*DTIME*K_E*G_E)/(3*DTIME*K_E*G_E + 2*DTIME*K_E*G_Ke

93 1 + 4*K_E*Eta_S + DTIME*G_E*K_Ke + 2*G_E*Eta_B)

94 TERM2 = (G_Ke + ((2*Eta_S)/DTIME))

95 TERM3 = (3*K_Ke - 2*G_Ke)/6 + (3*Eta_B - 2*Eta_S)/(3*DTIME)

96 TERM4 = (2*G_Ke)

97 TERM5 = (3*K_Ke - 2*G_Ke)/3

98 TERM6 = (1+(G_Ke/G_E))

99 TERM7 = (K_Ke/K_E - G_Ke/G_E)/3

100 TERM8 = (K_Ke/K_E - G_Ke/G_E)/6

101 1 + (Eta_B/K_E - Eta_S/G_E)/(3*DTIME)

102 C

103 DO K1=1,NDI

104 DSTRES(K1) = TERM1A*(TERM2*DSTRAN(K1) + TERM3*DEV

105 1 + TERM4*STRAN(K1) + TERM5*EV - TERM6*STRESS(K1) - TERM7*SV

106 2 - TERM8*(DSV - STATEV(K1)))

107 STRESS(K1) = STRESS(K1) + DSTRES(K1)

108 END DO

109 C

110 C SAVE CURRENT STRESS INCREMENTS FOR THE NEXT STRESS CALCULATION

153

111 C

112 DO K1 = 1,NDI

113 STATEV(K1) = DSTRES(K1)

114 END DO

115 C

116 C WRITE(*,*) 'STATEV(1) = ',STATEV(1)

117 C WRITE(*,*) 'STATEV(2) = ',STATEV(2)

118 C WRITE(*,*) 'STATEV(3) = ',STATEV(3)

119 C

120 C EVALUATE SHEAR STRESS COMPONENTS

121 C

122 TERM1B = ((2*DTIME*G_E)/(DTIME*G_E + DTIME*G_Ke + 2*Eta_S))

123 TERM2B = TERM2/2

124 TERM3B = TERM4/2

125 TERM4B = TERM6

126 I1 = NDI

127 C

128 DO K1=1,NSHR

129 I1 = I1+1

130 DSTRES(I1) = TERM1B*(TERM2B*DSTRAN(I1) + TERM3B*STRAN(I1)

131 1 - TERM4B*STRESS(I1))

132 STRESS(I1) = STRESS(I1)+DSTRES(I1)

133 END DO

134 C

135 C CREATE NEW JACOBIAN

136 C

137 TERM2C = TERM1A*(6*DTIME*G_Ke + 12*Eta_S + 3*DTIME*K_Ke

138 1 - 2*DTIME*G_Ke + 6*Eta_B - 4*Eta_s)/(6*DTIME)

139 TERM3C = TERM1A*(3*DTIME*K_Ke - 2*DTIME*G_Ke + 6*Eta_B

140 1 - 4*Eta_S)/(6*DTIME)

141 C

142 DO K1=1,NTENS

143 DO K2=1,NTENS

144 DDSDDE(K2,K1) = 0

145 C WRITE(*,*) 'K1 = ',K1

146 C WRITE(*,*) 'K2 = ',K2

147 END DO

148 END DO

149 C

150 DO K1=1,NDI

151 DDSDDE(K1,K1) = TERM2C

154

152 END DO

153 C

154 DO K1=2,NDI

155 N2 = K1-1

156 DO K2=1,N2

157 DDSDDE(K2,K1) = TERM3C

158 DDSDDE(K1,K2) = TERM3C

159 C WRITE(*,*) 'K1 = ',K1

160 C WRITE(*,*) 'K2 = ',K2

161 END DO

162 END DO

163 C

164 TERM4C = TERM1B*(DTIME*G_Ke + 2*Eta_S)/(2*DTIME)

165 I1 = NDI

166 C

167 DO K1=1,NSHR

168 I1 = I1+1

169 DDSDDE(I1,I1) = TERM4C

170 C WRITE(*,*) 'I1 = ',I1

171 END DO

172 C

173 C WRITE(*,*) 'NTENS = ',NTENS

174 C WRITE(*,*) 'NDI = ',NDI

175 C WRITE(*,*) 'NSHR = ',NSHR

176 C WRITE(*,*) 'G_E = ',G_E

177 C WRITE(*,*) 'K_E = ',K_E

178 C WRITE(*,*) 'G_Ke = ',G_Ke

179 C WRITE(*,*) 'K_Ke = ',K_Ke

180 C WRITE(*,*) 'Eta_S = ',Eta_S

181 C WRITE(*,*) 'Eta_B = ',Eta_B

182 C WRITE(*,*) 'DTIME = ',DTIME

183 C WRITE(*,*) 'TERM1A = ',TERM1A

184 C WRITE(*,*) 'TERM2 = ',TERM2

185 C WRITE(*,*) 'TERM3 = ',TERM3

186 C WRITE(*,*) 'TERM4 = ',TERM4

187 C WRITE(*,*) 'TERM5 = ',TERM5

188 C WRITE(*,*) 'TERM6 = ',TERM6

189 C WRITE(*,*) 'TERM7 = ',TERM7

190 C WRITE(*,*) 'TERM8 = ',TERM8

191 C WRITE(*,*) 'TERM1B = ',TERM1B

192 C WRITE(*,*) 'TERM2B = ',TERM2B

155

193 C WRITE(*,*) 'TERM3B = ',TERM3B

194 C WRITE(*,*) 'TERM4B = ',TERM4B

195 C WRITE(*,*) 'TERM2C = ',TERM2C

196 C WRITE(*,*) 'TERM3C = ',TERM3C

197 C WRITE(*,*) 'TERM4C = ',TERM4C

198 C

199 RETURN

200 END

E.2.1 Variable Dashpot UMAT

1 C

2 C SDVINI SUBROUTINE TO INITIALIZE AND KEEP TRACK OF STRESS INCREMENTS

3 C FROM THE PREVIOUS CALCULATION

4 C

5 SUBROUTINE SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT,

6 1 LAYER,KSPT)

7 C

8 INCLUDE 'ABA_PARAM.INC'

9 C

10 DIMENSION STATEV(NSTATV),COORDS(NCRDS)

11 C

12 C STATEV 1, 2, AND 3 CORRESPOND TO DSTRES 1, 2, AND 3 IN THAT ORDER

13 C WRITE STATEMENTS WERE UTILIZED FOR DEBUGGING PURPOSES

14 C

15 STATEV(1) = 0.0

16 STATEV(2) = 0.0

17 STATEV(3) = 0.0

18 C

19 RETURN

20 END

21 C

22 C 3D FORMULATION OF THE STANDARD LINEAR SOLID (KELVIN BODY)

23 C

24 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

25 1 RPL,DDSDDT,DRPLDE,DRPLDT,

26 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

27 3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

28 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

156

29 C

30 INCLUDE 'ABA_PARAM.INC'

31 C

32 CHARACTER*8 CMNAME

33 DIMENSION STRESS(NTENS),STATEV(NSTATV),

34 1 DDSDDE(NTENS,NTENS),

35 2 DDSDDT(NTENS),DRPLDE(NTENS),

36 3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

37 4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

38 DIMENSION DSTRES(6),D(3,3)

39 REAL K_E, G_E,

40 1 K_Ke, G_Ke,

41 2 Eta_B, Eta_S,

42 3 Eta_var

43

44 C

45 C VARIABLE VISCOSITY OF THE DASHPOT DEFINITION

46 C WITH PROPS(3) SERVING AS FREQUENCY INPUT AS FOLLOWS:

47 C

48 C C1809 VARIABLE DASHPOT SCHEME

49 C Eta_var = (9.08775E-5*((PROPS(3))**5.))

50 C 1 - (0.00245779*((PROPS(3))**4.))

51 C 2 + (0.0153295*((PROPS(3))**3.))

52 C 3 + (0.0684851*((PROPS(3))**2.))

53 C 4 - (0.83055*(PROPS(3))) + 1.97746

54

55 C C2207 VARIABLE DASHPOT SCHEME

56 Eta_var = (-6.61581E-5*((PROPS(3))**5.))

57 1 + (2.972E-3*((PROPS(3))**4.))

58 2 - (5.016075E-2*((PROPS(3))**3.))

59 3 + (3.960115E-1*((PROPS(3))**2.))

60 4 - (1.461599*(PROPS(3))) + 2.344206

61

62 C Ensure the polynomial doesn't make Eta_var negative

63 Eta_var = abs(Eta_var)

64 C Get Eta_var into the correct units for Abaqus

65 Eta_var = (Eta_var/1000.)

66 C

67 C ADDITIONAL CONSTANTS ARE LISTED AS FOLLOWS:

68 C K_E IS THE BULK MODULUS OF THE SPRING

69 C G_E IS THE SHEAR MODULUS OF THE SPRING

157

70 C K_Ke IS THE BULK MODULUS OF THE SPRING IN THE KELVIN BODY

71 C G_Ke IS THE SHEAR MODULUS OF THE SPRING IN THE KELVIN BODY

72 C Eta_B IS THE BULK VISCOCITY OF THE DASHPOT IN THE KELVIN BODY

73 C Eta_S IS THE SHEAR VISCOSITY OF THE DASHPOT IN THE KELVIN BODY

74 C

75 C CALCULATE MATERIAL PROPERTIES BASED ON USER DEFINED CONSTANTS

76 C

77 K_E = PROPS(1)/(3*(1 - 2*PROPS(4)))

78 G_E = PROPS(1)/(2*(1 + PROPS(4)))

79 K_Ke = PROPS(2)/(3*(1 - 2*PROPS(5)))

80 G_Ke = PROPS(2)/(2*(1 + PROPS(5)))

81 Eta_B = Eta_var/(3*(1 - 2*PROPS(6)))

82 Eta_S = Eta_var/(2*(1 + PROPS(6)))

83 C

84 C USER DEFINED CONSTANTS REFER TO:

85 C PROPS(1): THE ELASTIC MODULUS OF THE SPRING

86 C PROPS(2): THE ELASTIC MODULUS OF THE SPRING IN THE KELVIN BODY

87 C PROPS(3): THE VISCOCITY OF THE DASHPOT IN THE KELVIN BODY

88 C PROPS(4): POISSONS RATIO OF THE SPRING

89 C PROPS(5): POISSONS RATIO OF THE SPRING IN THE KELVIN BODY

90 C PROPS(6): POISSONS RATIO OF THE DASHPOT IN THE KELVIN BODY

91 C

92 C EVALUATE NEW STRESS TENSOR

93 C

94 EV = 0

95 DEV = 0

96 SV = 0

97 DSV = 0

98 C

99 C WRITE(*,*) 'KINC = ',KINC

100 C WRITE(*,*) 'KSTEP = ',KSTEP

101 C

102 DO K1=1,NDI

103 EV = EV + STRAN(K1)

104 DEV = DEV + DSTRAN(K1)

105 SV = SV + STRESS(K1)

106 DSV = DSV + STATEV(K1)

107 END DO

108 C

109 C WRITE(*,*) 'EV = ',EV

110 C WRITE(*,*) 'DEV = ',DEV

158

111 C WRITE(*,*) 'SV = ',SV

112 C WRITE(*,*) 'DSV = ',DSV

113 C

114 C EVALUATE DIRECT STRESS COMPONENTS

115 C

116 TERM1A = (6*DTIME*K_E*G_E)/(3*DTIME*K_E*G_E + 2*DTIME*K_E*G_Ke

117 1 + 4*K_E*Eta_S + DTIME*G_E*K_Ke + 2*G_E*Eta_B)

118 TERM2 = (G_Ke + ((2*Eta_S)/DTIME))

119 TERM3 = (3*K_Ke - 2*G_Ke)/6 + (3*Eta_B - 2*Eta_S)/(3*DTIME)

120 TERM4 = (2*G_Ke)

121 TERM5 = (3*K_Ke - 2*G_Ke)/3

122 TERM6 = (1+(G_Ke/G_E))

123 TERM7 = (K_Ke/K_E - G_Ke/G_E)/3

124 TERM8 = (K_Ke/K_E - G_Ke/G_E)/6

125 1 + (Eta_B/K_E - Eta_S/G_E)/(3*DTIME)

126 C

127 DO K1=1,NDI

128 DSTRES(K1) = TERM1A*(TERM2*DSTRAN(K1) + TERM3*DEV

129 1 + TERM4*STRAN(K1) + TERM5*EV - TERM6*STRESS(K1) - TERM7*SV

130 2 - TERM8*(DSV - STATEV(K1)))

131 STRESS(K1) = STRESS(K1) + DSTRES(K1)

132 END DO

133 C

134 C SAVE CURRENT STRESS INCREMENTS FOR THE NEXT STRESS CALCULATION

135 C

136 DO K1 = 1,NDI

137 STATEV(K1) = DSTRES(K1)

138 END DO

139 C

140 C WRITE(*,*) 'STATEV(1) = ',STATEV(1)

141 C WRITE(*,*) 'STATEV(2) = ',STATEV(2)

142 C WRITE(*,*) 'STATEV(3) = ',STATEV(3)

143 C

144 C EVALUATE SHEAR STRESS COMPONENTS

145 C

146 TERM1B = ((2*DTIME*G_E)/(DTIME*G_E + DTIME*G_Ke + 2*Eta_S))

147 TERM2B = TERM2/2

148 TERM3B = TERM4/2

149 TERM4B = TERM6

150 I1 = NDI

151 C

159

152 DO K1=1,NSHR

153 I1 = I1+1

154 DSTRES(I1) = TERM1B*(TERM2B*DSTRAN(I1) + TERM3B*STRAN(I1)

155 1 - TERM4B*STRESS(I1))

156 STRESS(I1) = STRESS(I1)+DSTRES(I1)

157 END DO

158 C

159 C CREATE NEW JACOBIAN

160 C

161 TERM2C = TERM1A*(6*DTIME*G_Ke + 12*Eta_S + 3*DTIME*K_Ke

162 1 - 2*DTIME*G_Ke + 6*Eta_B - 4*Eta_s)/(6*DTIME)

163 TERM3C = TERM1A*(3*DTIME*K_Ke - 2*DTIME*G_Ke + 6*Eta_B

164 1 - 4*Eta_S)/(6*DTIME)

165 C

166 DO K1=1,NTENS

167 DO K2=1,NTENS

168 DDSDDE(K2,K1) = 0

169 C WRITE(*,*) 'K1 = ',K1

170 C WRITE(*,*) 'K2 = ',K2

171 END DO

172 END DO

173 C

174 DO K1=1,NDI

175 DDSDDE(K1,K1) = TERM2C

176 END DO

177 C

178 DO K1=2,NDI

179 N2 = K1-1

180 DO K2=1,N2

181 DDSDDE(K2,K1) = TERM3C

182 DDSDDE(K1,K2) = TERM3C

183 C WRITE(*,*) 'K1 = ',K1

184 C WRITE(*,*) 'K2 = ',K2

185 END DO

186 END DO

187 C

188 TERM4C = TERM1B*(DTIME*G_Ke + 2*Eta_S)/(2*DTIME)

189 I1 = NDI

190 C

191 DO K1=1,NSHR

192 I1 = I1+1

160

193 DDSDDE(I1,I1) = TERM4C

194 C WRITE(*,*) 'I1 = ',I1

195 END DO

196 C

197 C WRITE(*,*) 'NTENS = ',NTENS

198 C WRITE(*,*) 'NDI = ',NDI

199 C WRITE(*,*) 'NSHR = ',NSHR

200 C WRITE(*,*) 'G_E = ',G_E

201 C WRITE(*,*) 'K_E = ',K_E

202 C WRITE(*,*) 'G_Ke = ',G_Ke

203 C WRITE(*,*) 'K_Ke = ',K_Ke

204 C WRITE(*,*) 'Eta_S = ',Eta_S

205 C WRITE(*,*) 'Eta_B = ',Eta_B

206 C WRITE(*,*) 'DTIME = ',DTIME

207 C WRITE(*,*) 'TERM1A = ',TERM1A

208 C WRITE(*,*) 'TERM2 = ',TERM2

209 C WRITE(*,*) 'TERM3 = ',TERM3

210 C WRITE(*,*) 'TERM4 = ',TERM4

211 C WRITE(*,*) 'TERM5 = ',TERM5

212 C WRITE(*,*) 'TERM6 = ',TERM6

213 C WRITE(*,*) 'TERM7 = ',TERM7

214 C WRITE(*,*) 'TERM8 = ',TERM8

215 C WRITE(*,*) 'TERM1B = ',TERM1B

216 C WRITE(*,*) 'TERM2B = ',TERM2B

217 C WRITE(*,*) 'TERM3B = ',TERM3B

218 C WRITE(*,*) 'TERM4B = ',TERM4B

219 C WRITE(*,*) 'TERM2C = ',TERM2C

220 C WRITE(*,*) 'TERM3C = ',TERM3C

221 C WRITE(*,*) 'TERM4C = ',TERM4C

222 C

223 RETURN

224 END

E.3 Model Generation Script

1 # coding=utf-8

2 # Do not delete the following import lines

3 from abaqus import *

4 from abaqusConstants import *

161

5 import __main__

6

7 def TWOXONEHUNDREDFINAL():

