
FPE 596 Culminating Project Warren J. Baker Center for Science and Mathematics California Polytechnic State University, San Luis Obispo Campus

Matthew Hudson

Disclaimer

This project report is a result of a class assignment; it has been graded and accepted as fulfillment of the course requirements. Acceptance of this report in fulfillment of the course requirements does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include, but may not be limited to, catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project.

Key words:

Warren J. Baker Center for Science and Mathematics, California Polytechnic State University, San Luis Obispo, Cal Poly, Fire Protection Engineering, life safety, sprinkler system, fire suppression, fire alarm, structural fire protection, smoke control, performance based design, design fire, NFPA 13, NFPA 14, NFPA 20, NFPA 25, NFPA 70, NFPA 72.

Index

Abstract	4
Introduction	6
Background	6
Layout	7
Prescriptive Analysis	14
Life Safety	15
Fire Suppression	21
Fire Alarm System	33
Structural Fire Protection	41
Smoke Control System	46
Performance Based Review	49
Design Fire 1	51
Design Fire 2	59
Recommendations	66
Conclusion	67
References	68
Appendix A - Life Safety Drawings	69
Appendix B - Hydraulic Egress Calculations	76
Appendix C - Hydraulic Calculations	78
Appendix D - Sprinkler System Drawings	278
Appendix E - Fire Alarm Drawings	307
Appendix F - Smoke Extraction Calculations	331

Abstract

The purpose of this report is to analyze the Warren J Baker Center for Science and Math on the California Polytechnic State University, San Luis Obispo campus. Baker Science is primarily used for classroom and laboratory instruction of college students, with study spaces, faculty offices, and assembly spaces. There are mechanical, electrical, and storage spaces ancillary to the main building functions. The building comprises six floors that are between 23,000 and 44,000 ft². The first floor contains classrooms, faculty offices, mechanical/electrical spaces, and an auditorium with fixed seating. An atrium connects floors two through five. There are walkways running down the center of the atrium with openings on both sides. These floors all contain a mix of classrooms, laboratories, faculty offices, study spaces, and supporting mechanical, electrical, and storage rooms.

The prescriptive analysis of the Baker Science building determines if the building construction complies with the applicable codes and standards. These codes and standards cover life safety, fire suppression, fire alarm and detection, and structural requirements. The life safety section analyzes the ability of the building to safely evacuate occupants in a timely manner. This is accomplished with code-specified stair and door widths, exit locations, and exit fire rating requirements. The building is protected throughout with an automatic wet pipe sprinkler system, fed from a fire pump on the first floor. The fire pump is supplied from a city water loop to the north of the building. All sprinklers in the building are quick response K-5.6 sprinklers. The fire suppression system activates the fire alarm system in the event of a fire. The alarm system can also be activated with smoke alarms, heat alarms, and manual pull stations. The generation of any part of the fire alarm system in the atrium will activate the passive smoke control system. This system opens roof vents that allow smoke to escape, and also opens doors at the bottom of the atrium to provide makeup air. Doors to the wings of the building are released and closed to reduce the travel of smoke to the east and west wings. The structural fire protection codes provide occupancy separation requirements, and limit building height and area based on construction type.

The performance based analysis seeks to determine how well the building systems can handle a real-life fire scenario, with a focus on building occupants being able to safely evacuate the building in the event of a fire. The ability to safely exit the building is based upon the requirement for tenability to be maintained in the egress route for the entire time it takes for evacuation to be completed. The performance analysis in this report centers around two design fires: one in the atrium, and one in the lobby outside the assembly space. The design fires represent scenarios that would challenge the fire protection capabilities of the building, while still having a probability of occurring. Small fires or fires in unoccupied spaces were not analyzed since they would be unlikely to test the limits of the building's fire protection systems. The design fire in the atrium exposed occupants to smoke and combustion products, and activated the atrium smoke control system. The smoke venting was inadequate to remove the smoke created by this design fire, resulting in smoke accumulation that limited the visibility of occupants egressing on the sixth floor. The available safe egress time is 3.23 min after ignition, based on the minimum visibility of 4 m being lost on the sixth floor, while that floor has a required safe egress time of 3.96 min. The design fire in the lobby outside the auditorium also exposed occupants to smoke, limiting visibility. The available safe egress time in the lobby is 2.00 min, at which point the 13 m visibility limit is

no longer maintained. The required safe egress time is 8.64 min from the time of ignition, significantly longer than the time available to occupants.

Prescriptive analysis of the Baker Science building determined that the building was adequately built to the relevant life safety and fire codes. The performance based analysis discovered some shortcomings in the building design. These faults were primarily centered around tenability time for evacuating occupants in the building. On the sixth floor in the atrium, occupants experienced reduced visibility that could impede their ability to safely find the exits and safely escape. The cause of the reduced visibility was the buildup of smoke from the fire, which in turn was caused by inadequate smoke removal by the smoke control system. As a passive system without fans, the smoke can only be removed at a limited rate. One solution to this would be to install additional passive smoke vents. A better solution would be to install powered smoke vents with a rating capable of evacuating adequate smoke from a challenging design fire. Inadequate visibility was also the conclusion of the second design fire. The tall ceiling outside the auditorium filled with smoke, limiting the visibility of evacuating occupants. Installing smoke control capability in the lobby could remedy this deficiency. An easier solution would be to install doors in the auditorium that do not egress into the lobby. This would allow auditorium occupants to avoid the smoke entirely, while reducing the congestion in the lobby for people evacuating from other parts of the first floor. The Baker Science building serves as an example of properly executed code implementation, with failings that can be exposed with demanding design fires.

Introduction

The goal of this report is to perform an analysis of the fire protection systems in the Baker Science building on the Cal Poly campus. Various aspects of building construction and design will be evaluated for prescriptive design, including life safety, fire suppression, fire alarm, and structural design. The building construction documents will be compared to applicable building and fire protection codes to determine if the requirements are achieved. Additionally, a performance based analysis will be conducted with two design fires to determine how well the building would achieve life safety goals in the event of real fire scenarios. This report will present a summary of relevant code sections and how the building complies with them, performance based analysis scenarios and conclusions, and recommendations based on these.

Background

The Warren J. Baker Center for Science and Mathematics (Building 180) was constructed in 2013 to serve the expanding needs of the Cal Poly campus. The building contains classrooms, lecture halls, science laboratories, faculty offices, study spaces, and mechanical/electrical rooms. The new building was necessary to replace Building 52, also known as the "spider building," which was built in the 1940's. Building 52 was not large enough for a growing campus, and lacked modern technology commonly used in science labs today. Figures 1 and 2 show different views of the exterior of the building.

Figure 1. West side of Baker Science with first floor entrance.

Figure 2. South side of Baker Science.

Layout

Baker Science has six separate floors, although no part of the building is more than five stories tall, due to being built on a hill. The first floor of the building has a large auditorium, some classrooms, and faculty offices. There are also mechanical/electrical spaces on the first floor. The first floor has one main entrance with three double doors, the vast majority of the traffic into and out of the first floor is through here. Design Fire 2 was chosen due to the proximity to the primary exit and to a large occupancy auditorium. A large fire near a familiar exit would force people to find secondary exits. The ceiling above the lobby in this space is 37 ft tall, extending to the third floor. The height of the ceiling would delay the time to sprinkler activation, allowing the fire to grow larger than a fire in a smaller space.

Floors two through six are connected by a two-sided atrium that is split by a walkway. This atrium is a major fire concern for this building, and is the focus of Design Fire 1. There are two major exits to the second floor on opposite sides of the atrium. Halls extend east and west from the main lobby, providing additional ground-level exits.

The third floor has a similar footprint as the second floor, but has a walkway separating the two sides of the atrium, and no ground level exits. There are two exit stairs in the atrium: the southern one is enclosed by walls, and the northern one is open to the atrium. Floors three through six all have stairs on the east wing. The third floor has two stairs on the west wing and the fourth floor has one stair on the west wing. There is no west wing for floors five and six. Floors four through six have comparable layouts to the third floor, except each subsequent floor does not extend as far to the west (above the first floor). The smaller footprints of the higher floors keep any part of the building from being greater than five stories tall. Floor layouts are shown in Figures 3 through 9, with more detail of occupancy and exits shown in Appendix A. Exit doors in these images are circled in red and stairways are highlighted in red.

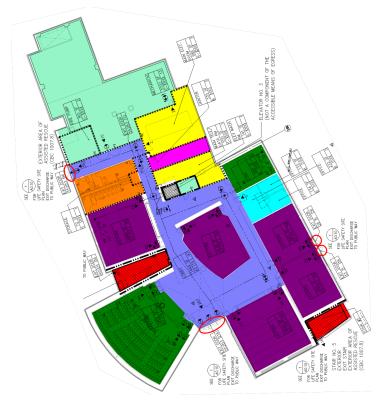


Figure 3. First floor.

Figure 4. Second floor.

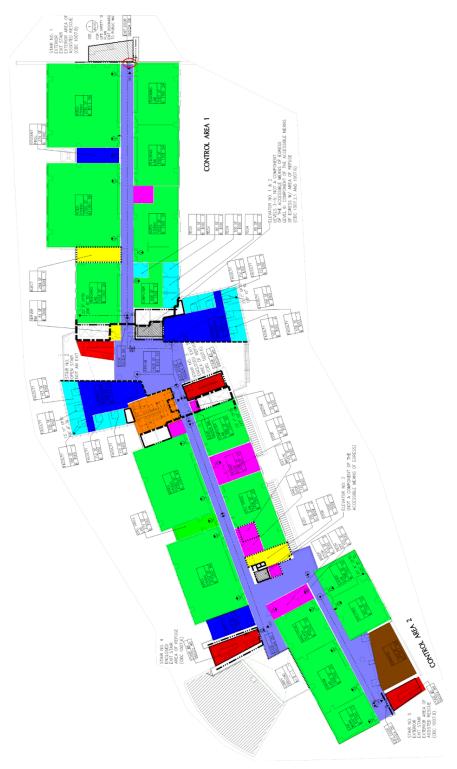


Figure 5. Third floor.

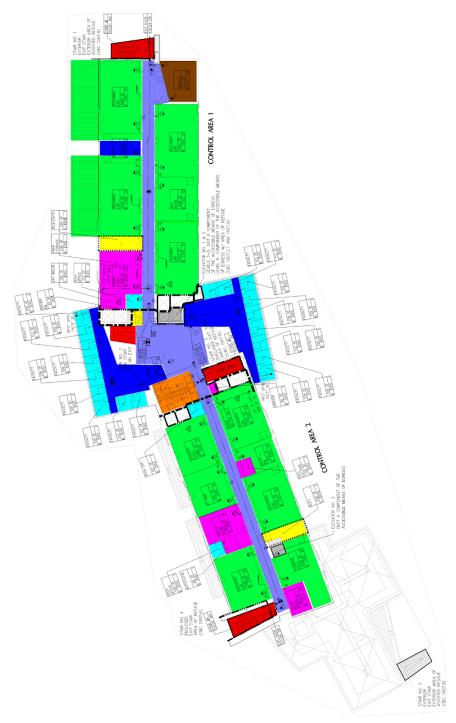


Figure 6. Fourth floor.

Figure 7. Fifth floor.

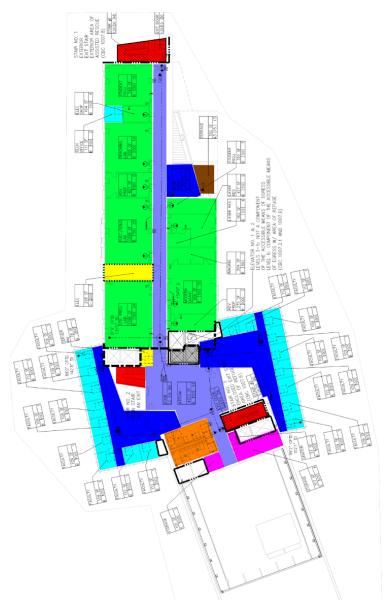


Figure 8. Sixth floor.

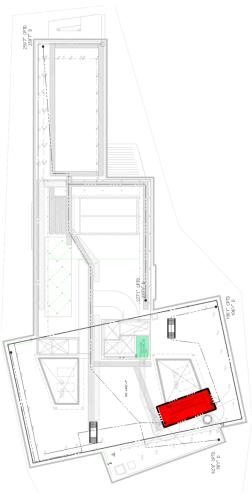


Figure 9. Roof.

Prescriptive Analysis

Codes Used

The following codes were used for the construction of this building:

- CBC, California Building Code, 2007
- NFPA 13, Standard for Installation of Sprinkler Systems, 2007
- NFPA 14, Standpipe and Hose Systems, 2004
- NFPA 20, Stationary Pumps for Fire Protection, 2003
- NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 2002
- NFPA 70, National Electric Code, 2005
- NFPA 72, National Fire Alarm and Signaling Code, 2007

Life Safety

Exit Considerations

Each space and floor is required to have an egress capacity greater than the rated occupancy. To calculate egress capacity, exit door and stair widths need to be known. Occupancy rating is based on occupancy load factor and area of each space. For an entire floor of a building the occupancy rating for each space is added to arrive at the total occupancy for the floor. The exits for each floor in the building and the calculated egress capacity are listed below. CBC 1005.3.1 requires an egress capacity for stairs of 0.2" of width per occupant in a sprinklered building with an emergency voice/alarm system. CBC 1005.3.2 gives an egress capacity for components other than stairs (such as doors) of 0.15" per occupant in a sprinklered building with an emergency voice/alarm system. CBC 1005.3' 11", and stair 3 has a width of 3' 6". Stair 2 is not included as an exit, as it is exposed to the atrium and does not comply with the requirements of a protected means of egress. All doors leading to and from the stairs are 36" wide, with a clear width of 33.5". An example egress calculation for each is shown below for Stair 1:

Stair: $C = \frac{47"}{.2"/person} = 235 \ people$

Door: $C = \frac{33.5"}{.15"/person} = 223 \ people$

For stairs 1, 4, and 5, the door is the more limiting factor, with 223 people. For stair 3, the narrower stair is the more limiting means of egress, with a capacity of 210 people. The more limiting value is always used to calculate egress capacity where there are two or more implements of egress in a row. Formula 7.3.3.1 will be used for doors of all widths for the building. The exit data calculation results are summarized below.

1st floor

Independent exit path, not connected to other floors except elevators.
Main exit, 3x63"
Stairway exit door, 34.5"
95" doors by mechanical room
Egress capacity for the floor: 1928

2nd floor

Atrium: 4x70", north and south Two 69" exits on north side of east wing 69" exit on south side of west wing Two 33.5" doors to stairways in west wing 34.5" door from 261 Egress capacity for the floor: 2878

3rd floor

34.5" door to 47" stair on east, center, and two to the west Egress capacity for the floor: 720

4th floor

34.5" door to 47" stair on east, center, and west Egress capacity for the floor: 680

5th floor

34.5" door to 47" stair on east and center Egress capacity for the floor: 453

6th floor

34.5" door to 47" stair on east and center Egress capacity for the floor: 453

Roof

34.5" door to 47" stair Egress capacity for the floor: 235

Color-coded map

Submitted with this report is a color-coded map of the various spaces, shown in Appendix A. A campus PDF map was obtained, then highlighted to show the use assigned to each space in the building. Exit doors were circled in red. A legend for the color-coded occupancy uses is shown in Figure 10.

Figure 10. Map color legend.

Occupancy and Exit Capacity

The main uses of the building are classroom, lab, storage, office, and assembly. Table 1 summarizes occupancy, floor exit capacity, and number of exits for each floor of the building. Notice that the exit capacity of each floor exceeds the rated occupancy. The egress data for each individual space was also calculated, and every room and space in the building has adequate egress capacity for its occupancy.

				Exit		Req no of
Floor	Area (ft ²)	Uses	Occupancy	capacity	No of exits	exits
1	23146	Assembly, mech/elec, storage	639	1982	5	3
2	43458	Business, storage, assembly	524	3840	8	3
3	43209	Business, storage, assembly	701	879	4	3
4	33307	Business, storage, assembly	464	656	3	2
5	25294	Business, storage, assembly	263	433	2	2
6	19958	Business, storage, assembly	251	433	2	2
Roof	20236	Mech/elec	6	223	1	1

Table 1. Summary of area, use, occupancy, exit capacity, and number of exits.

Arrangements of Exits

Business and assembly spaces or rooms with greater than 49 occupants must have more than one exit, from CBC Table 1006.2.1. CBC Table 1006.3.1 requires storeys with occupancy up to 500 to have two exits, occupancy between 501 and 1000 to have three exits, and greater than 1000 to have four exits. Table 1 above shows the required and actual number of exits for each floor of the building. Baker Science was designed with an adequate number of exits for all spaces and floors. Per CBC 1007.1.1, the minimum separation distance between exits (in a sprinklered space) shall not be less than one third the maximum diagonal distance of the space. For all of the spaces that require more than one exit, the exits are arranged to exceed the minimum required distance of one third the building diagonal measurement. This minimum spacing is achieved for all individual rooms, such as the auditorium on the first floor, all labs and classrooms, and the entire stories as a whole. A summary of storey diagonal distance, required exit spacing, and actual spacing is shown in Table 2.

	Diagonal	1/3 Diagonal	
Floor	Distance (ft)	distance (ft)	Exit spacing (ft)
1	248	83	160
2	481	160	413
3	481	160	451
4	407	136	344
5	248	83	220
6	248	83	220

Table 2. Exit spacing data.

Dead Ends and Travel Distances

Per CBC Table 1017.2, the total travel distance limit for a sprinklered business occupancy is 300 ft. This limit is not reached anywhere in the building. Table 1006.2.1 provides limits for common paths of travel. In a sprinklered business occupancy, the limit is 100 ft. This limit is approached (~96 ft) on the fourth, fifth, and sixth floors near the office areas, but is not exceeded. The maximum dead end travel distance in sprinklered business occupancies is 50 ft, from CBC 1020.4. This limit is exceeded by 3' on the east side of the second floor, as shown in Figure 11.

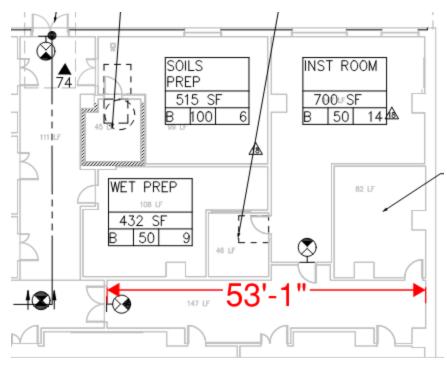


Figure 11. Dead end travel distance is exceeded on the second floor.

Fire Ratings

This building has fire rated walls to meet a variety of code requirements. The east and west wings of the building are separated from the atrium with horizontal exits. These horizontal exits create control areas, which require 2 hour fire separation, per CBC 414.2.4. The vertical exit enclosures require two hour fire ratings, in accordance with CBC 1020.1, since Baker Science is more than four storeys tall. Examples of these fire ratings are shown in Figure 12 with the horizontal exits highlighted in red and the vertical exit highlighted in green. Individual occupancies need to be separated from adjacent occupancies per CBC Table 508.3.3. A one hour fire rating is required between business, assembly, storage, and high hazard group occupancies. Baker Science complies with all required fire rating requirements for exits and occupancy separation.

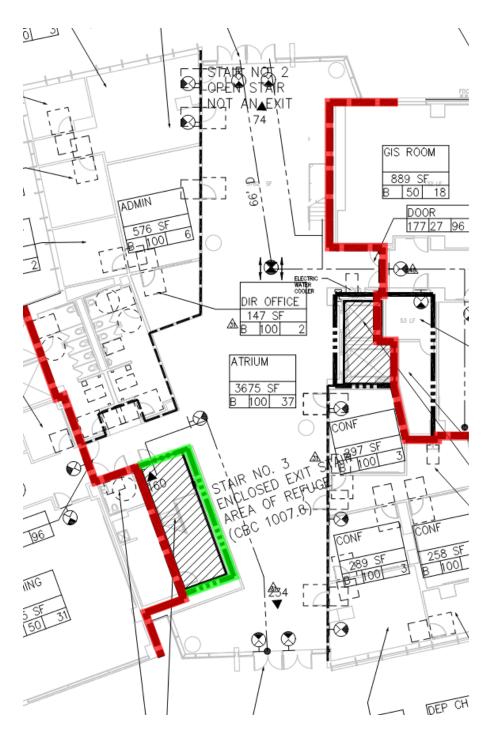


Figure 12. Example of fire ratings separating control areas (red) and area of refuge (green).

Exit Signs

Marking of means of egress is required by CBC 1013.1. Placement of exit signs is important to help people unfamiliar with the building safely escape during a fire, and for people trying to find a safe exit path in heavy smoke. This section of the code states that an exit sign must be visible from 100 ft or less in an exit passageway. These exit signs must be illuminated at all times. The farthest distance from an

exit sign is in the east wings of floors three and six. Two exit signs in the corridors are 173 ft apart, so standing halfway between the signs is 86.5 ft from the nearest sign.

Occupancy Characteristics

This building will serve students and faculty in lab, classroom, and office settings. There are also storage, mechanical, electrical, and service spaces. These spaces will primarily be used by the building staff. The people who use the building will likely be familiar with the layout, aiding in their ability to evacuate efficiently if necessary.

Since most of the capacity consists of classrooms and labs, students are expected to comprise most of the people in the building. If a fire were to occur, they would likely be led to evacuate by a professor. Many of the students would take the time to pick up their notes, computers, and backpacks. Cluttered aisles between desks could create tripping hazards and slow egress slightly. The laboratories could have open flames or experiments with dangerous chemicals. Students and faculty may need to place their work in a safe condition prior to leaving the room. This is another factor that could delay egress time by a minute or two.

Students or faculty working on computers may take time to save work to a flash drive or the internet prior to evacuating. This is due to experience with false fire alarms, and perceived value for their work. Saving work prior to leaving could delay a person by a couple of minutes.

Pre-movement Response

There are many ways occupants could be alerted to a fire. The way most occupants of a building would be alerted would be audible, in the form of a fire alarm. Other audible methods would be hearing someone shout "fire" if they were the one to discover it. A large number of people evacuating would cause a commotion that could likely be heard. The fire alarm system also includes strobes that would provide visual cues for people who are hard of hearing or listening to headphones. Another way occupants could discover the fire would be through heat or smell. These would likely occur if the fire started in an unoccupied space.

Once it has been established that there is a fire, people in the building need to evacuate. In some buildings (such as a movie theater) occupants only enter through one door. As a result, they are more likely to use the same door to exit. In a school building, students and professors know that there are multiple entrances/exits, and likely use different ones depending on where they are traveling from or to. This increases the odds that people exiting will use the closest unobstructed exit instead of leaving through a main exit they typically use.

Egress Time

A reliable estimation of egress time is necessary to determine if tenability will be maintained in occupied spaces for a given design fire. A second order hydraulic calculation was performed to determine the time occupants would need to egress from the Baker Science building when it was at rated occupancy. For this calculation it was assumed the occupants would exit through the stairway in the section of the building where they were when the alarm sounded. The building is separated into three sections: the west wing, the atrium, and the east wing. An egress calculation was performed for each section since

this calculation assumes the egress of each will occur separately. A summary of egress times is shown in Table 3, with a detailed hydraulic egress calculation provided in Appendix B. Some parts of the table are left blank where that floor of the building does not have that section of the building. Also note that floors 2 and 3 for the east wing, and the first floor of the west wing are independent of egress from higher floors, yielding a lower egress time. The time for the entire building to be evacuated is 13.62 minutes.

	West Wing		Atrium		East Wing	
	Time to	Time to reach	Time to	Time to reach	Time to	Time to reach
	evacuate	next floor	evacuate	next floor	evacuate	next floor
6th			1.79	2.12	4.56	4.93
5th			3.18	3.51	8.64	9.02
4th	4.46	4.84	4.51	4.85	13.25	13.62
3rd	7.71	8.09	7.74	8.08	5.40	
2nd	9.52	10.04	8.66		2.61	
1st	5.07					

Table 3. Summary of egress times from different parts of Baker Science.

Egress time is calculated starting when occupants begin to move. To determine the time from ignition of the fire to total evacuation, time to alarm and pre-movement time must also be included. Time to alarm is dependent on the specific fire scenario, and the SFPE Handbook can provide an estimate of pre-movement time. The SFPE Handbook provides estimated pre-movement times for various types of buildings. The building type that most closely represents Baker Science is a high-rise office building. While Baker Science narrowly misses the definition of a high-rise building, the occupants would be familiar with the building, and it would typically be occupied during working hours. Table 64.4 provides a pre-movement time of 1.2 minutes for a high-rise building.

The primary purpose of the life safety analysis is to ensure occupants can safely exit the building in the case of an emergency. In order to accomplish this, occupants must be able to find and traverse through exits in a timely manner. The Baker Science building can be completely evacuated in less than 14 minutes in the event of a fire. Exit signage will efficiently lead people to the nearest exit, which needs to have sufficient capacity, based on door and stair width. Baker Science meets or exceeds the life safety requirements of the California Building Code. Proper quantity and locations of exits will allow egress to occur in a timely manner. Safe egress time can be extended by reducing growth rate and size of a fire through automatic suppression.

Fire Suppression

System Description

The Baker Science building contains wet pipe sprinklers throughout the entire building. The whole building is sprinklered from a single wet pipe sprinkler riser which is fed from a fire pump. NFPA 13 8.2.1 gives a maximum floor area limit that can be protected by one sprinkler zone of 52,000 ft² for light and ordinary hazard occupancies. The second floor has the greatest area at 43,458 ft², allowing the building

to be served by a single sprinkler riser. Four standpipes, located in the egress stairwells, deliver water to the upper floors. A fire pump, located on the first floor, is provided due to the height of the building.

Water Supply

The fire protection water supply comes from a looped domestic water main to the north of the building. There were two hydrant flow tests performed, one with flow from hydrant #63 and static pressure from hydrant #64, and another test with flow from hydrant #64 and static pressure from #63. The locations of the fire loop and hydrants #63 and #64 are shown in red on Figure 13, with the Baker Science Building outlined in Blue. The results of the flow tests are shown in Figures 14 and 15. Hydrant #63 is located much closer to the supply main for Building 180 and was selected for the hydraulic calculations as a result. Figure 16 shows the city water supply curve for the building, adjusted for the height of the pump inlet. In order to be conservative, the test pressures were reduced by 10% when performing sprinkler system calculations.

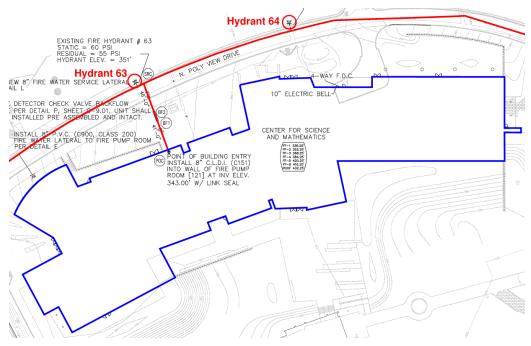


Figure 13. Location of test hydrants.

lowing Hydrant(s)	Co	ncurrent Fl	ow	Residual Hydrant	
	#1	# 2	#3		
Hydrant #	64			Hydrant #	63
Static Pressure (psl)	63			Static Pressure (psi)	60
Test Gauge #	2			Residual Pressure (psl)	55
Pitol Pressure (psi)	35			Test Gauge #	1
Test Gauge #	1a			Tested by	R.Ellison
Nozzle Size (inches)	2.5				
Nozzle Coefficient				1	
Hydrant Flow (gpm)	914			1	
Tested by	R.Ellison				
Projected Flow @ 20 psl	2270.288	#DIV/01	#DIV/0!	1	

Figure 14. Hydrant flow test, hydrant #63.

ı.

Flowing Hydrant(s)	Co	ncurrent F	ow	Residual Hydrant	
	#1	# 2	#3		
Hydrant #	63			Hydrant #	64
Static Pressure (psi)	64			Static Pressure (psi)	63
" Test Gauge #	2			Residual Pressure (psi)	58
Pitot Pressure (psi)	40			Test Gauge #	1
Test Gauge #	1a			Tested by	R.Ellison
Nozzle Size (inches)	2.5				an a
Nozzle Coefficient					
Hydrant Flow (gpm)	974			1	
Tested by	R.Ellison			1	
Projected Flow @ 20 psi	2862.1147	#DIV/01	#DIV/01		

Figure 15. Hydrant flow test, hydrant #64.

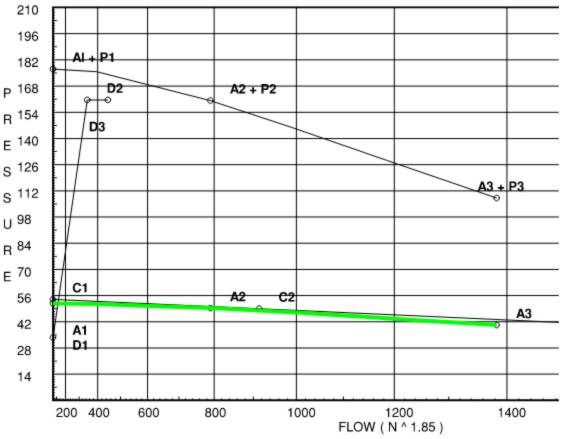


Figure 16. Building water supply curve.

The domestic water loop connects to the building with an 8" cement lined ductile iron pipe. The fire water system is separated from the city water main with a backflow preventer. NFPA 13 requires fire water systems to be isolated from the water main to prevent contamination of drinking water. This sprinkler system uses a Wilkins 350ADA double check detector assembly. This consists of two check valves with isolation valves on either side. The isolation valves are 8" OS&Y valves, and have tamper monitor switches that connect to the fire alarm system. The tamper monitors activate a supervisory condition at the fire alarm control unit if either of the isolation valves is moved from the open position. This is important since one of these valves being shut would prevent the sprinkler system from operating in the event of a fire. One design consideration when using backflow preventers is the pressure loss across the check valves. This is dependent on the system waterflow and the size of the backflow preventer. This pressure loss needs to be included in the hydraulic calculations in order for them to provide an accurate representation of available system flow. Figure 17 is the double check assembly installed in the building water supply, and Figure 18 is the double check assembly pressure loss graph. This double check assembly is installed above ground due to the moderate temperatures experienced in San Luis Obispo. In a climate with freezing weather the backflow preventer would most likely be installed in the building, in a heated space.

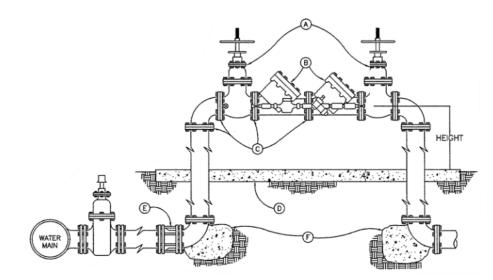
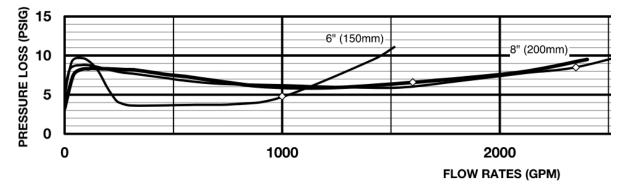



Figure 17. Double check assembly.

Fire pump

The height of the building combined with the available water supply necessitates a fire pump. The pump is located on the first floor in the fire riser room. The pump is a Peerless 6PVF10 electric fire pump. Each storey in the Baker Science building is 16 ft, meaning the 6th floor ceiling is 80 ft higher than the 1st floor ceiling. In order to supply water to the sixth floor, an additional 34.6 psi is required to supply water

compared to the first floor. $P = \left(\frac{80 ft}{0.433 \text{ psi/ft}}\right) = 34.6 \text{ psi}$. When a sprinkler opens, releasing water, a pressure switch at the discharge of the pump senses the difference in pressure and activates the fire pump. To maintain pressure at the discharge of the fire pump a pressure maintenance pump, commonly called a "jockey pump," is provided in parallel to the fire pump. Small decreases in pressure due to system leaks will trigger the pressure maintenance pump has a much smaller capacity than the fire pump and can activate and deactivate itself with the pressure switch. The jockey pump activates at 155 psi and deactivates at 165 psi, but the fire pump does not activate until pressure reaches 150 psi. This ensures pressure in the sprinkler piping is normally maintained by the jockey pump. The fire pump deactivates at 191 psi to ensure the piping does not become overpressurized. The Peerless pump curve is shown in Figure 19, and a summary of pump pressure settings is provided in Figure 20.

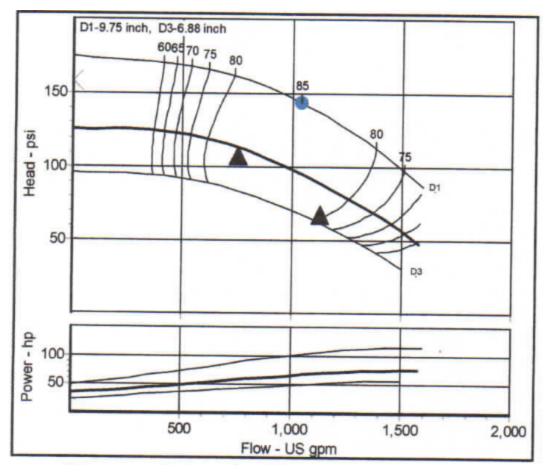
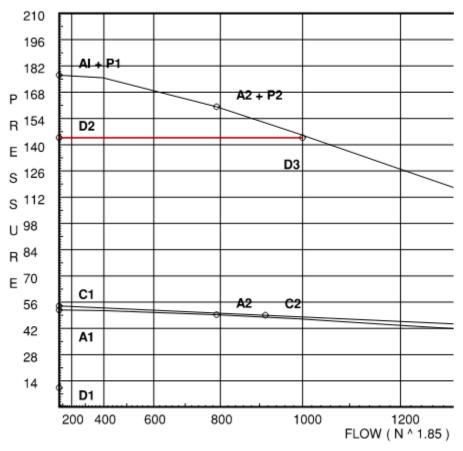


Figure 19. Peerless pump flow curve.

FIRE PUMP SETTINGS :

FIRE PUMP MAXIMUM CHURN = 191 PSI JOCKEY PUMP STOP = 165 PSI JOCKEY PUMP START = 155 PSI FIRE PUMP START = 150 PSI


Figure 20. Fire pump and pressure maintenance pump setpoints.

Standpipes

Standpipes are provided in this building in accordance with NFPA 14, Standard for Installation of Sprinkler Systems. A standpipe is installed in each egress stairway, with a fire hose valve on each landing of the egress stair. The standpipe in stair 1 has a 6" pipe, and has a fire hose valve on the roof of Baker Science. Stair 3 is fully enclosed and also has a 6" standpipe. There is also a fire hose connection valve in the roof dog house at the top of stair 3. Stair 4 has a 4" standpipe with a hose valve on the roof, even with level 5. Stair 5 is not enclosed, and has a 4" standpipe. It does not extend to the roof. Figure 21 shows the locations of the standpipes in Baker Science. The standpipe system is capable of supplying a total of 1000 gpm, with 500 gpm at 100 psi at the highest outlets. A plot of standpipe demand pressure is shown in Figure 22, where the fire pump supplies 1000 gpm at 143.7 psi. Hydraulic calculations were performed for the standpipes and are shown in Appendix C.

Figure 21. Building layout with standpipes.

Figure 22. Standpipe pressure demand plot for calculation #5, highlighted in red.

Commodity Classification

The biggest hazard in this building are the laboratories with chemicals in them. Chapter 22 of NFPA 13 determines the hazard classification of labs based on the laboratory class as defined in NFPA 45. NFPA 45 4.2.2.2 states that educational laboratory units shall be classified as Class D. NFPA 13 22.8.1 (2) says that Class C and D laboratories shall be classified as ordinary hazard (Group 1). The design criteria for ordinary hazard (Group 1) is 0.15 gpm/ft² over 1500 ft², from Figure 11.2.3.1.1 of NFPA 13. The quick response sprinklers used in this building allow for a reduction of area in accordance with 11.2.3.2.3.1 of NFPA 13. The reduction is 40% for ceilings 10 ft tall, giving a design area of $1500 ft^2 * 60\% = 900 ft^2$.

System Design Area

The sprinkler system designers used many different design areas to show the water supply was adequate for the sprinkler systems in this building. Many of the calculated design areas are on the sixth floor.

The highest calculated demand area, labeled 6-4, is in the atrium outside the faculty offices. The calculated area is 1500 ft² and light hazard, 0.10 gpm/ft². The total demand for this area is 347 gpm at 117 psi at the base of the riser. The sprinkler designers did not use the ceiling height area reduction for design area 6-4, although this would be permitted. An outline of area 6-4 is shown in Figure 23 and a summary of the hydraulic information is shown in Figure 24. Appendix D contains drawings with sprinkler pipe layouts. The fire pump will have the most difficulty providing water to the highest floor in

the building. The design area has fourteen Tyco TY-FRB K-5.6 quick response sprinklers with 155°F ratings. The spec sheet is provided in Appendix C. Each sprinkler in the design area has a maximum area of 112 ft². This requires 16.8 gpm per sprinkler, giving a minimum supply pressure of

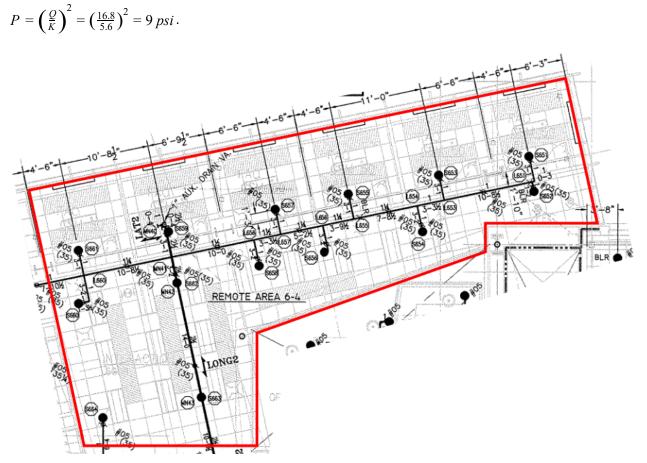


Figure 23. Atrium design area.

CALCULATION DESIGN INFORMATION					
AREA: <u>"6-4"</u> OCCUPANCY: OFFICE / L HAZARD: LIGHT HAZAR DENSITY: <u>0.10 GPM / S</u> AREA OF OPERATION: <u>1567</u> AREA PER HEAD: <u>210 SQ.FT</u> HOSE STREAM ALLOWANCE: INSIDE: <u>100</u> OUTSIDE	RD SQ.FT. SQ. FT. . (MAX.)				
SYSTEM DEMA	ND				
PSI REQ. AT BASE OF RISER: GPM REQ. AT BASE OF RISER: PSI REQ. AT SOURCE: GPM REQ. AT SOURCE: PSI AVAILABLE AT SOURCE: TOTAL PSI SAFETY FACTOR:	116.86 347.3 39.09 447.3 52.66 13.57				

Figure 24. Design area 6-4 hydraulic summary.

Baker Science connects to the school's domestic water loop with an 8" underground supply line. The sprinkler system is fed from a pump rated for 750 gpm at 113 psi. Figure 25 shows an elevation view of the pump and riser room. The product data sheet for the pump is provided in Appendix C. The discharge of the pump feeds 6" mains that supply water to four 6" standpipes, located in the stairwells. The mains on the floors are 2½" with 1" or 1¼" branch lines supplying the sprinklers.

