

THREE AXIS ATTITUDE CONTROL SYSTEM DESIGN AND ANALYSIS TOOL DEVELOPMENT

FOR THE CAL POLY CUBESAT LABORATORY

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Liam T. Bruno

June 2020

ii

© 2020

Liam T. Bruno

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Three Axis Attitude Control System Design and

Analysis Tool Development for

the Cal Poly CubeSat Laboratory

AUTHOR:

Liam T. Bruno

DATE SUBMITTED:

June 2020

COMMITTEE CHAIR:

Dr. Eric Mehiel, Ph.D.

Associate Dean for Diversity and Student Success

(Past – Professor of Aerospace Engineering)

COMMITTEE MEMBER: Dr. John Bellardo, Ph.D.

Professor of Computer Science, Computer

Engineering, and Aerospace Engineering; Director

of the Cal Poly CubeSat Laboratory

COMMITTEE MEMBER:

Dr. Kira Abercromby, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER:

Mr. Dan Wait, M.S.

Aerospace Engineering Lecturer

iv

ABSTRACT

Three Axis Attitude Control System Design and Analysis Tool

Development for the Cal Poly CubeSat Laboratory

Liam T. Bruno

The Cal Poly CubeSat Laboratory (CPCL) is currently facing unprecedented engineering

challenges—both technically and programmatically—due to the increasing cost and complexity of

CubeSat flight missions. In responding to recent RFPs, the CPCL has been forced to find

commercially available solutions to entire mission critical spacecraft subsystems such as

propulsion and attitude determination & control, because currently no in-house options exist for

consideration. The commercially available solutions for these subsystems are often extremely

expensive and sometimes provide excessively good performance with respect to mission

requirements. Furthermore, use of entire commercial subsystems detracts from the hands-on

learning objectives of the CPCL by removing engineering responsibility from students. Therefore,

if these particular subsystems can be designed, tested, and integrated in-house at Cal Poly, the

result would be twofold: 1) the space of missions supportable by the CPCL under tight budget

constraints will grow, and 2) students will be provided with unique, hands-on guidance, navigation,

and control learning opportunities. In this thesis, the CPCL’s attitude determination and control

system design and analysis toolkit is significantly improved to support in-house ADCS

development. The toolkit—including the improvements presented in this work—is then used to

complete the existing, partially complete CPCL ADCS design. To fill in missing gaps, particular

emphasis is placed on guidance and control algorithm design and selection of attitude actuators.

Simulation results show that the completed design is competitive for use in a large class of small

satellite missions for which pointing accuracy requirements are on the order of a few degrees.

Keywords: Cal Poly CubeSat Laboratory, ADCS, Toolkit, Guidance and Control Algorithm Design,

Software-in-the-Loop Simulation, NASA 42

v

ACKNOWLEDGMENTS

 This work would not have been possible without the lifelong support from my family.

Thank you for your wholehearted encouragement and financial support.

 I would also like to sincerely thank my loving girlfriend, Sierra, for her patience and

encouragement during the many hours I spent entrenched in this thesis.

 Obviously, a successful thesis requires a good committee. Therefore I would like to

extend my sincere thanks to each of the individuals on my thesis committee for their wisdom and

guidance throughout this process. Dr. Mehiel, I will not forget our many hours spent in your office

discussing the trajectory of this thesis and the many fascinating nooks and crannies of control

theory, both classical and modern. Thank you for your hard work this past year. Dr. Bellardo,

thank you for supporting me for the past four years in the CubeSat lab as I matured from knowing

absolutely nothing to writing this thesis. Dr. A, thank you for dealing with me in each and every

one of your orbital mechanics courses, during which I learned almost everything I know about the

subject. You truly care about your students, and it shows. For that I am extremely grateful. And

finally, Mr. Wait, your keen engineering insight and experience is inspiring to me. You have

offered some of the most actionable, perceptive advice to me regarding this work, and for that I

am extremely lucky and thankful. Thank you for being a mentor and role model this past year.

 Finally, I must give sincere recognition to the many student engineers who have come

before me and decided to bravely step up to the challenge of ADCS development for the CPCL.

This work would not have been possible without the foundation built by those students.

Specifically, I would like to extend my gratitude to Luc Bouchard, Joshua Anderson, Alex

MacLean, and Josh Grace for their software engineering expertise and development efforts in

support of my thesis. Thank you for inspiring and pushing me to be a better software engineer

and programmer. Your time dedicated to helping me out during this past year is sincerely

appreciated.

vi

TABLE OF CONTENTS

 Page
LIST OF TABLES .. vii
LIST OF FIGURES .. viii
CHAPTER
1. Literature Review and Gap Analysis .. 1
 1.1 Historical Perspective on Small Satellite ADCS Performance Requirements .. 2
 1.2 Commercial ADCS: Cost-Performance Tradeoff ... 4
 1.3 Inconsistencies between Commercial Performance and Small Satellite Mission Needs 5
 1.4 Survey of in-house, University Small Satellite ADCS Design and Test Methodologies 5
 1.5 Thesis Objective and Outline .. 8
2. Background on Cal Poly CubeSat Laboratory ADCS ... 9
 2.1 Sensors and Actuators .. 9
 2.2 Flight Software .. 10

2.3 Design Iteration Strategy for Future Missions ... 13
2.4 Software-in-the-loop GNC Simulation Framework .. 15

3. Guidance and Control Algorithm Design Procedure... 17
 3.1 Dynamic Modeling Assumptions and Linearization of the Plant Equations of Motion 17
 3.2 Discrete Time PID Controller Design .. 23
 3.3 Reference Filter and Derivative Filter Design .. 27
 3.4 Feedback Linearization .. 30
 3.5 Control System Operational Modes .. 31

 3.5.1 Inertial Pointing ... 32
 3.5.2 Nadir Pointing ... 32
 3.5.3 Ground Pointing ... 35
 3.5.4 Ephemeris Pointing .. 37
 3.5.5 Spin Pointing ... 38
 3.5.6 Desaturate .. 41

4. CPCL ADCS Toolkit Enhancements ... 43
 4.1 Preliminary Design: Single Axis Simulink Tool .. 43
 4.2 Preliminary Design: Three Axis Simulink Tool ... 47

4.3 Critical Design: NASA 42 Software-in-the-Loop Environment... 54
 4.3.1 Digital Rate Gyro Sensor Model ... 55
 4.3.2 Sun Sensor Model ... 56
 4.3.3 Magnetometer Model .. 58
 4.3.4 Actuator Models ... 58
 4.3.5 Inertia Matrix Uncertainty ... 61
 4.3.6 Alignment Errors ... 61
 4.3.7 Custom Yaml Input File Design .. 62

5. Validation of Toolkit Utility and Design Approach .. 65
 5.1 MATLAB/Simulink: Single Axis Design and Analysis ... 65
 5.2 MATLAB/Simulink: Three Axis Design and Analysis ... 71
 5.3 Software-in-the-Loop Simulation Framework: Design and Analysis .. 83
6. Conclusions and Future Work ... 95
 6.1 Future Work ... 96

 6.1.1 Alternatives to Integrated Hardware-in-the-Loop Testing.. 96
 6.1.2 Monte Carlo Analysis ... 98

6.1.3 Geodetic Pointing ... 99
6.1.4 Three-Axis Deadband Logic ... 100
6.1.5 Estimation Algorithm Improvements .. 100

REFERENCES .. 104
APPENDICES

A. Example Yaml File Snippets ... 106
B. Example Python Control Algorithm Implementation .. 107

vii

LIST OF TABLES

Table Page

1. Summary of Small Satellite ADC System Level Design and Test…6

2. Controller Specifications in Single Axis Simulation ... 66

3. Actuator Parameters in Single Axis Simulation ... 66

4. Sensor and Actuator Characteristics and Performance .. 84

5. Simulation Specific Parameters .. 85

6. Steady State Inertial Pointing Performance in SITL Simulation .. 86

7. Steady State Nadir Pointing Performance in SITL Simulation .. 88

8. Steady State Ground Pointing Performance in SITL Simulation .. 90

9. Steady State Spin Pointing Performance in SITL Simulation ... 93

viii

LIST OF FIGURES

Figure Page

1. Small Satellite Pointing Performance History .. 3

2. Commercial ADCS Cost vs. Performance ... 4

3. High Level CPCL ADCS Framework ... 9

4. CPCL ADCS Flight Software Architecture ... 12

5. Proposed CPCL ADCS Design Iteration Strategy ... 14

6. CPCL Software-in-the-loop GNC Simulation Framework .. 16

7. Closed Loop Model for Control Algorithm Design ... 23

8. Single Axis Closed-Loop Attitude Control System Architecture .. 29

9. Rotation Angle Geometry for Inertially Fixed Pointing Vector ... 40

10. Single Axis Simulink Model .. 44

11. Reaction Wheel Model Block Contents ... 46

12. Custom Digital PID Block Contents ... 46

13. Three Axis Nonlinear Simulink Model .. 47

14. Error Signal Processing Block Contents .. 49

15. Control Algorithms Block Contents .. 50

16. Actuator Dynamics Block Contents ... 51

17. Magnetorquer Block Contents ... 52

18. Wheel Dynamics Block Contents ... 52

19. Spacecraft Dynamics Block Contents.. 53

20. NASA 42 Sun Sensor FOV Geometry ... 57

21. Single Axis Model Closed Loop Attitude Step Response .. 67

22. Single Axis Model Closed Loop Rate Response ... 67

23. Single Axis Closed Loop Frequency Response .. 68

24. Single Axis Open Loop Frequency Response ... 68

25. Single-Axis Closed Loop Wheel Momentum Response .. 69

ix

26. Single Axis Closed-Loop Controller Response to Reference Step 69

27. Steady State Wheel Momentum Limit Cycle Suppression .. 70

28. Three Axis Nonlinear Rest-to-Rest Attitude Response ... 71

29. Three Axis Nonlinear Rest-to-Rest Body Rate Response ... 72

30. Three Axis Nonlinear Rest-to-Rest Attitude Error Response .. 72

31. Three Axis Nonlinear Nadir Pointing Attitude Response ... 73

32. Three Axis Nonlinear Nadir Pointing Attitude Error Response .. 74

33. Three Axis Nonlinear Nadir Pointing Body Rate Response .. 74

34. Three Axis Nonlinear Ground Pointing Attitude Error Response .. 75

35. Three Axis Nonlinear Ground Pointing Body Rate Response ... 76

36. Three Axis Nonlinear Ground Pointing Attitude Response ... 76

37. Brief Attitude Error Transient During Ground Pointing .. 77

38. Three Axis Nonlinear Spin Pointing Body Rate Response .. 78

39. Three Axis Nonlinear Spin Pointing Attitude Error Response ... 78

40. Three Axis Nonlinear Spin Pointing Attitude Response .. 79

41. Desaturation Wheel Momentum Profile ... 81

42. Desaturation Dipole Commands .. 81

43. Desaturation Attitude Error Response ... 82

44. Vehicle ADCS Configuration in Software-in-the-loop Simulation .. 83

45. Software-in-the-loop Rest to Rest Attitude Response ... 86

46. Software-in-the-loop Rest to Rest Body Rate Response .. 87

47. Software-in-the-loop Nadir Pointing Attitude Response .. 88

48. Software-in-the-loop Nadir Pointing Body Rate Response ... 89

49. Software-in-the-loop Ground Pointing Attitude Response ... 91

50. Software-in-the-loop Ground Pointing Body Rate Response .. 92

51. Software-in-the-loop Spin Pointing Rate Response .. 93

52. Software-in-the-loop Spin Pointing Attitude Response.. 94

1

Chapter 1

LITERATURE REVIEW AND GAP ANALYSIS

This thesis will provide enhancements to the CPCL ADCS design and analysis toolkit so

that it can be readily employed by members of the CPCL during custom ADCS development. The

overall utility of the toolkit will be validated by using it to complete the existing incomplete CPCL

ADCS design. This enhanced toolkit is also intended to be applicable in the development of new

ADCS designs that must meet specific, currently unknown mission requirements. With access to

the enhanced toolkit, members of the CPCL will have the opportunity to design, analyze, and

validate their own ADCS.

Overall, the engineering problem of miniaturizing spacecraft attitude determination and

control systems has been achieved in the small satellite industry. Most of the necessary hardware

and software constituents of a small satellite ADCS can be bought commercially, allowing

engineers to simply select from a set of available components in their design process.

Furthermore, small satellite attitude control systems are commercially available in modules such

as the Blue Canyon XACT or the Maryland Aerospace MAI-400, providing an even more

integrated option with relatively little design work necessary. Practically all of this off-the-shelf

hardware has achieved TRL 9 [1]. In this first chapter, a historical trend of high level ADCS

pointing performance requirements for small satellites is presented, and compared with the

corresponding pointing performance offered by commercially available modules. It will be shown

that for a large class of small satellite missions, commercially available ADCS modules are a sub-

optimal design choice in the sense that they provide overkill performance with respect to typical

CubeSat mission requirements. In these cases, their cost also tends to occupy an unreasonably

large proportion of mission budgets. Finally, the engineering methodologies associated with the

design, analysis, and test of university small satellite attitude control systems are compared and

contrasted, highlighting the novelties of the corresponding methodologies that will be proposed in

this thesis.

2

1.1 Historical Perspective on Small Satellite ADCS Performance Requirements

 Small satellite missions for which the primary engineering team is comprised of

undergraduate students tend to serve as a good model for space missions undertaken by the

CPCL in terms of objectives, scope, and budget. Therefore, in this work special attention is given

to typical functional and performance requirements driving small satellite ADCS design in

university settings. However, before reviewing these requirements, it is important to highlight the

distinction between functional and performance requirements as defined in this work. Functional

requirements are related to the desired overall behavior of a system, which includes how the

system can be commanded and operated, and how it interfaces with other systems. Functional

requirements are stated qualitatively. Performance requirements, on the other hand, relate to how

well a system does its job, and are usually quantitative. In this section, particular attention is given

to ADCS pointing accuracy performance, since those requirements are generally the most

influential in terms of the cost and design complexity of the system. ADCS pointing accuracy

performance requirements are usually derived from one or more of the following elements of a

space mission:

• Payload pointing—primarily imaging, radar, and communications

• High bandwidth communication systems

• Operation of propulsion systems

• Orbit maintenance, rendezvous operations, and formation flight

• Thermally radiating vehicle surfaces

Until recently, most of the above elements were extremely rare in small satellite missions.

However, an increasing number of small satellite missions are flying imaging payloads,

propulsion systems, and higher bandwidth communication systems. As a result, there is an

increasing demand for higher performance and more versatility in an ADCS for small satellites.

To illustrate this increasing demand, figure 1 shows a variety of missions along with their year of

launch and 3𝜎 pointing accuracy requirement (this information was primarily drawn from the

eoPortal Directory of Satellite Missions, as well as [3, 4, 5, 6, and 18]). Since pointing accuracy

requirements are formally stated differently dependent on the context and thus should be treated

as different types of requirements, what they are ultimately trying to establish—an overall system

performance requirement—is context independent. So there will be inevitable information loss

3

when aggregating pointing requirements from a variety of sources in the literature, but the result

will still provide an approximate baseline that can be treated as a good starting goal for an in-

house ADCS. One subtle feature of an ADCS system performance requirement is whether it

imposes a half-cone pointing accuracy or per-axis pointing accuracies. Although not equivalent,

the translation between these requirement definitions does not have a large effect on the

numerical values of the requirements. Therefore, these differences will become irrelevant if

sufficiently many missions are considered.

Figure 1 shows a variety of small satellite mission pointing accuracy requirements along

with their approximate year of launch. The red dotted line is a linear fit of the data. Although not

statistically meaningful, the best fit line provides a notional extrapolation of where modern

pointing requirements for small satellites are headed. Figure 1 indicates that a good estimate for

modern small satellite 3𝜎 pointing accuracy requirements is around 2˚. Note that most of the

missions whose 3𝜎 pointing requirements are less than 1˚ are extremely high budget missions

which are out of family with university budgets. Such missions are also not primarily designed and

operated by universities (e.g. AeroCube7 and ASTERIA). Although this thesis is focused on

ASTERIA

AAUSAT-3

ExoCube

CANX-4/5

CINEMA

ROCSAT-3
ZDPS-1A

CADRE

MinXSS

PSSCT-2

Aenas

AntelSat

AeroCube7

SOMP
BEVO-2

BISONSAT

QBX-1

0

2

4

6

8

10

12

14

16

18

2002 2004 2006 2008 2010 2012 2014 2016 2018

3
𝜎

P
o
in

ti
n
g
 R

e
q
u
ir
e
m

e
n
t

[d
e
g
]

Approximate Launch Year

Small Satellite ADCS Pointing Performance History

Figure 1: Small Satellite Pointing Performance History

4

university small satellite missions, AeroCube7 and ASTERIA are nevertheless included so as to

provide a more holistic picture of the overall trend. Furthermore, including these missions in the

data set means that the trend line is more likely to predict an upper bound on modern

performance requirements in university settings, which is desirable. In summary, based on an

analysis of 17 missions from 2004 to 2017, the most stringent 3𝜎 pointing performance

requirements for modern and near future small satellite missions are likely to be around a few

degrees, and only in high budget cases with relatively advanced payloads can sub-degree

pointing accuracy requirements be expected.

1.2 Commercial ADCS: Cost-Performance Tradeoff

The tradeoff between cost and performance in commercial small satellite attitude control

solutions is important to investigate in this context, because if it is not aligned with typical small

satellite mission needs as determined in the previous subsection, then there exists a gap in cost-

performance space within which new technology may be of significant utility. Figure 2 below

provides the approximate unit cost required to achieve the listed pointing accuracy for five attitude

determination and control systems that can be purchased commercially. This information was

acquired through publicly available information on company websites.

CubeSpace

Maryland Aerospace

NewSpace Systems

KU Leuven

Blue Canyon

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50,000 100,000 150,000 200,000 250,000

3
-S

ig
m

a
 P

o
in

ti
n
g
 A

c
c
u
ra

c
y

Unit Cost (USD)

Commercial ADCS Cost-Performance Tradeoff

Figure 2: Commercial ADCS Cost vs. Performance

5

According to figure 2, most of the well-known commercially available ADC solutions for

small satellites offer sub-degree 3𝜎 pointing accuracy. From the previous subsection, it was

determined that the most stringent modern pointing requirement for small satellite missions is

around 2˚. In that case, the system designers are forced to allocate at least ~$80k of the mission

budget to the ADCS alone should they select NewSpace Systems ADCS, assuming one test unit

and one flight unit. $80k is excessively costly relative to university CubeSat mission budgets. The

alternative, higher performance options are all more expensive.

1.3 Inconsistencies between Commercial Performance and Small Satellite Mission Needs

In the previous two subsections, the tradeoff between cost and performance in

commercially available attitude control solutions for small satellites was shown to be somewhat

inconsistent with the trend in the pointing performance requirements for modern small satellite

missions. Such an inconsistency begs the following question: in the case that a university small

satellite mission requires ~2˚ 3𝜎 pointing accuracy, is a commercially available solution worth its

cost? Obviously, any commercially available solution in figure 2 will satisfy a 3𝜎 pointing

requirement of 2˚. However, in university settings, the mission budget is relatively small, and

allocating a large percentage of it to the ADCS alone significantly increases the difficulty to close

the overall spacecraft design. To avoid spending so much money on one subsystem and

constraining the rest of the spacecraft design significantly, many universities—including Cal

Poly—have attempted to develop their own ADCS on a per mission basis as an alternative

solution. However, such an undertaking is extremely demanding on student engineers who do not

have the same level of experience as professional GNC engineers who are designing the

commercially available solutions. This thesis aims to drastically alleviate the engineering difficulty

associated with designing an in-house ADCS by significantly enhancing the CPCL ADCS design

and analysis toolkit.

1.4 Survey of in-house, University Small Satellite ADCS Design and Test Methodologies

 In this subsection, a variety of design and test methodologies for university in-house

ADCS solutions will be critically analyzed with respect to hardware selection, algorithm design,

6

and testing framework. It turns out that, among universities, there are a variety of similarities

among these criteria when it comes to small satellite ADCS. Table 1 provides a summary of the

hardware suite, algorithm selection, and testing framework for various ADCS solutions in a variety

of university small satellite missions. This table obviously does not provide an exhaustive analysis

of university CubeSat attitude control systems, but it does capture most classes of university

CubeSat missions and reflects very common trends.