8 import section

9 import regionToolset

10 import displayGroupMdbToolset as dgm

11 import part

12 import material

13 import assembly

14 import step

15 import interaction

16 import load

17 import mesh

18 import job

19 import sketch

20 import visualization

21 import xyPlot

22 import displayGroupOdbToolset as dgo

23 import connectorBehavior

24 import random

25

26 #Dspacing mean and standard dev (Control Cran C2207)

27 #DSmean=0.0674433

28 #DSstdev=0.0011569

29

30 #Dspacing mean and standard dev (Control Cran)

31 #DSmean=0.06841994

32 #DSstdev=0.001281148

33 #Dspacing mean and standard dev (Control Caud)

34 # DSmean=0.066353

35 # DSstdev=0.001688634

36 #Dspacing mean and standard dev (OVX Cran)

37 DSmean=0.06715122

38 DSstdev=0.00200597

39 #Dspacing mean and standard dev (OVX Caud)

40 # DSmean=0.0675862

41 # DSstdev=0.0012142

42 #Dspacing mean and standard dev specimen C2222

43 #DSmean=0.06800059

44 #DSstdev=0.00137705

45 #Random dspacing

162

46 ds1 =random.gauss (DSmean,DSstdev)

47 ds2 =random.gauss (DSmean,DSstdev)

48 ds3 =random.gauss (DSmean,DSstdev)

49 ds4 =random.gauss (DSmean,DSstdev)

50 ds5 =random.gauss (DSmean,DSstdev)

51 ds6 =random.gauss (DSmean,DSstdev)

52 ds7 =random.gauss (DSmean,DSstdev)

53 ds8 =random.gauss (DSmean,DSstdev)

54 ds9 =random.gauss (DSmean,DSstdev)

55 ds10 =random.gauss (DSmean,DSstdev)

56 ds11 =random.gauss (DSmean,DSstdev)

57 ds12 =random.gauss (DSmean,DSstdev)

58 ds13 =random.gauss (DSmean,DSstdev)

59 ds14 =random.gauss (DSmean,DSstdev)

60 ds15 =random.gauss (DSmean,DSstdev)

61 ds16 =random.gauss (DSmean,DSstdev)

62 ds17 =random.gauss (DSmean,DSstdev)

63 ds18 =random.gauss (DSmean,DSstdev)

64 ds19 =random.gauss (DSmean,DSstdev)

65 ds20 =random.gauss (DSmean,DSstdev)

66 ds21 =random.gauss (DSmean,DSstdev)

67 ds22 =random.gauss (DSmean,DSstdev)

68 ds23 =random.gauss (DSmean,DSstdev)

69 ds24 =random.gauss (DSmean,DSstdev)

70 ds25 =random.gauss (DSmean,DSstdev)

71 ds26 =random.gauss (DSmean,DSstdev)

72 ds27 =random.gauss (DSmean,DSstdev)

73 ds28 =random.gauss (DSmean,DSstdev)

74 ds29 =random.gauss (DSmean,DSstdev)

75 ds30 =random.gauss (DSmean,DSstdev)

76 ds31 =random.gauss (DSmean,DSstdev)

77 ds32 =random.gauss (DSmean,DSstdev)

78 ds33 =random.gauss (DSmean,DSstdev)

79 ds34 =random.gauss (DSmean,DSstdev)

80 ds35 =random.gauss (DSmean,DSstdev)

81 ds36 =random.gauss (DSmean,DSstdev)

82 ds37 =random.gauss (DSmean,DSstdev)

83 ds38 =random.gauss (DSmean,DSstdev)

84 ds39 =random.gauss (DSmean,DSstdev)

85 ds40 =random.gauss (DSmean,DSstdev)

86 ds41 =random.gauss (DSmean,DSstdev)

163

87 ds42 =random.gauss (DSmean,DSstdev)

88 ds43 =random.gauss (DSmean,DSstdev)

89 ds44 =random.gauss (DSmean,DSstdev)

90 ds45 =random.gauss (DSmean,DSstdev)

91 ds46 =random.gauss (DSmean,DSstdev)

92 ds47 =random.gauss (DSmean,DSstdev)

93 ds48 =random.gauss (DSmean,DSstdev)

94 ds49 =random.gauss (DSmean,DSstdev)

95 ds50 =random.gauss (DSmean,DSstdev)

96 ds51 =random.gauss (DSmean,DSstdev)

97 ds52 =random.gauss (DSmean,DSstdev)

98 ds53 =random.gauss (DSmean,DSstdev)

99 ds54 =random.gauss (DSmean,DSstdev)

100 ds55 =random.gauss (DSmean,DSstdev)

101 ds56 =random.gauss (DSmean,DSstdev)

102 ds57 =random.gauss (DSmean,DSstdev)

103 ds58 =random.gauss (DSmean,DSstdev)

104 ds59 =random.gauss (DSmean,DSstdev)

105 ds60 =random.gauss (DSmean,DSstdev)

106 ds61 =random.gauss (DSmean,DSstdev)

107 ds62 =random.gauss (DSmean,DSstdev)

108 ds63 =random.gauss (DSmean,DSstdev)

109 ds64 =random.gauss (DSmean,DSstdev)

110 ds65 =random.gauss (DSmean,DSstdev)

111 ds66 =random.gauss (DSmean,DSstdev)

112 ds67 =random.gauss (DSmean,DSstdev)

113 ds68 =random.gauss (DSmean,DSstdev)

114 ds69 =random.gauss (DSmean,DSstdev)

115 ds70 =random.gauss (DSmean,DSstdev)

116 ds71 =random.gauss (DSmean,DSstdev)

117 ds72 =random.gauss (DSmean,DSstdev)

118 ds73 =random.gauss (DSmean,DSstdev)

119 ds74 =random.gauss (DSmean,DSstdev)

120 ds75 =random.gauss (DSmean,DSstdev)

121 ds76 =random.gauss (DSmean,DSstdev)

122 ds77 =random.gauss (DSmean,DSstdev)

123 ds78 =random.gauss (DSmean,DSstdev)

124 ds79 =random.gauss (DSmean,DSstdev)

125 ds80 =random.gauss (DSmean,DSstdev)

126 ds81 =random.gauss (DSmean,DSstdev)

127 ds82 =random.gauss (DSmean,DSstdev)

164

128 ds83 =random.gauss (DSmean,DSstdev)

129 ds84 =random.gauss (DSmean,DSstdev)

130 ds85 =random.gauss (DSmean,DSstdev)

131 ds86 =random.gauss (DSmean,DSstdev)

132 ds87 =random.gauss (DSmean,DSstdev)

133 ds88 =random.gauss (DSmean,DSstdev)

134 ds89 =random.gauss (DSmean,DSstdev)

135 ds90 =random.gauss (DSmean,DSstdev)

136 ds91 =random.gauss (DSmean,DSstdev)

137 ds92 =random.gauss (DSmean,DSstdev)

138 ds93 =random.gauss (DSmean,DSstdev)

139 ds94 =random.gauss (DSmean,DSstdev)

140 ds95 =random.gauss (DSmean,DSstdev)

141 ds96 =random.gauss (DSmean,DSstdev)

142 ds97 =random.gauss (DSmean,DSstdev)

143 ds98 =random.gauss (DSmean,DSstdev)

144 ds99 =random.gauss (DSmean,DSstdev)

145 ds100 =random.gauss (DSmean,DSstdev)

146 ds101 =random.gauss (DSmean,DSstdev)

147 ds102 =random.gauss (DSmean,DSstdev)

148 ds103 =random.gauss (DSmean,DSstdev)

149 ds104 =random.gauss (DSmean,DSstdev)

150 ds105 =random.gauss (DSmean,DSstdev)

151 ds106 =random.gauss (DSmean,DSstdev)

152 ds107 =random.gauss (DSmean,DSstdev)

153 ds108 =random.gauss (DSmean,DSstdev)

154 ds109 =random.gauss (DSmean,DSstdev)

155 ds110 =random.gauss (DSmean,DSstdev)

156 ds111 =random.gauss (DSmean,DSstdev)

157 ds112 =random.gauss (DSmean,DSstdev)

158 ds113 =random.gauss (DSmean,DSstdev)

159 ds114 =random.gauss (DSmean,DSstdev)

160 ds115 =random.gauss (DSmean,DSstdev)

161 ds116 =random.gauss (DSmean,DSstdev)

162 ds117 =random.gauss (DSmean,DSstdev)

163 ds118 =random.gauss (DSmean,DSstdev)

164 ds119 =random.gauss (DSmean,DSstdev)

165 ds120 =random.gauss (DSmean,DSstdev)

166 ds121 =random.gauss (DSmean,DSstdev)

167 ds122 =random.gauss (DSmean,DSstdev)

168 ds123 =random.gauss (DSmean,DSstdev)

165

169 ds124 =random.gauss (DSmean,DSstdev)

170 ds125 =random.gauss (DSmean,DSstdev)

171 ds126 =random.gauss (DSmean,DSstdev)

172 ds127 =random.gauss (DSmean,DSstdev)

173 ds128 =random.gauss (DSmean,DSstdev)

174 ds129 =random.gauss (DSmean,DSstdev)

175 ds130 =random.gauss (DSmean,DSstdev)

176 ds131 =random.gauss (DSmean,DSstdev)

177 ds132 =random.gauss (DSmean,DSstdev)

178 ds133 =random.gauss (DSmean,DSstdev)

179 ds134 =random.gauss (DSmean,DSstdev)

180 ds135 =random.gauss (DSmean,DSstdev)

181 ds136 =random.gauss (DSmean,DSstdev)

182 ds137 =random.gauss (DSmean,DSstdev)

183 ds138 =random.gauss (DSmean,DSstdev)

184 ds139 =random.gauss (DSmean,DSstdev)

185 ds140 =random.gauss (DSmean,DSstdev)

186 ds141 =random.gauss (DSmean,DSstdev)

187 ds142 =random.gauss (DSmean,DSstdev)

188 ds143 =random.gauss (DSmean,DSstdev)

189 ds144 =random.gauss (DSmean,DSstdev)

190 ds145 =random.gauss (DSmean,DSstdev)

191 ds146 =random.gauss (DSmean,DSstdev)

192 ds147 =random.gauss (DSmean,DSstdev)

193 ds148 =random.gauss (DSmean,DSstdev)

194 ds149 =random.gauss (DSmean,DSstdev)

195 ds150 =random.gauss (DSmean,DSstdev)

196 ds151 =random.gauss (DSmean,DSstdev)

197 ds152 =random.gauss (DSmean,DSstdev)

198 ds153 =random.gauss (DSmean,DSstdev)

199 ds154 =random.gauss (DSmean,DSstdev)

200 ds155 =random.gauss (DSmean,DSstdev)

201 ds156 =random.gauss (DSmean,DSstdev)

202 ds157 =random.gauss (DSmean,DSstdev)

203 ds158 =random.gauss (DSmean,DSstdev)

204 ds159 =random.gauss (DSmean,DSstdev)

205 ds160 =random.gauss (DSmean,DSstdev)

206 ds161 =random.gauss (DSmean,DSstdev)

207 ds162 =random.gauss (DSmean,DSstdev)

208 ds163 =random.gauss (DSmean,DSstdev)

209 ds164 =random.gauss (DSmean,DSstdev)

166

210 ds165 =random.gauss (DSmean,DSstdev)

211 ds166 =random.gauss (DSmean,DSstdev)

212 ds167 =random.gauss (DSmean,DSstdev)

213 ds168 =random.gauss (DSmean,DSstdev)

214 ds169 =random.gauss (DSmean,DSstdev)

215 ds170 =random.gauss (DSmean,DSstdev)

216 ds171 =random.gauss (DSmean,DSstdev)

217 ds172 =random.gauss (DSmean,DSstdev)

218 ds173 =random.gauss (DSmean,DSstdev)

219 ds174 =random.gauss (DSmean,DSstdev)

220 ds175 =random.gauss (DSmean,DSstdev)

221 ds176 =random.gauss (DSmean,DSstdev)

222 ds177 =random.gauss (DSmean,DSstdev)

223 ds178 =random.gauss (DSmean,DSstdev)

224 ds179 =random.gauss (DSmean,DSstdev)

225 ds180 =random.gauss (DSmean,DSstdev)

226 ds181 =random.gauss (DSmean,DSstdev)

227 ds182 =random.gauss (DSmean,DSstdev)

228 ds183 =random.gauss (DSmean,DSstdev)

229 ds184 =random.gauss (DSmean,DSstdev)

230 ds185 =random.gauss (DSmean,DSstdev)

231 ds186 =random.gauss (DSmean,DSstdev)

232 ds187 =random.gauss (DSmean,DSstdev)

233 ds188 =random.gauss (DSmean,DSstdev)

234 ds189 =random.gauss (DSmean,DSstdev)

235 ds190 =random.gauss (DSmean,DSstdev)

236 ds191 =random.gauss (DSmean,DSstdev)

237 ds192 =random.gauss (DSmean,DSstdev)

238 ds193 =random.gauss (DSmean,DSstdev)

239 ds194 =random.gauss (DSmean,DSstdev)

240 ds195 =random.gauss (DSmean,DSstdev)

241 ds196 =random.gauss (DSmean,DSstdev)

242 ds197 =random.gauss (DSmean,DSstdev)

243 ds198 =random.gauss (DSmean,DSstdev)

244 ds199 =random.gauss (DSmean,DSstdev)

245 ds200 =random.gauss (DSmean,DSstdev)