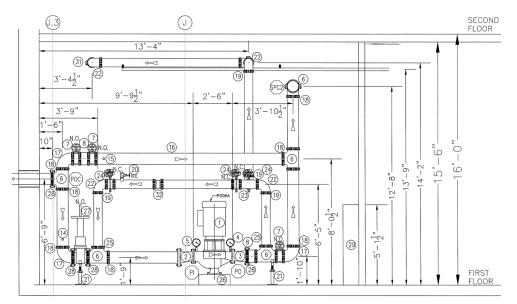


Figure 25. Elevation view of pump and riser room.

Hydraulic Calculations

A program called Hydracalc was used to perform hydraulic calculations for this system. Details about each part of the sprinkler system were put into the program. The sprinklers and branch lines were input in the system, then connected to the main on the sixth floor. Each pipe length, number and type of fittings, material, and elevation are included, as this information is required for an accurate calculation of pressure and flow for a system. The flowing sprinklers are included, and the program runs calculations to balance flow between them as would occur if the system were really activated.

Hydracalc uses the Hazen-Williams formula to calculate pressure loss through a pipe. The factors that influence pressure loss are flow, pipe roughness coefficient, inside pipe diameter, and length of pipe. Pipe elbows, valves, and other fittings also contribute to pressure loss. This is accounted for with an "equivalent length" of pipe. An equivalent length represents the length of pipe that could be installed in a pipe segment that would create the same pressure loss as the fitting. This information can be found on data sheets for the fittings, and allows for easier pressure loss calculations.

The Hazen-Williams formula is shown below. The output of the formula is the pressure loss per length (psi/ft) for a section of pipe. This is multiplied by the length of pipe, including equivalent lengths of fittings, to calculate the total pressure loss for a pipe section. The hydraulic calculations are provided in Appendix C. The Hazen-Williams formula is provided in NFPA 13, 23.4.2.1.1:

 $p = \frac{4.52Q^{1.85}}{C^{1.85}d^{4.87}}$ p = frictional resistance (psi/ft of pipe) Q = flow (gpm) C = friction loss coefficient d = actual internal diameter of pipe (in)

Multiple design areas are calculated in Hydracalc, as an engineer may not immediately be able to determine what the most hydraulically remote area is at first glance. In the hydraulic calculations for Baker Science, area 6-4 was the most hydraulically remote. This remote area is located on the sixth floor, has an area of operation of 1567 ft² with a density of 0.10 gpm/ft², and requires 347 gpm at 117 psi. Figure 26 shows a plot with pressure vs flow for the city water supply (green), the pump discharge pressure (red), and the most remote area demand (blue). The most remote area includes the 100 gpm hose demand. The demand for the most remote area is below the pump pressure curve, indicating the supply is adequate to protect the most remote area. Other remote areas were calculated, and all required less pressure and flow than area 6-4.

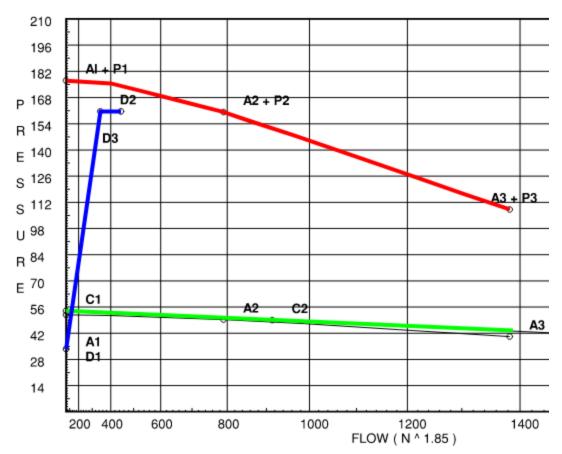


Figure 26. Pressure vs flow plot with city water pressure (green), pump discharge pressure (red) and most remote area (blue).

Inspection, Testing, and Maintenance

The inspection, testing, and maintenance requirements for the fire suppression system are outlined in NFPA 25. Systems must be tested in accordance with original acceptance tests when a component or subsystem is adjusted, repaired, or replaced. Any sprinkler found to not be in compliance must be repaired or replaced to comply with code requirements. Table 5.1.1.2 in NFPA 25 provides frequencies for inspection, testing, and maintenance for different types of sprinkler equipment. Pressure gauges, waterflow switches, and valve supervisory signal devices must be inspected quarterly. Sprinklers must be visually inspected annually from the floor level annually for leakage, corrosion, damage, paint, or other factors that could be detrimental to sprinkler operation. Representative samples of the quick response sprinklers must be tested after 20 years, and ten years thereafter. Compliance with the inspection, testing, and maintenance from NFPA 25 will help ensure proper operation of the fire suppression system.

The fire suppression system in Baker Science is adequately designed and sized, capable of providing 347 gpm of water to the most remote sprinkler design area, with a pressure of 117 psi at the base of the riser. There is also enough capacity to supply the standpipes with 100 gpm of hose demand. The fire suppression system is connected to another vital safety system, the fire alarm and notification

equipment. Upon activation of a sprinkler, the fire alarm system would activate, alerting occupants and emergency services that a fire had occurred.

Fire Alarm System

System Description

Baker Science is protected throughout with an automatic fire detection and alarm system in accordance with NFPA 72. The purpose of the system is to detect a fire, and notify occupants to evacuate and emergency personnel to respond to the building. The fire alarm system also activates or deactivates building equipment in response to detection of a fire.

Fire Alarm Control Unit

The Baker Science building has a central fire alarm control unit that can take a variety of input signals and send the appropriate output signals. The fire alarm control unit is a Notifier NSF2-640, shown in Figure 27. This report will use the phrase "fire alarm control unit" and "FACU" to match the nomenclature of NFPA 72, although the construction documents use "fire alarm control panel" and "FACP." The fire alarm control unit is located on the first floor, in the Main Electrical/Transformer Room, Room 122. Figure 28 shows the location of the FACU (labeled FACP) on the first floor. The unit is a Notifier NSF2-640, and takes alarm signals from throughout the building, and provides appropriate output signals. The sequence of operations matrix is shown below, in Figure 29. This matrix shows what signal outputs the FACU creates for all possible alarm inputs. The FACU alerts the receiving station of conditions in the building in order to get emergency response, as well as activate notification devices to alert occupants to evacuate. The receiving station is the campus police station, and is monitored at all times. Upon receiving a signal, the campus police will dispatch the local fire department to the building. There are three main classes of signals the FACU can create: alarm, supervisory, and trouble signals.

Figure 27. Notifier NSF2-640 Fire Alarm Control Unit.

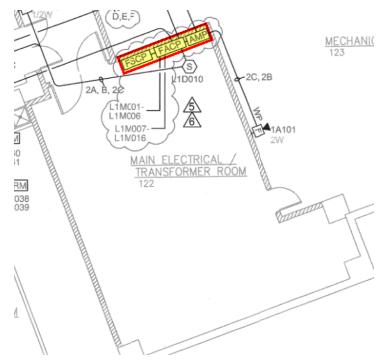


Figure 28. Location of fire alarm control unit in main electrical room.

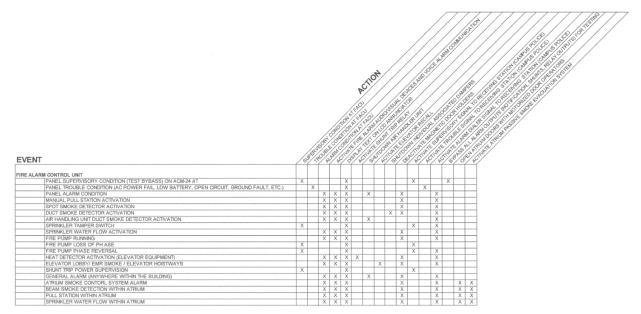


Figure 29. Fire alarm action matrix.

NFPA 72 defines an alarm condition as "an abnormal condition that poses an immediate threat to life, property, or mission" (3.3.58.1.1). The alarm signals that can activate this are water flow alarms, fire pump running or phase reversal signal, manual pull stations, heat detectors, and beam/duct/spot smoke alarms. An alarm signal will activate audio/visual devices, alerting occupants to evacuate the building.

A supervisory condition is "an abnormal condition in connection with the supervision of other systems, processes, or equipment" (NFPA 72 3.3.58.1.3). A supervisory signal is generated by activation of a sprinkler tamper switch, fire pump loss of phase or phase reversal, shunt trip power supervision.

A trouble condition is defined as "an abnormal condition in a system due to a fault" (NFPA 72 3.3.58.1.4). A trouble condition is activated when there is an AC power failure, low battery signal, open circuit, or a ground fault.

Alarm Activation Devices

Fire alarm activation in the Baker Science building is accomplished through a variety of devices: different types of smoke and heat detectors, fire pump running signal, fire riser flow switch, and manual pull stations. The building is fully sprinklered, so the primary fire detection in most of the building is through activation of a sprinkler. Once heat from a fire breaks the bulb of a sprinkler, water flows out. This flow of water activates a waterflow switch in the fire riser, sending an alarm signal to the FACU. The decrease in pressure at the output of the pump would also trigger the pump to run, activating the fire pump running signal, which also activates an alarm on the FACU.

In addition to sprinklers throughout the building, there are also smoke detectors in the HVAC ducting, the elevator shaft, elevator lobbies, and heat detectors in the elevator machinery room. Photoelectric smoke detectors are installed above vital fire alarm equipment such as the FACU and RNPS and in elevator lobbies and machinery rooms. The spot smoke detectors installed in Baker Science are Notifier

FSP-851, while the heat detectors are FST-851. An example of a Notifier smoke detector is shown in Figure 30.

Figure 30. Notifier FSP-851 photoelectric smoke detector, with base.

Duct smoke detectors are installed in HVAC systems to send a signal to shut down associated air handling equipment to prevent the spread of smoke from one space to another. NFPA 90A requires duct smoke detectors in any ventilation system that flows greater than 2000 cfm and is capable of spreading smoke to another space. The duct detectors installed in Baker Science are System Sensor DNR.

Additionally, there are manual pull stations at the exits of the building, and next to stairway entrances. This allows an evacuating occupant to activate the fire alarm system as they leave. This would be helpful when a small fire starts, but does not activate smoke detectors or a sprinkler system. The manual pull stations used in this building are Notifier NBG-12LX, and are a dual-acting design. This means that two movements are required to activate the alarm. The pull stations are addressable, which means the exact pull station that was activated is identified for emergency personnel to respond to. An example of a pull station is shown in Figure 31.

Figure 31. Example of manual pull station.

The passive smoke venting system in the atrium can be activated in three different ways. There are beam smoke detectors at all levels of the atrium, waterflow switches dedicated to the atrium sprinklers, and manual pull stations in the atrium that all activate the passive smoke control system. This allows a fire in the atrium to be detected without the delay of the smoke reaching six stories up to the top of the

atrium. The beam detectors in the atrium consist of an emitter (Xtralis OSE-SPW) and an imager (Xtralis OSI-90). One imager can receive inputs from up to seven emitters, although no imager receives more than three emitter signals. This configuration is used on the south side of the atrium on floors 4, 5, and 6. The Xtralis beam detectors use two wavelengths (IR and UV) to distinguish between smoke and dust. An Xtralis imager is shown in Figure 32, the emitter looks similar.

Figure 32. Xtralis OSI-90 beam smoke detection imager.

Alarm Notification Appliances

Notification in the Baker Science building is accomplished with visual and audible devices. The visual devices are strobes, while the audible devices are speakers. System Sensor SPSWL speaker/strobe combinations are used throughout the building. Speaker only and strobe only devices are also installed where required for adequate audible and visual coverage. The strobes have adjustable candela settings to provide adequate visual coverage for their space. In smaller spaces a lower candela setting can be used to reduce the required current when the device is activated.

All notification devices in this building are wall mounted. The strobes are placed in hallways, classrooms, labs, and bathrooms. NFPA 72 does not require visual coverage in spaces that are not normally occupied by more than one person. Examples of spaces where strobes are omitted are single offices, mechanical/electrical rooms, and storage rooms. One of the general notes states "Wall mount audio/visual devices shall be mounted 80" AFF to bottom of the strobe lens." This complies with the lower limit for strobe mounting height given in Chapter 18 of NFPA 72, but the drawing does not mention the 96" upper limit that is also required. The speakers are used for the voice evacuation system. There is also a water motor gong near the fire department connection outside the building.

There are a number of rooms in Baker Science that do not have adequate visual coverage of notification devices. Most of the spaces have an adequate device, but it is not centrally aligned. Moving the devices to the center of their space would provide adequate coverage. The following is a list of spaces that to not comply with code: Lecture room (CLA 05), Integrated studio (265), Intro teaching lab (276), Mineral/maps/geology (233), Teaching lab (237), GIS room (230), Chem stock (232), Teaching lab (461).

Voltage Drop Calculations

Voltage drop calculations are performed to ensure adequate voltage for signaling device circuits. The nominal voltage rating for the system is 24 VDC, but NFPA 72 10.3.5 requires equipment to function at 85% of its rated voltage. A voltage drop calculation is performed for each notification circuit in the building. The drop in voltage occurs because of resistance in the wiring to the notification devices. To calculate the voltage drop, the engineer sums the current draw for all notification devices on each segment of a circuit. The notification device data sheets provide the current draw based on candela and decibel settings for each appliance. The wiring length for the circuit is measured and multiplied by the resistance per length for the wiring, typically listed in Ohms per 1000 ft. Note that the length of wire is twice the distance between each notification device in order for there to be a path back for the current to travel through. This product of resistance per length and total circuit length gives the total resistance for the circuit, which can be multiplied by the current drawn by the appliances, yielding the total voltage drop. Figure 33 shows a voltage drop calculation for one of the circuits in Baker Science. UL listed devices will have an operating voltage of 16 VDC. A 24 VDC system at 85% (20.4 VDC) can have a total voltage drop of 4.4 VDC. If the voltage drop is excessive, appliances can be moved to another circuit, or a heavier gauge wire with less resistance per 1000 ft can be selected. All of the signaling line circuits have a voltage drop of less than 4.4 V, which complies with the NFPA 72 requirements. Full voltage drop calculations for all signaling lines circuits are provided in Appendix E.

			Fire	e Alarm Vo	ltage Drop	Calculations			
Project Na	oject Name Cal Poly Building 52: Computer Math and Science								
Panel / Cir	rcuit #	Notifier F	ACP- Circu	it 1V1					
Area Cove		1st Floor						-1	
Nominal S	ystem Vol	tage	24						
	, Device Vo	•	20						
	uit Current	0		Wire	Ohm's				
				Gauge	Per 1000				
Distance fre	om source t	o 1st device	30	14	3.07				
1	e for bala			14	3.07				
Device	Distance				Current			1	
Number	from		Voltage		in				
Runder	previous		1		amps.	Device M	lodel #	Device	Candela
	device	At	Drop from	Percent	amps.		Type	Rating	
	device	Device	source	Drop			•		
1V101	30	23.81	0.187		0.066	Eustom Fancer	SCR	ST	15
1V101 1V102				0.78%		System Sensor		ST	
	20	23.70	0.304	1.27%	0.066	System Sensor	SCR		15
1V103	30	23.53	0.467	1.94%	0.066	System Sensor	SCR	ST	15
1V104	50	23.28	0.718	2.99%	0.066	System Sensor	SCR	ST	15
1V105	50	23.05	0.949 3.959		0.210	System Sensor	SCR	ST	115
1V106	35	22.93	1.065	4.44%	0.094	System Sensor	SCR	ST	30
1V107	30	22.85	1.148	4.78%	0.158	System Sensor	SCR	ST	75
1V108	35	22.79	1.210	5.04%	0.066	System Sensor	SCR	ST	15
1V109	40	22.74	1.265	5.27%	0.066	System Sensor	SCR	ST	15
1V110	35	22.70	1.299	5.41%	0.158	System Sensor	SCR	ST	75
END		22.70	1.299	5.41%	0.000				
END		22.70	1.299	5.41%	0.000				
END		22.70	1.299	5.41%	0.000				
Totals	355	End of Lin	e Voltage	22.70	1.016				
				o Point M	ethod	L			
		(CIRCUIT	S WITH	N LIMITS	}			
Tot	als				Voltage		****		
Current	Distance				Drop				
1.016	355				1.30				
End of Lin	e Voltage				22.70				
Percen	t Drop				5.41%			-	
			Standard V	Vire Resist	tance in Of	nms per 1000 feet			
18=7.77	16=4.89	14=3.07		10=1.24		,			
18-14 Awg	= Solid Co	nductors	12-10 Av	wg = Stran	ded Condu	ctors			
Notes:									
Wire resis	tance is do	ubled in t	he calculati	ions for tw	o wires (P	ositive and Nega	tive)		
Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than									
the manuf	factures lis	ted minim	um operati	ing voltage	e (IE: rated	operating voltag	e 20-32 VD0	C).	

Figure 33. Voltage drop calculation for circuit 1V1.

Secondary Power Supply

Fire alarm systems require a primary and secondary power supply. The primary supply is standard 120 V electricity from the grid. The secondary power is supplied with batteries. Appliances such as the fire alarm control unit and smoke detectors use power at all times, requiring standby current. Appliances like speakers and strobes only use current during alarm conditions. NFPA 72 10.6.7.2.1.2 requires an EVACS system to operate in standby for 24 hours and in alarm for an additional 15 minutes. 10.6.7.2.1.1 requires an additional 20 percent safety margin in battery capacity. Based on these requirements, the batteries are sized to provide 24 hours of standby current and 15 minutes of alarm current, with an additional 20 percent safety margin. To calculate this the engineer needs to know standby and alarm currents for all devices as well as the quantity of each device. The FACU cannot power all the notification

devices in the building, so there are many remote notification power supplies in the building. Each of these has its own secondary power supply and associated battery calculation. An example of battery sizing calculations is shown in Figure 34. Note that each type of appliance that uses electric power is listed, along with the quantity, standby current, and alarm current. The total standby current is multiplied by 24 hours, and the total amount of alarm current is multiplied by 0.25 hours (for the 15 minute requirement. These two amp-hour values are combined, then increased by 20 percent to determine the required battery capacity for the panel being calculated. The FACU and all remote notification power supplies each have their own battery backups, and associated amp-hour calculations.

	Fire Alarm Control Panel Battery Calculation										
Ba	ttery Calculations for:	FACP	Voti	fier NFS-640		Project:	Cal Poly Building 52				
ITEM	DESCRIPTION	STANDBY		QTY		TOTAL	ALARM		QTY		TOTAL
		CURRENT				STANDBY	CURRENT				ALARM
		PER UNIT				CURRENT	PER UNIT				CURRENT
L		(AMPS)				PER ITEM	(AMPS)				PER ITEM
FACP	Fire Alarm Control Unit	0.2850		1	=	0.2850	0.2850		1	=	0.2850
UDACT	Universal Dialer	0.0400		1	=	0.0400	0.1000		1	=	0.1000
FDU-80	Remote Annunciator	0.0643		2	=	0.1286	0.0643		2	=	0.1286
APS-6	Power Supply Amp	0.0000	Х	1	=	0.0000	0.0250		1	=	0.0250
	Beam Smoke Emitter	0.0035	Х	10	=	0.0350	0.0035		10	=	0.0350
OSI-90	Beam Smoke Imager	0.0310	Х	10	=	0.3100	0.0310	Х	10	=	0.3100
PULL	Manual Pull (addressable)	0.0004	X	29	=	0.0116	0.0004	Х	29	=	0.0116
FRM-1	Relay Module	0.0017	Х	9	=	0.0153	0.0022	Х	9	=	0.0198
FSP-851	Smoke Detector	0.0003	Х	16	=	0.0048	0.0003	Х	16	=	0.0048
FDM-1	Dual Monitor Module	0.0008	Х	18	=	0.0144	0.0064	Х	18	=	0.1152
SPK	Speaker Only	0.0000	Х	3	=	0.0000	0.0008	Х	3	=	0.0024
SR	Strobe Only 15CD	0.0000	х	7	=	0.0000	0.0660	Х	7	=	0.4620
SR	Strobe Only 30CD	0.0000	Х	6	=	0.0000	0.0940	Х	6	=	0.5640
SR	Strobe Only 75CD	0.0000	Х	2	=	0.0000	0,1580	Х	2	=	0.3160
FTM-1	Fire Fighter Phone Jack	0.0075	Х	12	=	0.0900	0.0075	Х	12	=	0.0900
XP6-R	Six Relay Control Module	0.0015	Х	1	=	0.0015	0.0320	Х	1	=	0.0320
XP10-M	10-Input Monitor Module	0.0035	Х	1	=	0.0035	0.0550	Х	1	=	0.0550
SPSR	Speaker Strobes 15CD	0.0000	Х	3	=	0.0000	0.0710	Х	3	=	0.2130
SPSR	Speaker Strobes 30CD	0.0000	Х	14	=	0.0000	0.0960	х	14		1.3440
SPSR	Speaker Strobes 75CD	0.0000	Х	14	=	0.0000	0.1530	Х	14	=	2.1420
SPSR	Speaker Strobes 95CD	0.0000	Х	3	=	0.0000	0.1760	Х	3	=	0.5280
SPSR	Speaker Strobes 115CD	0.0000	_	16	=	0.0000	0.2050		16	=	3.2800
FST-851	Heat Detector (addresable)	0.0004	X	4	=	0.0016	0.0004	x	4	=	0.0016
FMM-1	Monitor Module	0.0037		19	=	0.0703	0.0037		19	=	0.0703
FDRM-1	Dual Relay/Monitor Module	0.0013		64	=	0.0832	0.0240		64	=	1.5360
DNR	Duct Smoke Detectors	0.0003		64	=	0.0192	0.0003		64	=	0.0192
				TOTAL SYS				1	TOTAL SYS URRENT (AM		11.6905

REQUIRED		TOTAL		REQUIRED	REQUIRED		TOTAL		REQUIRED
STANDBY TIME		SYSTEM		STANDBY	ALARM TIME		SYSTEM		ALARM
(HRS)		STANDBY		CAPACITY	(HOURS)		ALARM		CAPACITY
		CURRENT		(AMP-HOURS)			CURRENT		(AMP-HOURS)
		(AMPS)					(AMPS)		
	N/	4 44 40	=	26.7348	0.250	X	11.6905	=	2.9226
24	х	1.1140	-	20./ 340	0.230	~	11.0000		2.0220
24	X	1.1140		20.7340	0.230	^	11.0000		1.0220
24 REQUIRED	×	REQUIRED	-	TOTAL	TOTAL		SAFETY		ADJUSTED
	X						1		
REQUIRED	X	REQUIRED		TOTAL CAPACITY	TOTAL		SAFETY		ADJUSTED
REQUIRED	X	REQUIRED	-	TOTAL CAPACITY	TOTAL CAPACITY		SAFETY FACTOR		ADJUSTED BATTERY

Figure 34. Battery sizing calculation for the FACU.

Emergency Communication System

The Baker Science building provides an emergency voice/alarm communication system. Speakers are distributed throughout the building for voice communication in the case of an emergency. Standard, prerecorded evacuation messages are programmed for certain alarm conditions from the fire alarm control panel. Live voice messages can also be broadcast from the building's FACP or from a remote location. Emergencies such as an active shooter may necessitate building occupants to shelter in place with specific instructions that could be provided for that specific situation.

Inspection and Test Requirements

Inspection and testing of the fire alarm equipment is important to ensure the system operates as intended in the case of emergency. To verify everything is operating properly the system components are inspected with specific frequency. Details of these requirements are found in Chapter 14 of NFPA 72. Inspections of fuses, power supplies, and trouble signals for all fire alarm systems are performed annually. Batteries are inspected semiannually to ensure they are not expired. The battery connections are checked for tightness and to be free of corrosion and leakage. Building notification appliances such as speakers and strobes are inspected semiannually.

The fire alarm and notification system in Baker Science is designed to detect a fire and notify both occupants and emergency personnel. Fire detection is accomplished with waterflow switches, smoke and heat detection, and manual pull stations. The detection activates voice and visual notification for occupants to evacuate. With the exception of some visual notification deficiencies noted previously, the fire alarm and notification requirements are achieved to comply with the requirements of the code. Prompt detection of a fire will allow firefighters to respond to fight the fire, limiting permanent damage to the interior finishes and the structure.

Structural Fire Protection

Required Occupancy Separation

Bakes Science is type 1B construction, CBC Table 601. Type 1B construction requires 2 hour fire resistance rating for the primary structural frame, interior and exterior walls, and floor construction and associated members. Roof construction and associated members have a 1 hour fire resistance rating requirement, and nonbearing walls have no requirement. CBC Table 705.8 provides allowable area limits for exterior wall openings, based on fire separation distance and whether or not the building is sprinklered. Baker Science has a fire separation distance of 20'-25' to the centerline of N Poly View Dr, which means the allowable area for exterior wall openings is unlimited. This building does not qualify as a high-rise building because no floor used for human occupancy is more than 75 ft above the lowest floor having building access. While Baker Science is a six storey building, the first floor only comprises the western half of the building footprint. The sixth floor is only on the eastern half of the building, so no part of the structure is more than four floors above the ground access below it. With each floor 16 ft above the floor below it, the sixth floor is 64 ft above the second floor. At no point in the building is the sixth floor directly above any part of the first floor.

Table 504.3 provides height limits based on occupancy classification, construction type, and if the building is sprinklered. For business occupancies of Type 1B construction, a building is limited to a height of 180 ft above the grade plane. Baker Science is 112 ft from the grade plane to the highest roof surface, well below the 180 ft limit. The limit to the number of storeys is shown in Table 504.4 of the CBC. For Baker Science's construction type, occupancy, and sprinkler system, the limit is 12 storeys above grade plane. Baker Science is six storeys tall, well below the limit. The next consideration for building limits is building area. Table 506.2 states these limits, again based on occupancy, construction type, and whether the building is sprinklered. The building area for Baker Science is unlimited.

CBC Table 803.5.5 provides required occupancy separations between different occupancy types. A summary of separation is shown in Figure 35. No portion of the building requires greater than 1 hour fire rating separating different occupancy types.

B TO A-3:	1-HOUR	
B TO H-3:	1-HOUR	
B TO S-1:	NO SEPARATION	REQUIRED
B TO S-2:	1-HOUR	
S-1 TO H-3:	1-HOUR	
S-1 TO S-2:	1-HOUR	

Figure 35. Required separation of occupancies.

Part of the Baker Science building juts out and is about 32 ft from the next building. CBC Table 602 requires 30 ft to a separating line between buildings in order for the exterior to not be fire rated. These two buildings are closer than that to the separating line, so the exterior of Baker Science has a two hour fire rating where the buildings are the closest. The nearby building is shown in Figure 36.

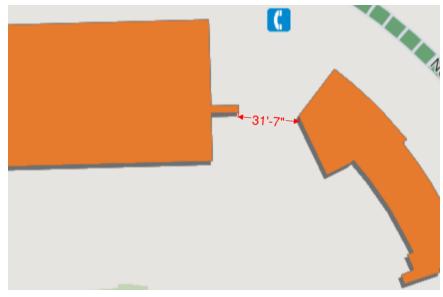


Figure 36. A building near Baker Science to the east.

Interior Finishes

Baker Science contains A-3, B, S-1, and S-2 occupancies. Per CBC Table 803.5, each occupancy group has an interior finish requirement for exit enclosures, corridors, and rooms/enclosed spaces. Since this entire building is sprinklered the interior finish requirements are less restrictive than they would be in an unsprinklered building. Most of the building has Class C interior finish requirements. The exception to this is in places where large groups of people may need to egress, such as exit enclosures and corridors serving many occupants. The requirements for interior finishes are shown in Figure 37.

The interior finish class is based on the flame spread index of the materials used. Class A has a flame spread index of 0-25, but is not required in this building. Class B interior finish materials have a flame spread index 26-75, and Class C materials have a flame spread index of 76-200. All three finish classes have a smoke developed index of 0-450.

GROUP	EXIT ENCLOSURES AND EXIT PASSAGEWAYS SPRINKLER	CORRIDORS SPRINKLED	ROOMS AND ENCLOSED SPACES SPRINKLED
A-3	В	В	С
В	В	С	C
S-1	C	C	С
S-2	С	С	С

Figure 37. Interior finish requirements based on occupancy and room type.

Enclosed Areas of Refuge

The Baker Science building employs enclosed areas of refuge. The egress stairways are enclosed areas of refuge, per CBC 1007.6. Stair 3 has a two hour fire rating, highlighted in green. The separation between the atrium and the east and west wings is highlighted in red, shown in Figure 38 below.

Fire Resistance Analysis

This building uses steel construction with wide-flange steel beams. These beams are used for horizontal and vertical support. Common sizes are W24x207 and W24x250, as shown in Figure 39.

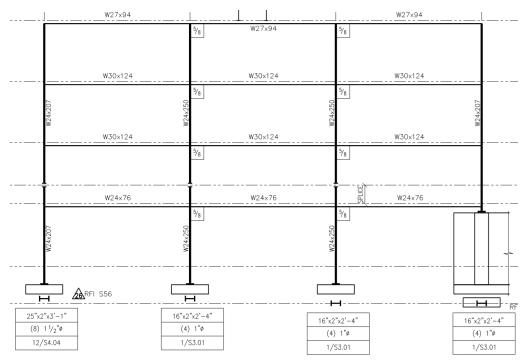


Figure 39. Beam details from C/S3.10.

The floor assemblies are concrete and metal deck, which is supported by the steel beam. A detail view of the concrete and metal deck is shown in Figure 40. The stories at ground-level have concrete slabs as floors.

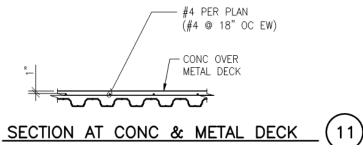


Figure 40. Floor detail, 11/S4.02.

The joints between the columns are welded and bolted. Detailed views are given for various ways of joining beams, along with schedules for the number of bolts and weld sizes for each connection type, see Figure 41 and Figure 42.

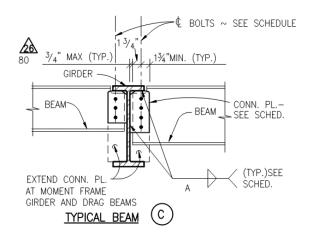


Figure 41. Beam joining detail.

SIMPLE BEAM CONNECTION SCHEDULE											
SHEAR PL CONNECTION											
MEMBER (DEPTH)	# OF BOLTS 1"ø A325	CONN PL t	WELD SIZE A								
< 8"	2	3/8"	<i>Y</i> 4"								
8" - 10"	2	3⁄8"	<i>Y</i> 4"								
12" - 14"	3	3/8"	<i>Y</i> 4"								
15" - 16"	4	1/2"	∳1ë								
18"	5	1/2"	∮1ő								
20"& 21"	5	1/2"	3%"								
24"	6	5%"	3⁄8"								
27"	7	5%"	3⁄8"								
30"& 33"	8	5%"	3%"								
36"	10	5%"	3⁄8"								
40"	11 (2 ROWS)	3/4"	CJP								

Figure 42. Beam connection schedule.

Fire Resistance Requirements

The Baker Science building contains a variety of occupancy classifications: business, assembly, storage, and hazard 3. Table 508.4 of the CBC, shown in Figure 43, shows the required separation of occupancies, with highlighted fields between relevant occupancies. Appendix A shows occupancy classifications of the different rooms in Baker science, along with fire resistance requirements between rooms. A red line represents a 1 hour fire rating. Where a line is omitted there is no fire resistance requirement.

OCCUPANCY	Α,	E	I-1º, I	-3, I-4	1-2		R*		F-2, S-2 ^b , U		B°, F-1, M, S-1		H-1		H-2		H-3, H-4		H-5	
	s	NS	S	NS	s	NS	S	NS	S	NS	s	NS	S	NS	s	NS	S	NS	s	NS
A, E	Ν	Ν	1	2	2	NP	1	2	Ν	1	1	2	NP	NP	3	4	2	3	2	NP
I-1ª, I-3, I-4	-		Ν	Ν	2	NP	1	NP	1	2	1	2	NP	NP	3	NP	2	NP	2	NP
I-2	—	—	—	—	Ν	Ν	2	NP	2	NP	2	NP	NP	NP	3	NP	2	NP	2	NP
R°	—	—	—	_	_	—	Ν	Ν	1°	2°	1	2	NP	NP	3	NP	2	NP	2	NP
F-2, S-2 ^b , U	-		—	_	-			—	N	Ν	1	2	NP	NP	3	4	2	3	2	NP
B°, F-1, M, S-1	—	—	—	—	_	—	—	—	—	—	Ν	Ν	NP	NP	2	3	1	2	1	NP
H-1	—	—	—	_	_	—	—	—	—	—		—	Ν	NP	NP	NP	NP	NP	NP	NP
H-2	-	-	—	—	_		-	—	—	—		—	—		Ν	NP	1	NP	1	NP
H-3, H-4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	1 ^d	NP	1	NP
H-5									_		I	_				I		_	Ν	NP

TABLE 508.4 REQUIRED SEPARATION OF OCCUPANCIES (HOURS)

Figure 43. CBC occupancy separation requirements.

The Baker Science building complies with the structural fire protection requirements. Many of these requirements will be implemented on the architectural and structural engineering drawings. It is important for a fire protection engineer to be familiar with these requirements, and check the drawings from other disciplines to verify the fire protection requirements are achieved. In addition to verifying structural code compliance, the fire protection engineer will also have input on building configuration related to other systems, such as smoke control.

Smoke Control System

The Baker Science building has a large atrium extending from the second floor to the sixth floor. Walkways connecting the east and west wings extend through the middle of the atrium. The north side opening has an exposed stairway, and the south side has a stairway enclosed in fire rated walls. With such a tall ceiling (~75'), a fire in the atrium may not set off sprinklers and be suppressed with water. The smoke will continue to build up, reducing tenability time in the top floors of the atrium and making egress more difficult.

To combat this, the building has a passive smoke control system installed. The main function of this system is a "night purge," used for temperature control. When the temperature in the building exceeds the outside temperature by 3°F or greater, vents at the top of the atrium and windows lower in the atrium open to allow the warm, buoyant air to naturally exhaust, being replaced by cooler outside air. The dampers stay open until the atrium temperature setpoint is reached, when all the dampers close. There is an interlock to prevent operation when it is raining. There are four vents at the top of the atrium, two on the north side and two on the south side. The brand is Greenheck, and all four dampers are 60"x120". The vents are at the top of elevated roof sections. The elevated roof sections provide space for smoke to build up before the smoke extends into the egress paths on the top floor of the atrium. A construction drawing of the smoke control vents is shown in Figure 44, and a satellite view of the vents is shown in Figure 45.

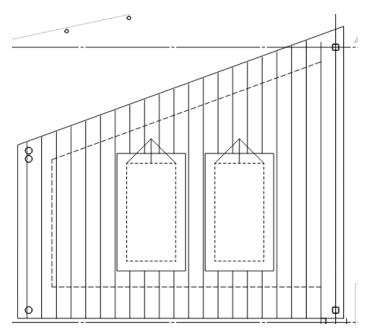


Figure 44. North atrium smoke control vents.

Figure 45. Smoke control vents highlighted in satellite view.

The night purge system uses the same principles to vent smoke in the case of a fire. If a fire is detected in the atrium the roof dampers and the atrium doors open to allow smoke to vent out of the top of the atrium, increasing the time occupants have to egress the atrium without smoke overwhelming them. When the smoke control system activates all the doors to the east and west wings close. This is accomplished by the fire alarm system stopping power to the magnetic door holders. This allows the makeup air to be supplied from the outside through the bottom of the atrium. The smoke control system can be activated by a waterflow switch for sprinklers in the atrium, a manual pull station in the atrium, or a beam smoke detector in the atrium. Detection in other parts of the building do not trigger the smoke control system.

Design fire 1 takes place in the atrium, and was designed to activate the smoke control system. Figure 46 shows a vector slice file at the smoke control vents above the fire. The colored vectors indicate the smoke is escaping at about 2.5 m/s. With each vent having an area of 4.62 m², the vents on this side are venting approximately 23.1 m³/s of smoke.

There is a night purge system installed in the tall ceiling in the first floor lobby, however it is not connected to the fire alarm system to act as a smoke control system. This is not necessary since occupants will not evacuate through the fire plume above the fire in the event of an emergency.

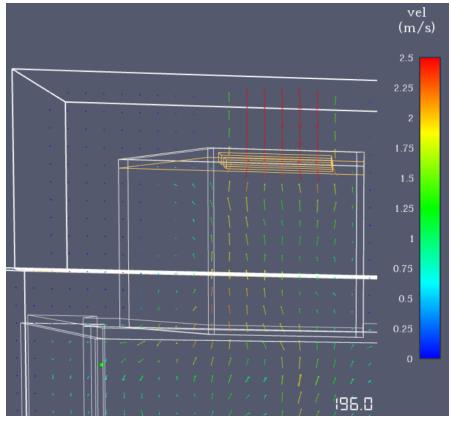


Figure 46. Vector slice file of velocity of venting smoke.

Utilizing the night purge function for smoke control was an upgrade to the Baker Science building that required little additional equipment to achieve some benefit. Since this type of system needs to be

specific to the building in which it is installed, the California Building Code does not dictate how a smoke control system needs to be sized and configured. In order to verify adequate smoke venting capability, the engineer must know the required safe egress time as well as the characteristics of a design fire, including smoke production. With this information, a performance based review can be conducted in order to properly size the smoke control system.

Performance Based Review

Design Fire Goals

The goal of the performance based review is to verify the tenability time for occupants in Baker Science exceeds the evacuation time, for the selected design fires. The design fires were chosen to represent challenging, but plausible, fires that could occur in the building. Each design fire will have specified parameters, such as heat release rate, growth rate, fuel source, and toxic gas production. These values will be based on materials that are likely to be in the building and published fire data for the materials. These variables will be used to model the fire outputs, such as temperature, sprinkler activation time, toxic gas concentration, radiant flux, detector activation time, and occupant visibility. The model outputs will be used to determine the tenability time for occupants. The amount of time that occupants can safely egress through the building is also called the available safe egress time, or ASET. This is compared to the required safe egress time, or RSET. The goal is for the available safe egress time to exceed the required safe egress time. RSET starts at ignition time and consists of time to detection, time to alarm after detection, the premovement time, and the travel time. Occupants will not know to evacuate until an alarm is activated. After this occurs, there is premovement time while the occupants gather belongings and decide to evacuate. For a building like Baker Science, this is about 1.2 minutes, from the SFPE Handbook, 64.4. Figure 47 shows a visual comparison of ASET and RSET.

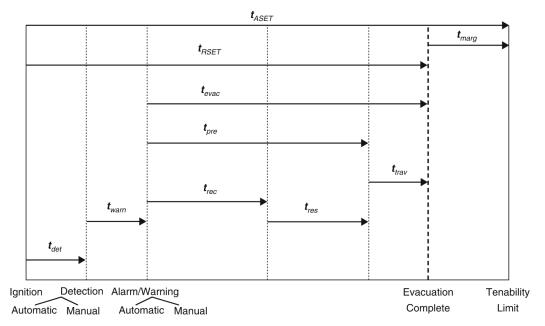


Figure 47. Comparison of ASET and RSET for tenability time.

How to analyze design fires

In order to accurately find the tenability time for occupants given likely fire scenarios, a number of steps must be followed. The building must be analyzed to determine where a fire is most likely to negatively impact building egress. This will be based on where occupants are concentrated, and the paths they will take when evacuating the building in case of an emergency. Consideration must also be given to fuels that are likely to be found in the building, and their locations. A fire that occurs in a building space that could expose egressing occupants to heat, smoke, or toxic gasses may justify a design fire.

