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ABSTRACT 

A Simulation Study on Baggage Screening at San Luis Obispo County Regional Airport 

Marian Konstantin Ott 

 

Efficient passenger flow is a crucial objective at both small and larger airports. One central part of 

this is the handling of checked luggage which is influenced by necessary security screening. Within this 

thesis, these processes are studied at San Luis Obispo County Regional Airport. The underlying problem of 

the airport is its outbound luggage system which was already suffering from delays prior to Covid-19. Delays 

were never measured and the bottleneck responsible for them was never identified. However, expected 

growth in passenger and flight volume necessitates to predict when customer dissatisfaction and extensive 

luggage delays are inevitable, given that the airport does not plan to change the baggage screening system in 

the near future. 

In order to understand the dependencies within said system, process flowcharts for baggage-related 

activities are defined and translated into a simulation model. After model verification and validation, scenar-

ios of expanding the flight schedule during different times of the day are tested while monitoring the number 

of bags failing to be loaded into the respective aircraft in time. Further scenarios of model adjustments are 

used to monitor how the number of missed bags changes while maintaining an expanded flight schedule. 

Model adjustments were made by changing single parameters such as the scan time or single resources each. 

Simulation experiments have shown that the number of additional flights that can be added to the 

flight schedule of February 2020 depend on the time of the day. For instance, the current outbound luggage 

conveyor system’s capacity is sufficient to cover 1 additional early morning flight, and up to 3 afternoon 

flights. Experiments with model parameter adjustments led to identifying the luggage scanner as the bottle-

neck of the luggage system, whereas other tested parameter adjustments showed to have minimal impact on 

the number of missed bags. Since the model’s flight plan can be conveniently adjusted in the connected Excel 

database, the model could be used as a tactical decision tool for capacity analysis. 

 

 

Keywords: Airport, Baggage screening, Simulation  
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1 Introduction 

Airports operate as businesses that provide a service to commercial and private customers. In fact, 

they bring both parties - airlines and passengers - together. One component within their range of service is to 

provide the physical facility that acts as a knot in the global network of interconnected airports. Besides the 

rolling field where airplanes will take off and land they have one or more airport buildings with a single or 

multiple terminals. By bringing passengers and airlines together, they must also ensure that passengers’ drop-

off luggage arrives at the aircraft in time. Considering that travelling with an aircraft comes with the exception 

that luggage units are not with the passenger at all times, a system for luggage drop off and claim is required. 

Check-in counters are provided for the latter and allow the pieces of luggage to be introduced into the con-

veyor belt system. Following that, bags typically go through a TSA (Transportation Security Administration) 

scanning machine that ensures that no dangerous substances or forbidden items are in the bag. Depending on 

the size of the airport, there might be a complex conveyor system that sorts bags by flight and moves them 

to different locations within the airport. Eventually, they will arrive at a transshipment point where bags are 

loaded onto carts that move bags to the aircraft, where workers load them into the cargo space. It is the goal 

of the airport, airlines, and passengers that all of this is achieved up to the time when the plane is scheduled 

to roll to the takeoff runway. Otherwise, late luggage units that cannot be loaded into an aircraft in time, 

resulting in delayed takeoffs and related costs, cannot be avoided. 

1.1 Motivation 

A study conducted by (SITA, 2019) states that 4.27 billion bags were carried by airlines worldwide 

in 2018. 24.8 million of them were mishandled. Figure 1 shows the breakdown of these mishandled bags and 

reveals that a 77% share of them were delayed bags. The annual costs for the aviation industry that were 

associated with mishandled bags in 2018 were listed at $2.4 billion. Delayed bags resulted in costs of $1.85 

billion, accordingly. Figure 2 shows the reasons for delayed bags in 2018. The reasons provided in the graphic 

that can be linked to baggage delays related to the airport’s baggage handling are failure to load, security, 

and airport restrictions. These categories accounted for annual costs of $759 million. 
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Figure 1: Breakdown of mishandled bags worldwide 2018 (SITA, 2019) 

 

Figure 2: Reasons for delayed bags worldwide 2018 (SITA, 2019) 

1.2 San Luis Obispo Regional Airport 

San Luis Obispo Regional Airport is located in the central coast of California. The airport’s single 

terminal which is shown in Figure 3 connects passengers to and from multiple destinations including Seattle, 

Portland, San Francisco, Los Angeles, San Diego, Phoenix, Denver and Dallas-Fort Worth as shown in Figure 

4. These flights are offered by Alaska Airlines, American Airlines and United Airlines. The aircrafts in use 
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are the Canadair CRJ-200, the Canadair CRJ-700 and the Embrear 175 with respective passenger capacities 

of 50, 68 and 78. Since the start of the ongoing global pandemic, the passenger volume, such as offered 

flights declined and continue to fluctuate depending on the demand that the airlines experience. However, 

prior to this, with 544,575 total passengers in 2019, SLO airport celebrated its busiest year to date. Compared 

to the amount of 485,911 passengers in 2018, this is a growth of 12.1%. At the end of 2019, close to 20 

commercial flights departed from SLO airport on a daily basis. The expected annual growth of passenger 

traffic flow within North America will be 2.6% from 2019 to 2039 according to (Boeing, 2020). 

 

Figure 3: San Luis Obispo Regional Airport terminal (San Luis Obispo Regional Airport, 2020) 

 

Figure 4: Direct connections of San Luis Obispo Regional Airport (San Luis Obispo Regional 
Airport, 2020) 
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1.3 Problem Statement 

Despite Covid-19 effects SLO airport has been experiencing significant annual growth in the last 

decade and is expected to grow in number of passengers, flights and systems. Prior to Covid-19, the outbound 

luggage processing was already suffering from extensive delays leading to passenger dissatisfaction and an 

increased risk of takeoff delays. However, the airport aims to increase revenue by adding flights. Contradict-

ing to this, they want to avoid to worsen the luggage issues by that. The delays have never been measured 

and the bottleneck of the luggage processing system has never been identified. Thus, this thesis focuses on 

developing a simulation model of the existing luggage handling system in order to determine capacity limits 

and potential capacity increasing methods. The following questions will be answered with the help of simu-

lation: 

• Which entity of the outbound luggage handling system is the bottleneck? 

• How many additional flights are feasible to be included in daily operations until takeoff de-

lays and customer dissatisfaction are unavoidable? 

• How will the increased number of passengers impact the outbound luggage system? 

• Which measures can compensate for the negative effects on the luggage system that come 

with significant growth of passenger and luggage numbers? 

1.4 Literature Review 

This chapter provides an overview of papers that handle comparable problems and analyses with sim-

ulations. It explains and provides justification for how general airport simulation is modeled with passenger 

arrival distributions, distributions of checked bags per passenger, counter passenger check-in, luggage scan-

ning and which key performance indicators (KPIs) can be used. 

1.4.1 Airport Simulation 

Literature shows that for a lot of business cases where potential changes to a physical system are being 

considered, using simulations is often a good approach. For instance, simulation models are often used in 

evaluating system performance, for comparing alternatives and scenarios (Lin, Shih, Huang, & Chiu, 2015), 

(Cavada, Cortés, & Rey, 2017) and (Batta, Drury, Appelt, & Lin, 2007). The work of Savrasovs et al. 
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(Savrasovs, Medvedev, & Sincova, 2009) incorporates a simulation modelling approach of the baggage han-

dling system of Riga International Airport in Latvia. This simulation model is used to compare several sce-

narios. Their motivation stems from the expected future growth of passenger numbers and the resulting ef-

fects on the baggage handling system, similar to the motivation for the work of (Cavada, Cortés, & Rey, 

2017). Further, (Alodhaibia, Burdett, & Yarlagadda, 2019) use airport simulation to study how arrival pat-

terns of passengers affect international terminal operations including check-in and security screening at Bris-

bane International Airport. They show that arrival patterns depend on the departure time of a flight and the 

passenger type. Postorino et al. point out that simulation models are within the most popular tools when 

designing airport terminals. This is because queueing related processes and human behavior can be modeled 

(Postorino, Mantecchini, Malandri, & Paganelli, 2019). (Van Dijk & Joustra, 2011) argue that simulation has 

the advantage of not relying on steady arrival rates as queueing theory does. It enables the use of random 

distributions and is therefore suitable to model arrival patterns with peaks, which occur, for instance, at air-

ports. Further, the possibility to represent the simulation model logic in the form of animation helps to convey 

understanding on multiple levels. Based on two case studies at Amsterdam-Schipohl Airport in the Nether-

lands, they show that different check-in procedures affect average queue times. Further, they did a capacity 

analysis of the current system in order to identify the maximum possible growth in number of departing 

flights while maintaining the current check-in setup such as queueing time. (Cavada, Cortés, & Rey, 2017) 

have their work centered around their simulation of the baggage handling system at Santiago International 

Airport. General growth of passenger numbers in recent years lead to longer passenger queues, delayed flights 

and growing potential for the baggage handling process not being smooth. Within their simulation model, all 

baggage-related subsystems are incorporated. They argue that by looking at the system as a whole they are 

able to study impacts and interrelationships of different operating strategies. Further, they investigate ways 

of improving the baggage handling system of the international terminal of Santiago International Airport 

(SCL) as the system’s infrastructure will not be upgraded in the near future. Wonkyu et al. studied how 

dwelling time distributions affect the number of passengers arriving at airport terminals in given times. Fur-

ther, they give insights on how terminal operations are affected by significant flight schedule changes 

(Wonkyu, Yonghwa, & Byung Jong, 2004). 
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In conclusion, simulation models have several advantages such as allowing the gauging of effects 

resulting from different scenarios faster and cheaper compared to making changes to the respective real sys-

tem – may it be a whole supply chain of a manufacturing company, or the outbound baggage handling system 

of an airport. 

1.4.2 Passenger Arrival Distribution 

This chapter covers methods and approaches for modeling realistic passenger arrivals used by re-

searchers in different projects. Postoriono et al. describe the knowledge of passenger arrival rate functions as 

crucial for determining the correct amount of required resources at an airport (Postorino, Mantecchini, 

Malandri, & Paganelli, 2019). 

Simulated arrivals at the airport terminal can be generated by statistical distributions that reflect real 

passengers’ behavior (Alodhaibia, Burdett, & Yarlagadda, 2019). The amount of passenger’s arrivals within 

a certain time interval in (Savrasovs, Medvedev, & Sincova, 2009) were determined by the Binomial distri-

bution and the Bernoulli formula. While (Alodhaibia, Burdett, & Yarlagadda, 2019) list exponential, uniform, 

empirical, and normal distributions as appropriate for modeling passenger arrivals, they decided to use the 

normal distribution. The analysis on real passenger arrival data performed by (Postorino, Mantecchini, 

Malandri, & Paganelli, 2019) showed that the Weibull function was most accurate for modeling arrival pro-

cesses. Cavada et al. model individual passengers’ arrivals with the help of empirical distributions created 

from histograms of passengers’ terminal arrivals (Cavada, Cortés, & Rey, 2017). 

Passenger arrival patterns depend on a range of factors such as departure times, type of travelling 

(leisure or business), and flight destination (Alodhaibia, Burdett, & Yarlagadda, 2019). Similar information 

can be retrieved from (Cavada, Cortés, & Rey, 2017). Factors considered in (Postorino, Mantecchini, 

Malandri, & Paganelli, 2019) include the type of carrier, for instance, full carriers (FC), low-cost carriers 

(LLC) as well as the scheduled departure time. 

The majority of passengers checks-in 40 to 60 minutes prior to the closing of check-in counters which 

is 20 minutes before scheduled aircraft departure (Savrasovs, Medvedev, & Sincova, 2009). According to 

(Alodhaibia, Burdett, & Yarlagadda, 2019), common arrival patterns at international terminals include 90% 

of travelers arriving 60 minutes prior to departure time and business travelers arriving later than leisure ones. 

They identified peak check-in times 100 to 120 minutes before departure, and state that peaks in the morning 
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appear to be shorter but busier compared to the evening peaks. Postorio et al. present that most passengers 

arrive between 60 and 90 minutes prior to their flight (Postorino, Mantecchini, Malandri, & Paganelli, 2019). 

Generally, passengers of early flights tend to arrive later than passengers of late flights, while the 

airport check-in rules significantly affect passenger arrival patterns (Alodhaibia, Burdett, & Yarlagadda, 

2019), (Postorino, Mantecchini, Malandri, & Paganelli, 2019) and (Cavada, Cortés, & Rey, 2017). Figure 5 

demonstrates historical arrival patterns that Cavada et al. collected depend on morning versus evening flights, 

such as domestic (Punta Arenas) versus international (Buenos Aires) destinations. 