246 y1=.84*ds1

247 y2=.84*ds2

248 y3=.84*ds3

249 y4=.84*ds4

250 y5=.84*ds5

167

251 y6=.84*ds6

252 y7=.84*ds7

253 y8=.84*ds8

254 y9=.84*ds9

255 y10=.84*ds10

256 y11=.84*ds11

257 y12=.84*ds12

258 y13=.84*ds13

259 y14=.84*ds14

260 y15=.84*ds15

261 y16=.84*ds16

262 y17=.84*ds17

263 y18=.84*ds18

264 y19=.84*ds19

265 y20=.84*ds20

266 y21=.84*ds21

267 y22=.84*ds22

268 y23=.84*ds23

269 y24=.84*ds24

270 y25=.84*ds25

271 y26=.84*ds26

272 y27=.84*ds27

273 y28=.84*ds28

274 y29=.84*ds29

275 y30=.84*ds30

276 y31=.84*ds31

277 y32=.84*ds32

278 y33=.84*ds33

279 y34=.84*ds34

280 y35=.84*ds35

281 y36=.84*ds36

282 y37=.84*ds37

283 y38=.84*ds38

284 y39=.84*ds39

285 y40=.84*ds40

286 y41=.84*ds41

287 y42=.84*ds42

288 y43=.84*ds43

289 y44=.84*ds44

290 y45=.84*ds45

291 y46=.84*ds46

168

292 y47=.84*ds47

293 y48=.84*ds48

294 y49=.84*ds49

295 y50=.84*ds50

296 y51=.84*ds51

297 y52=.84*ds52

298 y53=.84*ds53

299 y54=.84*ds54

300 y55=.84*ds55

301 y56=.84*ds56

302 y57=.84*ds57

303 y58=.84*ds58

304 y59=.84*ds59

305 y60=.84*ds60

306 y61=.84*ds61

307 y62=.84*ds62

308 y63=.84*ds63

309 y64=.84*ds64

310 y65=.84*ds65

311 y66=.84*ds66

312 y67=.84*ds67

313 y68=.84*ds68

314 y69=.84*ds69

315 y70=.84*ds70

316 y71=.84*ds71

317 y72=.84*ds72

318 y73=.84*ds73

319 y74=.84*ds74

320 y75=.84*ds75

321 y76=.84*ds76

322 y77=.84*ds77

323 y78=.84*ds78

324 y79=.84*ds79

325 y80=.84*ds80

326 y81=.84*ds81

327 y82=.84*ds82

328 y83=.84*ds83

329 y84=.84*ds84

330 y85=.84*ds85

331 y86=.84*ds86

332 y87=.84*ds87

169

333 y88=.84*ds88

334 y89=.84*ds89

335 y90=.84*ds90

336 y91=.84*ds91

337 y92=.84*ds92

338 y93=.84*ds93

339 y94=.84*ds94

340 y95=.84*ds95

341 y96=.84*ds96

342 y97=.84*ds97

343 y98=.84*ds98

344 y99=.84*ds99

345 y100=.84*ds100

346 y101=.84*ds101

347 y102=.84*ds102

348 y103=.84*ds103

349 y104=.84*ds104

350 y105=.84*ds105

351 y106=.84*ds106

352 y107=.84*ds107

353 y108=.84*ds108

354 y109=.84*ds109

355 y110=.84*ds110

356 y111=.84*ds111

357 y112=.84*ds112

358 y113=.84*ds113

359 y114=.84*ds114

360 y115=.84*ds115

361 y116=.84*ds116

362 y117=.84*ds117

363 y118=.84*ds118

364 y119=.84*ds119

365 y120=.84*ds120

366 y121=.84*ds121

367 y122=.84*ds122

368 y123=.84*ds123

369 y124=.84*ds124

370 y125=.84*ds125

371 y126=.84*ds126

372 y127=.84*ds127

373 y128=.84*ds128

170

374 y129=.84*ds129

375 y130=.84*ds130

376 y131=.84*ds131

377 y132=.84*ds132

378 y133=.84*ds133

379 y134=.84*ds134

380 y135=.84*ds135

381 y136=.84*ds136

382 y137=.84*ds137

383 y138=.84*ds138

384 y139=.84*ds139

385 y140=.84*ds140

386 y141=.84*ds141

387 y142=.84*ds142

388 y143=.84*ds143

389 y144=.84*ds144

390 y145=.84*ds145

391 y146=.84*ds146

392 y147=.84*ds147

393 y148=.84*ds148

394 y149=.84*ds149

395 y150=.84*ds150

396 y151=.84*ds151

397 y152=.84*ds152

398 y153=.84*ds153

399 y154=.84*ds154

400 y155=.84*ds155

401 y156=.84*ds156

402 y157=.84*ds157

403 y158=.84*ds158

404 y159=.84*ds159

405 y160=.84*ds160

406 y161=.84*ds161

407 y162=.84*ds162

408 y163=.84*ds163

409 y164=.84*ds164

410 y165=.84*ds165

411 y166=.84*ds166

412 y167=.84*ds167

413 y168=.84*ds168

414 y169=.84*ds169

171

415 y170=.84*ds170

416 y171=.84*ds171

417 y172=.84*ds172

418 y173=.84*ds173

419 y174=.84*ds174

420 y175=.84*ds175

421 y176=.84*ds176

422 y177=.84*ds177

423 y178=.84*ds178

424 y179=.84*ds179

425 y180=.84*ds180

426 y181=.84*ds181

427 y182=.84*ds182

428 y183=.84*ds183

429 y184=.84*ds184

430 y185=.84*ds185

431 y186=.84*ds186

432 y187=.84*ds187

433 y188=.84*ds188

434 y189=.84*ds189

435 y190=.84*ds190

436 y191=.84*ds191

437 y192=.84*ds192

438 y193=.84*ds193

439 y194=.84*ds194

440 y195=.84*ds195

441 y196=.84*ds196

442 y197=.84*ds197

443 y198=.84*ds198

444 y199=.84*ds199

445 y200=.84*ds200

446 x1=ds1-y1

447 x2=ds2-y2

448 x3=ds3-y3

449 x4=ds4-y4

450 x5=ds5-y5

451 x6=ds6-y6

452 x7=ds7-y7

453 x8=ds8-y8

454 x9=ds9-y9

455 x10=ds10-y10

172

456 x11=ds11-y11

457 x12=ds12-y12

458 x13=ds13-y13

459 x14=ds14-y14

460 x15=ds15-y15

461 x16=ds16-y16

462 x17=ds17-y17

463 x18=ds18-y18

464 x19=ds19-y19

465 x20=ds20-y20

466 x21=ds21-y21

467 x22=ds22-y22

468 x23=ds23-y23

469 x24=ds24-y24

470 x25=ds25-y25

471 x26=ds26-y26

472 x27=ds27-y27

473 x28=ds28-y28

474 x29=ds29-y29

475 x30=ds30-y30

476 x31=ds31-y31

477 x32=ds32-y32

478 x33=ds33-y33

479 x34=ds34-y34

480 x35=ds35-y35

481 x36=ds36-y36

482 x37=ds37-y37

483 x38=ds38-y38

484 x39=ds39-y39

485 x40=ds40-y40

486 x41=ds41-y41

487 x42=ds42-y42

488 x43=ds43-y43

489 x44=ds44-y44

490 x45=ds45-y45

491 x46=ds46-y46

492 x47=ds47-y47

493 x48=ds48-y48

494 x49=ds49-y49

495 x50=ds50-y50

496 x51=ds51-y51

173

497 x52=ds52-y52

498 x53=ds53-y53

499 x54=ds54-y54

500 x55=ds55-y55

501 x56=ds56-y56

502 x57=ds57-y57

503 x58=ds58-y58

504 x59=ds59-y59

505 x60=ds60-y60

506 x61=ds61-y61

507 x62=ds62-y62

508 x63=ds63-y63

509 x64=ds64-y64

510 x65=ds65-y65

511 x66=ds66-y66

512 x67=ds67-y67

513 x68=ds68-y68

514 x69=ds69-y69

515 x70=ds70-y70

516 x71=ds71-y71

517 x72=ds72-y72

518 x73=ds73-y73

519 x74=ds74-y74

520 x75=ds75-y75

521 x76=ds76-y76

522 x77=ds77-y77

523 x78=ds78-y78

524 x79=ds79-y79

525 x80=ds80-y80

526 x81=ds81-y81

527 x82=ds82-y82

528 x83=ds83-y83

529 x84=ds84-y84

530 x85=ds85-y85

531 x86=ds86-y86

532 x87=ds87-y87

533 x88=ds88-y88

534 x89=ds89-y89

535 x90=ds90-y90

536 x91=ds91-y91

537 x92=ds92-y92

174

538 x93=ds93-y93

539 x94=ds94-y94

540 x95=ds95-y95

541 x96=ds96-y96

542 x97=ds97-y97

543 x98=ds98-y98

544 x99=ds99-y99

545 x100=ds100-y100

546 x101=ds101-y101

547 x102=ds102-y102

548 x103=ds103-y103

549 x104=ds104-y104

550 x105=ds105-y105

551 x106=ds106-y106

552 x107=ds107-y107

553 x108=ds108-y108

554 x109=ds109-y109

555 x111=ds111-y111

556 x112=ds112-y112

557 x113=ds113-y113

558 x114=ds114-y114

559 x115=ds115-y115

560 x116=ds116-y116

561 x117=ds117-y117

562 x118=ds118-y118

563 x119=ds119-y119

564 x120=ds120-y120

565 x121=ds121-y121

566 x122=ds122-y122

567 x123=ds123-y123

568 x124=ds124-y124

569 x125=ds125-y125

570 x126=ds126-y126

571 x127=ds127-y127

572 x128=ds128-y128

573 x129=ds129-y129

574 x130=ds130-y130

575 x131=ds131-y131

576 x132=ds132-y132

577 x133=ds133-y133

578 x134=ds134-y134

175

579 x135=ds135-y135

580 x136=ds136-y136

581 x137=ds137-y137

582 x138=ds138-y138

583 x139=ds139-y139

584 x140=ds140-y140

585 x141=ds141-y141

586 x142=ds142-y142

587 x143=ds143-y143

588 x144=ds144-y144

589 x145=ds145-y145

590 x146=ds146-y146

591 x147=ds147-y147

592 x148=ds148-y148

593 x149=ds149-y149

594 x150=ds150-y150

595 x151=ds151-y151

596 x152=ds152-y152

597 x153=ds153-y153

598 x154=ds154-y154

599 x155=ds155-y155

600 x156=ds156-y156

601 x157=ds157-y157

602 x158=ds158-y158

603 x159=ds159-y159

604 x160=ds160-y160

605 x161=ds161-y161

606 x162=ds162-y162

607 x163=ds163-y163

608 x164=ds164-y164

609 x165=ds165-y165

610 x166=ds166-y166

611 x167=ds167-y167

612 x168=ds168-y168

613 x169=ds169-y169

614 x170=ds170-y170

615 x171=ds171-y171

616 x172=ds172-y172

617 x173=ds173-y173

618 x174=ds174-y174

619 x175=ds175-y175

176

620 x176=ds176-y176

621 x177=ds177-y177

622 x178=ds178-y178

623 x179=ds179-y179

624 x180=ds180-y180

625 x181=ds181-y181

626 x182=ds182-y182

627 x183=ds183-y183

628 x184=ds184-y184

629 x185=ds185-y185

630 x186=ds186-y186

631 x187=ds187-y187

632 x188=ds188-y188

633 x189=ds189-y189

634 x190=ds190-y190

635 x191=ds191-y191

636 x192=ds192-y192

637 x193=ds193-y193

638 x194=ds194-y194

639 x195=ds195-y195

640 x196=ds196-y196

641 x197=ds197-y197

642 x198=ds198-y198

643 x199=ds199-y199

644 x200=ds200-y200

645 set1=ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+ds9+ds10

646 set2=set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+ds19+ds20

647 set3=set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+ds29+ds30

648 set4=set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+ds39+ds30

649 set5=set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+ds49+ds50

650 set6=set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+ds59+ds60

651 set7=set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+ds69+ds70

652 set8=set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+ds79+ds80

653 set9=set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+ds89+ds80

654 set10=set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+ds99+ds100

655 set11=ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+ds109+ds110

656 set12=set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+ds119+ds120

657 set13=set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+ds129+ds130

658 set14=set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+ds139+ds140

659 set15=set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+ds149+ds150

660 set16=set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+ds159+ds160

177

661 set17=set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+ds169+ds170

662 set18=set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+ds179+ds180

663 set19=set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+ds189+ds190

664 set20=set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+ds199+ds200

665 # print ('dspace1 =',ds1)

666 # print ('dspace2 =',ds2)

667 # print ('dspace3 =',ds3)

668 # print ('dspace4 =',ds4)

669

670 #Model lengths

671 Length1= sum(ds1,ds2,ds3,ds4,ds5,ds6,ds7,ds8,ds9,ds10,

672 ds11,ds12,ds13,ds14,ds15,ds16,ds17,ds18,ds19,ds20,

673 ds21,ds22,ds23,ds24,ds25,ds26,ds27,ds28,ds29,ds30,

674 ds31,ds32,ds33,ds34,ds35,ds36,ds37,ds38,ds39,ds40,

675 ds41,ds42,ds43,ds44,ds45,ds46,ds47,ds48,ds49,ds50,

676 ds51,ds52,ds53,ds54,ds55,ds56,ds57,ds58,ds59,ds60,

677 ds61,ds62,ds63,ds64,ds65,ds66,ds67,ds68,ds69,ds70,

678 ds71,ds72,ds73,ds74,ds75,ds76,ds77,ds78,ds79,ds80,

679 ds81,ds82,ds83,ds84,ds85,ds86,ds87,ds88,ds89,ds90,

680 ds91,ds92,ds93,ds94,ds95,ds96,ds97,ds98,ds99,ds100)

681 Length2= sum(ds101,ds102,ds103,ds104,ds105,ds106,ds107,ds108,ds109,ds110,

682 ds111,ds112,ds113,ds114,ds115,ds116,ds117,ds118,ds119,ds120,

683 ds121,ds122,ds123,ds124,ds125,ds126,ds127,ds128,ds129,ds130,

684 ds131,ds132,ds133,ds134,ds135,ds136,ds137,ds138,ds139,ds140,

685 ds141,ds142,ds143,ds144,ds145,ds146,ds147,ds148,ds149,ds150,

686 ds151,ds152,ds153,ds154,ds155,ds156,ds157,ds158,ds159,ds160,

687 ds161,ds162,ds163,ds164,ds165,ds166,ds167,ds168,ds169,ds170,

688 ds171,ds172,ds173,ds174,ds175,ds176,ds177,ds178,ds179,ds180,

689 ds181,ds182,ds183,ds184,ds185,ds186,ds187,ds188,ds189,ds190,

690 ds191,ds192,ds193,ds194,ds195,ds196,ds197,ds198,ds199,ds200)

691 LengthF= max(Length1, Length2)

692 # LengthFh=LengthF/2

693 print ('Length1 =',Length1)

694 print ('Length2 =',Length2)

695 print ('LengthF =',LengthF)

696 LengthDiff=Length1-Length2

697 print ('Difference in Row Length =',LengthDiff)

698 #LengthF=Length1 (ie. The Top Row is Larger; Bottom Row Has Spacer)

699 if LengthF == Length1:

700 s1 = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',

701 sheetSize=200.0)

178

702 g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

703 s1.setPrimaryObject(option=STANDALONE)

704 s1.rectangle(point1=(0.0, 0.0), point2=(LengthF, 0.007))

705 # session.viewports['Viewport: 1'].view.fitView()

706 p = mdb.models['Model-1'].Part(name='Composite Bone',

707 dimensionality=TWO_D_PLANAR, type=DEFORMABLE_BODY)

708 p = mdb.models['Model-1'].parts['Composite Bone']

709 p.BaseShell(sketch=s1)

710 s1.unsetPrimaryObject()

711 session.viewports['Viewport: 1'].setValues(displayedObject=p)

712 del mdb.models['Model-1'].sketches['__profile__']

713 # p = mdb.models['Model-1'].parts['Composite Bone']

714 # p.DatumPointByCoordinate(coords=(0.0, 0.00125, 0.0))

715 # p.DatumPointByCoordinate(coords=(0.0, 0.00275, 0.0))

716 # p.DatumPointByCoordinate(coords=(0.0, 0.00425, 0.0))

717 # p.DatumPointByCoordinate(coords=(0.0, 0.00575, 0.0))

718 # p.DatumPointByCoordinate(coords=(0.05628, 0.007, 0.0))

719 # p.DatumPointByCoordinate(coords=(0.067, 0.007, 0.0))

720 # p.DatumPointByCoordinate(coords=(0.07772, 0.007, 0.0))

721 # p.DatumPointByCoordinate(coords=(0.01072, 0.0, 0.0))

722 # p.DatumPointByCoordinate(coords=(0.067, 0.0, 0.0))

723 # p.DatumPointByCoordinate(coords=(0.12328, 0.0, 0.0))

724 # p.DatumPointByCoordinate(coords=(0.13, 0.0, 0.0))

725 f, e1, d2 = p.faces, p.edges, p.datums

726 t = p.MakeSketchTransform(sketchPlane=f[0], sketchPlaneSide=SIDE1, origin=(

727 0.0, 0.0, 0.0))