Once the location of the fire is determined, the next step is to define the fire. Potential fuel loading for the space must be found, both to find the type and amount of fuel. The type of flammable substance will determine the products of combustion. Both pieces of data will be used to estimate the heat release rate, growth rate, and how long the fire will burn. A plausible ignition source should be identified. Since fires are typically low probability, but high consequence, some creativity may be used when finding an ignition source.

PyroSim Model Creation

A PyroSim model is created to match the size and shape of the structure. PyroSim is a program that provides the user with an interface for Fire Dynamics Simulator (FDS), to make it easier to create and analyze models. Construction documents are used to make a floor plan similar to the space being analyzed. Walls, floors, and ceilings are assigned realistic material properties to accurately reflect how heat and fire would interact with the boundaries of the space. Heat capacity, thermal conductivity, reflectivity, and thickness are some of the considerations when building the boundaries.

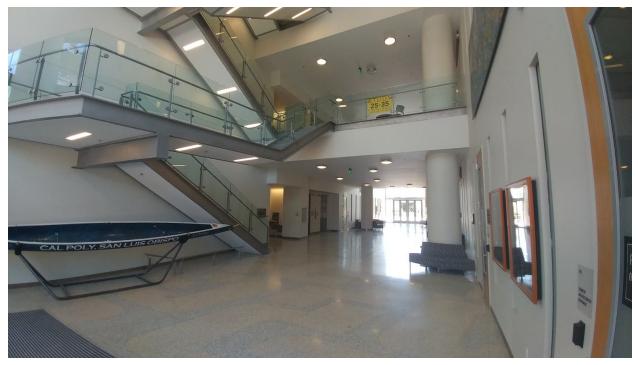
The design fire must also be defined in PyroSim. The location, size, and shape are input to the model. The fire characteristics such as growth and decay rates, maximum heat release rate, and burn time are included in the fire information. The type of material burning is also specified, along with products of combustion. The products of combustion will be used in later analysis when finding visibility and toxicity for the egressing occupants.

A PyroSim model works by creating a mesh of imaginary blocks of space in the model. Each block interacts with the blocks next to it. Model outputs such as air and smoke flow, temperature, and radiation are calculated for each block of the mesh. Determining the correct mesh size is important for the model to provide accurate outputs in a reasonable amount of time. A coarse mesh, with too few blocks, will not provide adequate resolution for the model, yielding potentially inaccurate results. A fine mesh, with too many blocks, will take too long to calculate without providing better model outputs. FDS is computationally intensive, with a full-size model taking many hours to complete. Reducing mesh dimensions by half doubles the number of nodes in the X, Y, and Z dimensions, drastically increasing computation time. A coarse mesh is often used to test the model and provide outputs with less calculation time, and an adequately fine mesh is used to create the final output for analysis. Multiple mesh sizes can be used throughout the model. A finer mesh can be specified for areas of higher activity or interest in the model. For example, the space directly above the fire and near the ceiling where the smoke will collect may justify a finer mesh for the analysis. Air/smoke movement in these areas will be increased, and higher resolution for the output would be justified, at the expense of a longer calculation.

time. Areas farther from the fire, or where smoke and heat effects will be minimal can be calculated with a more coarse mesh in order to reduce calculation time.

There are dozens of outputs available in a PyroSim model. The ones most valuable for analyzing ASET are temperature, visibility, toxic gas concentration, and radiation. Air flow rate was also used in this report to measure required smoke evacuation capability of the smoke control system. The model can be programmed to output points where relevant data is measured, as well as slices with a color-coded visual representation of a plane in the model. Additionally, there are spreadsheets to show how a parameter (such as temperature) changed over time at a given point. All of this is useful when determining how long occupants have to evacuate a space.

Once the PyroSim model has been analyzed to determine how long occupants have to safely egress before being exposed to untenable conditions, this information is compared to the required safe egress time that was calculated with the hydraulic egress calculations. If the available safe egress time is less than the required safe egress time, the building does not provide adequate protection to the occupants.


Tenability Criteria

A primary concern for occupants as they escape a burning building is tenability time. Many factors can make a building untenable: temperature, visibility, carbon monoxide, and heat flux. These are the tenability criteria that will be explored in this report. There are other criteria, such as different toxic gasses, but the analysis methods demonstrated can be applied to other tenability measurements. The SFPE Handbook provides limits for the tenability criteria. The SFPE Handbook provides tolerance times for exposures to hot air in Table 63.17. For dry air the tolerance time is 25 minutes for a temperature of 110°C. Figure 63.28 shows a graph of the temperature limit based on exposure time for both dry and humid air. If the 110 °C limit is reached, this graph can be used to determine if tenability limits, depending on the familiarity of the occupant with the building. An occupant familiar with the building is considered to be capable of safely escaping a building with 4 m of visibility, while an occupant unfamiliar with the building will need 13 m of visibility to safely evacuate. For carbon monoxide exposure, a limit of 30,000 ppm-min is considered to be the incapacitation limit for light activity, from SFPE Handbook Table 63.9. Heat flux exposure is limited to 2.5 kW/m² for exposure greater than 5 minutes, as outlined in Table 63.20.

Design Fire 1

The first design fire takes place in the atrium on the second floor, which is the lowest storey of the atrium. To make this fire more challenging, the flammable material is not located under a sprinklered ceiling, but closer to the center of the atrium with the tall ceiling above it. This is a fire scenario that necessitates the beam smoke detectors that were installed in the atrium. With such a tall atrium, smoke venting and occupant egress of higher floors are major concerns. Smoke at the top of a five storey atrium will not be hot enough to set off sprinklers and suppress the fire. The basis of this design fire assumes sprinklered walkway. Since the fire will continue to burn, the smoke will likely need to be exhausted from the space to maintain tenability at the higher floors. Figure 48 shows the location of the

fire in the atrium. Figure 49 indicates the location of the fire on the map. Note the highlighted yellow areas where the atrium extends upward.

Figure 48. North side of the atrium where design fire 1 occurs.

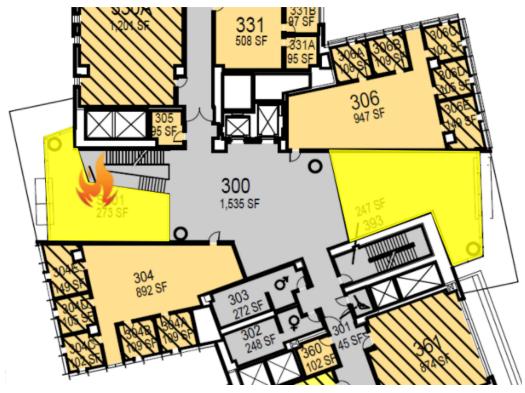
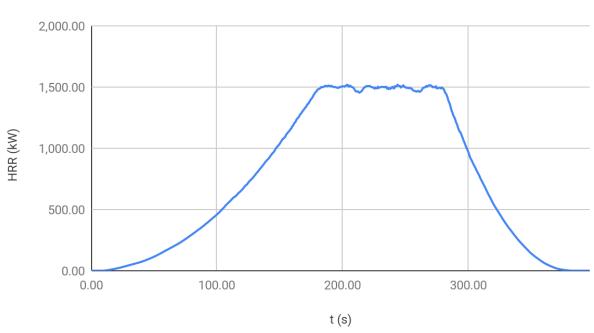


Figure 49. Location of atrium fire on map.


A fire on the north side of the atrium was selected since the stairway is exposed on that side. The stair on the south side of the atrium is enclosed and protected from smoke and heat. A fire on the north part of the atrium would prevent use of the north atrium stairway and the north exit of the main lobby. Upon the fire alarm sounding, occupants of the building may see the smoke in the atrium and select exits at the ends of the wings of the building. With fewer people using the main staircases, the other exit paths would need to accommodate more people. The fire could have been placed on the south side of the atrium, limiting egress from the south stairway to the south atrium door, but then occupants likely would have used the exposed north stairway for egress. A fire on either side of the atrium creates unique egress problems.

The fuel source of this design fire is polyurethane foam decorations for a concrete canoe. Cal Poly competes in concrete canoe design competitions, and the canoes are often displayed in buildings on campus. The concrete canoe in Figure 48 above does not have any artistic additions, but Figure 50 shows an example of a canoe with foam on the supports. For the purpose of this design fire, the canoe and foam artwork are illuminated with lights for display. The ignition source for the fire would be a failure of the lights, setting the foam on fire.

Figure 50. Example of a concrete canoe with foam decorations.

The foam burns as an αt^2 fire with a growth constant of α_g =0.052 kW/s², a fast burning fire. The SFPE Handbook Table 38.2 lists growth times for various fuels to reach 1000 kW, and classifies the growth as slow, medium, fast, or ultra-fast. The fast fire growth rate applies to cartons on pallets and some furniture, and has an equivalent growth constant of α_g =0.044 kW/s². "Heat Release Rates of Burning Items in Fires" by Kim and Lilley gives growth constants and maximum heat release rates for numerous types of foam furniture. The values vary greatly, but many of them are in the range of a fast growth fire. A growth constant slightly faster than a fast growth fire was selected to ensure a challenging design fire. A chair would be approximately the same size as the foam bases of the canoe, so the heat release rate was set to be similar to the burning chairs listed by Kim and Lilley. The maximum heat release rate is 1500 kW, achieved after 170 s of fire growth. A graph of heat release vs time is shown in Figure 51.

HRR vs time

Figure 51. Heat release rate of polyurethane foam vs time.

Floors three through six all have walkways that overlook the atrium on both sides. Each side of the atrium has a raised ceiling section for smoke to accumulate prior to the smoke venting. Figure 52 shows the high ceiling of the atrium with the smoke venting area outlined in red.

Figure 52. Smoke extraction system, highlighted in red.

As the fire burns, the plume will rise to the ceiling, expanding as it does so. Once it reaches the ceiling, the smoke layer will begin to lower as smoke fills the highest sections of the roof. In order to prevent

smoke from filling the atrium of the higher floors, smoke must be vented from the building. To ensure the smoke layer does not continue to lower to the level where people would be, the same amount of smoke that is produced would need to be vented. There are three common methods to calculate the volume of smoke produced by the fire: Zukoski, Heskestad, and McCaffrey. The Heskestad method uses a virtual origin based on the size of the fuel being burned. For this design fire the fuel is 1 m in diameter. This virtual origin simulates if the fuel were at a point above or below the floor, depending on the size of the fuel. For this design fire, the virtual origin is approximately 0.5 m above the floor. A larger fire would yield a virtual origin below ground level. The smoke extraction required by the three methods is summarized in Table 4. Detailed calculations are provided in Appendix F. Makeup air must also be supplied in order for the smoke to be exhausted. This is accomplished with motorized door openers that open the atrium doors when the smoke control system is activated. With two pairs of double doors at the north and south ends of the atrium, makeup air will not limit the rate of smoke evacuation.

	m³/s
Zukoski	184
Heskestad	150
McCaffrey	187

Table 4. Required smoke extraction for three methods.

This design fire was deliberately located away from sprinklers that would effectively suppress the fire. This was to provide a challenging fire that could test the capabilities of the smoke control system. A fire such as this would need to be extinguished by emergency response crews or allowed to burn out on its own. While there are sprinklers at the top of the atrium (seen in Figure 52 above), the smoke at the high ceiling will not reach the 155°C required to activate them. The smoke control system can be activated by a waterflow switch for sprinklers in the atrium, a manual pull station in the atrium, or a beam smoke detector in the atrium. Of these methods, the beam detectors are the most likely to be activated for this design fire.

Beam detector activation can be estimated with calculated smoke output and beam detector setpoint. The Xtralis beam detectors are set to trip at 25% light obscuration. The Lambert-Beer Law is used to correlate light attenuation to smoke mass concentration (equation below). Once enough smoke is present to notably diminish light received from the detector source, the alarm is activated.

$$\frac{I_T}{I_O} = e^{-\kappa CL}$$

Where I_0 is initial light intensity, I_T is final light intensity, κ is smoke extinction coefficient, C is smoke mass concentration, and L is optical length. The 25% smoke obscuration is the ratio of final light intensity to initial light intensity. Using a common smoke extinction coefficient and optical length, the smoke mass concentration can be calculated. Iteration is used to determine smoke density at different times during the burning of the fire. According to the calculation, the alarm is tripped at 210 s, at which point the smoke vents and exterior atrium doors would open to remove smoke from the space and supply makeup air. The Lambert-Beer calculation does not align very closely with the PyroSim model. This is likely due to the calculation taking place where smoke collects at the top, while the PyroSim model is tripped by a lower beam detector that passes through the smoke plume, reaching the alarm setpoint sooner.

The required safe time egress for the atrium and design fire 1 is 10.81 minutes. This consists of 58 seconds until a beam smoke detector on the sixth floor alarms in PyroSim, 1.2 minutes pre-movement time from the SFPE Handbook, and 8.66 minutes for the atrium to be fully evacuated once occupants begin moving from the egress calculations. This egress model assumes occupants egress through the same section of the building that they start in. The entire building will take longer to evacuate, 15.77 minutes from time of ignition. The occupants in the east and west wings do not have direct exposure to the smoke or fire, and are afforded more time to escape.

Tenability

Due to the high ceiling and large volume, the plume temperatures in occupied spaces never exceed tenability conditions. Figure 53 below shows a cut section from PyroSim with temperature at the 6th floor, where the highest temperatures are experienced. The temperature never exceeds that of a warm day and will not have an effect of tenability.

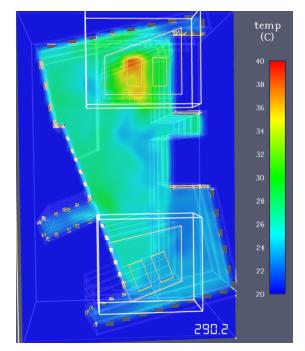


Figure 53. Temperature on the sixth floor.

Visibility is another concern for this sort of fire. The smoke plume extends up to the upper floors, obscuring occupant vision. Thes SFPE Handbook provides a minimum visibility limit of 4 m for occupants familiar with the building, and a limit of 13 m for occupants not familiar with the building. Figure 54 below shows when visibility limits are exceeded for both 13 m and 4 m, which occur at burn time of 94 s and 190 s, respectively. Note that ignition happens 10 s into the simulation, so timestamps in the images are not aligned with burn time. With 58 s until alarm activation, and 1.2 minutes of premovement time, this does not provide enough egress time for occupants of the upper floors to leave without losing

visibility. The sixth floor requires 3.96 min of tenable conditions to get into the stairwell, and this is not achieved near the offices on the north side.

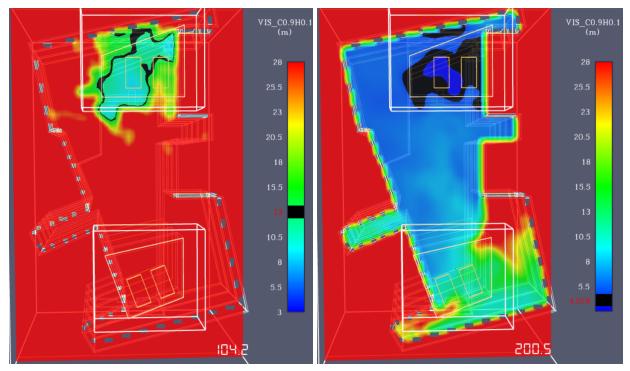
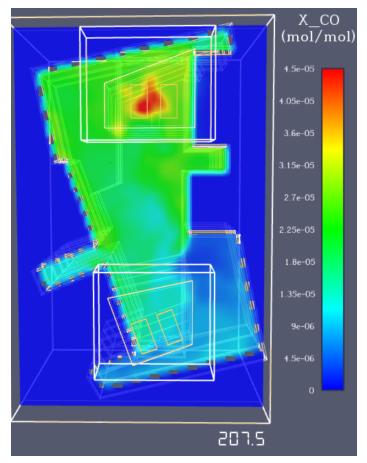



Figure 54. PyroSim visibility plots, 13 m (left) and 4 m (right).

Another concern for occupants trying to evacuate the building is toxic gas inhalation. Carbon monoxide is a common product of combustion, and prolonged exposure can incapacitate a person, preventing them from safely leaving the building.

Haber's Rule was used to determine CO tenability. Haber's Rule is a guideline that provides a limit for the product of concentration of a toxin and time of exposure. Since carbon monoxide builds up in a person's blood, and takes hours to recover from, this rule assumes a short exposure time. A person is estimated to be incapacitated at 30,000 ppm-min CO. From the PyroSim model, the highest concentration of CO for this design fire is 40 ppm. Figure 55 shows a slice file at head height on the sixth floor. Concentration is highest in the plume directly above the fire, and lower on the walkway where occupants would evacuate. The longest egress in the building is less than 20 minutes, so the worst exposure is 800 ppm min, far below the level required for incapacitation. The carbon monoxide concentration takes time to build up to 40 ppm, but this conservative calculation illustrates that the CO limit is never approached. Tenability is not limited by CO.

The method of using Haber's Rule for estimating tenability time based on toxic gas concentration can be used for other toxic combustion products. Each toxic gas will have a short term exposure limit, measured in ppm-min, that should not be exceeded. The combustion output of each toxic gas can be programmed into PyroSim, and slice files or gas detectors can be placed in the model to measure the gas concentration.

Figure 55. Sixth floor slice file with carbon monoxide concentration.

Radiant heat flux is another factor that could prevent safe egress of occupants. A limit of 2.5 kW/m² is provided as an upper limit for safe egress of occupants. Multiple heat flux detectors were placed throughout the Baker Science building to see where heat flux was the most limiting. The highest heat flux experienced at head level in the building occurred on the sixth floor, which aligns with the results of the previously discussed potentially limiting factors. As the fire plume rises to the ceiling, the smoke, heat, and combustion products spread out and begin to fill the sixth floor. Figure 56 shows a graph of radiant heat flux over time at the highest measured spot on the sixth floor. The baseline value is greater than zero since the building and all objects in it radiate heat due to being above absolute zero. The heat flux experienced by an occupant is less than 0.50 kW/m². This is below the limit of 2.5 kW/m², and half of what is experienced outside on a sunny day, about 1.0 kW/m². Radiant heat flux is not a limiting factor for evacuating occupants in design fire 1.

Radiative flux vs. Time

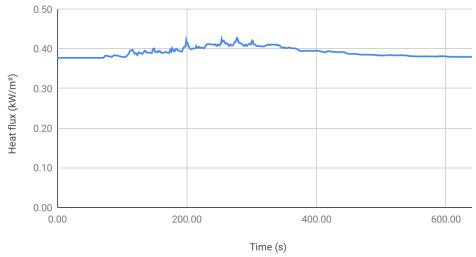


Figure 56. Radiant heat flux over time.

The Baker Science building was unable to provide adequate safe egress time for occupants on the sixth floor in regards to visibility. All other tenability factors did not approach limiting factors. Visibility would be improved with an adequately-sized smoke control system. The smoke control system is not likely to be replaced, but there are other options to improve egress of occupants when exposed to smoke. Additional illuminated signs could be installed every 2 m in the egress path from the sixth floor offices, meaning occupants would not require a full 4 m of visibility.

Another option would be to paint lines with egress directions on the floor to guide occupants to safety. A person could look at the ground 2 m ahead and safely follow the lines to safety. In this case visibility could be reduced to 2 m, which would not be exceeded in the egress time.

Design Fire 2

The second design fire takes place in the lobby of the first floor, outside the large auditorium. Figures 57 and 54 show the location of design fire 2 in the lobby outside the auditorium. The entrance of the lobby has a tall ceiling that extends up to be even with the ceiling of the third floor. In the event of a fire, this space would collect smoke from below. The red outline in Figure 58 indicates the shape of the ceiling above the lobby that can collect smoke. The area of this space is approximately 68 m². The two zone model can be used to calculate the time the fire takes to fill the space with smoke to the level of the regular first floor ceiling.

Figure 57. Location of fire outside auditorium.

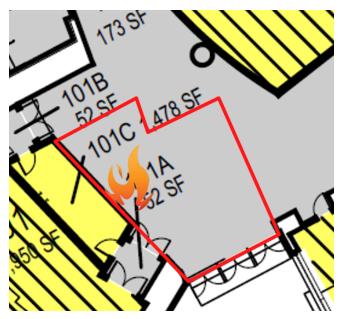


Figure 58. Location of lobby fire on first floor.

A fire outside the first floor auditorium creates a number of unique problems. The auditorium has fixed seating, and is the room in this building most likely to have occupants unfamiliar with the layout. Also, the density of occupants is the greatest in the building. This means egress will not be as efficient as other spaces in the building. The high ceiling in the space would delay the time to activation for the sprinklers, allowing the fire to grow larger than it would in a space with a lower ceiling.

The fuel source of this design fire is a large couch. California Technical Bulletin 133 (TB 133) provides limits for the maximum heat release rate and total energy released in the first ten minutes for upholstered furniture in public spaces. The limits are a maximum heat release rate of 80 kW and total energy release in the first ten minutes of 25 MJ. However, this technical bulletin has been repealed, meaning public buildings in California no longer need to use TB 133 compliant furniture. For this design fire, a non-TB 133 couch is placed on the first floor, next to the auditorium. The couch burns as an αt^2 fire with a growth constant of α_g =0.05 kW/s², a fast burning fire. The maximum heat release rate is 3000 kW. This heat release rate is significantly higher than what would be allowed by TB 133 compliant furniture and constitutes a worst-case scenario. The couch is ignited by a laptop placed on the couch cushion while the owner steps away for some time. The laptop fan is blocked, allowing heat to build up and eventually start a fire.

The values for growth constant and heat release rate were taken from "Heat Release Rates of Burning Items in Fires" by Kim and Lilley. The fuel source specified for this fire would reach maximum heat release rate at just over four minutes (245 s). The couch maintains 3 MW for one minute, then decays to nothing at just under ten minutes. A decay constant of α_d =0.04 kW/s². A graph of heat release vs time is shown in Figure 59.

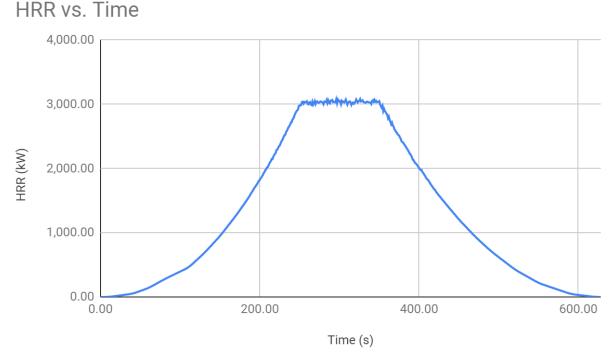


Figure 59. HRR of foam couch (loveseat) vs time.

There are other exits for this floor of the building, but a majority of people only use the three double doors at the front. With a fire in the main lobby, these doors could be compromised, pushing people to unfamiliar exits. Figure 60 shows a ground-level view of the fire location, along with a visual of how smoke would fill the ceiling space. Note that the flame is used to represent the fuel source, the art on the wall is not what is burning.

Figure 60. Location of design fire 3 and ceiling area that smoke would fill.

While the couch burns, smoke will collect in the space above the lobby, which is three stories tall. A hallway in the third floor of the building has windows that overlook the first floor lobby, as shown in Figure 61, note the sprinklers above the first floor lobby.

Figure 61. Third floor overlooks the first floor lobby.

The space with the red outline has an area of about 68 m², yielding a volume of 788 m³ until smoke extends to the rest of the first floor with the shorter ceiling. The portion of the ceiling even with the second and third floors will fill up with smoke in 85 s given the constraints of this design fire. This is calculated using the two zone model, based on the smoke output of the fire. As the αt^2 fire grows, the

smoke output also grows. An iterative model can calculate the mass and temperature of smoke produced. My model used 5 s increments for iteration, and calculated power, mass of entrained air, smoke temperature, smoke density, mass of collected smoke, and height of smoke. Each of these pieces of data is calculated in 5 s increments.

The PyroSim model estimates that the fire sets off a sprinkler at 142 s, triggering alarm and beginning pre-movement time, which again is estimated at 1.2 min. The egress time for the first floor after movement is started is 5.07 minutes, giving a total egress time of 8.64 minutes from the moment of ignition.

Tenability

The first factor to be considered for tenability is temperature. For design fire 2, occupants in the auditorium will exit through doors that pass near the fuel source. Since the doors are not blocked by the fuel source, people will be able to exit into the lobby, and through the doors to get outside to safety. The temperature limit for egressing occupants is 110°C, with a limit of 25 minutes. This limit is intermittently reached at head height near one of the lobby doors. 115°C is never reached at head height, and Figure 63.28 from the SFPE Handbook shows that people can be exposed to that temperature in humid air for 8 minutes, longer than it takes to egress the first floor. Tenability is not exceeded based on temperature exposure. Figure 62 shows a temperature slice file for the first floor of Baker Science. Notice the small black band where temperature slightly exceeds the 110°C limit.

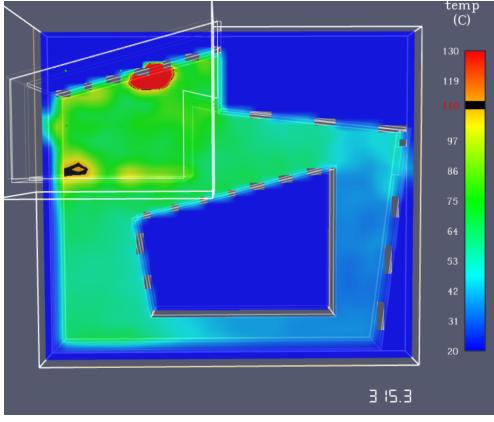


Figure 62. Temperature plot of first floor lobby.

Visibility is also a primary concern for occupants trying to evacuate a burning building. The visibility limits for this fire should be at 13 m since the large auditorium near the lobby is likely to be filled with occupants who are unfamiliar with the building. The 4 m visibility limit for the offices on the sixth floor was justified since each office is assigned to a staff member. A fixed seating auditorium will frequently be used by people unfamiliar with the building. Visibility drops below 13 meters 120 s after ignition, before any of the sprinklers even activate. This is partially due to the high ceiling allowing the smoke plume to entrain cooler air before reaching the sprinklers, delaying activation. Figure 63 is a slice file of visibility at head height in the lobby.

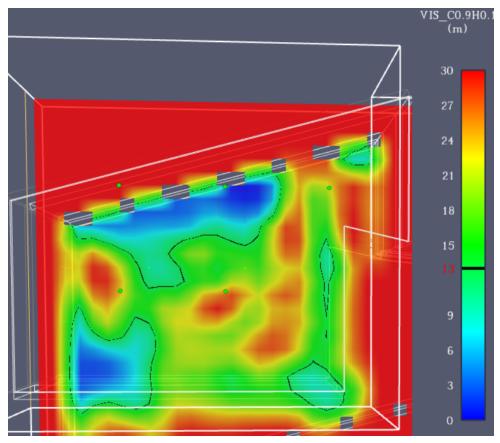
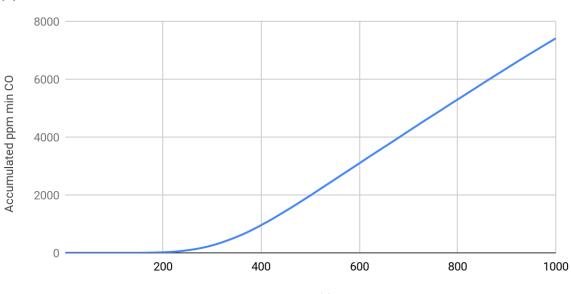



Figure 63. Lobby visibility at 120 s after ignition.

If the ceiling continues to fill up with smoke, 68.3°C will be reached 155 s after the fire starts, activating the sprinklers. It is likely that all of the sprinklers would activate within a short period of time, unlike a fire with a smoke jet crossing a single sprinkler. This is due to the fact that the entire space fills up with smoke at once, surrounding all sprinklers. With all sprinklers activated, the couch would be unlikely to reach its maximum heat release rate.

With building occupants evacuating through the room where the fire occurs, exposure to toxic gasses is a concern. Carbon monoxide begins to build up in the lobby as the fire burns. To calculate the accumulated exposure occupants would experience during egress Haber's rule was used again. A device was placed in the PyroSim model to measure CO concentration. After the model was complete, the output file with CO concentration was used to calculate the incremental exposure to CO by multiplying

the concentration at a time by the time step. These products were sequentially added, then graphed on a plot with time as the X axis. This graph is shown in Figure 64. It indicates that carbon monoxide exposure gradually increases shortly after 200 s. As the CO concentration stabilizes around 400 s, the graph increases linearly. Sixteen minutes into the model, the calculated concentration of CO is still below 8000 ppm-min. This is far below the limit of 30,000 ppm-min CO. Carbon monoxide concentration does not limit tenability for this design fire.

ppm-min CO vs time

Time (s)

Figure 64. Accumulated carbon monoxide in first floor lobby vs time.

Radiant heat flux is another factor that could prevent safe egress of occupants. A limit of 2.5 kW/m² is provided as an upper limit for safe egress of occupants. As in design fire 1, multiple heat flux detectors were placed throughout the first floor lobby to see where heat flux was the most limiting. The part of the lobby exposed to the highest heat flux at head level was near the fuel source. This is logical since the detector would receive heat flux from the hot gasses at the ceiling as well as the plume rising from the burning fuel. Figure 65 shows a graph of radiant heat flux over time. The heat flux experienced by an occupant is less than 0.85 kW/m². Again, this is below the limit of 2.5 kW/m². Radiant heat flux is not a limiting factor for evacuating occupants in design fire 2.

Radiative flux vs time

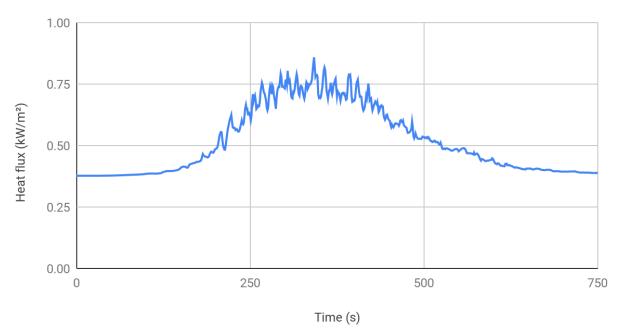


Figure 65. Radiative heat flux vs time in first floor lobby.

The egress for the first floor of Baker Science is mostly separated from the egress of the rest of the building. The time to evacuate the first floor when at full capacity is 7.22 minutes.

Other Possible Design Fires

Other fires were also considered for this report. The mechanical/electrical room on the first floor would be of concern due to the value of equipment and the higher probability of a fire in the space. This design fire was ultimately not selected due to the low occupancy of a machinery space, and the fire rating of the room would likely prevent the fire from spreading. Like the mechanical space on the first floor, the equipment on the roof could also catch fire. This fire was not selected for the same reason as the machinery room fire. Baker Science also has chemical storage rooms to supply the chemistry labs. While a fire in a chemical storage room could grow quickly, egress from the storage room would be nearly immediate, providing less of a risk to life safety.

Recommendations

The Baker Science Center has room for improvement in its design. The smoke venting is not adequate to maintain visibility for the design fire investigated in the atrium. Larger vents, or a greater number of them could possibly improve this. Another option would be to install a powered smoke control system with fans rated at an adequate capacity.

The design fire outside the auditorium on the first floor created untenable visibility conditions before egress could be completed. This creates an especially high danger in a space that is likely to be occupied by people unfamiliar with the building. Since both of the auditorium exits lead to the lobby, this creates a danger if a fire occurs in the lobby. One possible method to increase visibility in the lobby would be to

configure the lobby night purge function to a smoke venting system, similar to the smoke venting in the atrium. Another solution to this is to install an additional egress door in the auditorium, one that does not force occupants into a smoke-filled lobby. It could either egress occupants into the stairwell to the east, or directly to the outside to the west. Possible locations for the additional exits are shown in Figure 66.

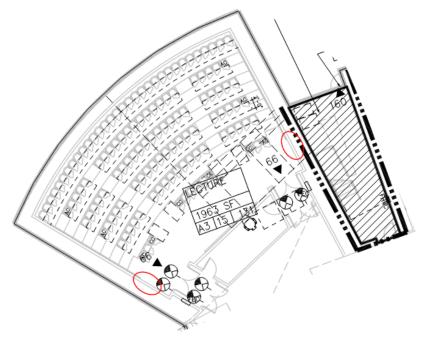
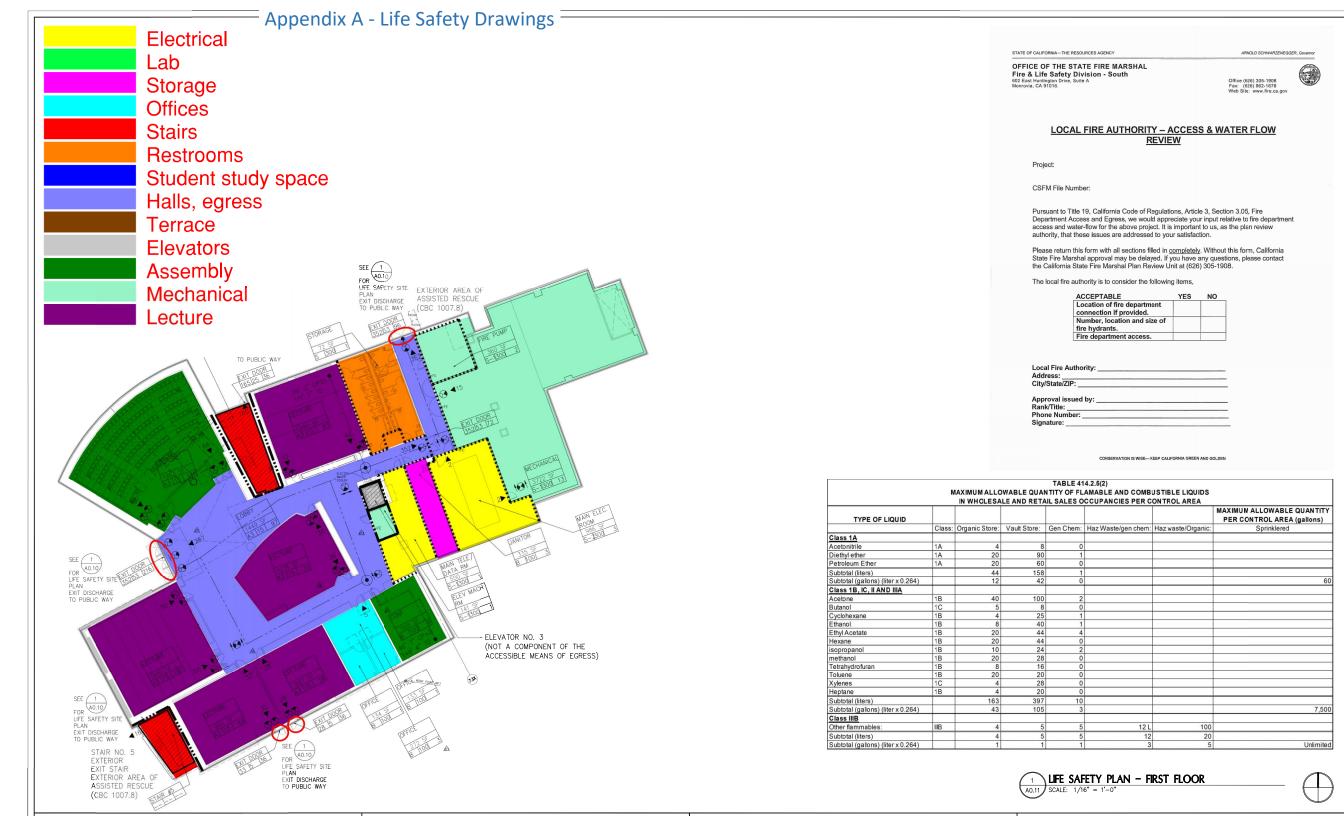


Figure 66. Suggested locations for additional exits from first floor auditorium.

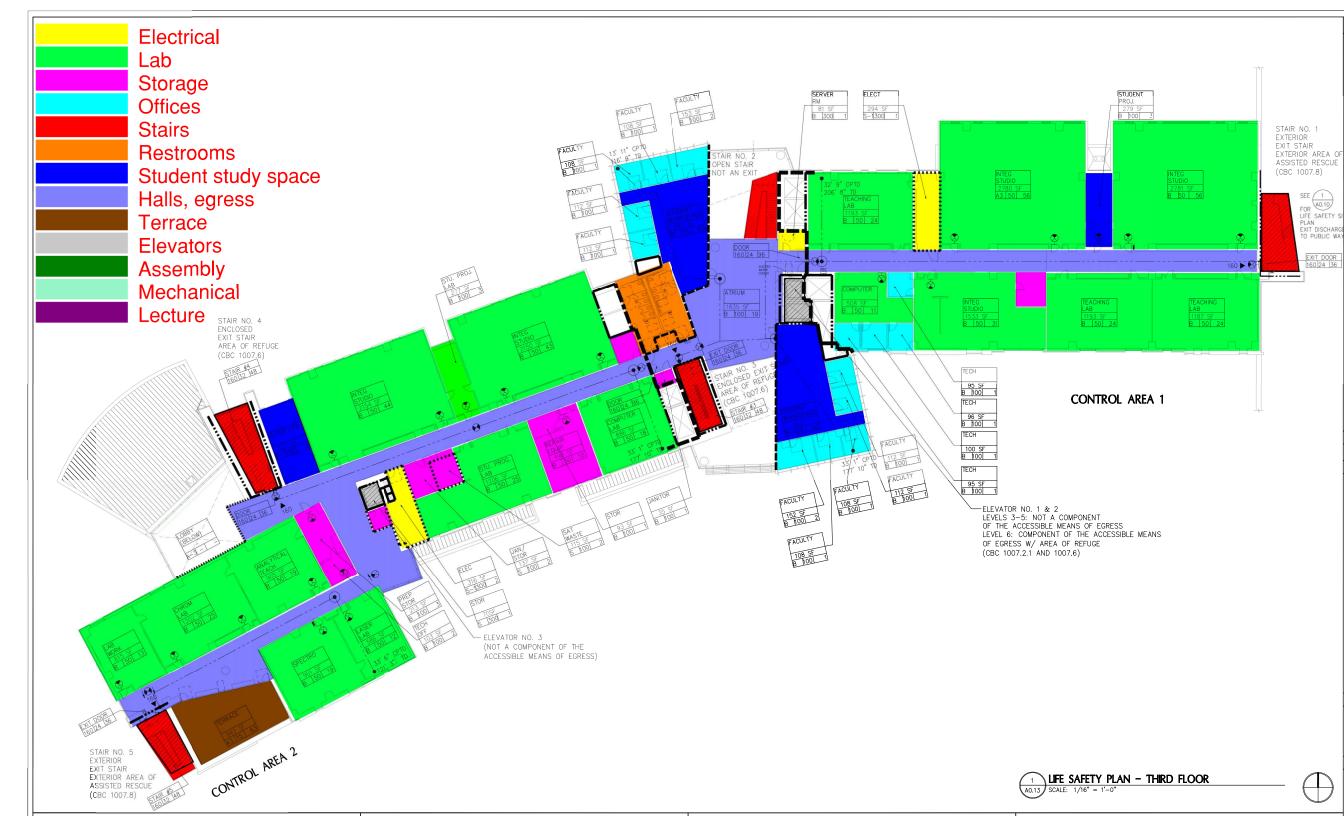
This building is built with fire rated walls separating the atrium from the east and west wings. To decrease the egress time for one area of the building, voice messages could direct occupants out of and away from the section of the building where a fire occurs. The current fire alarm system does not utilize horizontal exits, but this could easily be implemented to increase evacuation speed.