Table 1: Summary of Small satellite ADC System Level Design and Test

Mission Sensors* Actuators* Algorithms Testing Framework

MOVE-II [2] MM, SS, G MT
Extended Kalman filter,

optimal control

Hardware-in-the-loop with in-house

MATLAB simulation

CINEMA [3] MM, SS MT Spin stabilized, TRIAD
Standalone in-house MATLAB

simulation, autocode

AAUSAT [4] MM, SS, G MT
Unscented Kalman filter,

model-predictive control

Standalone in-house MATLAB

simulation, autocode

FIONA – CANX

4/5 [5]
MM, SS, G RW, MT

No navigation mentioned,

state feedback with integral

Software-in-the-loop with in-house

MATLAB simulation

ZDPS-1A [6] MM, SS, G RW, MBW
Extended Kalman filter,

TRIAD, Bdot, state feedback

Standalone simulation, on-orbit

demonstration of ADCS

Mission-Agnostic

[7]
MM, SS, G RW, MT

No navigation mentioned,

adaptive nonlinear controller

Hardware-in-the-loop and software-

in-the-loop

CPCL ADCS

Design
MM, SS, G RW, MT

Extended Kalman filter, state

feedback, PID (developed in

this thesis)

Software-in-the-loop with NASA 42,

component level testing of sensors

and actuators to validate models

*MM = magnetometer, SS = sun sensor, G = rate gyroscope, MT = magnetorquer, RW = reaction wheel,

MBW = momentum bias wheel

 Table 1 shows that sensor fusion of magnetometers, sun sensors and rate gyros is a

common choice for small satellite state estimation hardware. Furthermore, magnetorquers and

reaction wheels encompass essentially all choices for attitude actuation hardware. In terms of

navigation algorithms, some variant of the Kalman filter is typical. Control algorithms, on the other

hand, are more diverse, but they are united by the fact that they all take a modern control theory

approach. None of the control algorithms in these five missions can be designed using the

7

methods and tools of classical control theory, and thus it is much harder to achieve robustness to

uncertainty in the plant dynamics. Finally, the strategies used to test the full attitude determination

and control system tend to involve the use of MATLAB and/or Simulink to model the environment

and algorithm implementation, with the eventual goal of utilizing Simulink’s autocode to C feature

to generate software which can be compiled into machine code and executed in real time on a

flight computer. Although this is a sensible approach, it suffers from the risk that the modeling

fidelity may be too low to verify requirements with sufficient confidence. In the CPCL, an open

source, high fidelity spacecraft dynamics model is employed to avoid such a risk. Moreover, the

Simulink autocode to C feature is not utilized in the CPCL as it would not be possible within the

existing flight software architecture.

 Overall, the selection of hardware in these missions is sensible for CubeSats as most of it

can be purchased commercially, and has a sufficiently small form factor. One issue arising from

the choice of magnetorquers as the only actuator—which is not uncommon for university

CubeSat missions—is underactuation. Magnetorquers can only impart a torque vector in a plane

perpendicular to the instantaneous geomagnetic field vector. While there has been significant

research dedicated to dealing with magnetorquer underactuation from a control algorithm

perspective, few universities clearly address how they will deal with it. Furthermore, the most

prominent issue with these ADCS design and test approaches is the testing framework and, in

some cases, the control algorithm design approach. Universities are either deciding to reach

extremely high confidence validation with integrated hardware-in-the loop tests, or they are not

testing sufficiently. For example, simulations that do not involve flight software-in-the-loop are

generally a poor way to verify requirements with high confidence, because they do not invoke the

same algorithms that will be executing in real time during flight and thus may behave differently in

unexpected ways. On the other hand, since most universities are employing a modern control

theory approach to design their control laws, more rigorous simulation and higher modeling

fidelity is required to ensure closed loop stability and performance. This is especially problematic

when low fidelity models that ignore important dynamics are employed to validate performance.

8

1.5 Thesis Objective and Outline

 Overall, the objective of this thesis is to enhance the CPCL ADCS design and analysis

toolkit so that it can be readily employed by members of the CPCL during custom ADCS

development. The enhanced toolkit will be validated by using it to create a notional ADCS design

from an existing, incomplete ADCS design, and show that the pointing performance of the full

notional design is on-par with modern small satellite pointing performance requirements as

derived in this chapter. The outline of the rest of this thesis is as follows: first, the current

development state of the CPCL ADCS will be outlined in Chapter 2, highlighting some of the

elements that require more attention and effort. Then, chapter 3 will provide the formulation of a

guidance and control architecture to be applied in the CPCL ADCS toolkit. Chapter 4 will explicitly

present the additions to the toolkit as developed in this work, motivated by an overall design

iteration strategy presented in chapter 2 and the guidance and control architecture developed in

chapter 3. Finally, chapter 5 will show the enhanced CPCL ADCS design and analysis toolkit in

action as it is used to create a notional ADCS design and analyze its performance. Chapter 6 will

provide concluding remarks and elaborate on future work opportunities.

9

Figure 3: High Level CPCL ADCS Framework

Chapter 2

BACKGROUND ON CAL POLY CUBESAT LABORATORY ADCS

 This section will provide a concise overview of the CPCL ADCS heritage that existed at

the beginning of this thesis from a high level perspective. The intent of this chapter is to illustrate

what existed before this work in order to clarify why particular attention and effort is dedicated to

only certain elements of the overall ADCS design problem in this thesis. Figure 3 below provides

a very high-level schematic of the CPCL ADCS. Orange blocks correspond to elements which

require significant attention and are currently under development, while green blocks correspond

to elements that have either been flown or tested extensively on the ground.

2.1 Sensors and Actuators

In terms of sensors, the CPCL has flight experience with commercial Honeywell

magnetometers and will soon be flying in-house designed sun sensors that can be used to

measure the sun vector in the spacecraft body frame. Moreover, the CPCL is currently

investigating the use of flight software to operate a low-cost camera as a star tracker. Finally, the

CPCL in-house main avionics board housing the flight computer also contains a low performance,

surface mounted MEMS rate gyroscope. Therefore, from a sensor perspective, the CPCL is

10

similar to many other universities in its use of magnetometers, sun sensors, and rate gyros, but is

beginning to distinguish itself with the use of a low-cost star tracker.

In terms of actuators, the CPCL has flight experience with both in-house magnetorquers

and commercial reaction wheels. At the time this thesis is being written, Nick Bonafede (graduate

student, mechanical engineering) is developing an in-house reaction wheel for use in the CPCL

spacecraft bus. Furthermore, all magnetorquers flown in CPCL missions have been designed,

tested, and assembled in-house. From an actuator perspective, the CPCL approach is aligned

with the norm in the small satellite community, with the only exception being that most of the

hardware is intended to be manufactured and tested in-house instead of purchased commercially.

2.2 Flight Software

In terms of flight algorithms used to generate attitude estimates from sensor

measurements, the CPCL has implemented and tested an extended Kalman filter designed to

estimate the spacecraft’s inertial to body attitude quaternion and total body rates. However,

closing the loop on this state estimate has never been done in a rigorous simulation framework,

and therefore this thesis will place particular emphasis on guidance and control algorithm design.

On the control side, a B-dot detumble control law implementation using the aforementioned

magnetometers and magnetorquers has achieved flight heritage. In summary, estimation

algorithms at the CPCL are similar to those implemented at other universities, but control

algorithms are still in a very early stage and require significant development.

From figure 3 it is apparent that, from an algorithms perspective, more attention has been

given to attitude determination than to attitude control. Thanks to the work of multiple insightful

master’s theses from Sellers [9], Mehrparvar [10], and Bowen [11], as well as a remarkably

productive senior project by Bouchard [8], the CPCL has a flight software implementation of a

state estimation algorithm as well as the entire software architecture to implement real time GNC

algorithms for most conceivable CubeSats missions. Figure 4 below depicts an “object” model of

the ADCS flight software architecture as designed and implemented primarily in [8]. Here, “object”

is surrounded by quotations because the flight-software is implemented in C, which is not an

objected-oriented programming language. However, type abstraction in C is still possible by

11

appropriately utilizing structs, function pointers, and type casting. Each block in the diagram of

figure 4 represents an interface, enforcing consistency across different algorithm

implementations, while the arrows represent dependencies. The highest level element in this

software architecture is the ADCS State, which contains mission specific implementations of

Mission Controller and Mission Determination types. Starting on the control side, the Mission

Controller is the piece of software responsible for making real time decisions about which

Controller implementation is to be called each time the ADCS State is invoked by the operating

system. This enables the spacecraft to switch between control modes in such a way that is

consistent with its concept of operations. The Controllers contain the flight-software

implementations of control algorithms, which calculate a control input and command the

spacecraft’s actuators to provide that input. The actuator commands as output from Controller

implementations take place in software as function calls to device drivers implemented in

Actuator types, which abstractly represent physical hardware. On the determination side, the

Mission Determination object plays a role analogous to that of the Mission Controller: it is

responsible for making real time decisions about which Filters to invoke. Filters are state

estimation algorithms like an extended Kalman filter, the implementations of which sometimes

require vector references from other sources such an Earth magnetic field model or a sun vector

from a sun ephemeris model. Such references are implemented as Magnetic Model or Sun Model

types. Finally, the yellow arrows at the bottom of the diagram represent the flow of data between

each branch of the ADCS flight software. Control laws require attitude estimates from the

determination algorithm to compute the error signal, but conversely the determination algorithm

receives a feedforward signal from the controller (i.e. the torque command) to be used in

anticipation of how the state will change as a consequence of the control action. For a more

precise and detailed explanation of the flight software architecture, see [8].

12

At this point, it is assumed that the reader is familiar with the heritage elements—both software

and hardware—of the CPCL ADCS. Based on the software infrastructure that currently exists, as

well as the sensors and actuators both in development and with heritage, it is clear that as a

whole the CPCL is on its way to having a fully functional three axis attitude control system made

up of mostly in-house components. However, there is still quite a bit missing. First of all, in terms

of flight algorithms, very little thought has been put into the design and testing of attitude control

laws and the guidance logic required to compute reference signals. Moreover, at a systems

engineering level, there is not a complete set of design and analysis tools that can be readily

used by student engineers in the design, test, and integration of an ADCS for any CPCL mission.

For example, if different sensors and actuators than those that exist in the aforementioned

heritage design are not a good choice, there needs to be a methodology—which includes the

appropriate analysis tools—by which new sensors and actuators can be selected and simulated.

In the next subsection, a design iteration strategy tailored for use in the CPCL is proposed, with

particular emphasis on control law design in the early phases of mission development, and well-

informed selection and sizing of sensors and actuators as the design matures. Such a design

Figure 4: CPCL ADCS Flight Software
Architecture

13

iteration strategy will provide engineers with the capacity to make reasonable decisions about

sensor and actuator selection as well as algorithm design—perhaps different decisions than

those which have been made so far—in the context of the CPCL. Moreover, the overall structure

of the CPCL ADCS design and analysis toolkit is motivated by this design iteration strategy.

2.3 Design Iteration Strategy for Future Missions

 Figure 5 is a flowchart showing the proposed strategy for iterating on the design of an

ADCS for a CPCL space mission, from early concept development to system level validation.

Starting in the upper left hand corner with a “conceptual” phase, this is where mission concept of

operations development and proposal writing takes place. In this stage, it should be established

whether or not the spacecraft even needs an attitude control system, and if so, whether it should

be passive, active, or some combination of the two. The mission’s concept of operations will

naturally lead to a set of pointing modes that the ADCS shall facilitate. Once the conceptual

design is established, more detailed ADCS work can begin in the preliminary design phase. In

this phase of mission development, MATLAB/Simulink tools—to be presented and explained

thoroughly in this work—can be employed to coarsely size attitude actuators and specify control

law behavior in the context of the required pointing modes. In general, these MATLAB/Simulink

tools are intended to iteratively bring the design maturity to approximately a PDR level. Once the

ADCS satisfies PDR exit criteria, the design and analysis should move into a flight software-in-

the-loop environment. It is at this stage in the design process that sensor selection, navigation

algorithm design, as well as layout and configuration of sensors and actuators within the

spacecraft should be established with more confidence and thoroughly analyzed. Detailed and

thorough testing of the sensor and actuator performance should be conducted in order to validate

and update models used in the simulation. At the end of this stage, the ADCS sensors and

actuators should be well understood in terms of both individual performance and functionality as

well as how they interface with the rest of the spacecraft from an electrical, mechanical, and

software perspective. Furthermore, flight software implementations of all GNC algorithms should

be tested during this phase. The software-in-the-loop simulation environment is intended to

iteratively bring the design maturity to approximately a CDR level. Finally, once the ADCS design

14

has been vetted during CDR and deemed acceptable, Monte Carlo analysis may be required to

provide final system level validation. Once the pointing performance of the resulting ADCS design

meets is requirement according to Monte Carlo analysis, the design will be mature enough for

integration and flight.

As a whole, it should be noted that hesitation to take backward steps in the design process is

undesirable. Sometimes it is worthwhile to progress backward in the design in order to correct for

poor decisions made earlier in the overall process, or to remove unnecessary elements in the

design that add worthless complexity. Such a mentality is sometimes hard to maintain, but in

general, it will lead to a more efficient and cheaper system. The author of this thesis strongly

recommends that students who design attitude control systems in the CPCL accept this

engineering philosophy.

Figure 5: Proposed CPCL ADCS Design Iteration Strategy

15

2.4 Software-in-the-loop GNC Simulation Framework

 As mentioned in the previous subsection, a software-in-the-loop simulation should be

employed during the critical design phase for sensor and actuator selection and layout, as well as

eventual verification of flight software functionality and system pointing performance. Fortunately,

significant time and effort has been dedicated to developing such a framework for use in the

CPCL by past student engineers. Figure 6 provides a block diagram representation of this

simulation framework as developed in [8].

 A key element in any software-in-the-loop simulation is the truth model. In this case, the

CPCL has chosen to take advantage of an open source, high fidelity 6 DOF spacecraft orbit and

attitude dynamics simulation called NASA 42, developed by Dr. Eric Stoneking of NASA

Goddard. NASA 42 is written in C for speed and portability according to Dr. Stoneking, and can

model most conceivable mission scenarios and spacecraft configurations and mass properties,

especially for university CubeSat missions. More detail on the simulation’s modeling capability

and configuration options is provided in chapter 4 of this thesis. The simulation has been

intentionally integrated with the flight software so that it interfaces with physical hardware in the

same way that it interfaces with simulated hardware in NASA 42. Referring to figure 6, the high

level flow of the software-in-the-loop simulation is as follows:

1. Initialize NASA 42 and read all input configuration files

2. Initialize the flight software (all blue boxes)

3. Propagate the state of NASA 42 to a future time and pause the simulation

4. Calculate simulated sensor readings according to sensor models in NASA 42, pass the

simulated sensor readings to the PolySat device driver library

5. Execute navigation algorithm with simulated sensor readings as input, pass the resulting

state estimate to the control algorithm

6. Execute control algorithm with the state estimate as input and pass the resulting actuator

commands to 1) the PolySat device driver library and 2) the navigation algorithm

7. Send actuator commands to NASA 42, go back to step (3)

16

As seen in figure 6, it is also possible to configure the simulation with physical hardware and

execute a hardware-in-the-loop test. However, such an activity is beyond the scope of this thesis

and will be elaborated upon in the future work section.

 An extremely important, high utility feature of this simulation framework is that both

navigation and control algorithms can be implemented in python. A binding with python using a C

API was established by [8], enabling the algorithms whose fundamental designs are more driven

by relatively sophisticated mathematics (e.g. navigation and control) to be implemented in a

higher level, more forgiving programming language. If the simulation is built to run with python,

then the ADCS flight software makes function calls to python code when it reaches the navigation

and/or control steps by utilizing C’s python API, and the rest of the process resumes as it would

have in C. In this thesis, example python control algorithm implementations for a variety of control

modes are successfully implemented in this simulation framework.

 In conclusion, it is clear from this chapter that little effort has been given to the

formulation of a design methodology for guidance and control algorithms in the CPCL. Instead,

much more attention has been given to estimation algorithms, sensor selection, and software-in-

the-loop testing. The next chapter will provide formulation of a control algorithm design

methodology that will be implemented and utilized in the CPCL ADCS design and analysis toolkit.

Figure 6: CPCL Software-in-the-loop GNC Simulation Framework

17

Chapter 3

GUIDANCE AND CONTROL ALGORITHM DESIGN PROCEDURE

 In this chapter, both guidance and control are addressed within the context of the design

and analysis of an ADCS. On the control side, the development of a mathematical procedure to

map a set of controller specifications (i.e. design knobs) onto a set of parameters that are

necessary in the resulting real-time control algorithm implementations is presented. In terms of

guidance, a strategy for computation of the reference quaternion (i.e. the desired attitude) in

various control system pointing modes is formulated. In the following chapter, the details of how

these guidance and control strategies are embedded into the CPCL ADCS toolkit are provided,

and thus the design and implementation of both the single and three axis MATLAB/Simulink tools

presented in this work rely heavily on the mathematics to follow. Content in this chapter draws

from techniques in [12] and [13] based on classical control theory as applied to the spacecraft

attitude control problem. Mathematical reasoning—starting with the nonlinear spacecraft

dynamics in three dimensions—followed by linearization and transformation into the frequency

domain, will be performed.

3.1 Dynamic Modeling Assumptions and Linearization of the Plant Equations of Motion

 In this work, the plant to be controlled is assumed to be an unconstrained rigid body in

three dimensions. Although this is not always a good assumption, most CubeSats do not contain

deployable features whose flexible dynamics are of importance in the design of the control

system. Moreover, if non-negligible flexible modes do exist in a particular spacecraft

configuration, they can be readily dealt with in terms of meeting stability margin and pointing

performance requirements by appropriate filter design and digital signal processing, which fits

very well within the classical control paradigm. Since this work assumes rigid body dynamics in

the design of the control laws, care must be taken if the resulting control laws fly on a CubeSat

whose structure gives rise to noticeable flexible modes. If that is the case, the designer must

consider the following:

• Will flexible modes show up in sensor output or experience excitation by actuator input?

18

• Given a controller designed with rigid body assumptions, do any flexible modes couple
into the open loop frequency response so as to compromise stability margins?

 If the answer to either of the above two questions is yes, then it is likely that a digital

notch filter will be a necessary addition to the control system. Where this notch filter is placed in

the overall architecture of the control system depends on where in the system the flexible modes

are more pronounced. For example, if a magnetometer is placed on the edge of a long, flexible

solar array, then it is possible that flexible modes of that solar array will be excited by control

torques and subsequently show up in the magnetometer output signal. Since the magnetometer

readings are used as feedback to the estimation algorithm, these flexible modes may still make it

back into the error signal if not removed by the estimator, which is problematic if the controller is

not designed to handle them. A flexible body dynamic model, as obtained through appropriate

finite element analysis, should inform the designer how changes in control inputs result in

changes in mass element deflections at each point on the solar array. With this model, the flexible

modes of the solar array at the location of the magnetometer can be recovered, and then

removed from the output signal of the magnetometer with an appropriately designed notch filter.

Overall, these types of considerations must be made on a per-mission basis, based on seemingly

extraneous features of the spacecraft design.

 The dynamics of a rigid body are governed by Euler’s equations, which describe how

torques influence the attitude motion of the rigid body in three dimensions. Euler’s equations can

be written in vector form as

𝑻 = 𝒉̇ + 𝝎 𝒙 𝒉

Where 𝒉 is the total angular momentum vector of the rigid body with respect to inertial space

expressed in body coordinates, 𝝎 is the total angular velocity vector of the rigid body with respect

to inertial space (also expressed in body coordinates), and 𝑻 is the net torque vector acting on

the rigid body expressed in body coordinates. Several mathematical parameterizations of the

attitude exist, but in this work the quaternion is chosen as it provides several advantages—most

notably algebraic, nonsingular kinematics—over other parameterizations. The quaternion is a four

dimensional quantity that is directly related to the axis around which and the angle through which

19

one reference frame must be rotated so that it coincides with another reference frame. Therefore

it describes the three dimensional orientation of one reference frame with respect to another

reference frame. The attitude of a rigid body with respect to the inertial reference frame can be

parameterized in terms of a quaternion 𝒒 as

𝒒 = 𝜂 + 𝝐

Where 𝝐 is related to the eigenaxis and angle of the frame transformation from the inertial

reference frame to a body fixed reference frame by

𝝐 = sin (
𝜙

2
)𝒂

Where 𝒂 is the three dimensional unit vector that represents the eigenaxis of the transformation

encoded by the quaternion, and ϕ is the angle through which the transformation rotates the

inertial frame around 𝒂. In this work, quaternions are interpreted as frame rotations, which means

they do not rotate physical vectors with respect to inertial space when transforming them. The

scalar part 𝜂 of the quaternion is given by

𝜂 = cos (
𝜙

2
)

It is important to note that a quaternion must have unity magnitude in the Euclidean norm sense,

otherwise it does not represent a pure rotation. Under the definition described above, the

quaternion is guaranteed to have a Euclidean norm of one.

