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ABSTRACT 

Three Axis Attitude Control System Design and Analysis Tool  

Development for the Cal Poly CubeSat Laboratory 

Liam T. Bruno 

  

The Cal Poly CubeSat Laboratory (CPCL) is currently facing unprecedented engineering 

challenges—both technically and programmatically—due to the increasing cost and complexity of 

CubeSat flight missions. In responding to recent RFPs, the CPCL has been forced to find 

commercially available solutions to entire mission critical spacecraft subsystems such as 

propulsion and attitude determination & control, because currently no in-house options exist for 

consideration. The commercially available solutions for these subsystems are often extremely 

expensive and sometimes provide excessively good performance with respect to mission 

requirements. Furthermore, use of entire commercial subsystems detracts from the hands-on 

learning objectives of the CPCL by removing engineering responsibility from students. Therefore, 

if these particular subsystems can be designed, tested, and integrated in-house at Cal Poly, the 

result would be twofold: 1) the space of missions supportable by the CPCL under tight budget 

constraints will grow, and 2) students will be provided with unique, hands-on guidance, navigation, 

and control learning opportunities. In this thesis, the CPCL’s attitude determination and control 

system design and analysis toolkit is significantly improved to support in-house ADCS 

development. The toolkit—including the improvements presented in this work—is then used to 

complete the existing, partially complete CPCL ADCS design. To fill in missing gaps, particular 

emphasis is placed on guidance and control algorithm design and selection of attitude actuators. 

Simulation results show that the completed design is competitive for use in a large class of small 

satellite missions for which pointing accuracy requirements are on the order of a few degrees. 

 

Keywords: Cal Poly CubeSat Laboratory, ADCS, Toolkit, Guidance and Control Algorithm Design, 

Software-in-the-Loop Simulation, NASA 42 
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Chapter 1 

LITERATURE REVIEW AND GAP ANALYSIS 

This thesis will provide enhancements to the CPCL ADCS design and analysis toolkit so 

that it can be readily employed by members of the CPCL during custom ADCS development. The 

overall utility of the toolkit will be validated by using it to complete the existing incomplete CPCL 

ADCS design. This enhanced toolkit is also intended to be applicable in the development of new 

ADCS designs that must meet specific, currently unknown mission requirements. With access to 

the enhanced toolkit, members of the CPCL will have the opportunity to design, analyze, and 

validate their own ADCS. 

Overall, the engineering problem of miniaturizing spacecraft attitude determination and 

control systems has been achieved in the small satellite industry. Most of the necessary hardware 

and software constituents of a small satellite ADCS can be bought commercially, allowing 

engineers to simply select from a set of available components in their design process. 

Furthermore, small satellite attitude control systems are commercially available in modules such 

as the Blue Canyon XACT or the Maryland Aerospace MAI-400, providing an even more 

integrated option with relatively little design work necessary. Practically all of this off-the-shelf 

hardware has achieved TRL 9 [1]. In this first chapter, a historical trend of high level ADCS 

pointing performance requirements for small satellites is presented, and compared with the 

corresponding pointing performance offered by commercially available modules. It will be shown 

that for a large class of small satellite missions, commercially available ADCS modules are a sub-

optimal design choice in the sense that they provide overkill performance with respect to typical 

CubeSat mission requirements. In these cases, their cost also tends to occupy an unreasonably 

large proportion of mission budgets. Finally, the engineering methodologies associated with the 

design, analysis, and test of university small satellite attitude control systems are compared and 

contrasted, highlighting the novelties of the corresponding methodologies that will be proposed in 

this thesis. 
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1.1 Historical Perspective on Small Satellite ADCS Performance Requirements 

 Small satellite missions for which the primary engineering team is comprised of 

undergraduate students tend to serve as a good model for space missions undertaken by the 

CPCL in terms of objectives, scope, and budget. Therefore, in this work special attention is given 

to typical functional and performance requirements driving small satellite ADCS design in 

university settings. However, before reviewing these requirements, it is important to highlight the 

distinction between functional and performance requirements as defined in this work. Functional 

requirements are related to the desired overall behavior of a system, which includes how the 

system can be commanded and operated, and how it interfaces with other systems. Functional 

requirements are stated qualitatively. Performance requirements, on the other hand, relate to how 

well a system does its job, and are usually quantitative. In this section, particular attention is given 

to ADCS pointing accuracy performance, since those requirements are generally the most 

influential in terms of the cost and design complexity of the system. ADCS pointing accuracy 

performance requirements are usually derived from one or more of the following elements of a 

space mission:  

• Payload pointing—primarily imaging, radar, and communications 

• High bandwidth communication systems 

• Operation of propulsion systems  

• Orbit maintenance, rendezvous operations, and formation flight  

• Thermally radiating vehicle surfaces 

Until recently, most of the above elements were extremely rare in small satellite missions. 

However, an increasing number of small satellite missions are flying imaging payloads, 

propulsion systems, and higher bandwidth communication systems. As a result, there is an 

increasing demand for higher performance and more versatility in an ADCS for small satellites. 

To illustrate this increasing demand, figure 1 shows a variety of missions along with their year of 

launch and 3𝜎 pointing accuracy requirement (this information was primarily drawn from the 

eoPortal Directory of Satellite Missions, as well as [3, 4, 5, 6, and 18]). Since pointing accuracy 

requirements are formally stated differently dependent on the context and thus should be treated 

as different types of requirements, what they are ultimately trying to establish—an overall system 

performance requirement—is context independent. So there will be inevitable information loss 
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when aggregating pointing requirements from a variety of sources in the literature, but the result 

will still provide an approximate baseline that can be treated as a good starting goal for an in-

house ADCS. One subtle feature of an ADCS system performance requirement is whether it 

imposes a half-cone pointing accuracy or per-axis pointing accuracies. Although not equivalent, 

the translation between these requirement definitions does not have a large effect on the 

numerical values of the requirements. Therefore, these differences will become irrelevant if 

sufficiently many missions are considered.  

Figure 1 shows a variety of small satellite mission pointing accuracy requirements along 

with their approximate year of launch. The red dotted line is a linear fit of the data. Although not 

statistically meaningful, the best fit line provides a notional extrapolation of where modern 

pointing requirements for small satellites are headed. Figure 1 indicates that a good estimate for 

modern small satellite 3𝜎 pointing accuracy requirements is around 2˚. Note that most of the 

missions whose 3𝜎 pointing requirements are less than 1˚ are extremely high budget missions 

which are out of family with university budgets. Such missions are also not primarily designed and 

operated by universities (e.g. AeroCube7 and ASTERIA). Although this thesis is focused on 
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university small satellite missions, AeroCube7 and ASTERIA are nevertheless included so as to 

provide a more holistic picture of the overall trend. Furthermore, including these missions in the 

data set means that the trend line is more likely to predict an upper bound on modern 

performance requirements in university settings, which is desirable. In summary, based on an 

analysis of 17 missions from 2004 to 2017, the most stringent 3𝜎 pointing performance 

requirements for modern and near future small satellite missions are likely to be around a few 

degrees, and only in high budget cases with relatively advanced payloads can sub-degree 

pointing accuracy requirements be expected.  

1.2 Commercial ADCS: Cost-Performance Tradeoff 

The tradeoff between cost and performance in commercial small satellite attitude control 

solutions is important to investigate in this context, because if it is not aligned with typical small 

satellite mission needs as determined in the previous subsection, then there exists a gap in cost-

performance space within which new technology may be of significant utility. Figure 2 below 

provides the approximate unit cost required to achieve the listed pointing accuracy for five attitude 

determination and control systems that can be purchased commercially. This information was 

acquired through publicly available information on company websites. 
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According to figure 2, most of the well-known commercially available ADC solutions for 

small satellites offer sub-degree 3𝜎 pointing accuracy. From the previous subsection, it was 

determined that the most stringent modern pointing requirement for small satellite missions is 

around 2˚. In that case, the system designers are forced to allocate at least ~$80k of the mission 

budget to the ADCS alone should they select NewSpace Systems ADCS, assuming one test unit 

and one flight unit. $80k is excessively costly relative to university CubeSat mission budgets. The 

alternative, higher performance options are all more expensive. 

1.3 Inconsistencies between Commercial Performance and Small Satellite Mission Needs 

In the previous two subsections, the tradeoff between cost and performance in 

commercially available attitude control solutions for small satellites was shown to be somewhat 

inconsistent with the trend in the pointing performance requirements for modern small satellite 

missions. Such an inconsistency begs the following question: in the case that a university small 

satellite mission requires ~2˚ 3𝜎 pointing accuracy, is a commercially available solution worth its 

cost? Obviously, any commercially available solution in figure 2 will satisfy a 3𝜎 pointing 

requirement of 2˚. However, in university settings, the mission budget is relatively small, and 

allocating a large percentage of it to the ADCS alone significantly increases the difficulty to close 

the overall spacecraft design. To avoid spending so much money on one subsystem and 

constraining the rest of the spacecraft design significantly, many universities—including Cal 

Poly—have attempted to develop their own ADCS on a per mission basis as an alternative 

solution. However, such an undertaking is extremely demanding on student engineers who do not 

have the same level of experience as professional GNC engineers who are designing the 

commercially available solutions. This thesis aims to drastically alleviate the engineering difficulty 

associated with designing an in-house ADCS by significantly enhancing the CPCL ADCS design 

and analysis toolkit.  

1.4 Survey of in-house, University Small Satellite ADCS Design and Test Methodologies 

 In this subsection, a variety of design and test methodologies for university in-house 

ADCS solutions will be critically analyzed with respect to hardware selection, algorithm design, 
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and testing framework. It turns out that, among universities, there are a variety of similarities 

among these criteria when it comes to small satellite ADCS. Table 1 provides a summary of the 

hardware suite, algorithm selection, and testing framework for various ADCS solutions in a variety 

of university small satellite missions. This table obviously does not provide an exhaustive analysis 

of university CubeSat attitude control systems, but it does capture most classes of university 

CubeSat missions and reflects very common trends.  

Table 1: Summary of Small satellite ADC System Level Design and Test 

Mission  Sensors* Actuators* Algorithms Testing Framework 

MOVE-II [2] MM, SS, G MT 
Extended Kalman filter, 

optimal control 

Hardware-in-the-loop with in-house 

MATLAB simulation 

CINEMA [3] MM, SS MT Spin stabilized, TRIAD 
Standalone in-house MATLAB 

simulation, autocode 

AAUSAT [4] MM, SS, G MT 
Unscented Kalman filter, 

model-predictive control  

Standalone in-house MATLAB 

simulation, autocode  

FIONA – CANX 

4/5 [5] 
MM, SS, G RW, MT 

No navigation mentioned, 

state feedback with integral  

Software-in-the-loop with in-house 

MATLAB simulation 

ZDPS-1A [6] MM, SS, G RW, MBW 
Extended Kalman filter, 

TRIAD, Bdot, state feedback 

Standalone simulation, on-orbit 

demonstration of ADCS 

Mission-Agnostic 

[7] 
MM, SS, G RW, MT 

No navigation mentioned, 

adaptive nonlinear controller 

Hardware-in-the-loop and software-

in-the-loop 

CPCL ADCS 

Design 
MM, SS, G RW, MT 

Extended Kalman filter, state 

feedback, PID (developed in 

this thesis) 

Software-in-the-loop with NASA 42, 

component level testing of sensors 

and actuators to validate models 

*MM = magnetometer, SS = sun sensor, G = rate gyroscope, MT = magnetorquer, RW = reaction wheel, 

MBW = momentum bias wheel 

 Table 1 shows that sensor fusion of magnetometers, sun sensors and rate gyros is a 

common choice for small satellite state estimation hardware. Furthermore, magnetorquers and 

reaction wheels encompass essentially all choices for attitude actuation hardware. In terms of 

navigation algorithms, some variant of the Kalman filter is typical. Control algorithms, on the other 

hand, are more diverse, but they are united by the fact that they all take a modern control theory 

approach. None of the control algorithms in these five missions can be designed using the 
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methods and tools of classical control theory, and thus it is much harder to achieve robustness to 

uncertainty in the plant dynamics. Finally, the strategies used to test the full attitude determination 

and control system tend to involve the use of MATLAB and/or Simulink to model the environment 

and algorithm implementation, with the eventual goal of utilizing Simulink’s autocode to C feature 

to generate software which can be compiled into machine code and executed in real time on a 

flight computer. Although this is a sensible approach, it suffers from the risk that the modeling 

fidelity may be too low to verify requirements with sufficient confidence. In the CPCL, an open 

source, high fidelity spacecraft dynamics model is employed to avoid such a risk. Moreover, the 

Simulink autocode to C feature is not utilized in the CPCL as it would not be possible within the 

existing flight software architecture. 

 Overall, the selection of hardware in these missions is sensible for CubeSats as most of it  

can be purchased commercially, and has a sufficiently small form factor. One issue arising from 

the choice of magnetorquers as the only actuator—which is not uncommon for university 

CubeSat missions—is underactuation. Magnetorquers can only impart a torque vector in a plane 

perpendicular to the instantaneous geomagnetic field vector. While there has been significant 

research dedicated to dealing with magnetorquer underactuation from a control algorithm 

perspective, few universities clearly address how they will deal with it. Furthermore, the most 

prominent issue with these ADCS design and test approaches is the testing framework and, in 

some cases, the control algorithm design approach. Universities are either deciding to reach 

extremely high confidence validation with integrated hardware-in-the loop tests, or they are not 

testing sufficiently. For example, simulations that do not involve flight software-in-the-loop are 

generally a poor way to verify requirements with high confidence, because they do not invoke the 

same algorithms that will be executing in real time during flight and thus may behave differently in 

unexpected ways. On the other hand, since most universities are employing a modern control 

theory approach to design their control laws, more rigorous simulation and higher modeling 

fidelity is required to ensure closed loop stability and performance. This is especially problematic 

when low fidelity models that ignore important dynamics are employed to validate performance. 
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1.5 Thesis Objective and Outline 

 Overall, the objective of this thesis is to enhance the CPCL ADCS design and analysis 

toolkit so that it can be readily employed by members of the CPCL during custom ADCS 

development. The enhanced toolkit will be validated by using it to create a notional ADCS design 

from an existing, incomplete ADCS design, and show that the pointing performance of the full 

notional design is on-par with modern small satellite pointing performance requirements as 

derived in this chapter. The outline of the rest of this thesis is as follows: first, the current 

development state of the CPCL ADCS will be outlined in Chapter 2, highlighting some of the 

elements that require more attention and effort. Then, chapter 3 will provide the formulation of a 

guidance and control architecture to be applied in the CPCL ADCS toolkit. Chapter 4 will explicitly 

present the additions to the toolkit as developed in this work, motivated by an overall design 

iteration strategy presented in chapter 2 and the guidance and control architecture developed in 

chapter 3. Finally, chapter 5 will show the enhanced CPCL ADCS design and analysis toolkit in 

action as it is used to create a notional ADCS design and analyze its performance.  Chapter 6 will 

provide concluding remarks and elaborate on future work opportunities.  
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Figure 3: High Level CPCL ADCS Framework 

 

Chapter 2  

BACKGROUND ON CAL POLY CUBESAT LABORATORY ADCS 

 This section will provide a concise overview of the CPCL ADCS heritage that existed at 

the beginning of this thesis from a high level perspective. The intent of this chapter is to illustrate 

what existed before this work in order to clarify why particular attention and effort is dedicated to 

only certain elements of the overall ADCS design problem in this thesis. Figure 3 below provides 

a very high-level schematic of the CPCL ADCS. Orange blocks correspond to elements which 

require significant attention and are currently under development, while green blocks correspond 

to elements that have either been flown or tested extensively on the ground.  

 

 

 

 

 

 

 

 

 

2.1 Sensors and Actuators 

In terms of sensors, the CPCL has flight experience with commercial Honeywell 

magnetometers and will soon be flying in-house designed sun sensors that can be used to 

measure the sun vector in the spacecraft body frame. Moreover, the CPCL is currently 

investigating the use of flight software to operate a low-cost camera as a star tracker. Finally, the 

CPCL in-house main avionics board housing the flight computer also contains a low performance, 

surface mounted MEMS rate gyroscope. Therefore, from a sensor perspective, the CPCL is 
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similar to many other universities in its use of magnetometers, sun sensors, and rate gyros, but is 

beginning to distinguish itself with the use of a low-cost star tracker.  

In terms of actuators, the CPCL has flight experience with both in-house magnetorquers 

and commercial reaction wheels. At the time this thesis is being written, Nick Bonafede (graduate 

student, mechanical engineering) is developing an in-house reaction wheel for use in the CPCL 

spacecraft bus. Furthermore, all magnetorquers flown in CPCL missions have been designed, 

tested, and assembled in-house. From an actuator perspective, the CPCL approach is aligned 

with the norm in the small satellite community, with the only exception being that most of the 

hardware is intended to be manufactured and tested in-house instead of purchased commercially.  

2.2 Flight Software  

In terms of flight algorithms used to generate attitude estimates from sensor 

measurements, the CPCL has implemented and tested an extended Kalman filter designed to 

estimate the spacecraft’s inertial to body attitude quaternion and total body rates. However, 

closing the loop on this state estimate has never been done in a rigorous simulation framework, 

and therefore this thesis will place particular emphasis on guidance and control algorithm design. 

On the control side, a B-dot detumble control law implementation using the aforementioned 

magnetometers and magnetorquers has achieved flight heritage. In summary, estimation 

algorithms at the CPCL are similar to those implemented at other universities, but control 

algorithms are still in a very early stage and require significant development.  

From figure 3 it is apparent that, from an algorithms perspective, more attention has been 

given to attitude determination than to attitude control. Thanks to the work of multiple insightful 

master’s theses from Sellers [9], Mehrparvar [10], and Bowen [11], as well as a remarkably 

productive senior project by Bouchard [8], the CPCL has a flight software implementation of a 

state estimation algorithm as well as the entire software architecture to implement real time GNC 

algorithms for most conceivable CubeSats missions. Figure 4 below depicts an “object” model of 

the ADCS flight software architecture as designed and implemented primarily in [8]. Here, “object” 

is surrounded by quotations because the flight-software is implemented in C, which is not an 

objected-oriented programming language. However, type abstraction in C is still possible by 
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appropriately utilizing structs, function pointers, and type casting. Each block in the diagram of 

figure 4 represents an interface, enforcing consistency across different algorithm 

implementations, while the arrows represent dependencies. The highest level element in this 

software architecture is the ADCS State, which contains mission specific implementations of 

Mission Controller and Mission Determination types. Starting on the control side, the Mission 

Controller is the piece of software responsible for making real time decisions about which 

Controller implementation is to be called each time the ADCS State is invoked by the operating 

system. This enables the spacecraft to switch between control modes in such a way that is 

consistent with its concept of operations. The Controllers contain the flight-software 

implementations of control algorithms, which calculate a control input and command the 

spacecraft’s actuators to provide that input. The actuator commands as output from Controller 

implementations take place in software as function calls to device drivers implemented in 

Actuator types, which abstractly represent physical hardware. On the determination side, the 

Mission Determination object plays a role analogous to that of the Mission Controller: it is 

responsible for making real time decisions about which Filters to invoke. Filters are state 

estimation algorithms like an extended Kalman filter, the implementations of which sometimes 

require vector references from other sources such an Earth magnetic field model or a sun vector 

from a sun ephemeris model. Such references are implemented as Magnetic Model or Sun Model 

types. Finally, the yellow arrows at the bottom of the diagram represent the flow of data between 

each branch of the ADCS flight software. Control laws require attitude estimates from the 

determination algorithm to compute the error signal, but conversely the determination algorithm 

receives a feedforward signal from the controller (i.e. the torque command) to be used in 

anticipation of how the state will change as a consequence of the control action. For a more 

precise and detailed explanation of the flight software architecture, see [8].   
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At this point, it is assumed that the reader is familiar with the heritage elements—both software 

and hardware—of the CPCL ADCS. Based on the software infrastructure that currently exists, as 

well as the sensors and actuators both in development and with heritage, it is clear that as a 

whole the CPCL is on its way to having a fully functional three axis attitude control system made 

up of mostly in-house components. However, there is still quite a bit missing. First of all, in terms 

of flight algorithms, very little thought has been put into the design and testing of attitude control 

laws and the guidance logic required to compute reference signals. Moreover, at a systems 

engineering level, there is not a complete set of design and analysis tools that can be readily 

used by student engineers in the design, test, and integration of an ADCS for any CPCL mission. 