 

Figure 5: Histograms of passenger arrivals at check-in queues (Cavada, Cortés, & Rey, 2017) 

Figure 6 visualizes the collected passenger arrival data in histograms while the estimated functions 

for passenger arrivals are shown as dashed and solid lines. Graphic a) represents the early morning, graphic 

b) the late afternoon. Travelers flying with full carriers (FC) are more likely to arrive closer to their departure 

compared to passengers travelling with low-cost carriers (LCC). This applies for the early morning and the 

late afternoon periods. However, a minor part of LCC passengers with late flights arrive significantly earlier 

than the FC passengers. (Postorino, Mantecchini, Malandri, & Paganelli, 2019)  
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Figure 6: Histograms of passenger arrivals and functions (Postorino, Mantecchini, Malandri, & 
Paganelli, 2019) 

The simulation model in (Cavada, Cortés, & Rey, 2017) determines individual passenger arrivals 

based on historical arrival patterns and are computed the following way: the cumulative density function over 

all time intervals prior to departure is built. This means that 𝑎! is the cumulative share of passengers that 

usually arriving until the end of interval 𝑖. For determining which interval the passenger is assigned to, a 

uniform variable u between 0 and 1 is assigned. If 𝑎" ≤ 	𝑢 < 	𝑎"#$	the interval will arrive in interval 𝑗. A 

specific position within the respective interval is calculated by introducing another random variable called 𝑣 

which is between 0 and the length of the interval. Then, the arrival is computed by adding 𝑣 to the start of 

the determined interval. 

 
1.4.3 Checked Bags per Passenger 

When studying aspects of a baggage handling system, the distribution for the amount of bags that 

passengers check before proceeding to the security area is just as crucial as the passengers’ arrival patterns 

themselves. Especially if the capacity of the system is of interest. 

An online survey performed by Ipsos (Ipsos, 2018) considered 4 traveler types – all combinations of 

personal and business travelers with ones that have domestic or international destinations. Most passengers 

of each type check one piece of luggage prior to going through security. It appears that the average number 

of checked bags for domestic personal and business trips is 1.2 each. For international personal trips the 

average number is 1.4 and for the business equivalent 1.7. The amount of luggage units Savranos and 

Medvedev assign per passenger was determined by empirical data: The likeliness for 1 bag per passenger 

was the highest with 65% while 0 and 2 bags have a likeliness of 15% each. 3, 4 and 5 bags only have shares 
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of 3, 1 and 1%. This results in an average of 1.13 bags per passenger (Savrasovs, Medvedev, & Sincova, 

2009). 

1.4.4 Passenger Check-In 

According to empirical data of (Savrasovs, Medvedev, & Sincova, 2009) a passenger’s processing 

time at a check-in counter exclusively depends on the number of luggage units the passenger drops off. The 

processing time in seconds at check-in counters was described as 𝑓(𝑥) = .30 + 𝑥 ∗ 15, 𝑥 ≤ 5
105, 𝑥 > 5  where 𝑥 rep-

resents the number of bags checked in. The work of (Batta, Drury, Appelt, & Lin, 2007) takes a more holistic 

view on different check-in types, for example, online check-in, curbside check-in, kiosk check-in and counter 

check-in. Statistical analysis was performed to identify parameters that have a significant impact on the du-

ration of the different check-in types. For the indoor check-in counters it was found that the number of bags 

checked and group size are significant. Further, they state that there is a correlation of 0.595 with p-value < 

0.001 between group size and number of bags checked. Both factors are therefore interchangeable, and data 

could be grouped by group sizes. The times they observed from the base model are as follows: a total average 

wait time in the queues of 24.3 seconds, which includes the averages for kiosk queues of 5.49 seconds and 

the average for counter queues of 27.74 seconds and more. The average total of waiting time and service time 

was 158.85 seconds. 

1.4.5 Luggage Scanning 

The share of bags that need additional checking after the automatic scan is 10%, while these bags have 

a probability of 3% for being restricted from being moved to the aircraft (Savrasovs, Medvedev, & Sincova, 

2009). 

1.4.6 Key Performance Indicators 

(Savrasovs, Medvedev, & Sincova, 2009) investigates the utilization levels as their major KPI (key 

performance indicator). Specifically, they are looking at the mean utilization of check-in, additional security 

check and the sorting area. The average and maximum passenger queue length for all check-in counters 

combined was investigated as well. Another KPI that was studied is the baggage queue length in both the 

additional security check area, and the sorting area. As the simulation of (Batta, Drury, Appelt, & Lin, 2007) 
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is dedicated to study variations of check-in procedures, they look at average times spent in queues by check-

in type such as the total average time spent in the system. 
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2 Airport Infrastructure, Resources and Processes 

As suggested by the problem statement, a specific part of daily operations at SLO airport, the outbound 

luggage system, is the center of this analysis and simulation project. The following sections provide an over-

view of the airport’s infrastructure and resources and will lead to a detailed description of processes that are 

included in the outbound luggage process. Specific measures of resources are introduced in chapter 3.2 

2.1 Infrastructure and Resources 

A range of essential activities is required to allow passengers to depart from SLO airport. All of these 

activities and processes are made feasible by the airport’s infrastructure and resources. The processes that are 

relevant to the outbound luggage system will be listed and described within this chapter. 

Figure 7 provides an overview of the commercial airport section and indicates where the essential 

activities take place. Gray arrows visualize the typical passenger flow starting with them arriving in the ter-

minal building and proceeding to the check-in counters which are displayed as orange rectangles. This is 

where they check-in and give their luggage to the airline employee. The passengers proceed to walk to the 

security and scanning area where their identity such as their carry-on luggage is checked. Following that, 

they proceed to the gates and boarding section where they wait to finally board their flight. 

Red arrows indicate the path of checked luggage through the airport. After being dropped-off, the 

luggage unit will be introduced into the outbound luggage conveyor system which is sketched as connected 

gray rectangles in Figure 7. A detailed representation of the conveyor belt system is shown in Figure 9. Once 

baggage arrives in the TSA room it will be scanned in the TSA scanner which is indicated by the left rectangle 

that the luggage scanning arrow points to. Certain bags will be searched on the manual search table repre-

sented by the right rectangle indicated by the luggage sorting arrow. All bags found clear by the scanner or 

the manual search are conveyed further. 

Upon arrival at the end of the conveyor belt, bags are sorted by flight in the light blue luggage sorting 

area at the end of the conveyor belt. Before getting loaded into an aircraft, bags are transported to one of the 

six aircraft parking positions around the gates, see Figure 8. Considering these positions, the transportation 

of luggage carts from the luggage sorting station to the aircraft greatly depend on the parking position of the 

latter. 
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The focus of this thesis is the outbound luggage system with passenger arrival. This means that pas-

sengers’ activities after luggage drop-off, the security scanning of them, such as their movement to gates, 

and boarding are not considered as they are not impacting the luggage system. 
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Figure 7: Overview of the commercial part of SLO airport 
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Figure 8: Aircraft parking positions at SLO airport 

Figure 9 visualizes the outbound luggage conveyor system with more detail and specific dimensions. 

The used colors refer to the same processes as in Figure 7. Therefore, the orange-purple rectangles stand for 

check-in counters where passengers stay on the orange side, while airline employees work on the purple side. 

The automated TSA scanner such as the manual search table are displayed as the mint rectangles. As indi-

cated before, the light blue rectangle stands for the sorting station. The light gray colored arm of the conveyor 

system intended to be used for big bags, however it is not in use and the airport does not plan to do so in the 

near future. 
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Two horizontal lines in black indicate how the system is separated by walls that each have a gate for 

the conveyor belt. Braces on the right side of Figure 9 show that the purple section is within the publicly 

accessible airport terminal. The mint-colored section is a separate TSA room while the blue area is outside 

of the airport. 

 

Figure 9: The outbound luggage conveyor system 

2.2 Detailed Process Description 

The following process flowcharts serve two major purposes: first, they are meant to help build a con-

sensus about the underlying outbound baggage process for all readers. Second, they provide a base on which 

the simulation model can be built. Every passenger, including their luggage runs through this process chain, 

likely with varying sub-paths. The circular shapes indicate the start or the end of the total process chain, 

rectangles with vertical lines on the insides represent predefined processes. Predefined processes are defined 



16 
 
 

on a detailed scale at a later point. Regular rectangles stand for processes. The Rhombuses indicate a decision 

with “Yes” and “No” as possible outcomes. Depending on the outcome, the respective arrow is followed. 

Processes may also vary from passenger to passenger or luggage unit to luggage unit. 

Considering the chronological order of the outbound luggage process chain with a low level of detail, 

five essential predefined process blocks are included after passenger arrival at the airport as shown in Figure 

10. The first predefined process takes the perspective of passengers who will check-in and possibly drop-off 

their luggage units. Following that, the check-in process from the airline employee’s perspective is covered 

in the purple predefined process. Dropped-off luggage units will be scanned by the TSA which is covered in 

the third predefined process block. The final two predefined processes are from the perspective of the airline 

employees’ that take care of luggage sorting and loading. Even though the processes have been separated for 

uncluttering reasons, they are both executed by the group of employees of the different airlines. Second to 

last, there is the predefined flight-specific bag sorting process. Finally, the last predefined process includes 

luggage loading into the aircraft. The following sub-chapters zoom into these five predefined processes. 

All of the following flowcharts have been designed to be easy and consistent to read. Due to this, the 

decision blocks’ “Yes” arrows always face downwards while “No” arrows go to the right with few exceptions 

where they go to the left. This can lead to decision blocks being phrased negatively. Besides, the flowcharts 

mostly go to downwards or to the right. 

 

 

Figure 10: Process flow overview 

2.2.1 Passenger Check-In 

For the detailed level of the predefined passenger check-in process visualized in Figure 11, we look 

at the processes and decisions from the passenger’s perspective. 

The first thing determining a passenger’s action after their arrival at the airport is if they did an online 

check-in. If yes, further actions are influenced by the passenger having drop-off luggage or not. In case of 

not having any, the passenger’s process ends, as they do not need to go to a check-in counter. In case the 
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passenger did not check-in online, the rest of their specific path in the flowchart depends on their decision of 

using a check-in kiosk or not.  

Technically, only the passengers that do not have drop-off luggage should use a kiosk for check-in as 

the they do not provide a possibility for luggage drop-off. However, observations have shown that some 

individuals still check-in at kiosks when carrying drop-off luggage. This requires them to drop-off bags at a 

check-in counter nevertheless. If the traveler decides to go to a kiosk, he will check himself in. Self-check-

in passengers that do not have drop-off luggage will leave the process as they are no longer impacting the 

outbound luggage system. Travelers that did a self-check-in who carry luggage to drop-off will go to the 

check-in queue of his airline check-in counters. Note that these travelers join the arm of the flowchart that 

passengers who have not checked-in online or at the kiosk go through. 

Travelers like these need to go to the check-in queue. Airlines at SLO airport offer specific time win-

dows for check-in, which begin two hours before departure of a flight and end 30 minutes prior to departure. 

Passengers who try to check-in later than this will be denied and asked to leave the counter. Thus, the process 

for them ends as well. Passengers at the counter during the window are separated into either already being 

checked-in or still needing to be checked-in. The travelers who do not need to receive check-in services from 

the airline employee will skip to the luggage drop-off. Passengers needing the check-in services will receive 

them from the airline agent. The specific services included in the check-in depends on the individual passen-

ger. For example, he could possibly still require his boarding pass, or he could have obtained it already via 

online check-in. Besides, he might have to pay for a seat or service he did not select when booking his ticket. 

All of this will have an impact on the processing time at the check-in counter. 

The travelers will then either drop off one or multiple bags to the check-in employee or leave the 

process for previously mentioned reason. One or multiple bags could be overweight and require the traveler 

to pay an additional fee, resulting in a longer processing time. After luggage drop-off the traveler exits the 

system and proceeds to go to the TSA security screening, where they no longer impact the outbound luggage 

system. 
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Figure 11: Passenger check-in process in detail 
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2.2.2 Airline Employee Check-In 

Figure 12 visualizes a more detailed level of the purple predefined airline employee check-in process, 

in which we look at the processes and decisions from the airline employee’s perspective. 

An airline employee’s actions will be determined by the counter queue. If no passengers are waiting 

for service, the airline employee will check for bags that have been temporarily stored on the floor between 

the check-in counter and the conveyor. An explanation for bags being stored on the floor is included in the 

process description at a later point. The airline employee will also check if there is a free spot on the conveyor. 

If both questions were answered with “Yes” the stored bag will be placed onto the conveyor and the airline 

agent will go back to his counter. Following that, actions will again be determined by the check-in queue. 

If passengers wait for service, the airline employee will verify that the passenger is checking-in within 

the allowed time window. Passengers that are too late will be denied and leave the counter because the process 

ends. The airline employee will provide different services to in time travelers depending on if they still need 

to be checked-in or not. The ones being checked-in already will receive luggage drop-off services. If the 

passenger has not checked-in yet he will receive the appropriate services. Consequently, the process ends if 

the respective passenger does not have drop-off luggage. At the same time, travelers with luggage will receive 

the drop-off service. 