 The attitude kinematics associated with the quaternion parameterization are given by

𝝐̇ =
1

2
(𝜂𝑰 + 𝝐𝑥)𝝎

𝜂̇ = −
1

2
𝝐𝑇𝝎

Where the superscript 𝑥 over any vector quantity represents the cross-product matrix built from

that vector, the 𝑇 superscript represents the transpose of the vector, and 𝑰 is the 3 by 3 identity

matrix.

 Since reaction wheels are likely to be the primary choice of attitude actuator in almost all

CubeSat missions that require three axis pointing, it is important to understand how they play into

20

the rigid body dynamics as described by Euler’s equations. In order to fully capture the dynamics

of a rigid body under the influence of reaction wheels, the instantaneous momentum vector of the

reaction wheel system must be included in the net momentum vector of the wheel plus spacecraft

system before applying Euler’s equations. For a rigid body containing N reaction wheels mounted

in arbitrary orientations with respect to the body frame, the total angular momentum vector of the

wheel plus spacecraft system is

𝒉total = 𝐽𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴

Where 𝐽 is the inertia matrix of the rigid body expressed in a body fixed frame including the

reaction wheel mass, 𝐼𝑤𝑠 is the scalar moment of inertia around the spin axis of each wheel

(assuming all wheels are identical), 𝑨𝑠 is 3 by N matrix that transforms wheel space angular

momentum vectors into body space angular momentum vectors, and 𝜴 is an N by 1 vector of the

angular rates of each wheel. Substituting this expression for the total angular momentum of the

rigid body and reaction wheel system into Euler’s equations yields

𝑻 = 𝐽𝝎̇ + 𝐼𝑤𝑠𝑨𝑠𝜴̇ + 𝝎 𝑥 (𝐽𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴)

A control law that commands reaction wheels seeks to compute a moment which enters into the

rigid body dynamics according to the 𝐼𝑤𝑠𝑨𝑠𝜴̇ term in the above nonlinear vector differential

equation. An appropriate angular acceleration 𝜴̇ is then calculated such that the actual

momentum exchange applied to the rigid body is as close as possible to the commanded control

moment. In most reaction wheel designs, the motor driver attached to the flywheel is configured

to control the angular speed of the wheel, not the angular acceleration. Therefore, each time a

new torque command is requested from the attitude controller, multiple speed set points must be

obtained by discrete-time integration of the torque command divided by the wheel’s moment of

inertia around its spin axis. The speed set points are then sent to the internal wheel control

electronics. Fortunately, this is not difficult to implement in software, and its effects can be

captured in simulation by modeling the reaction wheel dynamics from speed commands to true

speed using a first order transfer function with time constant 𝜏. The transfer function from wheel

21

speed command (e.g. the integral of the torque requested by the attitude controller divided by the

wheel inertia) to actual wheel speed has a unity DC gain and a single pole at 𝑠 = −
1

𝜏
:

𝐺(𝑠) =
1

𝜏𝑠 + 1

Where 𝜏 is the time required for the true wheel speed to converge to within ~63% of its

commanded value.

 It is clear that both the rigid body dynamics and the quaternion kinematics are nonlinear.

In order to apply classical control theory, the dynamics of the plant to be controlled must be linear

and time invariant. Therefore, to obtain a linear time invariant dynamics model, a linearization of

the nonlinear dynamics and kinematics about an equilibrium state of particular interest is

performed. For analysis purposes, the equilibrium state corresponding to the home quaternion

and zero angular velocity is chosen:

𝒒 = 0𝑖̂ + 0𝑗̂ + 0𝑘̂ + 1

𝝎 = [
0
0
0
]

Although it may not always be desirable to regulate the system to this state, it is still a good

approximation of the desirable steady-state behavior in most attitude control modes. Furthermore,

any constant, non-zero quaternion relating the attitude of the rigid body to the inertial frame can

be represented as the zero quaternion after an appropriate redefinition of the inertial frame. This

means that the attitude dynamics are the same local to any constant quaternion relating the body

frame to the inertial frame, even if the two frames are not aligned. Such invariance of the attitude

dynamics (i.e. the Newtonian physics of the problem) with respect to constant quaternions should

not come as a surprise, because a constant quaternion is a purely kinematic quantity.

 When the above equilibrium state is substituted into the full nonlinear dynamics, and the

gyroscopic torque due to non-zero reaction wheel momentum is neglected (this assumption will

be revisited), the following set of differential equations are recovered:

𝟎 = 𝐽𝝎̇ + 𝐼𝑤𝑠𝑨𝑠𝜴̇

22

𝝐̇ =
1

2
𝝎

𝜂̇ = 0

The vector differential equations above are decoupled as long as the eigenvectors of the inertia

matrix 𝐽 are nearly parallel to the basis vectors of the body frame. It turns out that it is always

possible to find a body fixed frame in which the inertia matrix is diagonal. Such a frame is called

the principle frame. However, it is not always convenient to define the body frame to be controlled

as the principle frame, especially when the principle axes are not aligned with interesting features

of the spacecraft (e.g. sensor boresights, solar array normal vectors, communication beams, or

thrust vectors). For spacecraft of very asymmetrical geometry and mass distribution, the principle

frame is likely to be significantly misaligned with the control frame of interest. Conveniently, due

to the symmetric geometry and mass properties of CubeSats, it is reasonable to assume that 𝐽

can be well approximated by a diagonal matrix in a body fixed frame whose basis vectors are

perpendicular to the faces of the CubeSat. Such a frame is also usually very convenient from the

perspective of pointing. A strategy for dealing with cases in which 𝐽 cannot be assumed diagonal

will be dealt with in a future section. With this assumption, the dynamics around each axis can be

treated separately to yield three single input single output (SISO) linear dynamic systems. To see

how this is possible, notice that in the linearized kinematics, the first derivative of the angular

velocity vector is equal to twice the second derivative of the vector part of the quaternion.

Substituting twice the second derivative of the vector part of the quaternion for the first derivative

of the angular velocity in the linearized dynamics will yield three linear second order systems with

two poles at the origin, namely a double integrator process. For the sake of example, focusing on

the x-axis gives

2𝐼𝑥𝜖𝑥̈ = 𝑢𝑥

Where 𝑢𝑥 is the x-component of the control input, 𝐼𝑥 is the moment of inertia around the principle

x axis, and 𝜖𝑥̈ is the second time derivative of the x component of 𝝐. Taking Laplace transforms

yields

23

𝑌(𝑠) = 𝛦𝑥(𝑠) =
1

2𝐼𝑥𝑠2
𝑈𝑥(𝑠)

Where 𝑌(𝑠) is the x-component of the vector part of the quaternion. At this point, the dynamics

have been reduced to three SISO systems, all with the same form of plant transfer function (e.g.

a double integrator). Therefore, it is really only necessary to solve the control problem once, and

then repeat the same procedure for each axis. In the following section, the formulation of the

control law design procedure is provided for a single axis.

3.2 Discrete Time PID Controller Design

 For this work, the single axis unity feedback block diagram in figure 7 provides the basis

for the formulation of the control algorithm design procedure to be implemented in the toolkit. In

this diagram, 𝑅(𝑠) is the reference signal, 𝑇 is the sampling period of the digital attitude controller

𝐺𝑐(𝑧), 𝐼 is the axial moment of inertia, 𝑠 is the Laplace variable, and 𝜃(𝑠) is the attitude angle.

The design of the digital controller 𝐺𝑐(𝑧) is performed by first obtaining an exact discrete time

equivalent (z-domain) model 𝐺𝑝(𝑧) of the zero-order hold plus double integrator plant. The pulse

transfer function between the input to the zero-order hold and the ideally sampled version of the

output 𝜃(𝑠) can be obtained with the following sum:

𝐺𝑝(𝑧) = (1 − 𝑧−1) ∑ 𝑅𝑒𝑠 [𝑋(𝜆)
1

1 − 𝑧−1𝑒𝑇𝜆
]

𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑋(𝜆)

Where the 𝑅𝑒𝑠[] operator denotes taking the residue of the function in the argument. For a

derivation of the above, the reader is referred to [13], but a short explanation is that the Residue

Figure 7: Closed Loop Model for Control Algorithm Design

24

Theorem is being applied to evaluate the contour integral of 𝑋(𝜆) around its poles. In the case of

the control system in figure 7, the transfer function 𝑋(𝜆) is given by

𝑋(𝜆) =
1

𝐼𝜆3

𝑋(𝜆) is a triple integrator because it picked up an extra integrator from the transfer function of the

zero order hold. Calculating 𝐺𝑝(𝑧) according to the expression above gives the discrete time

transfer function between inputs to the zero order hold and the sampled plant output:

𝐺𝑝(𝑧) =
𝑇2

2𝐼

(𝑧 + 1)

(𝑧 − 1)2

With an exact discrete time model of the sampled response of the zero-order hold plus double

integrator plant, there are two design directions that can be pursued. Either the digital controller

𝐺𝑐(𝑧) can be designed around the discrete time plant directly in the z-domain, or a continuous

time approximation to 𝐺𝑝(𝑧) can be obtained, allowing for the controller to be designed in the

more familiar continuous time domain, and then implemented digitally after applying an

appropriate analog to digital mapping. In this work, the continuous time control design approach

is taken as it is more intuitive and much easier to deal with in terms of the resulting open-loop

transfer function. During the design process, the continuous frequency domain corresponding to

the controller and plant will be referred to as the w-domain instead of the s-domain. The reason

for this is that the continuous time approximation of the exact discrete-time model derived earlier

will not be identical to the original dynamic system as defined in the s-domain. In fact, the original

system in the s-domain is nonlinear due to the zero-order hold and thus cannot be treated with

classical control techniques. Therefore, using a new variable resolves potential confusion.

Moreover, since the frequencies in the w-domain are not exact analog frequencies, it is even

more natural to utilize a different variable. More specifically, exact analog frequencies in the s-

domain above the Nyquist frequency are lost upon discretization of the continuous time plant, but

reappear as warped versions of themselves when the discrete time model is reconstructed in the

w-domain. Mathematically, frequencies in the w-domain 𝜔𝑤 are related to exact analog

frequencies 𝜔 after a bilinear transform by

25

𝜔𝑤 =
2

𝑇
tan (

𝜔𝑇

2
)

From the above expression it is clear that for analog frequencies much less than the Nyquist

frequency, the frequency warping is minimal. In other words,

𝜔𝑤 ≈ 𝜔 when 𝜔𝑇 << 1

This relationship is important, because it tells us that if the bandwidth of the closed loop system is

kept sufficiently lower than the Nyquist frequency, the true analog frequency response will be well

approximated in the w-domain, thus validating the use continuous time design techniques.

 Approximation of the discrete time plant 𝐺𝑝(𝑧) in the continuous w-domain is performed

by utilizing the bilinear transform. The bilinear transform approximates the discrete complex

variable 𝑧 = 𝑒𝑤𝑇 using a Taylor Expansion to first order, yielding

𝑧 ≈
1 + (

𝑇
2)𝑤

1 − (
𝑇
2)𝑤

The advantage of this approximation is that the resulting transfer function can always be written

as a ratio of polynomials in 𝑤, which is necessary for classical control design techniques.

Substituting the above expression for 𝑧 into 𝐺𝑝(𝑧) gives

𝐺𝑝(𝑤) =
2 − 𝑇𝑤

2𝐼𝑤2

Notice that the w-domain expression above, which approximates the discrete time model given by

𝐺𝑝(𝑧), is remarkably similar to a simple double integrator, with the exception of an additional zero

that lies below the real axis in the right-half plane, since 𝑇 > 0 by definition. This zero is capturing

the phase lag incurred by the zero-order hold in the original nonlinear continuous time system.

Although this zero is in the right half plane and thus the w-domain system is non-minimum phase,

it is after all an approximation. Therefore, the control design techniques that are typically required

to deal with non-minimum phase systems do not apply in this context. Moreover, using the above

plant 𝐺𝑝(𝑤) in the control design adds sample rate dependence to the computation of the

controller gains, which is a desirable property of the overall control design procedure.

26

 In this context, the controller acts on the quaternion error signal at its input and generates

body torque commands as its output. The PID controller is designed to achieve a desired phase

margin 𝜃𝑀 and open loop gain crossover frequency 𝜔∗ in the w-domain. The gains 𝐾𝑝, 𝐾𝐷, and 𝐾𝐼

are calculated by first considering how the parameters 𝑇𝑃𝐷 and 𝑇𝑃𝐼 are related to the frequencies

of the two open loop zeros that are added to the open loop transfer function by the controller. In

this context, the open loop transfer function 𝐺𝑂(𝑤) is given by the product of the PID controller

transfer function and the plant transfer function:

𝐺𝑂(𝑤) = 𝐺𝑃(𝑤)𝐺𝐶(𝑤) =
𝐾

2𝐼𝑤3
(2 − 𝑇𝑤)(𝑇𝑃𝐷𝑤 + 1)(𝑇𝑃𝐼𝑤 + 1)

Each first order term in the PID controller transfer function of the form 𝑇𝑤 + 1 adds a zero to the

open loop transfer function at frequency
1

𝑇
. Due to the integrator of the controller as well as the

double integrator from the plant, the two zeros of the PID controller must collectively compensate

for 270˚ of open loop phase lag at all frequencies, as well as the phase lag from the zero-order

hold, to achieve the desired phase margin. The parameters 𝑇𝑃𝐷, and 𝑇𝑃𝐼 can be viewed as knobs

that change the shape of the open loop gain and phase frequency response by adjusting the

frequency locations of the open loop zeros, since they are just the inverses of the zero

frequencies. The gain 𝐾 can be viewed as a knob that moves the entire open loop gain frequency

response up by 20 log10 𝐾 dB. With this in mind, the following strategy is employed in mapping

the control system specifications 𝜃𝑀 and 𝜔∗ to the PID gains 𝐾𝑝, 𝐾𝐷, and 𝐾𝐼:

1. Place the PI zero one decade before the gain crossover frequency 𝜔∗ with

𝑇𝑃𝐼 =
10

𝜔∗

2. Place the PD zero so that when the open loop gain is 𝜔∗, the open loop phase is 𝜃𝑀

greater than −180˚ using

𝑇𝑃𝐷 = (
1

𝜔∗
) tan(90˚ + 𝜃𝑀 + tan−1 (

𝑇𝜔∗

2
) − tan−1(𝑇𝑃𝐼𝜔

∗))

3. Finally, compute the gain 𝐾 so that the open loop gain is 0 𝑑𝐵 at frequency 𝜔∗ using

27

𝐾 =
1

|
𝑇𝑃𝐼𝑖𝜔∗ + 1

𝑖𝜔∗ | |𝑇𝑃𝐷𝑖𝜔∗ + 1| |
2 − 𝑖𝜔∗

2𝐼𝑎(𝑖𝜔∗)2|

Where 𝑖 is the imaginary unit, the vertical brackets denote the magnitude of a complex number,

and 𝐼𝑎 is the moment of inertia around the axis of interest. After steps (1) through (3), the gains

𝐾𝑝, 𝐾𝐷, and 𝐾𝐼 are computed using

𝐾𝐼 = 𝐾

𝐾𝑝 = 𝐾(𝑇𝑃𝐷 + 𝑇𝑃𝐼)

𝐾𝐷 = 𝐾𝑇𝑃𝐷𝑇𝑃𝐼

 Once the PID gains are calculated, the control law can be implemented in software fairly

easily by discretizing the controller transfer function with backward Euler differentiation and

trapezoidal integration. After calculation of the above controller gains, the digital control algorithm

implements

𝐺𝑐(𝑧) = 𝐾𝑝 +
𝐾𝐼𝑇𝑠(𝑧 + 1)

2(𝑧 − 1)
+

𝐾𝐷(𝑧 − 1)

𝑇𝑠𝑧

This is equivalent to applying the bilinear transform to the integral state of the w-domain control

law and applying a backward Euler discretization to the derivative part of the control law.

3.3 Reference Filter and Derivative Filter Design

 Two additional elements of the proposed control system design are two first order digital

low pass filters, one after the reference signal and one before the derivative term in the control

law. Both of these filters have their own purpose. The derivative filter prevents the controller from

amplifying high frequency noise that may be present in the error signal, primarily coming from the

feedback path. It can be used to bend the open loop gain response further downward after

crossover, which increases noise attenuation performance. The reference filter, on the other

hand, removes high frequencies (such as in step changes) in the reference signals to which the

controller may respond too aggressively relative to the strength of the actuators in the system.

Moreover, the reference filter could also be designed to notch out flexible modes that may be

28

present in the plant dynamics, but in this work, mitigation of large step changes in attitude

commands—which will occur during operational transitions between control modes—is the

primary design goal for the reference filter. Both filters are first designed in the continuous

frequency domain and then mapped into the discrete frequency domain with the bilinear

transform. An analog, first order low pass filter has a transfer function of the form

𝐻(𝑠) =
𝜔𝑐

𝑠 + 𝜔𝑐

Where 𝜔𝑐 is the cutoff frequency of the filter—the single design parameter at hand—in rad/s.

Applying the bilinear transform substitutes the following approximation for 𝑠 in terms of the

discrete frequency variable 𝑧 into 𝐻(𝑠) to yield a discrete time transfer function 𝐻(𝑧):

𝑠 ≈
2(𝑧 − 1)

𝑇(𝑧 + 1)

The resulting discrete time transfer function is given by

𝐻(𝑧) =
𝑏(𝑧 + 1)

𝑧 − 𝑎

Where the coefficients 𝑎 and 𝑏 are related to the sampling period 𝑇 and cutoff frequency 𝜔𝑐 by

𝑎 =

2
𝑇 − 𝜔𝑐

2
𝑇 + 𝜔𝑐

𝑏 =
1

1 +
2

𝜔𝑐𝑇

The following difference equation in terms of the coefficients 𝑎 and 𝑏 is then used to implement

the first order filter in discrete time:

𝑦𝑘 = 𝑎𝑦𝑘−1 + 𝑏(𝑢𝑘 + 𝑢𝑘−1)

Where the subscript 𝑘 indexes the time step, 𝑦 is the filter output, and 𝑢 is the filter input.

 In designing the derivative filter, it is important that the chosen gain crossover frequency

be at least one decade less than the filter’s cutoff frequency so that the filter only affects the

29

relatively high frequency portion of the open loop frequency response and does not significantly

disrupt the phase margin. In other words,

10𝜔𝑔𝑐 ≤ 𝜔𝑐

The reference filter, on the other hand, has no similar constraint. However, when attempting to

filter out high frequencies as a result of large step changes in the attitude reference signal, a

reasonable choice for the cutoff frequency of the reference filter is

𝜔𝑔𝑐 ≤ 2𝜔𝑐

Furthermore, it does not make sense to place the reference filter cutoff frequency significantly

lower than the gain crossover frequency, because the interesting frequencies of the input signal

to the reference filter are designed to be tracked by the closed loop system by virtue of where the

gain crossover frequency is placed. In other words, placing the cutoff frequency of the reference

filter significantly below the gain crossover frequency could prevent the output of the closed loop

system from tracking the interesting part of its input. The above rule of thumb provides a sensible

balance between keeping the reference filter cutoff frequency high enough so that the closed loop

system tracks frequencies of interest, while also keeping the reference filter cutoff frequency low

enough to prevent large discontinuities in actuator commands.

 Figure 8 below summarizes the control system architecture as developed in this chapter.

The engineer can adjust six control design knobs within this architecture: the sample rate, open

loop gain crossover frequency, phase margin target, reference filter cutoff frequency, derivative

filter cutoff frequency, and the integral saturation limit.

