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ABSTRACT

Clustering Web Users By Mouse Movement to Detect Bots and Botnet Attacks

Justin Morgan

The need for website administrators to efficiently and accurately detect the presence

of web bots has shown to be a challenging problem. As the sophistication of modern

web bots increases, specifically their ability to more closely mimic the behavior of

humans, web bot detection schemes are more quickly becoming obsolete by failing

to maintain effectiveness [18] [23] [24]. Though machine learning-based detection

schemes have been a successful approach to recent implementations, web bots are

able to apply similar machine learning tactics to mimic human users, thus bypassing

such detection schemes. This work seeks to address the issue of machine learning-

based bots bypassing machine learning-based detection schemes, by introducing a

novel unsupervised learning approach to cluster users based on behavioral biometrics.

The idea is that, by differentiating users based on their behavior [9], for example how

they use the mouse or type on the keyboard, information can be provided for website

administrators to make more informed decisions on declaring if a user is a human

or a bot. This approach is similar to how modern websites require users to login

before browsing their website; which in doing so, website administrators can make

informed decisions on declaring if a user is a human or a bot. An added benefit of

this approach is that it is a human observational proof (HOP); meaning that it will

not inconvenience the user (user friction) with human interactive proofs (HIP) such

as CAPTCHA, or with login requirements.
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Chapter 1

INTRODUCTION

This thesis paper outlines research of web bot and botnet detection schemes, addresses

their strengths and weaknesses, as well as introduces a novel approach to detect bots

and botnet attacks. The work in this thesis includes an unsupervised machine learning

algorithm to solve the dilemma of detecting sophisticated web bots masqueraded

as humans. This section will provide a context of the dilemma and explain the

motivation behind the novel approach.

1.1 Background

1.1.1 Bots and Botnets

Web bots, otherwise known as bots, are human-imitating programs created with the

intention of reducing the amount of simple and repetitive tasks a human would have

to do, while performing these tasks at a speed much faster than a human can perform.

Some examples of these tasks may include searching for specific items, with a given

criteria, through many items on an ecommerce site such as Amazon. Another example

can be the action of downloading lists textual data on a web page that would require

the user to do so manually. Search engines use bots, also known as search engine bots,

crawlers or spiders, to index, or traverse and access, web pages of a website, storing

information seen during these traversals, to later be referenced in a user’s search.

These search engine bots, as well as link checkers, monitoring bots, and feed fetchers,
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are examples of ”good” bots permitted by website administrators, via a robots.txt

file, to traverse a website [23].

Similarly, a botnet is a collection of bots working in unison. These bot collections are

hosted by either multiple computers belonging to the botnet administrator, or more

commonly, malware-infected computers belonging to victims of a botnet attack. In

the latter case, a botnet is controlled by a ”botmaster” and used as a means to conduct

network and browser attacks such as distributed denial-of-sevice (DDoS) attacks, as

well as fraudulent activities such as spam, phishing, identity theft, and information

exfiltration [12]. The ”net” portion in the ”botnet” name derives from method of

communication among the botmaster and bots in the botnet.

The [3] report states that a ”bad” bot, or ”bot” in the context of this paper, presents

problems when they scrape, or index and extract, data from websites without permis-

sion with the intention of reusing it, for example pricing or inventory levels, to gain a

competitive advantage. This, however, does not imply that ”good” bots, as described

in [3], are always good. A primary reason why these seemingly benign bots may be

problematic is their high intensity nature. The presence of ”good” bots on a website

can skew analytics reports, thus falsely representing the popularity of certain pages of

a website. Therefore, being able to separate webisite traffic generated by human users

and either type of bots, is essential for making business decisions [3]. Regardless, bots

can be used maliciously and irresponsibly, thus introducing a number of problems for

the users and administrators of a website [27] [3]. Efforts to detect these bots have

proven to be successful [5] [13] [32]. However, due to the increasing sophistication of

bots, said detection schemes are often bypassed and deemed obsolete [23] [24] [18].
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1.1.2 Supervised and Unsupervised Learning Methods

Machine learning is a widely used term that implies the autonomous improvement of

algorithms as they are invoked, hence the learning aspect. Two common methods of

these algorithms implement what is known as supervised and unsupervised learning.

Although both methods autonomously improve in accuracy and efficiency as they

are used, supervised learning requires a labeled dataset as a source of truth whereas

unsupervised learning finds patterns and meaning in a non-labeled dataset.

Labels identify a datapoint for a supervised learning implementation to compare

against an inputted, non-labeled datapoint. If the labeled datapoints is not repre-

sentative of a typical inputted, non-labeled datapoint, the supervised learning imple-

mentation will lack accuracy. Therefore, a supervised learning implementation is as

effective as the robustness of its labeled dataset. An example of a datapoint with a

label would be a series of behavioral features that are represented, or labeled, with

a username. If an inputted, non-labeled datapoint closely resembles that of a data-

point(s) with a specific user’s username label, then there is an high probability that

the inputted, non-labeled datapoint originated from that specific user.

An unsupervised learning implementation does not use or require labels in a dataset.

Instead, information and meaning of a dataset is interpreted through patterns in

the data. Therefore, an unsupervised learning implementation is as effective as the

methods used to identify and interpret patterns in a dataset. In the context of this

work, features are extracted from a user’s mouse movement behavior, and unique

patterns of that user are identified and leveraged.

Classification is the identification of a datapoint type, or class, that is represented

by a label in the labeled dataset. Classification is an outcome of a supervised learn-

ing implementation. Clustering is the identification of patterns in dataset and the

3



grouping of the datapoints, by their patterns, in that dataset. Clustering is an out-

come of an unsupervised learning implementation.

1.2 Behavioral User Metrics

When using a destop or laptop device, humans use a mouse or touchpad peripheral

device to interact and navigate the graphical user interface, as well as a keyboard to

input text into the graphical user interface. During this navigation, a human user

applies their own unique strategy and style, thus leaving traces or signature traits

pertaining to and identifying that user. Styles are unique to for a user’s mouse and

keyboard use, otherwise known as ”keystroke signatures”. Feature profiles generated,

by human computer interaction-based researchers, are used and quantified in attempt

to successfully differentiate and verify users [29]. This thesis work applies a similar

strategy of differentiating users. Since users are differentiable based on their behav-

ioral metrics, and since sophisticated web bots are closely mimicking the behavior of

human users, differentiating users by clustering the feature profiles of their behav-

ioral metrics should be a means to separate users, bot or not, without any need for

labeling or precursory knowledge of the behavior of potential bot users. Users, or the

feature metrics pertaining to a user’s session, are differentiated into separate clusters

that provide website administrators a user-specific network request log that is not

IP address-specific. Having this ability enables website administrators to make more

informed decisions about the botness of users, or the clusters of similar behavioral

metrics.

Human computer interaction-based biometrics researchers verify users by classifying

their mouse and keyboard behavior [29]. Additionally, the user provides these bio-
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metrics inadvertently, without interfering with the UX experience or causing user

friction.

1.3 Motivation for Clustering

As outlined in the background section, a supervised learning implementation is as

useful as the robustness of its labeled dataset. Supervised learning-based bot de-

tection implementations that classify bot and human users, otherwise known as a

”binary classifier”, require labeled datapoints for both bot and human users. Use of

an unsupervised learning implementation, specifically clustering, is motivated by the

increasing sophistication of bots and the decreasing availability of labeled datasets to

represent such bots.

Distil Networks [3] classifies bot sophistication levels as follows:

• Simple Connecting from a single, ISP-assigned IP address, this type connects

to websites using automated scripts, not browers, and doesn’t self-report, or

masquerade, as being a real browser.

• Moderate Being more complex, this type uses ”headless browser” software

that simulates browser technology, including the ability to execute JavaScript

code.

• Sophisticated Producing mouse movements and clicks that fool even sophis-

ticated detection methods, these bad bots mimic human behavior and are the

most evasive. They use browser automation software, or malware installed

within real browsers, to connect to websites.

• Advanced Persistent Bots (APBs) APBs are a combination of moderate

and sophisticated bad bots. They tend to cycle through random IP addresses,
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enter through anonymous proxies and peer-to-peer networks, and are able to

change their user agents. They use a mix of technologies and methods to evade

detection while maintaining persistency on target websites.

This thesis presents a novel approach to detect bots classified as either sophisticated

or advanced persistent. The objective of this approach is to develop a detection

algorithm that is effective irrespective to the level of sophistication a bot masquerades

a human user. By clustering the behavioral metrics of users, or visitors of a website,

detecting of the ”botness” of said users will be similar to the nature of how users

are tracked on websites that require login credentials upon entry. If users can be

differentiated based solely on their behavior, and not by relying on the client and

IP info available in the server logs, than said users can be monitored as if they were

logged-in to the website. Having the ability to monitor users at this micro-level,

without bias of any IP or proxy anonymity, enables website administrators to make

more informed decisions about the web botness of users.
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Chapter 2

RELATED WORK

The unsupervised machine learning approach of this thesis research was inspired

by a few preexisting implementations of the like. By observing the strengths and

weaknesses of these implementations, the outcome of this work is expected to be an

improvement and beneficial contribution to the field of web bot and botnet detection

research. This section will provide a synopsis and evaluation of the related work that

provided inspiration to this work.

2.1 Supervised Learning

There are several supervised learning 1.1.2 bot detection schemes that utilize labeled

datasets to train models in their implementation.