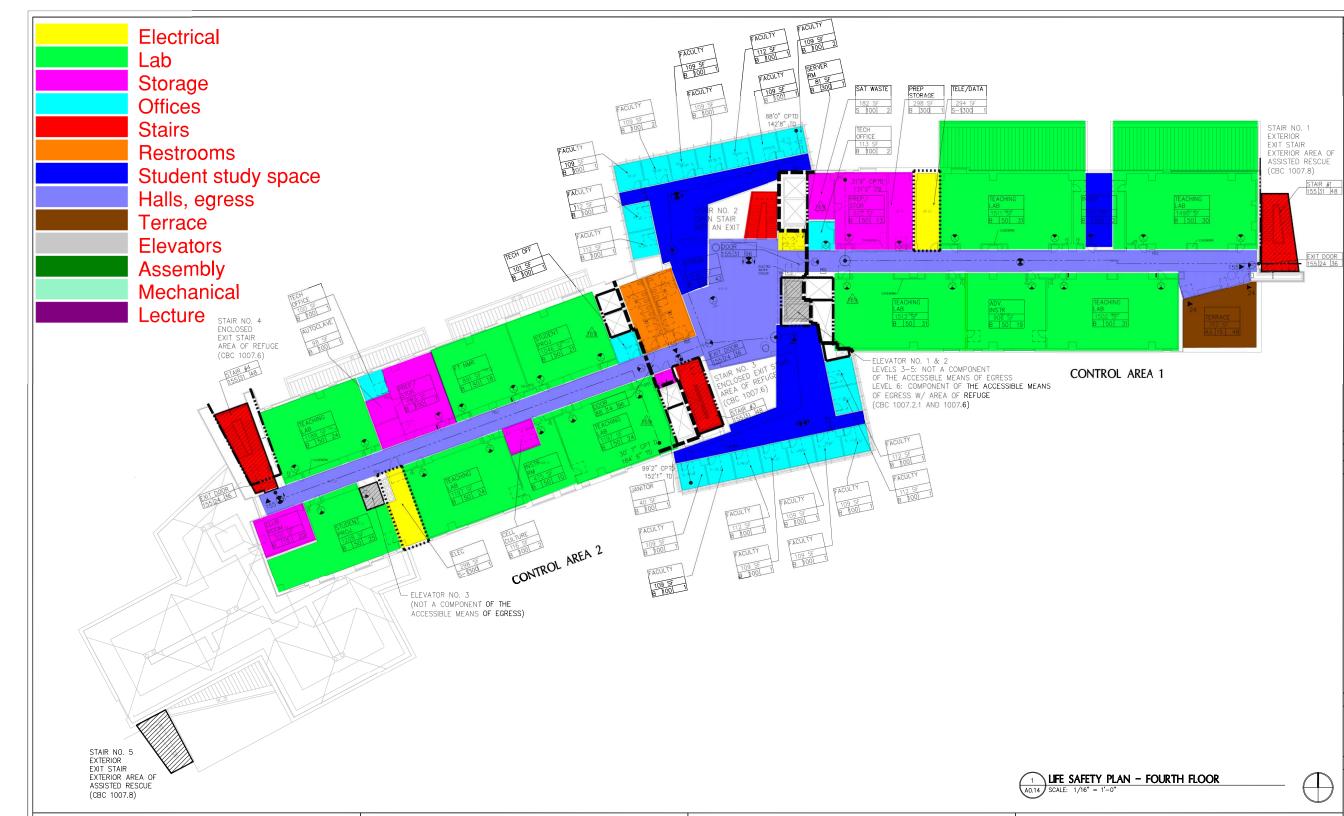
Conclusion

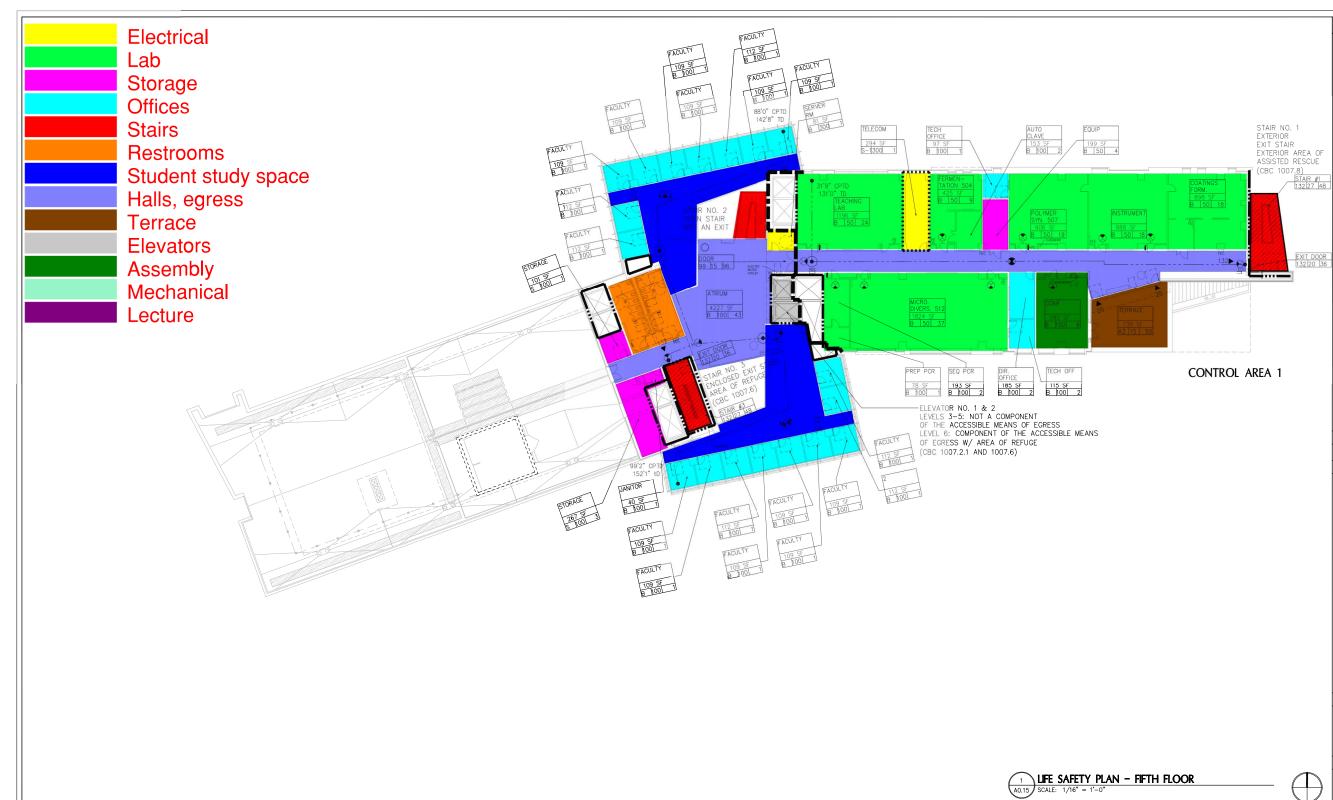
Baker Science was intended to meet the needs of a growing, modern campus. This building achieves these goals by providing a variety of uses, including laboratories, offices, study areas, and assembly spaces. This building design has a few unique design considerations, such as a five storey atrium and a smoke control system.

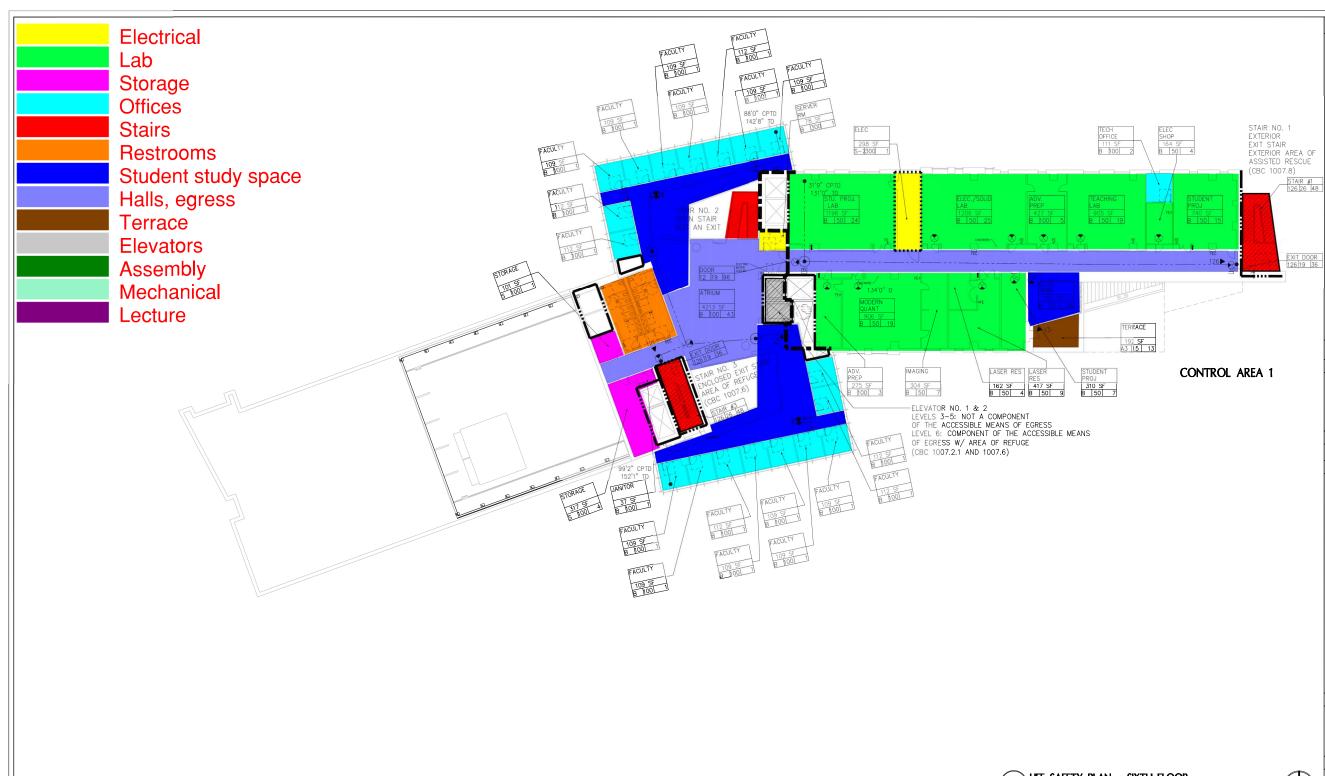

The life safety design is capable of evacuating the maximum rated building capacity of 2848 occupants in 13.62 minutes after egress has started. The 13.62 minutes is for the east wing, while the west wing would only need 10.04 minutes, and the atrium would take 8.66 minutes. Fire suppression is supplied from a city water loop and pressurized with a fire pump capable of supplying the most remote sprinkler design area with 347 gpm pressurized to 117 gpm at the pump discharge. The entire building is protected with K-5.6 quick response sprinklers that would activate the fire alarm system in the event of a fire. The fire alarm and voice notification system alerts the occupants and emergency personnel when a

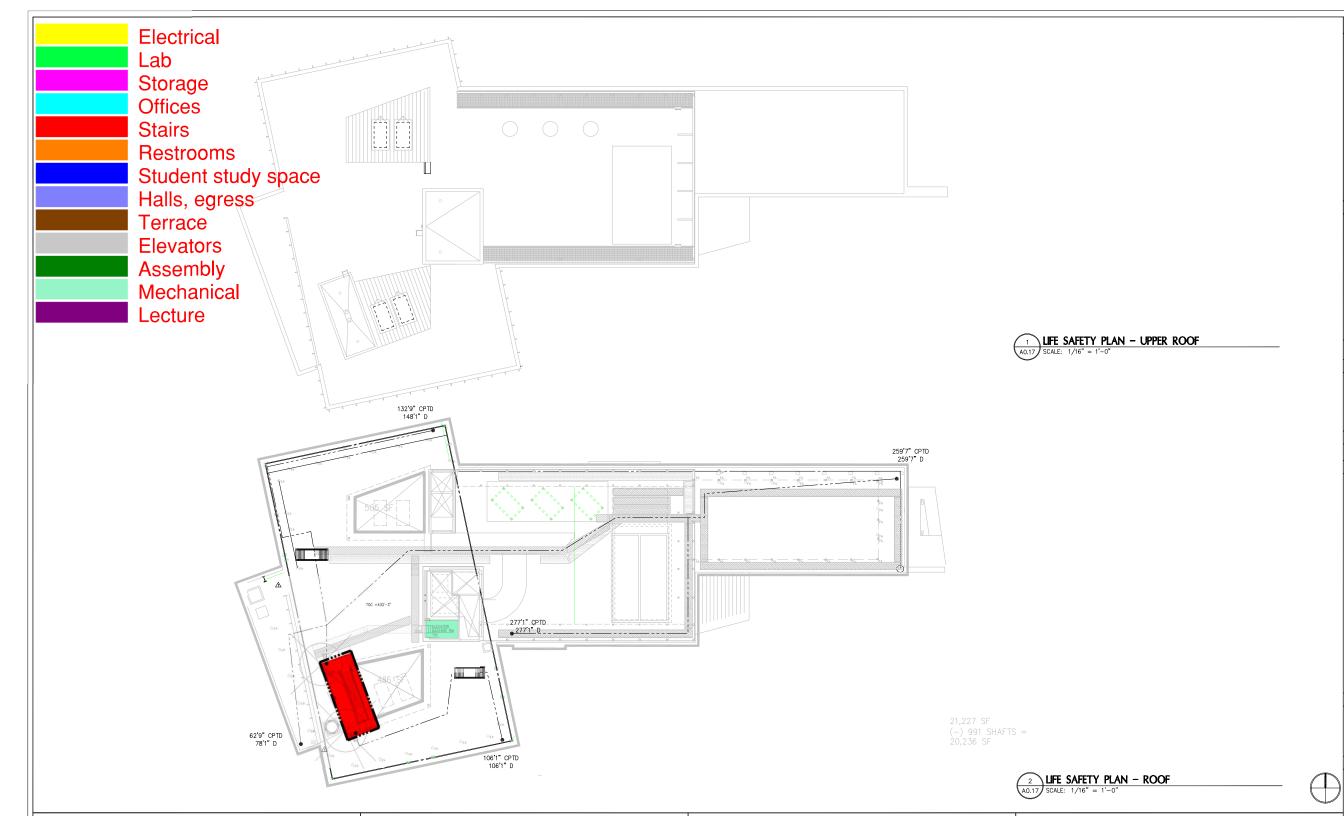
fire occurs. Fire detection is provided throughout the building with sprinklers, heat detectors, beam smoke detectors, and spot smoke detectors. The building's type 1B construction and sprinkler system allows it to be six storeys tall with more than 44,000 ft² on some floors.


The performance based design analysis for Baker Science revealed shortcomings that were not apparent based on the prescriptive design. The egress capabilities of the building were adequate from a code standpoint, but the visibility was reduced prior to a full evacuation for both of the design fires selected. The atrium fire produced smoke that limited ASET for the sixth floor to 3.23 min, based on 4 m minimum visibility. This is inadequate compared to the RSET of 3.96 min for that storey. The recommendation to improve this problem is to increase smoke extraction in the atrium. The lobby fire exceeded the visibility limit of 13 m, yielding an ASET of 2.00 min, far less than the RSET of 8.64 min for the first floor. The way to solve this issue is to install additional exits in the auditorium. The lesson is to consider possible fire scenarios during building design, in order to anticipate deficiencies overlooked by application of the code. Viewing a building as a whole, and not just a sum of different design disciplines, will allow an engineer to produce a superior design.


References


- 1. CBC, California Building Code, 2007 edition.
- 2. NFPA 13, Standard for Installation of Sprinkler Systems, 2007 edition.
- 3. NFPA 14, Standpipe and Hose Systems, 2004 edition.
- 4. NFPA 20, Stationary Pumps for Fire Protection, 2003 edition.
- 5. NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 2002 edition.
- 6. NFPA 70, National Electric Code, 2005 edition.
- 7. NFPA 72, National Fire Alarm and Signaling Code, 2007 edition.
- 8. SFPE Handbook, 5th Edition, 2016.
- 9. Kim, Hyeong-Jin, and Lilley, David G., Heat Release Rates of Burning Items in Fires, 2000.





LIFE SAFETY PLAN - FIFTH FLOOR 1 LIFE SAFETY PL A0.15 SCALE: 1/16" = 1'-0'

Appendix B

Example hydraulic egress calculation, Atrium 3rd floor

Density in egress route $D = \frac{P}{A} = \frac{155 \ people}{920 \ ft^2} = 0.168 \frac{people}{ft^2}$ $D = density, \ \frac{people}{ft^2}$ $A = area, \ ft^2$ $P = number \ of \ people$

Speed of occupants in egress route S = k - akD = 275 - 2.86 * 275 * 0.168 = 142.5 ft/min $k_1 = 275 for flat corridor$ a = 2.86

Time to travel egress route to door $t = \frac{d}{S} = \frac{117}{142.5} = 0.82 \text{ min}$

Specific flow, corridor $F_s = (1 - aD)kD$ $F_s = (1 - 2.86 * 275) 275 * 0.168 = 24.0 person/(min ft)$

Calculated flow, corridor $F_{c, corridor} = (1 - aD)kDW_e = (1 - 2.86 * 0.168) 275 * 0.168 * 7 = 168.0 person/min$

Specific flow, door $F_{s, door} = \frac{F_{s, corridor}W_{e, corridor}}{W_{e, door}} = \frac{168.0*7}{2} = 84.0 \ person/(min ft)$ Use $F_{sm} = 24 \ person/(min ft)$ from Table 59.5

Flow rate, door $F_{c, door} = F_{s, door} W_{e, door} = 24 * 2.0 = 48.0 \text{ person/min}$

Queuing rate $Q_{door} = F_{c, corridor} - F_{c, door} = 168 - 48 = 120 \ people/min$

Specific flow, stair $F_{s, stair} = \frac{F_{s, door}W_{e, door}}{W_{e, stair}} = \frac{48.0*2.0}{3.2} = 15.0 \text{ per/(min ft)}$ From Table 59.5, $F_s = 18.5 \text{ persons/(min ft)}$ after stair flows merge Flow rate, stair $F_{c, stair} = F_{s, stair} W_{e, stair} = 15.0 * 3.2 = 48.0 \text{ person/min}$

Stair density From Figure 59.8, $D_{stair} = 0.98 \ persons/ft^2$

Stair speed S = k - akD S = 212 - 2.86 * 212 * 0.098 = 152.5 ft/min $k_1 = 212 for 7/11 stairs$

Stair travel time $t_{stair to next floor} = \frac{d}{S} = \frac{50.6}{152.5} = 0.33 min$

People in stair $P_{stair} = F_{c, stair} * t_{stair to next floor} = 48.0 * 0.33 = 16 people$

Flow rate, door $F_{c, door} = F_{s, door} W_{e, door} = 24 * 2 = 48.0 \text{ person/min}$

People queued at door $P_{queued} = P_{floor} - P_{stair} = 155 - 16 = 139 \ people$

Time to egress previous floor $t_{egress \ previous \ floor} = 4.85 \ min$

Time to egress queued $t_{egress \ queued} = \frac{F_{c, \ door}}{P_{queued}} = \frac{48.0}{139} = 2.90 \ min$

Time to evacuate floor

 $t_{evacuate floor} = t_{egress queued} + t_{egress previous floor} + t_{stair to next floor} = 2.90 + 4.85 + 0.33 = 8.08 min$

Appendix C - Hydraulic Calculations

HYDRAULIC CALCULATIONS SUBMITTAL

SECTION:

DIVISION 21 – FIRE SUPPRESSION

21 0500 ; 21 1200 ; 21 1300 ; 21 3000

PROJECT:

CAL POLY CENTER FOR SCIENCE 1 GRAND AVE., BUILDING #70 SAN LUIS OBISPO, CA 93407

FOR THE:

GILBANE BUILDING COMPANY 1 GRAND AVE., BUILDING #70 SAN LUIS OBISPO, CA 93407

AS PRESENTED BY:

Aero Automatic Sprinkler Company

21605 North Central Ave.

Phoenix, AZ 85024

623-580-7800 623-434-3420 (fax)

This submittal has been reviewed by Aero Automatic Sprinkler Co. and approved with respect to the means, methods, techniques, sequences, and procedures of construction, and safety precautions and programs incidental thereto. Aero Automatic Sprinkler Co. also warrants that this submittal complies with the Contract Documents and comprises no variation to.

By: Neal Larsen

Date: 9-29-2011

Gilbane

Cal Poly Center for Science Gilbane Project #: 174338010

REVIEWED

Building Name/#:	
Bid Package No:	21A
Submittal No:	003
Spec. Section:	21 05 00
Reviewed By:	Scott Gurley
Date:	10/3/11

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions.

Gilbane

Cal Poly Center for Science Gilbane Project #: 174338010

REVIEWED

Building Name/#:	
Bid Package No:	21A
Submittal No:	002
Spec. Section:	21 12 00
Reviewed By:	Scott Gurley
Date:	10/3/11

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions.

Gilbane

Cal Poly Center for Science Gilbane Project #: <u>174338010</u>

REVIEWED

Building Name/#:	Cal Poly CFS
Bid Package No:	21A
Submittal No:	002
Spec. Section:	21 13 00
Reviewed By:	Scott Gurley
Date:	10/3/11
This services does a	

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions.

Gilbane

Cal Poly Center for Science Gilbane Project #: <u>174338010</u>

REVIEWED

Building Name/#:	
Bid Package No:	21A
Submittal No:	002
Spec. Section:	21 30 00
Reviewed By:	Scott Gurley
Date:	10/3/11

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions. This page intentionally left blank.

HYDRAULIC CALCULATIONS

PROJECT:

CAL POLY CENTER FOR SCIENCE 1 GRAND AVE., BUILDING #70 SAN LUIS OBISPO, CA 93407

FOR THE:

GILBANE BUILDING COMPANY 1 GRAND AVE., BUILDING #70 SAN LUIS OBISPO, CA 93407

AS PRESENTED BY:

Aero Automatic Sprinkler Company

21605 North Central Ave.

Phoenix, AZ 85024

623-580-7800

623-434-3420 fax

--SECTION 210500---COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 GENERAL 1.8.3 SHOP DRAWINGS

---SECTION 211200---FIRE SUPRESSION STANDPIPES

PART 1 GENERAL

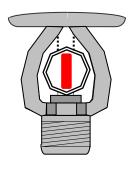
---SECTION 211300---FIRE SUPPRESSION SPRINKLER SYSTEMS

PART 1 GENERAL 1.4.3 SHOP DRAWINGS

---SECTION 213000---FIRE PUMP

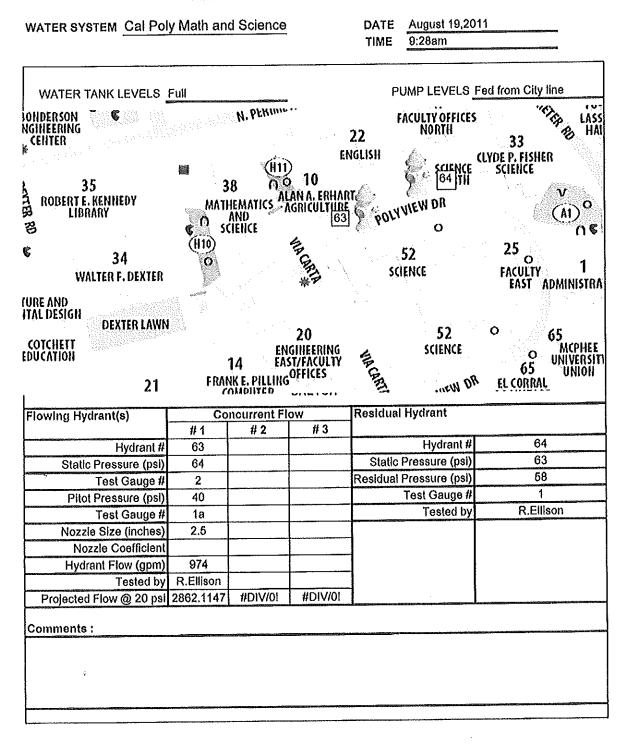
PART 1 GENERAL

This page intentionally left blank.


HYDRAULIC CALCULATION TABLE OF CONTENTS

1	FLOW TEST, FIRE PUMP CURVE, PRESSURE REDUCING VA. (1 ST.
	FLOOR ONLY), DBL. DETECTOR
	ASSEMBLY
2	LEVEL 1 R/A # 1 & 2
3	LEVEL 3 R/A # 1 & 2
4	LEVEL 6 R/A # 1,2,3 &4
5	STANDPIPE # 1 [1000 & 750]
6	STANDPIPE # 4 [1000]
7	STANDPIPE # 5 [1000]
8	STANDPIPE STATIC & FLOW FOR
	PRESSURE REDUCING VALVE
	SETTING 'E'

This page intentionally left blank.

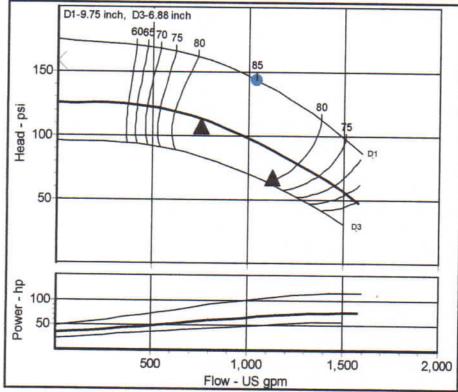

FLOW TEST, FIRE PUMP CURVE, PRESSURE REDUCING VA. (1 ST. FLOOR ONLY), DBL. DETECTOR ASSEMBLY

This page intentionally left blank.

FLUID RESOURCE MANAGEMENT FIRE HYDRANT FLOW TEST WORKSHEET

8/19/2011 DATE WATER SYSTEM Cal Poly Math and Science TIME 9:12am **PUMP LEVELS Booster** WATER TANK LEVELS Full N. PEKIMIE. 10 **FACULTY OFFICES IONDERSON** LASS NGINEERING NORTH HAL B 22 CENTER 33 ENGLISH CLYDE P. FISHER SCIENCE SCIENCE 10 64 RTH **N**0 35 38 PH H ALAN A. ERHART MATHEMATICS AGRICULTURE AND SCIENCE [63] POLY VIEW DR (A1)⁰ **ROBERT E. KENHEDY** LIBRARY AND SCIENCE A 껑 0 06 (#10) 25 ¢ 52 34 Ο 0 1 FACULTY SCIENCE WALTER F. DEXTER EAST ADMINISTRA *TURE AND* **ITAL DESIGN DEXTER LAWN** 52 0 20 65 COTCHETT MCPHEE SCIENCE ENGINEERING EDUCATION 0 UNIVERSITY EAST/FACULTY 14 65 FRANK E. PILLING COMPLIED UNIOH .new DR **EL CORRAL** 21 **Residual Hydrant Concurrent Flow** Flowing Hydrant(s) #2 #3 #1 63 Hydrant # 64 Hydrant # 60 Static Pressure (psi) 63 Static Pressure (psi) **Residual Pressure (psl)** 55 2 Test Gauge # 1 Test Gauge # Pitot Pressure (psi) 35 R.Ellison Tested by Test Gauge # 1a 2.5 Nozzle Size (inches) Nozzle Coefficient 914 Hydrant Flow (gpm) **R.Ellison** Tested by 2270.288 #DIV/01 #DIV/0! Projected Flow @ 20 psl Comments :

FLUID RESOURCE MANAGEMENT FIRE HYDRANT FLOW TEST WORKSHEET



.

Approved Fire Pumps

1151 N. Pomona Rd., Ste. B Corona, Ca 92882 Dena Muellar Phone 951-738-9100 Fax 951-7389191

Project : Quote Ref. :	Cal Poly Center for Science UK-999999-1	Page No: 1	Date :	Monday, February 28, 2011	
Туре:	PG - In-Line Close Coupled Fire		Item :	1	
Pump Model:	6PVF10		Impeller No.:	2699332	
Pump Op. Speed	3550 RPM, 60 Hz Electric		Liquid:	Water	
Impeller Dia.:	8.24 inch		Temperature:		
Curve No .:	3116186		Viscosity:	1.14 cSt	
Market :	FM/UL/ULC Listed Fire Pump		Sp. Gravity: Your Ref.	1.00	

Rated Flow	750 US g	om
Rated Head	113 psi	
Imp. Dia.	8.24 inch	
Rated Power Required	58.1 hp	
Rated Efficiency	85.3 %	
-NFPA Limits:		
140% Head at shutoff	158.2 psi	
65% Head at 150% flow	73.4 psi	
Flow at 150%	1125 US gp	m
Head at 150	89 psi	
Power Req. at 150%	69.3 hp	
Efficiency at 150%	84.5 %	
Peak Power	75.4 hp	
Closed Valve Pressure	125.2 psi	
Approvai	UL	
Comments		_

Performance curve represents typical performance. NPSH data is

3

Flow (US gpm)	Head (psi)	Pump Efficiency (%)	Power Required (hp)	NPSH Required (ft)
0.0	125.2	0.0	34.7	
197.6	125.2	36.6	39.5	
395.1	124.2	62.8	45.7	
592.7	119.6	78.8	52.6	
790.2	110.9	86.2	59.5	
987.8	98.9	87.0	65.7	
1185.3	84.4	82.8	70.7	
1382.9	67.9	74.2	74.0	
1580.4	48.2	59.1	75.4	

This page intentionally left blank.

INDUSTRIAL VALVES

FIELD ADJUSTABLE PRESSURE REDUCING

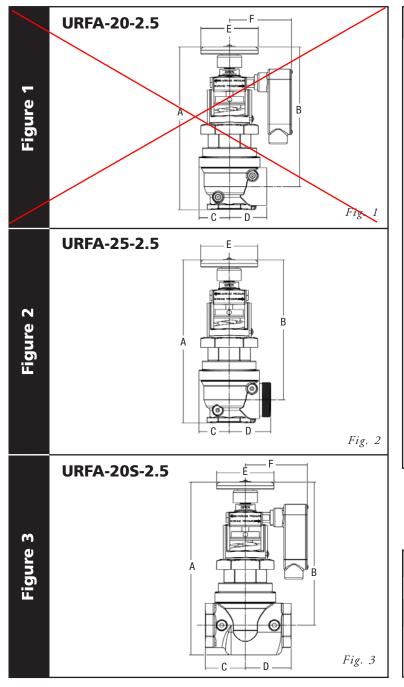
Field Adjustable Pressure Reducing (URFA)

Elkhart's URFA valve is a true pressure reducing valve, operated automatically by inner hydraulic controls. While the valves are preset at the factory, they are field adjustable — allowing you to tailor the pressure to your needs. They feature manual valve open and close, as well as pressure adjustment — all of which require extremely low torque to change due to the patent pending design. Inlet pressure up to 400 psi (27.58 bar) is controlled under all flow and no-flow conditions.

Valve size and weight permit installation in significantly tighter areas and smaller hose cabinets (those used for $1\frac{1}{2}$ " or $2\frac{1}{2}$ " valves) — allowing savings of both space and money. The URFA also functions as a floor control valve in automatic sprinkler systems as well as a standpipe valve or hose valve for Class I and Class III systems.

9-1

NDUSTRIAL VALVES


INDUSTRIAL VALVES

FIELD ADJUSTABLE PRESSURE REDUCING

INLET SIZE	OUT SIZ		ΤY	TYPE CERT. DIMENSIONS (INCHES) FINISH				DIMENSIONS (INCHES)						н						
2½" F	2½	2"	gled	traight	UL	Clo	osed	Ор	en					egral perv. /itch	Bra	ISS	Chrome	Wt.		SURE
NPT*	F (NPT)*	M(NHT)	An	Sti	Listed	Α	В	Α	В	С	D	Е	F	Sula	Cast	Pol	Pol	(Lbs.)	MODEL	ΕIG
	-		•		•	13%	11%	14 %	121/4	2%	31/4	5	4 1/ ₄	0	5	0	0	181/2	URFA-20-2.5	+
•		•	•		•	131/8	11 ∜ଃ	141/4	121⁄4	21/8	3%	5	4 1/ ₄	ο	s	ο	0	181/2	URFA-25-2.5	2
•	•			•	•	14 ½	11 ²⁹ / ₃₂	151/8	121/4	3 ½	4	5	4 1⁄4	0	s	0	0	26 ½	URFA-20S-2.5	3

KEY s = standard o = option

* Grooved connection available for inlet or outlet use — add 1.44" per connection.

PRODUCT HIGHLIGHTS

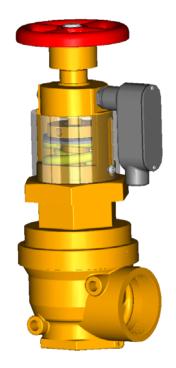
URFA features include:

- Manual open-close requires less than 15 lbs.
 of torque
- Pressure rated up to 400 psi (27.58 bar)
- Flow rated up to 500 gpm (1893 lpm)
- Open-Close indication from 2 view directions
- Color-coded pressure reduction label
- Tapped for pressure gauge on both inlet and outlet side of valve
- Tamper-resistant protection
- UL Listed as a check valve for use in dual riser systems
- Optional integral supervisory switch (alarm) mounts directly to valve with no bracket required
- Optional integral supervisory switch (alarm) is available either "OPEN TO SIGNAL" or "CLOSE TO SIGNAL"
 - With the valve in the open position, to close an electrical circuit and send the signal is defined as "OPEN TO SIGNAL"
 - With the valve in the closed position, to close an electrical circuit and send a signal is defined as "CLOSE TO SIGNAL"

ADDITIONAL INFORMATION

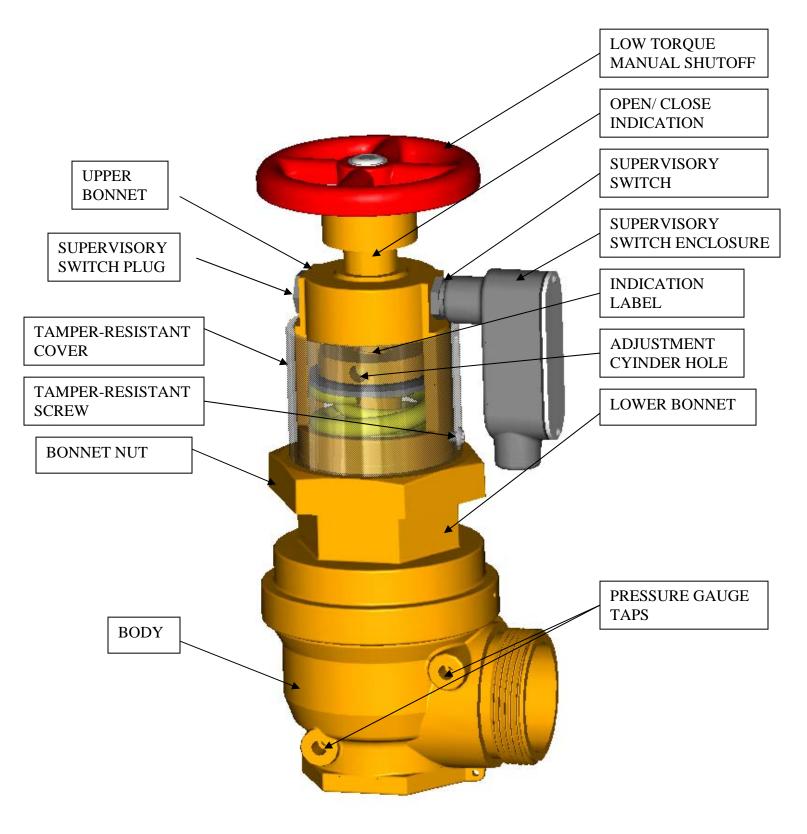
Includes adjustment rod.

THREADS


Valve inlet information is NPT unless otherwise specified. Special threads available through adapter use.
See index T-12 for alternative outlet thread options.

Fire Fighting Equipment

URFA –20S-2.5" URFA-20-2.5" URFA-25-2.5"


INSTALLATION AND OPERATING INSTRUCTIONS FOR FIELD ADJUSTABLE PRESSURE REDUCING/ CONTROLLING VALVES

(URFA-20-2.5 MODEL SHOWN)

98042000 Rev-C

URFA VALVE MAJOR COMPONENTS

SPECIFICATIONS

- Pressure rated up to 400 psi.
- Flow rated up to 500 GPM
- Open-Close indication from 2 view directions
- Pressure reduction can be field adjusted
- Pressure reduction adjustment can be easily determined by indication label
- Pressure reduction adjustment has tamper resistant feature
- Low-torque manual close handwheel
- Built-in automatic check valve
- Regulates pressure under both flow and no-flow conditions
- Tapped for pressure gauge on both inlet and outlet side of valve
- Optional integral supervisory switch (For Indoor Use Only)

INLET – OUTLET CONNECTIONS

VALVE MODEL	INLET THREAD	OUTLET THREAD
URFA-20-2.5	2-1/2" FEMALE NPT	2-1/2" FEMALE NPT
URFA-20S-2.5	2-1/2" FEMALE NPT	2-1/2" FEMALE NPT
URFA-25-2.5	2-1/2" FEMALE NPT	2-1/2" MALE HOSE

APPLICATION

A. AUTOMATIC SPRINKLER SYSTEMS

The models URFA-20S-2.5 and URFA-20-2.5 valves are most commonly used in automatic sprinkler systems as floor control valves in high-rise buildings where supply riser pressures exceed 175 psi. The URFA valves are Listed by Underwriters Laboratories as "Special System Water Control Valves – Pressure Reducing and Pressure Control Type (VLMT)", and also meet the listing requirements for indicating valves. Installation requirements for pressure reducing valves in automatic sprinkler systems are given in Section 4-6.1.2 of NFPA 13, Standard for the installation of Sprinkler Systems, 1999 Edition. When designing URFA pressure reducing valves into a sprinkler system a maximum flow rate of 400 GPM should be observed.

URFA Pressure Reducing Valves are also listed as checking devices, which eliminates the need for a separate check valve. When sprinklers on a given floor are fed from dual risers, the URFA valve acts as a check valve to prevent loss of sprinkler water supply in the event of one riser sustaining damage.

Requirements for Alarm Attachments are given in Section 5-15.1.6 of NFPA 13, <u>Standard for</u> <u>the installation of Sprinkler Systems</u>, 1999 Edition. An integral, listed supervisory alarm switch is available on URFA pressure reducing valves as option number "01" when ordering.

B. STANDPIPE SYSTEM

The models URFA-25-2.5 and URFA-20-2.5 valves are most commonly used in standpipe systems. The URFA-25-2.5 valves have a male hose thread outlet for connecting to fire suppression hose. When hose racks are used, the URFA-20-2.5 can be utilized along with a special hose nipple for support of the rack. The URFA valves are Listed by Underwriters Laboratories as Standpipe Equipment Pressure Reducing Devices (VUTX). Requirements for installation of pressure reducing valves in standpipe systems are given in Section 5-8 of NFPA-14, <u>Standard for the Installation of Standpipe Hose Systems</u>, 1993 Edition.