Figure 8: Single Axis Closed-Loop Attitude Control System Architecture

30

3.4 Feedback Linearization

 We will now revisit the previous assumption that the total gyroscopic torque in Euler’s

equations due to reaction wheel momentum can be neglected, and that 𝐽 is diagonal. In general,

when the spacecraft angular velocity is sufficiently small and the spacecraft mass distribution is

symmetric about each plane of the body axes, this assumption is valid. However, if a high control

system bandwidth is desired for a particular mission, then spacecraft angular velocities may not

stay small enough for a valid dynamics linearization. Furthermore, if the spacecraft mass

distribution is asymmetrical enough to give rise to a large rotation angle between the principle

frame and the body control frame, the dynamics around each axis can no longer assumed to be

decoupled. Fortunately, it is possible to actively “cancel” this nonlinearity in Euler’s equations and

decouple the system by adding a feedback linearization signal to the control law. For simplicity,

the following continuous time representation of such a nonlinear control law would look like

𝒖 = 𝐾𝑝𝒆 + 𝐾𝐼 ∫𝒆𝑑𝑡 + 𝐾𝐷𝒆̇ − 𝝎 𝑥 (𝑱𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴) = 𝒖𝐿 + 𝒖𝑁𝐿

This makes our assumption about the negligible gyroscope torque more reasonable. In the

above, 𝒆 is the attitude error, and the means by which it is calculated depends on the overall goal

of the controller (e.g. the ADCS operational mode). The control law is partitioned into two signals

with different design objectives. The first signal 𝒖𝐿 is the linear part, whose design is carried out

according to the previously mentioned procedure, and its overall goal is to drive the attitude errors

to zero. The second signal 𝒖𝑁𝐿 is the nonlinear part, whose goal is to cancel the nonlinear

gyroscopic torques, and force the closed-loop dynamics to behave more similarly to how they

were modeled when designing 𝒖𝐿. More explicitly,

𝒖𝐿 = 𝐾𝑝𝒆 + 𝐾𝐼 ∫𝒆𝑑𝑡 + 𝐾𝑑𝒆̇

And

𝒖𝑁𝐿 = −𝝎 𝑥 (𝑱𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴)

31

It is important to note that the sign of the nonlinear control 𝒖𝑁𝐿 depends on the type of actuators

being used to generate the control signal. In the above, it is assumed that reaction wheels are the

primary control actuator, since in that case

𝐼𝑤𝑠𝑨𝑠𝜴̇ = 𝒖 = 𝒖𝐿 + 𝒖𝑁𝐿

So in order for the 𝝎 𝑥 (𝑱𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴) term in Euler’s equations to vanish, the control should have

the opposite sign. Assuming perfect inertial knowledge, angular velocity knowledge, and wheel

rate knowledge, the closed loop differential equations become

−𝒖𝐿 = 2𝑱𝝐̈

Which is consistent with the assumptions made when designing three decoupled reaction wheel

PID controllers around double integrator plants. Also note that the closed loop differential

equations above assume that the control enters into the dynamics on the right-hand-side of

Euler’s equations, which is only true when momentum exchange actuators like reaction wheels

are utilized. This is the reason for the negative sign on the left-hand side. If the actuators provide

external torques as opposed to momentum exchanges, the sign of the total control signal needs

to be flipped. Keen awareness of the correct sign in this context is a crucial step in avoiding errors

which can easily lead to a loss of closed-loop stability.

3.5 Control System Operational Modes

 In this section, the mathematical formulation behind the computation of the reference

attitude quaternion for each of the following three-axis operational modes will be provided:

• Inertial Pointing

• Nadir Pointing

• Ground Pointing

• Ephemeris Pointing

• Spin Pointing

• Desaturate

Each of these control modes will be dealt with sequentially, starting with inertial pointing. This

section addresses the design of the various guidance algorithms required to provide consistent

and well defined reference signals to the attitude control system. Preliminary simulation results

32

show that the PID controller design presented in the previous section provides good closed loop

performance for all of these modes.

3.5.1 Inertial Pointing

 Inertial pointing is by far the simplest of these operational modes. In inertial pointing, the

goal of the control system is to drive the attitude to a constant commanded inertial to body

quaternion. The particular quaternion target in question is dependent on the mission and

operational scenario, and will be a parameter that can be commanded from the ground or baked

into a flight software configuration file. The attitude error vector for inertial pointing is computed as

𝒆 = 2𝝐(𝑞𝑟
∗𝑞)

Where 𝑞𝑟 is the commanded inertial to body quaternion, 𝑞 is the estimated inertial to body

quaternion, and the 𝜖() denotes that only the vector part of the resulting product is taken as the

attitude error. The * operator corresponds to quaternion conjugation, which simply involves

flipping the sign on the vector part of the quaternion.

 The factor of two present in the attitude error computation is to ensure that for small error

angles, the attitude error is directly proportional to the rotation angles around each principle axis

required to align the two frames. To see this, consider that

𝝐(𝑞𝑟
∗𝑞) = 𝐚 sin(𝜙𝑒/2)

For small 𝜙𝑒, this reduces to

𝝐(𝑞𝑟
∗𝑞) ≈

1

2
𝒂𝜙𝑒

The factor of one-half in the above is problematic. It means that if the factor of two is not included

in the attitude error computation, then the proportional control signal picks up an unwanted gain

of one-half relative to the single axis plant model used in the design of the controller. This will

result in closed loop behavior that is inconsistent with the original specifications.

3.5.2 Nadir Pointing

 The next mode presented is nadir pointing. This mode is extremely important, because it

allows the spacecraft to align itself with a non-inertial reference frame defined by the

33

instantaneous orbit state. Therefore the spacecraft attitude profile is periodic with respect to the

orbit period, permitting a steady state “downward looking” behavior. As a result, the attitude error

computation is much more involved than in inertial pointing. First, the rotation matrix from the

inertial to orbit frame is constructed by computing the basis vectors of the orbit frame one at a

time, each expressed in the inertial frame. The unit vector along the z axis of the orbit frame is

defined as

𝒛̂ =
−𝑹

|𝑹|

Where 𝑹 is the inertial position vector of the spacecraft. Based on this calculation, 𝑧̂ is a unit

vector pointing in the geocentric nadir direction. The unit vector along the y axis of the orbit frame

is the negative of the orbital angular momentum:

𝒚̂ =
−𝒉

|𝒉|
=

−(𝑹 𝑥 𝑽)

|𝑹 𝑥 𝑽|

And finally, the x axis completes the right-handed orthogonal triad with

𝒙̂ = 𝒚̂ 𝑥 𝒛̂

The rotation matrix from the inertial frame to the orbit frame is given in terms of these three basis

vector as

𝐶 = [
𝒙̂𝑇

𝒚̂𝑇

𝒛̂𝑇

]

The quaternion corresponding to the same frame transformation encoded by 𝐶 is the reference

quaternion. It can be calculated in terms of 𝐶 with

𝜂𝑟 =
1

2
√1 + 𝑡𝑟(𝐶)

𝜖𝑟𝑥 =
𝐶23 − 𝐶32

4𝜂𝑟

𝜖𝑟𝑦 =
𝐶31 − 𝐶13

4𝜂𝑟

34

𝜖𝑟𝑧 =
𝐶12 − 𝐶21

4𝜂𝑟

Where the 𝑡𝑟(𝐶) operator denotes the trace of the matrix 𝐶, and the subscripts 𝐶𝑖𝑗 denote the

element of 𝐶 at row 𝑖 and column 𝑗. Then the reference quaternion can be built from the elements

computed in the previous four equations. However, there is a subtle issue that can arise when

computing the reference quaternion in this manner. It turns out that quaternions are not unique,

because 𝑞 and −𝑞 correspond to the same physical attitude. Because of this non-uniqueness,

computation of the quaternion from the corresponding rotation matrix 𝐶 along an orbit will

necessarily result in a discontinuous transition from 𝑞 to −𝑞 at some point in the orbit. Even

though 𝑞 and −𝑞 correspond to the same physical attitude, the attitude error will change sign in

one control cycle if this sign change occurs, which will lead to undesirable closed loop behavior

and possibly a loss of stability. To ensure that this never happens, a unit delay is applied to the

vector part of the reference quaternion computed at one control cycle, and dotted with the vector

part of the reference quaternion at the next control cycle. In other words, the following quantity 𝑥

is computed

𝑥 = 𝝐𝑟⦁(𝑧
−1𝝐𝑟)

If 𝑥 is less than zero, it means that the aforementioned point in the orbit at which the reference

quaternion flips sign has been reached. To force continuity in the reference quaternion profile, the

sign of the reference quaternion is flipped if 𝑥 is less than zero. The next step in computing the

error quaternion is identical to the inertial pointing case using the new reference quaternion:

𝒆 = 2𝝐(𝑞𝑟
∗𝑞)

 It should be noted that under this formulation of nadir pointing, the spacecraft’s body y

axis will be aligned with the negative orbital angular momentum vector, and the body z axis will

be the nadir pointing axis. If a different alignment is desired, all that is required is an appropriate

re-definition of the basis vectors of the orbit frame expressed in the inertial frame. For example, if

it is desired that the body x axis of the spacecraft be aligned with the nadir vector, then the x-axis

of the orbital frame should be defined as the nadir vector, while swapping the other two axes so

that right-handedness is preserved. Finally, the attitude error computation presented for this

35

mode corresponds to geocentric pointing, not geodetic pointing. This is because it assumes the

Earth is a perfect sphere. Since the Earth is not a perfect sphere, there will be a small pointing

error between the body fixed pointing vector and the point on the Earth that intersects with the

spacecraft position vector. Implementation of geodetic pointing is beyond the scope of this thesis

but will be elaborated upon in the future work chapter.

3.5.3 Ground Pointing

 In ground pointing mode, the attitude control system’s goal is to align a commanded body

fixed pointing axis with a vector pointing from the spacecraft to a commanded location on the

surface of the Earth, specified in latitude and longitude coordinates. The reference quaternion is

therefore underdefined by one degree of freedom, namely the rotation angle of the spacecraft

around the body fixed pointing vector. In this work, the rotation angle around the body fixed

pointing vector is defined such that a secondary spacecraft body vector will stay in the orbit plane,

and the third axis completes the right-handed orthogonal triad. Defining the third degree of

freedom in this manner is somewhat arbitrary, and may be easily redefined by replacing the

velocity vector in the following formulation with a different vector of interest

 The reference quaternion in this mode is computed by first forming the inertial to body

rotation matrix defining the desired inertial to body attitude. The rows of the desired inertial to

body rotation matrix are simply the positions of the desired body vectors expressed in inertial

coordinates. Therefore, the body pointing axis of interest, which in this work is restricted to either

the +X, +Y, or +Z axis, should occupy the corresponding row of the desired inertial to body

rotation matrix. The unit vector pointing from the spacecraft to the commanded location on the

ground, expressed in inertial coordinates, is given by

𝑻̂ =
𝝆 − 𝑹

|𝝆 − 𝑹|

Where 𝝆 is the inertial position vector of the commanded location on the ground, and 𝑹 is the

spacecraft inertial position vector. In order to obtain 𝝆 given only latitude and longitude

coordinates, the Earth centered Earth fixed (ECEF) reference frame must be utilized. In an ECEF

frame where the x axis points along zero geodetic longitude and the z axis points outward from

36

the North Pole, the position 𝝆 is constant and is given by the spherical to rectangular coordinate

transformation

𝝆𝐸𝐶𝐸𝐹 = [

𝑅𝑒 cos(𝜆) cos(𝜃)
𝑅𝑒 cos(𝜆) sin(𝜃)

𝑅𝑒 sin(𝜆)
]

Where 𝑅𝑒 is the radius of the Earth, λ is latitude of the desired ground location, and θ is the

longitude of the desired ground location. Then, 𝝆 is transformed into inertial coordinates

according to

𝝆 = 𝑅𝝆𝐸𝐶𝐸𝐹

Where the rotation matrix 𝑅 projects vectors expressed in the ECEF frame to vectors expressed

in the ECI frame. Computation of 𝑅 depends on which inertial frame is used in the orbit

determination paradigm for a given space mission. However, most ECI and ECEF frames are

defined in such a way that 𝑅 has the form

𝑅 = [
cos 𝛥 − sin𝛥 0
sin 𝛥 cos 𝛥 0

0 0 1
]

Which is simply a rotation about the ECEF z axis. The parameter 𝛥 is an angle that corresponds

to a rotation around the ECEF z axis which aligns it with the inertial frame in question.

 Now that the target vector of interest has been calculated, it is simply placed in the row of

the desired inertial to body rotation matrix corresponding to the body pointing axis (e.g. if +Z axis

is body pointing axis, place in 3rd row). In other words, the a’th row of the desired inertial to body

rotation matrix is set as

𝑟𝑎 = 𝑻̂

The other two rows of the rotation matrix still remain. They are calculated as

𝑟𝑏 =
𝑽 𝑥 𝑻̂

|𝑽 𝑥 𝑻̂|

𝑟𝑐 = 𝑟𝑎 𝑥 𝑟𝑏

37

Where 𝑽 is the inertial velocity vector of the spacecraft. Then the rotation matrix corresponding to

the desired inertial to body attitude is constructed as

𝐶𝑟 = [

𝑟𝑎
𝑇

𝑟𝑏
𝑇

𝑟𝑐
𝑇

]

It should be noted that the rotation matrix 𝐶𝑟 may require a different organization of the rows 𝑟𝑎,

𝑟𝑏, and 𝑟𝑐 depending on the body pointing axis. The calculation above assumes that +X is the

desired body pointing axis, since 𝑟𝑎 occupies the first row of the matrix. Finally, the reference

quaternion is computed from the reference rotation matrix 𝐶𝑟 in the same way as was described

in the Nadir Pointing section (3.5.2). In short,

𝑞𝑟 = 𝑞(𝐶𝑟)

Finally, the attitude error vector is computed with

𝒆 = 2𝝐(𝑞𝑟
∗𝑞)

Computing the reference quaternion in this way may result in similar discontinuous behavior as

described in the Nadir Pointing section. Therefore, the same logic described in section 3.5.2 is

implemented in this mode.

3.5.4 Ephemeris Pointing

 In ephemeris pointing, the attitude control system’s goal is to align a commanded body

fixed pointing axis with a vector pointing from the spacecraft to a celestial body of interest.

Pointing towards a celestial body of interest has numerous applications in a large class of space

missions. More specifically, many space missions require a sun pointing mode during which the

spacecraft aligns its solar array normal vectors with the sun to maximize input power. Ephemeris

pointing is meant to generalize beyond sun pointing and allow pointing a body fixed vector at any

target, specified by an ephemeris. Therefore, this mode is remarkably similar to the ground

pointing mode. However, the difference is that in ephemeris pointing, the target vector does not

move as quickly, and therefore the control system bandwidth may not need to be as high to track

the lower frequency quaternion reference signals with sufficient accuracy.

38

 The reference quaternion in the ephemeris pointing mode is computed in almost the

exact same manner as in ground pointing, with the exception that the target vector is instead

known in the inertial frame a priori and does not require computation. Therefore, the exact same

procedure as described in 3.5.3 can be used to compute the quaternion reference signal, with the

target vector 𝑻̂ instead being the unit vector pointing from the inertial spacecraft position to the

inertial position of the celestial body of interest given by the ephemeris:

𝑻̂ =
𝑹𝑻 − 𝑹

|𝑹𝑻 − 𝑹|

Where 𝑹𝑻 is the inertial position vector of the celestial body given by the ephemeris expressed in

the ECI frame. Then the rest of the procedure described in 3.5.3 can be used to construct the

desired inertial to body rotation matrix, such that the commanded body fixed axis points toward

the target, an orthogonal axis stays in the orbit plane, and the third axis completes the orthogonal

triad.

3.5.5 Spin Pointing

 In spin pointing, the attitude control system aligns a body fixed axis with a fixed direction

in inertial space, and imparts an angular velocity around that axis according to a commanded spin

rate. This mode is applicable to many conceivable operational scenarios, the most prominent of

which is an orbital maneuver or safe mode. Since the desired inertial delta-v vector for an orbital

maneuver should be known before the spacecraft initiates the maneuver, this mode could be

used to command the spacecraft to place its thrust vector along that desired inertial delta-v vector

and begin spinning around that vector at a small rate. Flying in such an attitude during an orbital

maneuver can help average out the total accumulated delta-v along the desired inertial burn

duration, increasing maneuver accuracy. Further, spinning around a thrust axis can gain stabilize

any potentially harmful fuel slosh modes if liquid fuel is used in the propulsion system. On the

other hand, the spin pointing mode may be applicable for mission scenarios in which the

spacecraft is in an idle state and does not require any sort of active pointing. During this phase of

a mission, an appropriately chosen inertial direction and spin rate could place the spacecraft in an

extremely safe attitude profile from a thermal perspective. For example, if the spacecraft has

39

radiators on some of its surfaces, the inertial direction could be chosen such that none of those

radiators can see the sun. Then the slow spinning around this direction will evenly distribute

incident heat flux onto the rest of the spacecraft surfaces.

 The desired attitude quaternion in the spin pointing mode is again computed from a

rotation matrix representing the same desired attitude. This rotation matrix is conceptualized as

being comprised of two sequential rotations, one that aligns the commanded body axis with the

commanded inertial direction, and another that incrementally guides rotation of the spacecraft

around its commanded body axis. The desired inertial to body attitude parameterized by a

rotation matrix is given by

𝐶𝑟 = 𝐶2(𝑡)𝐶1

Where 𝐶1 encodes the rotation required to align the commanded body fixed axis with the

commanded inertial direction, and 𝐶2(𝑡) applies the rotation around the commanded body fixed

axis at the commanded rate. 𝐶1 is given by a two-step rotation through azimuth and elevation

angles, but the sequence of rotation for 𝐶1 depends on the commanded body fixed axis. For

example, if the commanded body fixed axis is +X, the rotation sequence is ZY, so that no rotation

around the body fixed axis occurs when aligning it with the commanded inertial direction. The

azimuth and elevation angles themselves must also be defined in such a way that is consistent

with the commanded body fixed axis. Figure 9 provides the geometry for this first rotation

sequence in the case that the commanded body fixed axis is +X.

40

Figure 9 depicts a commanded inertial direction L along with the relevant azimuth and elevation

angles. Notice that if the inertial frame were rotated around its positive Z axis through the angle δ,

and then around the new Y axis through the angle −𝛼, the +X axis would be aligned with L.

Therefore, in this case 𝐶1 is given by two principle frame rotations:

𝐶1 = 𝐶𝑦(−𝛼)𝐶𝑧(𝛿)

More generally, the relevant azimuth and elevation angles are first computed from L, and then the

appropriate principle rotations are applied to compute 𝐶1 depending on the commanded body

fixed axis.

 The second rotation 𝐶2(𝑡) is simply a principle rotation around the commanded body fixed

axis through an angle that increases linearly with time according to the commanded spin rate. It is

computed as

𝐶2(𝑡) = 𝐶𝑎(𝜔𝑠𝑡)

Where the subscript 𝑎 denotes a principle rotation around either the X, Y, or Z axis, depending on

which one was commanded, and 𝜔𝑠 is the commanded spin rate. In discrete time, 𝐶2 is given by

𝐶2 = 𝐶𝑎(𝜃0 + 𝜔𝑠𝑇)

Figure 9: Rotation Angle Geometry for Inertially Fixed Pointing Vector

41

Where 𝑇 is the sampling period and 𝜃0 is an arbitrary initial angle. Once the two rotation matrices

are computed, their product is taken and then cast to a quaternion to provide the final reference

quaternion in spin pointing mode:

𝑞𝑟 = 𝑞(𝐶2(𝑡)𝐶1)

Finally, the attitude error vector is computed using the familiar conjugate product

𝒆 = 2𝝐(𝑞𝑟
∗𝑞)

3.5.6 Desaturate

 The final control mode considered in this work is a desaturate mode, in which the control

system employs actuators capable of imparting an external torque on the spacecraft to remove

angular momentum stored in reaction wheels. A simple desaturation control law commanding a

magnetorquer dipole vector is employed, while the wheels are simultaneously commanded by the

attitude control loop in the inertial pointing mode. From [14], a magnetorquer desaturation

command that can be used to remove stored angular momentum is given by

𝒎 =
𝑘𝑑𝑒𝑠𝑎𝑡

|𝑩|
(𝒉 𝑥 𝑩)

Where 𝑩 is the instantaneous geomagnetic field vector expressed in the body frame, 𝒉 is the net

angular momentum vector of the reaction wheels, also expressed in the body frame. 𝑘𝑑𝑒𝑠𝑎𝑡 is a

gain that controls how aggressively the magnetorquers are commanded for a given amount of

stored reaction wheel momentum that exists perpendicular to the instantaneous local magnetic

field vector. The choice of the gain is chosen based on the spacecraft orbit, size of

magnetorquers, and the desired rate at which momentum is to be removed from the reaction

wheels.