2.1.1 Deep Learning with Mouse Behavior Metrics

The detection scheme described in [25] analyzes the mouse movement and operations

of a user to decide whether these gestures are consistent with that of a human user

or bot user. Images containing the spatial and kinetic information that represents

the mouse behavioral metrics are passed into a deep neural network for making the

bot or not decision. Representing the models in such a way has enabled the use of a

Convolutional Neural Network, or ”CNN”, to automate feature learning from a user’s

raw mouse position data.
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Rather than following the patterns of previous implementations that fed hand-crafted

features into shallow machine learning models, this work transforms every mouse

movement sequence into a separate image that contains the spatial and kinetic infor-

mation about the mouse positions and movements. By doing so, CNN models can

be used in this deep learning approach. Related detection schemes that utilize mouse

behavioral metrics most likely use statistics of mouse movement sequences as a means

to create features. Some of these features, common to this thesis work, include the

mean, median, or variance of velocities, accelerations, etc. As an improvement from

this trend, the said work contributes to the field by proposing a method of more

accurately representing shape information of the user’s mouse movement trajectories.

This is an underlying motivation to use CNNs, since the complexities of these mouse

trajectories can not be represented by using common statistical metrics.

The architecture of this deep learning approach allows for decisions of a user’s botness,

meaning if they are a bot or not, in a realtime setting. A user’s botness is determined

Figure 2.1: Architecture of the deep learning model using CNNs
System design from the research in [25]

by considering the classification results of most mouse movement sequences extracted

from the operation data created at the left-most, first stage of the architecture dia-

gram. Therefore, if the classifier depicts inputted mouose movement sequences to be

that of a bot, than that particular user, or source of raw mouse position data, will be

classified as a bot. A few metrics were created to represent a user’s mouse movement

behavior:
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• mouse movement sequence: the records of a series of consecutive mouse

moves

• mouse trajectory: a time-space curve corresponding to a mouse movement

sequence

• step size: the distance between two consecutive points

• event interval: the time difference between two points

Similarly to this thesis research, the mouse movement sequences are in the for-

mat (xi, yi, ti), where i = 1. . .n with n being the number of mouse positions in the

sequence, x and y are the 2D coordinates of a mouse cursor’s position, and t is the

time of when that cursor was at the respective position.

Representing a user’s mouse movements is done by separating the continuous se-

quences of mouse events into segments of sequences that correspond to individual

mouse movements. Their assumption is that the intervals between mouse events does

not exceed 100ms. This closely aligns with the average mouse position polling rate

of 125hz [15] [16]. Any mouse movement sequence segments containing less that 15

events were discarded, as these events were said to not contain enough information

for bot detection. Following this sequence segmentation stage, a two-step process was

implemented to transform the mouse movement sequence segments into images that

can be used in the CNN model.

Mapping spatial information into the image was achieved by using shape and

distance metrics between consecutive events of a segment. The images were centered

by finding the halfway point of the max distance between any two points in the seg-

ment. Zoom was considered since the max distances vary among different segments.

With this in mind, all mouse positions in the segements were set to a constant 8px di-
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ameter. Mapping kinetic information into the image was achieved by reflecting

the event interval series and step size series. The paper’s denotations for these were

(∆t1, . . . ,∆tn−1) and (∆d1, . . . ,∆dn−1) respectively. In short, they used velocity as

the feature to be represented in the images. Every point in the segments were color-

coded based on the magnitude of velocity calculated at each point. The colors were

on the red, blue, green (RGB) scale, and decided by mapping the delta values to an

integer ranging from 0 to 255. Bot users, specifically, were fabricated by 4 different

Figure 2.2: Conversion of a mouse sequence segment to an image
Spatial and kinetic information of a users mouse movement behavior are represented in

images similar to this one, as shown in [25]. The mouse positions of mouse movement are

shown in each sequence segment, a single image, and colors denote the velocity of mouse

movement.

types of bot scripts, each generating a unique pattern to their mouse movement tra-

jectories. Figure 2.3 displays images that represent these 4 types. The semi-straight

Figure 2.3: Conversion of bot mouse sequence segments to an image
Shown are examples of the 4 different types of bot mouse trajectories: straight-line, curve,

polyline, and semi-straight line, respectively, as shown in [25]
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line was created by adding noise to the points on the straight-line mouse trajectory.

Bezier curves were used to make the curve and polyline trajectories. All mouse se-

quence segments were created with a few different intervals between mouse events.

These intervals were added by either a set constant value, uniformly distributed val-

ues, or values with a Gaussian distribution. Human datasets were gathered over a 2

month period of recording the activity of several human users. With these datasets,

images were generated in the manner previously described, thus allowing for a super-

vised learning, CNN model approach. Although this paper reflects 90-99% detection

accuracy for all 4 types of bots, their results may reflect a testing bias. Since the

authors of this paper implemented the bot datasets, their methods of detecting said

bots may cause testing biased to their own implementations, thus skewing results.

2.1.2 Graphs and CNNs

BotGraph[20] is one which represented the sitemap, or order of page indexing, of a

user with a nodes-and-edges graph. Since these generated graphs are images that

represent a number of metrics based on user behavior, not user identification, the

research utilized CNNs to predict users types of either bot or human. The BotGraph

research concludes that this approach yields about a 95% success rate in detecting

bots.

This article begins by introducing key concepts mentioned by a company that special-

izes in web bot detection, ShieldSquare, the difference of identity-based and behavior-

based bot detection. The identify-based method utilizes client-side JavaScript to

collect parameters like browser fingerprints; a collection of information about your

browser type and version, as well as your operating system, active plugins, timezone,

language, screen resolution and various other active settings [14]. Whereas behavior-

based methods utilize the number pages visited per session, the duration of time per
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page visit, and the number of page revisits, etc. This research more closely resembles

the behavior-based method but instead represents such metrics via a graph image

which, according to the research, contains more unique features per user. The pa-

per continues by introducing a violator blacklist, biometric data validation like scroll

and mouse movement method by Distil Networks, as well as the UserAgent variable

present in HTTP protocol; an unstable bot-detection method as more advanced bots

can falsify their identity by simply hiding or modifying the UserAgent variable. Deep-

Defense [31] introduced a recurrent neural network (RNN)-based model that takes as

input same-shape segment splits from the web server access logs, then encoded the

request information in each line of segment to a numerical matrix. The paper states

that, while this method is most similar to the outlined research implementation, the

inference efficiency of Deep Defense relies too heavily on the length of the same-shape

segments; in which BotGraph supposedly proves to be more stable.

The research implementation included BotGraph, a program that generates graph-

based representations of users’ sitemap traversals. Since these graphs were in image

format, the implementation employed convolutional neural network (CNN) inferences

to distinguish bots from human user types. The details of BotGraph are as follows:

• request - timestamp, HTTP method, request URI, status, host IP, user agent,

client IP variables

• session - a method if identifying a series of client requests (by bot or human)

• identity - user agent and client IP variables for the client, and host IP variable

for the server

• behavior - request URI and status variables for the access frequency metric per

graph node.
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The graph can be described as G = (V,E):

• G: a directed graph

• V : set of nodes representing all same-pattern URLs visited, i.e /page?id=3 is

pattern /page?id=*

• E: set of directed edges, each representing access points, i.e. a tag elements

with same href

Below is a figure of the BotGraph architecture. As you can see, BotGraph runs in a

three-step process:

1. Build a sitemap through one of three methods: active crawling, passive sniffing,

self providing

(a) active crawling : crawling typically starts from website homepage and re-

cursively enters each hyperlink from the current page

(b) passive sniffing : a website’s traffic is monitored, learned then used to build

the sitemap. This is a less intrusive alternative to active crawling

(c) self providing : the site provides its own sitemap for bot detection. This is

the most accurate

2. Map requests listed in server access logs to denote sessions as subgraphs in a

sitemap

3. Generate 2-dimensional trace images, translating a bot detection task into an

image recognition

13



Figure 2.4: Architecture of BotGraph
Diagram from BotGraph [20]

This implementation used a model trained on a data set generated by 30+ pro-

fessionals that manually tagged web traffic via JavaScript support checking, mouse

movement and click tracking, IP reputation, UserAgent blacklisting.

A weakness in the BotGraph method of bot detection is when a user visits a lower

number pages per session, i.e. less than 3 visits. This is because bot and human users

have too similar browsing behavior, namely their session sitemap traversal, creating

near-identical sitemap graphs. However, this research claims that BotGraph is a very

effective and efficient method of detecting bots as it achieves about 95% in precision

and recall while relying only on the client’s behavior and not the client’s identity

variables. Some needed improvements include an implementation that generates more

detailed graph-related features to better describe the characteristics of user sessions,

specifically to identify the behavior of web bots.

2.1.3 Training Data Generation and Semi-Supervised Learning

The research described in [19] addresses the common problem with supervised learning-

based bot detection schemes. Due to the high traffic of modern search engines, it is

infeasible to rely on human judges to generate labeled datasets, used in supervised

learning approaches, by manually inspecting the search logs to label bot and human
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users. On a controlled webserver environment, labeled datasets were created by an-

alyzing the response and activity of CAPTCHA challenges sent to the users. In an

effort to enhance the user experience, challenges were sent selectively, either when the

webserver is experiencing a high volume of network traffic, or when a user makes a

high number of requests in a short amount of time. When presented with a challenge,

the user can either disregard the challenge by exiting the session, answer correctly,

or answer correctly, thus answering ”no response”, ”correct response”, or ”wrong

response”, respectively. About 80% of the received responses were correct. This ac-

Figure 2.5: User answers to CAPTCHA challenges
The research notes that since the users were selected non-uniformly, most answers to the

challenge were ”no response”, as shown in [19]

counted for the majority of the training data with ”human” labels. The remaining

”human” labels were pulled from the large set of ”no response” answers by analyzing

heuristics of the user’s number of clicks in a time period, the number of search result

pages browsed, as well as information of the user’s IP address. Users were labeled

”bot” if the user’s answer was ”no response”, and the user did not satisfy thresholds

of the heuristics previously described. This CAPTCHA challenge-method accounted

for the ”0-cost” training data generation method, as described in the research.
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From the creation of the labeled training dataset, the following features were extracted

from the users:

• PageTrackedCount: measures the number of pages that the user browses

• UserClickCount: measures the number of mouse clicks on the search result

pages

• AllHitCount: measures the overall ”impressions” that the user receives in

addition to the search results

• UserUniqueIPs: measures the unique number of IPs a user is using

• UserUniqueQueries: measures the unique number of queries issued by a sin-

gle user in a search session

• Blacklisting Rules:

1. Form: triggered when a user includes in the query certain obscure codes

that are designed mostly for internal search engine instrumentation pur-

poses that should be unfamiliar to most genuine human users

2. IP: a list of IPs that are publicly identified as Internet spammers and

labeled all the traffic from these IPs as ”bot”

3. Query: this rule is triggered when the query composition is too compli-

cated to be manually typed in by a human user

The research stated, regarding the PageTrackedCount, that bots tend to behave

in two extremes. Some bots will only submit queries and not browse any of the re-

sult pages (except the first one), ostensibly with the intention to increase the query

frequency for certain keywords. The other extreme sees the bots fetch all the result
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pages for each query, probably trying to reverse engineer the index of the search en-

gine, while genuine human users would probably just browse the first few pages of the

query results selectively. For UserClickCount, clicks on the search engine results, as

well as clicks on advertisements within the results, were included in the click counts.