INSTALLATION REQUIREMENTS

A. AUTOMATIC SPRINKLER SYSTEM

- 1. To permit easy replacement or repair of valve, pipe unions or rubber gasket mechanical couplings should be installed immediately upstream or downstream of each URFA valve.
- 2. A relief valve of not less then ¹/₂ inch size is to be installed on the downstream side of each URFA valve
- 3. Pressure gauges are to be installed on the inlet and outlet side of each pressurereducing valve
- 4. Valve adjustment setting should be selected to provide an outlet pressure not exceeding 165 psi at the maximum inlet pressure
- 5. Upon system completion, each Valve must be tested under both flow and no-flow conditions to verify that static residual outlet pressures and flow rates satisfy system design requirements. See Section 8-2.5 NFPA 13 for more information on mandatory flow and no-flow test requirements.

B. STANDPIPE SYSTEM

- 1. The URFA-25-2.5 can be used for both Class I and Class III service.
- 2. NFPA 14 requires that hose valve outlet pressures for Class I and Class III service be no greater then 175 psi. and no less then 100 psi. When permitted by the authority having jurisdiction, pressures less then 100 psi may be allowed, but in no cases shall the valve discharge pressure be less then 65 psi
- 3. Upon system completion, each valve must be tested under both flow and no-flow conditions to verify that static and residual outlet pressures and flow rates satisfy system design requirements. See Section 8-5.5 of NFPA 14 for more information on required flow and no-flow testing.

CONSTRUCTION & OPERATING PRINCIPLE

The URFA is a field adjustable pressure-reducing valve, which utilizes a hydraulic piston and cylinder assembly within the valve lower bonnet to allow the valve to self-throttle in response

to the pressure on the downstream side of the valve. Because the piston, main stem and valve seat float freely from the manual valve stem and handwheel assembly, the valve is able to selfclose under static conditions and maintains a reduced pressure both under no-flow and flowing conditions Valve discharge pressure is transmitted to the top side of the piston through pressure passages in the main stem. The presence of the piston results in a net area differential, which produces a hydraulic balancing force in the closed direction. The magnitude of this balancing force is in direct proportion to the hydraulic area of the piston.

The Field Adjustable feature of the valve is controlled by a spring within the valve upper bonnet. The spring adds an opening force to the main stem so that pressure reduction may be changed as the spring force is changed. This feature allows for the valve to satisfy all expected inlet/outlet pressure ratios. The Field Adjustable feature allows for one type of valve to be specified for all locations in a structure. Once installed the valves can be adjusted to the correct pressure reduction ratio based on their locations.

The URFA valves feature a patent pending manual close design that allows for extremely low torque of the handwheel while manually opening and closing the valve. The unique design allows for the for independent operation of the valve stem from the manual close push-rod; this allows for the operator to bypass the large torque required to overcome the stiffness of the adjustment spring.

INSTALLATION OF VALVE

- The valve should first be plumbed into the system
- The upper bonnet may be rotated for optimized access to adjustment window
 - o Loosen Bonnet Nut
 - o Rotate Upper Bonnet to desired location of adjustment window
 - Apply service removable thread lock to the Bonnet Nut threads
 - Tighten the Bonnet Nut firmly
- See wire diagram for proper installation of supervisory switch
- The system should be slowly filled with water and purged of air
- The system should then be flushed to remove any debris

VALVE SETTING SELECTION

The URFA valves have settings of A, B, C, D, and E. Each valve setting corresponds to a pressure reduction graph located at the end of this manual. The valve setting is determined by where the top of the adjustment cylinder lines up on the Adjustment Identification Label located on the main stem (refer to Figure 1). To determine the correct setting for each URFA valve in the system design please use the following step.

1. Determine the standpipe or sprinkler riser residual pressure for each valve location. This is the inlet pressure at each valve under design flow conditions. In order to accurately determine these pressures, complete water supply data will be required, including results of municipal supply, flow test, and the pump performance curve. The URFA inlet pressure will be equal to the sum of the pump discharge pressure and the municipal supply pressure at the design flow rate, less piping friction loss and elevation loss.

- 2. Turn to the appropriate valve performance chart. The valve model and flow range for each graph is indicated in the title at the top of the graph. Be sure to use the correct graph for the designed flow rate through the valve.
- 3. Locate the valve inlet residual pressure on the vertical axis of the chart and draw a line from the pressure horizontally across the chart.
- 4. Locate the desired valve outlet residual pressure on the chart horizontal axis and draw a vertical line from this pressure across the chart
- 5. From the intersection of the inlet and outlet pressure lines constructed in (3) and (4) above, move horizontally to the nearest valve performance curve (actually straight diagonal lines). This will be the appropriate valve setting for the chosen location.
- 6. Determine the valve static inlet pressure. This will be the sum of the municipal supply static pressure plus the pump churn pressure, less the elevation loss.
- 7. To determine the valve static outlet pressure, refer to the appropriate static chart. Locate the valve static inlet pressure on the vertical axis of the chart. Follow across to the appropriate valve curve and drop down to the horizontal axis to read valve outlet static pressure.
- 8. If static outlet pressure is found to exceed the maximum outlet pressure allowed by NFPA 13 or NPFA 14, it will be necessary to re-select a valve setting to the left of the originally chosen type.

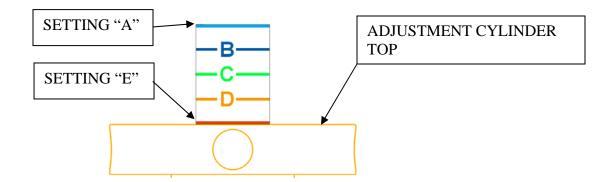
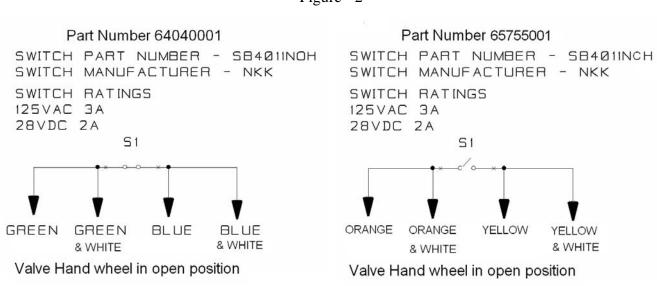


Figure - 1

SETTING PRESSURE REDUCTION


- 1. Remove the tamper-resistant screw from the clear cover by means of tamper-resistant Allen wrench provided with valve.
- 2. Insert adjustment tool provided with valve through the slot in the clear cover into the hole in the adjustment cylinder.
- 3. Rotate adjustment cylinder until the top of the adjustment cylinder is aligned with desired mark on the Indication Label (refer to Figure 1).
- 4. Once rotation limit is reached during adjustment remove the adjustment tool from the adjustment cylinder hole and re-insert the adjustment tool into the next available hole.

- 5. Once the proper adjustment is obtained verify the outlet pressure is correct with pressure gauges both upstream and downstream of the valve during both flow and no-flow pressure testing; make adjustments as needed. See Section 8-2.5 of NFPA 13 for more details on required flow and no-flow testing.
- 6. Once the valve is properly adjusted replace the tamper-resistant screw that was removed in step 2.
- 7. A tamper-resistant allen wrench and adjustment tool should be stored in a special location for Fire Department use.

NOTE: Rotating the adjustment cylinder clockwise will increase outlet pressure. Conversely, rotating the adjustment cylinder counter-clockwise will decrease outlet pressure.

SUPERVISORY SWITCH

Pressure reducing/ controlling valves that are to be used as part of a sprinkler system should include a supervisory switch to signal when a valve is not manually in the fully opened position (refer to NFPA 13 for more details on supervisory requirements). An optional supervisory switch assembly with UL approval for use with URFA valves is available on all models. The supervisory switch may be mounted to either side of the upper bonnet in the $\frac{3}{4}$ inch tapped holes provided. A cap plug is secured in the upper bonnet tapped holes when the supervisory switch is not installed. A UL Listed conduit elbow is utilized as a water-resistant enclosure for the electronic switch. The conduit elbow provides an opening for fastening conduit to the enclosure, and a lid may be removed to gain access for wiring connections. The lid is attached with two pin-in-hex security screws. A key is provided for installation access into the conduit enclosure. Two switch options are available for the supervisory switch assembly. The first, part number 64040001, will provide a closed circuit when the valve hand wheel is in the full open position. The second option, part number 65755001, will provide an open circuit when the valve hand wheel is in the full open position. Please specify the required switch configuration when ordering. Figure 2 describes wiring details. The two switch options have different colored leads for easy identification. Part number 64040001, the closed circuit switch, has blue and green wire leads. Part number 65755001, the open circuit switch, has yellow and orange wire leads. The solid colored wires act as a primary wiring configuration and the striped wires act as a secondary or back up wiring configuration.

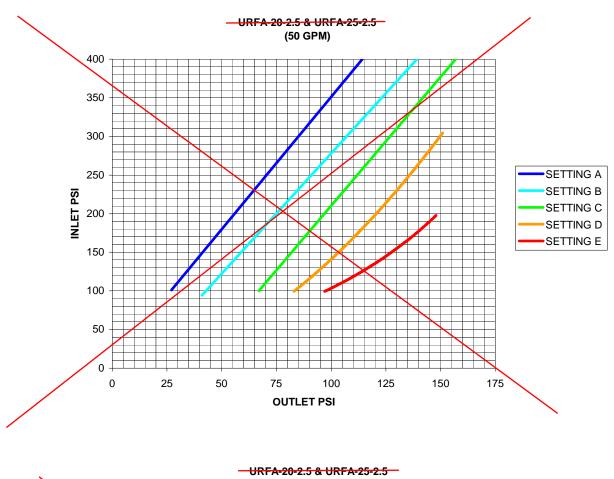
Figure - 2

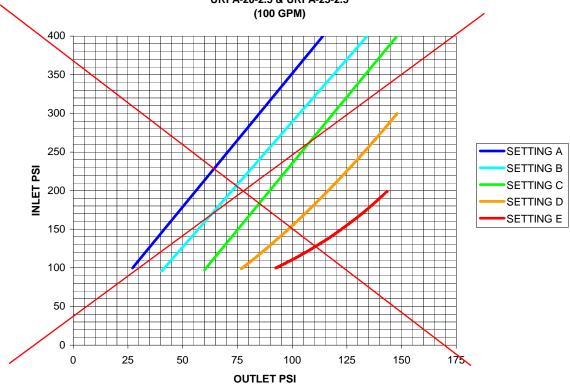
Note: Supervisory switch rated for Indoor Use Only.

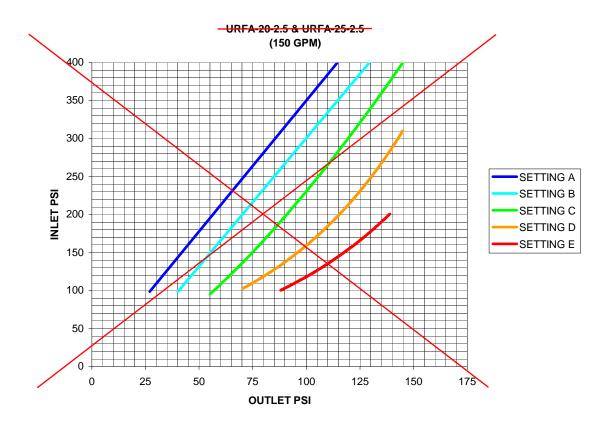
The supervisory switch enclosure may be positioned with the conduit enclosure at various angles so to better meet space requirements (see Figure 3). To reposition the conduit enclosure angle, hold rotation on the hex adaptor fastened to the upper bonnet with the use of an open box wrench. While insuring the hex adaptor remains fully threaded against the upper bonnet, position the conduit enclosure to the desired angle. When completed the hex adaptor MUST be fully threaded against the upper bonnet to insure proper function. If the hex adaptor becomes unthreaded the supervisory switch will send an opened signal. Also ensure that the manual handwheel may be fully closed without interference from the supervisory switch assembly.

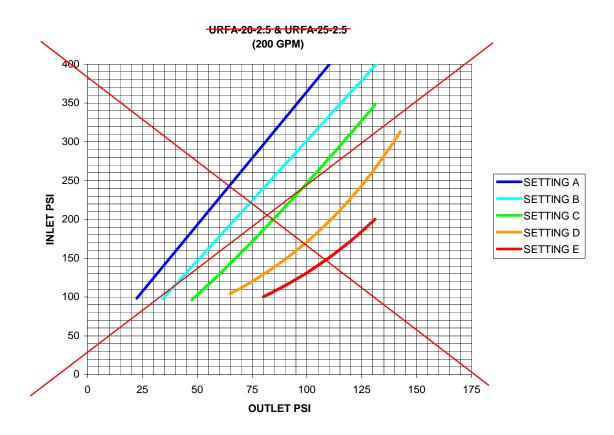
Figure - 3

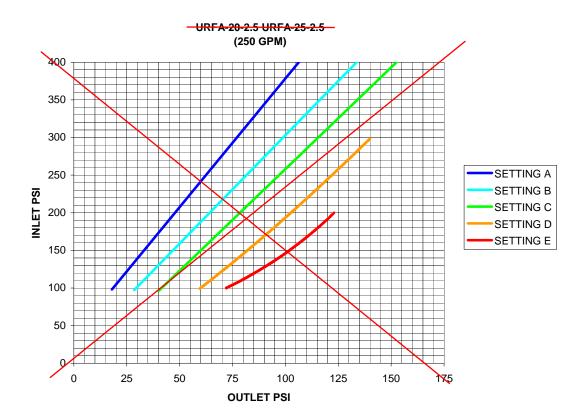
VALVE CARE & MAINTENANCE

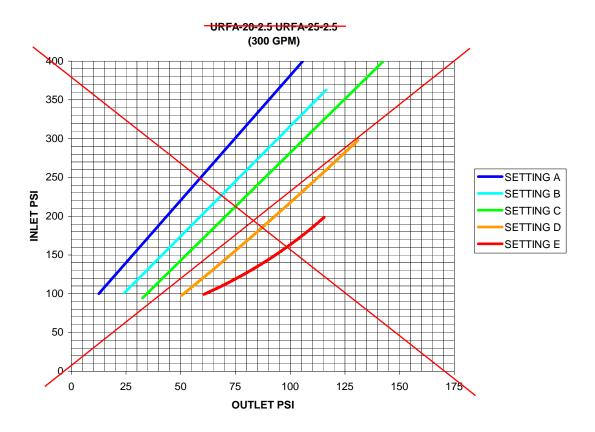

URFA valves require minimal maintenance. However, a routine inspection and test program is essential for any fire protection system to insure that it is in proper operating condition. NFPA 25, standard for the Inspection, Testing and Maintenance of Water-Based Fire Protection Systems should be consulted for a determination of required test frequency and methods.

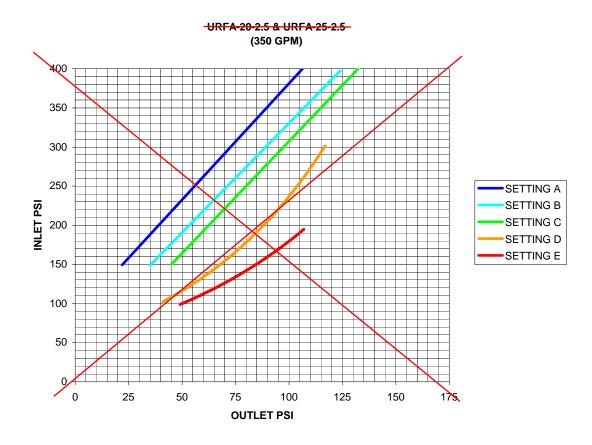

Below is a summary of the required frequency of inspections and testing for pressure reducing valves:

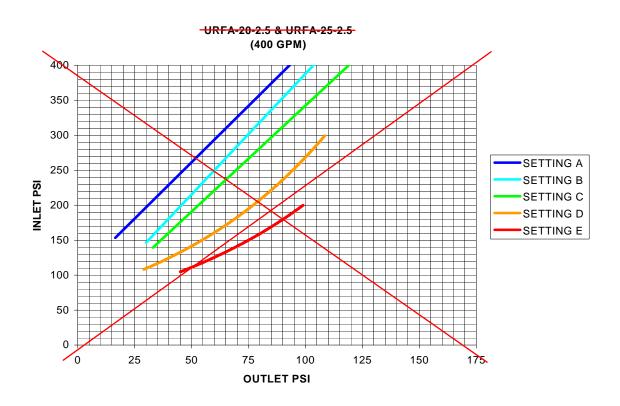

Valve Application	Inspection	Flow Test
Sprinkler System Pressure Regulating Control Valve	Quarterly	Annually
Hose Connection and Hose Rack Assembly Pressure Regulating Valve	Quarterly	5-Years

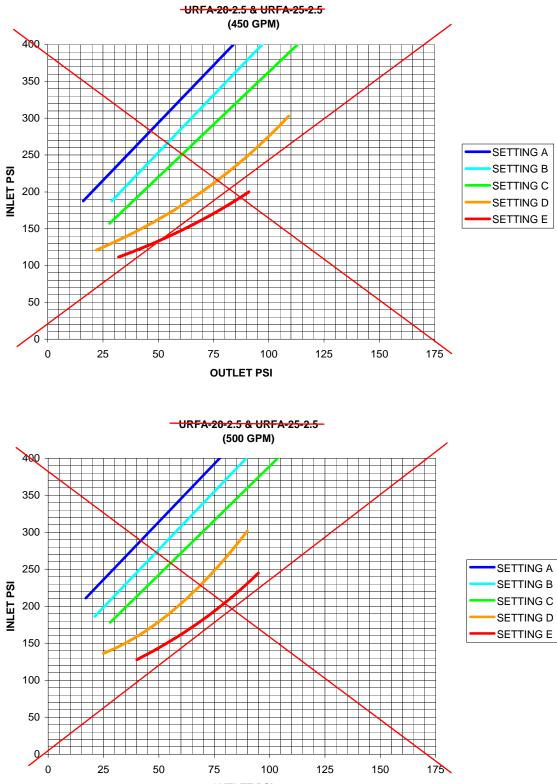

Quarterly inspections should verify that the tamper-resistant cover is properly secured and compare actual valve adjustment settings to documented correct adjustment settings for each valve. If a valve is found to have incorrect valve setting it should be reset to the proper setting and undergo flow and no-flow testing to verify proper pressure reduction is obtained.

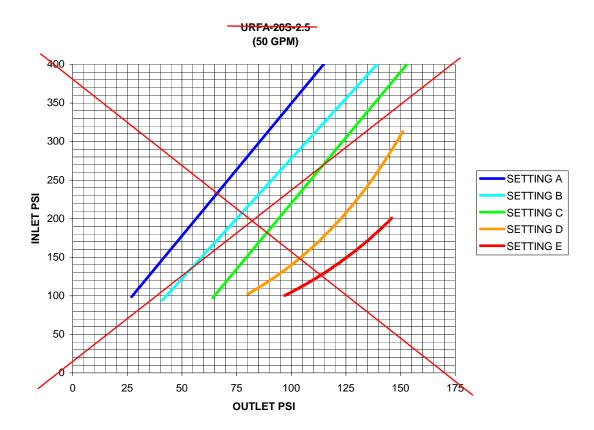

Flow test results should be compared to previous test results, and to system performance criteria. If the valve adjustment settings match the original and correct settings for each valve then no significant variance should occur from the original flow testing data.

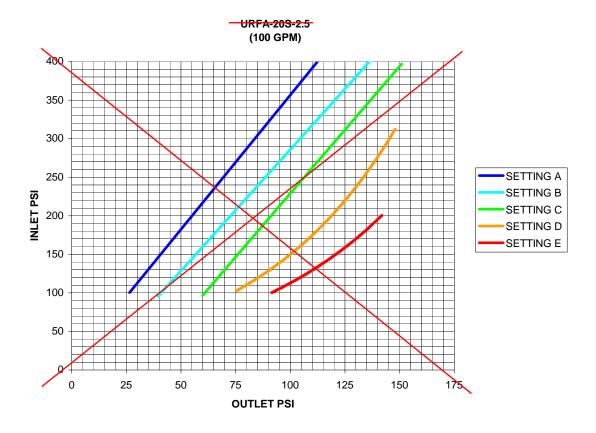


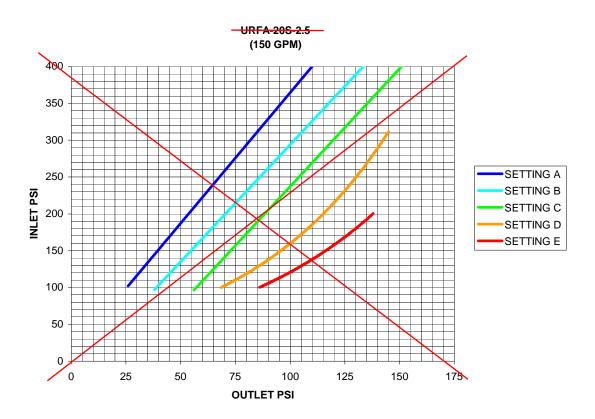


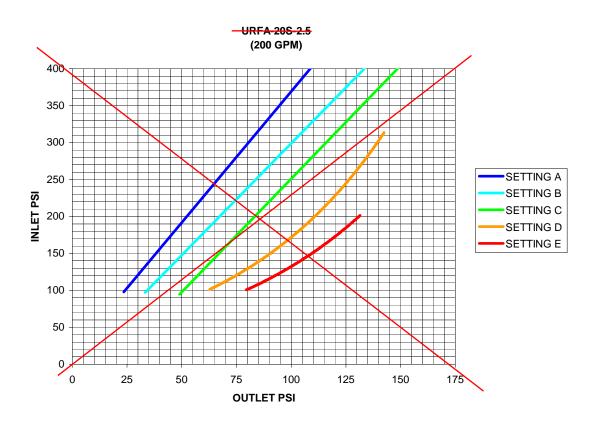


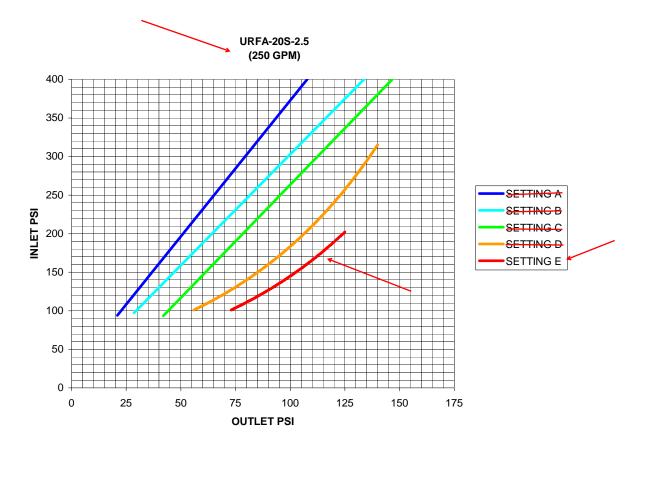


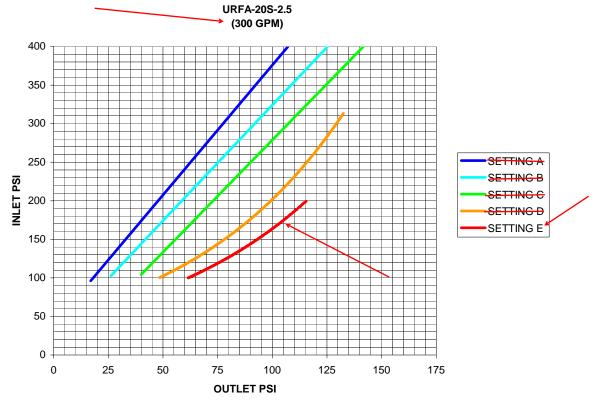


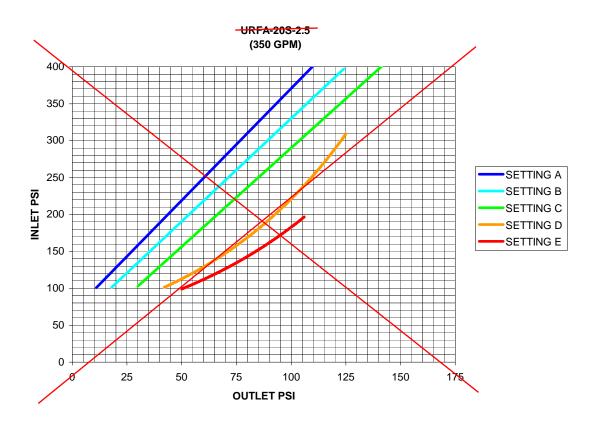


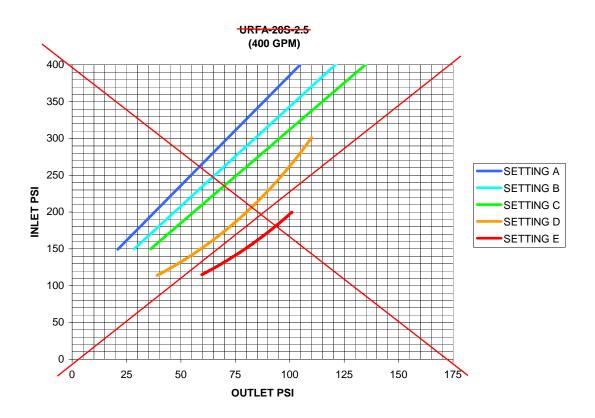


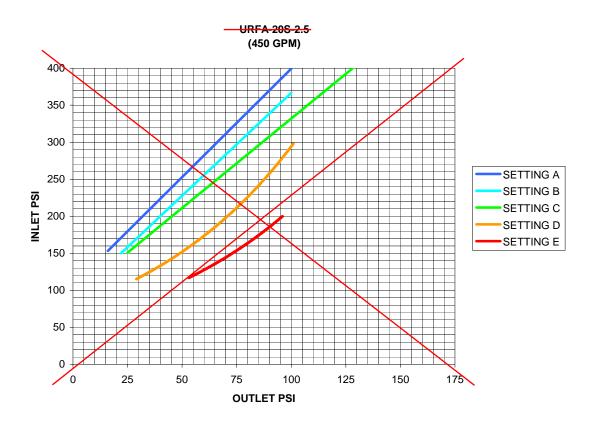

OUTLET PSI

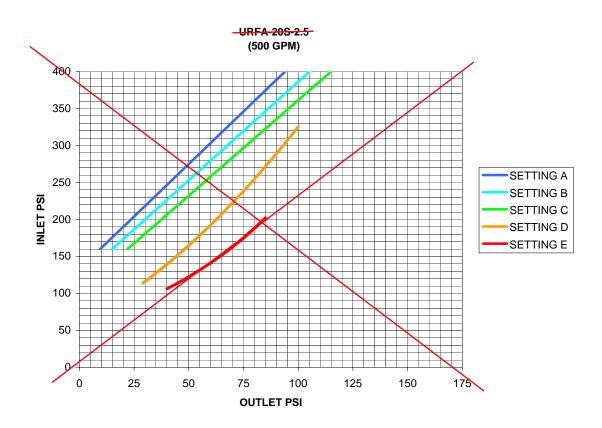

15

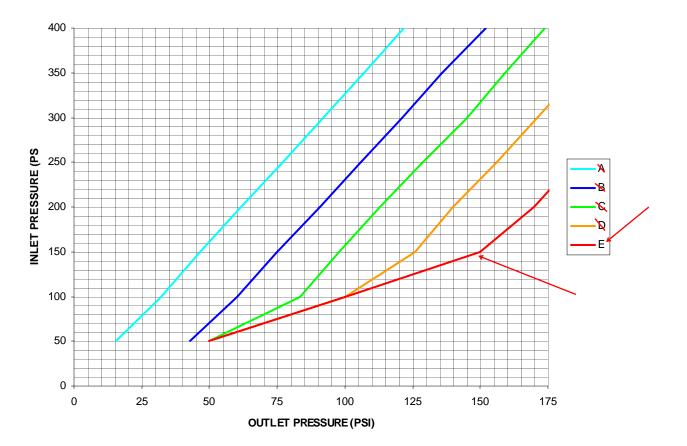












STATIC PRESSURE REDUCTION

Elkhart Brass Mfg. Co., Inc. Mailing Address: P.O. Box 1127 Elkhart, IN 46515 USA Shipping Address: 1302 W. Beardsley Ave. Elkhart, IN 46514 USA Tel. 1-574-295-8330 1-800-346-0250 Fax 1-574-293-9914 e-mail: info@elkhartbrass.com

www.elkhartbrass.com

Elkhart Brass

Fire Fighting Equipment

URFA Valve Calculator

Project Name	Cal Poly Center for Science
Floor Location	First Floor
Static Inlet Pressure (PSI) *	183
Residual Inlet Pressure (PSI) *	174.5
Design Static Outlet Pressure	
Design Residual Outlet Pressure	
Flow Rate (GPM) *	250
Valve Body Style	URFA-20S-2.5 (IN-LINE BODY)

	Indicator Setting	Static Outlet Pressure (PSI)	Residual Outlet Pressure (PSI)	
	A]
	B	85.56		
	.c.	107.90	<u> </u>	
	D	135.24	96.64	
>	E	163.20	113.60]

PRESSURE LOSS ACROSS VALVE IS

174.5 psi - 113.6 psi = 60.9 psi 250 GPM This page intentionally left blank.

URFA Valve Results

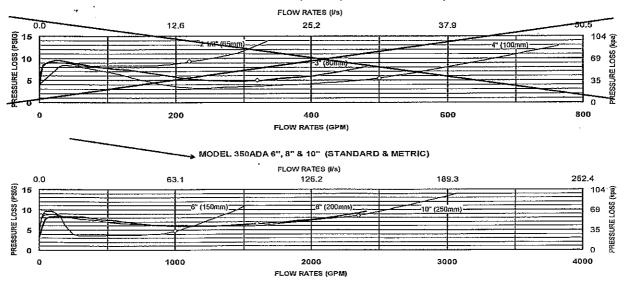
Page	1	of	1

Elkhart	Brass

Fire Fighting Equipment

Project Name	Cal Poly Center for Science
Floor Location	First Floor [R/A=2]
Static Inlet Pressure (PSI) *	183
Residual Inlet Pressure (PSI) *	169
Design Static Outlet Pressure	
Design Residual Outlet Pressure	
Flow Rate (GPM) *	328
Valve Body Style	URFA-20S-2.5 (IN-LINE BODY)

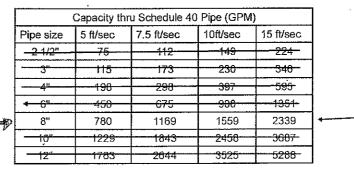
	Indicator Setting	Static Outlet Pressure (PSI)	Residual Outlet Pressure (PSI)	
ſ	- <u>-</u> A	56.40		Ī
	B	85.56	45.66	
	- - C			
Γ	- D		83.89	
╼╤	E	163.20	98.86	ין ר

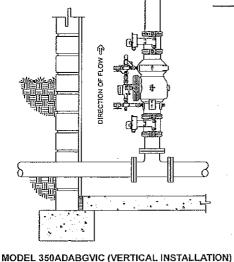

PRESSURE LOSS ACROSS VALUE IS

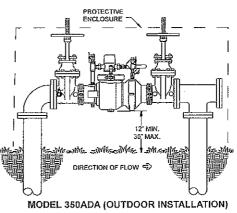
169 rsi - 98.86 psi= 70.14 psi @ 328 gpm This page intentionally left blank.

	Model 350ADA Double Check Detector Assembly ION SUBMITTAL SHEET
(with OS&Y gates) FEATURES	APPLICATION Designed for installation on potable water lines connections in fire sprinkler systems to protect against both backsiphonage and backpressure of polluted water into the potable water supply. Model 350ADA shall provide protection where a potential health hazard does not exist. Incorporates metered by-pass to detect leaks and unauthorized water use. STANDARDS COMPLIANCE (HORIZONTAL & VERTICAL)
Sizes: 2 1/2"* 3"* 4" 6" 9 Maximum working water pressure 175 PSI Maximum working water temperature 140°F Hydrostatic test pressure 350 PSI End connections (Grooved for steel pipe) AWWA C606 (Flanged) ANSI B16.1 Class 125 *2 1/2" & 3" sizes use 4" body & reducer couplings	 ASSE® Listed 1048 AWWA Compliant C510 (with gates only) CSA® Certified (4" - 8") UL® Classified C-UL® Classified FM® Approved Approved by the Foundation for Cross Connection Control and Hydraulic Research at the University of
OPTIONS (Suffixes can be combined) I - with flanged end OS & Y gate valves (standard) I - less shut-off valves (grooved body connections) I IM I - less water meter I - with remote reading meter I - with gpm meter (standard) I - with gpm meter I - with grooved end OS&Y gate valves I G I FG I FG I - with flanged inlet gate connection and grooved outlet gate connection	Southern California NYC MEA 221-04M-2 (2 1/2" - 8") MATERIALS Main valve body Ductile Iron ASTM A 536 Grade 4 Access covers Ductile Iron ASTM A 536 Grade 4 Coatings FDA Approved electrostatic epoxy finish Internals Stainless steel, 300 Series NORYL™, NSF Listed Fasteners & springs Etanless Steel, 300 Series Elastomers EPDM (FDA approved)
 PI - with Post Indicator Gate Valves (4"-10") BGVIC - with grooved end butterfly valves ACCESSORIES Repair kit (rubber only) Thermal expansion tank (Model XT) OS & Y Gate valve tamper switch (OSY-40) Test Cock Lock (Model TCL24) DIMENSIONS & WEIGHTS (do not include pkg.) 	Buna Nitrile (FDA approved) NORYL™, NSF Listed MODEL 350ADA with OS&Y option
SIZE GATES GATES <thg< th=""><th>MODEL 350ADA with BGVIC option</th></thg<>	MODEL 350ADA with BGVIC option
MODEL A WITH B LESS C DIMENSION (approximation of the proximation of the p	E OPEN CLOSED E UTTERFLY CLOSED F UTTERFLY VALVES F G mm in mm in mm in mm mm Model 350 A D A 410 13 7/8 952 8 203 6 152 7 1/4 194 479 15 5/8 997 6 203 6 152 7 1/4 194 576 16 1/4 404 9 1/8 232 6 152 8 203 (flange body) 765 23 3/4 603 16 1/4 257 7 178 10 254
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	959 29 1/4 743 11 15/16 303 8 1/2 216 11 279 lengths. 1102 35 3/8 099 13 5/10 396 61/2 210 12 305 DOGUMENT# BE350ADA 1//1

FLOW CHARACTERISTICS


MODEL 350ADA 2 1/2", 3" & 4" (STANDARD & METRIC)

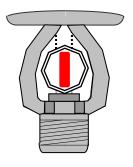



Rated Flow (Established by approval agencies)

TYPICAL INSTALLATION

Local codes shall govern installation requirements. Unless otherwise specified, the assembly shall be mounted at a minimum of 12" (305mm) and a maximum of 30" (762mm) above adequate drains with sufficient side clearance for testing and maintenance. The installation shall be made so that no part of the unit can be submerged.

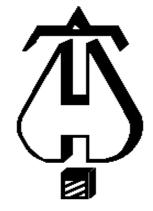
MODEL 350ADABGVIC (VERTICAL INSTALL


SPECIFICATIONS

The Double Check Detector Backflow Prevention Assembly shall be ASSE® Listed 1048, and supplied with full port gate valves. The main body and access cover shall be epoxy coated ductile iron (ASTM A 536 Grade 4), the seat ring and check valve shall be NoryI[™] (NSF Listed), the stem shall be stainless steel (ASTM A 276) and the seat disc elastomers shall be EPDM. The first and second check valves shall be accessible for maintenance without removing the device from the line. The Double Check Detector Backflow Prevention Assembly shall be a WILKINS Model 350ADA.