 During desaturation mode, the reaction wheels are commanded by the attitude controller

to hold a constant inertial attitude, while the magnetorquers are commanded according to the

above control law. Conceptually, this causes the spacecraft to attempt to “hold onto” inertial

space as the magnetorquers try to pull it away from the commanded attitude in the direction of

42

the wheel angular momentum that is perpendicular to the local magnetic field. Consequently, the

momentum stored in the reaction wheels ends up being removed by the external torque from the

magnetorquers as the wheels attempt to maintain the fixed inertial attitude.

 An important practical consideration behind the use of magnetorquers for desaturation

during inertial pointing is that they may significantly corrupt magnetometer readings and thus led

to poor estimation algorithm performance. If the estimation algorithm diverges during a

desaturation maneuver as a result of bad magnetometer readings, the inaccurate state estimate

fed to the inertial pointing controller could lead to egregious closed loop behavior. To avoid this,

the commands to the magnetorquers and the sampling of the magnetometers should be

sufficiently separated in time.

43

Chapter 4

CPCL ADCS TOOLKIT ENHANCEMENTS

 This chapter will provide an overview of the contributions of this thesis to the overall

CPCL ADCS design and analysis toolkit. Additionally, guidance and control design techniques

illustrated in the previous chapter will be integrated into the toolkit in this chapter. As illustrated in

the design iteration strategy from Chapter 2, the overall engineering philosophy proposed herein

is to start with a simplified analysis during preliminary design and slowly reduce the number of

assumptions. Then, as the design progresses and decisions are made, assumptions can be

rescinded, and the complexity and fidelity of the analysis can be incrementally increased. The

overall toolkit is designed to support such an approach, by providing tools of increasing fidelity

and complexity. In this chapter, the utility and use cases for three analysis and design tools will

be presented, with each tool corresponding to a particular phase within the proposed design

iteration strategy.

4.1 Preliminary Design: Single Axis Simulink Tool

 Overall, the single axis Simulink tool is designed to provide the engineer with the ability to

quickly spec out a reaction wheel relative to the desired control algorithm behavior. For example,

suppose the designer wants a relatively high bandwidth attitude controller (commanding reaction

wheels) to achieve a sufficiently fast settling time for mission specific reasons. In this case, a

stronger reaction wheel with a faster mechanical time response and perhaps a relatively high

torque saturation limit will likely be required. This tool can be used to easily establish the range of

reaction wheel parameters that will give rise to acceptable closed loop performance with the

chosen controller specifications. Furthermore, it could be used in hardware selection trade

studies that aim to evaluate which of two off the shelf reaction wheel choices is a better choice.

While it is possible to do all of this analysis in a complicated 6DOF simulation environment, doing

so is overkill, cumbersome, and inefficient. In many cases, a vastly simplified analysis can get the

job done just as well, avoiding the need to deal with a complex simulation environment.

44

 Another important utility of this tool is that it can be used in circumstances where the

reaction wheel parameters are already known and can be treated as a constraint on the controller

design, or when a reaction wheel must be chosen to support a given controller design. In either of

these cases, this single axis Simulink tool would provide utility.

 Finally, this tool can be used to perform a preliminary determination of momentum

storage capacity requirements. If the spacecraft mass properties and orbit are known, a step

disturbance torque of an appropriate magnitude could be applied and the resulting wheel

momentum accumulation could be analyzed, providing the designer with insight into how much

momentum their reaction wheel should carry. While this same analysis could be performed in

three dimensions, doing so is again overkill and not necessary for preliminary sizing calculations.

 Once the top-level requirements on the ADCS are reasonably well understood, the first

step of the design process should be relatively simple and rapid. Therefore, starting with a

simplified model of the dynamics of the system to be controlled and the associated algorithms is a

sensible approach. Figure 10 shows the single axis Simulink model, intended be used as a tool in

the preliminary design phase. Accompanying this Simulink model is a MATLAB script that allows

the designer to define all of the parameters used in the Simulink model as well as invoke the

Simulink model and view its outputs. In this tool, reaction wheels are assumed as the primary

attitude actuator as single axis analysis with magnetorquers is not possible.

 The Simulink model in figure 10 implements a digital PID controller around a double

integrator plant. The actuator command output from the controller is sent into the wheel dynamics

Figure 10: Single Axis Simulink Model

45

block, saturated to the maximum torque value, and held constant until the next control cycle. The

wheel dynamics block implements a simplified model of a reaction wheel with an internal motor

driver chip responsible for controlling the speed of the wheel. Figure 12 shows the internals of the

‘Custom Digital PID’ block, and figure 11 shows the internals of the ‘Wheel Dynamics Block’. As

seen in figure 12, the PID controller contains a MATLAB function which implements deadband

logic for the control system. The purpose of the deadband is to prevent the quantized speed

commands in the wheel controller from persistently oscillating between zero and their minimum

speed bit. The deadband logic works as follows: if the absolute value of the true attitude error—

namely the difference between the unfiltered reference signal and the feedback signal—

transitions from less than the error deadband to greater than the error deadband, a counter

begins incrementing. This timer is reset to zero if the attitude error transitions from being inside

the error deadband to outside the error deadband. If the timer exceeds a user-specified

convergence time, and the attitude error is within the deadband, then the attitude error is set to

zero and the integral state in the controller is reset to zero. This prevents the control system from

commanding the actuators if the attitude error has been within the deadband for a specified

amount of time. If the attitude error is outside the deadband and the convergence time has not

been achieved, the output of the function is simply the filtered attitude error. This logic has been

tested in simulation and works as expected, but a well-informed choice of the size of the attitude

error deadband and convergence time requires nontrivial analysis that is beyond the scope of this

thesis. However, the existence of this logic in this tool provides the user with the means to check

whether their choice of deadband width and convergence time yields desirable closed loop

behavior.

46

 The rest of the contents of the ‘Custom Digital PID’ block are straightforward. The filtered

attitude error is integrated using the trapezoidal integration technique, multiplied by the integral

gain, and saturated to the user specified integral state saturation limit to prevent wind up.

Conversely, the filtered attitude error is passed through the derivative filter, differentiated using

the backward Euler technique, and multiplied by the derivative gain. Finally, the filtered attitude

error is simply multiplied by the proportional gain. Then, all three of these signals are added,

saturated to the maximum actuator torque, and held constant until the next control cycle.

 As seen in figure 11, the wheel dynamics block converts the torque command outputs

from the controller into speed command set points by first dividing by the wheel inertia to yield

wheel accelerations, and then performing backward Euler integration on these accelerations. This

integration must occur at a sufficiently faster sampling rate than the attitude control loop to

prevent a non-negligible phase lag between controller torque commands and actuator torque

outputs. The wheel speed set points are quantized to the minimum speed bit. The quantizer block

in Simulink outputs the input of the block rounded to the nearest integer multiple of the minimum

Figure 12: Custom Digital PID Block Contents

Figure 11: Reaction Wheel Model Block Contents

47

speed bit. The speed command is then saturated, held constant for the sampling period of the

wheel controller, and passed through a first order transfer function of the form

𝐺(𝑠) =
1

𝜏𝑠 + 1

Where 𝜏 is the time constant of the closed loop wheel control system. Here, 𝐺(𝑠) is meant to

model the closed loop dynamics of the wheel control loop, from speed reference command to

speed output. Finally, the speed command output is passed through 𝑠𝐺(𝑠) and multiplied by the

wheel inertia to yield an instantaneous torque.

 To reiterate, the primary utility of the single axis Simulink tool is to provide a vastly

simplified analysis environment that supports reaction wheel specification and sizing, and

preliminary control law design. Once these parameters have been established with confidence, a

three axis Simulink tool should be utilized to verify that the design still meets requirements with

coupled, nonlinear dynamics and more sophisticated reference signals.

4.2 Preliminary Design: Three Axis Simulink Tool

 To extend the control system design and analysis into three dimensions, a full three axis

Simulink tool was developed in this work. Figure 13 shows a top-level view of the model.

Figure 13: Three Axis Nonlinear Simulink Model

48

The three axis model is very similar in structure to the single axis model, with the exception that

the attitude error is no longer calculated by a simple difference. Instead, it is computed based on

the control mode being simulated, the mathematical details of which were provided in Chapter 3.

Furthermore, in this model the full three axis nonlinear rigid body dynamics are simulated in the

‘Spacecraft Dynamics’ Block. In the ‘Control Algorithms’ block, three digital PID controllers are

implemented for each axis, with an option for whether or not the feedback linearization signal is

included in the control. The ‘Actuator Dynamics’ block implements the same wheel dynamics as

described in section 4.1, except now with multiple reaction wheels. The ‘Error Signal Processing’

block takes the true attitude quaternion from the spacecraft dynamics and, depending on the

current operational being simulated, computes the reference quaternion and the attitude error

vector. Finally, the ‘Orbit Propagator’ block implements an orbit dynamics model and provides a

position and velocity vector to the error signal processing block to be used in the relevant

operational modes.

 An important goal in the development of this tool was to make it relatively modular and

extendable to support future analysis needs. To achieve this, the model was separated into five

primary blocks with generic interfaces between them that represent the minimum amount of

information that must be at their input or output. These primary blocks include an orbit dynamics

model, an attitude dynamics model, an error signal processing block, a control algorithms block,

and an actuator dynamics block. This Simulink model is designed in such a way that the overall

functionality is robust to changes in the internal dynamics of each of the primary blocks, provided

those dynamics are well-defined. For example, if a different model of the reaction wheel dynamics

is desired than the one currently being implemented, then any model that takes in a torque

command as an input and outputs wheel speeds and wheel accelerations as outputs will be

consistent with the overall Simulink model. On the other hand, if a different orbit propagator is

required, it simply needs to output the position and velocity vectors so that they can be used by

the rest of the model where necessary. Although this model does not support the full range of

possible satellite actuator configurations and control structures, it still has the modularity to

49

support most analysis and design needs for an attitude control system employing reaction wheels

and magnetorquers as actuators, which are very likely to be utilized in CubeSat missions.

 Another important feature of this tool is its ability to simulate custom ADCS operational

profiles. More specifically, the user can build a custom ‘Mission Sequence’, which specifies a set

of modes (from the list in Chapter 3) and their start/end times. This allows analysis of the control

system behavior under instantaneous transitions between control modes.

 Overall, this tool is intended to be used as a follow-up to the single axis tool. Once the

single axis tool is used to establish a preliminary control law and reaction wheel specifications,

the analysis needs to be extended into three dimensions. Furthermore, understanding how the

true nonlinear, multi-input multi-output control system behaves under the influence of more

sophisticated reference signals is especially important after conducting a decoupled, linear,

single-input single output control design. This tool enables such an investigation.

 The contents of each of the blocks in the three axis Simulink model will now be

explained, starting with the ‘Error Signal Processing’ block. Figure 14 depicts the contents of this

block, which is primarily comprised of a custom MATLAB function implementing the guidance

algorithms described in Chapter 3. The inputs to the guidance function are essentially all of the

user-facing commands to the attitude control system. These commands include the body fixed

Figure 14: Error Signal Processing Block Contents

50

pointing axis, the inertial pointing reference quaternion, and the spin rate for the spin pointing

mode, to name a few. The guidance function simply checks the control mode of the simulation,

and calculates the reference quaternion accordingly. This reference quaternion is then passed

through the digital reference filter if it is enabled. The true quaternion from the spacecraft

dynamics block is held constant for the sampling period of the control system, and the discrete

time attitude error vector is computed from the filtered reference quaternion and the true

quaternion. The resulting attitude error vector is the only output of this block.

 The attitude error vector as computed by the Error Signal Processing block is then sent to

the Control Algorithms block, shown in figure 15. This block implements three digital PID

controllers for each body frame axis, each of which are contained within the ‘PID + Feedback

Linearized Control Law’ block. The desaturation control law described in Chapter 3 is

implemented as a separate custom MATLAB function, and only outputs non-zero dipole

commands if the simulation is in desaturation mode. Once the actuator commands are computed

from the magnetorquer control law (currently only desaturate) and the PID control law, they are

sent to the ‘Torque Distribution Logic’ custom MATLAB function. This function distributes the total

control torque—as computed by the controller and magnetorquer control laws—among the

available actuators. In the current development state of this tool as this thesis is being written, this

function simply gives the reaction wheels all of the PID control torque, and gives the

Figure 15: Control Algorithms Block Contents

51

magnetorquers any dipole commands that come from the desaturation control law. However,

other strategies exist for distributing the controller outputs among the available actuators, and this

functionality is meant to provide a means of implementing such strategies. More specifically, [19]

develops a geometric approach to decompose the total control torque vector into a component

parallel to the magnetic field—which can be distributed to reaction wheels—and a component

perpendicular to the magnetic field, which can be distributed to magnetorquers. This torque

distribution stategy is one possible implementation for the torque distribution logic. A deeper look

into whether these strategies are worth considering from a broader engineering perspective

would be a productive exersice.

 Once the total control signal has been computed by the control laws and distributed

among the available actuators, the commands to each of the actuators are sent to the ‘Actuator

Dynamics’ block, shown in figure 16. Notice the simplicity of the top level view inside this block—

this is intentional. For each of the avaialable actuators, a model which takes a command as an

input and outputs the true relevant dynamic quantities is all that is required in the Actuator

Dynamics block as a whole. In the current development state, the tool implements a dynamics

model for three reaction wheels that is equivalent to the wheel dynamics model in the single axis

tool for each individual wheel. The wheel dynamics model is shown in figure 18.

Figure 16: Actuator Dynamics Block Contents

52

The current magnetorquer model implementation, on the other hand, is even simpler. It simply

saturates the dipole command from the desaturate controller, holds the command constant for a

sample period, and calculates the cross product of the saturated dipole vector with the local

magnetic field to yield an external torque. Figure 17 shows the magnetorquer model.

Once the true dynamic quantities are calculated by the actuator models, they are sent to the

‘Spacecraft Dynamics’ block, where the rigid body equations of motion are integrated. The

contents of the Spacecraft Dynamics block are shown in figure 19. The custom MATLAB function

in figure 19 simply implements the equations of motion for a rigid body with the wheel

accelerations as the control input. A step disturbance or sinusoidal disturbance can be injected

into the spacecraft dynamics, with an amplitude and frequency at the discretion of the user. This

allows the user to analyze the response of the control system to external disturbances in a

nonlinear simulation.

Figure 18: Wheel Dynamics Block Contents

Figure 17: Magnetorquer Block Contents

53

 Overall, the three axis Simulink tool is intended to be used only in preliminary design, as

it does not model much of what is going on during actual flight, nor does it take into account the

behavior of the real-time flight software implementations of the GNC algorithms. However, the

modeling fidelity is sufficient for preliminary design, and can be increased if necessary with more

sophisticated sub-models for the actuators, magnetic field, orbit, or spacecraft dynamics. All that

is required to do so is a replacement of the current block implementation with a new

implementation containing the same inputs and outputs. In its current state, this tool provides the

designer with the means of establishing preliminary control system specifications (e.g. bandwidth,

sample rate, phase margin, integral saturation limit, filter cutoff frequencies, etc.), as well as

sizing of magnetorquers and reaction wheels. If higher modeling fidelity is required after a

preliminary design is established, then the designer should consider moving onto the next and

final tool, which is the NASA 42 software-in-the-loop simulation framework.

 Finally, the exclusion of any estimation algorithms in the Simulink tools presented in this

work is intentional. Overall, the design and tuning of control laws can be performed without an

estimator in the loop, as long as the effects of potentially noisy feedback signals are not

Figure 19: Spacecraft Dynamics Block Contents

54

completely ignored. This is precisely the reason that a digital low pass filter was added before the

derivative term in the control law. Moreover, if the estimation algorithm is well designed and

performs as expected, then it should significantly attenuate measurement noise. As long as most

of the noise power in the feedback signal is concentrated around frequencies that are significantly

above the bandwidth of the control system, its effect on the closed loop dynamics will be minimal.

In chapter 5, it will be shown that this in fact that case with the existing extended Kalman filter

design by Mehrparvar and implemented in flight software by Bouchard. If a different estimation

algorithm than the one currently implemented is required for a given flight mission, then it would

need to be prototyped and tested in the NASA 42 software-in-the-loop environment. Development

of tools for designing and testing estimation algorithms outside of the NASA 42 software-in-the-

loop environment is beyond the scope of this thesis.

4.3 Critical Design: NASA 42 Software-in-the-Loop Environment

 Once the preliminary control system design has been established by means of utilizing

the Simulink tools outlined in the previous two sections, and the ADCS is roughly at a PDR level

maturity, the critical design phase begins. In this phase of development, high modeling fidelity is

required to provide increased certainty that the ADCS functional and performance requirements

are being satisfied before moving onto hardware procurement and testing. As was outlined in

Chapter 2, the CPCL has developed a software-in-the-loop simulation environment employing

NASA 42 as the truth model. This section will provide increased detail on the capabilities of the

simulation environment and how this thesis has contributed to it, with an emphasis on sensor and

actuator models and custom processing of user input files.

 Within the NASA 42 software-in-the-loop simulation environment, there are two

processes consistently invoking one another during a simulation run. The first of these is

processes is the ADCS flight software itself, and the second is NASA 42. If the real time flight

software implementations of the GNC algorithms are subject to flight-like signals from NASA 42

sensors, and they command actuators whose dynamics are well modeled, it is possible to

achieve a much higher degree of confidence that the system will meet its requirements than with

the previously mentioned Simulink tools alone. That is precisely the goal of this environment—to

55

provide a much higher requirement verification confidence in the critical design phase of the

mission development timeline.

 NASA 42 is written in a modular fashion such that custom models of sensors and

actuators can be implemented in its framework without required modification anywhere else

within the code base. In this work, generic sensor models for rate gyros, magnetometers, and sun

sensors are utilized. Each model operates in discrete time, and the sensors are sampled at the

same rate that the control algorithms are executed. The following sub sections will provide details

on how each of these models are implemented in the software-in-the-loop simulation framework.

4.3.1 Digital Rate Gyro Sensor Model

 Excluding scale factors and misalignments, the rate gyro measurement model in NASA

42 implements the following widely used rate output and bias equations as given in [14]:

𝝎𝑘+1 = 𝝎𝑘+1
𝑡𝑟𝑢𝑒 +

1

2
(𝜷𝑘+1

𝑡𝑟𝑢𝑒 + 𝜷𝑘
𝑡𝑟𝑢𝑒) + (

𝜎𝑣
2

𝛥𝑡
+

1

12
𝜎𝑢

2𝛥𝑡)

1/2

𝑵𝑣

𝜷𝑘+1
𝑡𝑟𝑢𝑒 = 𝜷𝑘

𝑡𝑟𝑢𝑒 + 𝜎𝑢√𝛥𝑡 𝑵𝑢

Where the subscript 𝑘 denotes the 𝑘𝑡ℎ time step, 𝝎 is an angular velocity vector, 𝜷 is a bias rate

vector, 𝜎𝑣 and 𝜎𝑢 are the standard deviations of the Gaussian amplitude probability distributions

of the rate output signal and bias rate signal respectively, and 𝛥𝑡 is the sample period of the

digital rate gyro. Finally, 𝑵𝑣 and 𝑵𝑢 are zero-mean Gaussian white noise processes with

covariance matrices given by the identity matrix. The resulting rate gyro measurement is then

passed to the state estimation algorithm.