For example, if different sensors and actuators than those that exist in the aforementioned 

heritage design are not a good choice, there needs to be a methodology—which includes the 

appropriate analysis tools—by which new sensors and actuators can be selected and simulated. 

In the next subsection, a design iteration strategy tailored for use in the CPCL is proposed, with 

particular emphasis on control law design in the early phases of mission development, and well-

informed selection and sizing of sensors and actuators as the design matures. Such a design 

Figure 4: CPCL ADCS Flight Software 
Architecture 
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iteration strategy will provide engineers with the capacity to make reasonable decisions about 

sensor and actuator selection as well as algorithm design—perhaps different decisions than 

those which have been made so far—in the context of the CPCL. Moreover, the overall structure 

of the CPCL ADCS design and analysis toolkit is motivated by this design iteration strategy. 

2.3 Design Iteration Strategy for Future Missions 

 Figure 5 is a flowchart showing the proposed strategy for iterating on the design of an 

ADCS for a CPCL space mission, from early concept development to system level validation. 

Starting in the upper left hand corner with a “conceptual” phase, this is where mission concept of 

operations development and proposal writing takes place. In this stage, it should be established 

whether or not the spacecraft even needs an attitude control system, and if so, whether it should 

be passive, active, or some combination of the two. The mission’s concept of operations will 

naturally lead to a set of pointing modes that the ADCS shall facilitate. Once the conceptual 

design is established, more detailed ADCS work can begin in the preliminary design phase. In 

this phase of mission development, MATLAB/Simulink tools—to be presented and explained 

thoroughly in this work—can be employed to coarsely size attitude actuators and specify control 

law behavior in the context of the required pointing modes. In general, these MATLAB/Simulink 

tools are intended to iteratively bring the design maturity to approximately a PDR level. Once the 

ADCS satisfies PDR exit criteria, the design and analysis should move into a flight software-in-

the-loop environment. It is at this stage in the design process that sensor selection, navigation 

algorithm design, as well as layout and configuration of sensors and actuators within the 

spacecraft should be established with more confidence and thoroughly analyzed. Detailed and 

thorough testing of the sensor and actuator performance should be conducted in order to validate 

and update models used in the simulation. At the end of this stage, the ADCS sensors and 

actuators should be well understood in terms of both individual performance and functionality as 

well as how they interface with the rest of the spacecraft from an electrical, mechanical, and 

software perspective. Furthermore, flight software implementations of all GNC algorithms should 

be tested during this phase. The software-in-the-loop simulation environment is intended to 

iteratively bring the design maturity to approximately a CDR level. Finally, once the ADCS design 
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has been vetted during CDR and deemed acceptable, Monte Carlo analysis may be required to 

provide final system level validation. Once the pointing performance of the resulting ADCS design 

meets is requirement according to Monte Carlo analysis, the design will be mature enough for 

integration and flight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

As a whole, it should be noted that hesitation to take backward steps in the design process is 

undesirable. Sometimes it is worthwhile to progress backward in the design in order to correct for 

poor decisions made earlier in the overall process, or to remove unnecessary elements in the 

design that add worthless complexity. Such a mentality is sometimes hard to maintain, but in 

general, it will lead to a more efficient and cheaper system. The author of this thesis strongly 

recommends that students who design attitude control systems in the CPCL accept this 

engineering philosophy. 

Figure 5: Proposed CPCL ADCS Design Iteration Strategy 
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2.4 Software-in-the-loop GNC Simulation Framework 

 As mentioned in the previous subsection, a software-in-the-loop simulation should be 

employed during the critical design phase for sensor and actuator selection and layout, as well as 

eventual verification of flight software functionality and system pointing performance. Fortunately, 

significant time and effort has been dedicated to developing such a framework for use in the 

CPCL by past student engineers. Figure 6 provides a block diagram representation of this 

simulation framework as developed in [8].  

 A key element in any software-in-the-loop simulation is the truth model. In this case, the 

CPCL has chosen to take advantage of an open source, high fidelity 6 DOF spacecraft orbit and 

attitude dynamics simulation called NASA 42, developed by Dr. Eric Stoneking of NASA 

Goddard. NASA 42 is written in C for speed and portability according to Dr. Stoneking, and can 

model most conceivable mission scenarios and spacecraft configurations and mass properties, 

especially for university CubeSat missions. More detail on the simulation’s modeling capability 

and configuration options is provided in chapter 4 of this thesis. The simulation has been 

intentionally integrated with the flight software so that it interfaces with physical hardware in the 

same way that it interfaces with simulated hardware in NASA 42. Referring to figure 6, the high 

level flow of the software-in-the-loop simulation is as follows: 

1. Initialize NASA 42 and read all input configuration files  

2. Initialize the flight software (all blue boxes) 

3. Propagate the state of NASA 42 to a future time and pause the simulation 

4. Calculate simulated sensor readings according to sensor models in NASA 42, pass the 

simulated sensor readings to the PolySat device driver library  

5. Execute navigation algorithm with simulated sensor readings as input, pass the resulting 

state estimate to the control algorithm 

6. Execute control algorithm with the state estimate as input and pass the resulting actuator 

commands to 1) the PolySat device driver library and 2) the navigation algorithm 

7. Send actuator commands to NASA 42, go back to step (3) 
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As seen in figure 6, it is also possible to configure the simulation with physical hardware and 

execute a hardware-in-the-loop test. However, such an activity is beyond the scope of this thesis 

and will be elaborated upon in the future work section.  

 An extremely important, high utility feature of this simulation framework is that both 

navigation and control algorithms can be implemented in python. A binding with python using a C 

API was established by [8], enabling the algorithms whose fundamental designs are more driven 

by relatively sophisticated mathematics (e.g. navigation and control) to be implemented in a 

higher level, more forgiving programming language. If the simulation is built to run with python, 

then the ADCS flight software makes function calls to python code when it reaches the navigation 

and/or control steps by utilizing C’s python API, and the rest of the process resumes as it would 

have in C. In this thesis, example python control algorithm implementations for a variety of control 

modes are successfully implemented in this simulation framework.  

 In conclusion, it is clear from this chapter that little effort has been given to the 

formulation of a design methodology for guidance and control algorithms in the CPCL. Instead, 

much more attention has been given to estimation algorithms, sensor selection, and software-in-

the-loop testing. The next chapter will provide formulation of a control algorithm design 

methodology that will be implemented and utilized in the CPCL ADCS design and analysis toolkit. 

 

 

 

Figure 6: CPCL Software-in-the-loop GNC Simulation Framework 
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Chapter 3 

GUIDANCE AND CONTROL ALGORITHM DESIGN PROCEDURE 

 In this chapter, both guidance and control are addressed within the context of the design 

and analysis of an ADCS. On the control side, the development of a mathematical procedure to 

map a set of controller specifications (i.e. design knobs) onto a set of parameters that are 

necessary in the resulting real-time control algorithm implementations is presented. In terms of 

guidance, a strategy for computation of the reference quaternion (i.e. the desired attitude) in 

various control system pointing modes is formulated. In the following chapter, the details of how 

these guidance and control strategies are embedded into the CPCL ADCS toolkit are provided, 

and thus the design and implementation of both the single and three axis MATLAB/Simulink tools 

presented in this work rely heavily on the mathematics to follow. Content in this chapter draws 

from techniques in [12] and [13] based on classical control theory as applied to the spacecraft 

attitude control problem. Mathematical reasoning—starting with the nonlinear spacecraft 

dynamics in three dimensions—followed by linearization and transformation into the frequency 

domain, will be performed.  

3.1 Dynamic Modeling Assumptions and Linearization of the Plant Equations of Motion 

 In this work, the plant to be controlled is assumed to be an unconstrained rigid body in 

three dimensions. Although this is not always a good assumption, most CubeSats do not contain 

deployable features whose flexible dynamics are of importance in the design of the control 

system. Moreover, if non-negligible flexible modes do exist in a particular spacecraft 

configuration, they can be readily dealt with in terms of meeting stability margin and pointing 

performance requirements by appropriate filter design and digital signal processing, which fits 

very well within the classical control paradigm. Since this work assumes rigid body dynamics in 

the design of the control laws, care must be taken if the resulting control laws fly on a CubeSat 

whose structure gives rise to noticeable flexible modes. If that is the case, the designer must 

consider the following: 

• Will flexible modes show up in sensor output or experience excitation by actuator input? 
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• Given a controller designed with rigid body assumptions, do any flexible modes couple 
into the open loop frequency response so as to compromise stability margins? 

 If the answer to either of the above two questions is yes, then it is likely that a digital 

notch filter will be a necessary addition to the control system. Where this notch filter is placed in 

the overall architecture of the control system depends on where in the system the flexible modes 

are more pronounced. For example, if a magnetometer is placed on the edge of a long, flexible 

solar array, then it is possible that flexible modes of that solar array will be excited by control 

torques and subsequently show up in the magnetometer output signal. Since the magnetometer 

readings are used as feedback to the estimation algorithm, these flexible modes may still make it 

back into the error signal if not removed by the estimator, which is problematic if the controller is 

not designed to handle them. A flexible body dynamic model, as obtained through appropriate 

finite element analysis, should inform the designer how changes in control inputs result in 

changes in mass element deflections at each point on the solar array. With this model, the flexible 

modes of the solar array at the location of the magnetometer can be recovered, and then 

removed from the output signal of the magnetometer with an appropriately designed notch filter. 

Overall, these types of considerations must be made on a per-mission basis, based on seemingly 

extraneous features of the spacecraft design.  

 The dynamics of a rigid body are governed by Euler’s equations, which describe how 

torques influence the attitude motion of the rigid body in three dimensions. Euler’s equations can 

be written in vector form as  

𝑻 = 𝒉̇ + 𝝎 𝒙 𝒉 

Where 𝒉 is the total angular momentum vector of the rigid body with respect to inertial space 

expressed in body coordinates, 𝝎 is the total angular velocity vector of the rigid body with respect 

to inertial space (also expressed in body coordinates), and 𝑻 is the net torque vector acting on 

the rigid body expressed in body coordinates. Several mathematical parameterizations of the 

attitude exist, but in this work the quaternion is chosen as it provides several advantages—most 

notably algebraic, nonsingular kinematics—over other parameterizations. The quaternion is a four 

dimensional quantity that is directly related to the axis around which and the angle through which 
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one reference frame must be rotated so that it coincides with another reference frame. Therefore 

it describes the three dimensional orientation of one reference frame with respect to another 

reference frame. The attitude of a rigid body with respect to the inertial reference frame can be 

parameterized in terms of a quaternion 𝒒 as 

𝒒 = 𝜂 + 𝝐 

Where 𝝐 is related to the eigenaxis and angle of the frame transformation from the inertial 

reference frame to a body fixed reference frame by 

𝝐 = sin (
𝜙

2
)𝒂 

Where 𝒂 is the three dimensional unit vector that represents the eigenaxis of the transformation 

encoded by the quaternion, and ϕ is the angle through which the transformation rotates the 

inertial frame around 𝒂. In this work, quaternions are interpreted as frame rotations, which means 

they do not rotate physical vectors with respect to inertial space when transforming them. The 

scalar part 𝜂 of the quaternion is given by 

𝜂 = cos (
𝜙

2
) 

It is important to note that a quaternion must have unity magnitude in the Euclidean norm sense, 

otherwise it does not represent a pure rotation. Under the definition described above, the 

quaternion is guaranteed to have a Euclidean norm of one.   

 The attitude kinematics associated with the quaternion parameterization are given by 

𝝐̇ =
1

2
(𝜂𝑰 + 𝝐𝑥)𝝎 

𝜂̇ = −
1

2
𝝐𝑇𝝎 

Where the superscript 𝑥 over any vector quantity represents the cross-product matrix built from 

that vector, the 𝑇 superscript represents the transpose of the vector, and 𝑰 is the 3 by 3 identity 

matrix.  

 Since reaction wheels are likely to be the primary choice of attitude actuator in almost all 

CubeSat missions that require three axis pointing, it is important to understand how they play into 
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the rigid body dynamics as described by Euler’s equations. In order to fully capture the dynamics 

of a rigid body under the influence of reaction wheels, the instantaneous momentum vector of the 

reaction wheel system must be included in the net momentum vector of the wheel plus spacecraft 

system before applying Euler’s equations. For a rigid body containing N reaction wheels mounted 

in arbitrary orientations with respect to the body frame, the total angular momentum vector of the 

wheel plus spacecraft system is  

𝒉total = 𝐽𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴 

Where 𝐽 is the inertia matrix of the rigid body expressed in a body fixed frame including the 

reaction wheel mass, 𝐼𝑤𝑠 is the scalar moment of inertia around the spin axis of each wheel 

(assuming all wheels are identical), 𝑨𝑠 is 3 by N matrix that transforms wheel space angular 

momentum vectors into body space angular momentum vectors, and 𝜴 is an N by 1 vector of the 

angular rates of each wheel. Substituting this expression for the total angular momentum of the 

rigid body and reaction wheel system into Euler’s equations yields 

𝑻 = 𝐽𝝎̇ + 𝐼𝑤𝑠𝑨𝑠𝜴̇ + 𝝎 𝑥 (𝐽𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴) 

A control law that commands reaction wheels seeks to compute a moment which enters into the 

rigid body dynamics according to the 𝐼𝑤𝑠𝑨𝑠𝜴̇ term in the above nonlinear vector differential 

equation. An appropriate angular acceleration 𝜴̇ is then calculated such that the actual 

momentum exchange applied to the rigid body is as close as possible to the commanded control 

moment. In most reaction wheel designs, the motor driver attached to the flywheel is configured 

to control the angular speed of the wheel, not the angular acceleration. Therefore, each time a 

new torque command is requested from the attitude controller, multiple speed set points must be 

obtained by discrete-time integration of the torque command divided by the wheel’s moment of 

inertia around its spin axis. The speed set points are then sent to the internal wheel control 

electronics. Fortunately, this is not difficult to implement in software, and its effects can be 

captured in simulation by modeling the reaction wheel dynamics from speed commands to true 

speed using a first order transfer function with time constant 𝜏. The transfer function from wheel 
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speed command (e.g. the integral of the torque requested by the attitude controller divided by the 

wheel inertia ) to actual wheel speed has a unity DC gain and a single pole at 𝑠 = −
1

𝜏
: 

𝐺(𝑠) =
1

𝜏𝑠 + 1
 

Where 𝜏 is the time required for the true wheel speed to converge to within ~63% of its 

commanded value. 

 It is clear that both the rigid body dynamics and the quaternion kinematics are nonlinear. 

In order to apply classical control theory, the dynamics of the plant to be controlled must be linear 

and time invariant. Therefore, to obtain a linear time invariant dynamics model, a linearization of 

the nonlinear dynamics and kinematics about an equilibrium state of particular interest is 

performed. For analysis purposes, the equilibrium state corresponding to the home quaternion 

and zero angular velocity is chosen: 

𝒒 = 0𝑖̂ + 0𝑗̂ + 0𝑘̂ + 1 

𝝎 = [
0
0
0
] 

Although it may not always be desirable to regulate the system to this state, it is still a good 

approximation of the desirable steady-state behavior in most attitude control modes. Furthermore, 

any constant, non-zero quaternion relating the attitude of the rigid body to the inertial frame can 

be represented as the zero quaternion after an appropriate redefinition of the inertial frame. This 

means that the attitude dynamics are the same local to any constant quaternion relating the body 

frame to the inertial frame, even if the two frames are not aligned. Such invariance of the attitude 

dynamics (i.e. the Newtonian physics of the problem) with respect to constant quaternions should 

not come as a surprise, because a constant quaternion is a purely kinematic quantity. 

 When the above equilibrium state is substituted into the full nonlinear dynamics, and the 

gyroscopic torque due to non-zero reaction wheel momentum is neglected (this assumption will 

be revisited), the following set of differential equations are recovered: 

𝟎 = 𝐽𝝎̇ + 𝐼𝑤𝑠𝑨𝑠𝜴̇ 
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𝝐̇ =
1

2
𝝎 

𝜂̇ = 0 

The vector differential equations above are decoupled as long as the eigenvectors of the inertia 

matrix 𝐽 are nearly parallel to the basis vectors of the body frame. It turns out that it is always 

possible to find a body fixed frame in which the inertia matrix is diagonal. Such a frame is called 

the principle frame. However, it is not always convenient to define the body frame to be controlled 

as the principle frame, especially when the principle axes are not aligned with interesting features 

of the spacecraft (e.g. sensor boresights, solar array normal vectors, communication beams, or 

thrust vectors). For spacecraft of very asymmetrical geometry and mass distribution, the principle 

frame is likely to be significantly misaligned with the control frame of interest. Conveniently, due 

to the symmetric geometry and mass properties of CubeSats, it is reasonable to assume that 𝐽 

can be well approximated by a diagonal matrix in a body fixed frame whose basis vectors are 

perpendicular to the faces of the CubeSat. Such a frame is also usually very convenient from the 

perspective of pointing. A strategy for dealing with cases in which 𝐽 cannot be assumed diagonal 

will be dealt with in a future section. With this assumption, the dynamics around each axis can be 

treated separately to yield three single input single output (SISO) linear dynamic systems. To see 

how this is possible, notice that in the linearized kinematics, the first derivative of the angular 

velocity vector is equal to twice the second derivative of the vector part of the quaternion. 

Substituting twice the second derivative of the vector part of the quaternion for the first derivative 

of the angular velocity in the linearized dynamics will yield three linear second order systems with 

two poles at the origin, namely a double integrator process. For the sake of example, focusing on 

the x-axis gives 

2𝐼𝑥𝜖𝑥̈ = 𝑢𝑥 

Where 𝑢𝑥 is the x-component of the control input, 𝐼𝑥 is the moment of inertia around the principle 

x axis, and 𝜖𝑥̈ is the second time derivative of the x component of 𝝐. Taking Laplace transforms 

yields  



 
 

23 
 

𝑌(𝑠) = 𝛦𝑥(𝑠) =
1

2𝐼𝑥𝑠2
𝑈𝑥(𝑠) 

Where 𝑌(𝑠) is the x-component of the vector part of the quaternion. At this point, the dynamics 

have been reduced to three SISO systems, all with the same form of plant transfer function (e.g. 

a double integrator). Therefore, it is really only necessary to solve the control problem once, and 

then repeat the same procedure for each axis. In the following section, the formulation of the 

control law design procedure is provided for a single axis. 