At this point, the actions of the airline employee are related to luggage units, not the passengers any-

more. The way the airline employee handles baggage depends on its size. Oversized luggage items cannot be 

transported on the conveyor belt or scanned in the TSA scanner. Thus, they are carried into the TSA room 

where TSA agents will receive them. Hereafter, the airline employee will go back to their counter and the 

process ends. 

Regular sized bags will be carried to the conveyor behind the counter where the conveyor is checked 

for free space. The belt could already be packed with bags due to a congestion stemming from a point further 

down the belt. If this is the case, the airline employee will temporarily store the baggage on the floor and then 

go back to the counter and the process ends. 

If the conveyor belt is free, the bag will be placed on the belt. Usually, when there are no bags on the 

conveyor belt, it is not moving. Thus, the airline employee will push a button in order to start it. Once a bag 

is placed and being moved on the conveyor, its remaining transportation is automated. Yet again, the airline 
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employee’s actions depend on two decision blocks: are there temporarily stored bags on the floor and is the 

conveyor free? If both decision blocks are left though the “Yes” port, the stored bag will be put onto the 

conveyor. If either decision blocks’ outcome is “No”, the airline employee will go back to the counter and 

the process ends. 
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Figure 12: Airline employee check-in process in detail  
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2.2.3 TSA Luggage Scanning 

Since the end of the airline employee check-in process, bags have been transported into the TSA room 

by the conveyor belt. All of this predefined process of TSA luggage scanning is from the TSA agent’s per-

spective. 

As visualized in Figure 13, the working TSA agent checks if there are new bags arriving. If not, he 

will consider if there are temporarily stored bags next to the scanner and if the conveyor behind the Scanner 

is free. In the event of both questions being answered with “Yes”, the stored bag will be put onto the conveyor 

and the TSA agent will check for arriving bags again. An explanation for bags being temporarily stored next 

to the scanner is included in the process description at a later point. 

There is a significant difference in how regular sized and oversized bags are handled, provided that 

an arriving oversized bag is brought into the room by an airline employee instead of arriving via conveyor. 

The TSA agent will take and carry the oversized bag to the manual search station, perform a manual search 

and determine if the baggage is clear or not. Non-clear bags result in another series of events that have been 

summarized into the additional predefined process called “TSA non-clear bags”, which is defined at the end 

of this sub-chapter. Clear bags are then carried back to the conveyor behind the scanner. These bags join the 

flow of regular sized ones. 

Regular sized bags are transported into the TSA room on the conveyor. Each luggage item will stop 

on the conveyor next to where the non-used conveyor arm is attached to the regular conveyor, shown in 

Figure 9. Further conveyor transportation of each bag to the TSA scanner must be initialized by the TSA 

agent by pressing a foot pedal which is located where the non-used arm of the conveyor starts. Following 

this is the automated scan of the luggage item. The automatic scan determines if the bag is clear from security-

threatening objects and gives the TSA agent an alert if the bag possibly contains such an object. Every bag 

is transported out of the scanner automatically, however, process steps afterwards depend on the clear status. 

Non-clear bags result in the bag having to be searched manually to clarify if the machine made a valid alert. 

That requires the TSA agent having to pick up the bag behind the scanner and carry the bag to the manual 

search station, where the process flow is similar to that of searching oversized bags. 

Given that there is no congestion of bags on the conveyor, luggage that the scanner considered clear 

is further transported, eventually leading it to the outside sorting area. Bags that have been searched manually 
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will be placed back onto the conveyor before getting transported outside. Considering a situation with a 

luggage congestion behind the scanner, finished bags will be temporarily stored behind the scanner next to 

the conveyor. The TSA agents have capacity to store a small number of bags, allowing them to process some 

additional arriving bags, even if a backlog is present. Those luggage items are put onto the conveyor after the 

newly processed bags are finished. 

This paragraph elaborates on the additional predefined “TSA non-clear bags” process, which is visu-

alized in Figure 14. A manual search that finds a bag containing an actual threat is rare. It is differentiated 

between non-severe cases where a passenger “accidently” left a threatening object, such as a loaded gun, in 

their luggage. Having a gun in a drop-off bag would require the gun to be stored in a safe case, to be unloaded, 

and to be announced to the airline. For the loaded gun example, the TSA agent would call a coworker who 

takes over the following processes in order to prevent the luggage handling system getting impacted with a 

major delay. Law enforcement will be called, the passenger will be pulled out and might miss his flight or be 

denied boarding his flight at all. This would result in the bag not being reintroduced into the conveyor system. 

If the TSA decides that the passenger is still allowed to board, his bag would be reintroduced into the con-

veyor system. An example for severe violation of rules scenario leads to the TSA shutting down the entire 

airport which would end the entire process chain for a significant time. 
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Figure 13: TSA luggage scanning process in detail 
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Figure 14: TSA non-clear bags process in detail 

2.2.4 Luggage Sorting 

Within the predefined luggage sorting process flowchart, the perspective of the airline employees that 

handle luggage movements outside is adopted. It is important to note that these airline employees also take 

care of luggage loading. The airline employee at the sorting station checks if bags arrive at the end of the 

conveyor belt. 

As shown in Figure 15, a bag’s label is checked upon arrival in order to determine which destination 

the bag has. Having this information in mind, the airline employee checks if a matching luggage cart is 

available. Each luggage cart will be loaded with baggage for one single flight in order to avoid bags ending 

up in the wrong aircraft. Depending on the availability of a matching luggage cart, the airline employee will 

either scan the bag’s label for documentation and put the bag on the luggage cart or temporarily store the bag 

on the floor. Taking a bag off of the conveyor, even if no matching cart is available, prevents the laser sensor 

at the end of the conveyor belt from stopping the last section of the belt. Thus, baggage congestions that 

impact the rest of the conveyor system are avoided. Usually, however, a sufficient amount of matching lug-

gage carts is available. 

Supposing that no luggage is arriving, two things are considered. Is there a bag stored on the floor and 

is there a matching luggage cart available? Granted that both considerations apply, the airline employee will 

scan the bag’s label and put it on the luggage cart. 
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Figure 15: Luggage sorting process in detail 

2.2.5 Luggage Loading 

The luggage loading process is carried out by the same airline employees that handle the luggage 

sorting. Hence, their perspective is adopted for the luggage loading process flowchart as well. Generally, the 

airline employees that load departing aircrafts are also in charge of unloading incoming flights. In order to 

prevent departure delays, their priority is to unload arriving aircrafts first so that they can load them for their 

departure right afterwards. Figure 16 presents the process flowchart in detail. 

Therefore, the first consideration is if an aircraft is arriving. Granted that this is not the case, it might 

be the early morning before the departure of aircrafts that spent the night at SLO airport. If this is true, the 

process flow for arriving aircrafts will be joined. 

Suppose that there is an aircraft arriving, empty luggage carts are towed to the assigned parking posi-

tion. Following that, the aircraft’s inbound luggage is unloaded onto the luggage carts. Any bags that will go 
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on a connecting flight will be put on the respective carts. Filled carts are then moved to the start of the inbound 

luggage conveyor. 

Further processes depend on if more aircrafts have their departure scheduled today. In other words, if 

the last departure has already taken place, the luggage carts that were previously placed at the start of the 

inbound conveyor will be loaded onto the conveyor. This is where the process flow joins the arm of the 

flowchart that is used if more aircrafts are departing that day.  

If more departures are scheduled, the airline employee will tow the carts to the aircraft’s parking 

position, given that most bags for this flight are on the carts. Then, the luggage carts are unloaded into the 

aircraft. Subsequently, luggage carts are returned to the sorting station. Luggage carts for flights that do not 

have most bags already will wait. Finally, if there are full inbound luggage carts waiting at the inbound 

conveyor as it was the priority to load a departing aircraft first, they will be unloaded onto the inbound 

conveyor. 
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Figure 16: Luggage loading process in detail  
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3 Simulation Approach 

The name of the software used to build the simulation model of the outbound luggage handling system 

is Anylogic by Anylogic Company. More specifically, the free trials of the Personal Learning and the Uni-

versity Edition were used. Anylogic was chosen because the author of this thesis has worked with Anylogic 

as part of a lecture. It is capable of modeling agent-based, discrete event, and system dynamics methodolo-

gies. Similar to a lot of simulation models, the one that has been built for this thesis is a hybrid of agent-

based simulation and discrete event simulation. According to Anylogic, agent-based simulation focuses on 

active components of a system. These active entities are called agents and could represent people, households, 

vehicles, equipment, products, companies or other entities. Agents might be interconnected, and their behav-

ior depends on common variables and parameters. Discrete event simulation is process-centric where systems 

are viewed as a chain of processes. Models are visually specified as process flowcharts (Egor Yakovlev, 

2019). 

3.1 Overview 

The simulation model is based on the process descriptions that were introduced in chapter 2. However, 

the data that that was available to build the model upon was limited. As no data on the luggage sorting and 

loading processes was accessible, is has been decided to not include these aspects in modeling the system. 

This means that the simulation covers anything in between passengers arriving at the airport and luggage 

items arriving at the end of the conveyor belt. Due to the major question this thesis is trying to answer—what 

amount of additional flights is the conveyor system able to handle without causing major delays—one run of 

the simulation model simulates one whole day of operations. 

3.2 Input Data 

Simulation models are built to answer questions by obtaining data. This data can be determined by 

the model as output data. Any simulation model’s output data greatly depends on the input data that the model 

is being provided with. The introduction of input data in the following sub-chapters distinguishes between 

data that is stored externally but accessed by Anylogic, such as data stored within the simulation model. 

Throughout the development of the simulation model, SLO airport kindly provided insightful data from Feb-

ruary 2020. This data includes the scheduled flight plan corresponding with two datasets. One dataset 
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contains the daily number of luggage items that passed though the TSA scanner by the hour. The other dataset 

contains daily number of persons that went through the security check by the hour. However, neither of the 

datasets is precise, as oversized bags are not counted. At the same time, the actual passenger throughput is 

smaller than what the data shows. This is because non-passengers passing through the security check are 

counted, too. These include cleaning staff, bistro staff, persons that assist passengers in the airport and more. 

Flight schedules usually deviate from day to day. Days with a large number of flights were selected from the 

flight schedules, on which the flight schedule is identical. This specific flight plan occurred on five days and 

is presented in the next chapter. 

This results in five sets of time series of luggage and person throughput. Simultaneously to the model 

development, the model’s input data was selected so that the simulated equivalent of these time series are 

matching on a sufficient level of similarity. 

Input data presented in the following chapter is from the final simulation model that has been cali-

brated to create simulated luggage and person throughput time series that are sufficiently similar to the real 

time series. 

3.2.1 Externally Stored 

The flight schedule of departing flights is stored in an Excel-file and represents one of the most crucial 

inputs of the simulation model. It lists every departing flight per day. As seen in Table 1, information like 

departure time, destination, airline, the aircraft in use and its capacity, the average passenger load factor, and 

the start and end of the check-in time window are included. Time-related information is shown in the 24-

hour format. The average passenger load factor values are destination-based averages from 2019. They rep-

resent the share of passengers that typically board the plane compared to available seats. Load factors had to 

be increased by 8.5% across the board in order to simulate a realistic amount of total passengers. 
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Table 1: Flight schedule of San Luis Obispo Regional Airport February 2020 

 

As seen in Figure 17, this schedule was used to create a first visual overview of open check-in time 

windows over the course of a day. Generally, departures are scheduled between 05:15am and 7:14pm. United 

Airlines operates the most flights, which are spread over the whole day. American Airlines have less flights, 

resulting in gaps of multiple hours in which their check-in counters are not staffed. Alaska Airlines operate 

only two flights. It can be concluded that there are likely passenger arrival peaks approximately between 

04:00am and 06:00am, as well as between 11:00am and 13:30pm. 

In order to determine which number of passengers arrive at which specific time within the check-in 

interval, a passenger arrival distribution is used. Such a function describes how much prior to departure pas-

sengers will arrive at the airport with a certain probability. This model’s arrival distributions are based on the 

distributions that have been presented in the literature review. However, check-in time windows from papers 

in the literature review deviate significantly from the one at SLO airport. This is expected, as the airlines at 

SLO airport offer domestic flights only. It was decided to initially model passenger arrival with an “early” 

distribution, which is presented in Figure 18. The chart shows the shares of passengers that arrive in a certain 

time interval before departure in minutes. However, two additional distributions that are used to account for 

varying arrival behavior throughout the day are shown in Figures 19 and 20. These three distributions model 

early, balanced, and late arrival behavior, respectively. 