 The derivation of the above model will not be included in this work, but it is essentially a

discretized version of the following continuous time rate gyro measurement model:

𝝎(𝑡) = 𝝎𝑡𝑟𝑢𝑒(𝑡) + 𝜷𝑡𝑟𝑢𝑒(𝑡) + 𝜼𝑣(𝑡)

𝜷̇𝑡𝑟𝑢𝑒 = 𝜼𝑢(𝑡)

Where 𝜼𝑣 and 𝜼𝑢 are both stationary white noise processes. Conceptually, this model of the rate

gyro output dynamics says that the bias follows a random walk in discrete time as obtained by

56

integration of white noise in continuous time, and the angular rate output is corrupted by both the

current bias and a different white noise process. The rate gyro scale factor is also modeled, and it

simply scales the true angular rate 𝝎𝑘+1
𝑡𝑟𝑢𝑒 in the above discrete time model. Fortunately, the

datasheets for most commercially available rate gyros contain information about the standard

deviation of the output noise as well as the bias random walk and sometimes the scale factor.

One subtlety regarding the standard deviation 𝜎𝑢 of the white noise process corresponding to the

bias derivative is that it does not have the same units as the corresponding relevant specification

listed in most gyro datasheets (e.g. “in-run bias stability”). This is because the datasheets do not

make assumptions about the frequency with which the sensor is sampled, and instead list the

product 𝜎𝑢√𝛥𝑡, which has units of angle per time. Therefore in this context, the user of the

software-in-the-loop simulation environment is expected to provide NASA 42 with the product

𝜎𝑢√𝛥𝑡, and the standard deviation 𝜎𝑢 is indirectly calculated internally before being initialized by

NASA 42.

4.3.2 Sun Sensor Model

 In this work, the PolySat in-house sun sensors are modeled as Fine Sun Sensor (FSS)

types in NASA 42. Since this thesis presents the first attempt at modeling these in-house sensors

with any sort of rigor, it may turn out that Coarse Sun Sensor (CSS) types in NASA 42—or a

different customized model for that matter—more accurately reflect the behavior of these

sensors. However, for the sake of the analysis presented in this thesis, the Fine Sun Sensor type

is deemed an adequate model.

 Each sun sensor is assumed to have a pyramidal field of view. When the FSS model

executes in NASA 42, the simulation first checks whether the spacecraft is in eclipse, and if so, all

solar angle sensor outputs are set to zero, and their readings do not get processed by the state

estimation algorithm. If the spacecraft is not in eclipse, NASA 42 will iterate over all existing sun

sensors and evaluate whether the sun vector is in each of their fields of view. First, the true body

frame sun vector is projected into the sensor frame using the true body to sensor frame

transformation with

57

𝒓𝑠𝑠 = 𝐶𝐵𝑆𝒓𝑠𝑏

Where 𝒓𝑠𝑠 is the true unit vector pointing from the spacecraft to the sun expressed in sensor

coordinates, and 𝒓𝑠𝑏 is the same vector expressed in body coordinates. To determine whether

the sun is in the FOV of a sun sensor, the following angles are computed using the x and y

components of the sun unit vector expressed in the sensor frame:

𝜃𝑥 = sin−1(𝒓𝑠𝑥)

𝜃𝑦 = sin−1(𝒓𝑠𝑦)

Figure 20 depicts the geometry of the sun unit vector (yellow) expressed in the sensor frame with

the angles 𝜃𝑥 and 𝜃𝑦.

If the angles 𝜃𝑥 and 𝜃𝑦 are both less than the angles defining the pyramidal field of view in both

the x and y axes respectively, then the sun is determined to be within the field of view of the

sensor. Next, each of these angles are corrupted by a Gaussian white noise process whose

standard deviation can be stated in terms of an angle (i.e. the “Noise Equivalent Angle” in NASA

42). Mathematically, the measured angles are computed as

𝜃𝑥,𝑚 = 𝜃𝑥 + 𝜎𝜃𝑁𝜃

𝜃𝑦,𝑚 = 𝜃𝑦 + 𝜎𝜃𝑁𝜃

Figure 20: NASA 42 Sun Sensor FOV Geometry

58

Where the subscript 𝑚 denotes the measured angles, 𝜎𝜃 is the standard deviation of the

Gaussian amplitude probability distribution of the angular measurement noise, and 𝑁𝜃 is a zero-

mean Gaussian white noise process with unity variance. The measured angles are then

quantized according to the digital resolution of the sensor. Finally, the measured sun unit vector

in the sensor frame is computed as

𝒓𝑠𝑠,𝑚 =

[

sin(𝜃𝑥,𝑚)

sin (𝜃𝑦,𝑚)

√1 − (sin(𝜃𝑥,𝑚))2 − (sin(𝜃𝑦,𝑚))2

]

The resulting measured sun vector 𝒓𝑠𝑠,𝑚 is then passed to the state estimation algorithm.

4.3.3 Magnetometer Model

 The magnetometer model is the simplest of the sensor models utilized in this work. First,

the true magnetic field vector expressed in body frame is first projected into sensor coordinates

using the true body to sensor frame transformation with

𝒓𝑚𝑠 = 𝐶𝐵𝑆𝒓𝑚𝑏

Where 𝒓𝑚𝑠 is the true magnetic field vector expressed in the sensor frame, and 𝒓𝑚𝑏 is the true

magnetic field vector expressed in body frame. The vector 𝒓𝑚𝑠 is then corrupted with Gaussian

white noise using

𝒓𝑚𝑠,𝑚 = 𝒓𝑚𝑠 + 𝜎𝑚𝑵𝑚

Where the subscript 𝑚 denotes the measured magnetic field vector, 𝜎𝑚 is the value of the RMS

magnetometer output noise, and 𝑵𝑚 is a zero-mean Gaussian white noise process with zero-

mean and covariance matrix given by the identity matrix. Finally, the readings are saturated and

quantized to the resolution of the digital output.

4.3.4 Actuator Models

 At the time this thesis is being written, the actuator models in NASA 42 simply implement

saturation wherever it is applicable. Higher fidelity actuator models in the NASA 42 simulation

framework constitute future work that will improve the overall quality of the software-in-the-loop

59

framework, and are beyond the scope of this thesis. However, in the previous section outlining

the MATLAB/Simulink tools, much more sophisticated models for reaction wheels were

developed. This would be a very good starting place for implementing a more sophisticated

reaction wheel model in NASA 42. Furthermore, if the actuator dynamics are shown to have

minimal impact on the closed loop performance using the Simulink tools, the same should be

expected in software-in-the-loop simulations and thus the exclusion of sophisticated actuator

dynamics is not unreasonable.

 NASA 42 does support modeling internal spacecraft attitude perturbations as a result of

static and dynamic wheel imbalance, based off models given in [14]. This work will take

advantage of this capability to investigate whether reaction wheel imbalance has an effect on

pointing performance or stability. Reaction wheel imbalance forces and torques arise as a result

of the fact that the wheels do not spin perfectly around one of their principle axes, and that their

center of mass is not colinear with their spin axis.

 When the reaction wheel does not spin perfectly around its center of mass, a centripetal

force must be imparted on the mass of the flywheel from the bearing assembly in order to

maintain circular motion of the center of mass of the flywheel about its axis of rotation. In a

reference frame attached to and rotating with the reaction wheel with the z axis pointing along the

wheel spin axis, this force is given by

𝑭 = −𝑚𝜔𝑤
2 [

𝑥
𝑦
0
]

Where 𝑚 is the mass of the reaction wheel, 𝜔𝑤 is the rotational velocity of the reaction wheel

around its spin axis, and 𝑥 and 𝑦 are the instantaneous x and y coordinates of the reaction wheel

center of mass in the reaction wheel frame. The constant quantity

𝑈𝑠 = 𝑚√𝑥2 + 𝑦2

is the static imbalance of the reaction wheel assembly. Assuming that the reaction wheels are not

collocated with the center of mass of the spacecraft in which they are mounted—which is

60

basically always the case—a disturbance torque will arise as a result of this centripetal force,

given by

𝑻𝑠 = 𝒓𝑤 𝑥 𝐶𝑏𝑤𝑭

Where 𝒓𝑤 is the location of the reaction wheel in the spacecraft body frame whose origin is at the

center of mass, and 𝐶𝑏𝑤 is the matrix that transforms vectors in the wheel frame to vectors in the

spacecraft body frame. From this relation, it is apparent that the location and orientation of the

wheel with respect to the spacecraft body frame does in fact affect the attitude dynamics.

Furthermore, these disturbances show up at frequencies roughly proportional to the rotational

speed of the reaction wheels, which is always higher than the bandwidth of the attitude control

system for all intents and purposes. Therefore, these disturbances cannot be rejected by the

control system. If they are detrimental to the system’s pointing performance, the reaction wheels

must be deliberately located and oriented within the spacecraft body frame so as to prevent these

disturbances from compromising the system performance.

 Since the spin axis of a reaction wheel is not perfectly aligned with one of its principle

axes, a gyroscopic torque is required to keep the wheel rotating around its spin axis. Assuming

the reaction wheel is rotating perfectly around its z axis, this gyroscopic torque in the wheel frame

is given by

𝑻𝑑 = 𝜔𝑤
2 [

−𝐽𝑦𝑧

𝐽𝑥𝑧

0

]

Where 𝐽𝑧𝑦 and 𝐽𝑥𝑧 are products of inertia of the reaction wheel inertia matrix expressed in the

reaction wheel frame. The constant quantity

𝑈𝑑 = √𝐽𝑦𝑧
2 + 𝐽𝑥𝑧

2

Is the dynamic imbalance of the reaction wheel assembly. Similar to torques arising from static

imbalance, dynamic imbalance torques also show up at frequencies proportional to the rotational

speed of the reaction wheel. However, in this case the location or orientation of the reaction

61

wheel does not affect the dynamic imbalance torque. Therefore, if this torque compromises

pointing performance or stability, it is up to the design of the reaction wheel assembly itself—and

the associated manufacturing processes—to reduce the dynamic imbalance down to a tolerable

value. Chapter 5 of this thesis will show that the static and dynamic imbalance of CubeSat class

reaction wheels does not compromise pointing performance requirements on the order of a few

degrees.

4.3.5 Inertia Matrix Uncertainty

 Since it is impossible to achieve perfect knowledge of the inertia matrix for a given

spacecraft mass distribution, it is necessary to investigate how uncertainty in the inertia matrix

may affect closed loop performance and stability. Therefore, in the software-in-the-loop

framework, the inertia in the flight software differs from the true inertia used in simulation by a

percentage specified as one of the simulation input parameters.

 Based on the control algorithm design procedure outlined in Chapter 3, and based on the

estimation algorithm that has been implemented in the flight software, the inertia matrix is

assumed to be diagonal in the body frame. For CubeSats, this is generally a reasonable

assumption. However, it is not exactly the case, and the products of inertia in a body fixed frame

whose basis vectors are perpendicular to the CubeSat faces will be very small yet non-zero.

Therefore, the nominal diagonal elements of the inertia matrix used in the estimation algorithm

and in the design of the control algorithm are increased or decreased by a user-defined

percentage. These perturbed quantities are then set as the true diagonal elements in the

simulation. The simulation is also given non-zero products of inertia.

4.3.6 Alignment Errors

 Alignment errors are simulated separately from the sensor models in NASA 42. For each

sensor, the transformation between the sensor output frame and spacecraft body frame must be

estimated so that it can be applied to the digital output signal of the sensor in the flight software

before being sent to the state estimation algorithm. Therefore, misalignment error for a given

sensor is simulated by providing the flight software with an inaccurate sensor to body

62

transformation relative to the true one that exists in the NASA 42 side of the simulation

framework. Since alignment errors can be assumed to be small, the following body to sensor

frame transformation is provided to NASA 42:

𝐶𝑆𝐵 = [𝐶𝑥(𝜃𝑥 + 𝛿𝜃𝑥) 𝐶𝑦(𝜃𝑦 + 𝛿𝜃𝑦)𝐶𝑧(𝜃𝑧 + 𝛿𝜃𝑧)]
𝑇

Where the angles 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧 are the nominal ZYX mounting angles from sensor to body

frame, and 𝛿𝜃𝑥, 𝛿𝜃𝑦 and 𝛿𝜃𝑧 are the small mounting alignment errors around each sensor axis.

When NASA 42 executes the sensor models, it uses the above transformation to project the true

body frame value of the physical vector in question into the sensor frame, then applies the output

noise. Once the sensor output reaches the flight software, the inverse of the above transformation

without the 𝛿𝜃𝑥, 𝛿𝜃𝑦 and 𝛿𝜃𝑧 mounting errors is applied to transform the sensor output into the

body frame.

4.3.7 Custom Yaml Input File Design

 Due to the inherently complicated and brittle nature of the NASA 42 input configuration

files, a more simple interface to the user of the software-in-the-loop simulation tool was desirable.

The author of this thesis, in collaboration with software engineers in the Cal Poly CubeSat

Laboratory, designed a yaml file structure containing all of the relevant simulation configuration

parameters along with a script to parse the Yaml files and convert them into the respective NASA

42 compatible configuration files. To run a simulation, the user must provide the simulation with

four Yaml files: (1) a baseline simulation file, (2) a custom simulation file, (3) a baseline

spacecraft file, and (4) a custom spacecraft file. The user must also provide the simulation with a

fifth configuration file corresponding to the ADCS flight software configuration. The spacecraft

Yaml files contain all of the information pertaining the sensor and actuator configuration as well

as the mass properties and initial dynamic state of the spacecraft being simulated. On the other

hand, the simulation Yaml files contain all simulation specific parameters, such as the start time in

UTC, the duration of the simulation, and on/off parameters for spacecraft perturbation models.

Baseline files contain every possible simulation parameter, and custom files represent changes or

additions to those parameters. Both the baseline and custom Yaml files are parsed into Python

63

dictionaries, and all of the parameters in the resulting custom dictionary are overlaid onto the

baseline dictionary. Then, all of the data in the resulting overlaid dictionary is properly formatted

and written to the NASA 42 configuration files. Therefore, the simulation will be configured with all

of baseline parameters, with the exception that any parameters specified in the custom Yaml files

will overwrite their respective baseline parameters. This input file design not only makes it easier

for the user to see all of the simulation parameters in only a few places, but also gives the user

the ability to simulate a specific scenario with mostly the same parameters, and perturb some of

the parameters off of their baseline values to explore a local region in the parameter space.

Appendix A provides an example of the actuator section from a baseline spacecraft file. Although

the spacecraft Yaml file contains quite a few parameters, they are organized in such a way that it

is relatively easy for the user to find relevant parameters and change them. Furthermore, the

order in which these parameters are listed in the file will not change the resulting NASA 42

configuration files, since the parameters are parsed into name based data structures (Python

dictionaries). For example, swapping the location of the “Actuators” section with the “Sensors”

section in the above file will result in the exact same NASA 42 configuration files, and the

simulation will behave identically in either case. Appendix A provides an example of a baseline

simulation file. Unlike the baseline spacecraft file, the baseline simulation file has only a few

parameters. As seen in the figure, the user can configure the simulation to model specific

disturbances to isolate more important ones or simplify the analysis if necessary.

 The previous subsections have provided an outline of the relevant NASA 42 capabilities,

as well as how this work has contributed to making use of those capabilities in the context of the

Cal Poly CubeSat Laboratory ADCS design and analysis workflow. In the next chapter, the full

ADCS design and analysis process from conceptual design to critical design will be performed

using the tools presented in this work.

 A final comment on the use of NASA 42 for a real flight mission: a more rigorous method

for developing sensor and actuator models—perhaps utilizing a well-defined system identification

procedure—is strongly recommended. Simulating sensors based on generic models and

referencing parameters from datasheets is sometimes acceptable, but can be insufficiently

64

accurate for certain verification applications. However, such an activity is beyond the scope of this

thesis.

65

Chapter 5

VALIDATION OF TOOLKIT UTILITY AND DESIGN APPROACH

 In this chapter, the improvements to the ADCS toolkit and the design methodologies

outlined in chapters 3 and 4 will be employed to complete the CPCL ADCS design, and show that

it could be used to satisfy the system level performance requirements of an ADCS for a large

class of modern CubeSat flight missions. Therefore, this chapter will serve as a validation of the

toolkit utility by demonstrating that it can be used to both create and validate an example ADCS

design. For each control system pointing mode developed in chapter 3, the pointing performance

of a notional CPCL ADCS design will be evaluated. Initially, the MATLAB/Simulink tools will be

utilized to establish preliminary controller specifications in conjunction with the actuator

parameters. Finally, the NASA 42 software-in-the-loop simulation framework will be used to

provide a better estimate of the system performance with additional error sources, including

sensor noise and estimation dynamics, alignment errors, inertia matrix uncertainty, and orbit

knowledge error.

5.1 MATLAB/Simulink: Single Axis Design and Analysis

 A reasonable first step in the preliminary design phase of ADCS development is to design

a control law and specify actuators that will be capable of supporting such a control law. This task

can be performed with the aid of the single axis Simulink tool developed in the previous chapter.

As an example, a PID controller is initially designed to achieve the characteristics in table 2. The

actuator specifications given in table 3, which are representative of an in-house reaction wheel

design current in progress at the CPCL, are used in this analysis. Both the controller and actuator

specifications are then used to fully define all the parameters in the single axis Simulink model,

and an initial simulation is performed. The PID control law designed for the specifications in table

2 commands reaction wheels with the specifications in table 3 to obtain the closed loop step

response. The resulting simulation outputs are then examined to evaluate the combined

effectiveness of the controller and reaction wheel.

66

Table 2: Controller Specifications in Single Axis Simulation

Specification Value

Open Loop Gain Crossover Frequency 0.05 𝑟𝑎𝑑/𝑠

Phase Margin 65˚

Sampling Period 1.0 𝑠𝑒𝑐

Derivative Filter Cutoff Frequency 0.5 𝑟𝑎𝑑/𝑠

Reference Filter Cutoff Frequency 0.03 𝑟𝑎𝑑/𝑠

Integral Saturation Limit 1 𝑚𝑁𝑚

Attitude Error Deadband 0.005 𝑟𝑎𝑑

Deadband Convergence Time 120 𝑠𝑒𝑐

 The controller specifications listed in table 2 may look somewhat arbitrary. However, they

have in fact been chosen based on engineering judgement and an iterative process.

 Figures 21 through 26 provide the system response in both the time and frequency

domain as determined by the single axis tool. The axial moment of inertia defining the plant in this

simulation is 0.025 𝑘𝑔𝑚2.

Table 3: Actuator Parameters in Single Axis Simulation

Parameter Value

Maximum Momentum Storage 5 𝑚𝑁𝑚𝑠

Spin Axis Inertia 9.42 𝑥 10−7 𝑘𝑔𝑚2

Maximum Torque 1.61 𝑚𝑁𝑚

Mechanical Speed Time Constant 0.365 𝑠𝑒𝑐

Minimum Speed Bit 12.5 𝑟𝑝𝑚

Speed Controller Sampling Frequency 5.36 𝑘𝐻𝑧

67

Figure 21: Single Axis Model Closed Loop Attitude Step Response

Figure 22: Single Axis Model Closed Loop Rate Response

68

Figure 23: Single Axis Closed Loop Frequency Response

Figure 24: Single Axis Open Loop Frequency Response

69

Figure 25: Single-Axis Closed Loop Wheel Momentum Response

Figure 26: Single Axis Closed-Loop Controller Response to Reference Step

70

 The simulation results in figures 21 through 26 show that a controller with specifications

given in table 2, when commanding a reaction wheel with parameters given in table 3, the single

axis system performs well. The actuator commands are benign, and the attitude rate does not

exceed 1.2 degrees per second, which is well within the linear range of the three axis attitude

dynamics. Figure 21 shows that the system takes about 4 minutes to settle on the commanded

attitude angle, which is an acceptable amount of time for a large angle attitude maneuver in most

mission scenarios. Moreover, the steady state limit cycle behavior is significantly mitigated by the

deadband logic, as seen in figure 27. Eventually, the wheel angular momentum stops bouncing

between zero and the momentum corresponding to the minimum resolution of the digital wheel

speed controller commands. Although this actuator model does not take into account effects such

as stiction and other nonlinear behaviors at low wheel speeds, this serves as a proof of concept

that the deadband logic presented in this thesis can be used to mitigate undesirable steady state

actuator limit cycle behavior.