3.2 Discrete Time PID Controller Design 

 For this work, the single axis unity feedback block diagram in figure 7 provides the basis 

for the formulation of the control algorithm design procedure to be implemented in the toolkit. In 

this diagram, 𝑅(𝑠) is the reference signal, 𝑇 is the sampling period of the digital attitude controller 

𝐺𝑐(𝑧), 𝐼 is the axial moment of inertia, 𝑠 is the Laplace variable, and 𝜃(𝑠) is the attitude angle. 

The design of the digital controller 𝐺𝑐(𝑧) is performed by first obtaining an exact discrete time 

equivalent (z-domain) model 𝐺𝑝(𝑧) of the zero-order hold plus double integrator plant. The pulse 

transfer function between the input to the zero-order hold and the ideally sampled version of the 

output 𝜃(𝑠) can be obtained with the following sum: 

𝐺𝑝(𝑧) = (1 − 𝑧−1) ∑ 𝑅𝑒𝑠 [𝑋(𝜆)
1

1 − 𝑧−1𝑒𝑇𝜆
]

𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑋(𝜆)

 

Where the 𝑅𝑒𝑠[ ] operator denotes taking the residue of the function in the argument. For a 

derivation of the above, the reader is referred to [13], but a short explanation is that the Residue 

Figure 7: Closed Loop Model for Control Algorithm Design 
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Theorem is being applied to evaluate the contour integral of 𝑋(𝜆) around its poles. In the case of 

the control system in figure 7, the transfer function 𝑋(𝜆) is given by  

𝑋(𝜆) =
1

𝐼𝜆3
  

𝑋(𝜆) is a triple integrator because it picked up an extra integrator from the transfer function of the 

zero order hold. Calculating 𝐺𝑝(𝑧) according to the expression above gives the discrete time 

transfer function between inputs to the zero order hold and the sampled plant output: 

𝐺𝑝(𝑧) =
𝑇2

2𝐼

(𝑧 + 1)

(𝑧 − 1)2
 

With an exact discrete time model of the sampled response of the zero-order hold plus double 

integrator plant, there are two design directions that can be pursued. Either the digital controller 

𝐺𝑐(𝑧) can be designed around the discrete time plant directly in the z-domain, or a continuous 

time approximation to 𝐺𝑝(𝑧) can be obtained, allowing for the controller to be designed in the 

more familiar continuous time domain, and then implemented digitally after applying an 

appropriate analog to digital mapping.  In this work, the continuous time control design approach 

is taken as it is more intuitive and much easier to deal with in terms of the resulting open-loop 

transfer function. During the design process, the continuous frequency domain corresponding to 

the controller and plant will be referred to as the w-domain instead of the s-domain. The reason 

for this is that the continuous time approximation of the exact discrete-time model derived earlier 

will not be identical to the original dynamic system as defined in the s-domain. In fact, the original 

system in the s-domain is nonlinear due to the zero-order hold and thus cannot be treated with 

classical control techniques. Therefore, using a new variable resolves potential confusion. 

Moreover, since the frequencies in the w-domain are not exact analog frequencies, it is even 

more natural to utilize a different variable. More specifically, exact analog frequencies in the s-

domain above the Nyquist frequency are lost upon discretization of the continuous time plant, but 

reappear as warped versions of themselves when the discrete time model is reconstructed in the 

w-domain. Mathematically, frequencies in the w-domain 𝜔𝑤 are related to exact analog 

frequencies 𝜔 after a bilinear transform by 
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𝜔𝑤 =
2

𝑇
tan (

𝜔𝑇

2
) 

From the above expression it is clear that for analog frequencies much less than the Nyquist 

frequency, the frequency warping is minimal. In other words, 

𝜔𝑤 ≈ 𝜔 when 𝜔𝑇 << 1 

This relationship is important, because it tells us that if the bandwidth of the closed loop system is 

kept sufficiently lower than the Nyquist frequency, the true analog frequency response will be well 

approximated in the w-domain, thus validating the use continuous time design techniques. 

 Approximation of the discrete time plant 𝐺𝑝(𝑧) in the continuous w-domain is performed 

by utilizing the bilinear transform. The bilinear transform approximates the discrete complex 

variable 𝑧 = 𝑒𝑤𝑇 using a Taylor Expansion to first order, yielding 

𝑧 ≈
1 + (

𝑇
2)𝑤

1 − (
𝑇
2)𝑤

 

The advantage of this approximation is that the resulting transfer function can always be written 

as a ratio of polynomials in 𝑤, which is necessary for classical control design techniques. 

Substituting the above expression for 𝑧 into 𝐺𝑝(𝑧) gives 

𝐺𝑝(𝑤) =
2 − 𝑇𝑤

2𝐼𝑤2
 

Notice that the w-domain expression above, which approximates the discrete time model given by 

𝐺𝑝(𝑧), is remarkably similar to a simple double integrator, with the exception of an additional zero 

that lies below the real axis in the right-half plane, since 𝑇 > 0 by definition. This zero is capturing 

the phase lag incurred by the zero-order hold in the original nonlinear continuous time system. 

Although this zero is in the right half plane and thus the w-domain system is non-minimum phase, 

it is after all an approximation. Therefore, the control design techniques that are typically required 

to deal with non-minimum phase systems do not apply in this context. Moreover, using the above 

plant 𝐺𝑝(𝑤) in the control design adds sample rate dependence to the computation of the 

controller gains, which is a desirable property of the overall control design procedure. 
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 In this context, the controller acts on the quaternion error signal at its input and generates 

body torque commands as its output. The PID controller is designed to achieve a desired phase 

margin 𝜃𝑀 and open loop gain crossover frequency 𝜔∗ in the w-domain. The gains 𝐾𝑝, 𝐾𝐷, and 𝐾𝐼 

are calculated by first considering how the parameters 𝑇𝑃𝐷 and 𝑇𝑃𝐼 are related to the frequencies 

of the two open loop zeros that are added to the open loop transfer function by the controller. In 

this context, the open loop transfer function 𝐺𝑂(𝑤) is given by the product of the PID controller 

transfer function and the plant transfer function: 

𝐺𝑂(𝑤) = 𝐺𝑃(𝑤)𝐺𝐶(𝑤) =
𝐾

2𝐼𝑤3
(2 − 𝑇𝑤)(𝑇𝑃𝐷𝑤 + 1)(𝑇𝑃𝐼𝑤 + 1) 

Each first order term in the PID controller transfer function of the form 𝑇𝑤 + 1 adds a zero to the 

open loop transfer function at frequency 
1

𝑇
. Due to the integrator of the controller as well as the 

double integrator from the plant, the two zeros of the PID controller must collectively compensate 

for 270˚ of open loop phase lag at all frequencies, as well as the phase lag from the zero-order 

hold, to achieve the desired phase margin. The parameters 𝑇𝑃𝐷, and 𝑇𝑃𝐼 can be viewed as knobs 

that change the shape of the open loop gain and phase frequency response by adjusting the 

frequency locations of the open loop zeros, since they are just the inverses of the zero 

frequencies. The gain 𝐾 can be viewed as a knob that moves the entire open loop gain frequency 

response up by 20 log10 𝐾 dB. With this in mind, the following strategy is employed in mapping 

the control system specifications 𝜃𝑀 and 𝜔∗ to the PID gains 𝐾𝑝, 𝐾𝐷, and 𝐾𝐼: 

1. Place the PI zero one decade before the gain crossover frequency 𝜔∗ with 

𝑇𝑃𝐼 =
10

𝜔∗ 
 

2. Place the PD zero so that when the open loop gain is 𝜔∗, the open loop phase is 𝜃𝑀 

greater than −180˚ using 

𝑇𝑃𝐷 = (
1

𝜔∗
) tan( 90˚ + 𝜃𝑀 + tan−1 (

𝑇𝜔∗

2
) − tan−1(𝑇𝑃𝐼𝜔

∗)) 

3. Finally, compute the gain 𝐾 so that the open loop gain is 0 𝑑𝐵 at frequency 𝜔∗ using 
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𝐾 =
1

|
𝑇𝑃𝐼𝑖𝜔∗ + 1

𝑖𝜔∗ | |𝑇𝑃𝐷𝑖𝜔∗ + 1| |
2 − 𝑖𝜔∗

2𝐼𝑎(𝑖𝜔∗)2|
 

Where 𝑖 is the imaginary unit, the vertical brackets denote the magnitude of a complex number, 

and 𝐼𝑎 is the moment of inertia around the axis of interest. After steps (1) through (3), the gains 

𝐾𝑝, 𝐾𝐷, and 𝐾𝐼 are computed using  

𝐾𝐼 = 𝐾 

𝐾𝑝 = 𝐾(𝑇𝑃𝐷 + 𝑇𝑃𝐼) 

𝐾𝐷 = 𝐾𝑇𝑃𝐷𝑇𝑃𝐼 

 Once the PID gains are calculated, the control law can be implemented in software fairly 

easily by discretizing the controller transfer function with backward Euler differentiation and 

trapezoidal integration. After calculation of the above controller gains, the digital control algorithm 

implements  

𝐺𝑐(𝑧) = 𝐾𝑝 +
𝐾𝐼𝑇𝑠(𝑧 + 1)

2(𝑧 − 1)
+

𝐾𝐷(𝑧 − 1)

𝑇𝑠𝑧
 

This is equivalent to applying the bilinear transform to the integral state of the w-domain control 

law and applying a backward Euler discretization to the derivative part of the control law. 

3.3 Reference Filter and Derivative Filter Design 

 Two additional elements of the proposed control system design are two first order digital 

low pass filters, one after the reference signal and one before the derivative term in the control 

law. Both of these filters have their own purpose. The derivative filter prevents the controller from 

amplifying high frequency noise that may be present in the error signal, primarily coming from the 

feedback path. It can be used to bend the open loop gain response further downward after 

crossover, which increases noise attenuation performance. The reference filter, on the other 

hand, removes high frequencies (such as in step changes) in the reference signals to which the 

controller may respond too aggressively relative to the strength of the actuators in the system. 

Moreover, the reference filter could also be designed to notch out flexible modes that may be 
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present in the plant dynamics, but in this work, mitigation of large step changes in attitude 

commands—which will occur during operational transitions between control modes—is the 

primary design goal for the reference filter. Both filters are first designed in the continuous 

frequency domain and then mapped into the discrete frequency domain with the bilinear 

transform. An analog, first order low pass filter has a transfer function of the form 

𝐻(𝑠) =
𝜔𝑐

𝑠 + 𝜔𝑐
 

Where 𝜔𝑐 is the cutoff frequency of the filter—the single design parameter at hand—in rad/s. 

Applying the bilinear transform substitutes the following approximation for 𝑠 in terms of the 

discrete frequency variable 𝑧 into 𝐻(𝑠) to yield a discrete time transfer function 𝐻(𝑧): 

𝑠 ≈
2(𝑧 − 1)

𝑇(𝑧 + 1)
 

The resulting discrete time transfer function is given by 

𝐻(𝑧) =
𝑏(𝑧 + 1)

𝑧 − 𝑎
 

Where the coefficients 𝑎 and 𝑏 are related to the sampling period 𝑇 and cutoff frequency 𝜔𝑐 by 

𝑎 =

2
𝑇 − 𝜔𝑐

2
𝑇 + 𝜔𝑐

 

𝑏 =
1

1 +
2

𝜔𝑐𝑇

 

The following difference equation in terms of the coefficients 𝑎 and 𝑏 is then used to implement 

the first order filter in discrete time: 

𝑦𝑘 = 𝑎𝑦𝑘−1 + 𝑏(𝑢𝑘 + 𝑢𝑘−1) 

Where the subscript 𝑘 indexes the time step, 𝑦 is the filter output, and 𝑢 is the filter input.  

 In designing the derivative filter, it is important that the chosen gain crossover frequency 

be at least one decade less than the filter’s cutoff frequency so that the filter only affects the 
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relatively high frequency portion of the open loop frequency response and does not significantly 

disrupt the phase margin. In other words, 

10𝜔𝑔𝑐 ≤ 𝜔𝑐 

The reference filter, on the other hand, has no similar constraint. However, when attempting to 

filter out high frequencies as a result of large step changes in the attitude reference signal, a 

reasonable choice for the cutoff frequency of the reference filter is 

𝜔𝑔𝑐 ≤ 2𝜔𝑐 

Furthermore, it does not make sense to place the reference filter cutoff frequency significantly 

lower than the gain crossover frequency, because the interesting frequencies of the input signal 

to the reference filter are designed to be tracked by the closed loop system by virtue of where the 

gain crossover frequency is placed. In other words, placing the cutoff frequency of the reference 

filter significantly below the gain crossover frequency could prevent the output of the closed loop 

system from tracking the interesting part of its input. The above rule of thumb provides a sensible 

balance between keeping the reference filter cutoff frequency high enough so that the closed loop 

system tracks frequencies of interest, while also keeping the reference filter cutoff frequency low 

enough to prevent large discontinuities in actuator commands.  

 Figure 8 below summarizes the control system architecture as developed in this chapter. 

The engineer can adjust six control design knobs within this architecture: the sample rate, open 

loop gain crossover frequency, phase margin target, reference filter cutoff frequency, derivative 

filter cutoff frequency, and the integral saturation limit.  

Figure 8: Single Axis Closed-Loop Attitude Control System Architecture 
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3.4  Feedback Linearization  

 We will now revisit the previous assumption that the total gyroscopic torque in Euler’s 

equations due to reaction wheel momentum can be neglected, and that 𝐽 is diagonal. In general, 

when the spacecraft angular velocity is sufficiently small and the spacecraft mass distribution is 

symmetric about each plane of the body axes, this assumption is valid. However, if a high control 

system bandwidth is desired for a particular mission, then spacecraft angular velocities may not 

stay small enough for a valid dynamics linearization. Furthermore, if the spacecraft mass 

distribution is asymmetrical enough to give rise to a large rotation angle between the principle 

frame and the body control frame, the dynamics around each axis can no longer assumed to be 

decoupled. Fortunately, it is possible to actively “cancel” this nonlinearity in Euler’s equations and 

decouple the system by adding a feedback linearization signal to the control law. For simplicity, 

the following continuous time representation of such a nonlinear control law would look like 

𝒖 = 𝐾𝑝𝒆 + 𝐾𝐼 ∫𝒆𝑑𝑡 + 𝐾𝐷𝒆̇ − 𝝎 𝑥 (𝑱𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴) = 𝒖𝐿 + 𝒖𝑁𝐿 

This makes our assumption about the negligible gyroscope torque more reasonable. In the 

above, 𝒆 is the attitude error, and the means by which it is calculated depends on the overall goal 

of the controller (e.g. the ADCS operational mode). The control law is partitioned into two signals 

with different design objectives. The first signal 𝒖𝐿 is the linear part, whose design is carried out 

according to the previously mentioned procedure, and its overall goal is to drive the attitude errors 

to zero. The second signal 𝒖𝑁𝐿 is the nonlinear part, whose goal is to cancel the nonlinear 

gyroscopic torques, and force the closed-loop dynamics to behave more similarly to how they 

were modeled when designing 𝒖𝐿. More explicitly,  

𝒖𝐿 = 𝐾𝑝𝒆 + 𝐾𝐼 ∫𝒆𝑑𝑡 + 𝐾𝑑𝒆̇ 

And 

𝒖𝑁𝐿 = −𝝎 𝑥 (𝑱𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴) 
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It is important to note that the sign of the nonlinear control 𝒖𝑁𝐿 depends on the type of actuators 

being used to generate the control signal. In the above, it is assumed that reaction wheels are the 

primary control actuator, since in that case  

𝐼𝑤𝑠𝑨𝑠𝜴̇ = 𝒖 = 𝒖𝐿 + 𝒖𝑁𝐿 

So in order for the 𝝎 𝑥 (𝑱𝝎 + 𝐼𝑤𝑠𝑨𝑠𝜴) term in Euler’s equations to vanish, the control should have 

the opposite sign. Assuming perfect inertial knowledge, angular velocity knowledge, and wheel 

rate knowledge, the closed loop differential equations become 

−𝒖𝐿 = 2𝑱𝝐̈ 

Which is consistent with the assumptions made when designing three decoupled reaction wheel 

PID controllers around double integrator plants. Also note that the closed loop differential 

equations above assume that the control enters into the dynamics on the right-hand-side of 

Euler’s equations, which is only true when momentum exchange actuators like reaction wheels 

are utilized. This is the reason for the negative sign on the left-hand side. If the actuators provide 

external torques as opposed to momentum exchanges, the sign of the total control signal needs 

to be flipped. Keen awareness of the correct sign in this context is a crucial step in avoiding errors 

which can easily lead to a loss of closed-loop stability.    

3.5 Control System Operational Modes  

 In this section, the mathematical formulation behind the computation of the reference 

attitude quaternion for each of the following three-axis operational modes will be provided:  

• Inertial Pointing 

• Nadir Pointing 

• Ground Pointing 

• Ephemeris Pointing 

• Spin Pointing 

• Desaturate 
 

Each of these control modes will be dealt with sequentially, starting with inertial pointing. This 

section addresses the design of the various guidance algorithms required to provide consistent 

and well defined reference signals to the attitude control system. Preliminary simulation results 
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show that the PID controller design presented in the previous section provides good closed loop 

performance for all of these modes.  

3.5.1 Inertial Pointing 

 Inertial pointing is by far the simplest of these operational modes. In inertial pointing, the 

goal of the control system is to drive the attitude to a constant commanded inertial to body 

quaternion. The particular quaternion target in question is dependent on the mission and 

operational scenario, and will be a parameter that can be commanded from the ground or baked 

into a flight software configuration file. The attitude error vector for inertial pointing is computed as  

𝒆 = 2𝝐(𝑞𝑟
∗𝑞) 

Where 𝑞𝑟 is the commanded inertial to body quaternion, 𝑞 is the estimated inertial to body 

quaternion, and the 𝜖( ) denotes that only the vector part of the resulting product is taken as the 

attitude error. The * operator corresponds to quaternion conjugation, which simply involves 

flipping the sign on the vector part of the quaternion.  

 The factor of two present in the attitude error computation is to ensure that for small error 

angles, the attitude error is directly proportional to the rotation angles around each principle axis 

required to align the two frames. To see this, consider that 

𝝐(𝑞𝑟
∗𝑞) = 𝐚 sin(𝜙𝑒/2) 

For small  𝜙𝑒, this reduces to 

𝝐(𝑞𝑟
∗𝑞) ≈

1

2
𝒂𝜙𝑒 

The factor of one-half in the above is problematic. It means that if the factor of two is not included 

in the attitude error computation, then the proportional control signal picks up an unwanted gain 

of one-half relative to the single axis plant model used in the design of the controller. This will 

result in closed loop behavior that is inconsistent with the original specifications. 