WILKINS a Zurn company, 1747 Commerce Way, Paso Robles, CA 93446 Phone:805/238-7100 Fax:805/238-5766 IN CANADA: ZURN INDUSTRIES LIMITED, 3544 Nashua Dr., Mississauga, Ontario L4V 1L2 Phone:905/405-8272 Fax:905/405-1292 Product Support Help Line: 1-877-BACKFLOW (1-877-222-5356) • Website: http://www.zurn.com

Page 2 of 2


Level 1 R/A # 1 & 2

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 1 [R/A=1]Building: FP-6.01WLocation: San Luis Obispo, Ca.System: 1-1Contract: 10034Data File: Cal Poly CFS LVL 1-1.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science Location: San Luis Obispo, Ca. Drawing no: FP-6.01W Date: 9-25-2011 Design Remote area number: 1-1 *Remote area location:* 1 st. Floor Lecture **Occupancy classification:** Light Hazard Density: 0.10 - Gpm/SqFt Area of application: 1500 - SqFt Coverage per sprinkler: 168 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 12 In-rack demand: N/A - GPM Hose streams: 100 - GPM Total water required (including hose streams): 350.6 - GPM @ 7.27 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal Water supply information Date: 8-19-2011 Location: N. Poly View Drive Source: Fluid Resource Management Name of contractor: Aero Automatic Sprinkler Co. Address: 21605 N. Central Ave. Phoenix, Az. 85024 **Phone number:** 623-580-7847 Name of designer: Neal Larsen Authority having jurisdiction: C.S.F.M. Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'} Hydrant # 64; Flow = 914 gpm FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi]

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=1]

ity Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 ity Water Adjusted to Pump Inlet	Pump Data: P1 - Pump Churn Pressure : 125.2 P2 - Pump Rated Pressure : 110.9 P2 - Pump Rated Flow : 790.2 P3 - Pump Pressure @ Max Flow : 67.9 P3 - Pump Max Flow : 1382.9	Demand: D1 - Elevation : -1.083 D2 - System Flow : 250.608 D2 - System Pressure : 130.164 Hose (Adj City) : Hose (Demand) : 100
r Pf - Elev - Hose Flow A1 - Adjusted Static: 51.872 A2 - Adj Resid : 49.314 @ 790.2 A3 - Adj Resid : 40.224 @ 1382.9	City Residual Flow @ 0 = 3307.91 City Residual Flow @ 20 = 2576.03 City Water @ 150% of Pump = 43.24	D3 - System Demand : 350.608 Safety Margin : 45.876
210		
196 AI + P1		
168 A2 + P2		
140 D2		
126 D3	A3 + P3	
14		
70 C1 A2 (C2	
12 A1 28	→ A3	
ັ20 @1 400 600 800	1000 1200 1400 FLOW (N ^ 1.85)	1600 1800

Fittings Used Summary

	utomatic Sprinkler Co. ly Center for Science LVL	1 [R/A=1]																_	.9-	3 9-25-11	
Fitting L	egend Name	1/2	3/4	1	1¼	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
		,,	,4		174	.,,	_	_/2		0/2						.=					
в	Generic Butterfly Valve	0	0	2.25	2	2.5	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
С	Generic Check VIv	4	5	5	7	9	11	14	16	19	22	27	32	45	55	65	76	87	98	109	130
Е	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Н	45' Ell Grvd-Vic #11	0	0	1	1.5	2	2	3	3	3.5	3.5	4.5	5	6.5	8.5	10	18	20	23	25	30
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Zic Wilkens 350ADA

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet US Gallons per Minute Pounds per Square Inch

Fitting generates a Fixed Loss Based on Flow

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=1]

Page	4
Date	9-25-11

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.			
S101	10.5	5.6	9.0	na	16.8	0.1	168	7.0			
S102	10.5	5.6	10.12	na	17.81	0.1	168	7.0			
S103	10.5	5.6	14.14	na	21.05	0.1	168	7.0			
S104	10.5	5.6	23.3	na	27.03	0.1	168	7.0			
S105	10.5	5.6	9.1	na	16.89	0.1	168	7.0			
S106	10.5	5.6	10.23	na	17.91	0.1	168	7.0			
S107	10.5	5.6	14.29	na	21.17	0.1	168	7.0			
S108	10.5	5.6	23.55	na	27.18	0.1	168	7.0			
S109	10.5	5.6	9.46	na	17.23	0.1	168	7.0			
S110	10.5	5.6	10.64	na	18.26	0.1	168	7.0			
S111	10.5	5.6	14.84	na	21.58	0.1	168	7.0			
S112	10.5	5.6	24.45	na	27.69	0.1	168	7.0			
L101	12.167		8.62	na							
L102	13.167		9.77	na							
L103	13.167		14.08	na							
L104	13.167		23.89	na							
L105	12.167		8.73	na							
L106	13.167		9.89	na							
L107	13.167		14.24	na							
L108	13.167		24.16	na							
L109	12.167		9.1	na							
L110	13.167		10.32	na							
L111	13.167		14.84	na							
L112	13.167		25.12	na							
M101	13.167		25.82	na							
M102	13.167		26.11	na							
M103	13.167		27.13	na							
M104	13.167		41.43	na							
M105	13.167		51.6	na							
TR01	13.167		60.33	na							
BR01	3.0		126.68	na							
SPC1	12.667		125.17	na	100.0						
SPC2	12.667		125.36	na							
PO	1.833		130.16	na							
PI	1.75		51.68	na							
POC	6.75		49.6	na							
BF1	13.0		46.98	na							
BF2	13.0		53.01	na							
SRC	13.0		53.15	na							

The maximum velocity is 21.19 and it occurs in the pipe between nodes L111 and M103

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=1

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	******* Notes ****
NOUCZ	LICVZ	1 401	Qi	Act	Eqv.	L11.	Total	1 1/1 (
*FLOWI	ING SPR	INKLER I	R/A # 1 #	ŧ						
S101	10.500	5.60	16.80	1	1E	2.0	1.667	120	9.000	
0	40.407		10.0	1 0 1 0		0.0	2.000	0.0044	-0.722	
L101	12.167		16.8	1.049		0.0	3.667	0.0944	0.346	Vel = 6.24
L101			0.0 16.80						8.624	K Factor = 5.72
S102	10.500	5.60	17.81	1	1T	5.0	2.667	120	10.119	
o L102	13.167		17.81	1.049		0.0 0.0	5.000 7.667	0.1050	-1.155 0.805	Vel = 6.61
LIUZ	15.107		0.0	1.049		0.0	7.007	0.1050	0.005	ver = 0.01
L102			0.0 17.81						9.769	K Factor = 5.70
S103	10.500	5.60	21.05	1	1T	5.0	2.667	120	14.135	••• •
:0		0.00		·		0.0	5.000		-1.155	
L103	13.167		21.05	1.049		0.0	7.667	0.1431	1.097	Vel = 7.81
L103			0.0 21.05						14.077	K Factor = 5.61
S104	10.500	5.60	27.03	1	1T	5.0	2.667	120	23.303	
to						0.0	5.000		-1.155	
L104	13.167		27.03	1.049		0.0	7.667	0.2272	1.742	Vel = 10.03
L104			0.0 27.03						23.890	K Factor = 5.53
S105	10.500	5.60	16.89	1	1E	2.0	1.667	120	9.100	
to						0.0	2.000		-0.722	
L105	12.167		16.89	1.049		0.0	3.667	0.0952	0.349	Vel = 6.27
L105			0.0 16.89						8.727	K Factor = 5.72
S106	10.500	5.60	17.91	1	1T	5.0	2.667	120	10.231	
to	10.000	0.00	17.51			0.0	5.000	120	-1.155	
L106	13.167		17.91	1.049		0.0	7.667	0.1060	0.813	Vel = 6.65
			0.0							
L106			17.91						9.889	K Factor = 5.70
S107	10.500	5.60	21.17	1	1T	5.0	2.667	120	14.288	
to L107	13.167		21.17	1.049		0.0 0.0	5.000 7.667	0.1446	-1.155 1.109	Vel = 7.86
2107	10.107		0.0	1.045		0.0	1.001	0.1440	1.105	VCI = 7.00
L107			21.17						14.242	K Factor = 5.61
S108	10.500	5.60	27.18	1	1T	5.0	2.667	120	23.551	
to						0.0	5.000		-1.155	
L108	13.167		27.18	1.049		0.0	7.667	0.2294	1.759	Vel = 10.09
1 1 0 0			0.0						01 1EE	K Factor - 552
L108	10 500	F 00	27.18	4	1 -	2.0	4 007	100	24.155	K Factor = 5.53
S109 to	10.500	5.60	17.23	1	1E	2.0 0.0	1.667 2.000	120	9.464 -0.722	
L109	12.167		17.23	1.049		0.0	3.667	0.0987	0.362	Vel = 6.40
			0.0					-		
L109			17.23						9.104	K Factor = 5.71
S110	10.500	5.60	18.26	1	1T	5.0	2.667	120	10.637	
to						0.0	5.000		-1.155	
L110	13.167		18.26	1.049		0.0	7.667	0.1100	0.843	Vel = 6.78

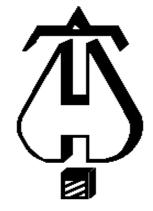
Page 5

Jai Poly	Center for	r Science	LVL 1 [ŀ	₹/A=1]						Date 9-25-11
Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	******* Notoo *****
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
			0.0							
L110			18.26						10.325	K Factor = 5.68
S111 to	10.500	5.60	21.58	1	1T	5.0 0.0	2.667 5.000	120	14.844 -1.155	
L111	13.167		21.58	1.049		0.0	7.667	0.1497	1.148	Vel = 8.01
L111			0.0 21.58						14.837	K Factor = 5.60
S112	10.500	5.60	27.69	1	1T	5.0	2.667	120	24.448	
to						0.0	5.000		-1.155	
L112	13.167		27.69	1.049		0.0	7.667	0.2376	1.822	Vel = 10.28
L112			0.0 27.69						25.115	K Factor = 5.53
	CH LINES	S R/A # 1	27.00						20.110	
L101	12.167		16.80	1	2E	4.0	12.750	120	8.624	
to						0.0	4.000		-0.433	
L102	13.167		16.8	1.049		0.0	16.750	0.0942	1.578	Vel = 6.24
L102 to	13.167		17.81	1		0.0 0.0	12.000 0.0	120	9.769 0.0	
L103	13.167		34.61	1.049		0.0	12.000	0.3590	4.308	Vel = 12.85
L103	13.167		21.06	1	1T	5.0	8.583	120	14.077	
to	40.407			1 0 1 0		0.0	5.000	0.0047	0.0	
M101	13.167		55.67 0.0	1.049		0.0	13.583	0.8647	11.745	Vel = 20.67
M101			55.67						25.822	K Factor = 10.96
L104	13.167		27.03	1	1T	5.0	3.500	120	23.890	
to	40.407					0.0	5.000		0.0	
M101	13.167		27.03	1.049		0.0	8.500	0.2273	1.932	Vel = 10.03
M101			0.0 27.03						25.822	K Factor = 5.32
L105	12.167		16.89	1	2E	4.0	12.750	120	8.727	
to						0.0	4.000		-0.433	
L106	13.167		16.89	1.049		0.0	16.750	0.0952	1.595	Vel = 6.27
L106 to	13.167		17.91	1		0.0 0.0	12.000 0.0	120	9.889 0.0	
L107	13.167		34.8	1.049		0.0	12.000	0.3627	4.353	Vel = 12.92
L107	13.167		21.17	1	1T	5.0	8.583	120	14.242	
to M102	40 407			1 0 4 0		0.0	5.000	0.0704	0.0	
M102	13.167		55.97	1.049		0.0	13.583	0.8734	11.864	Vel = 20.78
M102			0.0 55.97						26.106	K Factor = 10.95
L108	13.167		27.18	1	1T	5.0	3.500	120	24.155	
to						0.0	5.000		0.0	
M102	13.167		27.18	1.049		0.0	8.500	0.2295	1.951	Vel = 10.09
M102			0.0 27.18						26.106	K Factor = 5.32
L109	12.167		17.23	1	2E	4.0	12.750	120	9.104	1110001 - 0.02
to						0.0	4.000		-0.433	
L110	13.167		17.23	1.049		0.0	16.750	0.0987	1.654	Vel = 6.40

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=1]

Page	7
Date	9-25-11

Node1 to	Elev1	K Qa	Nom	Fitting or	l	Pipe Ftng's	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
1440	40.407	40.00				40.000	400	40.005	
L110 0	13.167	18.26	1		0.0 0.0	12.000 0.0	120	10.325 0.0	
L111 L111	13.167 13.167	<u>35.49</u> 21.58	1.049 1	1T	0.0 5.0	12.000 8.583	0.3760 120	4.512 14.837	Vel = 13.17
o M103	13.167	57.07	1.049		0.0 0.0	5.000 13.583	0.9053	0.0 12.297	Vel = 21.19
M103		0.0 57.07						27.134	K Factor = 10.96
L112 o	13.167	27.69	1	1T	5.0 0.0	3.500 5.000	120	25.115 0.0	
M103	13.167	27.69 0.0	1.049		0.0	8.500	0.2375	2.019	Vel = 10.28
M103		27.69						27.134	K Factor = 5.32
*FEED M101 o	MAIN 13.167	82.70	2.5		0.0 0.0	14.000 0.0	120	25.822 0.0	
M102	13.167	82.7	2.635		0.0	14.000	0.0203	0.284	Vel = 4.87
M102 0	13.167	83.15	2.5		0.0 0.0	14.000 0.0	120	26.106 0.0	
M103 M103	13.167 13.167	165.85 84.76	2.635 2.5	1T	0.0 16.474	14.000 74.250	0.0734 120	1.028 27.134	Vel = 9.76
o M104	13.167	250.61	2.635		0.0 0.0	16.474 90.724	0.1576	0.0 14.299	Vel = 14.74
M104 o	13.167	0.0	2.5	1H 1T	4.119 16.474	43.917 20.593	120	41.433 0.0	
M105	13.167	250.61	2.635		0.0	64.510	0.1576	10.168	Vel = 14.74
M105 o	13.167	0.0	3	4I 1T	20.159	109.083 47.038	120	51.601 0.0	
TR01 TR01	13.167 13.167	250.61 0.0	3.26 3	11	0.0	156.121 10.167	0.0559 120	8.727 60.328	Vel = 9.63
o BR01	3	250.61	3.26		0.0 0.0	6.720 16.887	0.0559	65.403 0.944	* Fixed loss = 61 Vel = 9.63
BR01 o	3	0.0	3	2I 1T	13.44 20.159	14.333 33.599	120	126.675 -4.187	
SPC1	12.667	250.61	3.26		0.0	47.932	0.0559	2.680	Vel = 9.63
SPC1	12.667	H100 100.00	6	1T	30.0 0.0	7.833 30.000	120	125.168 0.0	
SPC2 SPC2	12.667 12.667	<u>350.61</u> 0.0	6.065 8	11	0.0	37.833 14.750	0.0051 120	0.192 125.360	Vel = 3.89
o PO	1.833	350.61	7.981	1B 1C	12.0 45.0	70.000 84.750	0.0013	4.692 0.112	Vel = 2.25
PO		0.0 350.61						130.164	K Factor = 30.73
System Safety N	Demand Margin lation Pres	Pressure			130.164 45.876 176.040				
Pressure @ Pump Outlet Pressure From Pump Curve Pressure @ Pump Inlet					176.040 -124.362 51.678				


Aero Auto Cal Poly			Co. ce LVL 1 [F	R/A=1]						Page 8 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
ΡI	1.750		0.0	8	1G	4.0	14.000	120	51.678	
to					11	13.0	52.000		-2.166	
POC	6.750		350.61	7.981	1T	35.0	66.000	0.0013	0.088	Vel = 2.25
POC	6.750		0.0	8	2E	56.936	41.000	140	49.600	
to						0.0	56.936		-2.707	
BF1	13		350.61	8.27		0.0	97.936	0.0008	0.083	Vel = 2.09
BF1	13		0.0	8	1Zic	0.0	4.000	120	46.976	
to						0.0	0.0		6.031	* Fixed loss = 6.031
BF2	13		350.61	7.981		0.0	4.000	0.0012	0.005	Vel = 2.25
BF2	13		0.0	8	2E	56.936	46.000	140	53.012	
to	-			-	1G		118.616	-	0.0	
SRC	13		350.61	8.27	1T		164.616	0.0008	0.138	Vel = 2.09
			0.0							
SRC			350.61						53.150	K Factor = 48.09

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 1 [R/A=2]Building: FP-6.01WLocation: San Luis Obispo, Ca.System: 1-2Contract: 10034Data File: Cal Poly CFS LVL 1-2.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science Location: San Luis Obispo, Ca. Drawing no: FP-6.01W Date: 9-25-2011 Design **Remote area number:** 1-2 *Remote area location:* 1 st. Floor Lecture **Occupancy classification:** Light Hazard Density: 0.10 - Gpm/SqFt Area of application: 1500 - SqFt Coverage per sprinkler: 163 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 16 In-rack demand: N/A - GPM Hose streams: 100 - GPM Total water required (including hose streams): 428.4 - GPM @ 45.59 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal Water supply information Date: 8-19-2011 Location: N. Poly View Drive Source: Fluid Resource Management Name of contractor: Aero Automatic Sprinkler Co. Address: 21605 N. Central Ave. Phoenix, Az. 85024 **Phone number:** 623-580-7847 Name of designer: Neal Larsen Authority having jurisdiction: C.S.F.M. Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'} Hydrant # 64; Flow = 914 gpm FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi]

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=2]

ity Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914	Pump Data: P1 - Pump Churn Pressure : 125.2 P2 - Pump Rated Pressure : 110.9 P2 - Pump Rated Flow : 790.2 P3 - Pump Pressure @ Max Flow : 67.9	Demand: D1 - Elevation : 9.420 D2 - System Flow : 328.401 D2 - System Pressure : 167.582 Hose (Adj City) :
ity Water Adjusted to Pump Inlet or Pf - Elev - Hose Flow A1 - Adjusted Static: 51.872 A2 - Adj Resid : 49.314 @ 790. A3 - Adj Resid : 40.224 @ 1382	P3 - Pump Max Flow : 1382.9 City Residual Flow @ 0 = 3307.9 City Residual Flow @ 20 = 2576.0 City Water @ 150% of Pump = 43.24	Hose (Demand) : 100 1 D3 - System Demand : 428.401 3 Safety Margin : 7.179
210		
196		
182 AI + P1		
168 A2 +	P2	
154 D3		
140		
126	A3 + P3	
112		
98		
84		
70 C1 A2		
	C2 A3	
⁴² A1 28		
14		
200 400 600 800	1000 1200 1400 FLOW (N ^ 1.85)	1600 1800
	FLOW (N ^ 1.85)	

Fittings Used Summary

Wilkens 350ADA

	utomatic Sprinkler Co. ly Center for Science LVL	1 [R/A=2]]															_		3 9-25-11	
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve	0	0	2.25	2	2.5	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
C	Generic Check Vlv	4	5	5	(9	11	14	16	19	22	27	32	45	55	65	76	87	98	109	130
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Н	45' Ell Grvd-Vic #11	0	0	1	1.5	2	2	3	3	3.5	3.5	4.5	5	6.5	8.5	10	18	20	23	25	30
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	na aener	ates a Fi	ixed Los	s Base	d on Flo	w													

Units Summary

Diameter Units
Length Units
Flow Units
Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

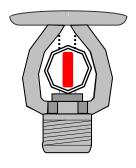
Fitting generates a Fixed Loss Based on Flow

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=2]

		E	<u> </u>					
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
S121	34.75	5.6	7.0	na	14.82	0.1	117	7.0
S122	34.75	5.6	7.93	na	15.77	0.1	124	7.0
S123	34.75	5.6	11.11	na	18.67	0.1	124	7.0
S124	34.75	5.6	12.56	na	19.84	0.1	124	7.0
5125	28.833	5.6	10.5	na	18.15	0.1	143	7.0
5126	28.833	5.6	11.19	na	18.73	0.1	143	7.0
5127	28.833	5.6	14.14	na	21.06	0.1	143	7.0
5128	25.833	5.6	11.6	na	19.07	0.1	143	7.0
5129	25.833	5.6	12.13	na	19.5	0.1	143	7.0
\$130	25.833	5.6	15.36	na	21.95	0.1	143	7.0
5131	22.833	5.6	13.67	na	20.71	0.1	143	7.0
132	22.833	5.6	14.36	na	21.22	0.1	163	7.0
\$133	22.833	5.6	18.06	na	23.8	0.1	163	7.0
\$134	19.833	5.6	17.51	na	23.43	0.1	143	7.0
\$135	19.833	5.6	19.32	na	24.61	0.1	114	7.0
5136	19.833	5.6	23.35	na	27.06	0.1	114	7.0
.121	36.917		6.37	na				
.122	36.917		7.59	na				
123	36.917		11.0	na				
124	36.917		12.54	na				
125	36.0		8.4	na				
126	36.0		10.01	na				
127	36.0		13.44	na				
128	34.5		9.12	na				
129	34.5		10.59	na				
130	34.5		14.36	na				
.131	33.0		11.38	na				
132	33.0		12.71	na				
133	33.0		17.08	na				
134	31.5		16.04	na				
135	31.5		17.74	na				
136	31.5		22.43	na				
121	36.917		14.67	na				
1122	36.0		15.16	na				
1123	34.5		16.22	na				
1124	33.0		19.23	na				
1125	31.5		24.65	na				
1125	13.167		71.73	na				
R01	13.167		86.12	na				
R01	3.0		162.22					
PC1	12.667		162.45	na	100.0			
PC1 PC2	12.667		162.45	na	100.0			
0	1.833		162.73	na				
'I	1.033		51.42	na				
				na				
	6.75		49.38	na				
F1	13.0		46.8	na				
F2	13.0		52.57 52.77	na				
SRC	13.0		52.77	na				

The maximum velocity is 19.32 and it occurs in the pipe between nodes M125 and M105

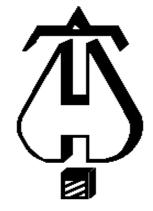

	omatic Sp Center fo			R/A=2]						Page 5 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe Etc. slo	CFact	Pt	******* Notoo *****
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	******* Notes *****
	ING SPR									
S121	34.750	5.60	14.82	1	1E	2.0	2.167	120	7.000	
o L121	36.917		14.82	1.049		0.0 0.0	2.000 4.167	0.0749	-0.939 0.312	Vel = 5.50
			0.0							
L121			14.82						6.373	K Factor = 5.87
S122	34.750	5.60	15.77	1	1T	5.0	2.167	120	7.930	
o L122	36.917		15.77	1.049		0.0 0.0	5.000 7.167	0.0840	-0.939 0.602	Vel = 5.85
			0.0							
L122			15.77						7.593	K Factor = 5.72
S123	34.750	5.60	18.67	1	1T	5.0	2.167	120	11.113	
:o L123	36.917		18.67	1.049		0.0 0.0	5.000 7.167	0.1147	-0.939 0.822	Vel = 6.93
2120	00.011		0.0			0.0		0	0.022	
L123			18.67						10.996	K Factor = 5.63
S124	34.750	5.60	19.84	1	1T	5.0	2.167	120	12.555	
o L124	36.917		19.84	1.049		0.0 0.0	5.000 7.167	0.1284	-0.939 0.920	Vel = 7.37
	00.017		0.0	1.045		0.0	7.107	0.1204	0.520	VCI = 7.57
L124			19.84						12.536	K Factor = 5.60
S125	28.833	5.60	18.15	1	1E	2.0	7.167	120	10.504	
to L125	36		18.15	1.049		0.0 0.0	2.000 9.167	0.1088	-3.104 0.997	Vel = 6.74
L125	50		0.0	1.043		0.0	3.107	0.1000	0.337	Ver = 0.74
L125			18.15						8.397	K Factor = 6.26
S126	28.833	5.60	18.73	1	1E	2.0	9.667	120	11.192	
to L126	36		18.73	1.049	1T	5.0 0.0	7.000 16.667	0.1153	-3.104 1.921	Vel = 6.95
LIZU	30		0.0	1.049		0.0	10.007	0.1155	1.921	ver = 0.95
L126			18.73						10.009	K Factor = 5.92
S127	28.833	5.60	21.06	1	1E	2.0	9.750	120	14.144	
to L127	26		21.06	1 0 4 0	1T	5.0	7.000	0 1 4 2 2	-3.104	\/ol - 7.92
LIZI	36		21.06 0.0	1.049		0.0	16.750	0.1432	2.399	Vel = 7.82
L127			0.0 21.06						13.439	K Factor = 5.74
S128	25.833	5.60	19.07	1	1E	2.0	8.667	120	11.601	
t0	04 500			4 0 4 0		0.0	2.000	0.4.400	-3.754	
L128	34.500		19.07	1.049		0.0	10.667	0.1192	1.271	Vel = 7.08
L128			0.0 19.07						9.118	K Factor = 6.32
S129	25.833	5.60	19.50	1	1E	2.0	10.833	120	12.127	
0					1T	5.0	7.000		-3.754	
L129	34.500		19.5	1.049		0.0	17.833	0.1242	2.215	Vel = 7.24
L129			0.0 19.50						10.588	K Factor = 5.99
S130	25.833	5.60	21.95	1	1E	2.0	10.833	120	15.361	1110001 - 0.00
0		0.00			1T	2.0 5.0	7.000		-3.754	
L130	34.500		21.95	1.049		0.0	17.833	0.1546	2.757	Vel = 8.15

	omatic Sp Center for			R/A=2]						Page 6 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
L130			0.0 21.95						14.364	K Factor = 5.79
S131	22.833	5.60	20.71	1	1T	5.0	10.167 5.000	120	13.674	
to L131	33		20.71	1.049		0.0 0.0	15.167	0.1388	-4.403 2.105	Vel = 7.69
L131			0.0 20.71						11.376	K Factor = 6.14
S132 to	22.833	5.60	21.22	1	1E 1T	2.0 5.0	11.917 7.000	120	14.362 -4.403	V-I 7.00
L132	33		21.22 0.0	1.049		0.0	18.917	0.1452	2.747	Vel = 7.88
L132 S133 to	22.833	5.60	21.22 23.80	1	1E 1T	2.0 5.0	12.083 7.000	120	12.706 18.057 -4.403	K Factor = 5.95
L133	33		23.8	1.049		0.0	19.083	0.1794	3.424	Vel = 8.84
L133			0.0 23.80						17.078	K Factor = 5.76
S134 to L134	19.833 31.500	5.60	23.44 23.44	1 1.049	1E 1T	2.0 5.0 0.0	13.500 7.000 20.500	120 0.1745	17.512 -5.053 3.577	Vel = 8.70
L134	31.300		0.0 23.44	1.049		0.0	20.300	0.1745	16.036	K Factor = 5.85
S135 to	19.833	5.60	24.61	1	1T	5.0 0.0	13.167 5.000	120	19.319 -5.053	
L135	31.500		24.61 0.0	1.049		0.0	18.167	0.1911	3.471	Vel = 9.14
L135 S136	19.833	5.60	24.61 27.06	1	1T	5.0	13.167	120	17.737 23.350	K Factor = 5.84
to L136	31.500		27.06	1.049		0.0 0.0	5.000 18.167	0.2276	-5.053 4.135	Vel = 10.05
L136			0.0 27.06						22.432	K Factor = 5.71
*BRANG L121	CH LINES 36.917	S R/A # 2	14.82	1	1E	2.0	14.333	120	6.373	
to L122	36.917		14.82	1.049		0.0 0.0	2.000 16.333	0.0747	0.0 1.220	Vel = 5.50
L122	36.917		15.77	1		0.0	11.917	120	7.593	
to L123	36.917		30.59	1.049		0.0 0.0	0.0 11.917	0.2856	0.0 3.403	Vel = 11.36
L123 to	36.917		18.67	1	1T	5.0 0.0	0.333 5.000	120	10.996 0.0	
M121	36.917		49.26	1.049		0.0	5.333	0.6895	3.677	Vel = 18.29
M121			0.0 49.26						14.673	K Factor = 12.86
L124 to M121	36.917 36.917		19.84 19.84	1 1.049	1T	5.0 0.0 0.0	11.667 5.000 16.667	120 0.1282	12.536 0.0 2.137	Vel = 7.37

	omatic Sp Center for		20. e LVL 1 [F	R/A=2]						Page 7 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	****** Notoo ******
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes ******
M121			0.0 19.84						14.673	K Factor = 5.18
L125	36		18.15	1		0.0 0.0	14.833 0.0	120	8.397 0.0	
o L126	36		18.15	1.049		0.0	14.833	0.1087	1.612	Vel = 6.74
L126 o	36		18.73	1	1T	5.0 0.0	7.750 5.000	120	10.009 0.0	
M122	36		36.88	1.049		0.0	12.750	0.4038	5.148	Vel = 13.69
M122			0.0 36.88						15.157	K Factor = 9.47
L127 o	36		21.06	1	1T	5.0 0.0	7.000 5.000	120	13.439 0.0	
0 M122	36		21.06	1.049		0.0	12.000	0.1432	1.718	Vel = 7.82
M122			0.0 21.06						15.157	K Factor = 5.41
L128	34.500		19.07	1		0.0	12.333	120	9.118	
o L129	34.500		19.07	1.049		0.0 0.0	0.0 12.333	0.1192	0.0 1.470	Vel = 7.08
L129	34.500		19.51	1	1T	5.0	7.833	120	10.588	
o M123	34.500		38.58	1.049		0.0 0.0	5.000 12.833	0.4387	0.0 5.630	Vel = 14.32
101120	04.000		0.0	1.040		0.0	12.000	0.4007	0.000	VOI - 14.02
M123			38.58						16.218	K Factor = 9.58
L130 o	34.500		21.95	1	1T	5.0 0.0	7.000 5.000	120	14.364 0.0	
M123	34.500		21.95	1.049		0.0	12.000	0.1545	1.854	Vel = 8.15
M123			0.0 21.95						16.218	K Factor = 5.45
L131	33		20.71	1		0.0	9.583	120	11.376	
o L132	33		20.71	1.049		0.0 0.0	0.0 9.583	0.1388	0.0 1.330	Vel = 7.69
L132 o	33		21.22	1	1T	5.0 0.0	7.750 5.000	120	12.706 0.0	
M124	33		41.93	1.049		0.0	12.750	0.5118	6.526	Vel = 15.57
M124			0.0 41.93						19.232	K Factor = 9.56
L133	33		23.80	1	1T	5.0	7.000 5.000	120	17.078 0.0	
o M124	33		23.8	1.049		0.0 0.0	5.000 12.000	0.1795	0.0 2.154	Vel = 8.84
M124			0.0 23.80						19.232	K Factor = 5.43
L134	31.500		23.44	1		0.0	9.750	120	16.036	
o L135	31.500		23.44	1.049		0.0 0.0	0.0 9.750	0.1745	0.0 1.701	Vel = 8.70
L135	31.500		24.61	1	1T	5.0	5.500	120	17.737	
0						0.0	5.000		0.0	
M125	31.500		48.05	1.049		0.0	10.500	0.6586	6.915	Vel = 17.84

Node1 to Node2	Elev1		-						_	
		К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	1005
			0.0							
M125			48.05						24.652	K Factor = 9.68
L136 o M125	31.500 31.500		27.06 27.06	1 1.049	1T	5.0 0.0 0.0	4.750 5.000 9.750	120 0.2277	22.432 0.0 2.220	Val - 10.05
11123	31.500		0.0	1.049		0.0	9.750	0.2211	2.220	Vel = 10.05
M125			27.06						24.652	K Factor = 5.45
*FEED	MAIN									
M121	36.917		69.10	2.5		0.0 0.0	6.000 0.0	120	14.673 0.397	
M122 M122	36 36		69.1 57.94	2.635 2.5		0.0	6.000 9.167	0.0145	0.087	Vel = 4.07
101122 0	30		57.94			0.0	0.0	120	0.650	
M123	34.500		27.04	2.635		0.0	9.167	0.0448	0.411	Vel = 7.47
M123 o M124	34.500 33		60.52 87.56	2.5 2.635	1T	16.474 0.0 0.0	9.167 16.474 25.641	120 0.0922	16.218 0.650 2.364	Vel = 11.03
M124 M124 0	33		65.73	2.035	1H 1T	4.119 16.474	9.083 20.593	120	19.232 0.650	Ver = 11.03
M125	31.500	2	253.29	2.635		0.0	29.676	0.1607	4.770	Vel = 14.90
M125 o	31.500		75.11	2.5	2T 3I	32.948 24.711	92.917 57.659	120	24.652 7.940	
M105	13.167	3	328.4	2.635	41	0.0	150.576	0.2599	39.134	Vel = 19.32
M105 o TR01	13.167 13.167	3	0.0 328.4	3 3.26	4I 1T	26.879 20.159 0.0	109.083 47.038 156.121	120 0.0922	71.726 0.0 14.391	Vel = 12.62
TR01	13.167		0.0	3	11	6.72	10.167	120	86.117	
	2	-	328.4	2.26		0.0	6.720	0.0000	74.543	* Fixed loss = 70.14
BR01 BR01	3 3	3	0.0	3.26 3	21	0.0	16.887 14.333	0.0922	1.557 162.217	Vel = 12.62
0					1T	20.159	33.599		-4.187	
SPC1	12.667		828.4	3.26	· -	0.0	47.932	0.0922	4.419	Vel = 12.62
SPC1 o	12.667	H100 1	00.00	6	1T	30.0 0.0	7.917 30.000	120	162.449 0.0	
SPC2	12.667	4	28.4	6.065		0.0	37.917	0.0073	0.278	Vel = 4.76
SPC2 o	12.667		0.0	8	1I 1B	13.0 12.0	14.750 70.000	120	162.727 4.692	
PO	1.833	4	128.4	7.981	1C	45.0	84.750	0.0019	0.163	Vel = 2.75
PO		4	0.0 128.40						167.582	K Factor = 33.09
Safety I	Demand Margin ation Pres					167.582 7.179 174.761				
Pressur	re @ Pum re From P re @ Pum	ump Curve	9			174.761 123.339 51.422				
PI o POC	1.750 6.750		0.0 128.4	8 7.981	1G 1I 1T	4.0 13.0 35.0	14.000 52.000 66.000	120 0.0019	51.422 -2.166 0.127	Vel = 2.75

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 1 [R/A=2]								Page 9 Date 9-25-11				
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	*****	Notes ****	**
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf			
POC	6.750		0.0	8	2E	56.936	41.000	140	49.383			
to						0.0	56.936		-2.707			
BF1	13		428.4	8.27		0.0	97.936	0.0012	0.120	Vel = 2.	56	
BF1	13		0.0	8	1Zic	0.0	4.000	120	46.796			
to						0.0	0.0		5.766	* Fixed lo	oss = 5.766	
BF2	13		428.4	7.981		0.0	4.000	0.0018	0.007	Vel = 2.	75	
BF2	13		0.0	8	2E	56.936	46.000	140	52.569			
to					1G	6.326	118.616		0.0			
SRC	13		428.4	8.27	1T	55.354	164.616	0.0012	0.200	Vel = 2.	56	
			0.0									
SRC			428.40						52.769	K Factor	= 58.97	


Level 3 R/A # 1 & 2

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 3 [R/A=1]Building: FP-6.03WLocation: San Luis Obispo, Ca.System: 3-1Contract: 10034Data File: Cal Poly CFS LVL 3-1.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science *Location:* San Luis Obispo, Ca. *Drawing no:* FP-6.03W *Date:* 9-25-2011

Design

Remote area number: 3-1 Remote area location: 3 rd. Floor Laboratory Occupancy classification: Ordinary Hazard Gr. 1 Density: 0.15 - Gpm/SqFt Area of application: 967 - SqFt Coverage per sprinkler: 120 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 12 In-rack demand: N/A - GPM Hose streams: 250 - GPM Total water required (including hose streams): 502.75 - GPM @ -0.88 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date:8-19-2011Location:N. Poly View DriveSource:Fluid Resource Management

Name of contractor: Aero Automatic Sprinkler Co.
Address: 21605 N. Central Ave. Phoenix, Az. 85024
Phone number: 623-580-7847
Name of designer: Neal Larsen
Authority having jurisdiction: C.S.F.M.
Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'}
Hydrant # 64; Flow = 914 gpm
FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi]
NOTE : REMOTE AREA REDUCED BY 39.25% [Q.R HEADS & C.H.=10'-6"] 912 SQ.FT. MIN. Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=1]

Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 Water Adjusted to Pump Inlet	Pump Data: P1 - Pump Churn Pressure : 125.2 P2 - Pump Rated Pressure : 110.9 P2 - Pump Rated Flow : 790.2 P3 - Pump Pressure @ Max Flow : 67.9	Demand: D1 - Elevation : 12.776 D2 - System Flow : 252.757 D2 - System Pressure : 121.999 Hose (Adj City) : 150 Hose (Demand) : 100				
f - Elev - Hose Flow A1 - Adjusted Static: 51.696 A2 - Adj Resid : 47.866 @ 790.2 A3 - Adj Resid : 37.967 @ 1382.9	P3 - Pump Max Flow : 1382.9 City Residual Flow @ 0 = 3307.91 City Residual Flow @ 20 = 2576.03 City Water @ 150% of Pump = 43.24	D3 - System Demand : 352.75 Safety Margin : 53.23				
A2 + P2						
$\begin{array}{c c} & \mathbf{D} \mathbf{Z} \\ \hline \mathbf{p} \rightarrow 0 \\ \hline \mathbf{D} 3 \\ \hline \end{array}$	A3 + P3					
	2					
A1						
D1						
200 400 600 800	1000 1200 1400 FLOW (N ^ 1.85)	1600 1800				

Fittings Used Summary

	utomatic Sprinkler Co. Iy Center for Science LVL	3 [R/A=1]																_		3 9-25-11	
Fitting L Abbrev.	egend Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
B C	Generic Butterfly Valve Generic Check Vlv	0	0 5	2.25 5	2	2.5 9	6 11	7 14	10 16	0 19	12 22	9 27	10 32	12 45	19 55	21 65	0 76	0 87	0 98	0 109	0 130
Ē	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittin	ng gener	ates a Fi	xed Los	ss Based	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=1]

Page 4 Date 9-25-11

Carroly			1]				Dale	9-20-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
S301	42.5	5.6	10.33	na	18.0	0.15	120	7.0
S302	42.5	5.6	11.14	na	18.7	0.15	120	7.0
S303	42.5	5.6	14.18	na	21.09	0.15	120	7.0
S304	42.5	5.6	21.23	na	25.81	0.15	120	7.0
S305	42.5	5.6	10.42	na	18.08	0.15	120	7.0
S306	42.5	5.6	11.24	na	18.78	0.15	120	7.0
S307	42.5	5.6	14.31	na	21.18	0.15	120	7.0
S308	42.5	5.6	21.42	na	25.92	0.15	120	7.0
S309	42.5	5.6	10.69	na	18.31	0.15	120	7.0
S310 S311	42.5 41.5	5.6 5.6	11.53 14.93	na	19.01 21.64	0.15 0.15	120 120	7.0 7.0
S312	41.5	5.6	21.98	na na	26.25	0.15	120	7.0
L301	43.083	5.0	10.68	na	20.25	0.15	120	7.0
L302	43.083		11.53	na				
L303	43.083		14.73	na				
L304	43.083		22.14	na				
L305	43.083		10.77	na				
L306	43.083		11.64	na				
L307	43.083		14.86	na				
L308	43.083		22.34	na				
L309	43.083		11.05	na				
L310	43.083		11.94	na				
L311	43.083		15.24	na				
L312	43.083		22.93	na				
MN30	44.0		28.7	na				
MN31	44.0		28.95	na				
MN32 MN35	44.0 43.083		29.74 88.29	na				
TOR3	43.083		92.48	na na				
BOR3	36.0		102.61	na				
HV1	99.75		76.68	na				
HV2	99.75		76.68	na				
SPRF	99.75		78.43	na				
SP16	85.0		84.82	na				
SP15	69.0		91.75	na				
SP14	53.0		98.68	na				
SP13	37.0		105.61	na				
HV3	101.0		75.51	na				
SPR3	101.0		77.26	na				
SP36	85.0		84.19	na				
SP35 SP34	69.0		91.12 98.05	na	50.0			
SP33	53.0 37.0		104.98	na na	50.0 50.0			
SP32	21.0		112.1	na	50.0			
SP05	29.167		108.57	na				
SP01	45.0		102.14	na				
SP02	27.917		109.54	na				
SP03	29.167		109.0	na				
SP04	28.083		109.81	na				
SPC1	12.667		117.0	na				
SPC2	12.667		117.19	na				
PO	1.833		122.0	na				
PI	1.75		50.88	na				
POC	6.75		48.8	na				
BF1	13.0		46.18	na				
BF2	13.0		52.21	na	150.0			
SRC	13.0		52.35	na	150.0			

The maximum velocity is 21.89 and it occurs in the pipe between nodes L311 and L312

Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	******* Notes *****
S301 o	42.500	5.60	18.00	1	1T	5.0 0.0	0.583 5.000	120	10.332 -0.252	
L301	43.083		18.0	1.049		0.0	5.583	0.1069	0.597	Vel = 6.68
1.004			0.0						40.077	
L301	40 500	F 00	18.00	4	4	5 0	0.500	400	10.677	K Factor = 5.51
S302 o	42.500	5.60	18.70	1	1T	5.0 0.0	0.583 5.000	120	11.145 -0.252	
L302	43.083		18.7	1.049		0.0	5.583	0.1148	0.641	Vel = 6.94
L302			0.0 18.70						11.534	K Factor = 5.51
S303	42.500	5.60	21.09	1	1T	5.0	0.583	120	14.184	
to	121000	0.00	21100	·		0.0	5.000	120	-0.252	
L303	43.083		21.09	1.049		0.0	5.583	0.1435	0.801	Vel = 7.83
L303			0.0 21.09						14.733	K Factor = 5.49
S304	42.500	5.60	25.80	1	1T	5.0	0.583	120	21.234	
to	40.000		05.0	4 0 4 0		0.0	5.000	0.0000	-0.252	\/-L 0.50
L304	43.083		25.8	1.049		0.0	5.583	0.2083	1.163	Vel = 9.58
L304			0.0 25.80						22.145	K Factor = 5.48
S305	42.500	5.60	18.08	1	1T	5.0	0.583	120	10.424	
to L305	43.083		18.08	1.049		0.0 0.0	5.000 5.583	0.1078	-0.252 0.602	Vel = 6.71
L305	43.065		0.0	1.049		0.0	0.000	0.1078	0.002	
L305			18.08						10.774	K Factor = 5.51
S306	42.500	5.60	18.78	1	1T	5.0	0.583	120	11.244	
to	42.002		10 70	1 0 4 0		0.0	5.000	0 1157	-0.252	
L306	43.083		18.78 0.0	1.049		0.0	5.583	0.1157	0.646	Vel = 6.97
L306			18.78						11.638	K Factor = 5.50
S307	42.500	5.60	21.18	1	1T	5.0	0.583	120	14.309	
to				4 0 4 0		0.0	5.000	0 4 4 4 5	-0.252	
L307	43.083		21.18	1.049		0.0	5.583	0.1445	0.807	Vel = 7.86
L307			0.0 21.18						14.864	K Factor = 5.49
S308	42.500	5.60	25.92	1	1T	5.0	0.583	120	21.416	
to						0.0	5.000		-0.252	
L308	43.083		25.92	1.049		0.0	5.583	0.2101	1.173	Vel = 9.62
L308			0.0 25.92						22.337	K Factor = 5.48
S309	42.500	5.60	18.31	1	1T	5.0	0.583	120	10.686	
0		5.00				0.0	5.000		-0.252	
L309	43.083		18.31	1.049		0.0	5.583	0.1105	0.617	Vel = 6.80
1 200			0.0						11 051	K Factor - 551
L309 S310	42.500	5.60	18.31 19.01	1	1T	5.0	0.583	120	11.051 11.526	K Factor = 5.51
0 0	42.000	5.00	13.01	I	11	5.0 0.0	0.583 5.000	120	-0.252	
L310	43.083		19.01	1.049		0.0	5.583	0.1184	0.661	Vel = 7.06

Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	******* Notoo *****
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
L310			0.0 19.01						11.935	K Factor = 5.50
S311 0	41.500	5.60	21.64	1	1T	5.0 0.0	1.583 5.000	120	14.930 -0.686	
J L311	43.083		21.64	1.049		0.0	6.583	0.1507	0.992	Vel = 8.03
L311			0.0 21.64						15.236	K Factor = 5.54
S312 o	42.500	5.60	26.25	1	1T	5.0 0.0	0.583 5.000	120	21.978 -0.252	
L312	43.083		26.25	1.049		0.0	5.583	0.2153	1.202	Vel = 9.74
L312			0.0 26.25						22.928	K Factor = 5.48
	CH LINES	S R/A # 1								
L301 o	43.083		18.00	1		0.0 0.0	8.000 0.0	120	10.677 0.0	
L302	43.083		18.0	1.049		0.0	8.000	0.1071	0.857	Vel = 6.68
L302	43.083		18.70	1		0.0	8.000	120	11.534	
o L303	43.083		36.7	1.049		0.0 0.0	0.0 8.000	0.3999	0.0 3.199	Vel = 13.62
L303	43.083		21.09	1		0.0	8.000	120	14.733	10.02
0	42.000		F7 70	4 0 4 0		0.0	0.0	0.0005	0.0	
L304 L304	43.083 43.083		57.79 25.80	1.049 1.25	1E	0.0	8.000 5.417	0.9265	7.412 22.145	Vel = 21.45
0					1T	6.0	9.000		-0.397	
MN30	44		83.59	1.38		0.0	14.417	0.4824	6.955	Vel = 17.93
MN30			0.0 83.59						28.703	K Factor = 15.60
L305	43.083		18.08	1		0.0	8.000	120	10.774	
o L306	43.083		18.08	1.049		0.0 0.0	0.0 8.000	0.1080	0.0 0.864	Vel = 6.71
L306	43.083		18.78	1		0.0	8.000	120	11.638	
0						0.0	0.0		0.0	
L307 L307	43.083 43.083		36.86 21.18	1.049 1		0.0	8.000	0.4032	3.226 14.864	Vel = 13.68
0	43.003		21.10	I		0.0	0.0	120	0.0	
L308	43.083		58.04	1.049		0.0	8.000	0.9341	7.473	Vel = 21.55
L308 0	43.083		25.92	1.25	1E 1T	3.0 6.0	5.417 9.000	120	22.337 -0.397	
MN31	44		83.96	1.38		0.0	14.417	0.4863	7.011	Vel = 18.01
MN31			0.0 83.96						28.951	K Factor = 15.60
L309	43.083		18.31	1		0.0	8.000	120	11.051	
0	12 000		10.04	1 0 4 0		0.0	0.0	0 1 1 0 5	0.0	
L310	43.083		18.31	1.049		0.0	8.000	0.1105	0.884	Vel = 6.80
L310	43.083		19.01	1		0.0	8.000	120	11.935	

to

SP14

53

Aero Auto Cal Poly			Co. :e LVL 3 [f	R/A=1]						Page 7 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
L311 to	43.083		21.64	1		0.0 0.0	8.000 0.0	120	15.236 0.0	
L312 L312	43.083 43.083		58.96 26.25	1.049 1.25	1E	0.0 3.0	8.000 5.417	0.9615	7.692	Vel = 21.89
to					1T	6.0	9.000		-0.397	
MN32	44		85.21	1.38		0.0	14.417	0.4998	7.206	Vel = 18.28
MN32			0.0 85.21						29.737	K Factor = 15.63
*FEED	MAIN									
MN30	44		83.59	2.5		0.0	12.000	120	28.703	
to MN31	44		83.59	2.635		0.0 0.0	0.0 12.000	0.0207	0.0 0.248	Vel = 4.92
MN31	44		83.96	2.5		0.0	10.500	120	28.951	101 - 1.02
to			407 55	0.005		0.0	0.0	0.0740	0.0	
MN32 MN32	44 44		167.55 85.21	2.635 2.5	61	0.0	10.500 280.833	0.0749	0.786	Vel = 9.86
to			00.21		2T	32.948		120	0.397	
MN35	43.083		252.76	2.635		0.0	363.204	0.1601	58.157	Vel = 14.87
MN35 to	43.083		0.0	2.5	21	16.474 0.0	9.667 16.474	120	88.291 0.0	
TOR3	43.083		252.76	2.635		0.0	26.141	0.1601	4.186	Vel = 14.87
TOR3 to	43.083		0.0	2.5	1C 1B	19.22 9.61	7.083 37.067	120	92.477 3.068	
BOR3	36		252.76	2.635	11	8.237	44.150	0.1601	7.069	Vel = 14.87
BOR3	36		0.0	2.5	1T	16.474	1.000	120	102.614	
to SP33	37		252.76	2.635		0.0 0.0	16.474 17.474	0.1601	-0.433 2.798	Vel = 14.87
			0.0							
SP33			252.76						104.979	K Factor = 24.67
*S/P # *			0.0	2.5	4.7	10.0	0.250	100	76 690	
HV1 to	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	76.680 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF			0.0 0.0						78.430	K Factor – 0
HV2	99.750	.0	0.0	2.5	1T	12.0	0.250	120	76.680	K Factor = 0
to		.0				0.0	12.000		1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF to	99.750	.0	0.0	6	41	40.0 0.0	30.000 40.000	120	78.430 6.388	
SP16	85		0.0	6.065		0.0	70.000	0	0.0	Vel = 0
SP16	85	.0	0.0	6		0.0	16.000	120	84.818	
to SP15	69		0.0	6.065		0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0
SP15	69	.0	0.0	6		0.0	16.000	120	91.747	
t 0						0.0	0.0		6 020	

0.0

16.000

0

6.930

Vel = 0

0.0

0.0

0.0

0.0

6.065

Qa

Nom

Fitting

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=1]

Κ

Node1

Elev1

Node1	Elev1	ĸ	Qa	Nom	Fitting		Pipe Eta ala	CFact	Pt	****** Note	*****
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Note	S
					- 1						
SP14	53	.0	0.0	6	1T	30.0	8.500	120	98.677		
to	00	.0	0.0	U		0.0	30.000	120	3.465		
SP01	45		0.0	6.065		0.0	38.500	0	0.0	Vel = 0	
0004			0.0						400 440		
SP01	07	0	0.0		4.7	00.0	7 500	400	102.142	K Factor = 0	
SP13 to	37	.0	0.0	6	1T	30.0 0.0	7.500 30.000	120	105.607 -3.465		
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0	
			0.0								
SP01			0.0						102.142	K Factor = 0	
*S/P # 3				~ -	~ =						
HV3 to	101	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	75.508 1.750	* Fixed loss = 1.3	75
SPR3	101		0.0	2.469		0.0	25.750	0	0.0	Vel = 0	10
SPR3	101	.0	0.0	6		0.0	16.000	120	77.258		
to						0.0	0.0		6.930		
SP36	85		0.0	6.065		0.0	16.000	0	0.0	Vel = 0	
SP36 to	85	.0	0.0	6		0.0 0.0	16.000 0.0	120	84.188 6.930		
SP35	69		0.0	6.065		0.0	16.000	0	0.00	Vel = 0	
SP35	69	.0	0.0	6		0.0	16.000	120	91.118		
to	50			0.005		0.0	0.0	•	6.930		
SP34	53	1150	0.0	6.065		0.0	16.000	0	0.0	Vel = 0	
SP34 to	53	H50	50.00	6		0.0 0.0	16.000 0.0	120	98.047 6.930		
SP33	37		50.0	6.065		0.0	16.000	0.0001	0.002	Vel = 0.56	
SP33	37	H50	302.76	6	1T	30.0	8.417	120	104.979		
to	20.467		252.76	6 06F		0.0	30.000	0.0051	3.392		
SP05	29.167		352.76 0.0	6.065		0.0	38.417	0.0051	0.197	Vel = 3.92	
SP05			352.76						108.568	K Factor = 33.86	6
SP32	21	.0	0.0	6	1T	30.0	7.583	120	112.105		
to						0.0	30.000		-3.537		
SP05	29.167		0.0	6.065		0.0	37.583	0	0.0	Vel = 0	
SP05 to	29.167		352.76	6	1I 1B	10.0 10.0	34.167 50.000	120	108.568 0.0		
SP03	29.167		352.76	6.065	1D 1T	30.0	84.167	0.0051	0.431	Vel = 3.92	
			0.0								
SP03			352.76						108.999	K Factor = 33.79	9
	OPIPE FE										
SP01	45	.0	0.0	6	1B	10.0	34.417	120	102.142		
to SP02	27.917		0.0	6.065	61	60.0 0.0	70.000 104.417	0	7.399 0.0	Vel = 0	
SP02	27.917	.0	0.0	6	21	20.0	235.417	120	109.540		
to						0.0	20.000		-0.541		
SP03	29.167		0.0	6.065		0.0	255.417	0	0.0	Vel = 0	
SP03	29.167		352.76	6	41	40.0	27.500 40.000	120	108.999 0.469		
to SP04	28.083		352.76	6.065		0.0 0.0	40.000 67.500	0.0051	0.469 0.346	Vel = 3.92	

Pipe

CFact

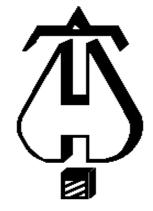
Pt

Page Date

8

9-25-11

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=1]


Page	9
Date	9-25-11

Node1 to	Elev1	К	Qa	Nom	Fitting	9	Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	Notes
SP04	28.083		0.0	6	21	20.0	79.330	120	109.814	
to						0.0	20.000		6.677	
SPC1	12.667		352.76	6.065		0.0	99.330	0.0051	0.508	Vel = 3.92
SPC1	12.667		0.0	6	1T	30.0	7.833	120	116.999	
0						0.0	30.000		0.0	
SPC2	12.667		352.76	6.065		0.0	37.833	0.0051	0.194	Vel = 3.92
SPC2	12.667		0.0	8	11	13.0	14.750	120	117.193	
to	4 000			=	1B	12.0	70.000	0.0040	4.692	
PO	1.833		352.76	7.981	1C	45.0	84.750	0.0013	0.114	Vel = 2.26
			0.0							
PO			352.76						121.999	K Factor = 31.94
	Demand	Pressu	re			121.999				
Safety I						53.231				
	ation Pre					175.230				
	e @ Pum					175.230				
	e From P		urve			-124.353				
	e @ Pum	p Inlet				50.877				
PI	1.750		0.0	8	1G	4.0	14.000	120	50.877	
to					11	13.0	52.000		-2.166	
POC	6.750		352.76	7.981	1T	35.0	66.000	0.0013	0.089	Vel = 2.26
POC	6.750		0.0	8	2E	56.936	41.000	140	48.800	
to						0.0	56.936		-2.707	
BF1	13		352.76	8.27		0.0	97.936	0.0008	0.083	Vel = 2.11
BF1	13		0.0	8	1Zic	0.0	4.000	120	46.176	
to						0.0	0.0		6.024	* Fixed loss = 6.024
BF2	13		352.76	7.981		0.0	4.000	0.0015	0.006	Vel = 2.26
BF2	13		0.0	8	2E	56.936	46.000	140	52.206	
0					1G		118.616		0.0	
SRC	13		352.76	8.27	1T	55.354	164.616	0.0009	0.140	Vel = 2.11
			150.00							Qa = 150.00
SRC			502.76						52.346	K Factor = 69.49

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 3 [R/A=2]Building: FP-6.03ELocation: San Luis Obispo, Ca.System: 3-2Contract: 10034Data File: Cal Poly CFS LVL 3-2.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science *Location:* San Luis Obispo, Ca. *Drawing no:* FP-6.03E *Date:* 9-25-2011

Design

Remote area number: 3-2 Remote area location: 3 rd. Floor Laboratory Occupancy classification: Oridinary Hazard Gr. 1 Density: 0.15 - Gpm/SqFt Area of application: 1135 - SqFt Coverage per sprinkler: 130 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 10 In-rack demand: N/A - GPM Hose streams: 250 - GPM Total water required (including hose streams): 483.54 - GPM @ 3.22 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date:8-19-2011Location:N. Poly View DriveSource:Fluid Resource Management

Name of contractor: Aero Automatic Sprinkler Co.
Address: 21605 N. Central Ave. Phoenix, Az. 85024
Phone number: 623-580-7847
Name of designer: Neal Larsen
Authority having jurisdiction: C.S.F.M.
Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'}
Hydrant # 64; Flow = 914 gpm
FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi] Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=2]

ity Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 ity Water Adjusted to Pump Inlet	Pump Data: P1 - Pump Churn Pressure : 125.2 P2 - Pump Rated Pressure : 110.9 P2 - Pump Rated Flow : 790.2 P3 - Pump Pressure @ Max Flow : 67.9 P3 - Pump Max Flow : 1382.9	Demand: D1 - Elevation : 12.776 D2 - System Flow : 233.543 D2 - System Pressure : 126.159 Hose (Adj City) : 150 Hose (Demand) : 100				
r Pf - Elev - Hose Flow A1 - Adjusted Static: 51.696 A2 - Adj Resid : 47.866 @ 790.2 A3 - Adj Resid : 37.967 @ 1382.9	P3 - Pump Max Flow : 1382.9 City Residual Flow @ 0 = 3307.91 City Residual Flow @ 20 = 2576.03 City Water @ 150% of Pump = 43.24	D3 - System Demand : 333.543 Safety Margin : 49.232				
210						
96 82 Al + P1						
168 A2 + P2						
40 D2 26 P						
12 P3	A3 + P3					
4						
6 C1 A2	C2 A3					
2 A1						
4 D1						
200 400 600 800	1000 1200 1400 FLOW(N ^ 1.85)	1600 1800				

Fittings Used Summary

	utomatic Sprinkler Co. ly Center for Science LVL	3 [R/A=2]																_		3 9-25-11	
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve Generic Check Vlv	0	0 5	2.25	2	2.5 9	6 11	7 14	10 16	0	12 22	9 27	10 32	12 45	19 55	21 65	0 76	0 87	0 98	0	0
F	90' Standard Elbow	4	5	5	3	9 4	5	14 6	7	19 8	10	12	32 14	45 18	55 22	65 27	35	67 40	90 45	109 50	130 61
Ğ	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	ng gener	ates a Fi	xed Los	s Base	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pounds per Square Inch Pressure Units

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=2]

Page 4 Date 9-25-11

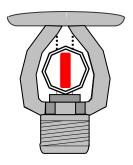
Cal Poly	Center for Scie	ence LVL 3 [R/A=2]	J				Date	9-25-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
S321	42.5	5.6	10.33	na	18.0	0.15	120	7.0
S322	42.5	5.6	11.35	na	18.86	0.15	120	7.0
S323	42.5	5.6	15.18	na	21.82	0.15	120	7.0
S324	42.5	5.6	24.25	na	27.58	0.15	120	7.0
S325	42.5	5.6	29.12	na	30.22	0.15	120	7.0
S326	42.5	5.6	10.44	na	18.09	0.15	120	7.0
S327	42.5	5.6	11.46	na	18.96	0.15	120	7.0
S328	42.5	5.6	15.33	na	21.93	0.15	120	7.0
S329	42.5	5.6	24.49	na	27.71	0.15	120	7.0
S330	42.5	5.6	29.41	na	30.37	0.15	120	7.0
L321	43.083		10.68	na				
L322	43.083		11.75	na				
L323	43.083		15.78	na				
L324	43.083		25.32	na				
L325	43.083		30.43	na				
L326	43.083		10.79	na				
L327	43.083		11.87	na				
L328	43.083		15.94	na				
L329	43.083		25.56	na				
L330	43.083		30.73	na				
MN40	44.0		47.34	na				
MN41	44.0		47.8	na				
MN35	43.083		94.54	na				
TOR3	43.083		98.16	na				
BOR3	36.0		107.33	na				
HV1	99.75		80.95	na				
HV2	99.75		80.95	na				
SPRF	99.75		82.7	na				
SP16	85.0		89.09	na				
SP15	69.0		96.02	na				
SP14	53.0		102.95	na				
SP13	37.0		109.88	na				
HV3	101.0		79.84	na				
SPR3	101.0		81.59	na				
SP36	85.0		88.52	na				
SP35	69.0		95.45	na				
SP34	53.0		102.38	na	50.0			
SP33	37.0		102.30		50.0			
SP32	21.0		116.42	na	50.0			
SP05	29.167		112.88	na				
SP05 SP01			106.42	na				
SP01	45.0			na				
	27.917		113.81	na				
SP03 SP04	29.167 28.083		113.27 114.05	na				
				na				
SPC1	12.667		121.19	na				
SPC2	12.667		121.36	na				
PO	1.833		126.16	na				
PI	1.75		50.96	na				
POC	6.75		48.87	na				
BF1	13.0		46.24	na				
BF2	13.0		52.33	na				
SRC	13.0		52.46	na	150.0			

The maximum velocity is 25.11 and it occurs in the pipe between nodes L330 and MN41

	Center fo		-	-						Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting		Pipe Etpa's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	notes
	ING SPR									
S321	42.500	5.60	18.00	1	1T	5.0 0.0	0.583 5.000	120	10.332 -0.252	
o L321	43.083		18.0	1.049		0.0	5.583	0.1069	-0.252 0.597	Vel = 6.68
			0.0							
L321			18.00						10.677	K Factor = 5.51
S322	42.500	5.60	18.86	1	1T	5.0	0.583	120	11.348	
o L322	43.083		18.86	1.049		0.0 0.0	5.000 5.583	0.1168	-0.252 0.652	Vel = 7.00
1022	40.000		0.0	1.045		0.0	0.000	0.1100	0.002	VCI = 7.00
L322			18.86						11.748	K Factor = 5.50
S323	42.500	5.60	21.82	1	1T	5.0	0.583	120	15.181	
0	40.000		04.00	1 0 4 0		0.0	5.000	0 4 5 0 0	-0.252	
L323	43.083		21.82 0.0	1.049		0.0	5.583	0.1528	0.853	Vel = 8.10
L323			0.0 21.82						15.782	K Factor = 5.49
S324	42.500	5.60	27.58	1	1T	5.0	0.583	120	24.251	
0						0.0	5.000		-0.252	
L324	43.083		27.58	1.049		0.0	5.583	0.2357	1.316	Vel = 10.24
L324			0.0 27.58						25.315	K Factor = 5.48
S325	42.500	5.60	30.22	1	1T	5.0	0.583	120	29.121	1(1 dolo1 = - 0.40
to	12.000	0.00	00.22	•		0.0	5.000	.20	-0.252	
L325	43.083		30.22	1.049		0.0	5.583	0.2792	1.559	Vel = 11.22
L325			0.0 30.22						30.428	K Factor = 5.48
S326	42.500	5.60	18.09	1	1T	5.0	0.583	120	10.438	K Facior = 0.40
5520 to	42.300	5.00	10.09	1		0.0	5.000	120	-0.252	
L326	43.083		18.09	1.049		0.0	5.583	0.1080	0.603	Vel = 6.72
			0.0							
L326	40		18.09		47	_	0 505	400	10.789	K Factor = 5.51
S327 to	42.500	5.60	18.96	1	1T	5.0 0.0	0.583 5.000	120	11.464 -0.252	
.0 L327	43.083		18.96	1.049		0.0	5.583	0.1179	0.658	Vel = 7.04
			0.0							
L327			18.96						11.870	K Factor = 5.50
S328	42.500	5.60	21.93	1	1T	5.0	0.583	120	15.333	
to L328	43.083		21.93	1.049		0.0 0.0	5.000 5.583	0.1542	-0.252 0.861	Vel = 8.14
			0.0				0.000	011012	5.001	
L328			21.93						15.942	K Factor = 5.49
S329	42.500	5.60	27.71	1	1T	5.0	0.583	120	24.490	
0	12 000		07 74	1 0 4 0		0.0	5.000	0 0077	-0.252	Val - 10.20
L329	43.083		27.71 0.0	1.049		0.0	5.583	0.2377	1.327	Vel = 10.29
L329			0.0 27.71						25.565	K Factor = 5.48
S330	42.500	5.60	30.37	1	1T	5.0	0.583	120	29.406	
0						0.0	5.000		-0.252	
L330	43.083		30.37	1.049		0.0	5.583	0.2816	1.572	Vel = 11.27

Cal Poly	Center fo	r Science	LVL 3 [F	R/A=2]						Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe Eta ala	CFact	Pt Da	******* Notoo *****
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
L330			0.0 30.37						30.726	K Factor = 5.48
	CH LINES	S R/A # 2								
L321	43.083		18.00	1		0.0	10.000	120	10.677	
0	40.000		40.0			0.0	0.0	0 4 0 7 4	0.0	
L322	43.083		18.0	1.049		0.0	10.000	0.1071	1.071	Vel = 6.68
L322 o	43.083		18.86	1		0.0 0.0	10.000 0.0	120	11.748 0.0	
L323	43.083		36.86	1.049		0.0	10.000	0.4034	4.034	Vel = 13.68
L323	43.083		21.82	1		0.0	10.000	120	15.782	
0						0.0	0.0		0.0	
L324	43.083		58.68	1.049		0.0	10.000	0.9533	9.533	Vel = 21.78
L324	43.083		27.58	1.25		0.0 0.0	10.000 0.0	120	25.315 0.0	
o L325	43.083		86.26	1.38		0.0	10.000	0.5113	5.113	Vel = 18.50
L325	43.083		30.22	1.25	1E	3.0	10.417	120	30.428	
0					1T	6.0	9.000		-0.397	
MN40	44		116.48	1.38		0.0	19.417	0.8913	17.306	Vel = 24.99
MN40			0.0 116.48						47.337	K Eastar - 16.02
L326	43.083		18.09	1		0.0	10.000	120	10.789	K Factor = 16.93
L320	43.003		10.09	I		0.0	0.0	120	0.0	
L327	43.083		18.09	1.049		0.0	10.000	0.1081	1.081	Vel = 6.72
L327	43.083		18.96	1		0.0	10.000	120	11.870	
0	40.000		27.05	1 0 1 0		0.0	0.0	0 4070	0.0	
L328	43.083		37.05	1.049		0.0	10.000	0.4072	4.072	Vel = 13.75
L328 o	43.083		21.93	1		0.0 0.0	10.000 0.0	120	15.942 0.0	
L329	43.083		58.98	1.049		0.0	10.000	0.9623	9.623	Vel = 21.89
L329	43.083		27.72	1.25		0.0	10.000	120	25.565	
0						0.0	0.0		0.0	
L330	43.083		86.7	1.38	. –	0.0	10.000	0.5161	5.161	Vel = 18.60
L330 o	43.083		30.36	1.25	1E 1T	3.0 6.0	10.417 9.000	120	30.726 -0.397	
.0 MN41	44		117.06	1.38		0.0	19.417	0.8995	17.466	Vel = 25.11
			0.0							
MN41			117.06						47.795	K Factor = 16.93
*FEED	MAIN									
MN40	44		116.48	2.5		0.0	12.000	120	47.337	
o MN41	44		116.48	2.635		0.0 0.0	0.0 12.000	0.0382	0.0 0.458	Vel = 6.85
MN41	44		117.06	2.635	41		252.667	120	47.795	VEI - 0.00
IVIIN41 :0	44		00.111	2.0	41 3T		252.667 82.371	120	47.795 0.397	
MN35	43.083		233.54	2.635		0.0	335.038	0.1383	46.348	Vel = 13.74
MN35	43.083		0.0	2.5	21	16.474		120	94.540	
0	40.000		000 54	0.005		0.0	16.474	0.4000	0.0	
TOR3	43.083		233.54	2.635		0.0	26.141	0.1383	3.616	Vel = 13.74

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=2]

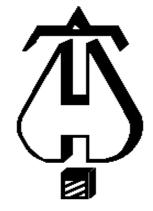

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	NOICS
TOR3 to	43.083		0.0	2.5	1C 1B	19.22 9.61	7.083 37.067	120	98.156 3.068	
BOR3	36		233.54	2.635	11	8.237	44.150	0.1383	6.107	Vel = 13.74
BOR3 to	36		0.0	2.5	1T	16.474 0.0	1.000 16.474	120	107.331 -0.433	
SP33	37		233.54	2.635		0.0	17.474	0.1383	2.417	Vel = 13.74
SP33			0.0 233.54						109.315	K Factor = 22.34
*S/P # 1										
HV1	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250	120	80.954 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF			0.0 0.0						82.704	K Factor = 0
HV2 to	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	80.954 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF to	99.750	.0	0.0	6	41	40.0 0.0	30.000 40.000	120	82.704 6.388	
SP16	85		0.0	6.065		0.0	70.000	0	0.0	Vel = 0
SP16 to	85 69	.0	0.0 0.0	6 6.065		0.0 0.0	16.000 0.0 16.000	120 0	89.092 6.930	Vel = 0
SP15 SP15	69 69	.0	0.0	6		0.0	16.000	120	0.0	vei = 0
to SP14	53		0.0	6.065		0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0
SP14	53	.0	0.0	6	1T	30.0	8.500	120	102.951	
to SP01	45		0.0	6.065		0.0 0.0	30.000 38.500	0	3.465 0.0	Vel = 0
SP01			0.0 0.0						106.416	K Factor = 0
SP13 to	37	.0	0.0	6	1T	30.0 0.0	7.500 30.000	120	109.881 -3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01			0.0 0.0						106.416	K Factor = 0
*S/P # 3										
HV3 to	101	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	79.844 1.750	* Fixed loss = 1.75
SPR3	101	^	0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SPR3 to SP36	101 85	.0	0.0 0.0	6 6.065		0.0 0.0 0.0	16.000 0.0 16.000	120 0	81.594 6.930 0.0	Vel = 0
SP36	85	.0	0.0	6		0.0	16.000 16.000	120	88.524	v ei = 0
SP36 to SP35	85 69	.0	0.0	о 6.065		0.0 0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0
SP35	69	.0	0.0	6		0.0	16.000 0.0	120	95.454 6.930	
to SP34	53		0.0	6.065		0.0	0.0 16.000	0	6.930 0.0	Vel = 0

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 3 [R/A=2]

Page	8
Date	9-25-11

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	dida to to t		
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	*****	Notes	*****
SP34	53	H50	50.00	6		0.0	16.000	120	102.383			
o SP33	37		50.0	6.065		0.0 0.0	0.0 16.000	0.0001	6.930 0.002	Vel = 0.5	6	
SP33	37	H50		6	1T	30.0	8.417	120	109.315		-	
SP05	29.167		333.54	6.065		0.0 0.0	30.000 38.417	0.0046	3.392 0.178	Vel = 3.7	0	
SP05			0.0 333.54						112.885	K Factor =	31 39	
SP32	21	.0	0.0	6	1T	30.0	7.583	120	116.422	in a dotor	01100	
o SP05	29.167		0.0	6.065		0.0 0.0	30.000 37.583	0	-3.537 0.0	Vel = 0		
SP05	29.167		333.54	6	11	10.0	34.167	120	112.885			
o SP03	29.167		333.54	6.065	1B 1T	10.0 30.0	50.000 84.167	0.0046	0.0 0.388	Vel = 3.7	0	
SP03			0.0						440.070	K Fastar	24.24	
	OPIPE FE	ED	333.54						113.273	K Factor =	31.34	
SP01	45	.0	0.0	6	1B	10.0	34.417	120	106.416			
) SP02	27.917		0.0	6.065	61	60.0 0.0	70.000 104.417	0	7.399 0.0	Vel = 0		
SP02	27.917	.0	0.0	6	21	20.0	235.417	120	113.814			
o SP03	29.167		0.0	6.065		0.0 0.0	20.000 255.417	0	-0.541 0.0	Vel = 0		
SP03	29.167		333.54	6	41	40.0 0.0	27.500 40.000	120	113.273 0.469			
SP04	28.083		333.54	6.065		0.0	67.500	0.0046	0.312	Vel = 3.7	0	
SP04	28.083		0.0	6	21	20.0 0.0	79.330 20.000	120	114.054 6.677			
SPC1	12.667		333.54	6.065		0.0	99.330	0.0046	0.458	Vel = 3.7	0	
SPC1	12.667		0.0	6	1T	30.0 0.0	7.833 30.000	120	121.189 0.0			
SPC2	12.667		333.54	6.065		0.0	37.833	0.0046	0.175	Vel = 3.7	0	
SPC2 o	12.667		0.0	8	1I 1B	13.0 12.0	14.750 70.000	120	121.364 4.692			
PO	1.833		333.54	7.981	1C	45.0	84.750	0.0012	0.103	Vel = 2.14	4	
PO			0.0 333.54						126.159	K Factor =	29.70	
Safety N			e			126.159 49.232						
	ation Pres					175.391 175.391						
Pressur	e From P e @ Pum	ump Cui				-124.434 50.957						
PI	1.750		0.0	8	1G	4.0	14.000	120	50.957			
o POC	6.750		333.54	7.981	1I 1T	13.0 35.0	52.000 66.000	0.0012	-2.166 0.081	Vel = 2.1	4	
POC	6.750		0.0	8	2E	56.936		140	48.872			
o BF1	13		333.54	8.27		0.0 0.0	56.936 97.936	0.0008	-2.707 0.075	Vel = 1.9	9	

Aero Auto Cal Poly			Co. ce LVL 3 [F	R/A=2]						Pa Dat		
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	*****	Notes **	****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf			
BF1	13		0.0	8	1Zic	0.0	4.000	120	46.240			
to BF2	13		333.54	7.981	1210	0.0 0.0 0.0	0.0 4.000	0.0012	6.090 0.005	* Fixed lo Vel = 2.	ss = 6.09	
BF2 to	13		0.0	8	2E 1G	56.936	46.000	140	52.335 0.0	<u>vei – 2</u> .	14	
SRC	13		333.54	8.27	1T		164.616	0.0008	0.126	Vel = 1.	99	
SRC			150.00 483.54						52.461	Qa = 15 K Factor	0.00 = 66.76	


LEVEL 6 R/A # 1,2,3 &4

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 6 [R/A=1]Building: FP-6.06ELocation: San Luis Obispo, Ca.System: 6-1Contract: 10034Data File: Cal Poly CFS LVL 6-1.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science *Location:* San Luis Obispo, Ca. *Drawing no:* FP-6.06E *Date:* 9-25-2011

Design

Remote area number: 6-1 Remote area location: 6 th. Floor Laboratory Occupancy classification: Ordinary Hazard Gr. 1 Density: 0.15 - Gpm/SqFt Area of application: 940 - SqFt Coverage per sprinkler: 130 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 10 In-rack demand: N/A - GPM Hose streams: 250 - GPM Total water required (including hose streams): 483.15 - GPM @ 12.35 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date:8-19-2011Location:N. Poly View DriveSource:Fluid Resource Management

Name of contractor: Aero Automatic Sprinkler Co.
Address: 21605 N. Central Ave. Phoenix, Az. 85024
Phone number: 623-580-7847
Name of designer: Neal Larsen
Authority having jurisdiction: C.S.F.M.
Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'}
Hydrant # 64; Flow = 914 gpm
FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi]
NOTE : REMOTE AREA REDUCED BY 39.25% [Q.R HEADS & C.H.=10'-6"] 912 SQ.FT. MIN. Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=1]

Sity Water Supply:C1 - Static Pressure: 54C2 - Residual Pressure:49C2 - Residual Flow: 914Sity Water Adjusted to Pump Inletor Pf - Elev - Hose FlowA1 - Adjusted Static:51.696A2 - Adj Resid: 47.866A3 - Adj Resid: 37.967@ 1382.9	Pump Data: P1 - Pump Churn Pressure : 125.2 P2 - Pump Rated Pressure : 110.9 P2 - Pump Rated Flow : 790.2 P3 - Pump Pressure @ Max Flow : 67.9 P3 - Pump Max Flow : 1382.9 City Residual Flow @ 0 = 3307.91 City Residual Flow @ 20 = 2576.03 City Water @ 150% of Pump = 43.24	Demand: D1 - Elevation : 33.565 D2 - System Flow : 233.159 D2 - System Pressure : 135.285 Hose (Adj City) : 150 Hose (Demand) : 100 D3 - System Demand : 333.159 Safety Margin : 40.106
210		I
196		
182 AI+P1		
168 A2 + P2		
154 AZ + PZ		
140 D 2		
120 D3 112	A3 + P3	
98		
84		
70		
56 C1 A2 C	2	
42 A1 0	Δ3	
14		
		1800
200 400 600 800	1000 1200 1400 16 FLOW(N ^ 1.85)	600 1800

Fittings Used Summary

	utomatic Sprinkler Co. ly Center for Science LVL	6 [R/A=1]]																age 3 ate 9	3 9-25-11	
Fitting L Abbrev.	egend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve Generic Check Vlv	0	0 5	2.25 5	2	2.5 9	6 11	7 14	10 16	0 19	12 22	9 27	10 32	12 45	19 55	21 65	0 76	0 87	0 98	0 109	0 130
E	90' Standard Elbow	2	2	2	3	9 4	5	6	7	8	10	12	14	18	22	27	35	40	90 45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittin	ng gener	ates a Fi	xed Los	ss Based	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=1]

		ence LVL 6 [R/A=1						
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
004	00 5	5.0	10.40		10 5	0.45	400	7.0
601	90.5 90.5	5.6	12.12 13.07	na	19.5	0.15	130	7.0
602		5.6		na	20.25	0.15	130	7.0
603 604	90.5 90.5	5.6 5.6	16.6 24.77	na	22.81 27.87	0.15 0.15	130 130	7.0 7.0
605	90.5 90.5	5.6	12.24	na	19.6	0.15	130	7.0
606	90.5	5.6	13.2	na	20.34	0.15	130	7.0
607	90.5	5.6	16.76	na na	22.92	0.15	130	7.0
608	90.5	5.6	25.01	na	28.0	0.15	130	7.0
609	90.5	5.6	20.5	na	25.35	0.15	130	7.0
610	90.5	5.6	22.4	na	26.5	0.15	130	7.0
.601	91.0	0.0	12.59	na	20.0	0.10	100	7.0
.602	91.0		13.58	na				
.603	91.0		17.29	na				
.604	91.0		25.88	na				
.605	91.0		12.72	na				
.606	91.0		13.72	na				
.607	91.0		17.46	na				
.608	91.0		26.13	na				
609	91.0		21.59	na				
.610	91.0		23.61	na				
/N01	92.0		35.21	na				
/N02	92.0		35.21	na				
/N03	92.0		35.41	na				
/N04	92.0		35.54	na				
/N05	92.0		36.08	na				
/N06	92.0		36.45	na				
/N07	92.0		37.52	na				
/N08	92.0		37.69	na				
/N09	92.0		39.17	na				
/N10	92.0		39.34	na				
/N11	92.0		41.0	na				
/N12	93.333		65.62	na				
/N13	93.333		73.55	na				
/N14	91.083		82.72	na				
OR6	91.083		86.32	na				
BOR6	84.0		95.48	na				
IV1	99.75		90.08	na				
IV2	99.75		90.08	na				
SPRF	99.75		91.83	na				
SP16	85.0		98.22	na				
SP15	69.0		105.15	na				
SP14	53.0		112.08	na				
SP13	37.0		119.01	na				
IV3	101.0		88.77	na				
SPR3	101.0		90.52	na				
SP36	85.0		97.45	na	50.0			
SP35	69.0		104.44	na	50.0			
SP34	53.0		111.44	na				
SP33	37.0		118.44	na				
SP32	21.0		125.55	na				
P05	29.167		122.01	na				
P01	45.0		115.54	na				
P02	27.917		122.94	na				
P03	29.167		122.4	na				
P04	28.083		123.18	na				
SPC1	12.667		130.32	na				
SPC2	12.667		130.49	na				
20	1.833		135.28	na				
2	1.75		50.96	na				
POC	6.75		48.87	na				
	13.0		46.24	na				
3F1 3F2	13.0		52.34					

Flow Summary - Standard

Aero Aut Cal Poly	Page Date	5 9-25-11						
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
SRC	13.0		52.46	na	150.0			

The maximum velocity is 23.34 and it occurs in the pipe between nodes L607 and L608

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=1]

Date 9-25-11 Node1 Κ Qa Fitting Pipe CFact Pt Elev1 Nom Pe ****** ***** to or Ftng's Notes Node2 Elev2 Fact Qt Act Eqv. Ln. Total Pf/Ft Pf *FLOWING SPRINKLER R/A # 1 # S601 90.5 19.50 1T 5.0 0.500 120 5.60 1 12.125 0.0 5.000 -0.217 to L601 91 19.5 1.049 0.0 5.500 0.1244 0.684 Vel = 7.24 0.0 L601 19.50 12.592 K Factor = 5.50S602 90.5 5.60 20.24 1 1T 5.0 0.500 120 13.070 0.0 5.000 -0.217 to L602 20.24 5.500 0.732 91 1.049 0.0 0.1331 Vel = 7.51 0.0 L602 20.24 13.585 K Factor = 5.495.60 22.81 1 1T 5.0 S603 90.5 0.500 120 16.598 0.0 5.000 -0.217 to 22.81 1.049 0.0 5.500 L603 91 0.1660 0.913 Vel = 8.47 0.0 L603 22.81 17.294 K Factor = 5.491T 5.0 0.500 S604 90.5 5.60 27.87 1 120 24.772 to 0.0 5.000 -0.217 L604 91 27.87 1.049 0.0 5.500 0.2405 1.323 Vel = 10.35 0.0 L604 27.87 25.878 K Factor = 5.48S605 1 1T 5.0 90.5 5.60 19.60 0.500 120 12.245 0.0 5.000 -0.217 to 0.690 L605 19.6 1.049 0.0 5.500 0.1255 91 Vel = 7.28 0.0 L605 19.60 12.718 K Factor = 5.50S606 90.5 5.60 20.34 1 1T 5.0 0.500 120 13.198 0.0 5.000 -0.217 to L606 91 20.34 1.049 0.0 5.500 0.1344 0.739 Vel = 7.55 0.0 L606 20.34 13.720 K Factor = 5.49S607 90.5 5.60 1T 5.0 0.500 16.758 22.92 1 120 0.0 5.000 -0.217 to 22.92 L607 91 1.049 0.0 5.500 0.1676 0.922 Vel = 8.51 0.0 L607 22.92 17.463 K Factor = 5.48S608 0.500 25.008 90.5 5.60 28.00 1 1T 5.0 120 0.0 5.000 -0.217 to 1.049 L608 91 28.0 0.0 5.500 0.2427 1.335 Vel = 10.39 0.0 L608 28.00 26.126 K Factor = 5.48 S609 20.496 90.5 5.60 25.35 1 1T 5.0 1.500 120 0.0 5.000 -0.217 to L609 91 25.35 1.049 0.0 6.500 0.2018 1.312 Vel = 9.41 0.0 L609 25.35 21.591 K Factor = 5.46 S610 90.5 5.60 26.50 1 1T 5.0 1.500 120 22.401 5.000 -0.217 0.0 to 26.5 1.049 6.500 1.425 L610 91 0.0 0.2192 Vel = 9.84