Figure 27: Steady State Wheel Momentum Limit Cycle Suppression

71

5.2 MATLAB/Simulink: Three Axis Design and Analysis

 After establishing preliminary verification that the actuator specified in table 3 can support

the corresponding control law designed to achieve the specifications given in table 2, the analysis

is extended into the three axis Simulink tool. In this tool, the user has the ability to investigate the

control system behavior under the influence of more interesting attitude profiles, not just a step

command. For the sake of the analysis presented in this thesis, each of the control modes

outlines in chapter 3 except for ephemeris pointing will be analyzed, using the same controller

and actuator specifications provided in the previous subsection. A good starting place for analysis

using the three axis analysis tool is to initialize the system with zero initial conditions and

command a constant attitude (i.e. simulate a rest to rest attitude slew maneuver). In the case that

there are any issues with the design, finding those issues in a rest to rest simulation makes

debugging and further iteration significantly easier. Figures 28 through 30 show the salient

outputs from the three axis Simulink tool for a rest to rest maneuver. In this simulation, the

controller and actuator specifications are identical to those given in the single axis case.

Furthermore, the inertia matrix is not perfectly diagonal. Instead, the principle frame is a rotated

Figure 28: Three Axis Nonlinear Rest-to-Rest Attitude Response

72

degrees around each body frame axis to analyze the system performance with an inertia matrix

that is not given in the principle frame.

Figure 30: Three Axis Nonlinear Rest-to-Rest Attitude Error Response

Figure 29: Three Axis Nonlinear Rest-to-Rest Body Rate Response

73

 In figure 28, the commanded quaternion corresponds to a ZYX attitude sequence through

45, -60, and -30 degree angles, respectively. Figure 30 shows the attitude error response.

 The rest to rest maneuver performs as expected based on figures 28 through 30. The

next pointing mode of interest is nadir pointing. In this mode, the reference filter will be disabled

as it gives rise to nonzero steady state attitude error due to the small phase lag at the reference

frequency of interest. A potential mitigation to this issue is to stop providing the attitude control

algorithm with the filtered reference signal when the absolute value of the unfilitered attitude error

around each axis is within a deadband for a specified duration, similar to the deadband logic

implemented in the single axis tool. However, this logic has not yet been developed for the three

axis tool, and is beyond the scope of this thesis. This topic will be elaborated upon in the future

work chapter.

 Initially, the controller specifications are left unchanged for the nadir pointing mode to

investigate whether the same gains and filter coefficients can achieve good performance. Figures

31 through 33 show the salient outputs from a nadir pointing mode simulation.

Figure 31: Three Axis Nonlinear Nadir Pointing Attitude Response

74

 As seen in figures 31 through 33, the closed loop system still performs well in nadir

pointing mode with the same set of controller specifications. Furthermore, notice in figure 31 that

the body rates still remain relatively small; in this case less than 4 degrees per second. Therefore,

Figure 33: Three Axis Nonlinear Nadir Pointing Body Rate Response

Figure 32: Three Axis Nonlinear Nadir Pointing Attitude Error Response

75

the small angular rate assumptions made in the design of the control algorithms remain valid in

this mode. Figure 33 shows that the attitude errors are successfully driven to zero.

 The next pointing mode that will be analyzed is the ground pointing mode. In this mode,

the frequency content of the reference signal is much more dependent on the orbit geometry

relative to the commanded ground location. Therefore, selection of the control system

specifications is much less obvious and will likely require multiple iterations. Furthermore,

selection of the body fixed pointing axis in this mode is also important. If an axis that is far away

from the major axis of inertia (e.g. the largest principle axis) is commanded, the spacecraft will

have a harder time maintaining pointing. In this work, the minor axis of inertia (+Z) is chosen as

the commanded body fixed axis for a roughly axisymmetric mass distribution (i.e. a 3 U CubeSat).

The spacecraft is simulated in an approximately eccentric (e ≈ 0.02) low Earth orbit with an

inclination of 45 degrees. The commanded body fixed location has a longitude of 60 degrees and

a latitude of 50 degrees, slightly higher than the inclination. Finally, the open loop gain crossover

frequency was increased to 0.075 𝑟𝑎𝑑/𝑠 and the reference filter was disabled so that the

Figure 34: Three Axis Nonlinear Ground Pointing Attitude Error Response

76

controller can better track slightly higher frequency reference signals. Figures 34 through 36 show

the outputs for this simulation.

 As seen in figure 34, the attitude errors are successfully driven to near zero in the ground

pointing mode. At around 1200 seconds into the simulation, the attitude errors grow slightly and

Figure 36: Three Axis Nonlinear Ground Pointing Attitude Response

Figure 35: Three Axis Nonlinear Ground Pointing Body Rate Response

77

return to zero again – this happens near the same time at which the distance between the

spacecraft and the commanded ground location is minimized. When this happens, the reference

quaternion starts to change at a frequency for which the closed loop gain and/or phase are

nonzero. However, as seen in figure 37, the attitude error around each axis within this time

window does not exceed a few degrees, which is tolerable for most CubeSat missions. If a

smaller attitude error transient during this time is desired, the control system bandwidth can be

increased.

 Figure 35 shows that the body rates in the ground pointing mode, for this particular

simulation configuration, do not exceed 5 degrees per second around each axis. These rates are

still acceptable in terms of staying within the linear region of the spacecraft dynamics.

Finally, it is important to note that in ground pointing mode, very sharp changes in the reference

quaternion can occur depending on the orbit geometry relative to the commanded ground

location. The three axis tool provides a means of analyzing and mitigating such scenarios.

 The final pointing mode that will be analyzed in this work with the three axis tool is the

spin pointing mode. The body z axis is chosen as the body fixed pointing axis, with a commanded

Figure 37: Brief Attitude Error Transient During Ground Pointing

78

spin rate of 1 degree per second. The commanded inertial axis is the x direction of the inertial

frame (in most definitions of ECI, the first point of Aires). As seen in figure 38, the body rates

Figure 39: Three Axis Nonlinear Spin Pointing Attitude Error Response

Figure 38: Three Axis Nonlinear Spin Pointing Body Rate Response

79

around the x and y axes converge to zero, while the z axis rate converges to the commanded

rate. Furthermore, the attitude errors are successfully driven to zero as seen in figure 39. It is

important to note that in this mode, the attitude error around the commanded body fixed axis is

not relevant from the perspective of pointing accuracy. Finally, choosing a relatively small (less

than about 5 degrees per second) commanded spin rate is critical, since the control laws are

designed for a system linearized around small angular rates.

 At this point, the success of four pointing modes in a single simulation case has been

demonstrated with the three axis MATLAB/Simulink tool. Although this does not provide an

exhaustive analysis, it does show that as a whole, this tool has significant utility. Further analysis

of each of the pointing modes under multiple different simulation configurations has been

performed, and so far, no egregious or unexpected behavior has arisen. These cases will not be

shown in this thesis for the sake of conciseness.

 Desaturation is the final control system mode to be analyzed within the context of the

three axis Simulink tool developed in this work. To test the desaturation control law, the reaction

wheel momenta are initialized to non-zero values, and the attitude controller attempts to maintain

the initial attitude. Figure 41 shows the wheel momenta across the entire simulation. As expected,

Figure 40: Three Axis Nonlinear Spin Pointing Attitude Response

80

the wheel momenta decrease on average across the desaturation maneuver and settle to near

zero. In this case, it took the desaturation controller about 25 minutes to remove approximately

1.6 𝑚𝑁𝑚𝑠 of angular momentum.

 In this simulation, the spacecraft orbit is slightly non-circular with an inclination of 52

degrees. The desaturation control gain is set to 120 𝐴𝑚2/𝑁𝑚𝑠. It is important to note that with

this particular desaturation control law, the spacecraft orbit, reaction wheel characteristics, and

desaturation gain largely affect the performance of the desaturation maneuver. The reason for

this is that the magnetorquers are underactuated: they can only generate a torque that is

perpendicular to the local magnetic field vector. Therefore, for some orbits, the geometry of the

magnetic field across the orbit is disadvantageous with respect to the torque directions required

to remove the angular momentum of the reaction wheels. Careful and thorough analysis must be

performed in order to fully understand how the desaturation control law behaves in different

scenarios. This simulation is only one scenario – it is possible that in different orbits and attitudes,

the performance will be significantly better or worse.

 The spacecraft attitude was affected significantly during this desaturation maneuver as

seen in figure 43. However, once the wheel momenta became sufficiently low and the

magnetorquers stopped actuating, the attitude controller was able to bring the spacecraft back to

the commanded attitude. Such an interaction illustrates a tradeoff with this desaturation control

law: if a higher desaturation gain is chosen to remove angular momentum faster, the attitude error

transient during the maneuver is more pronounced. One way to mitigate this issue is to feed

forward the external torque from the magnetorquers to the PID controller during the maneuver.

However, to keep the implementation of algorithms simpler, this feedforward action not included.

 Figure 42 shows the dipole moments commanded to the magnetorquers from the

desaturation control law during this simulation. Saturation clearly occurs, but this has no adverse

effect on the performance and is not a concern from a hardware operation perspective.

 At this point, both the single axis and three axis MATLAB/Simulink tools have been

utilized to develop and verify a preliminary control system design for the Cal Poly CubeSat

Laboratory. The preliminary design consists of actuators whose high level performance

81

parameters like strength, saturation, and resolution are relatively well known. A discrete time PID

control law was then shown to perform effectively when commanding these actuators in

simulation for all of the control system operational modes presented in Chapter 3 with the

exception of the ephemeris pointing mode, whose behavior is very similar to ground pointing.

Figure 42: Desaturation Dipole Commands

Figure 41: Desaturation Wheel Momentum Profile

82

 The next step in the overall ADCS design process is to incorporate higher fidelity

modeling features that capture the effects of sensor noise and additional sources of uncertain

parameters that may affect the closed-loop system level performance. Furthermore, transitioning

into a simulation environment in which the entire flight-software ADCS process is invoked

provides much better validation confidence. In the next section, the software-in-the-loop

environment outlined in chapter 2 of this thesis will be utilized to increase the resolution of the

overall ADCS design and provide more confidence that it will meet similar pointing performances

that were found in Chapter 1.

Figure 43: Desaturation Attitude Error Response

83

5.3 Software-in-the-Loop Simulation Framework: Design and Analysis

 In this final section of Chapter 5, the software-in-the-loop simulation environment

employing NASA 42 as the truth model will be utilized to predict the system level pointing

performance of a completed version of the CPCL ADCS design and compare it to the baseline

performance requirements derived in Chapter 1. The entire anticipated hardware suite includes

reaction wheels and magnetorquers as actuators, and sun sensors, rate gyros, and

magnetometers as sensors. The specifications of the sensors and actuators provided to NASA 42

are shown in table 4. The sensor dynamics models used in the simulation environment were

provided in Chapter 4. On the other hand, the actuator dynamic models are vastly simplified in

the NASA 42 environment relative to the ones currently implemented in this work from Chapter 3.

NASA 42 is configured to model the spacecraft as a rigid body under the influence of solar

radiation pressure forces and torques, gravity gradient torques, and aerodynamic drag forces and

torques. Figure 44 shows the ADCS sensor and actuator layout that is being simulated.

Figure 44: Vehicle ADCS Configuration in Software-in-the-loop Simulation

84

Table 4: Sensor and Actuator Characteristics and Performance

CPCL Sun Sensors

Parameter Value

RMS Angle Noise (𝜎𝜃) 0.5˚

FOV (sensor x direction) 45˚

FOV (sensor y direction) 45˚

Mounting Alignment Errors ~0.5˚ in each axis

Output Resolution 0.1˚

Body Frame Locations Center of each panel facing outward

MMC5883 Magnetometer

Parameter Value

RMS Output Noise (𝜎𝑚) 4 𝑥 10−8 𝑇𝑒𝑠𝑙𝑎

Scale Factor 1000 𝑝𝑝𝑚

Saturation 8 𝑥 10−4 𝑇𝑒𝑠𝑙𝑎

Mounting Alignment Errors ~1˚ in each axis

Output Resolution 2.5 𝑥 10−8 𝑇𝑒𝑠𝑙𝑎

Body Frame Location [x, y, z] Origin

ADIS16500 Rate Gyro

Parameter Value

Angle Random Walk [x, y, z] [0.29, 0.29, 0.32] ˚/√ℎ𝑟

1σ In-run Bias Stability [x, y, z] [8.1, 8.1, 8.1] ˚/ℎ𝑟

Scale Factor 5000 𝑝𝑝𝑚 in each axis

Output Range +/−125 ˚/𝑠 in each axis

Mounting Alignment Errors ~1˚ in each axis

Body Frame Location Origin

CPCL Reaction Wheels

Parameter Value

Maximum Torque 1.61 𝑚𝑁𝑚

Momentum Storage 5 𝑚𝑁𝑚𝑠

Static Imbalance 0.003 𝑔𝑐𝑚

Dynamic Imbalance 0.003 𝑔𝑐𝑚2

Mounting Alignment Errors [az, el] [0.5 0.5]˚

Body Frame Location Clustered around [0, 0, −0.15] 𝑚

85

 In the following subsections, simulation outputs are presented for each of the control

modes outlined in Chapter 3. In all cases, the spacecraft is initialized at the home quaternion with

zero angular rates. Simulation specific parameters are listed in table 5. In each simulation, the

spacecraft is in sunlight to analyze the performance when sun sensor measurements are

available as inputs to the estimation algorithm. Analysis of closed-loop behavior and performance

during which the spacecraft is in eclipse is not included in this work.

 In each mode, a python implementation of the control algorithm is handling the same

logic that would be handled by a flight software implementation of the Controller type. In all cases

except for the inertial pointing mode, the digital reference filter does not exist in the algorithm

implementation.

Table 5: Simulation Specific Parameters

Parameter Value

Orbit Epoch (UTC) 11 May 2020, 14:30:15.00

Orbit Geometry ~400𝑘𝑚 circular, 28˚ inclined

Inertia Matrix Uncertainty 10% in each principle axis

5.3.1 Inertial Pointing

 The salient results of a rest-to-rest attitude slew maneuver are given in figures 45 and 46.

The attitude step response in figure 45 exhibits small but noticeably different behavior in the time

domain relative to the response in the three axis Simulink tool. These differences are easily

attributable the aggregate effects from estimator dynamics and sensor noise, reaction wheel

imbalance and misalignment, and external disturbances. The estimation algorithm and control

algorithm are interacting successfully in this simulation case, giving rise to desirable closed loop

performance. The steady state pointing error achieved in this simulation case is about 3.2˚ in the

CPCL Magnetorquers

Parameter Value

Dipole Saturation 0.07 𝐴𝑚2

Mounting Alignment Errors [az, el] [0.5 0.5]˚

86

eigenaxis/angle sense. This pointing error is broken down into the more relevant per axis pointing

errors in table 6.

Table 6: Steady State Inertial Pointing Performance in SITL Simulation

Body Axis Steady State Attitude Error (deg)

X 2.1

Y 1.8

Z 1.6

The per axis pointing errors are all bounded by 2.1˚. Incidentally, this is very similar in magnitude

to the pointing performance requirements as investigated in Chapter 1. Therefore, this simulation

provides some level of validation that the per-axis inertial pointing accuracy of the CPCL ADCS

design is competitive for use in a large class of CubeSat missions. These promising results also

provide an initial validation of the guidance and control algorithms presented in this thesis in

terms of their robustness to modeling uncertainty, plant parameter uncertainty, noise in the

Figure 45: Software-in-the-loop Rest to Rest Attitude Response

87

feedback path, and external disturbances. However, a more rigorous exploration of the simulation

parameter space should ultimately be conducted in the future.

5.3.2 Nadir Pointing

In the software-in-the-loop simulation, nadir pointing is subject to a few additional sources of

pointing error relative to the three-axis Simulink tool. Since the flight software does not have

perfect orbit knowledge, there are inherent errors in the reference quaternion that can only be

mitigated with higher accuracy orbit determination. Currently, the CPCL flight computer simply

propagates its most recent TLE up to the current time of the on-board clock to obtain position and

velocity knowledge. NASA 42 does support GPS sensor modeling, but that was not investigated

as part of this work and will be elaborated upon in the future work section. Figures 47 and 48

show the closed loop attitude and rate responses, respectively. In this simulation, the steady state

pointing error in the eigenaxis/angle sense was about 4.8˚. The steady-state per-axis pointing

errors are provided in table 7

Figure 46: Software-in-the-loop Rest to Rest Body Rate Response

88

Table 7: Steady State Nadir Pointing Performance in SITL Simulation

Body Axis Steady State Attitude Error (deg)

X 3.3

Y 2.5

Z 2.4

Figures 47 and 48 show that the spacecraft is successfully maneuvered into a nadir pointing

attitude and continues to maintain nadir pointing into steady state. Pointing error in this mode is

noticeably worse than inertial pointing. The reason for this is that inaccuracies in orbit position

and velocity knowledge are now showing up as errors in the reference quaternion. From a

simplified trigonometric analysis, the nadir pointing error induced by a relatively small in-track

orbit determination error in a circular orbit is given by

𝜃𝑒 = tan−1 (
𝛥𝑟

𝑅𝑒 + ℎ
)

Figure 47: Software-in-the-loop Nadir Pointing Attitude Response

89

Where 𝛥𝑟 is the magnitude of the in-track orbit knowledge error, 𝑅𝑒 is the radius of the Earth, and

ℎ is the circular orbit altitude. Simulation results indicate that the worst case in track orbit error

between the spacecraft estimate and truth is about 15 𝑘𝑚. With an in track orbit error of 15 𝑘𝑚 at

an altitude of 400 𝑘𝑚, the resulting attitude error is approximately 0.13˚. Although not very sizable

relative to a pointing requirement on the order of a few degrees, this is an absolute lower-bound

on pointing errors induced by orbit knowledge errors. As a whole, the attitude error covariance is

related to the overall orbit error covariance in a multidimensional sense, and only one of those

dimensions is considered in this analysis: in-track uncertainty. Uncertainties in the cross-track

and nadir positions and velocities can also show up as contributors to the attitude pointing error.

Therefore, to ascertain the sensitivity of pointing error to orbit state uncertainty, significantly more

analysis must be performed. In future work, this sensitivity should be investigated in the context of

the software-in-the-loop simulation framework, perhaps utilizing GPS sensor models in NASA 42

and a flight software orbit determination algorithm instead of the more simple TLE propagation.

Figure 48: Software-in-the-loop Nadir Pointing Body Rate Response

90

5.3.3 Ground Pointing

 Ground pointing is similar to nadir pointing in the sense that attitude pointing error can be

induced by error in position and velocity knowledge. However, ground pointing also suffers from

error in knowledge of the ECEF to ECI transformation, which can also be thought of as

uncertainty in the inertial position of the ground location of interest. Therefore it is expected that

the pointing performance in this mode will be no better than nadir pointing performance with all

else being equal. Figures 49 and 50 show the attitude and rate response from a software-in-the-

loop simulation in ground pointing mode. The positive spacecraft z-axis is commanded to align

itself with a vector from the spacecraft to the position on the Earth with latitude 35˚ N and

longitude 120˚ W. To verify that these plots are in fact consistent with the spacecraft z-axis

pointing toward that location, a computation on the simulation output was performed to compute

the angle between the target vector and the spacecraft Z axis in steady state. Table 8 below

provides this angle, along with the usual X, Y, and Z attitude errors as computed from the

quaternion product. However, the pointing errors in this mode should be interpreted slightly

differently. This simulation framework is not quite at the level of maturity where the exact vector

from the spacecraft to a specific ground location is accessible to the user. As such, the pointing

errors in table 8 are relative to the spacecraft’s reference quaternion, not the true reference

quaternion. As a crude rule of thumb, about one degree could be added to each axis to account

for this additional uncertainty.

Table 8: Steady State Ground Pointing Performance in SITL Simulation

Body Axis Steady State Attitude Error (deg)

Angle between Pointing Axis and Target Vector 3.5

X 3.4

Y 1.0

Z 1.8

91

Figure 49: Software-in-the-loop Ground Pointing Attitude Response

92

5.3.4 Spin Pointing

 Spin pointing is the final pointing mode to be analyzed within the context of the software-

in-the-loop simulation framework in this thesis. In this mode, there is no source of pointing error in

determining the reference signal. Figures 51 and 52 show the rate and quaternion responses,

respectively. The chosen body fixed pointing axis is the +z axis, which is commanded to point

along the inertial +x direction with a spin rate of 1 degree per second. Notice that in figure 51, the

angular velocities around the x and y axes converge to near zero, while the z body rate

converges to the commanded spin rate. Table 9 provides the relevant steady state pointing errors

in this simulation. The pointing error around the commanded body axis is not relevant. However,

the accuracy of the commanded spin rate around the commanded body axis is an alternative

Figure 50: Software-in-the-loop Ground Pointing Body Rate Response

93

means of characterizing the control system’s performance in this mode. The angle between the

inertial x direction and the body z axis in steady state for this simulation is about 2.9˚.