3.5.2 Nadir Pointing 

 The next mode presented is nadir pointing. This mode is extremely important, because it 

allows the spacecraft to align itself with a non-inertial reference frame defined by the 
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instantaneous orbit state. Therefore the spacecraft attitude profile is periodic with respect to the 

orbit period, permitting a steady state “downward looking” behavior. As a result, the attitude error 

computation is much more involved than in inertial pointing. First, the rotation matrix from the 

inertial to orbit frame is constructed by computing the basis vectors of the orbit frame one at a 

time, each expressed in the inertial frame. The unit vector along the z axis of the orbit frame is 

defined as  

𝒛̂ =
−𝑹

|𝑹|
 

Where 𝑹 is the inertial position vector of the spacecraft. Based on this calculation, 𝑧̂ is a unit 

vector pointing in the geocentric nadir direction. The unit vector along the y axis of the orbit frame 

is the negative of the orbital angular momentum: 

𝒚̂ =
−𝒉

|𝒉|
=

−(𝑹 𝑥 𝑽)

|𝑹 𝑥 𝑽|
 

And finally, the x axis completes the right-handed orthogonal triad with 

𝒙̂ = 𝒚̂ 𝑥 𝒛̂ 

The rotation matrix from the inertial frame to the orbit frame is given in terms of these three basis 

vector as 

𝐶 = [
𝒙̂𝑇

𝒚̂𝑇

𝒛̂𝑇

] 

The quaternion corresponding to the same frame transformation encoded by 𝐶 is the reference 

quaternion. It can be calculated in terms of 𝐶 with  

𝜂𝑟 =
1

2
√1 + 𝑡𝑟(𝐶) 

𝜖𝑟𝑥 =
𝐶23 − 𝐶32

4𝜂𝑟
 

𝜖𝑟𝑦 =
𝐶31 − 𝐶13

4𝜂𝑟
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𝜖𝑟𝑧 =
𝐶12 − 𝐶21

4𝜂𝑟
 

Where the 𝑡𝑟(𝐶) operator denotes the trace of the matrix 𝐶, and the subscripts 𝐶𝑖𝑗 denote the 

element of 𝐶 at row 𝑖 and column 𝑗. Then the reference quaternion can be built from the elements 

computed in the previous four equations. However, there is a subtle issue that can arise when 

computing the reference quaternion in this manner. It turns out that quaternions are not unique, 

because 𝑞 and −𝑞 correspond to the same physical attitude. Because of this non-uniqueness, 

computation of the quaternion from the corresponding rotation matrix 𝐶 along an orbit will 

necessarily result in a discontinuous transition from 𝑞 to −𝑞 at some point in the orbit. Even 

though 𝑞 and −𝑞 correspond to the same physical attitude, the attitude error will change sign in 

one control cycle if this sign change occurs, which will lead to undesirable closed loop behavior 

and possibly a loss of stability. To ensure that this never happens, a unit delay is applied to the 

vector part of the reference quaternion computed at one control cycle, and dotted with the vector 

part of the reference quaternion at the next control cycle. In other words, the following quantity 𝑥 

is computed 

𝑥 = 𝝐𝑟⦁(𝑧
−1𝝐𝑟) 

If 𝑥 is less than zero, it means that the aforementioned point in the orbit at which the reference 

quaternion flips sign has been reached. To force continuity in the reference quaternion profile, the 

sign of the reference quaternion is flipped if 𝑥 is less than zero. The next step in computing the 

error quaternion is identical to the inertial pointing case using the new reference quaternion: 

𝒆 = 2𝝐(𝑞𝑟
∗𝑞) 

 It should be noted that under this formulation of nadir pointing, the spacecraft’s body y 

axis will be aligned with the negative orbital angular momentum vector, and the body z axis will 

be the nadir pointing axis. If a different alignment is desired, all that is required is an appropriate 

re-definition of the basis vectors of the orbit frame expressed in the inertial frame. For example, if 

it is desired that the body x axis of the spacecraft be aligned with the nadir vector, then the x-axis 

of the orbital frame should be defined as the nadir vector, while swapping the other two axes so 

that right-handedness is preserved. Finally, the attitude error computation presented for this 



 
 

35 
 

mode corresponds to geocentric pointing, not geodetic pointing. This is because it assumes the 

Earth is a perfect sphere. Since the Earth is not a perfect sphere, there will be a small pointing 

error between the body fixed pointing vector and the point on the Earth that intersects with the 

spacecraft position vector. Implementation of geodetic pointing is beyond the scope of this thesis 

but will be elaborated upon in the future work chapter.  

3.5.3 Ground Pointing 

 In ground pointing mode, the attitude control system’s goal is to align a commanded body 

fixed pointing axis with a vector pointing from the spacecraft to a commanded location on the 

surface of the Earth, specified in latitude and longitude coordinates. The reference quaternion is 

therefore underdefined by one degree of freedom, namely the rotation angle of the spacecraft 

around the body fixed pointing vector. In this work, the rotation angle around the body fixed 

pointing vector is defined such that a secondary spacecraft body vector will stay in the orbit plane, 

and the third axis completes the right-handed orthogonal triad. Defining the third degree of 

freedom in this manner is somewhat arbitrary, and may be easily redefined by replacing the 

velocity vector in the following formulation with a different vector of interest  

 The reference quaternion in this mode is computed by first forming the inertial to body 

rotation matrix defining the desired inertial to body attitude. The rows of the desired inertial to 

body rotation matrix are simply the positions of the desired body vectors expressed in inertial 

coordinates. Therefore, the body pointing axis of interest, which in this work is restricted to either 

the +X, +Y, or +Z axis, should occupy the corresponding row of the desired inertial to body 

rotation matrix. The unit vector pointing from the spacecraft to the commanded location on the 

ground, expressed in inertial coordinates, is given by 

𝑻̂ =
𝝆 − 𝑹

|𝝆 − 𝑹|
 

Where 𝝆 is the inertial position vector of the commanded location on the ground, and 𝑹 is the 

spacecraft inertial position vector. In order to obtain 𝝆 given only latitude and longitude 

coordinates, the Earth centered Earth fixed (ECEF) reference frame must be utilized. In an ECEF 

frame where the x axis points along zero geodetic longitude and the z axis points outward from 
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the North Pole, the position 𝝆 is constant and is given by the spherical to rectangular coordinate 

transformation 

𝝆𝐸𝐶𝐸𝐹 = [

𝑅𝑒 cos(𝜆) cos(𝜃)
𝑅𝑒 cos(𝜆) sin(𝜃)

𝑅𝑒 sin(𝜆)
] 

Where 𝑅𝑒 is the radius of the Earth, λ is latitude of the desired ground location, and θ is the 

longitude of the desired ground location. Then, 𝝆 is transformed into inertial coordinates 

according to  

𝝆 = 𝑅𝝆𝐸𝐶𝐸𝐹 

Where the rotation matrix 𝑅 projects vectors expressed in the ECEF frame to vectors expressed 

in the ECI frame. Computation of 𝑅 depends on which inertial frame is used in the orbit 

determination paradigm for a given space mission. However, most ECI and ECEF frames are 

defined in such a way that 𝑅 has the form 

𝑅 = [
cos 𝛥 − sin𝛥 0
sin 𝛥 cos 𝛥 0

0 0 1
] 

Which is simply a rotation about the ECEF z axis. The parameter 𝛥 is an angle that corresponds 

to a rotation around the ECEF z axis which aligns it with the inertial frame in question.  

 Now that the target vector of interest has been calculated, it is simply placed in the row of 

the desired inertial to body rotation matrix corresponding to the body pointing axis (e.g. if +Z axis 

is body pointing axis, place in 3rd row). In other words, the a’th row of the desired inertial to body 

rotation matrix is set as 

𝑟𝑎 = 𝑻̂ 

The other two rows of the rotation matrix still remain. They are calculated as 

𝑟𝑏 =
𝑽 𝑥 𝑻̂

|𝑽 𝑥 𝑻̂|
 

𝑟𝑐 = 𝑟𝑎  𝑥 𝑟𝑏  
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Where 𝑽 is the inertial velocity vector of the spacecraft. Then the rotation matrix corresponding to 

the desired inertial to body attitude is constructed as 

𝐶𝑟 = [

𝑟𝑎
𝑇

𝑟𝑏
𝑇

𝑟𝑐
𝑇

] 

It should be noted that the rotation matrix 𝐶𝑟 may require a different organization of the rows 𝑟𝑎, 

𝑟𝑏, and 𝑟𝑐 depending on the body pointing axis. The calculation above assumes that +X is the 

desired body pointing axis, since 𝑟𝑎 occupies the first row of the matrix. Finally, the reference 

quaternion is computed from the reference rotation matrix 𝐶𝑟 in the same way as was described 

in the Nadir Pointing section (3.5.2). In short,  

𝑞𝑟 = 𝑞(𝐶𝑟) 

Finally, the attitude error vector is computed with 

𝒆 = 2𝝐(𝑞𝑟
∗𝑞)  

Computing the reference quaternion in this way may result in similar discontinuous behavior as 

described in the Nadir Pointing section. Therefore, the same logic described in section 3.5.2 is 

implemented in this mode.  

3.5.4 Ephemeris Pointing 

 In ephemeris pointing, the attitude control system’s goal is to align a commanded body 

fixed pointing axis with a vector pointing from the spacecraft to a celestial body of interest. 

Pointing towards a celestial body of interest has numerous applications in a large class of space 

missions. More specifically, many space missions require a sun pointing mode during which the 

spacecraft aligns its solar array normal vectors with the sun to maximize input power. Ephemeris 

pointing is meant to generalize beyond sun pointing and allow pointing a body fixed vector at any 

target, specified by an ephemeris. Therefore, this mode is remarkably similar to the ground 

pointing mode. However, the difference is that in ephemeris pointing, the target vector does not 

move as quickly, and therefore the control system bandwidth may not need to be as high to track 

the lower frequency quaternion reference signals with sufficient accuracy.  
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 The reference quaternion in the ephemeris pointing mode is computed in almost the 

exact same manner as in ground pointing, with the exception that the target vector is instead 

known in the inertial frame a priori and does not require computation. Therefore, the exact same 

procedure as described in 3.5.3 can be used to compute the quaternion reference signal, with the 

target vector 𝑻̂ instead being the unit vector pointing from the inertial spacecraft position to the 

inertial position of the celestial body of interest given by the ephemeris: 

𝑻̂ =
𝑹𝑻 − 𝑹

|𝑹𝑻 − 𝑹|
 

Where 𝑹𝑻 is the inertial position vector of the celestial body given by the ephemeris expressed in 

the ECI frame. Then the rest of the procedure described in 3.5.3 can be used to construct the 

desired inertial to body rotation matrix, such that the commanded body fixed axis points toward 

the target, an orthogonal axis stays in the orbit plane, and the third axis completes the orthogonal 

triad.  

3.5.5 Spin Pointing 

 In spin pointing, the attitude control system aligns a body fixed axis with a fixed direction 

in inertial space, and imparts an angular velocity around that axis according to a commanded spin 

rate. This mode is applicable to many conceivable operational scenarios, the most prominent of 

which is an orbital maneuver or safe mode. Since the desired inertial delta-v vector for an orbital 

maneuver should be known before the spacecraft initiates the maneuver, this mode could be 

used to command the spacecraft to place its thrust vector along that desired inertial delta-v vector 

and begin spinning around that vector at a small rate. Flying in such an attitude during an orbital 

maneuver can help average out the total accumulated delta-v along the desired inertial burn 

duration, increasing maneuver accuracy. Further, spinning around a thrust axis can gain stabilize 

any potentially harmful fuel slosh modes if liquid fuel is used in the propulsion system. On the 

other hand, the spin pointing mode may be applicable for mission scenarios in which the 

spacecraft is in an idle state and does not require any sort of active pointing. During this phase of 

a mission, an appropriately chosen inertial direction and spin rate could place the spacecraft in an 

extremely safe attitude profile from a thermal perspective. For example, if the spacecraft has 
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radiators on some of its surfaces, the inertial direction could be chosen such that none of those 

radiators can see the sun. Then the slow spinning around this direction will evenly distribute 

incident heat flux onto the rest of the spacecraft surfaces.  

 The desired attitude quaternion in the spin pointing mode is again computed from a 

rotation matrix representing the same desired attitude. This rotation matrix is conceptualized as 

being comprised of two sequential rotations, one that aligns the commanded body axis with the 

commanded inertial direction, and another that incrementally guides rotation of the spacecraft 

around its commanded body axis. The desired inertial to body attitude parameterized by a 

rotation matrix is given by  

𝐶𝑟 = 𝐶2(𝑡)𝐶1 

Where 𝐶1 encodes the rotation required to align the commanded body fixed axis with the 

commanded inertial direction, and 𝐶2(𝑡) applies the rotation around the commanded body fixed 

axis at the commanded rate. 𝐶1 is given by a two-step rotation through azimuth and elevation 

angles, but the sequence of rotation for 𝐶1 depends on the commanded body fixed axis. For 

example, if the commanded body fixed axis is +X, the rotation sequence is ZY, so that no rotation 

around the body fixed axis occurs when aligning it with the commanded inertial direction. The 

azimuth and elevation angles themselves must also be defined in such a way that is consistent 

with the commanded body fixed axis. Figure 9 provides the geometry for this first rotation 

sequence in the case that the commanded body fixed axis is +X. 

 

 

 

 

 

 

 



 
 

40 
 

 

 

 

 

 

 

Figure 9 depicts a commanded inertial direction L along with the relevant azimuth and elevation 

angles. Notice that if the inertial frame were rotated around its positive Z axis through the angle δ, 

and then around the new Y axis through the angle −𝛼, the +X axis would be aligned with L. 

Therefore, in this case 𝐶1 is given by two principle frame rotations: 

𝐶1 = 𝐶𝑦(−𝛼)𝐶𝑧(𝛿) 

More generally, the relevant azimuth and elevation angles are first computed from L, and then the 

appropriate principle rotations are applied to compute 𝐶1 depending on the commanded body 

fixed axis.   

 The second rotation 𝐶2(𝑡) is simply a principle rotation around the commanded body fixed 

axis through an angle that increases linearly with time according to the commanded spin rate. It is 

computed as 

𝐶2(𝑡) = 𝐶𝑎(𝜔𝑠𝑡) 

Where the subscript 𝑎 denotes a principle rotation around either the X, Y, or Z axis, depending on 

which one was commanded, and 𝜔𝑠 is the commanded spin rate. In discrete time, 𝐶2 is given by 

𝐶2 = 𝐶𝑎(𝜃0 + 𝜔𝑠𝑇) 

Figure 9: Rotation Angle Geometry for Inertially Fixed Pointing Vector 
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Where 𝑇 is the sampling period and 𝜃0 is an arbitrary initial angle. Once the two rotation matrices 

are computed, their product is taken and then cast to a quaternion to provide the final reference 

quaternion in spin pointing mode: 

𝑞𝑟 = 𝑞(𝐶2(𝑡)𝐶1) 

Finally, the attitude error vector is computed using the familiar conjugate product 

𝒆 = 2𝝐(𝑞𝑟
∗𝑞)  

3.5.6 Desaturate 

 The final control mode considered in this work is a desaturate mode, in which the control 

system employs actuators capable of imparting an external torque on the spacecraft to remove 

angular momentum stored in reaction wheels. A simple desaturation control law commanding a 

magnetorquer dipole vector is employed, while the wheels are simultaneously commanded by the 

attitude control loop in the inertial pointing mode. From [14], a magnetorquer desaturation 

command that can be used to remove stored angular momentum is given by 

𝒎 =
𝑘𝑑𝑒𝑠𝑎𝑡

|𝑩|
(𝒉 𝑥 𝑩) 

Where 𝑩 is the instantaneous geomagnetic field vector expressed in the body frame, 𝒉 is the net 

angular momentum vector of the reaction wheels, also expressed in the body frame. 𝑘𝑑𝑒𝑠𝑎𝑡 is a 

gain that controls how aggressively the magnetorquers are commanded for a given amount of 

stored reaction wheel momentum that exists perpendicular to the instantaneous local magnetic 

field vector. The choice of the gain is chosen based on the spacecraft orbit, size of 

magnetorquers, and the desired rate at which momentum is to be removed from the reaction 

wheels.  

 During desaturation mode, the reaction wheels are commanded by the attitude controller 

to hold a constant inertial attitude, while the magnetorquers are commanded according to the 

above control law. Conceptually, this causes the spacecraft to attempt to “hold onto” inertial 

space as the magnetorquers try to pull it away from the commanded attitude in the direction of 
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the wheel angular momentum that is perpendicular to the local magnetic field. Consequently, the 

momentum stored in the reaction wheels ends up being removed by the external torque from the 

magnetorquers as the wheels attempt to maintain the fixed inertial attitude. 

 An important practical consideration behind the use of magnetorquers for desaturation 

during inertial pointing is that they may significantly corrupt magnetometer readings and thus led 

to poor estimation algorithm performance. If the estimation algorithm diverges during a 

desaturation maneuver as a result of bad magnetometer readings, the inaccurate state estimate 

fed to the inertial pointing controller could lead to egregious closed loop behavior. To avoid this, 

the commands to the magnetorquers and the sampling of the magnetometers should be 

sufficiently separated in time.  
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Chapter 4 

CPCL ADCS TOOLKIT ENHANCEMENTS 

 This chapter will provide an overview of the contributions of this thesis to the overall 

CPCL ADCS design and analysis toolkit. Additionally, guidance and control design techniques 

illustrated in the previous chapter will be integrated into the toolkit in this chapter. As illustrated in 

the design iteration strategy from Chapter 2, the overall engineering philosophy proposed herein 

is to start with a simplified analysis during preliminary design and slowly reduce the number of 

assumptions. Then, as the design progresses and decisions are made, assumptions can be 

rescinded, and the complexity and fidelity of the analysis can be incrementally increased. The 

overall toolkit is designed to support such an approach, by providing tools of increasing fidelity 

and complexity. In this chapter, the utility and use cases for three analysis and design tools will 

be presented, with each tool corresponding to a particular phase within the proposed design 

iteration strategy.  

4.1 Preliminary Design: Single Axis Simulink Tool 

 Overall, the single axis Simulink tool is designed to provide the engineer with the ability to 

quickly spec out a reaction wheel relative to the desired control algorithm behavior. For example, 

suppose the designer wants a relatively high bandwidth attitude controller (commanding reaction 

wheels) to achieve a sufficiently fast settling time for mission specific reasons. In this case, a 

stronger reaction wheel with a faster mechanical time response and perhaps a relatively high 

torque saturation limit will likely be required. This tool can be used to easily establish the range of 

reaction wheel parameters that will give rise to acceptable closed loop performance with the 

chosen controller specifications. Furthermore, it could be used in hardware selection trade 

studies that aim to evaluate which of two off the shelf reaction wheel choices is a better choice. 

While it is possible to do all of this analysis in a complicated 6DOF simulation environment, doing 

so is overkill, cumbersome, and inefficient. In many cases, a vastly simplified analysis can get the 

job done just as well, avoiding the need to deal with a complex simulation environment.  
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 Another important utility of this tool is that it can be used in circumstances where the 

reaction wheel parameters are already known and can be treated as a constraint on the controller 

design, or when a reaction wheel must be chosen to support a given controller design. In either of 

these cases, this single axis Simulink tool would provide utility.  