Flight ID Departure Destination Code Destination Airline Flight Code Aircraft Passenger Capacity Average Passenger Load Factor Start Check-In End Check-In
1 05:15 DEN Denver United 5676 Canadair CRJ-200 50 87,60% 3:15 4:45
2 06:00 LAX Los Angeles United 5626 Embrear 175 78 65,40% 4:00 5:30
3 06:05 DFW Dallas Fort Worth American 3013 Canadair CRJ-700 68 85,20% 4:05 5:35
4 06:33 PHX Phoenix American 3041 Canadair CRJ-700 68 78,90% 4:33 6:03
5 06:41 SFO San Francisco United 5667 Canadair CRJ-700 68 70,70% 4:41 6:11
6 08:10 LAX Los Angeles United 5646 Canadair CRJ-200 50 65,40% 6:10 7:40
7 09:00 DEN Denver United 5830 Canadair CRJ-200 50 87,60% 7:00 8:30
8 10:19 SFO San Francisco United 5966 Canadair CRJ-200 50 70,70% 8:19 9:49
9 11:10 LAX Los Angeles United 5382 Canadair CRJ-200 50 65,40% 9:10 10:40

10 12:22 PHX Phoenix American 3220 Canadair CRJ-700 68 78,90% 10:22 11:52
11 12:50 DEN Denver United 5794 Canadair CRJ-200 50 87,60% 10:50 12:20
12 12:55 SEA Seattle Alaska 2106 Embrear 175 78 84,00% 10:55 12:25
13 14:05 SFO San Francisco United 5657 Canadair CRJ-700 68 70,70% 12:05 13:35
14 14:10 SAN San Diego Alaska 3498 Embrear 175 78 80,50% 12:10 13:40
15 16:03 SFO San Francisco United 5839 Canadair CRJ-200 50 70,70% 14:03 15:33
16 16:31 PHX Phoenix American 3056 Canadair CRJ-700 68 78,90% 14:31 16:01
17 18:10 LAX Los Angeles United 5644 Canadair CRJ-200 50 65,40% 16:10 17:40
18 19:14 PHX Phoenix American 3053 Canadair CRJ-700 68 78,90% 17:14 18:44
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Figure 17: Check-In time windows by flight throughout the day 

 

Figure 18: Early passenger arrival distribution prior to departure [d] 
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Figure 19: Balanced passenger arrival distribution prior to departure [d] 

 

Figure 20: Late passenger arrival distribution prior to departure [d] 

3.2.2 Internally Stored 

Besides storing model data in logic blocks, Anylogic allows several other objects to store data that 

can be referenced by the model. These include objects such as parameters, variables, custom distributions, 
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Table 2 provides an overview on parameters that store simulation input data. Parameter names, the 

data type, the initial value, the unit, and the usage within the model are listed. Those parameters that have 

“tbd” as their initial value will be used to model additional flights within the experimentation stage. 

Variables that store simulation input data are listed in Table 3. The table is structed similarly as Table 

2 and “tbd” entries in the column for initial values indicate that these variables will be used to model addi-

tional flights within the experimentation stage. 

Table 2: Simulation input parameters overview 

 

  

Parameter Name Data Type Inital Value Unit Usage
Acceleration double 0.5 m/s^2 Acceleration of the conveyor belt
Airline19 int tbd Airline code of additional flight #19
Airline20 int tbd Airline code of additional flight #20
Airline21 int tbd Airline code of additional flight #21
AlaskaCheckPriority int 1 American Airlines priority for check-in services
AlertShare double 0.1 Share of bags that result in the TSA scanner giving an alert
AlsakaBagStorePriority int 1 American Airlines priority for putting stored bags on the conveyor
AmericanBagStorePriority int 1 American Airlines priority for putting stored bags on the conveyor
AmericanCheckPriority int 1 American Airlines priority for check-in services
BagIsCritical int 1200 s Bags arriving at the end of the conveyor belt later than 20 minutes prior to departure are critically late
BagIsMissed int 600 s Bags arriving at the end of the conveyor belt later than 10 minites prior to departure are missed
BagLength double 0.715 m Length of bags
BagsWaitingOnFloor int 3 bags Function that dynamically detemines priority of each airline's priority for check-in vs. stored bags
BigBagsShare double 0.05 Share of oversized bags
CheckInFullMax double 65 s Maximum check-in time at the counter for passengers that did not check-in previously
CheckInFullMed double 55 s Medium check-in time at the counter for passengers that did not check-in previously
CheckInFullMin double 45 s Minimal check-in time at the counter for passengers that did not check-in previously
CheckingTimePerBag int 45 s Time needed to check one bag at the counter
CheckInKioskMax double 45 s Maximum check-in time at the counter if the passenger used the kiosk
CheckInKioskMed double 35 s Medium check-in time at the counter if the passenger used the kiosk
CheckInKioskMin double 25 s Minimal check-in time at the counter if the passenger used the kiosk
ClearShare double 1 Share of bags that are considered clear after being searched manually (1 as this is an exeptional case)
Deceleration double 0.5 m/s^2 Deceleration of the conveyor belt
Departure19 int tbd s Departure of additional flight #19
Departure20 int tbd s Departure of additional flight #20
Departure21 int tbd s Departure of additional flight #21
GapAlaska double 0.3 m Minimal gap between two bags on the conveyor section of Alaska Airlines
GapAmerican double 1.315 m Minimal gap between two bags on the conveyor section of American Airlines
GapUnited double 0.3 m Minimal gap between two bags on the conveyor section of United Airlines
IntSpeed double 0.3 m/s Initial speed of the conveyor belt
KioskShare double 0.05 Share of passengers that check-in at a kiosk
ManualSearchMax int 150 s Maximum time the TSA agent takes to manually search a bag
ManualSearchMed int 120 s Medium time the TSA agent takes to manually search a bag
ManualSearchMin int 90 s Minimum time the TSA agent takes to manually search a bag
MaxSpeed double 1 m/s Maximum speed of the conveyor belt
MovingSpeed double 1.2 m/s Walking speed of humans
NrBagsFlexibleTSA int 10 bags Function that dynamically adds or subtracts the second TSA agent
NrBagsPermanentTSA int 5 bags Function that dynamically adds or subtracts the second TSA agent
NrBagsStorageFlexibleTSA int 2 bags Function that dynamically adds or subtracts the second TSA agent
NrBagsStoragePermanentTSA int 1 bags Function that dynamically adds or subtracts the second TSA agent
OffsetJump double 0.05 m Amount of meters a bag is moved on the conveyor when looking for a free spot
OnlineCheckInShare double 0.1 Share of passengers that check-in online
PassengersWaitingInLine int 4 passengers Function that dynamically detemines priority of each airline's priority for check-in vs. stored bags
PressPedalTime double 1 s Time that the TSA agent needs to press the foot pedal
ScanConvSpeed double 5 m/s Maximum speed of the conveyor belt in the scanner
ScanGap double 0.3 m Minimal gap between two bags on the scanner section
ScanTime double 30 s Time the TSA Scanner needs to scan one bag
TimeLimitLate int 1800 s Late passengers trying to check in less than 30 minutes before departure are denied
TimeLimitSkipLine int 2100 s Late passengers trying to check in within the last 35 minutes before departure can skip the queue
UnitedBagStorePriority int 1 American Airlines priority for putting stored bags on the conveyor
UnitedCheckPriority int 1 American Airlines priority for check-in services
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Table 3: Simulation input variables overview 

 

Custom distributions are used to model the amount of drop-off luggage units that each passenger has. 

Table 4 provides a summary of three different luggage distributions. In comparison to the distributions that 

have been introduced in the literature review, the average amount of bags per passenger at SLO airport is 

significantly smaller, according to data that the airport provided. Therefore, new distributions have been 

designed for the simulation model. Luggage distributions are assigned to passengers by flight. 

Table 4: Distributions of luggage units per passenger 

 

Schedules used in the model contain staffing information for the check-in counters of each airline as 

seen in Table 5. The amount of staff members in each interval has been determined by considering the amount 

of flights that have their check-in time windows simultaneously. Roughly, one flight will have two airline 

employees serving passengers at the check-in counters. In case of a slight overlapping of check-in time win-

dows for the same airline, three employees will staff the counters. Heavy overlapping results in four airline 

employees. 

  

Variable Name Data Type Inital Value Unit Usage
Airline22 int tbd Airline code of additional flight #22
Airline23 int tbd Airline code of additional flight #23
Airline24 int tbd Airline code of additional flight #24
Airline25 int tbd Airline code of additional flight #25
CapacityConveyorAlaska int 3 bags Determening if there is a free conveyor spot for Alaska Airlines (theoretically)
CapacityConveyorAmerican int 3 bags Determening if there is a free conveyor spot for American Airlines(theoretically)
CapacityConveyorUnited int 7 bags Determening if there is a free conveyor spot for United Airlines (theoretically)
ConvLengthAlaska double 3142 m Calculating the conveyor capacity of Alaska Airlines
ConvLengthAmerican double 7.62 m Calculating the conveyor capacity of American Airlines
ConvLengthUnited double 7.62 m Calculating the conveyor capacity of United Airlines
Departure22 int tbd s Departure of additional flight #22
Departure23 int tbd s Departure of additional flight #23
Departure24 int tbd s Departure of additional flight #24
Departure25 int tbd s Departure of additional flight #25

Luggage Units per Passenger Regular More Less
0 55,5% 48,0% 79,0%
1 39,5% 42,0% 21,0%
2 5,0% 10,0% 0,0%

# Average Bags per Passenger 0,495 0,62 0,21

Distribution



36 
 
 

Table 5: Check-in counter shift schedule by airline 

 

3.3 Logic Blocks Used in the Model 

Anylogic offers multiple modeling libraries, such as the Process Modeling Library and the Material 

Handling Library, that each contain multiple logic blocks. Table 6 gives an overview of all logic blocks used 

in the model, their symbols, names, and basic functions. Green dots on the symbols indicate where the logic 

blocks can be connected with other blocks. The “in” ports can have multiple incoming connections while the 

“out” ports allow one connection. Some blocks, for instance, the Select Output logic blocks, have multiple 

outgoing ports. Here, “outT” stands for the logical true output port and “outF” stands for the logical false 

output port. These references shown on the symbols will be used in the model explanation. Blue symbols 

indicate a logic block is from the Process Modeling Library, purple ones are from the Material Handling 

Library. 

Table 6: Overview of simulation modeling logic blocks 

Symbol Name Function 

 

Enter Introduces agents into 
flowchart 

 

Select Output Leads agents to the true or false 
output depending on condition 
or probability 

American Shift Capacity From To
4 4:05 6:03
2 10:22 11:52
2 14:31 16:01
2 17:14 18:44

United Shift Capacity From To
2 3:15 4:00
4 4:00 6:11
3 6:11 13:35
2 14:03 15:33
2 16:10 17:40

Alaska Shift Capacity From To
3 10:55 13:40
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Select Output 5 Leads agents to one of the 5 
output ports depending on con-
ditions or probabilities 

 

Delay Delays the agent 

 

Queue Keeps incoming agents in order 
or sorts them 

 

Seize The incoming agent seizes a re-
source unit 

 

Release The agent releases the seized 
resource unit 

 

Split Creates a copy of incoming 
agent, possibly other agent type 

 

Move to Moves agent in animation 

 

Conveyor Enter Puts agent on conveyor 

 

Convey Conveys agent to defined loca-
tion in conveyor network 

 

Conveyor Exit Removes agent from conveyor 

 

Hold Blocks agent flow 

 

Sink Removes agents from flowchart 
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3.4 Detailed Simulation Model Design 

For consistency and clarity, the documentation of the simulation model design follows the logical 

flow of processes, similar to the process descriptions presented before. However, sub-headings might incor-

porate additional sub-headings. One example for this case is the computational procedure used to model 

individual passenger arrival time stamps within the passenger check-in process. Figure 21 shows the com-

plete logic flowchart of the simulation model that is built out of logic blocks that were introduced above. Its 

sections will be described in more detail in the following sub-chapters. Anylogic allows to incorporate java 

code in models. Code can be stored in functions that can be executed upon calling them. Further, code can 

be saved in the logic blocks and executed when an agent passes through the respective block. Next to the 

logic flowchart, multiple graphs that visualize key performance indicators are included. 

The model works with several types of agents. Agents can be used as resources, such as the counter 

staff members of each airline or the TSA staff. Those are linked to resource pools, such as the staff of Amer-

ican Airlines. Further, two types of agents travel through the logic flowchart: passengers and bags. Many 

decisions within the model depend on characteristics of those two agent types. Characteristics are modeled 

as parameters. Every agent type has a graphical representation that is used in the animation. 
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Figure 21: Overview of the simulation model's logic flowchart 
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3.4.1 Passenger Creation 

In some way, passengers have to be created in the simulation. The presented model uses a function 

named “initschedule” that was written to take care of this. It is automatically executed on model startup and 

incorporates several nested loops that go through every scheduled flight. Figure 22 to 24 show the java code 

of this function. Figure 22 includes the first snippet of the code that assigns the number of passengers, the 

flight’s departure, the operating airline, and the passenger arrival distribution for each flight. Additionally, 

the code recognizes if additional flights have been added to the schedule and assigns their departure and 

operating airline differently from how this is done for the 18 regular flights from the February 2020 schedule. 

While regular flights are fully assigned by the Excel database, the additional ones use parameters as this 

allows to try different scenarios in an automated way. 