The research noted that the advertisement clicks, though are not distinguished in this

work, may include bots specifically targeting ads to click.

With these features, a supervised learning method of bot detection was used. In said

research, the C4.5 [22] algorithm was the decision tree used in lieu of a custom imple-

mentation, stating ”details of the decision tree algorithm are omitted here”. By lever-

aging the autonomously created labeled training dataset, sourced from CAPTCHA

response and filtered by following the previously mentioned heuristics, the decision

tree algorithm was projected to work well. However, despite the positive projections,

the results have shown to be inconsistent from the true data distribution, begging the

question of the classification’s integrity. This may be a result of the training dataset

generation stage, since the ”bot” labels are subject to the heuristics determined by

domain experts. A useful approach to this dilemma was their statistical method of

using numerous unlabeled data, due to uncertainties in the ”0-cost” training data

generation. Despite the evaluated performance improvement from the tested super-

vised learning approach, some inconsistencies would need to be addressed in future

work. Due to the limited time of one week to present CAPTCHA challenges to users,

some search engine bots may have been undetected, thus diminishing the integrity of

the training data generation. Therefore, it is unclear if this bot detection scheme can

be as useful during more real, long-term scenarios.
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2.2 Decision Tree

An implementation introduced in [8] uses the C4.5 decision tree algorithm to deter-

mine if a user is a bot or not by characterizing human behaviors from bot behaviors

in online services. This approach consists of a two-step system that (1) extracts a

user’s behavioral metrics via a client-side logger, and (2) determines the botness of

a user, based on the retrieved behavioral metrics, with a server-side classifier. A

client-side logger, in this context, records a user’s behavioral metrics such as mouse

movements and keystrokes. Upon gathering this client-side data, the records are sent

to the server-side classifier that utilizes the C4.5 decision tree algorithm.

There are two different bot detection approaches that this article seeks to address.

Firstly, content-based filtering, used by third party clients, needs to be improved

upon since they suffer from high false negative rates. This is due to mostly in part

of the bot makers finding ways to evade filtering rules set by enforcers. Secondly,

human interactive proofs (HIP)s, such as CAPTCHA, are problematic for more

than one reason. Not only are CAPTCHAs breakable by bot implementors, but the

they are intrusive to the user experience. Although there are ways to increase the

reliability of HIPs to detect and block bots, such ways would require more interaction

from the authentic human users, thus increasing user friction and diminishing the

user experience. Human observational proofs (HOB)s are a solution to this dilemma.

Unlike the HIPs that are commonly used, HOPs passively observe the actions and

behavior of users performing tasks that are meant to be challenging for bots.

A blog site was the testing location for this research. With over 65,000 users, av-

eraging about 800 users simultaneously online, human user sessions were recorded

to describe the various behavior characterizations. Additionally, bot profiles were

generated under 3 distinct categories (ranked by level of sophistication):
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1. replay: the most sophisticated type of bot, thus making it the most difficult

bot to detect among the other 2 types. This bot records the actions of a human

user doing something on the website, such as filling out a form or clicking on

a button. Then the bot will impersonate that human user by replaying the

recorded actions, exactly following the keystroke and mouse movement styles of

that user.

2. mimic: since most standard bot detection schemes use keystroke and mouse

movement info, or the lackthereof, of the user to determine their botness, bot

implementors need to include such details in their mimicking bot schemes. Using

OS API calls to generate keystroke and mouse events, mimicking bots are able

to bypass older or standard detection schemes. This is possible when a detection

scheme only relies on UI events, such as mousemove, keystrokes, etc., which can

be triggered by either hardware, such as a mouse and keyboard, or software,

such as the OS API calls a mimicking bot would utilize.

3. inject: while being the most common type of bot, this type of bot does not

interact with the UI. Instead, it triggers the same code that UI events would

tirgger, such as an HTTP request that would regularly be triggered by clicking

on a UI button. Despite being detectable by most bot detection schemes, injec-

tion bots are still able to evade a server’s check on HTTP protocols by forging

certain fields in the headers, such as Referer, User Agent, and Cookie.

While human user behavioral characterization data was collected from 1,078 signed-in

site members during several two-hour monitoring sessions, bot user behavioral char-

acterization data was collected by using existing libraries and frameworks. For the

injection bots, any UI features that triggered a POST request were instead triggered

by cURL and a predifined string for the request body. An open source Windows pro-

gram, AutoHotkey, that is designed for automating the Windows GUI and for general
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scripting was used to configure the mimicking bot. The AutoHotkey script they used

was customized to the blog site, mimicking all sorts of human actions, such as mov-

ing, clicking, and scrolling the mouse cursor, as well as typing keys. All mimicked

actions were masked by entropies, such as random speeds of mouse movements or

random delays when typing, to create some sort of human-like characteristics. With

the ability to record and replay mouse and keyboard API calls, the Global Mouse

and Keyboard Library for Windows was used to configure the replay bot.

Their detection system design consists of a webpage-embeded logger, that records a

user’s behavior on the client-side, and a server-side classifier that considers the user’s

data from the client-side and determines if that user is a bot or not. Similarly to

Figure 2.6: Architecture of the client-side Logger and server-side Detector
The client-side Logger and server-side Detector setup above, as shown in [8], closely

resemble that of this thesis work’s system design.

this thesis research implementation, the client-side Logger is JavaScript code that

stores UI event recordings into a buffer and periodically POSTs data to the server.

Mouse metrics are recorded at an average of 125hz polling rate. Unbeknownst to the

user, the Logger collects, via JavaScript events, five UI events: key press, key release,

mouse move, mouse button press, and mouse button release. When the recordings
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are POSTed to the server-side Detector, a log processor begins to calculate the

timing entropy of intervals of the whole raw event data sequence in the POSTed user

log. This detects periodic or regular timing of the entire user behavior. The entropy

rate can be used to distinguish a human user from a bot user. Human behavior is

often more complicated than bot behavior. Such complexity can be measured by the

entropy rate. Once the log processor finishes, the C4.5 algorithm is used as a base for

the Detector’s classifier. Reasons for using the C4.5 decision tree algorithm include

its efficiency to process large amounts of training data in a short time, the logic is

easy to understand and not a black-box, the tree is able to process continuous and

discrete values, and lastly, the tree has autonomous tree height constraints to avoid

over fitting. Finally, the decision maker in the Detector considers all classifications

previously made on a user, and holistically makes a decision of its botness.

2.3 Cluster Analysis

Clustering-based bot detection schemes are similar to this thesis work since they

do not require knowledge of inputted data to detect bots. However, despite their

similarities, there are clustering-based implementations that differ from this research.

2.3.1 Deductions by Similarities

The bot detection implementation [26] uses traffic analysis, unsupervised machine

learning, removal of duplicate flows, and similarity between malicious and benign

traffic flows to provide insight on the botness of a web user. The research refers to

bot web traffic as malicious web traffic and non-malicious web traffic as benign web

traffic, which may contain bots that are considered not harmful and are necessary

to a system. Search engine bots, for example, would be categorized as benign web
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traffic. A series of clustering algorithms were tested and used to determine which

clusters contained the most flows, leading to insight on the characteristics of a bot. By

conducting similarity analysis among these clusters, the work in this research provides

a similarity coefficient to describe how malicious traffic data can be distinguished from

benign traffic data.

Majority clusters were identified by the number of flows in a cluster. Since the dataset

contained mostly malicious flows, the cluster containing the most flows would also

be the malicious flows cluster. If this was not the case, than the clustering accuracy

was therefore inaccurate. Duplicate flows are flows that share the same values for the

selected features, a set of networking-related metrics pertaining to packets traveling to

and from the webserver. Similarity between clusters was evaluated using the Jaccard

Similarity Coefficient, which was a number ranging from 0 to 1 and the number was

the cardinality of the intersection between two clusters, divided by the cardinality of

the union between two clusters.

K-means was used to cluster benign and malicious flows, where k = 2. Although

the number of clusters was known to be two, and the features in these clusters was

not biometric data like mouse movement, the method of feature engineering was used

as inspiration in this thesis work. Removal of duplicate flows were shown to make

the Jaccard Coefficient less computationally expensive. However, a large reduction of

duplicate flows within a cluster indicated that the cluster contained bots of a botnet.