 Finally, this tool can be used to perform a preliminary determination of momentum 

storage capacity requirements. If the spacecraft mass properties and orbit are known, a step 

disturbance torque of an appropriate magnitude could be applied and the resulting wheel 

momentum accumulation could be analyzed, providing the designer with insight into how much 

momentum their reaction wheel should carry. While this same analysis could be performed in 

three dimensions, doing so is again overkill and not necessary for preliminary sizing calculations.  

 Once the top-level requirements on the ADCS are reasonably well understood, the first 

step of the design process should be relatively simple and rapid. Therefore, starting with a 

simplified model of the dynamics of the system to be controlled and the associated algorithms is a 

sensible approach. Figure 10 shows the single axis Simulink model, intended be used as a tool in 

the preliminary design phase. Accompanying this Simulink model is a MATLAB script that allows 

the designer to define all of the parameters used in the Simulink model as well as invoke the 

Simulink model and view its outputs. In this tool, reaction wheels are assumed as the primary 

attitude actuator as single axis analysis with magnetorquers is not possible.  

 The Simulink model in figure 10 implements a digital PID controller around a double 

integrator plant. The actuator command output from the controller is sent into the wheel dynamics 

Figure 10: Single Axis Simulink Model 
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block, saturated to the maximum torque value, and held constant until the next control cycle. The 

wheel dynamics block implements a simplified model of a reaction wheel with an internal motor 

driver chip responsible for controlling the speed of the wheel. Figure 12 shows the internals of the 

‘Custom Digital PID’ block, and figure 11 shows the internals of the ‘Wheel Dynamics Block’. As 

seen in figure 12, the PID controller contains a MATLAB function which implements deadband 

logic for the control system. The purpose of the deadband is to prevent the quantized speed 

commands in the wheel controller from persistently oscillating between zero and their minimum 

speed bit. The deadband logic works as follows: if the absolute value of the true attitude error—

namely the difference between the unfiltered reference signal and the feedback signal—

transitions from less than the error deadband to greater than the error deadband, a counter 

begins incrementing. This timer is reset to zero if the attitude error transitions from being inside 

the error deadband to outside the error deadband. If the timer exceeds a user-specified 

convergence time, and the attitude error is within the deadband, then the attitude error is set to 

zero and the integral state in the controller is reset to zero. This prevents the control system from 

commanding the actuators if the attitude error has been within the deadband for a specified 

amount of time. If the attitude error is outside the deadband and the convergence time has not 

been achieved, the output of the function is simply the filtered attitude error. This logic has been 

tested in simulation and works as expected, but a well-informed choice of the size of the attitude 

error deadband and convergence time requires nontrivial analysis that is beyond the scope of this 

thesis. However, the existence of this logic in this tool provides the user with the means to check 

whether their choice of deadband width and convergence time yields desirable closed loop 

behavior.  
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 The rest of the contents of the ‘Custom Digital PID’ block are straightforward. The filtered 

attitude error is integrated using the trapezoidal integration technique, multiplied by the integral 

gain, and saturated to the user specified integral state saturation limit to prevent wind up. 

Conversely, the filtered attitude error is passed through the derivative filter, differentiated using 

the backward Euler technique, and multiplied by the derivative gain. Finally, the filtered attitude 

error is simply multiplied by the proportional gain. Then, all three of these signals are added, 

saturated to the maximum actuator torque, and held constant until the next control cycle.  

 As seen in figure 11, the wheel dynamics block converts the torque command outputs 

from the controller into speed command set points by first dividing by the wheel inertia to yield 

wheel accelerations, and then performing backward Euler integration on these accelerations. This 

integration must occur at a sufficiently faster sampling rate than the attitude control loop to 

prevent a non-negligible phase lag between controller torque commands and actuator torque 

outputs. The wheel speed set points are quantized to the minimum speed bit. The quantizer block 

in Simulink outputs the input of the block rounded to the nearest integer multiple of the minimum 

Figure 12: Custom Digital PID Block Contents 

 

Figure 11: Reaction Wheel Model Block Contents 
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speed bit. The speed command is then saturated, held constant for the sampling period of the 

wheel controller, and passed through a first order transfer function of the form 

𝐺(𝑠) =
1

𝜏𝑠 + 1
 

Where 𝜏 is the time constant of the closed loop wheel control system. Here, 𝐺(𝑠) is meant to 

model the closed loop dynamics of the wheel control loop, from speed reference command to 

speed output. Finally, the speed command output is passed through 𝑠𝐺(𝑠) and multiplied by the 

wheel inertia to yield an instantaneous torque. 

 To reiterate, the primary utility of the single axis Simulink tool is to provide a vastly 

simplified analysis environment that supports reaction wheel specification and sizing, and 

preliminary control law design. Once these parameters have been established with confidence, a 

three axis Simulink tool should be utilized to verify that the design still meets requirements with 

coupled, nonlinear dynamics and more sophisticated reference signals. 

4.2 Preliminary Design: Three Axis Simulink Tool 

 To extend the control system design and analysis into three dimensions, a full three axis 

Simulink tool was developed in this work. Figure 13 shows a top-level view of the model. 

Figure 13: Three Axis Nonlinear Simulink Model 
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The three axis model is very similar in structure to the single axis model, with the exception that 

the attitude error is no longer calculated by a simple difference. Instead, it is computed based on 

the control mode being simulated, the mathematical details of which were provided in Chapter 3. 

Furthermore, in this model the full three axis nonlinear rigid body dynamics are simulated in the 

‘Spacecraft Dynamics’ Block. In the ‘Control Algorithms’ block, three digital PID controllers are 

implemented for each axis, with an option for whether or not the feedback linearization signal is 

included in the control. The ‘Actuator Dynamics’ block implements the same wheel dynamics as 

described in section 4.1, except now with multiple reaction wheels. The ‘Error Signal Processing’ 

block takes the true attitude quaternion from the spacecraft dynamics and, depending on the 

current operational being simulated, computes the reference quaternion and the attitude error 

vector. Finally, the ‘Orbit Propagator’ block implements an orbit dynamics model and provides a 

position and velocity vector to the error signal processing block to be used in the relevant 

operational modes.  

 An important goal in the development of this tool was to make it relatively modular and 

extendable to support future analysis needs. To achieve this, the model was separated into five 

primary blocks with generic interfaces between them that represent the minimum amount of 

information that must be at their input or output. These primary blocks include an orbit dynamics 

model, an attitude dynamics model, an error signal processing block, a control algorithms block, 

and an actuator dynamics block. This Simulink model is designed in such a way that the overall 

functionality is robust to changes in the internal dynamics of each of the primary blocks, provided 

those dynamics are well-defined. For example, if a different model of the reaction wheel dynamics 

is desired than the one currently being implemented, then any model that takes in a torque 

command as an input and outputs wheel speeds and wheel accelerations as outputs will be 

consistent with the overall Simulink model. On the other hand, if a different orbit propagator is 

required, it simply needs to output the position and velocity vectors so that they can be used by 

the rest of the model where necessary. Although this model does not support the full range of 

possible satellite actuator configurations and control structures, it still has the modularity to 



 
 

49 
 

support most analysis and design needs for an attitude control system employing reaction wheels 

and magnetorquers as actuators, which are very likely to be utilized in CubeSat missions. 

 Another important feature of this tool is its ability to simulate custom ADCS operational 

profiles. More specifically, the user can build a custom ‘Mission Sequence’, which specifies a set 

of modes (from the list in Chapter 3) and their start/end times. This allows analysis of the control 

system behavior under instantaneous transitions between control modes.  

 Overall, this tool is intended to be used as a follow-up to the single axis tool. Once the 

single axis tool is used to establish a preliminary control law and reaction wheel specifications, 

the analysis needs to be extended into three dimensions. Furthermore, understanding how the 

true nonlinear, multi-input multi-output control system behaves under the influence of more 

sophisticated reference signals is especially important after conducting a decoupled, linear, 

single-input single output control design. This tool enables such an investigation. 

 The contents of each of the blocks in the three axis Simulink model will now be 

explained, starting with the ‘Error Signal Processing’ block. Figure 14 depicts the contents of this 

block, which is primarily comprised of a custom MATLAB function implementing the guidance 

algorithms described in Chapter 3. The inputs to the guidance function are essentially all of the 

user-facing commands to the attitude control system. These commands include the body fixed 

Figure 14: Error Signal Processing Block Contents 
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pointing axis, the inertial pointing reference quaternion, and the spin rate for the spin pointing 

mode, to name a few. The guidance function simply checks the control mode of the simulation, 

and calculates the reference quaternion accordingly. This reference quaternion is then passed 

through the digital reference filter if it is enabled. The true quaternion from the spacecraft 

dynamics block is held constant for the sampling period of the control system, and the discrete 

time attitude error vector is computed from the filtered reference quaternion and the true 

quaternion. The resulting attitude error vector is the only output of this block.  

 The attitude error vector as computed by the Error Signal Processing block is then sent to 

the Control Algorithms block, shown in figure 15. This block implements three digital PID 

controllers for each body frame axis, each of which are contained within the ‘PID + Feedback 

Linearized Control Law’ block. The desaturation control law described in Chapter 3 is 

implemented as a separate custom MATLAB function, and only outputs non-zero dipole 

commands if the simulation is in desaturation mode. Once the actuator commands are computed 

from the magnetorquer control law (currently only desaturate) and the PID control law, they are 

sent to the ‘Torque Distribution Logic’ custom MATLAB function. This function distributes the total 

control torque—as computed by the controller and magnetorquer control laws—among the 

available actuators. In the current development state of this tool as this thesis is being written, this 

function simply gives the reaction wheels all of the PID control torque, and gives the 

Figure 15: Control Algorithms Block Contents 
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magnetorquers any dipole commands that come from the desaturation control law. However, 

other strategies exist for distributing the controller outputs among the available actuators, and this 

functionality is meant to provide a means of implementing such strategies. More specifically, [19] 

develops a geometric approach to decompose the total control torque vector into a component 

parallel to the magnetic field—which can be distributed to reaction wheels—and a component 

perpendicular to the magnetic field, which can be distributed to magnetorquers. This torque 

distribution stategy is one possible implementation for the torque distribution logic. A deeper look 

into whether these strategies are worth considering from a broader engineering perspective 

would be a productive exersice.  

 Once the total control signal has been computed by the control laws and distributed 

among the available actuators, the commands to each of the actuators are sent to the ‘Actuator 

Dynamics’ block, shown in figure 16. Notice the simplicity of the top level view inside this block—

this is intentional. For each of the avaialable actuators, a model which takes a command as an 

input and outputs the true relevant dynamic quantities is all that is required in the Actuator 

Dynamics block as a whole. In the current development state, the tool implements a dynamics 

model for three reaction wheels that is equivalent to the wheel dynamics model in the single axis 

tool for each individual wheel. The wheel dynamics model is shown in figure 18.  

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Actuator Dynamics Block Contents 
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The current magnetorquer model implementation, on the other hand, is even simpler. It simply 

saturates the dipole command from the desaturate controller, holds the command constant for a 

sample period, and calculates the cross product of the saturated dipole vector with the local 

magnetic field to yield an external torque. Figure 17 shows the magnetorquer model.  

Once the true dynamic quantities are calculated by the actuator models, they are sent to the 

‘Spacecraft Dynamics’ block, where the rigid body equations of motion are integrated. The 

contents of the Spacecraft Dynamics block are shown in figure 19. The custom MATLAB function 

in figure 19 simply implements the equations of motion for a rigid body with the wheel 

accelerations as the control input. A step disturbance or sinusoidal disturbance can be injected 

into the spacecraft dynamics, with an amplitude and frequency at the discretion of the user. This 

allows the user to analyze the response of the control system to external disturbances in a 

nonlinear simulation.  

Figure 18: Wheel Dynamics Block Contents 

Figure 17: Magnetorquer Block Contents 
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 Overall, the three axis Simulink tool is intended to be used only in preliminary design, as 

it does not model much of what is going on during actual flight, nor does it take into account the 

behavior of the real-time flight software implementations of the GNC algorithms. However, the 

modeling fidelity is sufficient for preliminary design, and can be increased if necessary with more 

sophisticated sub-models for the actuators, magnetic field, orbit, or spacecraft dynamics. All that 

is required to do so is a replacement of the current block implementation with a new 

implementation containing the same inputs and outputs. In its current state, this tool provides the 

designer with the means of establishing preliminary control system specifications (e.g. bandwidth, 

sample rate, phase margin, integral saturation limit, filter cutoff frequencies, etc.), as well as 

sizing of magnetorquers and reaction wheels. If higher modeling fidelity is required after a 

preliminary design is established, then the designer should consider moving onto the next and 

final tool, which is the NASA 42 software-in-the-loop simulation framework.  

 Finally, the exclusion of any estimation algorithms in the Simulink tools presented in this 

work is intentional. Overall, the design and tuning of control laws can be performed without an 

estimator in the loop, as long as the effects of potentially noisy feedback signals are not 

Figure 19: Spacecraft Dynamics Block Contents 
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completely ignored. This is precisely the reason that a digital low pass filter was added before the 

derivative term in the control law. Moreover, if the estimation algorithm is well designed and 

performs as expected, then it should significantly attenuate measurement noise. As long as most 

of the noise power in the feedback signal is concentrated around frequencies that are significantly 

above the bandwidth of the control system, its effect on the closed loop dynamics will be minimal. 

In chapter 5, it will be shown that this in fact that case with the existing extended Kalman filter 

design by Mehrparvar and implemented in flight software by Bouchard. If a different estimation 

algorithm than the one currently implemented is required for a given flight mission, then it would 

need to be prototyped and tested in the NASA 42 software-in-the-loop environment. Development 

of tools for designing and testing estimation algorithms outside of the NASA 42 software-in-the-

loop environment is beyond the scope of this thesis.  

4.3 Critical Design: NASA 42 Software-in-the-Loop Environment 

 Once the preliminary control system design has been established by means of utilizing 

the Simulink tools outlined in the previous two sections, and the ADCS is roughly at a PDR level 

maturity, the critical design phase begins. In this phase of development, high modeling fidelity is 

required to provide increased certainty that the ADCS functional and performance requirements 

are being satisfied before moving onto hardware procurement and testing. As was outlined in 

Chapter 2, the CPCL has developed a software-in-the-loop simulation environment employing 

NASA 42 as the truth model. This section will provide increased detail on the capabilities of the 

simulation environment and how this thesis has contributed to it, with an emphasis on sensor and 

actuator models and custom processing of user input files.  

 Within the NASA 42 software-in-the-loop simulation environment, there are two 

processes consistently invoking one another during a simulation run. The first of these is 

processes is the ADCS flight software itself, and the second is NASA 42. If the real time flight 

software implementations of the GNC algorithms are subject to flight-like signals from NASA 42 

sensors, and they command actuators whose dynamics are well modeled, it is possible to 

achieve a much higher degree of confidence that the system will meet its requirements than with 

the previously mentioned Simulink tools alone. That is precisely the goal of this environment—to 
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provide a much higher requirement verification confidence in the critical design phase of the 

mission development timeline.  

 NASA 42 is written in a modular fashion such that custom models of sensors and 

actuators can be implemented in its framework without required modification anywhere else 

within the code base. In this work, generic sensor models for rate gyros, magnetometers, and sun 

sensors are utilized. Each model operates in discrete time, and the sensors are sampled at the 

same rate that the control algorithms are executed. The following sub sections will provide details 

on how each of these models are implemented in the software-in-the-loop simulation framework. 

4.3.1 Digital Rate Gyro Sensor Model 

 Excluding scale factors and misalignments, the rate gyro measurement model in NASA 

42 implements the following widely used rate output and bias equations as given in [14]: 

𝝎𝑘+1 = 𝝎𝑘+1
𝑡𝑟𝑢𝑒 +

1

2
(𝜷𝑘+1

𝑡𝑟𝑢𝑒 + 𝜷𝑘
𝑡𝑟𝑢𝑒) + (

𝜎𝑣
2

𝛥𝑡
+

1

12
𝜎𝑢

2𝛥𝑡)

1/2

𝑵𝑣 

𝜷𝑘+1
𝑡𝑟𝑢𝑒 = 𝜷𝑘

𝑡𝑟𝑢𝑒 + 𝜎𝑢√𝛥𝑡 𝑵𝑢 

Where the subscript 𝑘 denotes the 𝑘𝑡ℎ time step, 𝝎 is an angular velocity vector, 𝜷 is a bias rate 

vector, 𝜎𝑣 and 𝜎𝑢 are the standard deviations of the Gaussian amplitude probability distributions 

of the rate output signal and bias rate signal respectively, and 𝛥𝑡 is the sample period of the 

digital rate gyro. Finally, 𝑵𝑣 and 𝑵𝑢 are zero-mean Gaussian white noise processes with 

covariance matrices given by the identity matrix. The resulting rate gyro measurement is then 

passed to the state estimation algorithm. 

 The derivation of the above model will not be included in this work, but it is essentially a 

discretized version of the following continuous time rate gyro measurement model: 

𝝎(𝑡) = 𝝎𝑡𝑟𝑢𝑒(𝑡) + 𝜷𝑡𝑟𝑢𝑒(𝑡) + 𝜼𝑣(𝑡) 

𝜷̇𝑡𝑟𝑢𝑒 = 𝜼𝑢(𝑡) 

Where 𝜼𝑣 and 𝜼𝑢 are both stationary white noise processes. Conceptually, this model of the rate 

gyro output dynamics says that the bias follows a random walk in discrete time as obtained by 
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integration of white noise in continuous time, and the angular rate output is corrupted by both the 

current bias and a different white noise process. The rate gyro scale factor is also modeled, and it 

simply scales the true angular rate 𝝎𝑘+1
𝑡𝑟𝑢𝑒 in the above discrete time model. Fortunately, the 

datasheets for most commercially available rate gyros contain information about the standard 

deviation of the output noise as well as the bias random walk and sometimes the scale factor. 

One subtlety regarding the standard deviation 𝜎𝑢 of the white noise process corresponding to the 

bias derivative is that it does not have the same units as the corresponding relevant specification 

listed in most gyro datasheets (e.g. “in-run bias stability”). This is because the datasheets do not 

make assumptions about the frequency with which the sensor is sampled, and instead list the 

product 𝜎𝑢√𝛥𝑡, which has units of angle per time. Therefore in this context, the user of the 

software-in-the-loop simulation environment is expected to provide NASA 42 with the product 

𝜎𝑢√𝛥𝑡, and the standard deviation 𝜎𝑢 is indirectly calculated internally before being initialized by 

NASA 42. 

4.3.2 Sun Sensor Model 

 In this work, the PolySat in-house sun sensors are modeled as Fine Sun Sensor (FSS) 

types in NASA 42. Since this thesis presents the first attempt at modeling these in-house sensors 

with any sort of rigor, it may turn out that Coarse Sun Sensor (CSS) types in NASA 42—or a 

different customized model for that matter—more accurately reflect the behavior of these 

sensors. However, for the sake of the analysis presented in this thesis, the Fine Sun Sensor type 

is deemed an adequate model.  