728 s = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',

729 sheetSize=0.268, gridSpacing=0.006, transform=t)

730 g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

731 s.sketchOptions.setValues(decimalPlaces=3)

732 s.setPrimaryObject(option=SUPERIMPOSE)

733 p.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)

734 s.Line(point1=(0, 0.00125), point2=(LengthF, 0.00125))

735 s.HorizontalConstraint(entity=g[6], addUndoState=False)

736 s.Line(point1=(0, 0.00275), point2=(LengthF, 0.00275))

737 s.HorizontalConstraint(entity=g[7], addUndoState=False)

738 s.Line(point1=(0, 0.0035), point2=(LengthF, 0.0035))

739 s.HorizontalConstraint(entity=g[8], addUndoState=False)

740 s.Line(point1=(0, 0.00425), point2=(LengthF, 0.00425))

741 s.HorizontalConstraint(entity=g[9], addUndoState=False)

742 s.Line(point1=(0, 0.00575), point2=(LengthF, 0.00575))

179

743 s.HorizontalConstraint(entity=g[10], addUndoState=False)

744 #Top Row, Dspace 1-10

745 s.Line(point1=(y1, 0.007), point2=(y1, 0.00575))

746 s.Line(point1=(ds1, 0.007), point2=(ds1, 0.0035))

747 s.Line(point1=(ds1+x2, 0.007), point2=(ds1+x2, 0.00575))

748 s.Line(point1=(ds1+ds2, 0.007), point2=(ds1+ds2, 0.0035))

749 s.Line(point1=(ds1+ds2+y3, 0.007), point2=(ds1+ds2+y3, 0.00575))

750 s.Line(point1=(ds1+ds2+ds3, 0.007), point2=(ds1+ds2+ds3, 0.0035))

751 s.Line(point1=(ds1+ds2+ds3+x4, 0.007), point2=(ds1+ds2+ds3+x4, 0.00575))

752 s.Line(point1=(ds1+ds2+ds3+ds4, 0.007), point2=(ds1+ds2+ds3+ds4, 0.0035))

753 s.Line(point1=(ds1+ds2+ds3+ds4+y5, 0.007), point2=(ds1+ds2+ds3+ds4+y5, 0.00575))

754 s.Line(point1=(ds1+ds2+ds3+ds4+ds5, 0.007), point2=(ds1+ds2+ds3+ds4+ds5, 0.0035))

755 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+x6, 0.007), point2=(ds1+ds2+ds3+ds4+ds5+x6, 0.00575))

756 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6, 0.007), point2=(ds1+ds2+ds3+ds4+ds5+ds6, 0.0035))

757 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+y7, 0.007), point2=(ds1+ds2+ds3+ds4+ds5+ds6+y7, 0.00575))

758 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+ds7, 0.007), point2=(ds1+ds2+ds3+ds4+ds5+ds6+ds7,

0.0035))↪→

759 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+x8, 0.007), point2=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+x8,

0.00575))↪→

760 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8, 0.007), point2=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8,

0.0035))↪→

761 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+y9, 0.007),

point2=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+y9, 0.00575))↪→

762 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+ds9, 0.007),

point2=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+ds9, 0.0035))↪→

763 s.Line(point1=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+ds9+x10, 0.007),

point2=(ds1+ds2+ds3+ds4+ds5+ds6+ds7+ds8+ds9+x10, 0.00575))↪→

764 s.Line(point1=(set1, 0.007), point2=(set1, 0.0035))

765 #Top Row, Dspace 11-20

766 s.Line(point1=(set1+y11, 0.007), point2=(set1+y11, 0.00575))

767 s.Line(point1=(set1+ds11, 0.007), point2=(set1+ds11, 0.0035))

768 s.Line(point1=(set1+ds11+x12, 0.007), point2=(set1+ds11+x12, 0.00575))

769 s.Line(point1=(set1+ds11+ds12, 0.007), point2=(set1+ds11+ds12, 0.0035))

770 s.Line(point1=(set1+ds11+ds12+y13, 0.007), point2=(set1+ds11+ds12+y13, 0.00575))

771 s.Line(point1=(set1+ds11+ds12+ds13, 0.007), point2=(set1+ds11+ds12+ds13, 0.0035))

772 s.Line(point1=(set1+ds11+ds12+ds13+x14, 0.007), point2=(set1+ds11+ds12+ds13+x14, 0.00575))

773 s.Line(point1=(set1+ds11+ds12+ds13+ds14, 0.007), point2=(set1+ds11+ds12+ds13+ds14, 0.0035))

774 s.Line(point1=(set1+ds11+ds12+ds13+ds14+y15, 0.007), point2=(set1+ds11+ds12+ds13+ds14+y15,

0.00575))↪→

775 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15, 0.007), point2=(set1+ds11+ds12+ds13+ds14+ds15,

0.0035))↪→

180

776 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+x16, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+x16, 0.00575))↪→

777 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16, 0.0035))↪→

778 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+y17, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+y17, 0.00575))↪→

779 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17, 0.0035))↪→

780 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+x18, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+x18, 0.00575))↪→

781 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18, 0.0035))↪→

782 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+y19, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+y19, 0.00575))↪→

783 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+ds19, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+ds19, 0.0035))↪→

784 s.Line(point1=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+ds19+x20, 0.007),

point2=(set1+ds11+ds12+ds13+ds14+ds15+ds16+ds17+ds18+ds19+x20, 0.00575))↪→

785 #Top Row, Dspace 21-30

786

787 s.Line(point1=(set2, 0.007), point2=(set2, 0.0035))

788 s.Line(point1=(set2+y21, 0.007), point2=(set2+y21, 0.00575))

789 s.Line(point1=(set2+ds21, 0.007), point2=(set2+ds21, 0.0035))

790 s.Line(point1=(set2+ds21+x22, 0.007), point2=(set2+ds21+x22, 0.00575))

791 s.Line(point1=(set2+ds21+ds22, 0.007), point2=(set2+ds21+ds22, 0.0035))

792 s.Line(point1=(set2+ds21+ds22+y23, 0.007), point2=(set2+ds21+ds22+y23, 0.00575))

793 s.Line(point1=(set2+ds21+ds22+ds23, 0.007), point2=(set2+ds21+ds22+ds23, 0.0035))

794 s.Line(point1=(set2+ds21+ds22+ds23+x24, 0.007), point2=(set2+ds21+ds22+ds23+x24, 0.00575))

795 s.Line(point1=(set2+ds21+ds22+ds23+ds24, 0.007), point2=(set2+ds21+ds22+ds23+ds24, 0.0035))

796 s.Line(point1=(set2+ds21+ds22+ds23+ds24+y25, 0.007), point2=(set2+ds21+ds22+ds23+ds24+y25,

0.00575))↪→

797 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25, 0.007), point2=(set2+ds21+ds22+ds23+ds24+ds25,

0.0035))↪→

798 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+x26, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+x26, 0.00575))↪→

799 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+ds26, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26, 0.0035))↪→

800 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+ds26+y27, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+y27, 0.00575))↪→

801 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27, 0.0035))↪→

181

802 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+x28, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+x28, 0.00575))↪→

803 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28, 0.0035))↪→

804 s.Line(point1=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+y29, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+y29, 0.00575))↪→

805 s.Line(point1=(set2++ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+ds29, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+ds29, 0.0035))↪→

806 s.Line(point1=(set2++ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+ds29+x30, 0.007),

point2=(set2+ds21+ds22+ds23+ds24+ds25+ds26+ds27+ds28+ds29+x30, 0.00575))↪→

807 #Top Row, Dspace 31-40

808 s.Line(point1=(set3, 0.007), point2=(set3, 0.0035))

809 s.Line(point1=(set3+y31, 0.007), point2=(set3+y31, 0.00575))

810 s.Line(point1=(set3+ds31, 0.007), point2=(set3+ds31, 0.0035))

811 s.Line(point1=(set3+ds31+x32, 0.007), point2=(set3+ds31+x32, 0.00575))

812 s.Line(point1=(set3+ds31+ds32, 0.007), point2=(set3+ds31+ds32, 0.0035))

813 s.Line(point1=(set3+ds31+ds32+y33, 0.007), point2=(set3+ds31+ds32+y33, 0.00575))

814 s.Line(point1=(set3+ds31+ds32+ds33, 0.007), point2=(set3+ds31+ds32+ds33, 0.0035))

815 s.Line(point1=(set3+ds31+ds32+ds33+x34, 0.007), point2=(set3+ds31+ds32+ds33+x34, 0.00575))

816 s.Line(point1=(set3+ds31+ds32+ds33+ds34, 0.007), point2=(set3+ds31+ds32+ds33+ds34, 0.0035))

817 s.Line(point1=(set3+ds31+ds32+ds33+ds34+y35, 0.007), point2=(set3+ds31+ds32+ds33+ds34+y35,

0.00575))↪→

818 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35, 0.007), point2=(set3+ds31+ds32+ds33+ds34+ds35,

0.0035))↪→

819 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+x36, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+x36, 0.00575))↪→

820 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36, 0.0035))↪→

821 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+y37, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+y37, 0.00575))↪→

822 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37, 0.0035))↪→

823 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+x38, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+x38, 0.00575))↪→

824 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38, 0.0035))↪→

825 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+y39, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+y39, 0.00575))↪→

826 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+ds39, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+ds39, 0.0035))↪→

182

827 s.Line(point1=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+ds39+x40, 0.007),

point2=(set3+ds31+ds32+ds33+ds34+ds35+ds36+ds37+ds38+ds39+x40, 0.00575))↪→

828 #Top Row, Dspace 41-50

829 s.Line(point1=(set4, 0.007), point2=(set4, 0.0035))

830 s.Line(point1=(set4+y41, 0.007), point2=(set4+y41, 0.00575))

831 s.Line(point1=(set4+ds41, 0.007), point2=(set4+ds41, 0.0035))

832 s.Line(point1=(set4+ds41+x42, 0.007), point2=(set4+ds41+x42, 0.00575))

833 s.Line(point1=(set4+ds41+ds42, 0.007), point2=(set4+ds41+ds42, 0.0035))

834 s.Line(point1=(set4+ds41+ds42+y43, 0.007), point2=(set4+ds41+ds42+y43, 0.00575))

835 s.Line(point1=(set4+ds41+ds42+ds43, 0.007), point2=(set4+ds41+ds42+ds43, 0.0035))

836 s.Line(point1=(set4+ds41+ds42+ds43+x44, 0.007), point2=(set4+ds41+ds42+ds43+x44, 0.00575))

837 s.Line(point1=(set4+ds41+ds42+ds43+ds44, 0.007), point2=(set4+ds41+ds42+ds43+ds44, 0.0035))

838 s.Line(point1=(set4+ds41+ds42+ds43+ds44+y45, 0.007), point2=(set4+ds41+ds42+ds43+ds44+y45,

0.00575))↪→

839 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45, 0.007), point2=(set4+ds41+ds42+ds43+ds44+ds45,

0.0035))↪→

840 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+x46, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+x46, 0.00575))↪→

841 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46, 0.0035))↪→

842 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+y47, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+y47, 0.00575))↪→

843 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47, 0.0035))↪→

844 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+x48, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+x48, 0.00575))↪→

845 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48, 0.0035))↪→

846 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+y49, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+y49, 0.00575))↪→

847 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+ds49, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+ds49, 0.0035))↪→

848 s.Line(point1=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+ds49+x50, 0.007),

point2=(set4+ds41+ds42+ds43+ds44+ds45+ds46+ds47+ds48+ds49+x50, 0.00575))↪→

849 #Top Row, Dspace 51-60

850 s.Line(point1=(set5, 0.007), point2=(set5, 0.0035))

851 s.Line(point1=(set5+y51, 0.007), point2=(set5+y51, 0.00575))

852 s.Line(point1=(set5+ds51, 0.007), point2=(set5+ds51, 0.0035))

853 s.Line(point1=(set5+ds51+x52, 0.007), point2=(set5+ds51+x52, 0.00575))

854 s.Line(point1=(set5+ds51+ds52, 0.007), point2=(set5+ds51+ds52, 0.0035))

855 s.Line(point1=(set5+ds51+ds52+y53, 0.007), point2=(set5+ds51+ds52+y53, 0.00575))

183

856 s.Line(point1=(set5+ds51+ds52+ds53, 0.007), point2=(set5+ds51+ds52+ds53, 0.0035))

857 s.Line(point1=(set5+ds51+ds52+ds53+x54, 0.007), point2=(set5+ds51+ds52+ds53+x54, 0.00575))

858 s.Line(point1=(set5+ds51+ds52+ds53+ds54, 0.007), point2=(set5+ds51+ds52+ds53+ds54, 0.0035))

859 s.Line(point1=(set5+ds51+ds52+ds53+ds54+y55, 0.007), point2=(set5+ds51+ds52+ds53+ds54+y55,

0.00575))↪→

860 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55, 0.007), point2=(set5+ds51+ds52+ds53+ds54+ds55,

0.0035))↪→

861 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+x56, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+x56, 0.00575))↪→

862 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56, 0.0035))↪→

863 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+y57, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+y57, 0.00575))↪→

864 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57, 0.0035))↪→

865 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+x58, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+x58, 0.00575))↪→

866 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58, 0.0035))↪→

867 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+y59, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+y59, 0.00575))↪→

868 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+ds59, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+ds59, 0.0035))↪→

869 s.Line(point1=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+ds59+x60, 0.007),

point2=(set5+ds51+ds52+ds53+ds54+ds55+ds56+ds57+ds58+ds59+x60, 0.00575))↪→

870 #Top Row, Dspace 61-70

871 s.Line(point1=(set6, 0.007), point2=(set6, 0.0035))

872 s.Line(point1=(set6+y61, 0.007), point2=(set6+y61, 0.00575))

873 s.Line(point1=(set6+ds61, 0.007), point2=(set6+ds61, 0.0035))

874 s.Line(point1=(set6+ds61+x62, 0.007), point2=(set6+ds61+x62, 0.00575))

875 s.Line(point1=(set6+ds61+ds62, 0.007), point2=(set6+ds61+ds62, 0.0035))

876 s.Line(point1=(set6+ds61+ds62+y63, 0.007), point2=(set6+ds61+ds62+y63, 0.00575))

877 s.Line(point1=(set6+ds61+ds62+ds63, 0.007), point2=(set6+ds61+ds62+ds63, 0.0035))

878 s.Line(point1=(set6+ds61+ds62+ds63+x64, 0.007), point2=(set6+ds61+ds62+ds63+x64, 0.00575))

879 s.Line(point1=(set6+ds61+ds62+ds63+ds64, 0.007), point2=(set6+ds61+ds62+ds63+ds64, 0.0035))

880 s.Line(point1=(set6+ds61+ds62+ds63+ds64+y65, 0.007), point2=(set6+ds61+ds62+ds63+ds64+y65,

0.00575))↪→

881 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65, 0.007), point2=(set6+ds61+ds62+ds63+ds64+ds65,

0.0035))↪→

882 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+x66, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+x66, 0.00575))↪→

184

883 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66, 0.0035))↪→

884 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+y67, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+y67, 0.00575))↪→

885 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67, 0.0035))↪→

886 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+x68, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+x68, 0.00575))↪→

887 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68, 0.0035))↪→

888 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+y69, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+y69, 0.00575))↪→

889 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+ds69, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+ds69, 0.0035))↪→

890 s.Line(point1=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+ds69+x70, 0.007),

point2=(set6+ds61+ds62+ds63+ds64+ds65+ds66+ds67+ds68+ds69+x70, 0.00575))↪→

891 #Top Row, Dspace 71-80

892 s.Line(point1=(set7, 0.007), point2=(set7, 0.0035))

893 s.Line(point1=(set7+y71, 0.007), point2=(set7+y71, 0.00575))

894 s.Line(point1=(set7+ds71, 0.007), point2=(set7+ds71, 0.0035))

895 s.Line(point1=(set7+ds71+x72, 0.007), point2=(set7+ds71+x72, 0.00575))