Detecting anomalies such as this is important to consider when engineering features,

a crucial step in the clustering process, in this thesis work.
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2.3.2 Outlier Detection

There exists a few methods of outlier detection in bot and human user profiles. Tra-

ditional statistical outlier detection methods are univariate. Such techniques

measure a particular atribute in a data distribution, while examining the degree of

that value’s outlierness. The parameters, either known or unknown, the number of

expected outliers, and the types of expected outliers are the focus of a statistical

method. Commons statistical measures, for example mean and standard deviation,

can help find outliers in datasets. For density-based outlier detection methods,

the data points, and their relations to neighbors, are an integral metric to identifying

outliers. By definition, a datapoint is considered an outlier if there aren’t many dat-

apoints, or neighbors, near it. One common algorithm, local outlier factor, measures

the density of a datapoint withing a given k-number of datapoint pertaining to the

nearest neighbors of a datapoint Through this approach, outliers are identified as

datapoints that have a substantially lower density that its neighbors. A drawback to

this approach, as well as other similar approaches, is that it’s only capable of measur-

ing the outlierness of a single datapoint, while it’s incapable of identifying clusters of

outliers. Similarly, distance-based outlier detection methods is a method that

may apply the local outlier factor. A key benefit to the distance-based method is its

ability to detect single datapoint outliers, as well as clusters of outliers.

The implementation [6] uses outlier detection with a particle swarm optimization

algorithm, hierarchical particle swarm based clustering, to detect web bots among

human users. Web bots are said to be examples of outliers since they are able to

index a large number of pages in a short amount of time, contrary to human users.

There were two modules included in this work: a clustering module and an outlier de-

tection module. Both modules work simultaneously to label suspected outliers, while

the clustering module performs clustering in a hierarchical agglomerative manner.
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Meanwhile, the outlier detection removes user profiles, that are labeled as suspecting

outliers, from succeeding clusters.

This implementation was tested by using a dataset of user profiles that mimic a

bot’s behavior, as well as dataset without any ground truth, meaning the dataset

contained user profiles without labels of their botness. Three different metrics were

used to predict the botness of user profiles: average intra-cluster distance, maximum

intra-cluster distance, and the intersection of the average and maximum intra-cluster

distances. The results have shown that, by using the average and maximum intra-

cluster distance metrics, bots are detectable when they are ”significantly different

from [a] legitimate web user” [6].
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Chapter 3

IMPLEMENTATION

This thesis work utilizes an approach that begins by identifying users, which include

human and bot users, based solely on their mouse movement behavior [7]. Specifically,

this project presents a user differentiation method based on mouse behavior metrics,

such as movement angle, movement velocity, scroll velocity, etc., instead of relying

on client IP addresses present in the server logs. Further study could include metrics

that are also used in previously implemented web bot detection schemes. But this

project will start with just the mouse behavior metrics. The presented approach in

this project implies that, upon identifying users based on their mouse use behavior,

decisions to declare userX, which is a single cluster, as a human or a bot are reinforced

by empirical evidence of web traffic patterns corresponding to userX. This approach

could be an improvement to the inaccuracies present in previous supervised learning-

based web bot detection schemes. Additionally, this ”identify users first, then classify

as human or bot” method is similar to the current industry standard of websites

requiring all visitors to log into an account for further use of their website; which

reinforces decisions to declare account-holderX as a human or a bot, regardless of

the IP address of account-holderX. However, this ”log-in, then use website” method

causes user friction [10], a concept introduced and considered by the latest ”covert”

versions of reCAPTCHA, that implies the inconveniences a user must experience to

prove they are human and not a bot. An example of this could be requiring a user to

click/check ”I’m not a robot” on older versions of reCAPTCHA. In conclusion, this

project presents an unsupervised, clustering method to autonomously identify users,
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as if they were to log in to an account, providing a means to make more informed

decisions of the ”web bot-ness” of visitors on a website.

3.1 Objective

The objective of this project is to present a novel approach for website administrators

to detect web bots. Supervised learning is a common ML approach to detect web

bots. In fact, most ML approaches to robot detection apply supervised learning [17].

This sort of approach consists of training a classifier, i.e. a function mapping an

input, which are usually feature vectors describing sessions, to an output, a session’s

class labels, based on a training dataset, which includes labelled training samples.

The ability of the inferred function to determine correct class labels for new, unseen

samples is assessed on a test dataset. Many supervised learning techniques demon-

strated their efficiency in classification of bots and humans, e.g., decision trees support

vector machine, neural networks , and k-Nearest Neighbours. All supervised learning

approaches, however, share a common disadvantage, related to a difficulty with prepa-

ration of a reliable training dataset, in particular with assigning accurate class labels

to sessions of camouflaged robots [23]. In conclusion, since web bots are increasing in

sophistication, meaning they are behaving more like humans in terms of mouse and

HTTP request behavior [18] [30], obtaining accurate training data that represents

such complex web bots has been an issue. This, combined with the anonymity of

proxies that scramble the IP addresses of web bots, has motivated this project.
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3.2 General Architecture

The general architecture of this implementation is as follows:

1. data extraction: The position metrics, timestamp and coordinates, of the

user’s mouse cursor are collected from the user’s computer and sent to the

server for analysis. The Dataset section 3.3 outlines this stage.

2. features generation: From the inputted raw data recorded and sent from the

user’s machine, features that characterize the raw data, and the user’s session

pertaining to it, are generated. The Features Engineering section 3.4 outlines

this stage.

3. clustering: Sessions are clustered based on the generated features. The Clus-

tering section 3.5 outlines this stage.

4. classification: Clusters of sessions are used to determine bottness of users at

client IP addresses. The Classification section 3.6 outlines this stage, a stage

anticipated for future work.

Figure 3.1: Architecture of this bot detection scheme

The Implementation chapter 3 described how this architecture is built.
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3.3 Dataset

In order to cluster users based on their mouse movement behavior, data of their mouse

movement must be obtained. An ideal scenario for this research would be to record

the mouse movement of a high number of users, while navigating a specified user

interface, thus creating a mouse movement recordings dataset. This would be ideal

because there would be more user profiles, as well as knowledge of the graphical user

interface used to generate these user profiles. Unfortunately, doing so would require

time, people, and resources that are not available during time-frame of this thesis

research. However, there are alternatives that maintain the validity of this research,

such as using a predefined dataset with mouse behavior-based user profiles.

3.3.1 Balabit Dataset

For testing and analysis purposes, a predefined dataset of users were used in this

research. The Balabit Mouse Challenge Dataset [1] was the primary dataset used

in this research. This dataset includes timing and positioning information of a web

user’s mouse pointer. The authors of the dataset advertise that it can be used for

authentication and identification purposes. Researchers with focus on creating and

evaluating the performance of behavioral biometric algorithms, which in this case

draws from the mouse movement metrics of a user, are an intended audience for this

publicly accessible dataset. Originating from a data science competition on datapal-

let.io, the dataset is helpful to researchers and experts in the fields of IT security and

datascience.

The competition for which the Balabit dataset originates from included a challenge of

protecting users from unauthorized accesses into their accounts. When users would
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login to their account, located on a remote server, recording their mouse movement

behavior was a necessary step in an effort to increase account security. Supposing

that the method for which a user moves their mouse was unique to that user, a

sort of biometric identifier can be obtained for account user authenticity. If the

mouse movement characteristics of a user, in a particular session, does not match

the recorded and expected characteristics of the account holder, than that user in

the particular session is said to be an unauthorized accessor. In order to apply such

a intrusion detection schema, a supervised learning-based model would need to be

built and utilized. However, this research does not intend on detecting unauthorized

accessors, nor does it intend on using supervised learning in its implementation.

Although the Balabit dataset was intended to be used for creating and evaluating

supervised learning-based models, the dataset still contains valuable user profiles and

session recordings. These user profiles are defined by a series of session recordings

that are labeled with a single user of an account. There are about 100 to 200 sessions

recordings, spread over 10 users, with an average of 15 minutes of recording time per

session. Session recordings are split into two sets: training and testing. This is for

supervised learning uses. For this research, all session files were combined into one

set that is to be clustered and analyzed. A session record is a csv file containing these

fields [1]:

• record timestamp: elapsed time (in seconds) since the start of the session as

recorded by the network monitoring device used in the creation of the Balabit

dataset

• client timestamp: elapsed time (in seconds) since the start of the session as

recorded by the RDP client used by each of the 10 users

• button: the current condition of the mouse buttons
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Table 3.1: Balabit dataset session file format
An example of a session record

record timestamp client timestamp button state x y
0.0 0.0 NoButton Move 399 962

0.157999992371 0.155999999959 NoButton Move 402 962
0.365999937057 0.248999999953 NoButton Move 407 962
0.365999937057 0.358000000007 Left Pressed 430 962
0.476999998093 0.467999999993 Left Released 474 963

. . . . . . . . . . . . . . . . . .

• state: additional information about the current state of the mouse

• x: the x coordinate (in pixels) of the mouse cursor on the screen

• y: the y coordinate (in pixels) of the mouse cursor on the screen

3.3.2 Realtime Dataset

In a realtime environment, where the user-differentiating algorithm is deployed, mouse

movement data would come from the browser on the user’s computer. By using

a JavaScript mousemove event listener, the coordinates of a user’s mouse can be

determined and recorded while a user is in session. On average, a computers mouse

position is polled 125 times per second [15] [16]. This means that if a 10 second user

session is recorded, there should be an average of 1,250 mouse position records of any

single user browsing a website. Records can be in a csv format:

• time: elapsed time (in seconds) since the start of the session as recorded by

the user’s browser

• x: the x coordinate (in pixels) of the mouse cursor on the screen

• y: the y coordinate (in pixels) of the mouse cursor on the screen
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Table 3.2: Realtime session file format

time x y
0.0 241 93

0.008121 278 77
0.015828 291 54
0.026942 302 48
0.037201 317 50

. . . . . . . . .