The Excel database that the function is referring to has been derived from the flight schedule that was 

presented in the simulation data input chapter. Table 7 includes the flight numbers, the possible range of 

passengers resulting from allowing fluctuations of 5%, a code for the luggage distribution, and an airline 

code for each flight. Passenger load factors are not visible here, however, they are used to compute the range 

of passengers possible. 

Table 7: Excel database used for passenger creation 

 

  

Flight ID Passengers min Departure [s] Passengers max Luggage DistributionAirline Code
1 36 18900 40 2 2
2 55 21600 61 2 2
3 61 21900 67 2 1
4 56 23580 62 2 1
5 58 24060 64 0 2
6 35 29400 39 1 2
7 46 32400 50 1 2
8 38 37140 42 1 2
9 45 40200 49 2 2
10 63 44520 70 2 1
11 47 46200 52 2 2
12 61 46500 68 2 3
13 45 50700 49 1 2
14 62 51000 69 1 3
15 47 57780 52 0 2
16 53 59460 59 1 1
17 45 65400 49 0 2
18 50 69240 55 0 1
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Figure 22: Java code of the "initschedule" function part 1 
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Figure 23 contains the code section that loops through every passenger of each flight. For every pas-

senger, a random variable, “u,” is assigned. The variable, “u,” is uniformly distributed between 0 and 1 and 

is compared to the array values of the accumulated passengers array from the passenger arrival distribution 

that was assigned to the respective flight. This way, the passenger receives the interval number in which he 

arrives. This logic is based on the work of (Cavada, Cortés, & Rey, 2017). Towards the end of the code, this 

is one of the factors used to compute the exact arrival time. Depending on the luggage distribution of their 

flight, the passenger is assigned with a certain number of drop-off luggage. Given that a passenger is assigned 

with zero baggage items and is not arriving within the last two intervals in which the check-in time window 

is open, he will be pushed back 2 intervals, resulting in him arriving later. This is because travelers matching 

the criteria are likely going to plan with less slack time. In order to finally compute the passenger’s arrival 

time, another random variable, “v,” is assigned. It is uniformly distributed between 0 and 600, which includes 

every second within one 10-minute interval. At this point, the passengers are added to a population while 

feeding the passenger agent with all of these parameters. Following that, a dynamic event that will introduce 

the passenger into the simulation logic flowchart at the correct time is provided with this information. 
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Figure 23: Java code of the "initschedule" function part 2 
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The last section of the code is displayed in Figure 24. Input variables of the conveyor section lengths 

and the respective bag capacities of these sections are computed. 

 

Figure 24: Java code of the "initschedule" function part 3 

The final step of passenger creation is their removal from the initial population and their introduction 

into the simulation. Figure 25 shows the java code of the dynamic event that covers this functionality. 

 

Figure 25: Java code of the dynamic event 

3.4.2 Before Check-In Counter 

Compared to the process flowcharts in chapter 2, the perspective here is not changed from passenger, 

to airline employee, to TSA worker, et cetera. Rather, the perspective is on what passengers actively do, 

which services they passively receive from resources, and what is done with dropped-off luggage. 

Figure 26 gives an overview of the first section of the logic flowchart which incorporates activities 

and processes that can take place before a traveler might go to a check-in counter. Now that passengers are 

introduced into the model via the enter-block, passengers are split depending on if they checked-in online or 

not. Travelers who have done this will take the “false” port of the “OnlineCheckIn” block. If they do not 

carry drop-off luggage, they are led to “SinkOnline” and are removed from the simulation. Online check-in 

passengers that do have luggage are led to the Airline2 block which leads them to the check-in counter of 

their airline. 
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Passengers who did not check in online can use their airline’s kiosk for self-check in. These people 

take the “false” port of “Kiosk” and select the airline’s queue before checking themselves in, which is mod-

eled by delays. Names of delay and queue blocks end with AM, UN, or AL which stands for the airlines 

American, United, and Alaska, respectively. This name coding is used in the whole model. Kiosk passengers 

will also leave the simulation if they do not have baggage items with them. The rest proceeds to the check-

in counters. For all passengers leaving by entering a sink, a timestamp of the current simulation time plus 

five minutes is saved. These timestamps are used for the creation of simulated person throughput time series 

by the hour. 

 

Figure 26: Before check-in counter model logic 

3.4.3 Check-in Counter 

Check-in counter procedures are underlying a similar structure of logic blocks. American Airline’s 

logic is picked as an example that is shown in Figure 27. First, passengers go into the queue which is priority-

based depending on the arrival time of passengers. In addition, implemented java code detects passengers 
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that arrive rather late and assigns them a higher priority. This means that late passengers skip the line. Fol-

lowing that, passengers arrive in the “SeizeAM” block where they stay until they seized a resource, one of 

the American Airlines staff members. Java code recognizes late passengers and labels them accordingly. 

These passengers will be denied from check-in, resulting in releasing the seized resource, leaving the counter, 

and getting removed from the simulation. Travelers trying to check-in on time seize a staff member, are 

checked in, drop-off their luggage if they have any, and enter the “SplitPassengerAndBagAM” block. The 

passenger leaves the block via the “out” port, and luggage agents exit through the “outCopy” port. Passengers 

that are checked in and do not have luggage will behave similarly as passengers that dropped-off luggage: 

they release the airline employee and leave the counter. 

If the counter queue is very long, the airline employee will “hurry” and the check-in process is faster. 

For all passengers leaving, a timestamp of the current simulation time plus five minutes is saved. These 

timestamps are used for the creation of simulated security check person throughput time series by the hour. 

 

Figure 27: Check-in counter model logic 

3.4.4 Airline Luggage Handling 

From now on, luggage agents representing one bag each are passing through the flowchart. The struc-

ture is similar for American and United Airlines, Alaska however has a slightly different process that requires 

a slightly varying logic that will be explained towards the end of this chapter. Figure 28 presents the logic of 

the airline luggage handling logic with the example of American Airlines. Any bag being dropped-off seizes 

the airline agent. “BagSizeAM” leads oversized bags downwards. The airline agent will carry the oversized 

luggage item into the TSA room and is released afterwards. When released, he returns to the counter. Regular 

sized bags enter the “ConveyorFreeAM” block, which compares the bag capacity of the airline’s conveyor 

section with the sum of bags that are about to be put onto the conveyor and the ones already on the conveyor. 
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Comparisons such as these are required as the simulated airline agent cannot just look at the conveyor belt 

and notice or register if there is a free spot like a real human. 

If the conveyor’s capacity is reached, the airline agent carries the bag next to the conveyor and is 

released. The luggage agent proceeds into the “BagStorageAM” block, which models bags being temporarily 

stored on the floor. This queue is priority-based depending on an agent parameter that is increased if an airline 

agent unsuccessfully tried to put the bag on the conveyor. Before a bag agent seizes an airline worker in the 

“SeizeAM3” block, they are delayed to compensate for conveyor movement based on the TSA scanner takt 

time. 

In case of the conveyor theoretically having space, the airline worker carries the bag to the conveyor. 

This is where luggage items that were temporarily stored and the ones that have not both enter the “Loop-

FreeAm” block. The purpose of this block is to prevent deadlock situations by only allowing one luggage 

agent to be within the loop that is explained in the following. Baggage agents that cannot enter the loop are 

sent back to the temporary storage between the counter and the conveyor. 

The loop is formed between the “outTimeout” port of “FindSpotAM,” “MoveBagRightAM,” and 

“StilOnConvAM.” Bags are introduced into the conveyor system by the purple block. As simulated airline 

agents do not have a natural intelligence, they will not place a bag on any empty spot on the conveyor. 

However, Anylogic does allow to assign an offset value for how far from the conveyor start a bag shall be 

put on the belt. If this specific spot is blocked by another bag, the luggage agent that wants to get into the 

“DropOnConvAM” block will remain in the queue before until the spot has cleared. This means that the flow 

of luggage items and the airline agent are blocked. The loops that have been described earlier solves this 

problem. Given that a luggage agent enters “FindSpotAM” for the first time, the agent’s parameter, called 

“conveyorspot,” which is used as the offset, will be set to the start of the conveyor. The “DropOnConvAM” 

block will not allow the agent to enter if this offset position is blocked. “FindSpotAm” has a timeout imple-

mented that leads the luggage agent out of the “outTimeout” port after waiting in it for 2 milliseconds. The 

luggage agent’s “conveyorspot” parameter value will be increased by 5 centimeters. The block “StillOnCon-

vAM” checks if the new spot is still on the airline’s conveyor section. If yes, the luggage agent enters “Find-

SpotAM” again. If the new “conveyorspot” is free, the luggage item will enter the “DropOnConv” block, 

which means that the bag is put onto the conveyor. Following that, the bag agent releases the airline worker. 
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If necessary, the loop will be passed multiple times until the added 5 centimeters exceed the conveyor sec-

tion’s length. These luggage agents are led to the temporary bag storage where they skip the queue as the 

loop assigns a higher priority. 

Alaska Airline’s conveyor section is significantly smaller than those of the other airlines. This means 

that they do not have the same chance of getting their bags onto the conveyor, especially when a continuous 

flow of bags from the other airlines blocks their belt. Alternatively, a backlog from the scanner might block 

their section, too. Therefore, Alaska workers will try to put bags on the conveyor section of United whenever 

their own section is blocked. Another loop, similar to the one that has been explained is implemented in 

Alaska Airline’s logic. 

 

Figure 28: Airline luggage handling model logic 

3.4.5 TSA Luggage Handling 

The TSA luggage handling section of the model is where the sections separated by airline join. First, 

the most common process chain of regular sized bags is described. As seen in Figure 29, luggage agents 

arrive in the “ConveyToPedalAM” block which transports them into the TSA room next to the foot pedal. 

Upon arrival there, the bag agent seizes a TSA worker that walks to the pedal and presses it to initiate further 

conveyor transport into the TSA scanner. The TSA agent is then released and walks back to his home position 

next to the conveyor. “ConveyBeforeScanner” moves the bag agent on the last conveyor belt section before 

the scanner where bags will be held if another bag is scanned in this moment. When the bag scan is completed, 

“WaitForScan” releases the hold and allows the next bag to be moved into the scanner. During the scan, the 

current simulation time is saved in order to create a simulated time series of luggage throughput. If the scanner 
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did not detect suspicious objects, the bag agent is transported to the end of the conveyor, exits the conveyor, 

and leaves the simulation. 

Bags that create an alert are transported outside of the scanner. Upon arrival the bag seizes a TSA 

worker in “SeizeTSA2” who walks to its position on the conveyor and picks it up from the conveyor. Fol-

lowing that, the TSA agents bring the bag to the manual search table. This is where oversized bags join the 

logic stream of bags that created an alert. Temporary storage of oversized bags is modeled with the queue 

“BagStorageTSA.” Those bags seize a TSA agent that walks to their location and brings them to the manual 

search table. Bags that are placed on the manual search table release the TSA agent at first. This serves the 

purpose of TSA agents being able to, for example, keep the scanner throughput going by pressing the foot 

pedal before searching a bag. Task priorities in the seize blocks were implemented for this. Most crucial for 

throughput is the removal of alert bags from the conveyor as these bags prevent the scanner from releasing 

scanner bags. After a side-task like this is done, the bag agent on the table will seize a TSA agent that is 

performing the manual search. As it would be an exceptional case that results in an airport shutdown, the 

model finds all manually searched luggage items clear. Consecutively, the bag is carried to and put onto the 

conveyor and the TSA agent is released. As the model does not include the baggage sorting, there cannot be 

backlogs from the station that would require to model temporary bag storage next to the conveyor as de-

scribed in chapter 2. 

For any bag that leaves the simulation, the current simulation time is checked and compared to the 

required slack time defined before departure for bags that are critically late and bags that are missed. In other 

words, if a bag arrives at the end of the conveyor less than 20 minutes prior to its departure it is labeled as 

critical. If there are less than 10 minutes of slack time until departure, the bag will either miss its flight or 

delay takeoff. These bags are labeled as missed. 

Whenever oversized bags are brought into the TSA room and whenever regular-sized bags arrive in 

front of the scanner, java code can dynamically add and remove a second, flexible TSA agent. The flexible 

agent is added when many bags are waiting in front of the scanner and when some oversized bags wait to be 

searched manually. Given that the congestion has been processed, the second TSA agent is removed. Prop-

erties of the “SeizeTSA” blocks are designed so that both TSA agents work together effectively. It would not 
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make sense to have both searching bags manually at the same time. This is why manual searching and carry-

ing of oversized bags are only performed by the permanent TSA agent. 

 

Figure 29: TSA luggage handling model logic 

3.5 Animation 

Besides the logical flowchart, a graphical representation of the model has been built. This requires 

linking logic blocks that contain movements and locations of agents and resource agents to be linked to 

graphical nodes within the graphical model. Figure 30 shows the two-dimensional layout of the conveyor 

system. The big rectangle filled with a pattern represents the publicly accessible section of the terminal. The 

yellow rectangle is where passengers arrive. Self-check-in kiosks are attached with their queues. Rectangles 

and lines that are dashed represent nodes. They define where agents and resources are located and move. 