896 s.Line(point1=(set7+ds71+ds72, 0.007), point2=(set7+ds71+ds72, 0.0035))

897 s.Line(point1=(set7+ds71+ds72+y73, 0.007), point2=(set7+ds71+ds72+y73, 0.00575))

898 s.Line(point1=(set7+ds71+ds72+ds73, 0.007), point2=(set7+ds71+ds72+ds73, 0.0035))

899 s.Line(point1=(set7+ds71+ds72+ds73+x74, 0.007), point2=(set7+ds71+ds72+ds73+x74, 0.00575))

900 s.Line(point1=(set7+ds71+ds72+ds73+ds74, 0.007), point2=(set7+ds71+ds72+ds73+ds74, 0.0035))

901 s.Line(point1=(set7+ds71+ds72+ds73+ds74+y75, 0.007), point2=(set7+ds71+ds72+ds73+ds74+y75,

0.00575))↪→

902 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75, 0.007), point2=(set7+ds71+ds72+ds73+ds74+ds75,

0.0035))↪→

903 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+x76, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+x76, 0.00575))↪→

904 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76, 0.0035))↪→

905 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+y77, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+y77, 0.00575))↪→

906 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77, 0.0035))↪→

907 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+x78, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+x78, 0.00575))↪→

185

908 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78, 0.0035))↪→

909 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+y79, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+y79, 0.00575))↪→

910 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+ds79, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+ds79, 0.0035))↪→

911 s.Line(point1=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+ds79+x80, 0.007),

point2=(set7+ds71+ds72+ds73+ds74+ds75+ds76+ds77+ds78+ds79+x80, 0.00575))↪→

912 #Top Row, Dspace 81-90

913 s.Line(point1=(set8, 0.007), point2=(set8, 0.0035))

914 s.Line(point1=(set8+y81, 0.007), point2=(set8+y81, 0.00575))

915 s.Line(point1=(set8+ds81, 0.007), point2=(set8+ds81, 0.0035))

916 s.Line(point1=(set8+ds81+x82, 0.007), point2=(set8+ds81+x82, 0.00575))

917 s.Line(point1=(set8+ds81+ds82, 0.007), point2=(set8+ds81+ds82, 0.0035))

918 s.Line(point1=(set8+ds81+ds82+y83, 0.007), point2=(set8+ds81+ds82+y83, 0.00575))

919 s.Line(point1=(set8+ds81+ds82+ds83, 0.007), point2=(set8+ds81+ds82+ds83, 0.0035))

920 s.Line(point1=(set8+ds81+ds82+ds83+x84, 0.007), point2=(set8+ds81+ds82+ds83+x84, 0.00575))

921 s.Line(point1=(set8+ds81+ds82+ds83+ds84, 0.007), point2=(set8+ds81+ds82+ds83+ds84, 0.0035))

922 s.Line(point1=(set8+ds81+ds82+ds83+ds84+y85, 0.007), point2=(set8+ds81+ds82+ds83+ds84+y85,

0.00575))↪→

923 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85, 0.007), point2=(set8+ds81+ds82+ds83+ds84+ds85,

0.0035))↪→

924 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+x86, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+x86, 0.00575))↪→

925 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86, 0.0035))↪→

926 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+y87, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+y87, 0.00575))↪→

927 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87, 0.0035))↪→

928 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+x88, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+x88, 0.00575))↪→

929 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88, 0.0035))↪→

930 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+y89, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+y89, 0.00575))↪→

931 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+ds89, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+ds89, 0.0035))↪→

932 s.Line(point1=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+ds89+x90, 0.007),

point2=(set8+ds81+ds82+ds83+ds84+ds85+ds86+ds87+ds88+ds89+x90, 0.00575))↪→

933 #Top Row, Dspace 91-100

186

934 s.Line(point1=(set9, 0.007), point2=(set9, 0.0035))

935 s.Line(point1=(set9+y91, 0.007), point2=(set9+y91, 0.00575))

936 s.Line(point1=(set9+ds91, 0.007), point2=(set9+ds91, 0.0035))

937 s.Line(point1=(set9+ds91+x92, 0.007), point2=(set9+ds91+x92, 0.00575))

938 s.Line(point1=(set9+ds91+ds92, 0.007), point2=(set9+ds91+ds92, 0.0035))

939 s.Line(point1=(set9+ds91+ds92+y93, 0.007), point2=(set9+ds91+ds92+y93, 0.00575))

940 s.Line(point1=(set9+ds91+ds92+ds93, 0.007), point2=(set9+ds91+ds92+ds93, 0.0035))

941 s.Line(point1=(set9+ds91+ds92+ds93+x94, 0.007), point2=(set9+ds91+ds92+ds93+x94, 0.00575))

942 s.Line(point1=(set9+ds91+ds92+ds93+ds94, 0.007), point2=(set9+ds91+ds92+ds93+ds94, 0.0035))

943 s.Line(point1=(set9+ds91+ds92+ds93+ds94+y95, 0.007), point2=(set9+ds91+ds92+ds93+ds94+y95,

0.00575))↪→

944 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95, 0.007), point2=(set9+ds91+ds92+ds93+ds94+ds95,

0.0035))↪→

945 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+x96, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+x96, 0.00575))↪→

946 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96, 0.0035))↪→

947 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+y97, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+y97, 0.00575))↪→

948 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97, 0.0035))↪→

949 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+x98, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+x98, 0.00575))↪→

950 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98, 0.0035))↪→

951 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+y99, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+y99, 0.00575))↪→

952 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+ds99, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+ds99, 0.0035))↪→

953 s.Line(point1=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+ds99+x100, 0.007),

point2=(set9+ds91+ds92+ds93+ds94+ds95+ds96+ds97+ds98+ds99+x100, 0.00575))↪→

954 #Bottom Row, Dspace 1-10

955 s.Line(point1=(x101, 0.0), point2=(x101, 0.00125))

956 s.Line(point1=(ds101, 0.0), point2=(ds101, 0.0035))

957 s.Line(point1=(ds101+y102, 0), point2=(ds101+y102, 0.00125))

958 s.Line(point1=(ds101+ds102, 0.0), point2=(ds101+ds102, 0.0035))

959 s.Line(point1=(ds101+ds102+x103, 0.0), point2=(ds101+ds102+x103, 0.00125))

960 s.Line(point1=(ds101+ds102+ds103, 0.0), point2=(ds101+ds102+ds103, 0.0035))

961 s.Line(point1=(ds101+ds102+ds103+y104, 0.0), point2=(ds101+ds102+ds103+y104, 0.00125))

962 s.Line(point1=(ds101+ds102+ds103+ds104, 0.0), point2=(ds101+ds102+ds103+ds104, 0.0035))

187

963 s.Line(point1=(ds101+ds102+ds103+ds104+x105, 0.0), point2=(ds101+ds102+ds103+ds104+x105,

0.00125))↪→

964 s.Line(point1=(ds101+ds102+ds103+ds104+ds105, 0.0), point2=(ds101+ds102+ds103+ds104+ds105,

0.0035))↪→

965 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+y106, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+y106, 0.00125))↪→

966 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106, 0.0035))↪→

967 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+x107, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+x107, 0.00125))↪→

968 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+ds107, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+ds107, 0.0035))↪→

969 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+y108, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+y108, 0.00125))↪→

970 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108, 0.0035))↪→

971 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+x109, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+x109, 0.00125))↪→

972 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+ds109, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+ds109, 0.0035))↪→

973 s.Line(point1=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+ds109+y110, 0.0),

point2=(ds101+ds102+ds103+ds104+ds105+ds106+ds107+ds108+ds109+y110, 0.00125))↪→

974 s.Line(point1=(set11, 0.0), point2=(set11, 0.0035))

975 #Bottom Row, Dspace 11-20

976 s.Line(point1=(set11+x111, 0.0), point2=(set11+x111, 0.00125))

977 s.Line(point1=(set11+ds111, 0.0), point2=(set11+ds111, 0.0035))

978 s.Line(point1=(set11+ds111+y112, 0), point2=(set11+ds111+y112, 0.00125))

979 s.Line(point1=(set11+ds111+ds112, 0.0), point2=(set11+ds111+ds112, 0.0035))

980 s.Line(point1=(set11+ds111+ds112+x113, 0.0), point2=(set11+ds111+ds112+x113, 0.00125))

981 s.Line(point1=(set11+ds111+ds112+ds113, 0.0), point2=(set11+ds111+ds112+ds113, 0.0035))

982 s.Line(point1=(set11+ds111+ds112+ds113+y114, 0.0), point2=(set11+ds111+ds112+ds113+y114,

0.00125))↪→

983 s.Line(point1=(set11+ds111+ds112+ds113+ds114, 0.0), point2=(set11+ds111+ds112+ds113+ds114,

0.0035))↪→

984 s.Line(point1=(set11+ds111+ds112+ds113+ds114+x115, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+x115, 0.00125))↪→

985 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115, 0.0035))↪→

986 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+y116, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+y116, 0.00125))↪→

188

987 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116, 0.0035))↪→

988 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+x117, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+x117, 0.00125))↪→

989 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117, 0.0035))↪→

990 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+y118, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+y118, 0.00125))↪→

991 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118, 0.0035))↪→

992 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+x119, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+x119, 0.00125))↪→

993 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+ds119, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+ds119, 0.0035))↪→

994 s.Line(point1=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+ds119+y120, 0.0),

point2=(set11+ds111+ds112+ds113+ds114+ds115+ds116+ds117+ds118+ds119+y120, 0.00125))↪→

995 s.Line(point1=(set12, 0.0), point2=(set12, 0.0035))

996 #Bottom Row, Dspace 21-30

997 s.Line(point1=(set12+x121, 0.0), point2=(set12+x121, 0.00125))

998 s.Line(point1=(set12+ds121, 0.0), point2=(set12+ds121, 0.0035))

999 s.Line(point1=(set12+ds121+y122, 0), point2=(set12+ds121+y122, 0.00125))

1000 s.Line(point1=(set12+ds121+ds122, 0.0), point2=(set12+ds121+ds122, 0.0035))

1001 s.Line(point1=(set12+ds121+ds122+x123, 0.0), point2=(set12+ds121+ds122+x123, 0.00125))

1002 s.Line(point1=(set12+ds121+ds122+ds123, 0.0), point2=(set12+ds121+ds122+ds123, 0.0035))

1003 s.Line(point1=(set12+ds121+ds122+ds123+y124, 0.0), point2=(set12+ds121+ds122+ds123+y124,

0.00125))↪→

1004 s.Line(point1=(set12+ds121+ds122+ds123+ds124, 0.0), point2=(set12+ds121+ds122+ds123+ds124,

0.0035))↪→

1005 s.Line(point1=(set12+ds121+ds122+ds123+ds124+x125, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+x125, 0.00125))↪→

1006 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125, 0.0035))↪→

1007 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+y126, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+y126, 0.00125))↪→

1008 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126, 0.0035))↪→

1009 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+x127, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+x127, 0.00125))↪→

1010 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127, 0.0035))↪→

189

1011 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+y128, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+y128, 0.00125))↪→

1012 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128, 0.0035))↪→

1013 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+x129, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+x129, 0.00125))↪→

1014 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+ds129, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+ds129, 0.0035))↪→

1015 s.Line(point1=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+ds129+y130, 0.0),

point2=(set12+ds121+ds122+ds123+ds124+ds125+ds126+ds127+ds128+ds129+y130, 0.00125))↪→

1016 s.Line(point1=(set13, 0.0), point2=(set13, 0.0035))

1017 #Bottom Row, Dspace 31-40

1018 s.Line(point1=(set13+x131, 0.0), point2=(set13+x131, 0.00125))

1019 s.Line(point1=(set13+ds131, 0.0), point2=(set13+ds131, 0.0035))

1020 s.Line(point1=(set13+ds131+y132, 0), point2=(set13+ds131+y132, 0.00125))

1021 s.Line(point1=(set13+ds131+ds132, 0.0), point2=(set13+ds131+ds132, 0.0035))

1022 s.Line(point1=(set13+ds131+ds132+x133, 0.0), point2=(set13+ds131+ds132+x133, 0.00125))

1023 s.Line(point1=(set13+ds131+ds132+ds133, 0.0), point2=(set13+ds131+ds132+ds133, 0.0035))

1024 s.Line(point1=(set13+ds131+ds132+ds133+y134, 0.0), point2=(set13+ds131+ds132+ds133+y134,

0.00125))↪→

1025 s.Line(point1=(set13+ds131+ds132+ds133+ds134, 0.0), point2=(set13+ds131+ds132+ds133+ds134,

0.0035))↪→

1026 s.Line(point1=(set13+ds131+ds132+ds133+ds134+x135, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+x135, 0.00125))↪→

1027 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135, 0.0035))↪→

1028 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+y136, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+y136, 0.00125))↪→

1029 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136, 0.0035))↪→

1030 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+x137, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+x137, 0.00125))↪→

1031 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137, 0.0035))↪→

1032 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+y138, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+y138, 0.00125))↪→

1033 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138, 0.0035))↪→

1034 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+x139, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+x139, 0.00125))↪→

190

1035 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+ds139, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+ds139, 0.0035))↪→

1036 s.Line(point1=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+ds139+y140, 0.0),

point2=(set13+ds131+ds132+ds133+ds134+ds135+ds136+ds137+ds138+ds139+y140, 0.00125))↪→

1037 s.Line(point1=(set14, 0.0), point2=(set14, 0.0035))

1038 #Bottom Row, Dspace 41-50

1039 s.Line(point1=(set14+x141, 0.0), point2=(set14+x141, 0.00125))

1040 s.Line(point1=(set14+ds141, 0.0), point2=(set14+ds141, 0.0035))

1041 s.Line(point1=(set14+ds141+y142, 0), point2=(set14+ds141+y142, 0.00125))

1042 s.Line(point1=(set14+ds141+ds142, 0.0), point2=(set14+ds141+ds142, 0.0035))

1043 s.Line(point1=(set14+ds141+ds142+x143, 0.0), point2=(set14+ds141+ds142+x143, 0.00125))

1044 s.Line(point1=(set14+ds141+ds142+ds143, 0.0), point2=(set14+ds141+ds142+ds143, 0.0035))

1045 s.Line(point1=(set14+ds141+ds142+ds143+y144, 0.0), point2=(set14+ds141+ds142+ds143+y144,

0.00125))↪→

1046 s.Line(point1=(set14+ds141+ds142+ds143+ds144, 0.0), point2=(set14+ds141+ds142+ds143+ds144,

0.0035))↪→

1047 s.Line(point1=(set14+ds141+ds142+ds143+ds144+x145, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+x145, 0.00125))↪→

1048 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145, 0.0035))↪→

1049 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+y146, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+y146, 0.00125))↪→

1050 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146, 0.0035))↪→

1051 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+x147, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+x147, 0.00125))↪→

1052 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147, 0.0035))↪→

1053 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+y148, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+y148, 0.00125))↪→

1054 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148, 0.0035))↪→

1055 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+x149, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+x149, 0.00125))↪→

1056 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+ds149, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+ds149, 0.0035))↪→

1057 s.Line(point1=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+ds149+y150, 0.0),

point2=(set14+ds141+ds142+ds143+ds144+ds145+ds146+ds147+ds148+ds149+y150, 0.00125))↪→

1058 s.Line(point1=(set15, 0.0), point2=(set15, 0.0035))

1059 #Bottom Row, Dspace 51-60

1060 s.Line(point1=(set15+x151, 0.0), point2=(set15+x151, 0.00125))

191

1061 s.Line(point1=(set15+ds151, 0.0), point2=(set15+ds151, 0.0035))

1062 s.Line(point1=(set15+ds151+y152, 0), point2=(set15+ds151+y152, 0.00125))

1063 s.Line(point1=(set15+ds151+ds152, 0.0), point2=(set15+ds151+ds152, 0.0035))

1064 s.Line(point1=(set15+ds151+ds152+x153, 0.0), point2=(set15+ds151+ds152+x153, 0.00125))

1065 s.Line(point1=(set15+ds151+ds152+ds153, 0.0), point2=(set15+ds151+ds152+ds153, 0.0035))