A typical recorded session of a user’s mouse movement metrics would look like:

These records can be stored on the user’s computer, most likely in the browser via

a JavaScript variable, then periodically sent to the server for which the website is

hosted. From this input, on the server, the web bot and botnet detection scheme will

begin. Pseudo code that generalizes the process of obtaining and sending a user’s

mouse movement metrics looks like:

// the list of ”times” ”x” and ”y” values POSTed to the server

var records;

function flushRecords(bufSize)

// reallocate ”bufSize” number of indices for ”times” ”x” and ”y” lists

function postAndFlushRecords(bufSize)

// POST all recorded ”times” ”x” and ”y” values to the server

function log(elapsedTime, x, y, bufSize)

// insert ”elapsedTime” ”x” and ”y” values into ”records”

// postAndFlushRecords() if there are ”bufSize” number of records

function initBufferTimeout(timeLimit, bufSize)

// postAndFlushRecords() every ”timeLimit” duration
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function init()

// use the ”window” object’s ”onmousemove” func to log() mouse positions

// initBufferTimeout() to periodically POST logged ”records” to the server

// called once upon every page load

init();

The actual code, client mouse tracker.js, can be found in the src/ dir on the remote

repo [4] of this research.

3.4 Features Engineering

The intrustion detection scheme [7], while also using the Balabit dataset as it was

intended to be used, extracted a set of features from the raw mouse position data.

Though their work implemented a supervised learning-based binary classifier, the

features they extracted were proven to be effective metrics in differentiating and

identifying users. Instead of using all 6 elements of a datapoint vector, as outlined

in the Balabit Dataset section 3.3.1, we elected to only use the client timestamp (t),

x position (x), and y position (y) values. These three values construct a triplet, (ti,

xi, yi), i = 1. . .n, where n is the number of recorded mouse positions, or datapoint

vectors, in a session file. The three values, time and 2d coordinates, of a mouse

position datapoint are all that is needed to generate the mouse movement features in

this thesis research. From these three values, or triplets, of a single datapoint vector,

in the list of vectors of a session file, the following features were extracted:

• velocity: vi = ∆pi
∆ti

, where ∆pi = |pi+1 − pi| and ∆ti = ti+1 − ti

• horizontal velocity: vxi = ∆xi

∆ti
, where ∆xi = |xi+1 − xi| and ∆ti = ti+1 − ti
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• vertical velocity: vyi = ∆yi
∆ti

, where ∆yi = |yi+1 − yi| and ∆ti = ti+1 − ti

• acceleration: ai = ∆vi
∆ti

, where ∆vi = |vi+1 − vi| and ∆ti = ti+1 − ti

• jerk: ji = ∆ai
∆ti

, where ∆ai = |ai+1 − ai| and ∆ti = ti+1 − ti

• theta: Θi = arctan 2( ∆yi
∆xi

), where ∆yi = |yi+1 − yi| and ∆xi = |xi+1 − xi|

3.4.1 Realtime Generation

As described in the objective, this implementation is meant to detect web bots and

botnet attacks in realtime. At this stage of the detection scheme, a program would

need to be run in realtime to compute the 6 features outline above. Initially, a Python

program was used to generate these 6 features as described. The program calculated

all 1676 session files, from all 10 users, in an average of 7 minutes. By pre-allocating

lists of numeric values, and incrementing a counter variable that keeps track of where

to insert the next calculated feature value into the list of numeric values, the runtime

was reduced from 7 minutes to slightly more than 3 minutes. Further, the entire

features generator program was converted from Python to Golang.

By creating Go-routines on each of the 6 features, the average runtime of the Golang

program calculating all 1676 sessions files was less than 30 seconds. Figure 3.2 shows

the parallelization of calculating the 6 features. All runtimes for realtime feature

generation do not include data cleaning and prep. Since the Balabit dataset has

many duplicate timestamp values, with different x and y values, a pre-generation

step would need to take place to remove erooneous duplicates, as a means to ”clean”

the raw data input.
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Figure 3.2: Parallelization of the features generator
There are 6 Go routines, or threads as shown in this diagram, that parallelize the features

generation stage of the system design. Figure 4.1 displays how this parallelized features

generator can be distributed.

3.4.2 Statistics

After the n feature values have been generated, where n is the number of datapoint

vectors or triplets in a session, for each of the 6 features, the values would need to

be represented with statistical values. The statistical values used for each of the 6

features are mean, median, mode, interquartile range, minimum, maximum,

range, and standard deviation.

It is worth noting that the mode and minimum values did not appear to be as useful

as the other statistical metrics. The minimum values of each of the feature values lists

were mostly zero. This is a result of the feature calculations. For example, horizontal

velocity could be zero if the x position does not change in two successive datapoint

vectors. Formally, vxi = ∆xi

∆ti
= 0 if ∆xi = |xi − xi+1| = 0, meaning xi = xi+1.

This is one example of why the maximum and range values were often the same. If

range = |maximum−minimum|, where mimimum = 0, than range = maxmimum.
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3.5 Clustering

At this point in the web bot and botnet attack detection scheme, a number of met-

rics are obtained that can be used to differentiate users. For each of the 6 features, 8

statistical metrics are calculated to represent their respective features, totaling to 48

values that can be used for clustering. The purpose of clustering sessions, based on

the outlined 48 values, is to differentiate users based solely on their mouse movement

behavior. Session files, or lists of mouse position vectors, would be inputted into this

clustering algorithm to output clusters of differentiated users. In a realtime envi-

ronment, the session files would be the mouse position metrics that are periodically

inputted from the user’s machine, as described in the Realtime Dataset section 3.3.2.

During the testing and analysis stages of this research, 2 clustering algorithms were

used on the 1676 x 48 inputted session files. With k-means clustering, the value for

k was set to 10, the number of users present in the 1676 session files. All 48 values

pertaining to each session file, were used as the passed-in clustering features. With

hierarchical clustering, all 48 values were also used.

3.6 Classification

Knowing that a certain user, differentiated by clustering, has a specific number of

network requests, hard-coded request thresholds can be enforced. Similar to threshold

enforcement on user-based websites, the classification staged of this bot detection

scheme will entail blacklisting IP addresses of users of a profile, or cluster, users

exceed network request thresholds. However, users would not need to login, as they

would on a user-based website, since all users are autonomously differentiated in the

clustering stage of this thesis implementation.
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Differentiating users by their mouse movement behavior will enable additional clas-

sification schemes. The evaluation chapter 4 outlines how accurate the clustering

implementation in 3.5 differentiates users so this classification stage will occur. You

will see that, at this current state in the thesis research, users profiles are not distinctly

clustered for a classification step to occur.
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Chapter 4

EVALUATION

4.1 Features Generation

As session files, containing mouse positions of users, are inputted to the back-end

server, the features generator is deployed to extract features sets in realtime. Doing

so is costly on a server. Since the average number of polled mouse positions is about

125 times per second, and sessions last for numerous minutes, session files contain

an average of tens of thousands of lines. Every line of the session files are used and

fed through the features generator. Generation of the 6 outputted feature vectors,

velocity, horizontal velocity, vertical velocity, acceleration, jerk, and theta, require

input of each line of a session file. The computational cost of the features generation

step is very high.

Evaluation of the features generator consisted of a few different architectures. For the

sake of comparison and additional test data, a Windows and Linux machine were used

to run programs written in Python and Golang. With the intention of viewing results

and keeping the research process simple, the features generator was originally written

in Python. As the program’s robustness increased, results were viewed, and runtimes

increased, the decision to create the features generator in Golang was influenced by

runtime optimization. Since this detection scheme is intended to be run in realtime

on a server, and the computation cost of the features generation step is intensive,

converting to and parallelizing with Golang seemed like a reasonable investment.

Below are metrics reflecting the total runtimes of each architecture. The Linux ma-

chine is run on an Open SUSE Tumbleweed Linux instance. A Bash terminal was
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Table 4.1: Environments used to generate session features
Both systems use a solid-state hard drive. Comparison of the different environments

used to generate features from the mouse position data inputted from the user’s computer.

Each result shown are averages of 3 separate runtimes

system cores clock speed memory cpu desc exec env
Open SUSE 4 1.6GHz 8GB-DDR4 8th-Gen-i5 native-Bash
Windows 10 4 3.4GHz 12GB-DDR4 6th-Gen-i7 winpty-Bash

used to execute the Python and Golang programs. However, the Python runtime re-

sults varied drastically on the Windows machine. There is one explanation relating to

a ”wrapper” program, winpty, that had to be used to invoke the Python interpreter.

This wrapper-like program acts as an interface between the underlying Windows op-

erating system and the Bash terminal. Enabling users to run Unix programs, winpty

must have an overhead cost when using its interface. As you can see, the runtimes

are nearly 3 times the amount of the Linux equivalents. Regardless, all runtimes were

most often shorter when run on the Linux machine.

There is a bottleneck in the system design. A Bash script was used to execute

the features generator program, which takes one session file as input and outputs 6

feature vectors by writing them to files named with the convention sessionid userid

featurename.json in a separate directory.

While this Bash script is sufficient in this research on how to differentiate users by

clustering, there is one design change that will significantly reduce the runtime of the

system. Instead of using a program that sequentially takes input, like this Bash script,

a parallelized ”master” program is a necessary design decision. Figure 4.1 shows how

distribution of the features generation may occur. Although the Golang metrics reflect

a parallelized program, which generates the 6 feature vectors in parallel, a master node

can be used to take inputted session files and trigger multiple executions of the features

generator. Additionally, session files can be split into several ”shards” that would
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Figure 4.1: Distribution of the parallelized features generator
The figure at 3.2 describes the parallelization of the features generator. This figure

displays the sharding and distribution of calculating features from an inputted sessions file.

reduce the required execution time of each features generator executable. Preferably,

this parallelization would be distributed across many Linux boxes equipped with the

features generator executable.