American Airlines counters, employees, passengers, and their luggage are colored red. United Airlines is 

color-coded in blue and Alaska Airlines in green. The order of airline counters in Figure 30 from top to 

bottom is four counters of American Airlines, four counters for United Airlines, and three counters of Alaska 

Airlines. 

The L-shaped conveyor leads into the TSA room which is marked by filling with a different pattern. 

The rectangle with solid filling on the conveyor represents the TSA scanner; the one above the scanner rep-

resents the table where bags are searched manually. Airline workers that carry oversized bags into the TSA 

room will walk on the dashed line that leads from the counters to the rectangle next to the scanner where 

these bags are dropped. 

Figure 31 visualizes the same graphical representation in a three-dimensional way. Within that image, 

the TSA agents are easier to see. Besides, the rectangles between the counters and conveyor that mark where 

bags can be temporarily stored stand out. 
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Figure 30: Two-dimensional simulation model animation 

 

Figure 31: Three-dimensional simulation model animation 

3.6 Key Performance Indicators Output 

In order to evaluate the simulated system’s behavior, java code within the model outputs a range of 

KPIs that are computed at the end of a simulation run. A part of them is also visualized in charts. Figure 32 

displays the outputs, such as the respective charts that fills with data during the simulation run. Charts in the 
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first three columns display histograms and their respective cumulative density function of the described 

measures. Numbers below the chart display the average value. Charts showing passenger service time and 

luggage processing time are featured for each airline separately. Pie charts present the share of bags that are 

critical and missed. 

 

Figure 32: Simulation model KPI output values and visualization 

A brief description of all outputs is provided in Table 8. All the time-related outputs are saved in 

minutes. Their values are computed by using references to datasets within the model that collect the respec-

tive data. For example, the current passenger queue length by the airline is saved to airline-specific datasets 

whenever a new passenger is receiving check-in services by airline staff. The outputs are linked to these 

datasets and compute the mean. This way, it is ensured that time intervals of idle counters with empty queues 

do not affect the averages. 
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Table 8: Overview of simulation outputs (KPIs) 

 

3.7 Verification 

Verification is a crucial aspect of simulation model development. Verification is the act of confirming 

that the simulation is working properly. This can be done by observing if the model’s behavior matches the 

real system’s behavior. In addition, KPIs can be investigated to see if the model results in unexpected KPI 

values. 

The first check of verifying the model’s behavior is checking the distribution of passenger arrival 

times over the day that the java code results in. Data for this evaluation is saved within a dataset during model 

runtime. Figure 33 shows the number of passengers that arrive at the airport during 10-minute increments of 

the day by the flight number of the passenger. Multiple passenger arrival peaks are present; these are during 

the times at which check-in time windows of multiple flights overlap. 

In order to achieve additional insights, the same data is presented in another way. Figure 34 shows 

how passenger arrivals at the airport are broken down by the respective airline the travelers are flying with. 

Looking at the first arrival peak between 4:10 and 5:20 am, it can be recognized that within these 10-minute 

intervals, roughly 10 United and 15 American passengers arrive. This is due to lower combined seat capaci-

ties of the first two United flights compared to the first two American flights. 

Output Name Description
NrCriticalBags Number of Critical Bags
NrMissedBags Number of Missed Bags
NrFlights Number of Flights
NrPassengers Number of Passengers
NrBags Number of Bags
NrDeniedPassengers Number of Denied Passengers
AvgTotalLeadTime Average Total Lead Time
AvgScansPerMin Average Number of Scans per Minute
AvgWaitTimePassengerAM [min] Average Queue Wait Time American Passengers
AvgWaitTimePassengerUN [min] Average Queue Wait Time United Passengers
AvgWaitTimePassengerAL [min] Average Queue Wait Time Alaska Passengers
AvgWaitTimePassenger [min] Average Queue Wait Time Passengers, Weighted
AvgServiceTimePassengerAM [min] Average Service Time American Passengers
AvgServiceTimePassengerUN [min] Average Service Time United Passengers
AvgServiceTimePassengerAL [min] Average Service Time Alaska Passengers
AvgServiceTimePassenger [min] Average Service Time Passengers, Weighted
AvgProcessingTimeBagAM [min] Average Processing Time American Bags
AvgProcessingTimeBagUN [min] Average Processing Time United Bags
AvgProcessingTimeBagAL [min] Average Processing Time Alaska Bags
AvgProcessingTimeBag [min] Average Processing Time Bags, Weighted
AvgQueueLengthAM Average Passenger Queue Length American Counters
AvgQueueLengthUN Average Passenger Queue Length United Counters
AvgQueueLengthAL Average Passenger Queue Length Alaska Counters
AvgNrBagsBeforeScannerAndConveyor Average Number of Bags Before Scanner and Conveyor
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Figure 33: Simulated passenger arrivals at the airport by flight 

 

 
Figure 34: Simulated passenger arrivals at the airport by airline 
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In order to take variation into account, an experiment that automatically runs the model 20 times in a 

row while using different random seeds was created. Output values that are listed above are automatically 

saved into an Excel file for each simulation run. While executing the simulation runs, the logic flowchart and 

animations are not visible. Instead, histograms of the output values’ distributions are presented. For instance, 

after 20 simulation runs, the histograms of averages for the total lead time and the processing time per bag 

looks as presented in Figure 35. 

 

Figure 35: Histograms of simulation output values 

The full collection of all values of all outputs from all simulation runs is shown in Table 15 in Appen-

dix A. The average values from the 20 simulation runs for all outputs can be seen in Table 9, which shows 

realistic values. 

Table 9: Output value averages from 20 simulation runs of the base model 

 

Output Name Averages
NrCriticalBags 0,15
NrMissedBags 0
NrFlights 18
NrPassengers 945,3
NrBags 477,35
NrDeniedPassengers 0
AvgTotalLeadTime 6,06
AvgScansPerMin 1,85
AvgWaitTimePassengerAM [min] 0,87
AvgWaitTimePassengerUN [min] 0,27
AvgWaitTimePassengerAL [min] 0,55
AvgWaitTimePassenger [min] 0,50
AvgServiceTimePassengerAM [min] 2,26
AvgServiceTimePassengerUN [min] 1,54
AvgServiceTimePassengerAL [min] 1,92
AvgServiceTimePassenger [min] 1,82
AvgProcessingTimeBagAM [min] 4,25
AvgProcessingTimeBagUN [min] 3,67
AvgProcessingTimeBagAL [min] 4,63
AvgProcessingTimeBag [min] 4,04
AvgQueueLengthAM 0,53
AvgQueueLengthUN 0,10
AvgQueueLengthAL 0,27
AvgNrBagsBeforeScannerAndConveyor 3,68

Base Model
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3.8 Validation 

In order to validate the model, the real and simulated time series of luggage and person throughputs 

are compared. The granularity of both datasets is by the hour of the day. Tables 16 and 17 in Appendix A 

present the luggage and person throughput from five different days with equal flight schedules. Additionally, 

the tables contain 95% confidence intervals for the luggage and person throughputs that were computed for 

each interval. Note that the sample size of 5 requires to use the t-distribution. 

As expected, before the model was calibrated, there were similar patterns but still major deviations 

between interval values, especially in the person time series, shown in Figure 36. The dashed line represents 

averages from the five days of real data and shows the number of people that passed the security check in 

each interval. Simulated averages of 20 simulation runs are visualized by the solid line. The mean absolute 

error between these time series is 26.06. 

 

Figure 36: Security Check Person Throughput by Hour (non-calibrated) 

With a mean absolute error value of 6.56, the time series of TSA luggage scanner throughputs are 

more similar to each other. The dashed line in Figure 37 shows the interval averages of real data. Simulated 

averages are represented by the solid line. Deviations during peak hours, such as towards the end of the day, 

can be seen. 
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Figure 37: TSA scanner luggage throughput by Hour (non-calibrated) 

While passenger and luggage time series are connected, the focus will be on matching the real and the 

simulated luggage throughput time series. Deviations of passenger throughput are undesirable as well, how-

ever, modeling the luggage throughput correctly is more important as the simulation model is supposed to 

help luggage-related answers. 

The simulation model calibration included the following changes: altering passenger load factors of 

flights increase or decrease the amount of passengers that arrive in certain intervals. Further, two additional 

passenger arrival distributions that both have slightly bigger and bigger passenger shares arriving later com-

pared to the early distribution were introduced. Besides, two additional distributions that assign the passen-

ger’s amount of bags were incorporated. One resulting in a smaller amount of average bags per passenger, 

and the other resulting in a larger amount. Detailed adjustments by flight can be seen in the model simulation 

input chapter. 

With implemented adjustments, the model was run 20 times again. The measures taken had a minimal 

impact on the mean absolute error of the person time series, an improvement from 23.06 to 22.81 was 

achieved. It could be argued that this minimal improvement is due to the model’s random-based nature. The 

TSA scanner throughput time series’ similarity improvement was significant. The mean absolute error 

changed from 6.56 to 3.56. Figure 38 shows the that the solid simulation line is very similar to the dashed 

line of real data. 
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Figure 38: TSA scanner luggage throughput by Hour (calibrated) 

As a final step of validation, the 95% confidence intervals of luggage throughput by hour that were 

derived from real data are compared to the simulated averages. Figure 39 shows the confidence interval limits 

as lines; the solid line represents the lower limit, while the dashed line represents the upper limit. The un-

known true mean of the population lays within these limits at a 5% probability of error. The graph shows that 

13 out of 16 simulation averages which are shown as red dots are within respective confidence intervals 

which is considered as sufficient to accept the model as validated.  



59 
 
 

 

Figure 39: TSA scanner luggage throughput by hour with confidence intervals 
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4 Expanding the Flight Schedule 

When simulating the flight schedule of February 2020 with 18 flights, the luggage handling system is 

not overburdened as 20 simulation runs showed that this does not result in missed bags. Within this chapter, 

additional flights will be added to the simulation model. Aircrafts used for extra flights have a passenger 

capacity of 68. Their passengers follow the early passenger arrival function such as the normal luggage dis-

tribution. While observing model behavior and KPI outputs, the number of additional flights is varied in 

several experiments. 

4.1 Optimization Experiment 

Anylogic allows setting up experiments, such as optimization experiments. These are characterized 

by an objective function that is either minimized or maximized. The experiment runs the model multiple 

times and adjusts up to seven selected simulation parameters in a defined range. This way, many parameter 

value combinations are tested for their effect on the objective function. Depending in the experiment’s setup, 

it either tries to minimize or maximize the outcome of the objective function. 

In this experiment, the objective function determines the number of missed bags for each simulation 

run. Throughout the simulation runs, the objective function is tried to be maximized by parameter adjust-

ments. The simulation parameters that are selected to be adjusted throughout the experiment iterations are 

departure time and the airline of additional flights. This selection was made because the original flight sched-

ule results in peak times of passenger and luggage volume. By having the experiment adjust departure and 

airlines, problematic scheduling for a specific amount of extra flights can be identified and transferred into 

the normal model. 

Departure parameters’ ranges and step sizes are defined in such a way that the flights can depart on 

full hours between 5am and 7pm. Airline parameters can take the values 1, 2, or 3, which correspond to 

American, United, or Alaska Airlines, respectively. This way, three additional flights are randomized by two 

parameters each. Any flight on top of that has its departure and airline defined by referring to one of the three 

randomized ones. For instance, the fourth additional flight will depart 15 minutes after the first one and shares 

the identical airline. The fifth one will apply the same pattern on the parameters of the second flight, et cetera. 

The experiment is set up to perform 2 replications of all parameter value combinations tested. 
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Passenger’s demand for check-in services is greatly varied in this experiment. This is compensated by 

changing the number of airline employees to a fixed value of 3 for each airline. 

4.2 Experiment Interface 

The experiment’s graphical user interface is presented in Figure 40. It contains a list of the current 

parameter values that are tested, such as the parameter values that were found to be the best combination yet. 

Additionally, the value of the objective function is presented as an average of the two performed replications. 

Departure values are shown in seconds. During runtime, the graph is showing the development of the highest 

average amount of missed bags by the number of iterations. For example, the best combination listed below 

is scheduling a 6am flight with United Airlines, along with a 2pm and 6pm flight with Alaskan Airlines.  

 

Figure 40: Graphical user interface of optimization experiment 

If the objective function is maximized identically with different parameter combinations, the experi-

ment will show the first combination that resulted in the maximized objective function value. 