1066 s.Line(point1=(set15+ds151+ds152+ds153+y154, 0.0), point2=(set15+ds151+ds152+ds153+y154,

0.00125))↪→

1067 s.Line(point1=(set15+ds151+ds152+ds153+ds154, 0.0), point2=(set15+ds151+ds152+ds153+ds154,

0.0035))↪→

1068 s.Line(point1=(set15+ds151+ds152+ds153+ds154+x155, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+x155, 0.00125))↪→

1069 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155, 0.0035))↪→

1070 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+y156, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+y156, 0.00125))↪→

1071 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156, 0.0035))↪→

1072 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+x157, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+x157, 0.00125))↪→

1073 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157, 0.0035))↪→

1074 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+y158, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+y158, 0.00125))↪→

1075 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158, 0.0035))↪→

1076 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+x159, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+x159, 0.00125))↪→

1077 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+ds159, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+ds159, 0.0035))↪→

1078 s.Line(point1=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+ds159+y160, 0.0),

point2=(set15+ds151+ds152+ds153+ds154+ds155+ds156+ds157+ds158+ds159+y160, 0.00125))↪→

1079 s.Line(point1=(set16, 0.0), point2=(set16, 0.0035))

1080 #Bottom Row, Dspace 61{70

1081 s.Line(point1=(set16+x161, 0.0), point2=(set16+x161, 0.00125))

1082 s.Line(point1=(set16+ds161, 0.0), point2=(set16+ds161, 0.0035))

1083 s.Line(point1=(set16+ds161+y162, 0), point2=(set16+ds161+y162, 0.00125))

1084 s.Line(point1=(set16+ds161+ds162, 0.0), point2=(set16+ds161+ds162, 0.0035))

1085 s.Line(point1=(set16+ds161+ds162+x163, 0.0), point2=(set16+ds161+ds162+x163, 0.00125))

1086 s.Line(point1=(set16+ds161+ds162+ds163, 0.0), point2=(set16+ds161+ds162+ds163, 0.0035))

1087 s.Line(point1=(set16+ds161+ds162+ds163+y164, 0.0), point2=(set16+ds161+ds162+ds163+y164,

0.00125))↪→

192

1088 s.Line(point1=(set16+ds161+ds162+ds163+ds164, 0.0), point2=(set16+ds161+ds162+ds163+ds164,

0.0035))↪→

1089 s.Line(point1=(set16+ds161+ds162+ds163+ds164+x165, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+x165, 0.00125))↪→

1090 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165, 0.0035))↪→

1091 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+y166, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+y166, 0.00125))↪→

1092 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166, 0.0035))↪→

1093 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+x167, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+x167, 0.00125))↪→

1094 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167, 0.0035))↪→

1095 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+y168,0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+y168, 0.00125))↪→

1096 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168, 0.0035))↪→

1097 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+x169, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+x169, 0.00125))↪→

1098 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+ds169, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+ds169, 0.0035))↪→

1099 s.Line(point1=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+ds169+y170, 0.0),

point2=(set16+ds161+ds162+ds163+ds164+ds165+ds166+ds167+ds168+ds169+y170, 0.00125))↪→

1100 s.Line(point1=(set17, 0.0), point2=(set17, 0.0035))

1101 #Bottom Row, Dspace 71-80

1102 s.Line(point1=(set17+x171, 0.0), point2=(set17+x171, 0.00125))

1103 s.Line(point1=(set17+ds171, 0.0), point2=(set17+ds171, 0.0035))

1104 s.Line(point1=(set17+ds171+y172, 0), point2=(set17+ds171+y172, 0.00125))

1105 s.Line(point1=(set17+ds171+ds172, 0.0), point2=(set17+ds171+ds172, 0.0035))

1106 s.Line(point1=(set17+ds171+ds172+x173, 0.0), point2=(set17+ds171+ds172+x173, 0.00125))

1107 s.Line(point1=(set17+ds171+ds172+ds173, 0.0), point2=(set17+ds171+ds172+ds173, 0.0035))

1108 s.Line(point1=(set17+ds171+ds172+ds173+y174, 0.0), point2=(set17+ds171+ds172+ds173+y174,

0.00125))↪→

1109 s.Line(point1=(set17+ds171+ds172+ds173+ds174, 0.0), point2=(set17+ds171+ds172+ds173+ds174,

0.0035))↪→

1110 s.Line(point1=(set17+ds171+ds172+ds173+ds174+x175, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+x175, 0.00125))↪→

1111 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175,

0.0),point2=(set17+ds171+ds172+ds173+ds174+ds175, 0.0035))↪→

193

1112 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+y176, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+y176, 0.00125))↪→

1113 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176, 0.0035))↪→

1114 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+x177, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+x177, 0.00125))↪→

1115 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177, 0.0035))↪→

1116 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+y178, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+y178, 0.00125))↪→

1117 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178, 0.0035))↪→

1118 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+x179, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+x179, 0.00125))↪→

1119 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+ds179, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+ds179, 0.0035))↪→

1120 s.Line(point1=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+ds179+y180, 0.0),

point2=(set17+ds171+ds172+ds173+ds174+ds175+ds176+ds177+ds178+ds179+y180, 0.00125))↪→

1121 s.Line(point1=(set18, 0.0), point2=(set18, 0.0035))

1122 #Bottom Row, Dspace 81-90

1123 s.Line(point1=(set18+x181, 0.0), point2=(set18+x181, 0.00125))

1124 s.Line(point1=(set18+ds181, 0.0), point2=(set18+ds181, 0.0035))

1125 s.Line(point1=(set18+ds181+y182, 0.0), point2=(set18+ds181+y182, 0.00125))

1126 s.Line(point1=(set18+ds181+ds182, 0.0), point2=(set18+ds181+ds182, 0.0035))

1127 s.Line(point1=(set18+ds181+ds182+x183, 0.0), point2=(set18+ds181+ds182+x183, 0.00125))

1128 s.Line(point1=(set18+ds181+ds182+ds183, 0.0), point2=(set18+ds181+ds182+ds183, 0.0035))

1129 s.Line(point1=(set18+ds181+ds182+ds183+y184, 0.0), point2=(set18+ds181+ds182+ds183+y184,

0.00125))↪→

1130 s.Line(point1=(set18+ds181+ds182+ds183+ds184, 0.0), point2=(set18+ds181+ds182+ds183+ds184,

0.0035))↪→

1131 s.Line(point1=(set18+ds181+ds182+ds183+ds184+x185, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+x185, 0.00125))↪→

1132 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185, 0.0035))↪→

1133 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+y186, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+y186, 0.00125))↪→

1134 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186, 0.0035))↪→

1135 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+x187, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+x187, 0.00125))↪→

194

1136 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187, 0.0035))↪→

1137 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+y188, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+y188, 0.00125))↪→

1138 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188, 0.0035))↪→

1139 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+x189, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+x189, 0.00125))↪→

1140 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+ds189, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+ds189, 0.0035))↪→

1141 s.Line(point1=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+ds189+y190, 0.0),

point2=(set18+ds181+ds182+ds183+ds184+ds185+ds186+ds187+ds188+ds189+y190, 0.00125))↪→

1142 s.Line(point1=(set19, 0.0), point2=(set19, 0.0035))

1143 #Bottom Row, Dspace 91-100

1144 s.Line(point1=(set19+x191, 0.0), point2=(set19+x191, 0.00125))

1145 s.Line(point1=(set19+ds191, 0.0), point2=(set19+ds191, 0.0035))

1146 s.Line(point1=(set19+ds191+y192, 0), point2=(set19+ds191+y192, 0.00125))

1147 s.Line(point1=(set19+ds191+ds192, 0.0), point2=(set19+ds191+ds192, 0.0035))

1148 s.Line(point1=(set19+ds191+ds192+x193, 0.0), point2=(set19+ds191+ds192+x193, 0.00125))

1149 s.Line(point1=(set19+ds191+ds192+ds193, 0.0), point2=(set19+ds191+ds192+ds193, 0.0035))

1150 s.Line(point1=(set19+ds191+ds192+ds193+y194, 0.0), point2=(set19+ds191+ds192+ds193+y194,

0.00125))↪→

1151 s.Line(point1=(set19+ds191+ds192+ds193+ds194, 0.0), point2=(set19+ds191+ds192+ds193+ds194,

0.0035))↪→

1152 s.Line(point1=(set19+ds191+ds192+ds193+ds194+x195, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+x195, 0.00125))↪→

1153 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195, 0.0035))↪→

1154 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+y196, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+y196, 0.00125))↪→

1155 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196, 0.0035))↪→

1156 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+x197, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+x197, 0.00125))↪→

1157 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197, 0.0035))↪→

1158 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+y198, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+y198, 0.00125))↪→

1159 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198, 0.0035))↪→

195

1160 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+x199, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+x199, 0.00125))↪→

1161 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+ds199, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+ds199, 0.0035))↪→

1162 s.Line(point1=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+ds199+y200, 0.0),

point2=(set19+ds191+ds192+ds193+ds194+ds195+ds196+ds197+ds198+ds199+y200, 0.00125))↪→

1163 s.Line(point1=(set20, 0.0), point2=(set20, 0.0035))

1164 #SPACER SUBSTITUTION

1165 print 'Top Row larger than Bottom Row'

1166 print ('Dspace200 =', ds200)

1167 LengthS=LengthF-(set20)

1168 spacer=DSmean-1*DSstdev

1169 hys=0.84*spacer

1170 LengthS2=LengthS-spacer

1171 LengthS3=LengthS2-spacer

1172 LengthS4=LengthS3-spacer

1173 LengthS5=LengthS4-spacer

1174 LengthS6=LengthS5-spacer

1175 LengthS7=LengthS6-spacer

1176 LengthS8=LengthS7-spacer

1177 #Spacer Remainder work--is the model still biologically valid?

1178 spacerremainder=LengthF-(set20)

1179 NewArea=(ds200+spacerremainder)*(0.0035)

1180 NewRatio=(ds200*0.84)*(1.25E-3)/(NewArea)

1181 if NewRatio < .25:

1182 print 'REJECT MODEL: Currently Biologically Invalid'

1183 if NewRatio >= .25:

1184 print '*MODEL IS NOW VALID; Good for Analysis*'

1185 if LengthS > spacer:

1186 print 'Added FIRST spcer to bottom row'

1187 #creates boundary line for new DSpace in spacer substitution case

1188 s.Line(point1=(set20+spacer, 0.0), point2=(set20+spacer, 0.0035))

1189 #creates hydrox line for new DSpace in spacer substitution case

1190 s.Line(point1=(set20+spacer-hys, 0.0), point2=(set20+spacer-hys, 0.00125))

1191 spacerremainder=LengthF-(set20+spacer)

1192 NewArea=(spacer+spacerremainder)*(0.0035)

1193 NewRatio=(spacer*0.84)*(1.25E-3)/(NewArea)

1194 if NewRatio < .25:

1195 print 'REJECT MODEL: Currently Biologically Invalid'

1196 if NewRatio >= .25:

1197 print '*MODEL IS NOW VALID; Good for Analysis*'

196

1198 if LengthS2 > spacer:

1199 print 'Added SECOND spacer to bottom row'

1200 #creates boundary line for new DSpace in SECOND spacer substitution case

1201 s.Line(point1=(set20+spacer+spacer, 0.0), point2=(set20+spacer+spacer, 0.0035))

1202 #creates hydrox line for new DSpace in SECOND spacer substitution case

1203 s.Line(point1=(set20+spacer+hys, 0.0), point2=(set20+spacer+hys, 0.00125))

1204 spacerremainder=LengthF-(set20+spacer+spacer)

1205 NewArea=(spacer+spacerremainder)*(0.0035)

1206 NewRatio=(spacer*0.84)*(1.25E-3)/(NewArea)

1207 if NewRatio < .25:

1208 print 'REJECT MODEL: Currently Biologically Invalid'

1209 if NewRatio >= .25357:

1210 print '*MODEL IS NOW VALID; Good for Analysis*'

1211 if LengthS3 > spacer:

1212 print 'Added THIRD spacer to bottom row'

1213 #creates boundary line for new DSpace in THIRD spacer substitution case

1214 s.Line(point1=(set20+spacer+spacer+spacer, 0.0), point2=(set20+spacer+spacer+spacer, 0.0035))

1215 #creates hydrox line for new DSpace in THIRD spacer substitution case

1216 s.Line(point1=(set20+spacer+spacer+spacer-hys, 0.0), point2=(set20+spacer+spacer+spacer-hys,

0.00125))↪→

1217 spacerremainder=LengthF-(set20+spacer+spacer+spacer)

1218 if LengthS4 > spacer:

1219 print 'Added FOURTH spacer to bottom row'

1220 #creates boundary line for new DSpace in FOURTH spacer substitution case

1221 #creates hydrox line for new DSpace in FOURTH spacer substitution case

1222 s.Line(point1=(set20+spacer+spacer+spacer+hys, 0.0), point2=(set20+spacer+spacer+spacer+hys,

0.00125))↪→

1223 spacerremainder=LengthF-(set20+spacer+spacer+spacer+spacer)

1224 if LengthS5 > spacer:

1225 print 'Added FIFTH spacer to bottom row'

1226 #creates boundary line for new DSpace in FIFTH spacer substitution case

1227 s.Line(point1=(set20+spacer+spacer+spacer+spacer, 0.0),

point2=(set20+spacer+spacer+spacer+spacer, 0.0035))↪→

1228 #creates hydrox line for new DSpace in FIFTH spacer substitution case

1229 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer-hys, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer-hys, 0.00125))↪→

1230 spacerremainder=LengthF-(set20+spacer+spacer+spacer+spacer+spacer)

1231 if NewRatio >= .25:

1232 if LengthS6 > spacer:

1233 print 'Added SIXTH spacer to bottom row'

1234 #creates boundary line for new DSpace in SIXTH spacer substitution case

197

1235 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1236 #creates hydrox line for new DSpace in SIXTH spacer substitution case

1237 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer+hys, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer+hys, 0.00125))↪→

1238 spacerremainder=LengthF-(set20+spacer+spacer+spacer+spacer+spacer+spacer)

1239 if LengthS7 > spacer:

1240 print 'Added SEVENTH spacer to bottom row'

1241 #creates boundary line for new DSpace in SEVENTH spacer substitution case

1242 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer+spacer, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1243 #creates hydrox line for new DSpace in SEVENTH spacer substitution case

1244 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer-hys, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer-hys, 0.00125))↪→

1245 spacerremainder=LengthF-(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer)

1246 if LengthS8 > spacer:

1247 print 'Added EIGTH spacer to bottom row NO WAY IS THIS FOR REAL?!'