Table 4.2: Runtimes of different features generation methods
A ”list” buffer was used for Python execs, while a ”slice” was the equivalent buffer used

for Golang execs. Python on the Windows system was run through an API, winpty, that

enables Bash terminals to run Unix-like programs. This may account for the significantly

slower Python runtimes on Windows

method lin go win go lin py win py
list buf 1m5s 1m42s 3m16s 11m16s

prealloc list buf 0m36s 2m25s 3m31s 10m52s
file append 1m13s 1m42s 3m18s 10m55s

go seq 0m46s 3m4s – –

Three different methods, list or slice buffer, preallocated list or slice buffer, file append,

and an additional sequential Golang method, were used to compare the different fea-

tures generator architectures. The list or slice buffer method showed slower runtimes

since memory had to be reallocated upon data insertions. By preallocating the mem-

ory space, with a given size number, there is no longer a need to reallocate memory

for this buffer type. This explains why the preallocated list or slice buffers had a

39



Figure 4.2: Screen shots of the Bash script running the features generator
Both screenshots, Linux (top) and Windows (bottom), include two printouts of the users.

This is because the inputted session files consist of a training and testing dataset, per the

Balabit dataset [1]
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faster average runtime. However, an interesting observation is with runtimes of the

Windows preallocated slice buffer and file append methods. Results show that, while

using a non-preallocated slice in Golang had the same runtime as the file append

method in Golang, the preallocated slice buffer method resulted in slower runtimes.

One explaination would be the quality of the solid state hard drives. Thought both

systems use a solid state hard drive as their main storage, the Windows system is

equipped with an aftermarket SSD. Perhaps the file write speed is quicker with this

hard drive, thus decreasing the runtime of the file append method. However, there is

uncertainty with this theory.

Of the different methods used, the preallocated slice buffer with Golang method

used on the Linux machine showed the best results. This is what prompted the

deployment of a non-parallelized, sequential version of the preallocated slice buffer

method with Golang was added for comparison. As the results reflect, preallocated

slice buffers boast the lowest runtimes in Golang. However, the sequential version

of the Golang generator showed poor results on the Windows system. This may be

attributed to the slow runtimes of the parallelized preallocated slice buffer method

results. An additional explanation could be the method used to obtain the size

needed for preallocation. Since the number of lines of the input file is the size used to

preallocate the slice buffer, the process of reading the input file may be the culprit.

Perhaps there were file system blocks associated with the slower runtimes. Regardless,

the optimal architecture for the features generator was the parallelized, preallocated

slice buffer method with Golang on the Linux machine.
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4.2 Clustering

Though the clustering stage of this detection scheme is to be used in realtime, this

thesis research mostly consists of offline testing and evaluation. In the context of this

thesis, an optimal outcome for the clustering stage would include clear distinction

of clusters that reflect a differentiation between users. By using solely mouse data

from the user, and generating features from this data, differentiating users through

unlabeled data is the intended outcome in this evaluation.

A statistical software, JMP, was used to perform principal component analysis and

generate clusters. Although there were multiple clustering methods available, all

of which showed promising results, kmeans was the clustering method used in this

research for the multitude of analysis tools and metrics available in the JMP software.

Outputted distance and membership metrics reflect the level of effectiveness between

different features used with the kmeans method. Since there were 10 users in the

inputted dataset [1], and the intention is to differentiate all users, the k value was set

to 10 in all clustering samples.

By observing the plotted Eigen vectors, the number of components chosen from PCA

was the number of components needed to cumulatively attribute to at least 80% of

the variance in the inputted features. In the PCA that observes all 48 features, 7

components were needed to satisfy this 80% threshold. Eigen vectors of each feature

were summed and compared. The max sum of all features up to the nth component

indicates that feature as having the most ”weight” or influence on the variation in the

data. A challenging aspect of PCA was deciding how many components to sum to.

7 components were chosen here. But that is only because 7 components were needed

to satisfy a self-suggested threshold of 80% that seemed reasonable. There is a need

to analyze further to reinforce this approach.
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Figure 4.3: 3D illustrations of clustering
Shown here are 4 images of the same (median) clustering results, using the top 3 principal

components.
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Table 4.3: Results from PCA (all)
Shown are the 8 features used as a result of the principal component analysis on all 48

features. Per the right-most sums column, the left-most column contains features that

account for most of the variation of the data. Note how the theta features have such high

values, despite them having the lowest original values. This may be a result of data

standardization in JMP

feature PC1 PC2 PC3 PC4 PC5 PC6 PC7 sum
vel-median 0.07 0.29 -0.09 -0.02 0.04 0.07 0.06 43.72

vel-iqr 0.08 0.19 -0.28 -0.09 0.05 0.21 0.18 35.59
yvel-median 0.07 0.28 0.04 0.07 0.06 -0.01 0.19 70.60
yvel-mode 0.01 0.07 -0.03 0.05 -0.03 -0.01 0.28 33.75

yvel-iqr 0.08 0.22 -0.12 0.01 0.12 0.18 0.30 78.26
accl-median 0.06 0.31 0.07 -0.01 0.07 -0.02 -0.13 35.89
theta-mean 0.01 0.02 0.30 0.19 0.23 0.16 0.38 128.40

theta-median 0.01 0.03 0.28 0.20 0.20 0.14 0.40 126.28
theta-iqr -0.03 -0.07 0.28 0.00 0.30 0.29 -0.07 69.52

theta-stdev -0.04 -0.07 0.30 0.00 0.27 0.24 -0.18 52.62

Table 4.4: Eigen values in PCA (all)
Principal component analysis on all 48 features

PrinComp 01 02 03 04 05 06 07 08
Eigen 14.47 8.94 3.76 3.09 2.71 2.00 1.91 1.22
Per 30.8 19.0 8.0 6.6 5.8 4.3 4.1 2.6

Cum 30.1 49.8 57.8 64.4 70.2 74.4 78.5 81.1

Once the principal components were chosen, the clustering stage begins. Note that

the PCA step is not going to be a part of the detection scheme. The only reason

why it was applied here was to see which mouse movement features are most effective

in user differentiation by clustering. Despite the PCA-generated features, there were

a number of clustering versions used for comparison. The mean, median, mode,

standard deviation, and the interquartile range of each of the 6 movement fea-

tures, velocity, horizontal velocity, vertical velocity, acceleration, jerk, and theta, were

used to build clusters. Of all 48 feature vectors that are to be used in clustering, 6

features, one movement feature per statistical value, were chosen as parameters to

cluster.
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Table 4.5: Clustering distribution results

features set pop stdev pop range bias dist mean dist stdev
iqr 152.42 14-445 3.628 1.794 2.012

mean 294.60 1-732 2.647 2.037 1.846
median 174.16 1-478 3.475 1.369 1.374
mode 477.47 1-1523 2.360 2.480 3.073
stdev 329.97 1-837 1.054 2.098 1.892
pca 8 215.36 2-590 1.272 5.859 4.397
pca 10 139.14 2-396 1.400 3.862 3.523

For example, the ”mean” features set used as parameters for clustering were veloc-

ity-mean, horizontal velocity-mean, vertical velocity-mean, acceleration-mean,

jerk-mean, and theta-mean. This pattern continued through all 6 of the movement

features, over all 8 of the statistical features. Hence the 48 features to choose from.

Figure 4.4: User frequency bias metric
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Table 4.6: User differentiation accuracy
Accuracy of the different features sets in clustering to differentiate users

features set iqr mean median mode pca 8 pca 10 stdev total
user7 34 0 40 3 52 80 96 158
user9 43 0 48 7 12 43 0 130
user12 93 2 37 6 103 88 3 240
user15 32 3 59 2 28 65 150 253
user16 67 3 1 1 4 53 3 201
user20 18 51 4 1 0 2 6 114
user21 0 4 52 0 3 0 1 121
user23 40 76 11 136 2 10 1 142
user29 61 1 0 0 10 58 1 124
user35 7 3 84 2 85 15 2 193

accuracy 2.361 1.074 1.992 1.088 1.541 2.358 1.314 –

Table 4.6 shows how clusters were assigned to users and clustering accuracy was

calculated. Users were differentiated by iterating the frequency rankings of all 10

clusters and assigning clusters to users. The frequencies of the users in their respective

clusters are listed in the columns, with the far-right total column containing the user’s

total number of session files clustered. Each feature set cluster’s accuracy is calculated

by adding the percentages of total users in each cluster. Feature set iqr clusters had

the highest accuracy, whereas the mean clusters had the lowest accuracy.

The user frequency bias metric describes the distribution of users in a cluster. A high

value indicates that the cluster is biased to a certain user(s). A low value indicates

that the cluster is not biased to any user(s) and is evenly spread. This metric accounts

for variance and weights applied to the hierarchy of frequencies.
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The user frequency bias metric can be expressed as

∑n−1
i=1 |pi − pi+1| ∗ (n− i)

|P − A|

where n is the number of users in a cluster, pi is the percentage of the ith user in

comparison to the total cluster population, P is the total cluster population, and A

is the average population for all clusters.

With the user frequency bias metric and the distance values previously outlined, a

conclusion of this clustering approach will outline the validity and meaning of this

thesis work.

47



Chapter 5

CONCLUSION

5.1 Contributions

This thesis research includes the following contributions:

1) A parallelized and scalable Golang implementation that extracts movement fea-

tures from inputted position data in realtime. The format of the position data is

in a standard time-position format. Despite the 2 dimensions of the intended input

data, adding an additional dimension should not pose any issues. Since the program

outputs vectors of the 1st, 2nd, and 3rd derivatives of a postion dataset, there may

be other applications that require parallelized features generation in realtime.

2) A membership bias metric that measures how well a clustering method differ-

entiates users. Measuring variance is not sufficient when valuating clusters in this

context. Though it’s optimal to have high variance between members of a cluster

and the member for which is represented by that cluster, variance would not be a

simple method of measuring the disparity between members of a cluster in the in-

tended way. The membership bias metric accounts for the variance among irrelevant,

non-represented members of a cluster.