4.3 Testing Additional Flights Scheduled During Various Times of the Day 

For testing the system’s sensitivity for extra flights, the day was separated into four intervals in which 

new departures are tested. Table 10 shows the times of the day that represent the early morning peak, the less 

busy morning, the afternoon peak, and the less busy evening, which can all be recognized in Figure 17, where 

check-in time windows are shown. The intervals might have gaps in between, which makes sure that check-

in time windows from new flights do not overlap with existing time windows from flights from other times 

of the day.  
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Table 10: Selected times of the day for testing extra flights 

 

All times of the day are tested for the number of flights that do and do not result in significant numbers 

of missed bags. The procedure to iteratively test more additional flights includes running the experiment and 

implementing the problematic schedule into the regular model. Following that, the model is run 20 times 

with respective parameter combinations. Finally, the histogram for the number of missed bags from the 20 

runs is checked. All histograms can be found in Figures 42 to 49 in Appendix A. The histograms also provide 

the cumulative density function, such as the mean. Table 11 gives an overview of scenarios that were tested. 

It shows the scenario number, the time of the day, the number of extra flights, averages of missed bags from 

the experiment from 20 simulation runs, and the departure and airline combination that the experiment la-

beled as a good combination. A brief discussion for each scenario is included with the histograms in Appen-

dix A. 

Table 11: Overview of tested scenarios 

 

Table 12 summarizes the results from each scenario test by looking at the average value of missed 

bags from 20 simulation runs. If the average is smaller than or equal to 2, the number of added flights from 

this scenario is entered in the “Not overburdened” column which shows how many extra flights are feasible 

by time of day. If the average is bigger than 2, the number of flights from the respective scenario is entered 

in the “Overburdened” column that shows highly infeasible numbers of flights for this time of day. 

  

Time of the Day Departures Between
Early Morning Peak 05:00 - 07:00
Morning 08:00 - 11:00
Afternoon Peak 12:00 - 14:00
Evening 16:00 - 19:00

Departure Airline Departure Airline Departure Airline

1 Early Morning 1 9,0 1,7 06:00 United
2 Early Morning 2 20,5 14,0 06:00 United 06:00 United
3 Morning 4 2,0 0,5 09:00 United 10:00 United 09:00 United
4 Morning 5 6,6 4,5 11:00 Alaska 11:00 Alaska 11:00 Alaska
5 Afternoon 3 33,00 0,50 12:00 United 13:00 United 13:00 United
6 Afternoon 4 32,50 27,00 13:00 American 13:00 United 13:00 United
7 Evening 4 4,50 0,00 18:00 United 17:00 United 18:00 Alaska
8 Evening 5 9,00 5,50 16:00 American 16:00 United 16:00 United

Time of the 
Day

Average Amount of
Missed Bags from 

20 Simulation Runs

Maximum Amount of
Missed Bags (Average

of 2 Replications)
Number of

Addiional FlightsScenario Fligth 19 Fligth 20 Fligth 21

Best Parameter Combination Found
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Table 12: Overview of scenario results of 20 runs by time of the day 

 

  

Time of the Day Departures Between Not overburdened Overburdened
Early Morning Peak 05:00 - 07:00 1 2
Morning 08:00 - 11:00 4 5
Afternoon Peak 12:00 - 14:00 3 4
Evening 16:00 - 19:00 4 5

Number of Additional Flights that result in the Baggage System being:
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5 Scenario Analysis 

The main purpose of the following scenario analysis is the identification of the luggage system’s bot-

tleneck. For this cause, the model is expanded by 6 extra flights. Referring to the number of flights that cause 

missed bags in Table 12, 2 extra flights in the early morning at 6am and 4 extra flights in the afternoon at 

1pm are added to purposefully create missed bags. Early morning flights are operated by American, the 

afternoon flights by American, United and Alaska Airlines. The model with expanded flight plan is run 20 

times and output data is saved. Averages of the outputs are shown in Table 13. For instance, the number of 

critical and missed bags increased significantly to over 40 and 23, respectively. 

Table 13: Output values from the expanded flight schedule 

 

Following that, changes will be applied to the model. For instance, the reduction of time that the TSA 

scanner needs to scan one bag could improve baggage throughput and decrease the amount of missed bags. 

This would prove that the scanner is the system’s bottleneck. Output data of each model variation will be 

compared to output data of the non-changed model’s output data. Each scenario will be ran 20 times, and 

average output values will be compared to the values from the non-adjusted model. 

Model Output Value Averages Scenario
Output Name A
NrCriticalBags 40,5
NrMissedBags 23,4
NrFlights 24,0
NrPassengers 1289,8
NrBags 628,1
NrDeniedPassengers 0,0
AvgTotalLeadTime [min] 16,1
AvgScansPerMin 1,8
AvgWaitTimePassengerAM [min] 2,9
AvgWaitTimePassengerUN [min] 0,9
AvgWaitTimePassengerAL [min] 0,8
AvgWaitTimePassenger [min] 1,6
AvgServiceTimePassengerAM [min] 4,2
AvgServiceTimePassengerUN [min] 2,2
AvgServiceTimePassengerAL [min] 2,1
AvgServiceTimePassenger [min] 2,9
AvgProcessingTimeBagAM [min] 8,0
AvgProcessingTimeBagUN [min] 13,6
AvgProcessingTimeBagAL [min] 17,7
AvgProcessingTimeBag [min] 12,2
AvgQueueLengthAM 6,0
AvgQueueLengthUN 1,6
AvgQueueLengthAL 1,2
AvgNrBagsBeforeScannerAndConveyor 18,1
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5.1 Overview 

In order to differentiate these scenarios from previous ones, they will be referred to by letters. 

Scenario A includes no adjustments to the model, showing the resulting output values of the expanded 

flight schedule. 

In scenario B, the possible hourly throughput of the TSA scanner is doubled. This is achieved by 

adjusting the respective model parameter called “ScanTime” which represents the time needed to scan a 

single bag from 30 to 15 seconds. 

Scenario C has a reduced service times for check-in services. For this, the parameters “CheckIn-

FullMax”, “CheckInFullMed”, “CheckInFullMin”, “CheckInKioskMax”, “CheckInKioskMed” and 

“CheckInKioskMamin” are reduced by 20 seconds, each. 

Scenario D incorporates a second permanent TSA Agent, by increasing the resource capacity while 

the flexible one is deactivated. 

The next scenario, E has a decreased share of oversized bags. The parameter “BigBagsShare” is re-

duced from 5 to 1%. 

Scenario F has a lower share of bags that result in an alert when scanned. The model’s parameter 

“AlertShare” is adjusted from 10 to 5%. 

5.2 Results 

Table 14 presents averages over 20 simulation runs of selected simulation outputs for all designed 

scenarios. For each output, the cell representing the most desirable value is highlighted. Checking the line 

that shows the average number of missed bags per scenario shows that the faster TSA scanner is the only 

scenario in which the amount of missed bags is significantly reduced to 1.35 bags. Most scenarios have slight 

deviations from the non-adjusted model value of 23.35. However, reducing the share of oversized bags seems 

to increase missed bags the most. This proves that the TSA luggage scanner is the system’s bottleneck. Table 

18 in Appendix A presents the full output results. 

Other output values vary as expected depending on the scenario. For instance, the reduced check-in 

service time in scenario C results in reduced averages of queue wait times, service times and queue lengths. 
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Table 14: Averages of selected simulation outputs by scenario 

 

  

Model Output Value Averages
Output Name A B C D E F
NrCriticalBags 40,5 6,2 43,4 42,2 53,3 38,5
NrMissedBags 23,4 1,4 27,9 27,8 35,8 21,6
AvgTotalLeadTime [min] 16,1 8,6 16,0 16,0 18,0 15,8
AvgScansPerMin 1,8 3,4 1,8 1,8 1,8 1,8
AvgWaitTimePassenger [min] 1,6 1,7 0,6 1,8 1,7 1,7
AvgServiceTimePassenger [min] 2,9 3,0 1,6 3,1 3,0 3,0
AvgProcessingTimeBag [min] 12,2 4,5 13,7 11,7 14,0 11,8
AvgQueueLengthAM 6,0 6,6 2,4 6,9 6,3 6,2
AvgQueueLengthUN 1,6 1,6 0,8 1,7 1,8 1,7
AvgQueueLengthAL 1,2 1,1 0,5 1,8 1,3 1,3
AvgNrBagsBeforeScannerAndConveyor 18,1 5,8 21,1 17,5 21,0 17,9

Scenario
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6 Recommendations and Discussion 

This chapter summarizes findings from the experimentation, answers the problem statement’s ques-

tions, and discusses the limitations of the simulation model. 

First, it has been identified that the TSA luggage scanner is the bottleneck of the system. 

Second, the number of additional flights that can be operated without causing major luggage delays 

and customer dissatisfaction depends on the time of the day, as shown in Table 12: During the early morning, 

a maximum of 1 additional flight keeps the number of missed bags low. During morning hours, up to 4 

additional flights will result in small numbers of missed bags. Up to 3 extra flights can be added within the 

afternoon hours. During evening hours, up to 4 additional flights can depart without the baggage handling 

system being overloaded. 

Considering output values of the calibrated model without additional flights in Table 9, the increased 

number of passengers resulting in the average total lead time to jumping from 6.06 minutes to roughly 16 

when excluding the faster scanner scenario. When comparing the base model to the scenario with a faster 

scanner and more flights, the total average lead time increases by approximately 2 minutes. Besides, when 

excluding the scenario of faster check-in services, the average wait time in the queue jumps from 0.5 to more 

than 1.6 minutes across all scenarios. 

As the simulation model allows to conveniently adjust the flight schedule in the connected Excel 

database, it can be used as a tactical decision-making tool for capacity analysis of scenarios. Further, the 

information of how many additional flights can be added during certain time intervals while not causing 

major luggage delays could be used to build a time-based pricing model. By requiring airlines to pay an 

increased fee when scheduling new flights during times that are already busy could compensate for additional 

effort on the airport’s side. At the same time, a pricing model like this might have an effect on ensuring that 

the additional passenger and baggage volume does not exceed the available capacities. 

When airport management decides to increase the capacity of its baggage system by making adjust-

ments to the infrastructure, they could consider self-service luggage drop-off machines with integrated scan-

ning functionality. However, current self-service luggage drop-off stations only introduce baggage into the 

conveyor system and do not include a screening functionality, as shown in Figure 41. Thus, only machines 

with included screening technology would allow to increase the capacity of SLO airport’s system.  
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Figure 41: Self-service baggage drop-off station (Airport Suppliers, 2020) 

Even though the simulation model has been designed to mimic the real system as well as possible, it 

is still limited for various reasons. First, the underlying input parameters such as processing times at check-

in counters were selected by best knowledge and airport information. However, they are not based on empir-

ical data. Second, due to non-accessible data on the luggage sorting process and the luggage loading process, 

the processes are not covered by the simulation model. This diminishes the possibility of having baggage 

congestion on the conveyor belt caused by the sorting station in the simulation model. A situation like this 

might occur when the airline workers handling luggage sorting, loading, and unloading are currently busy 

with loading or unloading luggage. As a result, the simulation model does not account for the effects that this 

could have on luggage delays. 

Further, the simulation model was calibrated to result in similar simulated time series on person and 

luggage throughputs compared to the time series that were derived from real data. While the model calibra-

tion resulted in very similar real and simulated scanner baggage throughput time series, the person time-

series still have bigger deviations from each other. This is where the effects of adjusting load factors, passen-

ger arrival patterns, and passenger luggage distributions reached their limits. 
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Another important difference between the simulation and the real system is that the simulated flight 

schedule is fixed in terms of departures and used aircrafts. In reality, departures are often delayed, and airlines 

will change the aircraft in use depending on passenger demand. 
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7 Conclusion and Future Work 

The objectives of this thesis were the identification of feasible additions to the flight schedule as well 

as the detection of the luggage system’s bottleneck. This was successfully achieved by collecting and visu-

alizing the system’s process flows as well as their translation into a simulation model. Several experiments 

were developed that allowed for testing of scenarios whose results enabled answering the above-mentioned 

questions. 

It was found that the capacity of the current luggage conveyor system is able to cover the increased 

demand created from additional flights, depending on the time of the day, without causing bags to be missed 

upon departure. Further, the system’s bottleneck was found to be the TSA luggage scanner, while other tested 

model adjustments were found to have minimal impacts on the amount of missed bags. 

While the problem statement’s questions could be answered by applying simulation, the limitations 

of the model might still affect the simulation experiment’s results. As the model is based on the flight sched-

ule from February 2020, the results of this thesis are connected to the respective flight schedule as well. 

However, considering possible future research, the model can be adjusted to run based on any flight 

schedule. For convenience, this is easy to implement in the Excel database the model is connected to. This 

way, the simulation model could be used as a tactical decision tool for capacity analysis. 