 Each sun sensor is assumed to have a pyramidal field of view. When the FSS model 

executes in NASA 42, the simulation first checks whether the spacecraft is in eclipse, and if so, all 

solar angle sensor outputs are set to zero, and their readings do not get processed by the state 

estimation algorithm. If the spacecraft is not in eclipse, NASA 42 will iterate over all existing sun 

sensors and evaluate whether the sun vector is in each of their fields of view. First, the true body 

frame sun vector is projected into the sensor frame using the true body to sensor frame 

transformation with 
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𝒓𝑠𝑠 = 𝐶𝐵𝑆𝒓𝑠𝑏 

Where 𝒓𝑠𝑠 is the true unit vector pointing from the spacecraft to the sun expressed in sensor 

coordinates, and 𝒓𝑠𝑏 is the same vector expressed in body coordinates. To determine whether 

the sun is in the FOV of a sun sensor, the following angles are computed using the x and y 

components of the sun unit vector expressed in the sensor frame: 

𝜃𝑥 = sin−1(𝒓𝑠𝑥) 

𝜃𝑦 = sin−1(𝒓𝑠𝑦) 

Figure 20 depicts the geometry of the sun unit vector (yellow) expressed in the sensor frame with 

the angles 𝜃𝑥 and 𝜃𝑦.  

 

 

 

 

 

 

 

 

 

 

If the angles 𝜃𝑥 and 𝜃𝑦 are both less than the angles defining the pyramidal field of view in both 

the x and y axes respectively, then the sun is determined to be within the field of view of the 

sensor. Next, each of these angles are corrupted by a Gaussian white noise process whose 

standard deviation can be stated in terms of an angle (i.e. the “Noise Equivalent Angle” in NASA 

42). Mathematically, the measured angles are computed as  

𝜃𝑥,𝑚 = 𝜃𝑥 + 𝜎𝜃𝑁𝜃 

𝜃𝑦,𝑚 = 𝜃𝑦 + 𝜎𝜃𝑁𝜃 

Figure 20: NASA 42 Sun Sensor FOV Geometry  
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Where the subscript 𝑚 denotes the measured angles, 𝜎𝜃 is the standard deviation of the 

Gaussian amplitude probability distribution of the angular measurement noise, and 𝑁𝜃 is a zero-

mean Gaussian white noise process with unity variance. The measured angles are then 

quantized according to the digital resolution of the sensor. Finally, the measured sun unit vector 

in the sensor frame is computed as 

𝒓𝑠𝑠,𝑚 =

[
 
 
 

sin(𝜃𝑥,𝑚)

sin (𝜃𝑦,𝑚)

√1 − (sin(𝜃𝑥,𝑚))2 − (sin(𝜃𝑦,𝑚))2

]
 
 
 

 

The resulting measured sun vector 𝒓𝑠𝑠,𝑚 is then passed to the state estimation algorithm. 

4.3.3 Magnetometer Model 

 The magnetometer model is the simplest of the sensor models utilized in this work. First, 

the true magnetic field vector expressed in body frame is first projected into sensor coordinates 

using the true body to sensor frame transformation with 

𝒓𝑚𝑠 = 𝐶𝐵𝑆𝒓𝑚𝑏 

Where 𝒓𝑚𝑠 is the true magnetic field vector expressed in the sensor frame, and 𝒓𝑚𝑏 is the true 

magnetic field vector expressed in body frame. The vector 𝒓𝑚𝑠 is then corrupted with Gaussian 

white noise using 

𝒓𝑚𝑠,𝑚 = 𝒓𝑚𝑠 + 𝜎𝑚𝑵𝑚 

Where the subscript 𝑚 denotes the measured magnetic field vector, 𝜎𝑚 is the value of the RMS 

magnetometer output noise, and 𝑵𝑚 is a zero-mean Gaussian white noise process with zero-

mean and covariance matrix given by the identity matrix. Finally, the readings are saturated and 

quantized to the resolution of the digital output.  

4.3.4 Actuator Models 

 At the time this thesis is being written, the actuator models in NASA 42 simply implement 

saturation wherever it is applicable. Higher fidelity actuator models in the NASA 42 simulation 

framework constitute future work that will improve the overall quality of the software-in-the-loop 
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framework, and are beyond the scope of this thesis. However, in the previous section outlining 

the MATLAB/Simulink tools, much more sophisticated models for reaction wheels were 

developed. This would be a very good starting place for implementing a more sophisticated 

reaction wheel model in NASA 42. Furthermore, if the actuator dynamics are shown to have 

minimal impact on the closed loop performance using the Simulink tools, the same should be 

expected in software-in-the-loop simulations and thus the exclusion of sophisticated actuator 

dynamics is not unreasonable.   

 NASA 42 does support modeling internal spacecraft attitude perturbations as a result of 

static and dynamic wheel imbalance, based off models given in [14]. This work will take 

advantage of this capability to investigate whether reaction wheel imbalance has an effect on 

pointing performance or stability. Reaction wheel imbalance forces and torques arise as a result 

of the fact that the wheels do not spin perfectly around one of their principle axes, and that their 

center of mass is not colinear with their spin axis.  

 When the reaction wheel does not spin perfectly around its center of mass, a centripetal 

force must be imparted on the mass of the flywheel from the bearing assembly in order to 

maintain circular motion of the center of mass of the flywheel about its axis of rotation. In a 

reference frame attached to and rotating with the reaction wheel with the z axis pointing along the 

wheel spin axis, this force is given by 

𝑭 = −𝑚𝜔𝑤
2 [

𝑥
𝑦
0
] 

Where 𝑚 is the mass of the reaction wheel, 𝜔𝑤 is the rotational velocity of the reaction wheel 

around its spin axis, and 𝑥 and 𝑦 are the instantaneous x and y coordinates of the reaction wheel 

center of mass in the reaction wheel frame. The constant quantity  

𝑈𝑠 = 𝑚√𝑥2 + 𝑦2 

is the static imbalance of the reaction wheel assembly. Assuming that the reaction wheels are not 

collocated with the center of mass of the spacecraft in which they are mounted—which is 
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basically always the case—a disturbance torque will arise as a result of this centripetal force, 

given by 

𝑻𝑠 = 𝒓𝑤 𝑥 𝐶𝑏𝑤𝑭 

Where 𝒓𝑤 is the location of the reaction wheel in the spacecraft body frame whose origin is at the 

center of mass, and 𝐶𝑏𝑤 is the matrix that transforms vectors in the wheel frame to vectors in the 

spacecraft body frame. From this relation, it is apparent that the location and orientation of the 

wheel with respect to the spacecraft body frame does in fact affect the attitude dynamics. 

Furthermore, these disturbances show up at frequencies roughly proportional to the rotational 

speed of the reaction wheels, which is always higher than the bandwidth of the attitude control 

system for all intents and purposes. Therefore, these disturbances cannot be rejected by the 

control system. If they are detrimental to the system’s pointing performance, the reaction wheels 

must be deliberately located and oriented within the spacecraft body frame so as to prevent these 

disturbances from compromising the system performance. 

 Since the spin axis of a reaction wheel is not perfectly aligned with one of its principle 

axes, a gyroscopic torque is required to keep the wheel rotating around its spin axis. Assuming 

the reaction wheel is rotating perfectly around its z axis, this gyroscopic torque in the wheel frame 

is given by 

𝑻𝑑 = 𝜔𝑤
2 [

−𝐽𝑦𝑧

𝐽𝑥𝑧

0

] 

Where 𝐽𝑧𝑦 and 𝐽𝑥𝑧 are products of inertia of the reaction wheel inertia matrix expressed in the 

reaction wheel frame. The constant quantity  

𝑈𝑑 = √𝐽𝑦𝑧
2 + 𝐽𝑥𝑧

2 

Is the dynamic imbalance of the reaction wheel assembly. Similar to torques arising from static 

imbalance, dynamic imbalance torques also show up at frequencies proportional to the rotational 

speed of the reaction wheel. However, in this case the location or orientation of the reaction 
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wheel does not affect the dynamic imbalance torque. Therefore, if this torque compromises 

pointing performance or stability, it is up to the design of the reaction wheel assembly itself—and 

the associated manufacturing processes—to reduce the dynamic imbalance down to a tolerable 

value. Chapter 5 of this thesis will show that the static and dynamic imbalance of CubeSat class 

reaction wheels does not compromise pointing performance requirements on the order of a few 

degrees.  

4.3.5 Inertia Matrix Uncertainty 

 Since it is impossible to achieve perfect knowledge of the inertia matrix for a given 

spacecraft mass distribution, it is necessary to investigate how uncertainty in the inertia matrix 

may affect closed loop performance and stability. Therefore, in the software-in-the-loop 

framework, the inertia in the flight software differs from the true inertia used in simulation by a 

percentage specified as one of the simulation input parameters.  

 Based on the control algorithm design procedure outlined in Chapter 3, and based on the 

estimation algorithm that has been implemented in the flight software, the inertia matrix is 

assumed to be diagonal in the body frame. For CubeSats, this is generally a reasonable 

assumption. However, it is not exactly the case, and the products of inertia in a body fixed frame 

whose basis vectors are perpendicular to the CubeSat faces will be very small yet non-zero. 

Therefore, the nominal diagonal elements of the inertia matrix used in the estimation algorithm 

and in the design of the control algorithm are increased or decreased by a user-defined 

percentage. These perturbed quantities are then set as the true diagonal elements in the 

simulation. The simulation is also given non-zero products of inertia. 

4.3.6 Alignment Errors 

 Alignment errors are simulated separately from the sensor models in NASA 42. For each 

sensor, the transformation between the sensor output frame and spacecraft body frame must be 

estimated so that it can be applied to the digital output signal of the sensor in the flight software 

before being sent to the state estimation algorithm. Therefore, misalignment error for a given 

sensor is simulated by providing the flight software with an inaccurate sensor to body 
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transformation relative to the true one that exists in the NASA 42 side of the simulation 

framework. Since alignment errors can be assumed to be small, the following body to sensor 

frame transformation is provided to NASA 42: 

𝐶𝑆𝐵 = [𝐶𝑥(𝜃𝑥 + 𝛿𝜃𝑥) 𝐶𝑦(𝜃𝑦 + 𝛿𝜃𝑦)𝐶𝑧(𝜃𝑧 + 𝛿𝜃𝑧)]
𝑇 

Where the angles 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧 are the nominal ZYX mounting angles from sensor to body 

frame, and 𝛿𝜃𝑥, 𝛿𝜃𝑦 and 𝛿𝜃𝑧 are the small mounting alignment errors around each sensor axis. 

When NASA 42 executes the sensor models, it uses the above transformation to project the true 

body frame value of the physical vector in question into the sensor frame, then applies the output 

noise. Once the sensor output reaches the flight software, the inverse of the above transformation 

without the 𝛿𝜃𝑥, 𝛿𝜃𝑦 and 𝛿𝜃𝑧 mounting errors is applied to transform the sensor output into the 

body frame.  

4.3.7 Custom Yaml Input File Design 

 Due to the inherently complicated and brittle nature of the NASA 42 input configuration 

files, a more simple interface to the user of the software-in-the-loop simulation tool was desirable. 

The author of this thesis, in collaboration with software engineers in the Cal Poly CubeSat 

Laboratory, designed a yaml file structure containing all of the relevant simulation configuration 

parameters along with a script to parse the Yaml files and convert them into the respective NASA 

42 compatible configuration files. To run a simulation, the user must provide the simulation with 

four Yaml files: (1) a baseline simulation file, (2) a custom simulation file, (3) a baseline 

spacecraft file, and (4) a custom spacecraft file. The user must also provide the simulation with a 

fifth configuration file corresponding to the ADCS flight software configuration. The spacecraft 

Yaml files contain all of the information pertaining the sensor and actuator configuration as well 

as the mass properties and initial dynamic state of the spacecraft being simulated. On the other 

hand, the simulation Yaml files contain all simulation specific parameters, such as the start time in 

UTC, the duration of the simulation, and on/off parameters for spacecraft perturbation models. 

Baseline files contain every possible simulation parameter, and custom files represent changes or 

additions to those parameters. Both the baseline and custom Yaml files are parsed into Python 
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dictionaries, and all of the parameters in the resulting custom dictionary are overlaid onto the 

baseline dictionary. Then, all of the data in the resulting overlaid dictionary is properly formatted 

and written to the NASA 42 configuration files. Therefore, the simulation will be configured with all 

of baseline parameters, with the exception that any parameters specified in the custom Yaml files 

will overwrite their respective baseline parameters. This input file design not only makes it easier 

for the user to see all of the simulation parameters in only a few places, but also gives the user 

the ability to simulate a specific scenario with mostly the same parameters, and perturb some of 

the parameters off of their baseline values to explore a local region in the parameter space. 

Appendix A provides an example of the actuator section from a baseline spacecraft file. Although 

the spacecraft Yaml file contains quite a few parameters, they are organized in such a way that it 

is relatively easy for the user to find relevant parameters and change them. Furthermore, the 

order in which these parameters are listed in the file will not change the resulting NASA 42 

configuration files, since the parameters are parsed into name based data structures (Python 

dictionaries). For example, swapping the location of the “Actuators” section with the “Sensors” 

section in the above file will result in the exact same NASA 42 configuration files, and the 

simulation will behave identically in either case. Appendix A provides an example of a baseline 

simulation file. Unlike the baseline spacecraft file, the baseline simulation file has only a few 

parameters. As seen in the figure, the user can configure the simulation to model specific 

disturbances to isolate more important ones or simplify the analysis if necessary.  

 The previous subsections have provided an outline of the relevant NASA 42 capabilities, 

as well as how this work has contributed to making use of those capabilities in the context of the 

Cal Poly CubeSat Laboratory ADCS design and analysis workflow. In the next chapter, the full 

ADCS design and analysis process from conceptual design to critical design will be performed 

using the tools presented in this work.  

 A final comment on the use of NASA 42 for a real flight mission: a more rigorous method 

for developing sensor and actuator models—perhaps utilizing a well-defined system identification 

procedure—is strongly recommended. Simulating sensors based on generic models and 

referencing parameters from datasheets is sometimes acceptable, but can be insufficiently 
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accurate for certain verification applications. However, such an activity is beyond the scope of this 

thesis.  
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Chapter 5 

VALIDATION OF TOOLKIT UTILITY AND DESIGN APPROACH 

 In this chapter, the improvements to the ADCS toolkit and the design methodologies 

outlined in chapters 3 and 4 will be employed to complete the CPCL ADCS design, and show that 

it could be used to satisfy the system level performance requirements of an ADCS for a large 

class of modern CubeSat flight missions. Therefore, this chapter will serve as a validation of the 

toolkit utility by demonstrating that it can be used to both create and validate an example ADCS 

design. For each control system pointing mode developed in chapter 3, the pointing performance 

of a notional CPCL ADCS design will be evaluated. Initially, the MATLAB/Simulink tools will be 

utilized to establish preliminary controller specifications in conjunction with the actuator 

parameters. Finally, the NASA 42 software-in-the-loop simulation framework will be used to 

provide a better estimate of the system performance with additional error sources, including 

sensor noise and estimation dynamics, alignment errors, inertia matrix uncertainty, and orbit 

knowledge error.  

5.1 MATLAB/Simulink: Single Axis Design and Analysis 

 A reasonable first step in the preliminary design phase of ADCS development is to design 

a control law and specify actuators that will be capable of supporting such a control law. This task 

can be performed with the aid of the single axis Simulink tool developed in the previous chapter. 

As an example, a PID controller is initially designed to achieve the characteristics in table 2. The 

actuator specifications given in table 3, which are representative of an in-house reaction wheel 

design current in progress at the CPCL, are used in this analysis. Both the controller and actuator 

specifications are then used to fully define all the parameters in the single axis Simulink model, 

and an initial simulation is performed. The PID control law designed for the specifications in table 

2 commands reaction wheels with the specifications in table 3 to obtain the closed loop step 

response. The resulting simulation outputs are then examined to evaluate the combined 

effectiveness of the controller and reaction wheel. 
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Table 2: Controller Specifications in Single Axis Simulation 

Specification Value 

Open Loop Gain Crossover Frequency 0.05 𝑟𝑎𝑑/𝑠 

Phase Margin 65˚ 

Sampling Period 1.0 𝑠𝑒𝑐 

Derivative Filter Cutoff Frequency 0.5 𝑟𝑎𝑑/𝑠 

Reference Filter Cutoff Frequency 0.03 𝑟𝑎𝑑/𝑠 

Integral Saturation Limit 1 𝑚𝑁𝑚 

Attitude Error Deadband 0.005 𝑟𝑎𝑑 

Deadband Convergence Time 120 𝑠𝑒𝑐 

 

 The controller specifications listed in table 2 may look somewhat arbitrary. However, they 

have in fact been chosen based on engineering judgement and an iterative process.  

 Figures 21 through 26 provide the system response in both the time and frequency 

domain as determined by the single axis tool. The axial moment of inertia defining the plant in this 

simulation is 0.025 𝑘𝑔𝑚2.  

Table 3: Actuator Parameters in Single Axis Simulation 

Parameter Value 

Maximum Momentum Storage 5 𝑚𝑁𝑚𝑠 

Spin Axis Inertia 9.42 𝑥 10−7 𝑘𝑔𝑚2 

Maximum Torque 1.61 𝑚𝑁𝑚 

Mechanical Speed Time Constant 0.365 𝑠𝑒𝑐 

Minimum Speed Bit 12.5 𝑟𝑝𝑚 

Speed Controller Sampling Frequency 5.36 𝑘𝐻𝑧 



 
 

67 
 

 

 

Figure 21: Single Axis Model Closed Loop Attitude Step Response 

 

Figure 22: Single Axis Model Closed Loop Rate Response 
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Figure 23: Single Axis Closed Loop Frequency Response 

 

Figure 24: Single Axis Open Loop Frequency Response 
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Figure 25: Single-Axis Closed Loop Wheel Momentum Response 

 

Figure 26: Single Axis Closed-Loop Controller Response to Reference Step 
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 The simulation results in figures 21 through 26 show that a controller with specifications 

given in table 2, when commanding a reaction wheel with parameters given in table 3, the single 

axis system performs well. The actuator commands are benign, and the attitude rate does not 

exceed 1.2 degrees per second, which is well within the linear range of the three axis attitude 

dynamics. Figure 21 shows that the system takes about 4 minutes to settle on the commanded 

attitude angle, which is an acceptable amount of time for a large angle attitude maneuver in most 

mission scenarios. Moreover, the steady state limit cycle behavior is significantly mitigated by the 

deadband logic, as seen in figure 27. Eventually, the wheel angular momentum stops bouncing 

between zero and the momentum corresponding to the minimum resolution of the digital wheel 

speed controller commands. Although this actuator model does not take into account effects such 

as stiction and other nonlinear behaviors at low wheel speeds, this serves as a proof of concept 

that the deadband logic presented in this thesis can be used to mitigate undesirable steady state 

actuator limit cycle behavior.  