3) Several mouse movement features sets that have shown to be useful to differentiate

users. The majority of related works that utilize a users mouse movement behavior

require labeling of data. This is to say that, because unsupervised learning methods

are not common with mouse movement metrics, providing preliminary results about

which features to use for clustering will be beneficial.
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4) An unsupervised learning approach to web bot detection. Prior research indicates

that supervised learning methods, though still the popular methods, are not able to

detect the growing number of highly sophisticated web bots. A simple explanation

of this is that, since supervised learning methods require labeled datasets, and that

trained models are only as effective as the robustness of the training data, supervised

learning methods can not maintaing the cutting edge in bot detection. This thesis

attempts to resolve this ongoing issue by supplying researchers with a method de-

tecting bots by solely looking at the mouse movement behavior of a user, regardless

of their bot or humanness.

5) A web bot detection scheme that does not require users to login or prove their

humanness. Most websites require users to have an account, or pass a test to prove

their humanness, to access a website. This traditional design not only causes user

friction, but it also poses several threats and liabilities to the company hosting the

website. Being able to differentiate users without requiring them to login or prove

their humanness, i.e. CAPTCHA, is a meaningful contribution.

5.2 Future Work

Due to time constraints, implementing the classification stage of the system design ??

is a plan for future work. Classification is meant to occur after users have been

clustered and differentiated. By knowing that users A and B exist in the inputted

sessions datas, limiting the frequency of a user’s network requests on a website can

be achieved without them needing to login. However, this thesis research did not

reach that point in the system design. Additionally, more features can be analyzed to

improve the clustering accuracy. This includes the validity of the principal component

analysis done in the evaluation’s clustering section 2.3.
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Realtime features generation is an integral part of this detection scheme. Webservers

having the ability to generate features in realtime, without sacrificing performance,

is a important aspect to consider. Specifically, a distributed system can be applied

to decrease runtimes of the features generation step. By introducing a set of nodes,

one of which includes a master that directs workers and their inputs and outputs,

the high computational costs of generating features from numerous sessions can be

manageable.
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APPENDICES

Appendix A

CLUSTERS USER FREQUENCY TABLES
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Table A.1: User frequencies and bias metrics for (9 of 10) iqr clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 3.63

user freq % wgt
u15 70 20 –
u16 67 19 0.1
u12 47 14 0.4
u35 39 11 0.1
u23 31 9 0.1
u7 24 7 0.1
u21 23 7 0.0
u9 21 6 0.0
u20 12 3 0.0
u29 10 3 0.0

344 0.5

user freq % wgt
u15 32 23 –
u20 19 14 0.8
u35 17 12 0.1
u12 17 12 0.0
u16 16 12 0.0
u23 13 9 0.1
u21 8 6 0.1
u7 8 6 0.0
u9 6 4 0.0
u29 2 1 0.0

138 3.7

user freq % wgt
u29 61 18 –
u35 52 15 0.2
u12 46 14 0.1
u15 45 13 0.0
u23 43 13 0.0
u16 27 8 0.2
u21 23 7 0.0
u9 14 4 0.1
u7 14 4 0.0
u20 13 4 0.0

338 0.4

user freq % wgt
u7 34 63 –
u20 10 19 3.6
u12 3 6 0.9
u15 3 6 0.0
u23 2 4 0.1
u29 1 2 0.1
u16 1 2 0.0
u21 0 0 0.0
u9 0 0 0.0
u35 0 0 0.0

54 4.1

user freq % wgt
u9 43 68 –
u20 12 19 3.9
u7 3 5 1.0
u23 2 3 0.1
u12 2 3 0.0
u15 1 2 0.1
u21 0 0 0.0
u35 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0

63 4.9

user freq % wgt
u15 9 19 –
u35 7 15 0.3
u9 5 10 0.3
u23 5 10 0.0
u12 5 10 0.0
u21 4 8 0.1
u7 4 8 0.0
u16 4 8 0.0
u29 3 6 0.0
u20 2 4 0.0

48 0.6

user freq % wgt
u7 39 55 –
u20 18 25 2.4
u9 8 11 1.0
u29 2 3 0.5
u21 1 1 0.1
u35 1 1 0.0
u12 1 1 0.0
u15 1 1 0.0
u16 0 0 0.0
u23 0 0 0.0

71 4.1

user freq % wgt
u16 31 19 –
u15 31 19 0.0
u12 26 16 0.2
u9 16 10 0.4
u21 15 9 0.0
u35 14 9 0.0
u29 11 7 0.1
u20 8 5 0.0
u23 6 4 0.0
u7 3 2 0.0

161 10.6

user freq % wgt
u12 93 21 –
u35 62 14 0.6
u15 60 13 0.0
u16 55 12 0.1
u21 47 11 0.1
u23 40 9 0.1
u29 34 8 0.0
u7 19 4 0.1
u20 18 4 0.0
u9 17 4 0.0

445 0.4
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Table A.2: User frequencies and bias metrics for (9 of 10) mean clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 2.65

user freq % wgt
u29 4 24 –
u16 3 18 0.5
u12 3 18 0.0
u23 2 12 0.4
u21 1 6 0.3
u9 1 6 0.0
u35 1 6 0.0
u7 1 6 0.0
u15 1 6 0.0
u20 0 0 0.0

17 0.8

user freq % wgt
u12 136 19 –
u15 114 16 0.3
u16 106 15 0.1
u21 64 9 0.4
u23 59 8 0.0
u35 57 8 0.0
u20 51 7 0.0
u29 47 7 0.0
u9 39 6 0.0
u7 29 4 0.0

702 0.1

user freq % wgt
u35 8 26 –
u29 5 16 0.8
u15 5 16 0.0
u21 4 13 0.2
u7 3 10 0.2
u20 2 6 0.1
u12 2 6 0.0
u16 1 3 0.1
u23 1 3 0.0
u9 0 0 0.0

31 1.0

user freq % wgt
u12 2 100 –
u21 0 0 8.0
u9 0 0 0.0
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u15 0 0 0.0

2 4.8

user freq % wgt
u7 86 48 –
u9 41 23 2.0
u20 30 17 0.4
u15 6 3 0.8
u12 5 3 0.0
u23 4 2 0.0
u29 3 2 0.0
u35 2 1 0.0
u21 1 1 0.0
u16 1 1 0.0

179 28.1

user freq % wgt
u35 3 75 –
u7 1 25 4.0
u21 0 0 1.8
u9 0 0 0.0
u20 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

4 3.5

user freq % wgt
u29 1 100 –
u21 0 0 8.0
u9 0 0 0.0
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

1 4.8

user freq % wgt
u15 3 43 –
u9 1 14 2.3
u20 1 14 0.0
u16 1 14 0.0
u12 1 14 0.0
u21 0 0 0.6
u35 0 0 0.0
u7 0 0 0.0
u29 0 0 0.0
u23 0 0 0.0

7 1.8

user freq % wgt
u15 124 17 –
u35 122 17 0.0
u12 91 12 0.3
u16 89 12 0.0
u23 76 10 0.1
u29 64 9 0.1
u21 50 7 0.1
u9 48 7 0.0
u7 38 5 0.0
u20 30 4 0.0

732 0.1
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Table A.3: User frequencies and bias metrics for (9 of 10) median clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 3.48

user freq % wgt
u16 69 23 –
u15 59 20 0.3
u35 38 13 0.5
u12 27 9 0.2
u23 23 8 0.1
u21 19 6 0.1
u9 18 6 0.0
u20 15 5 0.0
u29 15 5 0.0
u7 13 4 0.0

296 0.9

user freq % wgt
u12 37 22 –
u15 26 16 0.5
u20 19 11 0.3
u21 18 11 0.0
u16 18 11 0.0
u23 16 10 0.0
u35 11 7 0.1
u9 8 5 0.0
u29 8 5 0.0
u7 6 4 0.0

167 150.0

user freq % wgt
u35 84 20 –
u15 67 16 0.3
u12 57 14 0.2
u29 51 12 0.1
u23 43 10 0.1
u16 35 8 0.1
u7 26 6 0.1
u21 24 6 0.0
u9 19 5 0.0
u20 15 4 0.0

421 0.4

user freq % wgt
u16 24 20 –
u15 17 14 0.5
u12 14 11 0.2
u20 13 11 0.0
u9 12 10 0.0
u35 11 9 0.0
u23 11 9 0.0
u29 9 7 0.0
u21 7 6 0.0
u7 5 4 0.0

123 1.6

user freq % wgt
u7 8 47 –
u20 4 24 1.9
u9 1 6 1.2
u35 1 6 0.0
u29 1 6 0.0
u23 1 6 0.0
u15 1 6 0.0
u21 0 0 0.1
u16 0 0 0.0
u12 0 0 0.0

17 2.1

user freq % wgt
u9 48 40 –
u7 37 31 0.7
u20 22 18 0.9
u12 4 3 0.9
u15 4 3 0.0
u35 2 2 0.1
u23 2 2 0.0
u21 1 1 0.0
u29 1 1 0.0
u16 0 0 0.0

121 5.6

user freq % wgt
u12 99 21 –
u15 77 16 0.4
u16 53 11 0.4
u21 52 11 0.0
u35 45 9 0.1
u23 45 9 0.0
u29 39 8 0.0
u20 24 5 0.1
u9 22 5 0.0
u7 22 5 0.0

478 0.3

user freq % wgt
u7 40 78 –
u9 2 4 6.0
u20 2 4 0.0
u12 2 4 0.0
u15 2 4 0.0
u35 1 2 0.1
u16 1 2 0.0
u23 1 2 0.0
u21 0 0 0.0
u29 0 0 0.0

51 5.2

user freq % wgt
u16 1 100 –
u21 0 0 8.0
u9 0 0 0.0
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u29 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

1 4.8
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Table A.4: User frequencies and bias metrics for (9 of 10) mode clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 2.36

user freq % wgt
u7 4 57 –
u35 2 29 2.3
u12 1 14 1.0
u21 0 0 0.9
u9 0 0 0.0
u20 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u15 0 0 0.0