Table 9: Steady State Spin Pointing Performance in SITL Simulation

Body Axis Steady State Error

X Attitude 1.1˚

Y Attitude 2.7˚

X Rate 0.0004˚/sec

Y Rate 0.0002˚/sec

Z Rate 0.003˚/sec

As seen in table 9, the per axis steady state pointing errors in the spin pointing mode are all less

than 3 degrees. Moreover, the angular rate accuracy is extremely good. The control system

brings the angular rate around the commanded axis to within three one-thousandths of a degree

per second of the commanded rate, and nulls the rate around the other two axes to within four

ten-thousandths of a degree per second.

Figure 51: Software-in-the-loop Spin Pointing Rate Response

94

Figure 52: Software-in-the-loop Spin Pointing Attitude Response

95

Chapter 6

CONCLUSIONS AND FUTURE WORK

 This thesis presented the results of an ADCS design and analysis toolkit enhancement

effort whose ultimate goal was to solidify the engineering infrastructure required to develop an in-

house ADCS for the CPCL. Particular emphasis was placed on the design of attitude guidance

and control algorithms to supplement previous effort dedicated to navigation algorithm design

performed primarily by Mehrparvar [10] and implemented in flight software by Bouchard [8],

completing the overall spacecraft GNC framework. Special attention was also given to actuator

sizing and selection since much of the previous work on estimation algorithms was obviously

more concerned with sensor performance. Reasonably good performance of a completed,

notional CPCL ADCS design employing commercial magnetometers, in-house sun sensors, and

commercial rate gyros, was demonstrated in the framework of the enhanced toolkit with the single

axis Simulink tool, the three axis Simulink tool, and finally the flight software-in-the-loop

simulation employing NASA 42 as the truth model. Along the way, the preliminary specifications

of a reaction wheel in development by Nick Bonafede were considered. The results in each of

these tools showed reasonably good consistency and similarity, providing some level of

independent validation. A preliminary analysis of the pointing performance of the completed

CPCL ADCS design in multiple control modes was performed in the software-in-the-loop

environment with Python implementations of the control algorithms. In this environment, a

multitude of pointing error sources such as sensor and actuator dynamics and misalignment,

estimator dynamics, environmental perturbations, digital signal quantization, inertia matrix

uncertainty, and orbit knowledge uncertainty were included in the analysis. In each of the modes,

pointing performance on the order of a few degrees was observed, providing a preliminary

validation that the completed CPCL ADCS design is competitive for use in a large class of

CubeSat missions based on figure 1. It is important to note that the largest contributor to pointing

error in general is attitude knowledge error, which in turn is largely a function of the quality of the

attitude sensing hardware. With the notional design presented in this thesis, the attitude sensor

suite does not include a star tracker. Most commercial ADCS designs from figure 2 include a star

96

tracker, which is likely the primary means by they achieve sub-degree pointing accuracy.

Therefore, it is actually not surprising that the pointing performance of the notional ADCS design

presented in this work—which does not include a star tracker—was on the order of a few

degrees.

 In the relatively long history of the CPCL, this thesis is the first successful attempt at

performing a rigorous analysis of the entire CPCL ADCS functionality and performance within a

flight software-in-the-loop environment. Furthermore, the guidance and control algorithm designs

presented in this thesis are novel with respect to the entire history of CPCL ADCS development.

Therefore, this work has significantly advanced the design maturity of the CPCL ADCS using an

enhanced toolkit, moving it much closer to flight demonstration maturity. Nevertheless, significant

future work must be performed before flight success should be expected from the current CPCL

ADCS design. Furthermore, it is possible that an entirely different design may be required to fit

within the context of unique future mission requirements. The enhanced toolkit presented in this

work could be used to create such a design.

6.1 Future Work

 As mentioned multiple times in this thesis, an abundance of opportunities for future work

exist within the context of CPCL ADCS development. In some cases, the future work is relatively

simple and quick, but in other cases would likely require an entire master’s thesis or senior

project. In the following subsections, future work areas previously mentioned in this thesis are

elaborated upon in more detail.

6.1.1 Alternatives to Integrated Hardware-in-the-Loop Testing

 In this thesis, models of the attitude determination and control system hardware are

employed in simulation to capture their effect on the system level functionality and performance.

However, all models contain inherent error, and cannot exactly reproduce the behavior they

attempt to capture. Therefore, use of the real ADCS hardware to validate the system level

functionality and performance is often accomplished within a full hardware-in-the-loop test in

which the entire operational environment of the system is replicated. While it may be tempting to

97

conclude that such a test is the best way to validate system level performance and functionality, it

is usually too complicated, costly, time consuming, and inefficient to justify. Furthermore, it is not

always necessary with the right alternative verification and validation items.

 The difficulty of system-level hardware-in-the-loop testing that cannot be avoided lays in

reproducing a flight like environment so that sensor output signals look like they would on orbit.

For magnetometers, this requires a functional Helmholtz cage capable of generating magnetic

field vector profiles that are consistent with the spacecraft orbit. For sun sensors, a dark room

with a light source to simulate the sun would be required. Furthermore, physical simulation of the

unconstrained rigid body dynamics requires an air bearing table. This test becomes extremely

complicated very fast, so it is critical that the benefits it provides be heavily considered against

the cost and schedule impacts caused by it. As mentioned in [16], “fancier integrated tests” can

afford descoping in the context of GNC verification and validation for small spacecraft missions,

as long as hardware component performance testing is used to update models used in a

software-in-the-loop simulation environment.

 The reason that hardware-in-the-loop system level testing may be advantageous over

software-in-the-loop only simulation is because it does not suffer from nearly as much modeling

error, and it captures lower-level functional interactions like electrical interfaces between the

central flight computer and the physical sensors and actuators. Furthermore, sign errors that exist

in the flight software GNC algorithms which may not appear in a software-in-the-loop simulation

are easily detectable in a hardware-in-the-loop test. Sensor and actuator phasing and timing is

also captured in a hardware-in-the-loop test. While these are all very good reasons to plan for

hardware-in-the-loop testing on a CubeSat ADCS, there are alternative, less complicated means

by which the same set of requirements can be verified. Namely, the functionality (polarity, timing,

electrical interfaces, etc.) of the individual sensor and actuator components can be tested

individually. Furthermore, the performance of each of the sensors and actuators can also be

thoroughly characterized during testing. Based on these test results, the models used in NASA 42

can be modified and updated to capture the behavior of the sensors more accurately. More

specifically, component-level functionality can be verified independently from the rest of the

98

system, and simulation models of the hardware behavior and performance can be validated and

updated, also through component level testing. If all of these activities are completed

successfully, a system level hardware-in-the-loop test becomes unnecessary.

6.1.2 Monte Carlo Analysis

 In this thesis, single point simulations were executed for each pointing mode to predict

the steady-state system level pointing performance. Although acceptable as a first pass, this is

nowhere near as thorough as it should be when applied to a specific mission. Furthermore,

depending on the nature of the mission-specific pointing requirement, it could be simply

impossible to verify such a pointing requirement with one simulation. For example, if the

ensemble interpretation is used as in [17], then by definition one simulation cannot do the job. To

illustrate why this is the case, [17] defines the pointing error behavior 𝜀 as being a function of both

time and the set of parameters {𝐴} that could affect it:

𝜀 = 𝑓(𝑡, {𝐴})

Where {𝐴} includes the set of all parameters, such as the spacecraft configuration, sensor and

actuator layout, orbit geometry, time of day and year, etc. that could conceivably affect the

pointing behavior. Now suppose that a pointing requirement levied on the ADCS requires that

𝑃(|𝜀| < 1˚) ≥ 90%

which specifies that the probability that the absolute value of the pointing error is less than 1˚ be

at least 90%. First of all, the pointing error itself must be well-defined: is it the angle between two

vectors? The eigenaxis angle? Per axis angles? Once that is known, an interpretation of the

probability must be provided. In other words, the 90% probability could be interpreted as 90% of

the time for 100% of {𝐴}, or it could be interpreted as 90% of {𝐴} for 100% of the time. The first

interpretation is the temporal interpretation and the second is the ensemble interpretation. In the

case that the ensemble interpretation is used, it is quite literally impossible to verify the

requirement without a monte carlo campaign. In order to obtain knowledge that the pointing error

is less than 1˚ in absolute value for 90% of the ensemble, it is necessary to thoroughly explore the

99

parameter space defined by {𝐴} in simulation, which is precisely what a monte carlo campaign

does.

 Even if a Monte Carlo may not be strictly necessary to verify a requirement, it is still of

great utility when there is a known probability distribution associated with some or all of the

parameters in {𝐴}. In the context of this thesis, {𝐴} could be considered to be all of the

parameters in the Yaml files defining the inputs to NASA 42. A monte carlo program could define

probability distributions for some or all of the parameters in {𝐴}, draw from those distributions and

set them as the inputs, run a simulation, and repeat until the simulation outputs are sufficiently

bounded. This type of analysis leverages the automated nature of simulations to thoroughly

explore a parameter space and obtain a good prediction of how the system would perform on

orbit in the face of parameter uncertainty.

6.1.3 Geodetic Pointing

 As mentioned in section 3.5.2 of this thesis, geocentric pointing is implemented in the

nadir pointing (and ground pointing) modes. This is subtly different than geodetic pointing, in

which the non-spherical geometry of the Earth is taken into account to improve pointing accuracy.

In some cases, geocentric pointing may actually be preferred, but in the case that a spacecraft

boresight must be pointing toward certain features of the Earth, geodetic pointing is more

accurate. For example, consider a case in which the ground pointing mode is employed to point

a spacecraft boresight at the San Luis Obispo region in an orbit with a different inclination than

the latitude of San Luis Obispo. In this case, the spacecraft essentially assumes that the Earth is

a perfect sphere with a radius of 6378 km when it computes the vector to the commanded ground

location. However, because the distance from the center of the Earth to the San Luis Obispo is

likely not exactly 6378 km, there is a small target vector error in the inertial radial direction as a

result of assuming that the Earth’s radius is uniform across the surface. This small target vector

error ends up as pointing error, and in some cases the resulting pointing error may be intolerably

large. Nadir pointing suffers from similar error sources if geodetic pointing is required. To recast

the formulation of the reference quaternion for geodetic pointing, all that is required is the Earth’s

radius as a function of latitude and longitude:

100

𝑅𝑒 = 𝑓(𝜆, 𝜃)

This function can be implemented as a look-up table in flight software so that during computation

of the target vector in ground pointing mode or computation of the nadir vector in nadir pointing

mode, the true earth radius at the latitude and longitude of interest is utilized. This strategy could

improve pointing accuracy by as much as a few degrees.

6.1.4 Three-Axis Deadband Logic

 In section 4.1, attitude error deadband logic was presented in the context of the single

axis Simulink tool. This logic is useful in preventing undesirable steady state limit cycle behavior

such as actuator chattering. In this work, it was implemented to prevent the speed command to

the reaction wheel speed controller from discontinuously switching between zero and the

minimum speed bit. This behavior can result in high frequency momentum exchange between the

spacecraft and the reaction wheel, which may excite unmodeled, higher frequency flexible modes

or compromise pointing performance. The deadband logic was shown to successfully suppress

this limit cycle behavior, but only in the single axis tool. Implementation of the deadband logic in

the three axis tool as well as the software-in-the-loop simulation framework has yet to be

accomplished.

6.1.5 Estimation Algorithm Improvements

 Previous estimator algorithm development in the context of CPCL ADCS was dedicated

to the design of a discrete time extended Kalman filter to estimate the total spacecraft angular

rate as well as the inertial to body attitude quaternion. Although this approach worked well in

simulations presented in this work, it does not come without issues. Following along with [14],

there are multiple fundamental issues associated with the use of a traditional extended Kalman

filter in the estimation of an attitude quaternion and angular rate vector. First of all, due to the

non-minimal nature of the quaternion representation of the attitude, the state covariance matrix is

prone to being near singular. Second, the update step in the traditional extended Kalman filter

can cause issues by violating the quaternion’s unit norm constraint. To see this more clearly, the

101

update step in the extended Kalman filter corresponding to the quaternion portion of the state

vector is given by

𝒒̂+ = 𝒒̂− + 𝐾[𝒚 − 𝒉(𝒙̂−)]

Where 𝒒̂+ is the a posteriori estimate of the attitude quaternion, 𝒒̂− is the a priori estimate of the

attitude quaternion, 𝐾 is the Kalman gain matrix, 𝒚 is the measurement vector, 𝒉 is the nonlinear

measurement function, and 𝒙− is the a priori state estimate. Clearly, in order to satisfy the

quaternion norm constraint across update steps, some special relationship between the a priori

quaternion estimate and the product of the Kalman gain with the measurement residual must

hold. According to [14], such a relationship does not exist in the general case.

 Furthermore, it is shown in [14] that an unbiased estimate of the four-component

quaternion must violate the unit norm constraint. If an unbiased estimator is developed to avoid

this issue, a new issue arises, namely that the quaternion covariance matrix becomes ill-

conditioned in the limit as the estimation errors go to zero. Ill-conditioned matrices are always

undesirable in the context of numerical algorithms that run on digital computers, because any

computation involving their inverse is prone to large numerical errors.

 To avoid these issues, brute force normalization of the a posteriori attitude quaternion

estimate is implemented in flight software by Bouchard [8]. However, such an approach can

cause issues if the product of the Kalman gain and the measurement residual is not orthogonal to

the a priori quaternion estimate as described in [14].

 A more suitable estimation algorithm for use in spacecraft attitude determination and

control systems which avoids all of the aforementioned issues is a multiplicative extended

Kalman filter (MEKF) designed to estimate the error-state as opposed to the global state

estimated by the extended Kalman filter. This formulation also provides advantages over the

extended Kalman filter in that it naturally estimates a rate gyro bias instead of a total angular

velocity. Since the rate gyro bias drifts slowly over time, and the extended Kalman filter does not

estimate it, very poor estimation performance can be observed over long time scales when using

an extended Kalman filter. Furthermore, estimation of a total angular velocity treats rate gyro data

as measurements, and uses Euler’s equations as the dynamic model in the predict step. If Euler’s

102

equations are used in the predict step, then sufficiently accurate knowledge of the external torque

and mass properties of the spacecraft are required. However, this is not always the case,

especially when using cold gas thrusters to impart attitude control torques. An alternative

approach as outlined in [14] is to use calibrated rate gyro measurements in the dynamic model of

the estimation algorithm instead of treating it as part of the measurement vector. Then the

expectation of the true angular rate in terms of the sensed angular rate as given by the following

relationship:

𝝎(𝑡) = 𝝎𝑡𝑟𝑢𝑒(𝑡) + 𝜷𝑡𝑟𝑢𝑒(𝑡) + 𝜼𝑣(𝑡)

is used to propagate the global attitude quaternion estimate forward in time until the next

measurement is taken. When the next measurement is taken, the error state estimate is updated

to a finite value, and subsequently moved into the global sate estimate. Once moved into the

global state estimate, the error state quantities are reset to zero.

 In summary, the MEKF involves three steps: a measurement update, an error state reset,

and a propagation to the next measurement time. Between measurements, the propagation

moves the global state estimates forward in time to be used by the attitude controller. Once a

measurement is taken, the error sates are updated, pushed into the global state, and rest to zero.

This process repeats indefinitely in real-time.

 The design and implementation of an MEKF for use in the CPCL is highly recommended

by the author of this thesis, and will likely require either an entire master’s thesis or collaboration

between multiple dedicated student engineers.

 Finally, another estimation algorithm issue associated with the simultaneous use of

magnetometers and sun sensors first observed by Bouchard [8] is that when the two vector

measurements are nearly colinear, the estimator covariance rapidly increases and the filter

becomes prone to divergence. The reason this happens it that if the two measurement vectors

were exactly colinear, there would be an infinite set of attitudes corresponding to rotations around

that line which give rise to the same set of measurements. This non-uniqueness is reflected

mathematically in a near singular measurement sensitivity matrix. To avoid this issue, the

estimation and control algorithms could remain in an inactive state in anticipation of attitudes and

103

locations for which these two vector measurements are nearly colinear. This would require careful

mission analysis and simulation to verify that it will mitigate the potential issues.

104

REFERENCES

[1] Shimmin, R. (Ed.). (2015). Small Spacecraft Technology State of the Art. NASA Ames

 Research Center, Mission Design Division.

[2] Messmann, D., Gruebler, T., & Coelho, F. et al (2017). Advances in the Development of the

 Attitude Determination and Control System of the CubeSat Move-II. European

 Conference for Aeronautics and Aerospace Sciences.

[3] Vega, K., Auslander, D., & Pankow, D. (2009). Design and Modeling of an Active Attitude

 Control System for CubeSat Class Satellites. AIAA Modeling and Simulation

 Technologies Conference. doi: 10.2514/6.2009-5812

[4] Jensen, K. F., & Vinther, K. F. (2010). Attitude Determination and Control System for

 AAUSAT3. Master’s Thesis. Aalborg University.

[5] Philip, A (2008). Attitude Sensing, Actuation, and Control of the BRITE and CanX-4&5

 Satellites. Master’s Thesis. University of Toronto.

[6] Xiang, T., Meng, T., Wang, H., Han, K., & Jin, Z.-H. (2012). Design and on-orbit Performance

 of the Attitude Determination and Control System for the ZDPS-1A Pico-satellite. Acta

 Astronautica, 77, 182–196. doi: 10.1016/j.actaastro.2012.03.023

[7] Li, J., Post, M., Wright, T., & Lee, R. (2013). Design of Attitude Control Systems for CubeSat-

 Class Nanosatellite. Journal of Control Science and Engineering, 2013, 1–15. doi:

 10.1155/2013/657182

[8] Bouchard, L (2019). Reusable and Testable Attitude Determination Software for CubeSats

 based on Low-Cost Sensors. Senior Project. California Polytechnic State University, San

 Luis Obispo.

[9] Sellers, R. (2013). A Gravity Gradient, Momentum-Biased Attitude Control System for a

 CubeSat. Master’s Thesis. California Polytechnic State University, San Luis Obispo.

[10] Mehrparvar, A (2013). Attitude Estimation for a Gravity Gradient Momentum Biased

 Nanosatellite. Master’s Thesis. California Polytechnic State University, San Luis Obispo.

105

[11] Bowen, J (2009). On-Board Orbit Determination and 3-Axis Attitude Determination for

 Picosatellite Applications. Master’s Thesis. California Polytechnic State University, San

 Luis Obispo

[12] J., D. R. A. H., Damaren, C., & Forbes, J. R. (2013). Spacecraft Dynamics and Control: an

 Introduction. Chichester, West Sussex, United Kingdom: Wiley.

[13] PHILLIPS, C. L., & NAGLE, H. T. (1998). Digital Control System Analysis and Design. New

 Jersey: Pearson Education.

[14] MARKLEY, F. L. A. N. D. I. S. (2016). Fundamentals of Spacecraft Attitude Determination

 and Control. New York: SPRINGER.

[15] Forbes, J. R., & Damaren, C. J. (2010). Geometric Approach to Spacecraft Attitude Control

 Using Magnetic and Mechanical Actuation. Journal of Guidance, Control, and

 Dynamics, 33(2), 590–595. doi: 10.2514/1.46441

[16] Pong, C. M., Sternberg, D. C., and Chen, G. T. (2019). Adaptations of Guidance, Navigation,

 and Control Verification and Validation Philosophies for Small Spacecraft. Guidance and

 Control 2019, Advances in the Astronautical Sciences, Breckenridge, CO, February

 2019.

[17] European Cooperation for Space Standardization. (2008). Space Engineering Control

 Performance (Standard No. E-ST-60-10C).

[18] Jan, Y., & Chiou, J. (2005). Attitude control system for ROCSAT-3 microsatellite: a

 conceptual design. Acta Astronautica, 56(4), 439–452. doi:

 10.1016/j.actaastro.2004.05.066

106

APPENDICES

Appendix A: Example Yaml File Snippets

107

Appendix B: Example Python Control Algorithm Implementation

108