1248 #creates boundary line for new DSpace in EIGTH spacer substitution case

1249 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1250 #creates hydrox line for new DSpace in EIGTH spacer substitution case

1251 s.Line(point1=(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer+hys, 0.0),

point2=(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer+hys, 0.00125))↪→

1252 spacerremainder=LengthF-(set20+spacer+spacer+spacer+spacer+spacer+spacer+spacer+spacer)

1253 f = p.faces

1254 pickedFaces = f.getSequenceFromMask(mask=('[#1]',),)

1255 e, d1 = p.edges, p.datums

1256 p.PartitionFaceBySketch(faces=pickedFaces, sketch=s)

1257 s.unsetPrimaryObject()

1258 #SET CREATION

1259 faces = f.getSequenceFromMask(mask=('[#7f7b5]',),)

1260 p.Set(faces=faces, name='COLLAGEN SET')

1261 faces = f.getSequenceFromMask(mask=('[#84a]',),)

1262 p.Set(faces=faces, name='HYDROXYAPATITE SET')

1263 #MATERIAL CREATION

1264 mdb.models['Model-1'].Material(name='COLLAGEN')

1265 mdb.models['Model-1'].materials['COLLAGEN'].Depvar(n=3)

1266 mdb.models['Model-1'].materials['COLLAGEN'].UserMaterial(mechanicalConstants=(

1267 0.003, 0.006, 0.004, 0.2, 0.2, 0.2))

1268 mdb.models['Model-1'].Material(name='HYDROXYAPATITE')

1269 mdb.models['Model-1'].materials['HYDROXYAPATITE'].Elastic(table=((0.1, 0.28),

198

1270))

1271 mdb.models['Model-1'].HomogeneousSolidSection(name='COLLAGEN SECTION',

1272 material='COLLAGEN', thickness=None)

1273 mdb.models['Model-1'].HomogeneousSolidSection(name='HYDROXYAPATITE SECTION',

1274 material='HYDROXYAPATITE', thickness=None)

1275 #SECTION ASSINGMENT

1276 # region = p.sets['COLLAGEN SET']

1277 # p.SectionAssignment(region=region, sectionName='COLLAGEN SECTION', offset=0.0,

1278 # offsetType=MIDDLE_SURFACE, offsetField='',

1279 # thicknessAssignment=FROM_SECTION)

1280 # region = p.sets['HYDROXYAPATITE SET']

1281 # p.SectionAssignment(region=region, sectionName='HYDROXYAPATITE SECTION',

1282 # offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',

1283 #INSTANCE SET AND XSYM MAKER

1284 session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=OFF, bcs=OFF,

1285 predefinedFields=OFF, connectors=OFF)

1286 a = mdb.models['Model-1'].rootAssembly

1287 a.DatumCsysByDefault(CARTESIAN)

1288 a.Instance(name='Composite Bone-1', part=p, dependent=ON)

1289 session.viewports['Viewport: 1'].assemblyDisplay.setValues(

1290 adaptiveMeshConstraints=ON)

1291 mdb.models['Model-1'].StaticStep(name='APPLY LOAD', previous='Initial',

1292 timePeriod=0.05, maxNumInc=100000, initialInc=0.05, minInc=1e-10,

1293 maxInc=0.05)

1294 step='APPLY LOAD')

1295 session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,

1296 predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF)

1297 mdb.models['Model-1'].PeriodicAmplitude(name='SINUSOIDAL', timeSpan=TOTAL,

1298 frequency=6.28319, start=0.0, a_0=0.6875, data=((0.0, 0.3125),))

1299 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.8063,

1300 farPlane=12.8435, width=0.201952, height=0.110266, viewOffsetX=3.20047,

1301 viewOffsetY=-0.00229728)

1302 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.8134,

1303 farPlane=12.8364, width=0.1195, height=0.065247, viewOffsetX=3.20271,

1304 viewOffsetY=-0.00322843)

1305 s1 = a.instances['Composite Bone-1'].edges

1306 side1Edges1 = s1.getSequenceFromMask(mask=(

1307 '[#0:58 #4000000 #8000 #20000 #80000240]',),)

1308 region = regionToolset.Region(side1Edges=side1Edges1)

1309 mdb.models['Model-1'].Pressure(name='PRESSURE', createStepName='APPLY LOAD',

1310 region=region, distributionType=UNIFORM, field='', magnitude=-3.36e-06,

199

1311 amplitude='SINUSOIDAL')

1312 session.viewports['Viewport: 1'].view.fitView()

1313 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.4455,

1314 farPlane=13.2043, width=3.94297, height=2.15286, viewOffsetX=-1.23672,

1315 viewOffsetY=-0.023348)

1316 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.8161,

1317 farPlane=12.8338, width=0.096555, height=0.0527191,

1318 viewOffsetX=-3.20778, viewOffsetY=0.000928941)

1319 e1 = a.instances['Composite Bone-1'].edges

1320 edges1 = e1.getSequenceFromMask(mask=('[#42008020 #80004]',),)

1321 region = regionToolset.Region(edges=edges1)

1322 mdb.models['Model-1'].XsymmBC(name='XSYM', createStepName='APPLY LOAD',

1323 region=region)

1324 #LengthF=Length2 (ie. The Bottom Row is Larger; Top Row Has Spacer)

1325 elif LengthF==Length2:

1326 #Top Row, Dspace 1-10

1327 #Top Row, Dspace 11-20

1328

1329 #Top Row, Dspace 31-40

1330

1331 #Top Row, Dspace 41-50

1332 s.Line(point1=(set10, 0.007), point2=(set10, 0.0035))

1333 print 'Bottom Row larger than Top Row'

1334 print ('Dspace100 =', ds100)

1335 LengthS=LengthF-(set10)

1336 #Spacer Remainder--is the model still biologically valid?

1337 spacerremainder=LengthF-(set10)

1338 NewArea=(ds100+spacerremainder)*(0.0035)

1339 NewRatio=(ds100*0.84)*(1.25E-3)/(NewArea)

1340 print 'Added FIRST spacer to top row'

1341 s.Line(point1=(set10+spacer, 0.007), point2=(set10+spacer, 0.0035))

1342 s.Line(point1=(set10+hys, 0.007), point2=(set10+hys, 0.00575))

1343 spacerremainder=LengthF-(set10+spacer)

1344 print 'Added SECOND spacer to top row'

1345 s.Line(point1=(set10+spacer+spacer, 0.007), point2=(set10+spacer+spacer, 0.0035))

1346 s.Line(point1=(set10+spacer+spacer-hys, 0.007), point2=(set10+spacer+spacer-hys, 0.00575))

1347 spacerremainder=LengthF-(set10+spacer+spacer)

1348 print 'Added THIRD spacer to top row'

1349 s.Line(point1=(set10+spacer+spacer+spacer, 0.007), point2=(set10+spacer+spacer+spacer, 0.0035))

1350 s.Line(point1=(set10+spacer+spacer+hys, 0.007), point2=(set10+spacer+spacer+hys, 0.00575))

1351 spacerremainder=LengthF-(set10+spacer+spacer+spacer)

200

1352 print 'Added FOURTH spacer to top row'

1353 s.Line(point1=(set10+spacer+spacer+spacer+spacer, 0.007),

point2=(set10+spacer+spacer+spacer+spacer, 0.0035))↪→

1354 s.Line(point1=(set10+spacer+spacer+spacer+spacer-hys, 0.007),

point2=(set10+spacer+spacer+spacer+spacer-hys, 0.00575))↪→

1355 spacerremainder=LengthF-(set10+spacer+spacer+spacer+spacer)

1356 print 'Added FIFTH spacer to top row'

1357 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1358 s.Line(point1=(set10+spacer+spacer+spacer+spacer+hys, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+hys, 0.00575))↪→

1359 spacerremainder=LengthF-(set10+spacer+spacer+spacer+spacer+spacer)

1360 print 'Added SIXTH spacer to top row'

1361 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer+spacer, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1362 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer+spacer-hys, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer+spacer-hys, 0.00575))↪→

1363 spacerremainder=LengthF-(set10+spacer+spacer+spacer+spacer+spacer+spacer)

1364 print 'Added SEVENTH spacer to top row'

1365 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1366 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer+spacer+hys, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer+spacer+hys, 0.00575))↪→

1367 spacerremainder=LengthF-(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer)

1368 print 'Added EIGTH spacer to top row AGAINST ALL ODDS WHY SO MANY SPACERS GOODNESS'

1369 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer+spacer, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer+spacer, 0.0035))↪→

1370 s.Line(point1=(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer+spacer-hys, 0.007),

point2=(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer+spacer-hys, 0.00575))↪→

1371 spacerremainder=LengthF-(set10+spacer+spacer+spacer+spacer+spacer+spacer+spacer+spacer)

1372 faces = f.getSequenceFromMask(mask=(

1373 '[#dbe7dbd6 #dbe7dbe7:3 #af97dbe7 #bd7ebebf #bd7ebd7e:7 #f67ebd7e #e7dbf3f6',

1374 ' #e7dbe7db:8 #7dabe7db #defebf]',),)

1375 session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=OFF, bcs=OFF,

1376 predefinedFields=OFF, connectors=OFF)

1377 a = mdb.models['Model-1'].rootAssembly

1378 a.DatumCsysByDefault(CARTESIAN)

1379 p = mdb.models['Model-1'].parts['Composite Bone']

1380 a.Instance(name='Composite Bone-1', part=p, dependent=ON)

1381 session.viewports['Viewport: 1'].assemblyDisplay.setValues(

1382 adaptiveMeshConstraints=ON)

201

1383 mdb.models['Model-1'].StaticStep(name='APPLY LOAD', previous='Initial',

1384 timePeriod=0.05, maxNumInc=100000, initialInc=0.05, minInc=1e-10,

1385 maxInc=0.05)

1386 step='APPLY LOAD')

1387 session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,

1388 predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF)

1389 mdb.models['Model-1'].PeriodicAmplitude(name='SINUSOIDAL', timeSpan=TOTAL,

1390 frequency=6.28319, start=0.0, a_0=0.6875, data=((0.0, 0.3125),))

1391 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.8063,

1392 farPlane=12.8435, width=0.201952, height=0.110266, viewOffsetX=3.20047,

1393 viewOffsetY=-0.00229728)

1394 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.8134,

1395 farPlane=12.8364, width=0.1195, height=0.065247, viewOffsetX=3.20271,

1396 viewOffsetY=-0.00322843)

1397 s1 = a.instances['Composite Bone-1'].edges

1398 side1Edges1 = s1.getSequenceFromMask(mask=(

1399 '[#0:58 #4000000 #8000 #20000 #80000240]',),)

1400 region = regionToolset.Region(side1Edges=side1Edges1)

1401 mdb.models['Model-1'].Pressure(name='PRESSURE', createStepName='APPLY LOAD',

1402 region=region, distributionType=UNIFORM, field='', magnitude=-3.36e-06,

1403 amplitude='SINUSOIDAL')

1404 session.viewports['Viewport: 1'].view.fitView()

1405 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.4455,

1406 farPlane=13.2043, width=3.94297, height=2.15286, viewOffsetX=-1.23672,

1407 viewOffsetY=-0.023348)

1408 session.viewports['Viewport: 1'].view.setValues(nearPlane=12.8161,

1409 farPlane=12.8338, width=0.096555, height=0.0527191,

1410 viewOffsetX=-3.20778, viewOffsetY=0.000928941)

1411 e1 = a.instances['Composite Bone-1'].edges

1412 edges1 = e1.getSequenceFromMask(mask=('[#42008020 #80004]',),)

1413 region = regionToolset.Region(edges=edges1)

1414 mdb.models['Model-1'].XsymmBC(name='XSYM', createStepName='APPLY LOAD',

1415 region=region)

1416 TWOXONEHUNDREDFINAL()

E.4 Node Randomization Script

1 # Script for randomly selecting node based crosslink locations

2 import random

202

3 import fileinput

4

5 # Create 3 lists, one for each instance surface node set

6 TopNodeSetMineral = []

7 TopNodeSetSmall = []

8 BottomNodeSet = []

9 TotalCrosslinks = 15

10

11 substrBottom = "nset=XlinkNodeBottom,".lower()

12 substrTop = "nset=XlinkNodeTop, instance=Mineral-1".lower()

13 substrTopS = "nset=XlinkNodeTop, instance=\"Collagen Small-1".lower()

14

15 pull_next_line = False

16

17 with open("AddedBC2Test.inp", "r+") as fp:

18

19 for line in fp:

20 # See if we've hit the termination condition

21 # if so, unset the flag and continue to the next loop iteration

22 if line.startswith("*Elset"):

23 pull_next_line = False

24 continue

25

26 # See if we've hit the starting condition

27 # if so, set the flag and continue to the next loop iteration

28 if line.lower().find(substrTop) != -1:

29 pull_next_line = True

30 continue

31

32 # If we're supposed to pull data from the file

33 # then append the line to the list

34 if pull_next_line:

35 TopNodeSetMineral.append(list(map(int, line.strip('\n').split(','))))

36 # strip whitespace off the line so we don't end up with duplicated newlines

37

38 fp.close()

39

40 pull_next_line = False

41

42 with open("AddedBC2Test.inp", "r+") as fp:

43

203

44 for line in fp:

45 # See if we've hit the termination condition

46 # if so, unset the flag and continue to the next loop iteration

47 if line.startswith("*Nset, nset=XLINKNODETOP, instance=MINERAL-1"):

48 pull_next_line = False

49 continue

50

51 # See if we've hit the starting condition

52 # if so, set the flag and continue to the next loop iteration

53 if line.lower().find(substrTopS) != -1:

54 pull_next_line = True

55 continue

56

57 # If we're supposed to pull data from the file

58 # then append the line to the list

59 if pull_next_line:

60 TopNodeSetSmall.append(list(map(int, line.strip('\n').split(','))))

61 # strip whitespace off the line so we don't end up with duplicated newlines

62

63 fp.close()

64

65 pull_next_line = False

66

67 with open("AddedBC2Test.inp", "r+") as fp:

68

69 for line in fp:

70 # See if we've hit the termination condition

71 # if so, unset the flag and continue to the next loop iteration

72 if line.startswith("*Nset, nset=XLINKNODETOP, instance=\"Collagen Small-1"):

73 pull_next_line = False

74 continue

75

76 # See if we've hit the starting condition

77 # if so, set the flag and continue to the next loop iteration

78 if line.lower().find(substrBottom) != -1:

79 pull_next_line = True

80 continue

81

82 # If we're supposed to pull data from the file

83 # then append the line to the list

84 if pull_next_line:

204

85 BottomNodeSet.append(list(map(int, line.strip('\n').split(','))))

86 # strip whitespace off the line so we don't end up with duplicated newlines

87

88

89 fp.close()

90

91 # Need to flatten the list of lists into list of ints

92 TopNodeSetMineral = [item for sublist in TopNodeSetMineral for item in sublist]

93 TopNodeSetSmall = [item for sublist in TopNodeSetSmall for item in sublist]

94 BottomNodeSet = [item for sublist in BottomNodeSet for item in sublist]

95

96 # Randomly pick how many xlinks are on top and bottom rows

97 NumXlinkBottom = random.randrange(0, TotalCrosslinks)

98 NumXlinkTopTotal = TotalCrosslinks - NumXlinkBottom

99 # Assign remaining xlinks to top proportionate to percent length

100 NumXlinkTopMineral = int(0.85 * NumXlinkTopTotal)

101 NumXlinkTopSmall = TotalCrosslinks - NumXlinkBottom - NumXlinkTopMineral

102

103

104 # Test Arrays

105 # TopNodeSetMineral = [1, 2, 3, 5, 12, 300, 43, 32, 500, 590, 1222, 12, 13, 14, 15, 16, 17, 18, 19, 20,

1222, 12, 13, 14, 15, 16, 17, 18, 19, 20]↪→

106 # TopNodeSetSmall = [1, 2, 3, 5, 12, 300, 43, 32, 500, 590, 1222, 12, 13, 14, 15, 16, 17, 18, 19, 20,

1222, 12, 13, 14, 15, 16, 17, 18, 19, 20]↪→

107 # BottomNodeSet = [1, 3, 4, 6, 89, 399, 455, 543, 700, 1222, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1222,

12, 13, 14, 15, 16, 17, 18, 19, 20]↪→

108

109 # Select nodes randomly from these sets without duplicates

110 XlinkTopNodesMin = random.sample(TopNodeSetMineral, NumXlinkTopMineral)

111 XlinkTopNodesSmall = random.sample(TopNodeSetSmall, NumXlinkTopSmall)

112 XlinkBottomNodes = random.sample(BottomNodeSet, NumXlinkBottom)

113

114 XlinkTopNodesMin.sort()

115 XlinkTopNodesSmall.sort()

116 XlinkBottomNodes.sort()

117

118 print("# Mineral Nodes:", NumXlinkTopMineral)

119 print("# Small Nodes:", NumXlinkTopSmall)

120 print("# Bottom Nodes:", NumXlinkBottom)

121 print("The top mineral nodes are:", XlinkTopNodesMin, ", the small nodes are:", XlinkTopNodesSmall)

122 print("and the bottom nodes are:", XlinkBottomNodes)

205

123

124 # Write-To-File Section

125 # Writes node sets to VERY specific sections by brute force

126 # Only run these once

127

128 write_next_line = False

129 numbernode = 0

130

131 file_name = 'AddedBC2Test.inp'