7 2.6

user freq % wgt
u16 1 100 –
u21 0 0 8.0
u9 0 0 0.0
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u29 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

1 4.8

user freq % wgt
u15 27 24 –
u12 22 19 0.4
u16 17 15 0.3
u35 15 13 0.1
u7 8 7 0.3
u21 7 6 0.0
u9 7 6 0.0
u29 4 4 0.1
u23 4 4 0.0
u20 2 2 0.0

113 2.2

user freq % wgt
u20 1 100 –
u21 0 0 8.0
u9 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

1 4.8

user freq % wgt
u7 3 100 –
u21 0 0 8.0
u9 0 0 0.0
u20 0 0 0.0
u35 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

3 4.9

user freq % wgt
u35 2 33 –
u9 1 17 1.3
u20 1 17 0.0
u29 1 17 0.0
u16 1 17 0.0
u21 0 0 0.7
u7 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

6 1.2

user freq % wgt
u15 2 33 –
u21 1 17 1.3
u29 1 17 0.0
u16 1 17 0.0
u23 1 17 0.0
u9 0 0 0.7
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u12 0 0 0.0

6 1.2

user freq % wgt
u15 221 15 –
u12 211 14 0.1
u16 180 12 0.1
u35 174 11 0.0
u7 141 9 0.1
u23 136 9 0.0
u9 122 8 0.0
u29 118 8 0.0
u21 111 7 0.0
u20 109 7 0.0

1523 0.0

user freq % wgt
u12 6 40 –
u21 2 13 2.1
u7 2 13 0.0
u15 2 13 0.0
u20 1 7 0.3
u16 1 7 0.0
u23 1 7 0.0
u9 0 0 0.1
u35 0 0 0.0
u29 0 0 0.0

15 1.6
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Table A.5: User frequencies and bias metrics for (9 of 10) pca top 8 without
theta clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 1.27

user freq % wgt
u16 4 36 –
u35 2 18 1.5
u15 2 18 0.0
u21 1 9 0.5
u7 1 9 0.0
u23 1 9 0.0
u9 0 0 0.3
u20 0 0 0.0
u29 0 0 0.0
u12 0 0 0.0

11 1.5

user freq % wgt
u15 17 16 –
u16 16 15 0.1
u21 13 12 0.2
u35 13 12 0.0
u29 10 9 0.1
u20 9 8 0.0
u12 9 8 0.0
u7 8 7 0.0
u9 7 6 0.0
u23 7 6 0.0

109 0.7

user freq % wgt
u12 103 17 –
u16 90 15 0.2
u15 84 14 0.1
u9 66 11 0.2
u35 57 10 0.1
u23 50 8 0.0
u21 36 6 0.1
u29 36 6 0.0
u20 35 6 0.0
u7 33 6 0.0

590 0.2

user freq % wgt
u7 5 26 –
u15 4 21 0.4
u21 3 16 0.4
u20 3 16 0.0
u9 1 5 0.5
u35 1 5 0.0
u16 1 5 0.0
u12 1 5 0.0
u29 0 0 0.1
u23 0 0 0.0

19 0.9

user freq % wgt
u7 52 32 –
u20 25 15 1.3
u15 19 12 0.3
u16 13 8 0.2
u9 12 7 0.0
u35 11 7 0.0
u23 10 6 0.0
u29 8 5 0.0
u12 8 5 0.0
u21 4 2 0.0

162 32.1

user freq % wgt
u35 85 16 –
u12 85 16 0.0
u15 79 15 0.1
u23 62 12 0.2
u29 58 11 0.0
u21 46 9 0.1
u16 39 7 0.0
u20 31 6 0.0
u7 25 5 0.0
u9 23 4 0.0

533 0.1

user freq % wgt
u7 25 23 –
u16 17 15 0.6
u15 15 14 0.1
u9 12 11 0.2
u35 8 7 0.2
u12 8 7 0.0
u21 7 6 0.0
u20 7 6 0.0
u29 6 5 0.0
u23 5 5 0.0

110 1.9

user freq % wgt
u15 5 29 –
u16 4 24 0.5
u35 3 18 0.4
u20 2 12 0.4
u23 2 12 0.0
u29 1 6 0.2
u21 0 0 0.2
u9 0 0 0.0
u7 0 0 0.0
u12 0 0 0.0

17 1.1

user freq % wgt
u15 28 23 –
u12 26 21 0.1
u16 17 14 0.5
u35 13 11 0.2
u21 10 8 0.1
u7 9 7 0.0
u9 8 7 0.0
u29 5 4 0.0
u23 5 4 0.0
u20 2 2 0.0

123 2.0
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Table A.6: User frequencies and bias metrics for (9 of 10) pca top 10
clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 1.4

user freq % wgt
u15 65 23 –
u16 51 18 0.4
u12 36 13 0.4
u35 27 10 0.2
u9 23 8 0.1
u23 19 7 0.1
u21 17 6 0.0
u20 15 5 0.0
u7 15 5 0.0
u29 9 3 0.0

277 1.1

user freq % wgt
u20 18 23 –
u12 15 19 0.3
u16 12 15 0.3
u23 10 13 0.2
u15 10 13 0.0
u21 4 5 0.3
u35 4 5 0.0
u7 3 4 0.0
u9 2 3 0.0
u29 0 0 0.0

78 1.2

user freq % wgt
u9 43 65 –
u7 6 9 4.5
u16 6 9 0.0
u15 4 6 0.2
u23 3 5 0.1
u20 1 2 0.1
u35 1 2 0.0
u29 1 2 0.0
u12 1 2 0.0
u21 0 0 0.0

66 4.8

user freq % wgt
u12 88 22 –
u21 52 13 0.7
u15 51 13 0.0
u35 41 10 0.2
u16 40 10 0.0
u23 39 10 0.0
u29 31 8 0.1
u20 21 5 0.1
u7 18 5 0.0
u9 15 4 0.0

396 0.5

user freq % wgt
u20 2 40 –
u9 1 20 1.6
u35 1 20 0.0
u16 1 20 0.0
u21 0 0 1.0
u7 0 0 0.0
u29 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

5 1.6

user freq % wgt
u16 53 18 –
u15 51 17 0.1
u35 49 16 0.0
u12 33 11 0.3
u23 29 10 0.1
u9 20 7 0.1
u20 18 6 0.0
u21 17 6 0.0
u7 17 6 0.0
u29 15 5 0.0

302 0.4

user freq % wgt
u7 80 66 –
u20 25 20 3.6
u12 4 3 1.2
u15 4 3 0.0
u9 2 2 0.1
u35 2 2 0.0
u23 2 2 0.0
u21 1 1 0.0
u29 1 1 0.0
u16 1 1 0.0

122 10.7

user freq % wgt
u29 58 20 –
u35 52 18 0.2
u12 45 15 0.2
u15 42 14 0.1
u23 28 9 0.2
u16 21 7 0.1
u21 16 5 0.1
u9 13 4 0.0
u7 12 4 0.0
u20 9 3 0.0

296 0.7

user freq % wgt
u15 26 20 –
u12 18 14 0.5
u16 16 12 0.1
u35 15 11 0.0
u21 14 11 0.0
u23 12 9 0.1
u9 11 8 0.0
u29 8 6 0.0
u7 7 5 0.0
u20 5 4 0.0

132 2.0
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Table A.7: User frequencies and bias metrics for (9 of 10) stdev clusters
The bias metric is in the bottom-right cell of each cluster table. The median bias metric

for these clusters is 1.05

user freq % wgt
u20 6 16 –
u35 6 16 0.0
u9 5 13 0.2
u21 4 11 0.2
u7 4 11 0.0
u29 4 11 0.0
u12 4 11 0.0
u15 3 8 0.1
u16 1 3 0.1
u23 1 3 0.0

38 0.5

user freq % wgt
u15 150 20 –
u16 106 14 0.5
u35 87 12 0.2
u9 85 11 0.0
u12 85 11 0.0
u23 62 8 0.1
u7 54 7 0.0
u21 53 7 0.0
u20 50 7 0.0
u29 15 2 0.0

747 0.1

user freq % wgt
u35 2 40 –
u7 1 20 1.6
u29 1 20 0.0
u23 1 20 0.0
u21 0 0 1.0
u9 0 0 0.0
u20 0 0 0.0
u16 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

5 1.6

user freq % wgt
u12 143 17 –
u29 97 12 0.4
u7 96 11 0.0
u15 93 11 0.0
u35 91 11 0.0
u16 89 11 0.0
u23 76 9 0.0
u21 58 7 0.0
u20 56 7 0.0
u9 38 5 0.0

837 0.1

user freq % wgt
u35 5 25 –
u15 4 20 0.4
u21 3 15 0.4
u29 3 15 0.0
u20 1 5 0.5
u7 1 5 0.0
u16 1 5 0.0
u23 1 5 0.0
u12 1 5 0.0
u9 0 0 0.0

20 0.9

user freq % wgt
u21 1 100 –
u9 0 0 8.0
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u29 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

1 4.8

user freq % wgt
u29 1 100 –
u21 0 0 8.0
u9 0 0 0.0
u20 0 0 0.0
u35 0 0 0.0
u7 0 0 0.0
u16 0 0 0.0
u23 0 0 0.0
u12 0 0 0.0
u15 0 0 0.0

1 4.8

user freq % wgt
u12 3 33 –
u15 2 22 0.9
u21 1 11 0.8
u9 1 11 0.0
u20 1 11 0.0
u16 1 11 0.0
u35 0 0 0.3
u7 0 0 0.0
u29 0 0 0.0
u23 0 0 0.0

9 1.3

user freq % wgt
u12 4 24 –
u29 3 18 0.5
u16 3 18 0.0
u35 2 12 0.4
u7 2 12 0.0
u21 1 6 0.2
u23 1 6 0.0
u15 1 6 0.0
u9 0 0 0.1
u20 0 0 0.0

17 0.8
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