 

 

Figure 27: Steady State Wheel Momentum Limit Cycle Suppression 
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5.2 MATLAB/Simulink: Three Axis Design and Analysis  

 After establishing preliminary verification that the actuator specified in table 3 can support 

the corresponding control law designed to achieve the specifications given in table 2, the analysis 

is extended into the three axis Simulink tool. In this tool, the user has the ability to investigate the 

control system behavior under the influence of more interesting attitude profiles, not just a step 

command. For the sake of the analysis presented in this thesis, each of the control modes 

outlines in chapter 3 except for ephemeris pointing will be analyzed, using the same controller 

and actuator specifications provided in the previous subsection. A good starting place for analysis 

using the three axis analysis tool is to initialize the system with zero initial conditions and 

command a constant attitude (i.e. simulate a rest to rest attitude slew maneuver). In the case that 

there are any issues with the design, finding those issues in a rest to rest simulation makes 

debugging and further iteration significantly easier. Figures 28 through 30 show the salient 

outputs from the three axis Simulink tool for a rest to rest maneuver. In this simulation, the 

controller and actuator specifications are identical to those given in the single axis case. 

Furthermore, the inertia matrix is not perfectly diagonal. Instead, the principle frame is a rotated  

Figure 28: Three Axis Nonlinear Rest-to-Rest Attitude Response 
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degrees around each body frame axis to analyze the system performance with an inertia matrix 

that is not given in the principle frame.  

  

Figure 30: Three Axis Nonlinear Rest-to-Rest Attitude Error Response 

Figure 29: Three Axis Nonlinear Rest-to-Rest Body Rate Response 
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 In figure 28, the commanded quaternion corresponds to a ZYX attitude sequence through 

45, -60, and -30 degree angles, respectively. Figure 30 shows the attitude error response.  

 The rest to rest maneuver performs as expected based on figures 28 through 30. The  

next pointing mode of interest is nadir pointing. In this mode, the reference filter will be disabled 

as it gives rise to nonzero steady state attitude error due to the small phase lag at the reference 

frequency of interest. A potential mitigation to this issue is to stop providing the attitude control 

algorithm with the filtered reference signal when the absolute value of the unfilitered attitude error 

around each axis is within a deadband for a specified duration, similar to the deadband logic 

implemented in the single axis tool. However, this logic has not yet been developed for the three 

axis tool, and is beyond the scope of this thesis. This topic will be elaborated upon in the future 

work chapter.  

 Initially, the controller specifications are left unchanged for the nadir pointing mode to 

investigate whether the same gains and filter coefficients can achieve good performance. Figures 

31 through 33 show the salient outputs from a nadir pointing mode simulation. 

  

Figure 31: Three Axis Nonlinear Nadir Pointing Attitude Response 
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 As seen in figures 31 through 33, the closed loop system still performs well in nadir  

pointing mode with the same set of controller specifications. Furthermore, notice in figure 31 that 

the body rates still remain relatively small; in this case less than 4 degrees per second. Therefore, 

Figure 33: Three Axis Nonlinear Nadir Pointing Body Rate Response 

 

Figure 32: Three Axis Nonlinear Nadir Pointing Attitude Error Response 
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the small angular rate assumptions made in the design of the control algorithms remain valid in 

this mode. Figure 33 shows that the attitude errors are successfully driven to zero.  

 The next pointing mode that will be analyzed is the ground pointing mode. In this mode, 

the frequency content of the reference signal is much more dependent on the orbit geometry 

relative to the commanded ground location. Therefore, selection of the control system 

specifications is much less obvious and will likely require multiple iterations. Furthermore, 

selection of the body fixed pointing axis in this mode is also important. If an axis that is far away 

from the major axis of inertia (e.g. the largest principle axis) is commanded, the spacecraft will 

have a harder time maintaining pointing. In this work, the minor axis of inertia (+Z) is chosen as 

the commanded body fixed axis for a roughly axisymmetric mass distribution (i.e. a 3 U CubeSat). 

The spacecraft is simulated in an approximately eccentric (e ≈ 0.02) low Earth orbit with an 

inclination of 45 degrees. The commanded body fixed location has a longitude of 60 degrees and 

a latitude of 50 degrees, slightly higher than the inclination. Finally, the open loop gain crossover 

frequency was increased to 0.075 𝑟𝑎𝑑/𝑠 and the reference filter was disabled so that the  

Figure 34: Three Axis Nonlinear Ground Pointing Attitude Error Response 
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controller can better track slightly higher frequency reference signals. Figures 34 through 36 show 

the outputs for this simulation.  

 As seen in figure 34, the attitude errors are successfully driven to near zero in the ground 

pointing mode. At around 1200 seconds into the simulation, the attitude errors grow slightly and 

Figure 36: Three Axis Nonlinear Ground Pointing Attitude Response 

 

Figure 35: Three Axis Nonlinear Ground Pointing Body Rate Response 
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return to zero again – this happens near the same time at which the distance between the 

spacecraft and the commanded ground location is minimized. When this happens, the reference 

quaternion starts to change at a frequency for which the closed loop gain and/or phase are 

nonzero. However, as seen in figure 37, the attitude error around each axis within this time 

window does not exceed a few degrees, which is tolerable for most CubeSat missions. If a 

smaller attitude error transient during this time is desired, the control system bandwidth can be 

increased.   

 Figure 35 shows that the body rates in the ground pointing mode, for this particular 

simulation configuration, do not exceed 5 degrees per second around each axis. These rates are 

still acceptable in terms of staying within the linear region of the spacecraft dynamics.  

Finally, it is important to note that in ground pointing mode, very sharp changes in the reference 

quaternion can occur depending on the orbit geometry relative to the commanded ground 

location. The three axis tool provides a means of analyzing and mitigating such scenarios.  

 The final pointing mode that will be analyzed in this work with the three axis tool is the 

spin pointing mode. The body z axis is chosen as the body fixed pointing axis, with a commanded 

Figure 37: Brief Attitude Error Transient During Ground Pointing 
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spin rate of 1 degree per second. The commanded inertial axis is the x direction of the inertial 

frame (in most definitions of ECI, the first point of Aires). As seen in figure 38, the body rates  

 

Figure 39: Three Axis Nonlinear Spin Pointing Attitude Error Response 

 

Figure 38: Three Axis Nonlinear Spin Pointing Body Rate Response 
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around the x and y axes converge to zero, while the z axis rate converges to the commanded 

rate. Furthermore, the attitude errors are successfully driven to zero as seen in figure 39. It is 

important to note that in this mode, the attitude error around the commanded body fixed axis is 

not relevant from the perspective of pointing accuracy. Finally, choosing a relatively small (less 

than about 5 degrees per second) commanded spin rate is critical, since the control laws are 

designed for a system linearized around small angular rates.    

 At this point, the success of four pointing modes in a single simulation case has been 

demonstrated with the three axis MATLAB/Simulink tool. Although this does not provide an 

exhaustive analysis, it does show that as a whole, this tool has significant utility. Further analysis 

of each of the pointing modes under multiple different simulation configurations has been 

performed, and so far, no egregious or unexpected behavior has arisen. These cases will not be 

shown in this thesis for the sake of conciseness. 

 Desaturation is the final control system mode to be analyzed within the context of the 

three axis Simulink tool developed in this work. To test the desaturation control law, the reaction 

wheel momenta are initialized to non-zero values, and the attitude controller attempts to maintain 

the initial attitude. Figure 41 shows the wheel momenta across the entire simulation. As expected, 

Figure 40: Three Axis Nonlinear Spin Pointing Attitude Response 
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the wheel momenta decrease on average across the desaturation maneuver and settle to near 

zero. In this case, it took the desaturation controller about 25 minutes to remove approximately 

1.6 𝑚𝑁𝑚𝑠 of angular momentum.  

 In this simulation, the spacecraft orbit is slightly non-circular with an inclination of 52 

degrees. The desaturation control gain is set to 120 𝐴𝑚2/𝑁𝑚𝑠. It is important to note that with 

this particular desaturation control law, the spacecraft orbit, reaction wheel characteristics, and 

desaturation gain largely affect the performance of the desaturation maneuver. The reason for 

this is that the magnetorquers are underactuated: they can only generate a torque that is 

perpendicular to the local magnetic field vector. Therefore, for some orbits, the geometry of the 

magnetic field across the orbit is disadvantageous with respect to the torque directions required 

to remove the angular momentum of the reaction wheels. Careful and thorough analysis must be 

performed in order to fully understand how the desaturation control law behaves in different 

scenarios. This simulation is only one scenario – it is possible that in different orbits and attitudes, 

the performance will be significantly better or worse.  

 The spacecraft attitude was affected significantly during this desaturation maneuver as 

seen in figure 43. However, once the wheel momenta became sufficiently low and the 

magnetorquers stopped actuating, the attitude controller was able to bring the spacecraft back to 

the commanded attitude. Such an interaction illustrates a tradeoff with this desaturation control 

law: if a higher desaturation gain is chosen to remove angular momentum faster, the attitude error 

transient during the maneuver is more pronounced. One way to mitigate this issue is to feed 

forward the external torque from the magnetorquers to the PID controller during the maneuver. 

However, to keep the implementation of algorithms simpler, this feedforward action not included.  

 Figure 42 shows the dipole moments commanded to the magnetorquers from the 

desaturation control law during this simulation. Saturation clearly occurs, but this has no adverse 

effect on the performance and is not a concern from a hardware operation perspective. 

 At this point, both the single axis and three axis MATLAB/Simulink tools have been 

utilized to develop and verify a preliminary control system design for the Cal Poly CubeSat 

Laboratory. The preliminary design consists of actuators whose high level performance  
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parameters like strength, saturation, and resolution are relatively well known. A discrete time PID 

control law was then shown to perform effectively when commanding these actuators in 

simulation for all of the control system operational modes presented in Chapter 3 with the 

exception of the ephemeris pointing mode, whose behavior is very similar to ground pointing.  

Figure 42: Desaturation Dipole Commands 

 

Figure 41: Desaturation Wheel Momentum Profile 
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 The next step in the overall ADCS design process is to incorporate higher fidelity 

modeling features that capture the effects of sensor noise and additional sources of uncertain 

parameters that may affect the closed-loop system level performance. Furthermore, transitioning 

into a simulation environment in which the entire flight-software ADCS process is invoked 

provides much better validation confidence. In the next section, the software-in-the-loop 

environment outlined in chapter 2 of this thesis will be utilized to increase the resolution of the 

overall ADCS design and provide more confidence that it will meet similar pointing performances 

that were found in Chapter 1. 

 

 

 

 

 

 

 

Figure 43: Desaturation Attitude Error Response 
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5.3 Software-in-the-Loop Simulation Framework: Design and Analysis 

  In this final section of Chapter 5, the software-in-the-loop simulation environment 

employing NASA 42 as the truth model will be utilized to predict the system level pointing 

performance of a completed version of the CPCL ADCS design and compare it to the baseline 

performance requirements derived in Chapter 1. The entire anticipated hardware suite includes 

reaction wheels and magnetorquers as actuators, and sun sensors, rate gyros, and 

magnetometers as sensors. The specifications of the sensors and actuators provided to NASA 42 

are shown in table 4. The sensor dynamics models used in the simulation environment were 

provided in Chapter 4. On the other hand, the actuator dynamic models are vastly simplified in 

the NASA 42 environment relative to the ones currently implemented in this work from Chapter 3. 

NASA 42 is configured to model the spacecraft as a rigid body under the influence of solar 

radiation pressure forces and torques, gravity gradient torques, and aerodynamic drag forces and 

torques. Figure 44 shows the ADCS sensor and actuator layout that is being simulated.    

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 44: Vehicle ADCS Configuration in Software-in-the-loop Simulation 
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Table 4: Sensor and Actuator Characteristics and Performance 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

CPCL Sun Sensors 

Parameter Value 

RMS Angle Noise (𝜎𝜃) 0.5˚ 

FOV (sensor x direction) 45˚ 

FOV (sensor y direction) 45˚ 

Mounting Alignment Errors ~0.5˚ in each axis 

Output Resolution 0.1˚ 

Body Frame Locations Center of each panel facing outward 

MMC5883 Magnetometer 

Parameter Value 

RMS Output Noise (𝜎𝑚) 4 𝑥 10−8 𝑇𝑒𝑠𝑙𝑎 

Scale Factor 1000 𝑝𝑝𝑚 

Saturation 8 𝑥 10−4 𝑇𝑒𝑠𝑙𝑎 

Mounting Alignment Errors ~1˚ in each axis 

Output Resolution 2.5 𝑥 10−8 𝑇𝑒𝑠𝑙𝑎 

Body Frame Location [x, y, z] Origin 

ADIS16500 Rate Gyro 

Parameter Value 

Angle Random Walk [x, y, z] [0.29, 0.29, 0.32] ˚/√ℎ𝑟 

1σ In-run Bias Stability [x, y, z] [8.1, 8.1, 8.1] ˚/ℎ𝑟 

Scale Factor 5000 𝑝𝑝𝑚 in each axis 

Output Range +/−125 ˚/𝑠 in each axis 

Mounting Alignment Errors ~1˚ in each axis 

Body Frame Location Origin  

CPCL Reaction Wheels 

Parameter Value 

Maximum Torque 1.61 𝑚𝑁𝑚 

Momentum Storage 5 𝑚𝑁𝑚𝑠 

Static Imbalance 0.003 𝑔𝑐𝑚 

Dynamic Imbalance 0.003 𝑔𝑐𝑚2 

Mounting Alignment Errors [az, el] [0.5 0.5]˚ 

Body Frame Location  Clustered around [0, 0, −0.15] 𝑚  
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 In the following subsections, simulation outputs are presented for each of the control 

modes outlined in Chapter 3. In all cases, the spacecraft is initialized at the home quaternion with 

zero angular rates. Simulation specific parameters are listed in table 5. In each simulation, the 

spacecraft is in sunlight to analyze the performance when sun sensor measurements are 

available as inputs to the estimation algorithm. Analysis of closed-loop behavior and performance 

during which the spacecraft is in eclipse is not included in this work.  

 In each mode, a python implementation of the control algorithm is handling the same 

logic that would be handled by a flight software implementation of the Controller type. In all cases 

except for the inertial pointing mode, the digital reference filter does not exist in the algorithm 

implementation.  

Table 5: Simulation Specific Parameters 

Parameter Value 

Orbit Epoch (UTC) 11 May 2020, 14:30:15.00 

Orbit Geometry ~400𝑘𝑚 circular, 28˚ inclined 

Inertia Matrix Uncertainty 10% in each principle axis 

5.3.1 Inertial Pointing  

 The salient results of a rest-to-rest attitude slew maneuver are given in figures 45 and 46. 

The attitude step response in figure 45 exhibits small but noticeably different behavior in the time 

domain relative to the response in the three axis Simulink tool. These differences are easily 

attributable the aggregate effects from estimator dynamics and sensor noise, reaction wheel 

imbalance and misalignment, and external disturbances. The estimation algorithm and control 

algorithm are interacting successfully in this simulation case, giving rise to desirable closed loop 

performance. The steady state pointing error achieved in this simulation case is about 3.2˚ in the 

CPCL Magnetorquers 

Parameter  Value 

Dipole Saturation 0.07 𝐴𝑚2 

Mounting Alignment Errors [az, el] [0.5 0.5]˚ 
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eigenaxis/angle sense. This pointing error is broken down into the more relevant per axis pointing 

errors in table 6. 

Table 6: Steady State Inertial Pointing Performance in SITL Simulation 

Body Axis Steady State Attitude Error (deg) 

X 2.1 

Y 1.8 

Z 1.6 

 

The per axis pointing errors are all bounded by 2.1˚. Incidentally, this is very similar in magnitude 

to the pointing performance requirements as investigated in Chapter 1. Therefore, this simulation 

provides some level of validation that the per-axis inertial pointing accuracy of the CPCL ADCS 

design is competitive for use in a large class of CubeSat missions. These promising results also 

provide an initial validation of the guidance and control algorithms presented in this thesis in 

terms of their robustness to modeling uncertainty, plant parameter uncertainty, noise in the  

Figure 45: Software-in-the-loop Rest to Rest Attitude Response 
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feedback path, and external disturbances. However, a more rigorous exploration of the simulation 

parameter space should ultimately be conducted in the future. 

5.3.2 Nadir Pointing  

In the software-in-the-loop simulation, nadir pointing is subject to a few additional sources of 

pointing error relative to the three-axis Simulink tool. Since the flight software does not have 

perfect orbit knowledge, there are inherent errors in the reference quaternion that can only be 

mitigated with higher accuracy orbit determination. Currently, the CPCL flight computer simply 

propagates its most recent TLE up to the current time of the on-board clock to obtain position and 

velocity knowledge. NASA 42 does support GPS sensor modeling, but that was not investigated 

as part of this work and will be elaborated upon in the future work section. Figures 47 and 48 

show the closed loop attitude and rate responses, respectively. In this simulation, the steady state 

pointing error in the eigenaxis/angle sense was about 4.8˚. The steady-state per-axis pointing 

errors are provided in table 7 

Figure 46: Software-in-the-loop Rest to Rest Body Rate Response 
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Table 7: Steady State Nadir Pointing Performance in SITL Simulation 

Body Axis Steady State Attitude Error (deg) 

X 3.3 

Y 2.5 

Z 2.4 

 

Figures 47 and 48 show that the spacecraft is successfully maneuvered into a nadir pointing 

attitude and continues to maintain nadir pointing into steady state. Pointing error in this mode is 

noticeably worse than inertial pointing. The reason for this is that inaccuracies in orbit position 

and velocity knowledge are now showing up as errors in the reference quaternion. From a 

simplified trigonometric analysis, the nadir pointing error induced by a relatively small in-track 

orbit determination error in a circular orbit is given by 

𝜃𝑒 = tan−1 (
𝛥𝑟

𝑅𝑒 + ℎ
) 

Figure 47: Software-in-the-loop Nadir Pointing Attitude Response 
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Where 𝛥𝑟 is the magnitude of the in-track orbit knowledge error, 𝑅𝑒 is the radius of the Earth, and 

ℎ is the circular orbit altitude. Simulation results indicate that the worst case in track orbit error 

between the spacecraft estimate and truth is about 15 𝑘𝑚. With an in track orbit error of 15 𝑘𝑚 at 

an altitude of 400 𝑘𝑚, the resulting attitude error is approximately 0.13˚. Although not very sizable 

relative to a pointing requirement on the order of a few degrees, this is an absolute lower-bound 

on pointing errors induced by orbit knowledge errors. As a whole, the attitude error covariance is 

related to the overall orbit error covariance in a multidimensional sense, and only one of those 

dimensions is considered in this analysis: in-track uncertainty. Uncertainties in the cross-track 

and nadir positions and velocities can also show up as contributors to the attitude pointing error. 

Therefore, to ascertain the sensitivity of pointing error to orbit state uncertainty, significantly more 

analysis must be performed. In future work, this sensitivity should be investigated in the context of 

the software-in-the-loop simulation framework, perhaps utilizing GPS sensor models in NASA 42 

and a flight software orbit determination algorithm instead of the more simple TLE propagation.  