While airlines may be unlikely to schedule new flights based on higher airport pricing as suggested in 

the recommendations, their requested newly scheduled flights can still be simulated by the model to test for 

baggage delays. In addition, future changes to the baggage system’s entities, such as a check-in process 

redesign, can be tested before changes are made to the real system by adjusting the model. 
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Appendix A 

Table 15: Output values from 20 simulation runs of the base model 

 

Table 16: TSA scanner luggage throughput by hour with confidence intervals 

 

Output Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NrCriticalBags 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
NrMissedBags 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NrFlights 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
NrPassengers 936 934 949 954 947 936 945 951 940 951 946 957 939 932 953 935 936 963 951 951
NrBags 490 495 481 486 466 465 476 471 464 490 455 528 460 445 467 465 474 453 506 510
NrDeniedPassengers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AvgTotalLeadTime 5,53 6,35 5,85 7,36 6,54 5,32 5,49 5,83 5,91 5,43 5,96 6,92 5,69 5,99 6,54 5,67 6,11 5,93 6,87 5,99
AvgScansPerMin 1,86 1,85 1,85 1,85 1,83 1,87 1,84 1,83 1,85 1,87 1,86 1,82 1,86 1,85 1,84 1,84 1,87 1,87 1,85 1,85
AvgWaitTimePassengerAM [min] 0,73 0,81 0,85 1,15 0,72 1,11 1,47 1,26 0,71 0,77 0,71 0,80 0,93 0,83 0,65 0,66 0,76 0,96 0,71 0,88
AvgWaitTimePassengerUN [min] 0,40 0,18 0,38 0,22 0,27 0,44 0,29 0,29 0,18 0,27 0,31 0,14 0,14 0,35 0,29 0,23 0,34 0,24 0,26 0,22
AvgWaitTimePassengerAL [min] 0,32 0,85 0,26 0,35 0,57 0,70 0,70 0,57 0,69 0,21 0,77 0,83 0,52 0,42 0,62 0,28 0,68 0,46 0,44 0,77
AvgWaitTimePassenger [min] 0,49 0,48 0,51 0,52 0,46 0,68 0,72 0,64 0,42 0,42 0,50 0,44 0,45 0,52 0,45 0,37 0,52 0,49 0,43 0,51
AvgServiceTimePassengerAM [min] 2,12 2,27 2,22 2,55 2,09 2,47 2,88 2,60 2,07 2,18 2,08 2,24 2,30 2,22 2,02 2,02 2,20 2,33 2,06 2,34
AvgServiceTimePassengerUN [min] 1,69 1,44 1,67 1,49 1,53 1,72 1,54 1,56 1,47 1,53 1,56 1,44 1,41 1,58 1,56 1,49 1,58 1,47 1,57 1,51
AvgServiceTimePassengerAL [min] 1,73 2,25 1,62 1,72 1,94 2,08 2,05 2,02 2,03 1,62 2,10 2,25 1,84 1,79 1,90 1,66 2,04 1,80 1,89 2,14
AvgServiceTimePassenger [min] 1,83 1,82 1,84 1,85 1,76 2,00 2,03 1,95 1,74 1,75 1,80 1,80 1,76 1,82 1,75 1,68 1,84 1,79 1,77 1,87
AvgProcessingTimeBagAM [min] 4,16 4,24 3,92 4,84 4,78 3,73 3,36 3,71 4,36 3,73 4,30 4,85 3,92 4,67 4,65 3,99 4,80 4,56 4,47 4,03
AvgProcessingTimeBagUN [min] 3,11 3,92 2,96 5,74 4,40 2,84 3,01 3,24 3,48 2,95 3,47 5,36 3,46 3,20 3,94 3,27 3,65 3,37 4,64 3,36
AvgProcessingTimeBagAL [min] 3,33 5,01 5,57 5,25 4,45 3,71 4,12 5,24 4,57 4,30 4,63 3,83 4,02 4,00 6,75 4,71 3,85 4,04 6,03 5,10
AvgProcessingTimeBag [min] 3,52 4,24 3,75 5,33 4,55 3,30 3,33 3,78 3,96 3,48 3,96 4,93 3,71 3,92 4,59 3,77 4,16 3,93 4,82 3,88
AvgQueueLengthAM 0,36 0,54 0,80 0,80 0,27 0,83 0,88 0,92 0,26 0,41 0,43 0,36 0,55 0,54 0,32 0,32 0,40 0,58 0,38 0,60
AvgQueueLengthUN 0,13 0,06 0,20 0,16 0,10 0,12 0,08 0,09 0,04 0,06 0,16 0,03 0,04 0,13 0,11 0,08 0,08 0,11 0,11 0,11
AvgQueueLengthAL 0,10 0,84 0,04 0,16 0,24 0,22 0,23 0,32 0,55 0,07 0,35 0,43 0,12 0,19 0,25 0,05 0,40 0,20 0,16 0,44
AvgNrBagsBeforeScannerAndConveyor 3,21 4,02 3,11 6,02 4,15 2,50 2,35 3,50 3,70 2,64 3,35 5,27 3,16 3,50 3,91 3,32 4,06 3,72 4,70 3,46

Simulation RunBase Model

Interval Day 1 Day 2 Day 3 Day 4 Day 5 95% CI Lower Limit 95% CI Upper Limit ! ̅ σ √n t value
03:00 - 04:00 7 0 0 0 0 0 5 1,40 3,13 2,24 2,7764
04:00 - 05:00 60 66 60 68 55 55 68 61,80 5,22 2,24 2,7764
05:00 - 06:00 73 72 65 82 59 59 81 70,20 8,70 2,24 2,7764
06:00 - 07:00 11 16 12 8 13 8 16 12,00 2,92 2,24 2,7764
07:00 - 08:00 11 32 27 30 24 15 35 24,80 8,29 2,24 2,7764
08:00 - 09:00 8 12 16 28 16 7 25 16,00 7,48 2,24 2,7764
09:00 - 10:00 18 30 19 16 27 14 30 22,00 6,12 2,24 2,7764
10:00 - 11:00 26 46 46 18 38 19 50 34,80 12,46 2,24 2,7764
11:00 - 12:00 66 79 80 97 116 64 112 87,60 19,32 2,24 2,7764
12:00 - 13:00 34 43 40 41 44 36 45 40,40 3,91 2,24 2,7764
13:00 - 14:00 10 39 9 14 6 0 32 15,60 13,39 2,24 2,7764
14:00 - 15:00 21 25 16 7 10 7 25 15,80 7,46 2,24 2,7764
15:00 - 16:00 14 22 22 14 20 13 23 18,40 4,10 2,24 2,7764
16:00 - 17:00 3 11 3 0 8 0 10 5,00 4,42 2,24 2,7764
17:00 - 18:00 15 12 15 14 5 7 17 12,20 4,21 2,24 2,7764
18:00 - 19:00 5 8 5 5 3 3 7 5,20 1,79 2,24 2,7764

TSA Scanner Luggage Throughput by Hour
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Table 17: Security check person throughput by hour with confidence intervals 

 

The following Figures show histograms that stem from the scenarios shown in chapter 4.1.2. They 

refer to adding additional flights to the flight schedule and show the number of missed bags from 20 simula-

tion runs, each. Sets of 2 scenarios refer to one time interval of the day. 

The histogram of scenario 1 in Figure 42 shows that adding only one additional flight during the early 

morning peak may result in up to double-digit numbers of missed bags. However the average of 20 simulation 

runs stays below 2. 

 

Figure 42: Histogram of missed bags scenario 1 

The second scenario incorporates adding two flights during early morning. A histogram resulting from 

20 simulation runs in Figure 43 indicates that the conveyor system’s throughput demand exceeds the available 

Interval Day 1 Day 2 Day 3 Day 4 Day 5 95% CI Lower Limit 95% CI Upper Limit ! ̅ σ √n t value
03:00 - 04:00 102 98 69 100 106 77 113 95,00 14,83 2,24 2,7764
04:00 - 05:00 188 187 191 194 134 148 210 178,80 25,19 2,24 2,7764
05:00 - 06:00 34 19 12 21 32 12 35 23,60 9,24 2,24 2,7764
06:00 - 07:00 25 51 39 45 59 28 60 43,80 12,85 2,24 2,7764
07:00 - 08:00 13 41 29 54 29 14 52 33,20 15,30 2,24 2,7764
08:00 - 09:00 41 50 40 37 51 36 52 43,80 6,30 2,24 2,7764
09:00 - 10:00 58 59 69 24 48 30 73 51,60 17,13 2,24 2,7764
10:00 - 11:00 120 154 96 119 132 98 150 124,20 21,15 2,24 2,7764
11:00 - 12:00 264 187 240 174 177 158 259 208,40 40,98 2,24 2,7764
12:00 - 13:00 59 88 72 60 71 55 85 70,00 11,73 2,24 2,7764
13:00 - 14:00 43 42 30 36 39 31 45 38,00 5,24 2,24 2,7764
14:00 - 15:00 71 59 74 68 69 61 75 68,20 5,63 2,24 2,7764
15:00 - 16:00 8 27 10 16 10 5 24 14,20 7,76 2,24 2,7764
16:00 - 17:00 37 38 26 25 21 20 39 29,40 7,64 2,24 2,7764
17:00 - 18:00 41 36 35 14 2 5 46 25,60 16,77 2,24 2,7764
18:00 - 19:00 2 0 0 0 0 0 2 0,40 0,89 2,24 2,7764

Security Check Person Throughput by Hour
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capacity, resulting in an average of roughly 14 bags being missed. Similar to the first scenario, one range of 

missed bags occurs in 80% of simulation runs. 

 

Figure 43: Histogram of missed bags scenario 2 

Scenario 3 includes adding 4 extra flights in the morning hours. Figure 44 visualizes how this is not 

resulting in large numbers of missed bags. With an average of 0.5 bags, this seems to not overburden the 

system. 

 

Figure 44: Histogram of missed bags scenario 3 

Scenario 4’s results are shown in Figure 45. By adding 5 flights during the morning, unacceptable 

amounts of missed bags will occur as a result. 
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Figure 45: Histogram of missed bags scenario 4 

The histogram in Figure 46 shows that the luggage handling system is not overburdened by the lug-

gage throughput demand of scenario 5. Here, 3 flights were added during the afternoon. 

 

Figure 46: Histogram of missed bags scenario 5 

As seen in Figure 47, the system is significantly overburdened by adding 4 extra flights during the 

afternoon. Scenario 6 results in large number of missed bags in all simulation runs. 

 

Figure 47: Histogram of missed bags scenario 6 
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Figure 48 indicates that scenario 7, which incorporates 4 extra flights in the evening, is feasible. 

 

Figure 48: Histogram of missed bags scenario 7 

Scenario 8’s histogram in Figure 49 shows unacceptable amounts of missed bags. 5 additional flights 

in the evening seem to overburden the system. 

 

Figure 49: Histogram of missed bags scenario 8 
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Table 18 shows all output value averages from each scenario.  

Table 18: Averages of simulation outputs by scenario 

 

Model Output Value Averages
Output Name A B C D E F
NrCriticalBags 40,5 6,2 43,4 42,2 53,3 38,5
NrMissedBags 23,4 1,4 27,9 27,8 35,8 21,6
NrFlights 24,0 24,0 24,0 24,0 24,0 24,0
NrPassengers 1289,8 1290,6 1288,8 1291,4 1289,3 1289,2
NrBags 628,1 632,0 636,2 636,5 642,8 631,4
NrDeniedPassengers 0,0 0,0 0,0 0,0 0,0 0,0
AvgTotalLeadTime 16,1 8,6 16,0 16,0 18,0 15,8
AvgScansPerMin 1,8 3,4 1,8 1,8 1,8 1,8
AvgWaitTimePassengerAM [min] 2,9 3,2 1,1 3,3 3,0 3,0
AvgWaitTimePassengerUN [min] 0,9 0,9 0,4 0,9 1,0 0,9
AvgWaitTimePassengerAL [min] 0,8 0,7 0,3 1,1 0,8 0,9
AvgWaitTimePassenger [min] 1,6 1,7 0,6 1,8 1,7 1,7
AvgServiceTimePassengerAM [min] 4,2 4,5 2,0 4,6 4,3 4,3
AvgServiceTimePassengerUN [min] 2,2 2,2 1,4 2,2 2,3 2,2
AvgServiceTimePassengerAL [min] 2,1 2,0 1,3 2,4 2,2 2,2
AvgServiceTimePassenger [min] 2,9 3,0 1,6 3,1 3,0 3,0
AvgProcessingTimeBagAM [min] 8,0 5,5 8,0 6,2 8,4 7,3
AvgProcessingTimeBagUN [min] 13,6 3,8 15,1 13,9 16,0 13,5
AvgProcessingTimeBagAL [min] 17,7 4,3 22,2 18,3 20,8 16,9
AvgProcessingTimeBag [min] 12,2 4,5 13,7 11,7 14,0 11,8
AvgQueueLengthAM 6,0 6,6 2,4 6,9 6,3 6,2
AvgQueueLengthUN 1,6 1,6 0,8 1,7 1,8 1,7
AvgQueueLengthAL 1,2 1,1 0,5 1,8 1,3 1,3
AvgNrBagsBeforeScannerAndConveyor 18,1 5,8 21,1 17,5 21,0 17,9

Scenario