132 if len(XlinkTopNodesMin) != 0:

133 with fileinput.FileInput(file_name, inplace=True, backup='.bak') as f:

134 for line in f:

135 if line.startswith("*Elset, elset=MODELLEFT, instance=MINERAL-1"):

136 write_next_line = True

137 print(line, end='')

138 continue

139 if write_next_line:

140 print(line + "*Nset, nset=XlinkTopNodesMin, instance=MINERAL-1")

141 write_next_line = False

142 for node in XlinkTopNodesMin:

143 line = str(node)

144 if numbernode == 0:

145 print(" " + line + ",", sep=" ", end=" ")

146 numbernode += 1

147 continue

148 if numbernode != len(XlinkTopNodesMin) - 1:

149 print(line + ",", sep=" ", end=" ")

150 numbernode += 1

151 else:

152 print(line)

153

154 else:

155 print(line, end='')

156

157

158 numbernode = 0

159 if len(XlinkTopNodesSmall) != 0:

160 with fileinput.FileInput(file_name, inplace=True, backup='.bak') as f:

161 for line in f:

162 if line.startswith("*Elset, elset=MODELLEFT, instance=MINERAL-1"):

163 write_next_line = True

206

164 print(line, end='')

165 continue

166 if write_next_line:

167 print(line + "*Nset, nset=XlinkTopNodesSmall, instance=\"Collagen Small-1\"")

168 write_next_line = False

169 for node in XlinkTopNodesSmall:

170 line = str(node)

171 if numbernode == 0:

172 print(" " + line + ",", sep=" ", end=" ")

173 numbernode += 1

174 continue

175 if numbernode != len(XlinkTopNodesSmall) - 1:

176 print(line + ",", sep=" ", end=" ")

177 numbernode += 1

178 else:

179 print(line)

180

181 else:

182 print(line, end='')

183

184 numbernode = 0

185 if len(XlinkBottomNodes) != 0:

186 with fileinput.FileInput(file_name, inplace=True, backup='.bak') as f:

187 for line in f:

188 if line.startswith("*Elset, elset=MODELLEFT, instance=MINERAL-1"):

189 write_next_line = True

190 print(line, end='')

191 continue

192 if write_next_line:

193 print(line + "*Nset, nset=XlinkBottomNodes, instance=\"Collagen Full-1\"")

194 write_next_line = False

195 for node in XlinkBottomNodes:

196 line = str(node)

197 if numbernode == 0:

198 print(" " + line + ",", sep=" ", end=" ")

199 numbernode += 1

200 continue

201 if numbernode != len(XlinkBottomNodes) - 1:

202 print(line + ",", sep=" ", end=" ")

203 numbernode += 1

204 else:

207

205 print(line)

206 else:

207 print(line, end='')

E.5 Python Node Retrieval Script

E.5.1 Variable Dashpot Scheme

1 # Python script to write displacements for desired nodes into separate

2 # files. Each file contains the displacements in the x-direction from

3 # the last increment of every step.

4

5 # Import odb commands

6 from odbAccess import *

7 from abaqusConstants import *

8

9 # Import serialization commands

10 import pickle

11

12 # Import OS commands

13 import os

14

15 # Open odb file

16 import fnmatch

17

18 for file in os.listdir('.'):

19 if fnmatch.fnmatch(file, '*.odb'):

20 odb_file = file

21

22 odb = openOdb(odb_file)

23 #odb = openOdb('/home/mimendoz/NormalDSpacing.odb')

24

25 # Create folder for node displacement output (may not work on Windows)

26 if not os.path.exists('./node_displacement'):

27 os.mkdir('./node_displacement')

28

29 # Create array with all steps and count the number of steps.

30 step_list = odb.steps.keys()

208

31 numSteps = len(step_list)

32 last_step = odb.steps.keys()[-1]

33

34

35 #node list for C2207

36 #node_list=[1207,92863,94680,95339,658613,663054,670800,670924]

37

38 #node list for C1809

39 node_list=[94030,1194,94991,1197,94143,91782,91781,647635]

40

41 # Output displacements for each node

42 for node_num in node_list:

43

44 # Clear/create displacements array

45 displacements = []

46

47 # Write displacements from the last frame of every step to

48 # separate files for each node

49 for step in step_list:

50

51 last_frame = odb.steps[step].frames[-1]

52

53 # Add the value to displacement array

54 displacements.append(last_frame.fieldOutputs['U'].values[- 1].data[0])

55

56 # Wait to write data to file until last step

57 if step == last_step:

58

59 file_name = './node_displacement/node_' + str(node_num) + '_disp.txt'

60 fid = open(file_name, 'wb')

61

62 for index in range(0, len(displacements)):

63 print>>fid, displacements[index], ","

64

65 print 'Node ', node_num, ' complete'

66

67 fid.close

68

69 odb.close

209

E.5.2 IMF Scheme

1 # Python script to write displacements for desired nodes into separate

2 # files. Each file contains the displacements in the x-direction from

3 # the last increment of every step.

4

5 # Import odb commands

6 from odbAccess import *

7 from abaqusConstants import *

8

9 # Import serialization commands

10 import pickle

11

12 # Import OS commands

13 import os

14

15 # Open odb file

16 import fnmatch

17

18 for file in os.listdir('.'):

19 if fnmatch.fnmatch(file, '*.odb'):

20 odb_file = file

21

22 odb = openOdb(odb_file)

23

24 # Create folder for node displacement output (may not work on Windows)

25 if not os.path.exists('./node_displacement_TGM'):

26 os.mkdir('./node_displacement_TGM')

27

28 # Create array with all steps and count the number of steps.

29 step_list = odb.steps.keys()

30 numSteps = len(step_list)

31 last_step = odb.steps.keys()[-1]

32

33 #Establish the Terminus node sets as regions to specify in FieldOutput

34 SetFull = odb.rootAssembly.instances['Collagen Full-1'].nodeSets['TERMINUSFULL']

35 SetHalf = odb.rootAssembly.instances['Collagen Half-1'].nodeSets['TERMINUSHALF']

36 SetSmall = odb.rootAssembly.instances['Collagen Small-1'].nodeSets['TERMINUSSMALL']

37

38 #Assigns node set info as odboutput data to a variable

210

39 SetFullNodes = SetFull.nodes

40 SetHalfNodes = SetHalf.nodes

41 SetSmallNodes = SetSmall.nodes

42

43 #How many nodes are in each set/How long should our subsequent loops run?

44 FullNodesLength = len(SetFullNodes)

45 HalfNodesLength = len(SetHalfNodes)

46 SmallNodesLength = len(SetSmallNodes)

47

48 #Iterate and write UX displacements to files...need better control flow

49 for node in range(FullNodesLength):

50

51 SetFullNodesR = SetFullNodes[node]

52

53 displacements = []

54 for step in step_list:

55

56 last_frame = odb.steps[step].frames[-1]

57

58 displacements.append(last_frame.fieldOutputs['U'].getSubset(region=SetFullNodesR).values[-1].data[0])

59

60 if step == last_step:

61 file_name = './node_displacement_TGM/Col_Full_Node_' + str(node) + '_disp.txt'

62 fid = open(file_name, 'wb')

63

64 for index in range(0, len(displacements)):

65 print>>fid, displacements[index]

66

67 fid.close

68

69 for node in range(HalfNodesLength):

70

71 SetHalfNodesR = SetHalfNodes[node]

72

73 displacements = []

74 for step in step_list:

75

76 last_frame = odb.steps[step].frames[-1]

77

78 displacements.append(last_frame.fieldOutputs['U'].getSubset(region=SetHalfNodesR).values[-1].data[0])

79

211

80 if step == last_step:

81 file_name = './node_displacement_TGM/Col_Half_Node_' + str(node) + '_disp.txt'

82 fid = open(file_name, 'wb')

83

84 for index in range(0, len(displacements)):

85 print>>fid, displacements[index]

86

87 fid.close

88

89 for node in range(SmallNodesLength):

90

91 SetSmallNodesR = SetSmallNodes[node]

92

93 displacements = []

94 for step in step_list:

95

96 last_frame = odb.steps[step].frames[-1]

97

98 displacements.append(last_frame.fieldOutputs['U'].getSubset(region=SetSmallNodesR).values[-1].data[0])

99

100 if step == last_step:

101 file_name = './node_displacement_TGM/Col_Small_Node_' + str(node) +

'_disp.txt'↪→

102 fid = open(file_name, 'wb')

103

104 for index in range(0, len(displacements)):

105 print>>fid, displacements[index]

106

107 fid.close

108

109 odb.close

E.6 Matlab Post Processing Scripts

1 %TangentDelta.m

2

3 %% MatLab code to aqcuire data from Abaqus files

4 %% and determine the tangent delta for each analysis

5 clear all

212

6 close all

7

8 %cd node_displacement_TGM

9 %% Save data from Abaqus displacement files to column vectors

10 filename = 'node_1194_disp.txt';

11 A1 = importdata(filename);

12

13 filename = 'node_1197_disp.txt';

14 A2 = importdata(filename);

15

16 filename = 'node_91781_disp.txt';

17 A3 = importdata(filename);

18

19 filename = 'node_91782_disp.txt';

20 A4 = importdata(filename);

21

22 filename = 'node_94030_disp.txt';

23 A5 = importdata(filename);

24

25 filename = 'node_94143_disp.txt';

26 A6 = importdata(filename);

27

28 filename = 'node_94991_disp.txt';

29 A7 = importdata(filename);

30

31 filename = 'node_647635_disp.txt';

32 A8 = importdata(filename);

33

34 %% Combine all node displacement column vectors into a single array

35 Disp_Data = cat(2,A1,A2,A3,A4,A5,A6,A7,A8);

36 %Removes the comma delimiter from Disp_Data:

37 %Disp_Data = regexprep(Disp_Data,'(\d+)(\s),','£1£2');

38 %Disp_Data = cellfun(@str2num, Disp_Data);

39

40

41 %% Determine an average displacement from all the nodes and save to a

42 %% single column vector

43 Disp_Data = transpose(Disp_Data);

44 Ave_Disp = mean(Disp_Data);

45 Ave_Disp = transpose(Ave_Disp);

46

213

47 %% Calculate the average strain behavior based on total length

48 %Update p == length_F or Total Length of Model

49 p = 6.7407926;

50 Data = Ave_Disp/p; % Divide by the periodic length to get strain

51

52 %% Remove data from first 10 cycles

53 Data_10_cycles = Data(201:length(Data));

54

55 %% Initialize frequency, time, and initial amplitude

56 % Select a frequency

57 %f = 1; % 1 Hz frequency

58 %f = 2; % 2 Hz frequency

59 %f = 3; % 3 Hz frequency

60 %f = 5; % 5 Hz frequency

61 %f = 7; % 7 Hz frequency

62 %f = 9; % 9 Hz frequency

63 f = 12; % 12 Hz frequency

64 %f = 15; % 15 Hz frequency

65

66 %t = 1/(20.*f):1/(20.*f):20/f; % Time for entire data

67

68 t = 10/f + 1/(20.*f):1/(20.*f):20/f; % Time for last 10 cycles

69 t = t(:); % Transpose time to match Data vector

70

71 t2 = 0:1/(20.*f):1/f;

72

73 initial_amp = 1.35e-4; %From Mendoza Appendix, does not seem to affect Tan D, just R^2

74

75 %% Function file that accepts curve parameters as inputs and then outputs

76 %% fitting error

77 %Starting = rand(1,3);

78 Starting = rand(1,2);

79 options = optimset('Display','iter', 'TolX', 1e-5, 'TolFun', 1e-5);

80 %options = optimset('Display','iter');

81 %Estimates = fminsearch(@CurveFit,Starting,options,t,Data,f,initial_amp);

82 % Curve fit for entire data

83

84 [Estimates FunctionValue] = fminsearch(@CurveFit,Starting,options,t,Data_10_cycles,f,initial_amp);

85 % Curve fit for last 10 cycles

86

87 %% Calculate curve fit equation and coefficient of determination

214

88 strain = Estimates(1)*sin(2.*pi.*f.*t - Estimates(2)) + initial_amp;

89 [r2 rmse] = rsquare(Data_10_cycles,strain); % r^2 value for last 10 cycles

90

91 %strain = Estimates(1)*sin(2.*pi.*f*t - Estimates(2)) + initial_amp;

92 %[r2 rmse] = rsquare(Data,strain); % r^2 value for entire data

93

94 %% Normalized stress and strain history for first cycle

95 norm_stress = sin(2.*pi.*f.*t2);

96 norm_strain = sin(2.*pi.*f.*t2 - Estimates(2));

97

98 %% Plot the fitted curve over the raw data

99 fig1 = figure;

100 plot(t,Data_10_cycles,'*') % Plot last 10 cycles

101 %plot(t,Data,'*') % Plot entire data

102 hold on

103 plot(t,strain,'r')

104 xlabel('Time (seconds)','FontSize',16)

105 ylabel('Strain (unitless)','FontSize',16)

106 title('Tangent Delta Calculation','FontSize',16)

107 str = {'R-squared',num2str(r2),'Tangent Delta',num2str(Estimates(2))};

108 annotation('textbox',[.7,.12,.2,.15],'String',str);

109 set(fig1,'Position',[1 540 500 400])

110 %% Plot normalized stress and strain for 1 cycle on a separate figure

111 fig2 = figure;

112 plot(t2,norm_stress,'--r')

113 hold on

114 plot(t2,norm_strain,'k')

115 set(fig2,'Position',[1 1 500 400])

116

117 format short e;

118 disp(Estimates(2))

119 clipboard('copy',Estimates(2));

215

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Purpose of Study
	1.2 Bone Tissue Background
	1.2.1 Compact and Cancellous Bone
	1.2.2 Composition of Bone Tissue

	1.3 Bone Remodeling
	1.4 D-Spacing
	1.5 Viscoelasticity
	1.5.1 Creep and Relaxation
	1.5.2 Measuring Viscoelasticity
	1.5.3 Viscoelasticity and Bone
	1.5.4 A Variable Dashpot

	1.6 Crosslinking
	1.6.1 Types of Crosslinks in Bone Collagen
	1.6.2 Crosslink Geometry

	1.7 Objective

	2 Methods
	2.1 Model Basis
	2.1.1 The Petruska and Hodge Model
	2.1.2 The Jager and Fratzl Model
	2.1.3 The Siegmund Model

	2.2 The Complex Model Evolution
	2.2.1 The Mendoza Model
	2.2.2 The Cummings & Ha Model
	2.2.3 The Thompson Model

	2.3 Experimental Data
	2.3.1 Sample Prep
	2.3.2 Mechanical Testing

	2.4 Model Description
	2.4.1 IMF Scheme
	2.4.2 Variable Dashpot Scheme
	2.4.3 Materials
	2.4.3.1 Hydroxyapatite
	2.4.3.2 Tropocollagen

	2.4.4 Boundary Conditions and Loading
	2.4.5 Mesh Development
	2.4.6 Model Validation

	2.5 Post Processing
	2.5.1 Statistical Analysis

	3 Results
	3.1 IMF Scheme Results
	3.2 Variable Dashpot Scheme Results
	3.2.1 Control Cranial Specimen C2207 Results
	3.2.2 OVX Cranial Specimen C1809 Results

	4 Discussion
	4.1 IMF Scheme
	4.2 Variable Dashpot Scheme

	5 Conclusion
	BIBLIOGRAPHY
	A Experimental Protocol
	A.1 Variable Dashpot Scheme
	A.2 IMF Scheme

	B Experimental Ovine Data
	C Run Data
	D Viscoelastic Equations
	D.1 Creep Response
	D.2 Stress Relaxation

	E Code
	E.1 Abaqus Input File
	E.2 Richter User Material Subroutine
	E.2.1 Variable Dashpot UMAT

	E.3 Model Generation Script
	E.4 Node Randomization Script
	E.5 Python Node Retrieval Script
	E.5.1 Variable Dashpot Scheme
	E.5.2 IMF Scheme

	E.6 Matlab Post Processing Scripts