Figure 48: Software-in-the-loop Nadir Pointing Body Rate Response 
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5.3.3 Ground Pointing  

 Ground pointing is similar to nadir pointing in the sense that attitude pointing error can be 

induced by error in position and velocity knowledge. However, ground pointing also suffers from 

error in knowledge of the ECEF to ECI transformation, which can also be thought of as 

uncertainty in the inertial position of the ground location of interest. Therefore it is expected that 

the pointing performance in this mode will be no better than nadir pointing performance with all 

else being equal. Figures 49 and 50 show the attitude and rate response from a software-in-the-

loop simulation in ground pointing mode. The positive spacecraft z-axis is commanded to align 

itself with a vector from the spacecraft to the position on the Earth with latitude 35˚ N and 

longitude 120˚ W. To verify that these plots are in fact consistent with the spacecraft z-axis 

pointing toward that location, a computation on the simulation output was performed to compute 

the angle between the target vector and the spacecraft Z axis in steady state. Table 8 below 

provides this angle, along with the usual X, Y, and Z attitude errors as computed from the 

quaternion product. However, the pointing errors in this mode should be interpreted slightly 

differently. This simulation framework is not quite at the level of maturity where the exact vector 

from the spacecraft to a specific ground location is accessible to the user. As such, the pointing 

errors in table 8 are relative to the spacecraft’s reference quaternion, not the true reference 

quaternion. As a crude rule of thumb, about one degree could be added to each axis to account 

for this additional uncertainty.  

Table 8: Steady State Ground Pointing Performance in SITL Simulation 

Body Axis Steady State Attitude Error (deg) 

Angle between Pointing Axis and Target Vector 3.5 

X 3.4 

Y 1.0 

Z 1.8 
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Figure 49: Software-in-the-loop Ground Pointing Attitude Response 
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5.3.4 Spin Pointing  

 Spin pointing is the final pointing mode to be analyzed within the context of the software-

in-the-loop simulation framework in this thesis. In this mode, there is no source of pointing error in 

determining the reference signal. Figures 51 and 52 show the rate and quaternion responses, 

respectively. The chosen body fixed pointing axis is the +z axis, which is commanded to point 

along the inertial +x direction with a spin rate of 1 degree per second. Notice that in figure 51, the 

angular velocities around the x and y axes converge to near zero, while the z body rate 

converges to the commanded spin rate. Table 9 provides the relevant steady state pointing errors 

in this simulation. The pointing error around the commanded body axis is not relevant. However, 

the accuracy of the commanded spin rate around the commanded body axis is an alternative 

Figure 50: Software-in-the-loop Ground Pointing Body Rate Response 



 
 

93 
 

means of characterizing the control system’s performance in this mode. The angle between the 

inertial x direction and the body z axis in steady state for this simulation is about 2.9˚.  

Table 9: Steady State Spin Pointing Performance in SITL Simulation 

Body Axis Steady State Error 

X Attitude 1.1˚ 

Y Attitude 2.7˚ 

X Rate 0.0004˚/sec 

Y Rate 0.0002˚/sec 

Z Rate 0.003˚/sec 

 

As seen in table 9, the per axis steady state pointing errors in the spin pointing mode are all less 

than 3 degrees. Moreover, the angular rate accuracy is extremely good. The control system 

brings the angular rate around the commanded axis to within three one-thousandths of a degree 

per second of the commanded rate, and nulls the rate around the other two axes to within four 

ten-thousandths of a degree per second.  

 

 

 

Figure 51: Software-in-the-loop Spin Pointing Rate Response 
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Figure 52: Software-in-the-loop Spin Pointing Attitude Response 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

 This thesis presented the results of an ADCS design and analysis toolkit enhancement 

effort whose ultimate goal was to solidify the engineering infrastructure required to develop an in-

house ADCS for the CPCL. Particular emphasis was placed on the design of attitude guidance 

and control algorithms to supplement previous effort dedicated to navigation algorithm design 

performed primarily by Mehrparvar [10] and implemented in flight software by Bouchard [8], 

completing the overall spacecraft GNC framework. Special attention was also given to actuator 

sizing and selection since much of the previous work on estimation algorithms was obviously 

more concerned with sensor performance. Reasonably good performance of a completed, 

notional CPCL ADCS design employing commercial magnetometers, in-house sun sensors, and 

commercial rate gyros, was demonstrated in the framework of the enhanced toolkit with the single 

axis Simulink tool, the three axis Simulink tool, and finally the flight software-in-the-loop 

simulation employing NASA 42 as the truth model. Along the way, the preliminary specifications 

of a reaction wheel in development by Nick Bonafede were considered. The results in each of 

these tools showed reasonably good consistency and similarity, providing some level of 

independent validation. A preliminary analysis of the pointing performance of the completed 

CPCL ADCS design in multiple control modes was performed in the software-in-the-loop 

environment with Python implementations of the control algorithms. In this environment, a 

multitude of pointing error sources such as sensor and actuator dynamics and misalignment, 

estimator dynamics, environmental perturbations, digital signal quantization, inertia matrix 

uncertainty, and orbit knowledge uncertainty were included in the analysis. In each of the modes, 

pointing performance on the order of a few degrees was observed, providing a preliminary 

validation that the completed CPCL ADCS design is competitive for use in a large class of 

CubeSat missions based on figure 1. It is important to note that the largest contributor to pointing 

error in general is attitude knowledge error, which in turn is largely a function of the quality of the 

attitude sensing hardware. With the notional design presented in this thesis, the attitude sensor 

suite does not include a star tracker. Most commercial ADCS designs from figure 2 include a star 
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tracker, which is likely the primary means by they achieve sub-degree pointing accuracy. 

Therefore, it is actually not surprising that the pointing performance of the notional ADCS design 

presented in this work—which does not include a star tracker—was on the order of a few 

degrees. 

 In the relatively long history of the CPCL, this thesis is the first successful attempt at 

performing a rigorous analysis of the entire CPCL ADCS functionality and performance within a 

flight software-in-the-loop environment. Furthermore, the guidance and control algorithm designs 

presented in this thesis are novel with respect to the entire history of CPCL ADCS development. 

Therefore, this work has significantly advanced the design maturity of the CPCL ADCS using an 

enhanced toolkit, moving it much closer to flight demonstration maturity. Nevertheless, significant 

future work must be performed before flight success should be expected from the current CPCL 

ADCS design. Furthermore, it is possible that an entirely different design may be required to fit 

within the context of unique future mission requirements. The enhanced toolkit presented in this 

work could be used to create such a design.  

6.1 Future Work 

 As mentioned multiple times in this thesis, an abundance of opportunities for future work 

exist within the context of CPCL ADCS development. In some cases, the future work is relatively 

simple and quick, but in other cases would likely require an entire master’s thesis or senior 

project. In the following subsections, future work areas previously mentioned in this thesis are 

elaborated upon in more detail. 

6.1.1 Alternatives to Integrated Hardware-in-the-Loop Testing 

 In this thesis, models of the attitude determination and control system hardware are 

employed in simulation to capture their effect on the system level functionality and performance. 

However, all models contain inherent error, and cannot exactly reproduce the behavior they 

attempt to capture. Therefore, use of the real ADCS hardware to validate the system level 

functionality and performance is often accomplished within a full hardware-in-the-loop test in 

which the entire operational environment of the system is replicated. While it may be tempting to 
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conclude that such a test is the best way to validate system level performance and functionality, it 

is usually too complicated, costly, time consuming, and inefficient to justify. Furthermore, it is not 

always necessary with the right alternative verification and validation items. 

 The difficulty of system-level hardware-in-the-loop testing that cannot be avoided lays in 

reproducing a flight like environment so that sensor output signals look like they would on orbit. 

For magnetometers, this requires a functional Helmholtz cage capable of generating magnetic 

field vector profiles that are consistent with the spacecraft orbit. For sun sensors, a dark room 

with a light source to simulate the sun would be required. Furthermore, physical simulation of the 

unconstrained rigid body dynamics requires an air bearing table. This test becomes extremely 

complicated very fast, so it is critical that the benefits it provides be heavily considered against 

the cost and schedule impacts caused by it. As mentioned in [16], “fancier integrated tests” can 

afford descoping in the context of GNC verification and validation for small spacecraft missions, 

as long as hardware component performance testing is used to update models used in a 

software-in-the-loop simulation environment.   

 The reason that hardware-in-the-loop system level testing may be advantageous over 

software-in-the-loop only simulation is because it does not suffer from nearly as much modeling 

error, and it captures lower-level functional interactions like electrical interfaces between the 

central flight computer and the physical sensors and actuators. Furthermore, sign errors that exist 

in the flight software GNC algorithms which may not appear in a software-in-the-loop simulation 

are easily detectable in a hardware-in-the-loop test. Sensor and actuator phasing and timing is 

also captured in a hardware-in-the-loop test. While these are all very good reasons to plan for 

hardware-in-the-loop testing on a CubeSat ADCS, there are alternative, less complicated means 

by which the same set of requirements can be verified. Namely, the functionality (polarity, timing, 

electrical interfaces, etc.) of the individual sensor and actuator components can be tested 

individually. Furthermore, the performance of each of the sensors and actuators can also be 

thoroughly characterized during testing. Based on these test results, the models used in NASA 42 

can be modified and updated to capture the behavior of the sensors more accurately. More 

specifically, component-level functionality can be verified independently from the rest of the 
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system, and simulation models of the hardware behavior and performance can be validated and 

updated, also through component level testing. If all of these activities are completed 

successfully, a system level hardware-in-the-loop test becomes unnecessary.   

6.1.2 Monte Carlo Analysis 

 In this thesis, single point simulations were executed for each pointing mode to predict 

the steady-state system level pointing performance. Although acceptable as a first pass, this is 

nowhere near as thorough as it should be when applied to a specific mission. Furthermore, 

depending on the nature of the mission-specific pointing requirement, it could be simply 

impossible to verify such a pointing requirement with one simulation. For example, if the 

ensemble interpretation is used as in [17], then by definition one simulation cannot do the job. To 

illustrate why this is the case, [17] defines the pointing error behavior 𝜀 as being a function of both 

time and the set of parameters {𝐴} that could affect it: 

𝜀 = 𝑓(𝑡, {𝐴}) 

Where {𝐴} includes the set of all parameters, such as the spacecraft configuration, sensor and 

actuator layout, orbit geometry, time of day and year, etc. that could conceivably affect the 

pointing behavior. Now suppose that a pointing requirement levied on the ADCS requires that 

𝑃(|𝜀| < 1˚) ≥ 90% 

which specifies that the probability that the absolute value of the pointing error is less than 1˚ be 

at least 90%. First of all, the pointing error itself must be well-defined: is it the angle between two 

vectors? The eigenaxis angle? Per axis angles? Once that is known, an interpretation of the 

probability must be provided. In other words, the 90% probability could be interpreted as 90% of 

the time for 100% of {𝐴}, or it could be interpreted as 90% of {𝐴} for 100% of the time. The first 

interpretation is the temporal interpretation and the second is the ensemble interpretation. In the 

case that the ensemble interpretation is used, it is quite literally impossible to verify the 

requirement without a monte carlo campaign. In order to obtain knowledge that the pointing error 

is less than 1˚ in absolute value for 90% of the ensemble, it is necessary to thoroughly explore the 
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parameter space defined by {𝐴} in simulation, which is precisely what a monte carlo campaign 

does.  

 Even if a Monte Carlo may not be strictly necessary to verify a requirement, it is still of 

great utility when there is a known probability distribution associated with some or all of the 

parameters in {𝐴}. In the context of this thesis, {𝐴} could be considered to be all of the 

parameters in the Yaml files defining the inputs to NASA 42. A monte carlo program could define 

probability distributions for some or all of the parameters in {𝐴}, draw from those distributions and 

set them as the inputs, run a simulation, and repeat until the simulation outputs are sufficiently 

bounded. This type of analysis leverages the automated nature of simulations to thoroughly 

explore a parameter space and obtain a good prediction of how the system would perform on 

orbit in the face of parameter uncertainty.  

6.1.3 Geodetic Pointing  

 As mentioned in section 3.5.2 of this thesis, geocentric pointing is implemented in the 

nadir pointing (and ground pointing) modes. This is subtly different than geodetic pointing, in 

which the non-spherical geometry of the Earth is taken into account to improve pointing accuracy. 

In some cases, geocentric pointing may actually be preferred, but in the case that a spacecraft 

boresight must be pointing toward certain features of the Earth, geodetic pointing is more 

accurate. For example, consider a case in which the ground pointing mode is employed to point  

a spacecraft boresight at the San Luis Obispo region in an orbit with a different inclination than 

the latitude of San Luis Obispo. In this case, the spacecraft essentially assumes that the Earth is 

a perfect sphere with a radius of 6378 km when it computes the vector to the commanded ground 

location. However, because the distance from the center of the Earth to the San Luis Obispo is 

likely not exactly 6378 km, there is a small target vector error in the inertial radial direction as a 

result of assuming that the Earth’s radius is uniform across the surface. This small target vector 

error ends up as pointing error, and in some cases the resulting pointing error may be intolerably 

large. Nadir pointing suffers from similar error sources if geodetic pointing is required. To recast 

the formulation of the reference quaternion for geodetic pointing, all that is required is the Earth’s 

radius as a function of latitude and longitude: 
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𝑅𝑒 = 𝑓(𝜆, 𝜃) 

This function can be implemented as a look-up table in flight software so that during computation 

of the target vector in ground pointing mode or computation of the nadir vector in nadir pointing 

mode, the true earth radius at the latitude and longitude of interest is utilized. This strategy could 

improve pointing accuracy by as much as a few degrees.  

6.1.4 Three-Axis Deadband Logic 

 In section 4.1, attitude error deadband logic was presented in the context of the single 

axis Simulink tool. This logic is useful in preventing undesirable steady state limit cycle behavior 

such as actuator chattering. In this work, it was implemented to prevent the speed command to 

the reaction wheel speed controller from discontinuously switching between zero and the 

minimum speed bit. This behavior can result in high frequency momentum exchange between the 

spacecraft and the reaction wheel, which may excite unmodeled, higher frequency flexible modes 

or compromise pointing performance. The deadband logic was shown to successfully suppress 

this limit cycle behavior, but only in the single axis tool. Implementation of the deadband logic in 

the three axis tool as well as the software-in-the-loop simulation framework has yet to be 

accomplished.  

6.1.5 Estimation Algorithm Improvements 

 Previous estimator algorithm development in the context of CPCL ADCS was dedicated 

to the design of a discrete time extended Kalman filter to estimate the total spacecraft angular 

rate as well as the inertial to body attitude quaternion. Although this approach worked well in 

simulations presented in this work, it does not come without issues. Following along with [14], 

there are multiple fundamental issues associated with the use of a traditional extended Kalman 

filter in the estimation of an attitude quaternion and angular rate vector. First of all, due to the 

non-minimal nature of the quaternion representation of the attitude, the state covariance matrix is 

prone to being near singular. Second, the update step in the traditional extended Kalman filter 

can cause issues by violating the quaternion’s unit norm constraint. To see this more clearly, the 
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update step in the extended Kalman filter corresponding to the quaternion portion of the state 

vector is given by 

𝒒̂+ = 𝒒̂− + 𝐾[𝒚 − 𝒉(𝒙̂−)] 

Where 𝒒̂+ is the a posteriori estimate of the attitude quaternion, 𝒒̂− is the a priori estimate of the 

attitude quaternion, 𝐾 is the Kalman gain matrix, 𝒚 is the measurement vector, 𝒉 is the nonlinear 

measurement function, and 𝒙− is the a priori state estimate. Clearly, in order to satisfy the 

quaternion norm constraint across update steps, some special relationship between the a priori 

quaternion estimate and the product of the Kalman gain with the measurement residual must 

hold. According to [14], such a relationship does not exist in the general case.  

 Furthermore, it is shown in [14] that an unbiased estimate of the four-component 

quaternion must violate the unit norm constraint. If an unbiased estimator is developed to avoid 

this issue, a new issue arises, namely that the quaternion covariance matrix becomes ill-

conditioned in the limit as the estimation errors go to zero. Ill-conditioned matrices are always 

undesirable in the context of numerical algorithms that run on digital computers, because any 

computation involving their inverse is prone to large numerical errors.  

 To avoid these issues, brute force normalization of the a posteriori attitude quaternion 

estimate is implemented in flight software by Bouchard [8]. However, such an approach can 

cause issues if the product of the Kalman gain and the measurement residual is not orthogonal to 

the a priori quaternion estimate as described in [14].  

 A more suitable estimation algorithm for use in spacecraft attitude determination and 

control systems which avoids all of the aforementioned issues is a multiplicative extended 

Kalman filter (MEKF) designed to estimate the error-state as opposed to the global state 

estimated by the extended Kalman filter. This formulation also provides advantages over the 

extended Kalman filter in that it naturally estimates a rate gyro bias instead of a total angular 

velocity. Since the rate gyro bias drifts slowly over time, and the extended Kalman filter does not 

estimate it, very poor estimation performance can be observed over long time scales when using 

an extended Kalman filter. Furthermore, estimation of a total angular velocity treats rate gyro data 

as measurements, and uses Euler’s equations as the dynamic model in the predict step. If Euler’s 
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equations are used in the predict step, then sufficiently accurate knowledge of the external torque 

and mass properties of the spacecraft are required. However, this is not always the case, 

especially when using cold gas thrusters to impart attitude control torques. An alternative 

approach as outlined in [14] is to use calibrated rate gyro measurements in the dynamic model of 

the estimation algorithm instead of treating it as part of the measurement vector. Then the 

expectation of the true angular rate in terms of the sensed angular rate as given by the following 

relationship: 

𝝎(𝑡) = 𝝎𝑡𝑟𝑢𝑒(𝑡) + 𝜷𝑡𝑟𝑢𝑒(𝑡) + 𝜼𝑣(𝑡) 

is used to propagate the global attitude quaternion estimate forward in time until the next 

measurement is taken. When the next measurement is taken, the error state estimate is updated 

to a finite value, and subsequently moved into the global sate estimate. Once moved into the 

global state estimate, the error state quantities are reset to zero.  

 In summary, the MEKF involves three steps: a measurement update, an error state reset, 

and a propagation to the next measurement time. Between measurements, the propagation 

moves the global state estimates forward in time to be used by the attitude controller. Once a 

measurement is taken, the error sates are updated, pushed into the global state, and rest to zero. 

This process repeats indefinitely in real-time. 

 The design and implementation of an MEKF for use in the CPCL is highly recommended 

by the author of this thesis, and will likely require either an entire master’s thesis or collaboration 

between multiple dedicated student engineers.  

 Finally, another estimation algorithm issue associated with the simultaneous use of 

magnetometers and sun sensors first observed by Bouchard [8] is that when the two vector 

measurements are nearly colinear, the estimator covariance rapidly increases and the filter 

becomes prone to divergence. The reason this happens it that if the two measurement vectors 

were exactly colinear, there would be an infinite set of attitudes corresponding to rotations around 

that line which give rise to the same set of measurements. This non-uniqueness is reflected 

mathematically in a near singular measurement sensitivity matrix. To avoid this issue, the 

estimation and control algorithms could remain in an inactive state in anticipation of attitudes and 
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locations for which these two vector measurements are nearly colinear. This would require careful 

mission analysis and simulation to verify that it will mitigate the potential issues.  
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APPENDICES 

 

Appendix A: Example Yaml File Snippets 
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Appendix B: Example Python Control Algorithm Implementation  
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