Page

6

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

		prinkler C or Science	Co. e LVL 6 [F	R/A=1]						Page 7 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
			0.0							
L610			26.50						23.609	K Factor = 5.45
		S R/A # 1								
L601 :o	91		19.50	1		0.0 0.0	8.000 0.0	120	12.592 0.0	
.0 L602	91		19.5	1.049		0.0	8.000	0.1241	0.0993	Vel = 7.24
L602 o	91		20.24	1		0.0 0.0	8.000 0.0	120	13.585 0.0	
L603	91		39.74	1.049		0.0	8.000	0.4636	3.709	Vel = 14.75
L603	91		22.82	1		0.0 0.0	8.000 0.0	120	17.294 0.0	V 1 00 00
L604	91		62.56	1.049	45	0.0	8.000	1.0730	8.584	Vel = 23.22
L604 to MN02	91 92		27.87	1.25	1E 1T	3.0 6.0 0.0	8.500 9.000	120	25.878 -0.433	Vel = 19.40
	92		90.43 0.0	1.38		0.0	17.500	0.5580	9.765	
MN02	04		90.43	4		0.0	0.000	100	35.210	K Factor = 15.24
L605	91		19.60	1		0.0 0.0	8.000 0.0	120 0.1252	12.718 0.0 1.002	
L606 L606	91 91		19.6 20.34	1.049 1		0.0	8.000	120	13.720	Vel = 7.28
L000 :0 L607	91		39.94	1.049		0.0 0.0 0.0	0.0 8.000	0.4679	0.0 3.743	Vel = 14.83
L607 to	91		22.93	1		0.0 0.0	8.000 0.0	120	17.463 0.0	
L608	91		62.87	1.049		0.0	8.000	1.0829	8.663	Vel = 23.34
L608 :o	91		28.00	1.25	1E 1T	3.0 6.0	8.500 9.000	120	26.126 -0.433	
MN04	92		90.87	1.38		0.0	17.500	0.5630	9.852	Vel = 19.49
MN04			0.0 90.87						35.545	K Factor = 15.24
L609	91		25.35	1		0.0	10.000	120	21.591	NT actor = 15.24
to	51		20.00	•		0.0	0.0	120	0.0	
L610	91		25.35	1.049		0.0	10.000	0.2018	2.018	Vel = 9.41
L610	91		26.51	1	1E 1T	2.0	10.500	120	23.609	
to MN06	92		51.86	1.049	11	5.0 0.0	7.000 17.500	0.7583	-0.433 13.271	Vel = 19.25
MN06			0.0 51.86						36.447	K Factor = 8.59
*FEED	MAIN									
MN01 :o	92	.0	0.0	2.5		0.0 0.0	3.833 0.0	120	35.210 0.0	
MN02	92		0.0	2.635		0.0	3.833	0	0.0	Vel = 0
MN02 :o	92		90.43	2.5		0.0 0.0	8.167 0.0	120	35.210 0.0	
.0 MN03	92		90.43	2.635		0.0	8.167	0.0240	0.196	Vel = 5.32
MN03 o	92		0.0	2.5		0.0 0.0	5.833 0.0	120	35.406 0.0	
MN04	92		90.43	2.635		0.0	5.833	0.0238	0.139	Vel = 5.32

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=1]

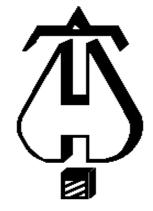
Page	8
Date	9-25-
Date	9-25-

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
to	LICVI	IX.	Qu	Nom	or		Ftng's	Oraci	Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
MN04	92		90.87	2.5		0.0	6.167	120	35.545	
D C						0.0	0.0		0.0	
MN05	92		181.3	2.635		0.0	6.167	0.0866	0.534	Vel = 10.67
MN05	92		0.0	2.5		0.0 0.0	4.250 0.0	120	36.079 0.0	
MN06	92		181.3	2.635		0.0	4.250	0.0866	0.368	Vel = 10.67
MN06 D	92		51.86	2.5		0.0 0.0	7.750 0.0	120	36.447 0.0	
MN07	92		233.16	2.635		0.0	7.750	0.1379	1.069	Vel = 13.72
MN07	92		0.0	2.5		0.0 0.0	1.250 0.0	120	37.516 0.0	
MN08	92		233.16	2.635		0.0	1.250	0.1376	0.172	Vel = 13.72
MN08 D	92		0.0	2.5		0.0 0.0	10.750 0.0	120	37.688 0.0	
MN09	92		233.16	2.635		0.0	10.750	0.1380	1.483	Vel = 13.72
MN09	92		0.0	2.5		0.0 0.0	1.250 0.0	120	39.171 0.0	
MN10	92		233.16	2.635		0.0	1.250	0.1376	0.172	Vel = 13.72
MN10	92		0.0	2.5		0.0 0.0	12.000 0.0	120	39.343 0.0	
MN11	92		233.16	2.635	01	0.0	12.000	0.1379	1.655	Vel = 13.72
MN11	92		0.0	2.5	2I 1T	16.474		120	40.998 -0.577	
MN12	93.333		233.16	2.635	41	0.0	182.698	0.1379	25.197	Vel = 13.72
MN12	93.333		0.0	2.5	1I 1T	8.237 16.474	32.833 24.711	120	65.618 0.0	
MN13	93.333		233.16	2.635		0.0	57.544	0.1379	7.936	Vel = 13.72
MN13	93.333		0.0	2.5	2I 1T	16.474 16.474		120	73.554 0.974	
MN14	91.083		233.16	2.635		0.0	59.365	0.1379	8.188	Vel = 13.72
MN14	91.083		0.0	2.5	21	16.474 0.0	9.667 16.474	120	82.716 0.0	
TOR6	91.083		233.16	2.635		0.0	26.141	0.1379	3.605	Vel = 13.72
TOR6	91.083		0.0	2.5	1C 1B	19.22 9.61	7.083 37.067	120	86.321 3.068	
BOR6	84		233.16	2.635	11	8.237	44.150	0.1379	6.088	Vel = 13.72
BOR6	84		0.0	2.5	1T	16.474 0.0	1.000 16.474	120	95.477 -0.433	
SP36	85		233.16	2.635		0.0	17.474	0.1379	2.410	Vel = 13.72
SP36			0.0 233.16						97.454	K Factor = 23.62
*S/P # 1										
HV1 D	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	90.082 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF			0.0 0.0						91.832	K Factor = 0

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=1]

Pa	ge 🤅	9	
Da	te s	9-25-11	

Jai Poly	Center to	Science	e LVL 6 [F	₹/A=1]						Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
HV2 o	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	90.082 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469	41	0.0	12.250	0	0.0	Vel = 0
SPRF to SP16	99.750 85	.0	0.0 0.0	6 6.065	41	40.0 0.0 0.0	30.000 40.000 70.000	120 0	91.832 6.388 0.0	Vel = 0
SP16	85	.0	0.0	6		0.0	16.000	120	98.220	vei – 0
SP16 to SP15	85 69	.0	0.0	о 6.065		0.0 0.0 0.0	0.0 16.000	0	98.220 6.930 0.0	Vel = 0
SP15	69	.0	0.0	6		0.0	16.000	120	105.150	vei – 0
to SP14	53	.0	0.0	6.065		0.0 0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0
SP14	53	.0	0.0	6	1T	30.0	8.500	120	112.080	
to	00	.0	0.0	0		0.0	30.000	120	3.465	
SP01	45		0.0	6.065		0.0	38.500	0	0.0	Vel = 0
SP01			0.0 0.0						115.545	K Factor = 0
SP13	37	.0	0.0	6	1T	30.0	7.500	120	119.009	
to	45			0.005		0.0	30.000	<u>^</u>	-3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01			0.0 0.0						115.544	K Factor = 0
*S/P # 3	3									
HV3	101	.0	0.0	2.5	2E	12.0	1.750	120	88.774	* - 11 /
to SPR3	101		0.0	2.469	1T	12.0	24.000 25.750	0	1.750 0.0	* Fixed loss = 1.75
	101	.0	0.0	2.409		0.0	16.000	120	90.524	Vel = 0
SPR3 to	101	.0	0.0	0		0.0	0.0	120	90.524 6.930	
SP36	85		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP36	85	H50	283.16	6		0.0	16.000	120	97.454	
to						0.0	0.0		6.930	
SP35	69		283.16	6.065		0.0	16.000	0.0034	0.054	Vel = 3.14
SP35	69	H50	50.00	6		0.0 0.0	16.000 0.0	120	104.438 6.930	
to SP34	53		333.16	6.065		0.0	16.000	0.0046	0.074	Vel = 3.70
SP34	53		0.0	6		0.0	16.000	120	111.442	
to						0.0	0.0		6.930	
SP33	37		333.16	6.065		0.0	16.000	0.0046	0.073	Vel = 3.70
SP33 to	37		0.0	6	1T	30.0 0.0	8.417 30.000	120	118.445 3.392	
SP05	29.167		333.16	6.065		0.0	38.417	0.0046	0.177	Vel = 3.70
SP05			0.0 333.16						122.014	K Factor = 30.16
SP32	21	.0	0.0	6	1T	30.0	7.583	120	125.551	
to	oc /		• -			0.0	30.000		-3.537	
SP05	29.167		0.0	6.065		0.0	37.583	0	0.0	Vel = 0
SP05 to	29.167		333.16	6	1I 1B	10.0 10.0	34.167 50.000	120	122.014 0.0	V 1 0 70
SP03	29.167		333.16	6.065	1T	30.0	84.167	0.0046	0.388	Vel = 3.70


Aero Auto Cal Poly				R/A=1]						Page 10 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or	-	Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	Notes
			0.0							
SP03			333.16						122.402	K Factor = 30.11
	DPIPE FE									
SP01 to	45	.0	0.0	6	1B 6I	10.0 60.0	34.417 70.000	120	115.544 7.399	
SP02	27.917		0.0	6.065	<u></u>	0.0	104.417	0	0.0	Vel = 0
SP02 to SP03	27.917 29.167	.0	0.0 0.0	6 6.065	21	20.0 0.0 0.0	235.417 20.000 255.417	120	122.943 -0.541 0.0	Vel = 0
SP03	29.167		333.16	6	41	40.0	27.500	0 120	122.402	vei = 0
to SP04	28.083		333.16	6.065		0.0 0.0	40.000 67.500	0.0046	0.469 0.311	Vel = 3.70
SP04 to	28.083		0.0	6	21	20.0 0.0	79.330 20.000	120	123.182 6.677	
SPC1	12.667		333.16	6.065		0.0	99.330	0.0046	0.457	Vel = 3.70
SPC1 to	12.667		0.0	6	1T	30.0 0.0	7.833 30.000	120	130.316 0.0	
SPC2	12.667		333.16	6.065		0.0	37.833	0.0046	0.174	Vel = 3.70
SPC2 to	12.667		0.0	8	1I 1B	13.0 12.0	14.750 70.000	120	130.490 4.692	
PO	1.833		333.16	7.981	1C	45.0	84.750	0.0012	0.103	Vel = 2.14
PO			0.0 333.16						135.285	K Factor = 28.64
Safety N	Demand Margin ation Pres		e			135.285 40.106 175.391				
Pressur Pressur	e @ Pum e From P e @ Pum	p Outlet ump Cu				175.391 -124.435 50.956				
PI to	1.750		0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	50.956 -2.166	
POC	6.750		333.16	7.981	1T	35.0	66.000	0.0012	0.081	Vel = 2.14
POC to	6.750		0.0	8	2E	56.936 0.0	41.000 56.936	140	48.871 -2.707	
BF1	13		333.16	8.27		0.0	97.936	0.0008	0.075	Vel = 1.99
BF1 to	13		0.0	8	1Zic	0.0 0.0	4.000 0.0	120	46.239 6.093	* Fixed loss = 6.093
BF2	13		333.16	7.981		0.0	4.000	0.0012	0.005	Vel = 2.14
BF2 to	13		0.0	8	2E 1G		118.616	140	52.337 0.0	
SRC SRC	13		333.16 150.00 483.16	8.27	1T	55.354	164.616	0.0008	0.125	Vel = 1.99 Qa = 150.00 K Factor = 66.71

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 6 [R/A=2]Building: FP-6.06ELocation: San Luis Obispo, Ca.System: 6-2Contract: 10034Data File: Cal Poly CFS LVL 6-2.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science *Location:* San Luis Obispo, Ca. *Drawing no:* FP-6.06E *Date:* 9-25-2011

Design

Remote area number: 6-2 Remote area location: 6 th. Cooridor Occupancy classification: Light Hazard Density: 0.10 - Gpm/SqFt Area of application: 5 Heads - SqFt Coverage per sprinkler: 225 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 5 In-rack demand: N/A - GPM Hose streams: 100 - GPM Total water required (including hose streams): 213.09 - GPM @ -51.52 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date:8-19-2011Location:N. Poly View DriveSource:Fluid Resource Management

Name of contractor: Aero Automatic Sprinkler Co.
Address: 21605 N. Central Ave. Phoenix, Az. 85024
Phone number: 623-580-7847
Name of designer: Neal Larsen
Authority having jurisdiction: C.S.F.M.
Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'}
Hydrant # 64; Flow = 914 gpm
FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi] Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=2]

A3 - Adj Resid : 40.224 @ 1382.9		% of Pump = 43.24	Safety Mar	Demand: 33.132 D1 - Elevation 113.099 D2 - System Flow 113.099 D2 - System Pressure 71.563 Hose (Adj City)		
0						
68 A2 + P2						
64						
0						
26						
2		A3 + P3				
		•				
D2						
	C2	A3				
A1		0				
200 400 600 800	<u></u> 1000 1200	<u></u> 1400 1		<u> </u>		
200 400 600 800	1000 1200 FLOW(N ^ 1.85)	1400	600 18	000		

Fittings Used Summary

	utomatic Sprinkler Co. ly Center for Science LVL	6 [R/A=2]]															_		3 9-25-11	
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve Generic Check Vlv	0	0 5	2.25	2	2.5 9	6	7	10	0	12	9	10 32	12	19	21	0	0	0	0	0
F	90' Standard Elbow	4	5 2	5	3	9 4	11 5	14 6	16 7	19 8	22 10	27 12	32 14	45 18	55 22	65 27	76 35	87 40	98 45	109 50	130 61
Ğ	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittin	ng gener	ates a Fi	xed Los	s Base	d on Flo	W													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=2]

Page 4 Date 9-25-11

							Date 9-25-11			
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.		
S621	89.5	5.6	16.14	na	22.5	0.1	225	7.0		
S622	89.5	5.6	16.16	na	22.51	0.1	225	7.0		
S623	89.5	5.6	16.24	na	22.56	0.1	225	7.0		
S624	89.5	5.6	16.39	na	22.67	0.1	225	7.0		
S625	89.5	5.6	16.65	na	22.85	0.1	225	7.0		
MN01	92.0		16.68	na						
MN02	92.0		16.69	na						
MN03	92.0		16.7	na						
MN04	92.0		16.74	na						
MN05	92.0		16.78	na						
MN06	92.0		16.84	na						
MN07	92.0		16.95	na						
MN08	92.0		16.98	na						
MN09	92.0		17.23	na						
MN10	92.0		17.28	na						
MN11	92.0		17.71	na						
MN12	93.333		23.74							
MN12 MN13	93.333		25.82	na						
	93.333		28.95	na						
MN14				na						
TOR6	91.083		29.89	na						
BOR6	84.0		34.56	na						
HV1	99.75		26.95	na						
HV2	99.75		26.95	na						
SPRF	99.75		28.7	na						
SP16	85.0		35.09	na						
SP15	69.0		42.02	na						
SP14	53.0		48.94	na						
SP13	37.0		55.88	na						
HV3	101.0		26.08	na						
SPR3	101.0		27.82	na						
SP36	85.0		34.76	na	50.0					
SP35	69.0		41.7	na	50.0					
SP34	53.0		48.67	na						
SP33	37.0		55.63	na						
SP32	21.0		62.64	na						
SP05	29.167		59.1	na						
SP01	45.0		52.41	na						
SP02	27.917		59.81	na						
SP03	29.167		59.27	na						
SP04	28.083		59.87	na						
SPC1	12.667		66.75	na						
SPC2	12.667		66.83	na						
962 PO	1.833		71.56							
				na						
PI	1.75		51.9	na						
POC	6.75		49.77	na						
BF1	13.0		47.1	na						
BF2	13.0		53.61	na						
SRC	13.0		53.66	na						

The maximum velocity is 8.48 and it occurs in the pipe between nodes S625 and MN09

Node1	Elev1	К	Qa	Nom	Fitting		Pipe Etna'o	CFact	Pt Pe	******* Notoo ******
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	******* Notes *****
*FLOW	ING SPR	INKLER F	R/A # 2							
S621	89.500	5.60	22.50	1	1E	2.0	3.000	120	16.143	
o MN01	92		22.5	1.049	1T	5.0 0.0	7.000 10.000	0.1619	-1.083 1.619	Vel = 8.35
	52		0.0	1.045		0.0	10.000	0.1015	1.015	VCI = 0.00
MN01			22.50						16.679	K Factor = 5.51
S622	89.500	5.60	22.51	1	1E	2.0	3.000	120	16.163	
0					1T	5.0	7.000		-1.083	
MN03	92		22.51	1.049		0.0	10.000	0.1620	1.620	Vel = 8.36
MN03			0.0 22.51						16.700	K Factor = 5.51
S623	89.500	5.60	22.56	1	1E	2.0	3.000	120	16.235	
:0	00.000	0.00	22.00	•	1T	2.0 5.0	7.000	120	-1.083	
MN05	92		22.56	1.049		0.0	10.000	0.1627	1.627	Vel = 8.37
			0.0							
MN05			22.56		. –				16.779	K Factor = 5.51
S624 o	89.500	5.60	22.67	1	1E 1T	2.0 5.0	3.000 7.000	120	16.389 -1.083	
0 MN07	92		22.67	1.049		0.0	10.000	0.1641	1.641	Vel = 8.42
			0.0							
MN07			22.67						16.947	K Factor = 5.51
S625	89.500	5.60	22.85	1	1E	2.0	3.000	120	16.650	
	00		22.05	1 0 4 0	1T	5.0	7.000	0.4666	-1.083	
MN09	92		22.85 0.0	1.049		0.0	10.000	0.1666	1.666	Vel = 8.48
MN09			22.85						17.233	K Factor = 5.50
*FEED	MAIN									
MN01	92		22.50	2.5		0.0	3.833	120	16.679	
0						0.0	0.0		0.0	
MN02	92		22.5	2.635		0.0	3.833	0.0018	0.007	Vel = 1.32
MN02	92		0.0	2.5		0.0	8.167	120	16.686	
o MN03	92		22.5	2.635		0.0 0.0	0.0 8.167	0.0017	0.0 0.014	Vel = 1.32
MN03	92		22.51	2.5		0.0	5.833	120	16.700	
0						0.0	0.0		0.0	
MN04	92		45.01	2.635		0.0	5.833	0.0067	0.039	Vel = 2.65
MN04	92		0.0	2.5		0.0	6.167	120	16.739	
o MN05	92		45.01	2.635		0.0 0.0	0.0 6.167	0.0065	0.0 0.040	Vel = 2.65
MN05	92		22.57	2.000		0.0	4.250	120	16.779	··· _ 2.00
0	02		22.01	2.0		0.0	0.0	120	0.0	
MN06	92		67.58	2.635		0.0	4.250	0.0141	0.060	Vel = 3.98
MN06	92		0.0	2.5		0.0	7.750	120	16.839	
	02		67 50	2 625		0.0	0.0 7 750	0.0120	0.0	1/a = 3.09
MN07 MN07	92		67.58	2.635		0.0	7.750	0.0139 120	0.108 16.947	Vel = 3.98
IVIINU7 :0	92		22.67	2.5		0.0 0.0	1.250 0.0	120	0.0	
0 MN08	92		90.25	2.635		0.0	1.250	0.0240	0.030	Vel = 5.31

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=2]

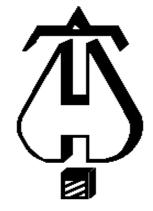
[R/A=2]			

Page 6

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
:o Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	******* Notes ******
					- 1					
MN08	92		0.0	2.5		0.0	10.750	120	16.977	
o MN09	92		90.25	2.635		0.0 0.0	0.0 10.750	0.0238	0.0 0.256	Vel = 5.31
MN09	92		22.85	2.5		0.0 0.0	1.250 0.0	120	17.233 0.0	
MN10	92		113.1	2.635		0.0	1.250	0.0360	0.045	Vel = 6.65
MN10 ว	92		0.0	2.5		0.0 0.0	12.000 0.0	120	17.278 0.0	
MN11	92		113.1	2.635		0.0	12.000	0.0362	0.434	Vel = 6.65
MN11 ว	92		0.0	2.5	2I 1T	16.474 16.474	149.750 32.948	120	17.712 -0.577	
MN12	93.333		113.1	2.635		0.0	182.698	0.0362	6.608	Vel = 6.65
MN12 o	93.333		0.0	2.5	1I 1T	8.237 16.474	32.833 24.711	120	23.743 0.0	
MN13	93.333		113.1	2.635		0.0	57.544	0.0362	2.081	Vel = 6.65
MN13 0	93.333		0.0	2.5	2I 1T	16.474 16.474	26.417 32.948	120	25.824 0.974	
MN14	91.083		113.1	2.635		0.0	59.365	0.0362	2.148	Vel = 6.65
MN14 o	91.083		0.0	2.5	21	16.474 0.0	9.667 16.474	120	28.946 0.0	
TOR6	91.083		113.1	2.635	40	0.0	26.141	0.0362	0.946	Vel = 6.65
TOR6 o BOR6	91.083 84		0.0 113.1	2.5 2.635	1C 1B 1I	19.22 9.61 8.237	7.083 37.067 44.150	120 0.0361	29.892 3.068 1.596	Vel = 6.65
BOR6	84		0.0	2.000	1T	16.474	1.000	120	34.556	ver = 0.00
0	01		0.0	2.0	••	0.0	16.474	120	-0.433	
SP36	85		113.1	2.635		0.0	17.474	0.0362	0.632	Vel = 6.65
SP36			0.0 113.10						34.755	K Factor = 19.18
*S/P # 1										
HV1 o	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	26.948 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF			0.0 0.0						28.698	K Factor = 0
HV2 o	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	26.948 1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF o	99.750	.0	0.0	6	41	40.0 0.0	30.000 40.000	120	28.698 6.388	
SP16	85		0.0	6.065		0.0	70.000	0	0.0	Vel = 0
SP16 0	85	.0	0.0	6		0.0 0.0	16.000 0.0	120	35.086 6.930	
SP15	69		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP15 0	69	.0	0.0	6		0.0 0.0	16.000 0.0	120	42.016 6.930	
SP14	53		0.0	6.065		0.0	16.000	0	0.0	Vel = 0

Aero Auto Cal Poly			co. e LVL 6 [F	R/A=2]						Page 7 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
SP14	53	.0	0.0	6	1T	30.0	8.500	120	48.945	
to SP01	45		0.0	6.065		0.0 0.0	30.000 38.500	0	3.465 0.0	Vel = 0
SP01			0.0 0.0						52.410	K Factor = 0
SP13 to	37	.0	0.0	6	1T	30.0 0.0	7.500 30.000	120	55.875 -3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
			0.0						52.410	K Factor = 0
<u> </u>	101	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	26.075 1.750	* Fixed loss = 1.75
SPR3	101		0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SPR3 to SP36	101 85	.0	0.0 0.0	6 6.065		0.0 0.0 0.0	16.000 0.0 16.000	120 0	27.825 6.930 0.0	Vel = 0
SP36 to	85	H50	163.10	6		0.0	16.000 16.000 0.0	120	34.755 6.930	Ver = 0
SP35	69		163.1	6.065		0.0	16.000	0.0012	0.019	Vel = 1.81
SP35 to	69	H50	50.00	6		0.0 0.0	16.000 0.0	120	41.704 6.930	
SP34 SP34	53 53		213.1 0.0	6.065 6		0.0	16.000	0.0020	0.032	Vel = 2.37
to SP33	37		213.1	6.065		0.0 0.0 0.0	0.0	0.0020	6.930 0.032	Vel = 2.37
SP33 to	37		0.0	6	1T	30.0 0.0	8.417 30.000	120	55.628 3.392	
SP05	29.167		213.1	6.065		0.0	38.417	0.0020	0.078	Vel = 2.37
SP05			0.0 213.10						59.098	K Factor = 27.72
SP32 to	21	.0	0.0	6	1T	30.0 0.0	7.583 30.000	120	62.635 -3.537	
SP05 SP05	29.167 29.167		0.0 213.10	6.065 6	11	0.0	37.583 34.167	0	0.0 59.098	Vel = 0
to SP03	29.167		213.10	6.065	1B 1T	10.0 10.0 30.0	50.000 84.167	0.0020	0.0 0.169	Vel = 2.37
SP03	201101		0.0 213.10	0.000		0010		0.0020	59.267	K Factor = 27.68
	DPIPE FE	ED								
SP01 to	45	.0	0.0	6	1B 6I	10.0 60.0	34.417 70.000	120	52.410 7.399	
SP02	27.917	•	0.0	6.065	01	0.0	104.417	0	0.0	Vel = 0
SP02 to SP03	27.917 29.167	.0	0.0 0.0	6 6.065	21	20.0 0.0	235.417 20.000 255.417	120 0	59.809 -0.541	Vel = 0
SP03	29.167		213.10	6	41	0.0	255.417 27.500	120	0.0	vei = u
to SP04	28.083		213.1	6.065		0.0 0.0	40.000 67.500	0.0020	0.469 0.137	Vel = 2.37

[R/A=2]			


	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
to					or		Ftng's	01 000	Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
SP04	28.083		0.0	6	21	20.0	79.330	120	59.873	
0						0.0	20.000		6.677	
SPC1	12.667		213.1	6.065		0.0	99.330	0.0020	0.200	Vel = 2.37
SPC1	12.667		0.0	6	1T	30.0	7.833	120	66.750	
o SPC2	12.667		213.1	6.065		0.0 0.0	30.000 37.833	0.0020	0.0 0.076	Vel = 2.37
SPC2	12.667		0.0	8	11	13.0	14.750	120	66.826	ver = 2.37
3PC2	12.007		0.0	0	1B	13.0	70.000	120	4.692	
PO	1.833		213.1	7.981	1C	45.0	84.750	0.0005	0.045	Vel = 1.37
			0.0							
PO			213.10						71.563	K Factor = 25.19
System	Demand	Pressu	re			71.563				
Safety N						105.185				
	ation Pre					176.748				
	e @ Pum					176.748				
	e From P		irve		-	124.845				
	e @ Pum	piniet	0.0	0	10	51.903	44.000	400	54.000	
PI :o	1.750		0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	51.903 -2.166	
POC	6.750		213.1	7.981	1T	35.0	66.000	0.0005	0.035	Vel = 1.37
POC	6.750		0.0	8	2E	56.936	41.000	140	49.772	
:0	0.100		0.0	Ŭ		0.0	56.936		-2.707	
BF1	13		213.1	8.27		0.0	97.936	0.0003	0.033	Vel = 1.27
BF1	13		0.0	8	1Zic	0.0	4.000	120	47.098	
0						0.0	0.0		6.507	* Fixed loss = 6.507
BF2	13		213.1	7.981		0.0	4.000	0.0005	0.002	Vel = 1.37
BF2	13		0.0	8	2E	56.936	46.000	140	53.607	
	13		213.1	0 07	1G 1T		118.616	0 0000	0.0	Val - 1.27
SRC	13		0.0	8.27	1T	55.354	164.616	0.0003	0.055	Vel = 1.27

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 6 [R/A=3]Building: FP-6.06ELocation: San Luis Obispo, Ca.System: 6-3Contract: 10034Data File: Cal Poly CFS LVL 6-3.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science *Location:* San Luis Obispo, Ca. *Drawing no:* FP-6.06E *Date:* 9-25-2011

Design

Remote area number: 6-3 Remote area location: 6 th. Floor Laboratory Occupancy classification: Ordinary Hazard Gr. 1 Density: 0.15 - Gpm/SqFt Area of application: 920 - SqFt Coverage per sprinkler: 130 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 12 In-rack demand: N/A - GPM Hose streams: 250 - GPM Total water required (including hose streams): 523.39 - GPM @ 26.71 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date:8-19-2011Location:N. Poly View DriveSource:Fluid Resource Management

Name of contractor: Aero Automatic Sprinkler Co.
Address: 21605 N. Central Ave. Phoenix, Az. 85024
Phone number: 623-580-7847
Name of designer: Neal Larsen
Authority having jurisdiction: C.S.F.M.
Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'}
Hydrant # 64; Flow = 914 gpm
FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi]
NOTE : REMOTE AREA REDUCED BY 39.25% [Q.R HEADS & C.H.=10'-6"] 912 SQ.FT. MIN. Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=3]

City Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 City Water Adjusted to Pump Inlet or Pf - Elev - Hose Flow A1 - Adjusted Static: 51.696 A2 - Adj Resid : 47.866 @ 790.2 A3 - Adj Resid : 37.967 @ 1382.9	Pump Data: P1 - Pump Churn Pressure : 125.2 P2 - Pump Rated Pressure : 110.9 P2 - Pump Rated Flow : 790.2 P3 - Pump Pressure @ Max Flow : 67.9 P3 - Pump Max Flow : 1382.9 City Residual Flow @ 0 = 3307.91 City Residual Flow @ 20 = 2576.03 City Water @ 150% of Pump = 43.24	Demand: D1 - Elevation : 33.565 D2 - System Flow : 273.395 D2 - System Pressure : 149.546 Hose (Adj City) : 150 Hose (Demand) : 100 D3 - System Demand : 373.395 Safety Margin : 25.499
210 []		
196		
182 AI+P1		
168 A2 + P2		
154 02		
140 D3 126 D 3		
112	A3 + P3	
98		
84		
70		
56 C1 A2 C	2	
	Δ3	
⁴² A1 28 D1		
14		
	1000 1200 1400 16 FLOW (N ^ 1.85)	600 1800

Fittings Used Summary

	utomatic Sprinkler Co. ly Center for Science LVL	6 [R/A=3]																_		3 9-25-11	
Fitting L Abbrev.	egend Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
B C	Generic Butterfly Valve Generic Check Vlv	0	0 5	2.25 5	2	2.5 9	6 11	7 14	10 16	0 19	12 22	9 27	10 32	12 45	19 55	21 65	0 76	0 87	0 98	0 109	0 130
Ē	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittin	ng gener	ates a Fi	xed Los	s Base	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=3]

Page	4
)ate	9-25-1

	ero Automatic Sprinkler Co. al Poly Center for Science LVL 6 [R/A=3]										
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.			
S631	90.5	5.6	12.12	na	19.5	0.15	130	7.0			
5632	90.5	5.6	13.07	na	20.25	0.15	130	7.0			
S633 S634	90.5 90.5	5.6 5.6	16.6 24.77	na	22.81 27.87	0.15 0.15	130 130	7.0 7.0			
S635	90.5 90.5	5.6	12.23	na na	19.58	0.15	130	7.0			
S636	90.5	5.6	13.18	na	20.33	0.15	130	7.0			
S637	90.5	5.6	16.74	na	22.91	0.15	130	7.0			
638	90.5	5.6	24.97	na	27.99	0.15	130	7.0			
8639 8640	90.5 90.5	5.6 5.6	12.6 13.58	na na	19.88 20.64	0.15 0.15	130 130	7.0 7.0			
5641	90.5	5.6	17.24	na	23.25	0.15	130	7.0			
5642	90.5	5.6	25.7	na	28.39	0.15	130	7.0			
_631	91.0		12.59	na							
_632	91.0		13.58	na							
_633 _634	91.0 91.0		17.29 25.88	na na							
_635	91.0		12.7	na							
_636	91.0		13.7	na							
_637	91.0		17.44	na							
_638 _639	91.0 91.0		26.09 13.09	na							
_639 _640	91.0 91.0		14.12	na na							
_641	91.0		17.96	na							
_642	91.0		26.86	na							
MN01	92.0		35.21	na							
MN02 MN03	92.0 92.0		35.21 35.21	na na							
MN03 MN04	92.0		35.21	na							
MN05	92.0		35.21	na							
MN06	92.0		35.21	na							
MN07	92.0		35.21	na							
MN08 MN09	92.0 92.0		35.21 35.47	na							
MN10	92.0		35.5	na na							
MN11	92.0		36.54	na							
MN12	93.333		69.78	na							
MN13	93.333		80.44	na							
/IN14 FOR6	91.083 91.083		92.4 97.24	na							
BOR6	84.0		108.49	na na							
HV1	99.75		104.1	na							
HV2	99.75		104.1	na							
SPRF	99.75		105.85	na							
SP16 SP15	85.0 69.0		112.24 119.17	na na							
SP14	53.0		126.1	na							
SP13	37.0		133.02	na							
HV3	101.0		102.61	na							
SPR3	101.0		104.36	na	50.0						
SP36 SP35	85.0 69.0		111.29 118.29	na na	50.0 50.0						
SP34	53.0		125.31	na	00.0						
SP33	37.0		132.33	na							
SP32	21.0		139.48	na							
SP05	29.167		135.94	na							
SP01 SP02	45.0 27.917		129.56 136.96	na na							
SP03	29.167		136.42	na							
SP04	28.083		137.27	na							
SPC1	12.667		144.51	na							
SPC2 PO	12.667		144.73	na							
	1.833		149.55	na							

Flow Summary - Standard

	omatic Sprinkle Center for Scie	Page Date	5 9-25-11					
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
PI POC BF1 BF2 SRC	1.75 6.75 13.0 13.0 13.0		50.78 48.72 46.1 52.06 52.22	na na na na na	150.0			

The maximum velocity is 23.67 and it occurs in the pipe between nodes L641 and L642

	Els. 4	K	0-	Nisses			Din a		Di	
Node1 :o	Elev1	K	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
	ING SPR	NKLER I	2/4 # 3							
S631	90.5	5.60	19.50	1	1T	5.0	0.500	120	12.125	
C						0.0	5.000		-0.217	
L631	91		19.5	1.049		0.0	5.500	0.1244	0.684	Vel = 7.24
L631			0.0 19.50						12.592	K Factor = 5.50
S632	90.5	5.60	20.24	1	1T	5.0	0.500	120	13.070	
0						0.0	5.000		-0.217	
L632	91		20.24	1.049		0.0	5.500	0.1331	0.732	Vel = 7.51
L632			0.0 20.24						13.585	K Factor = 5.49
S633	90.5	5.60	22.81	1	1T	5.0	0.500	120	16.598	
0						0.0	5.000		-0.217	
L633	91		22.81	1.049		0.0	5.500	0.1660	0.913	Vel = 8.47
L633			0.0 22.81						17.294	K Factor = 5.49
S634	90.5	5.60	27.87	1	1T	5.0	0.500	120	24.772	
0						0.0	5.000		-0.217	
L634	91		27.87	1.049		0.0	5.500	0.2405	1.323	Vel = 10.35
L634			0.0 27.87						25.878	K Factor = 5.48
S635	90.5	5.60	19.58	1	1T	5.0	0.500	120	12.228	
0						0.0	5.000		-0.217	
L635	91		19.58	1.049		0.0	5.500	0.1253	0.689	Vel = 7.27
L635			0.0 19.58						12.700	K Factor = 5.49
S636	90.5	5.60	20.33	1	1T	5.0	0.500	120	13.180	
0	0010	0.00				0.0	5.000		-0.217	
L636	91		20.33	1.049		0.0	5.500	0.1342	0.738	Vel = 7.55
L636			0.0 20.33						13.701	K Factor = 5.49
S637	90.5	5.60	22.91	1	1T	5.0	0.500	120	16.736	NT dolor =
0		0.00				0.0	5.000		-0.217	
L637	91		22.91	1.049		0.0	5.500	0.1673	0.920	Vel = 8.50
L637			0.0 22.91						17.439	K Factor = 5.49
S638	90.5	5.60	27.91	1	1T	5.0	0.500	120	24.974	K = 3.49
0	50.5	0.00	21.00	•		0.0	5.000	120	-0.217	
L638	91		27.99	1.049		0.0	5.500	0.2424	1.333	Vel = 10.39
1 620			0.0						26.000	K Fastar - 5.49
L638 S639	90.5	5.60	27.99	1	1T	5.0	0.500	120	26.090 12.601	K Factor = 5.48
5639 D	90.3	5.60	19.88	I	11	5.0 0.0	0.500 5.000	120	-0.217	
L639	91		19.88	1.049		0.0	5.500	0.1287	0.708	Vel = 7.38
1.000			0.0						40.000	
L639	00 5	E 00	19.88	4	47	5.0	0.500	400	13.092	K Factor = 5.49
S640 ว	90.5	5.60	20.64	1	1T	5.0 0.0	0.500 5.000	120	13.580 -0.217	
L640	91		20.64	1.049		0.0	5.500	0.1378	0.758	Vel = 7.66

		orinkler Co r Science		R/A=3]						Page 7 Date 9-25-11
Node1	Elev1	к	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
L640			0.0 20.64						14.121	K Factor = 5.49
S641	90.5	5.60	23.25	1	1T	5.0	0.500	120	17.235	
o L641	91		23.25	1.049		0.0 0.0	5.000 5.500	0.1720	-0.217 0.946	Vel = 8.63
			0.0							
L641			23.25						17.964	K Factor = 5.49
S642	90.500	5.60	28.39	1	1T	5.0	0.500	120	25.705	
o L642	91		28.39	1.049		0.0 0.0	5.000 5.500	0.2489	-0.217 1.369	Vel = 10.54
			0.0							
L642			28.39						26.857	K Factor = 5.48
	CH LINES	S R/A # 3								
L631	91		19.50	1		0.0 0.0	8.000 0.0	120	12.592 0.0	
o L632	91		19.5	1.049		0.0	0.0 8.000	0.1241	0.0	Vel = 7.24
L632	91		20.24	1		0.0	8.000	120	13.585	
0			00 T (0.0	0.0	0 4000	0.0	
L633	91		39.74	1.049		0.0	8.000	0.4636	3.709	Vel = 14.75
L633 o	91		22.82	1		0.0 0.0	8.000 0.0	120	17.294 0.0	
L634	91		62.56	1.049		0.0	8.000	1.0730	8.584	Vel = 23.22
L634	91		27.87	1.25	1E	3.0	8.500	120	25.878	
o MN08	92		90.43	1.38	1T	6.0 0.0	9.000 17.500	0.5580	-0.433 9.765	Vel = 19.40
IVINUO	92		0.0	1.30		0.0	17.500	0.5560	9.705	ver = 19.40
MN08			90.43						35.210	K Factor = 15.24
L635	91		19.58	1		0.0	8.000	120	12.700	
0	04		40.50	4 0 4 0		0.0	0.0	0.4054	0.0	
L636	91		19.58	1.049 1		0.0	8.000	0.1251	1.001	Vel = 7.27
L636 o	91		20.33	I		0.0 0.0	8.000 0.0	120	13.701 0.0	
L637	91		39.91	1.049		0.0	8.000	0.4672	3.738	Vel = 14.82
L637	91		22.91	1		0.0	8.000	120	17.439	
o L638	91		62.82	1.049		0.0 0.0	0.0 8.000	1.0814	0.0 8.651	Vel = 23.32
L638	91		27.99	1.25	1E	3.0	8.500	120	26.090	VOI - 20.02
0	01		27.00	20	1T	6.0	9.000	120	-0.433	
MN10	92		90.81	1.38		0.0	17.500	0.5623	9.840	Vel = 19.48
			0.0						25 407	K Fostor - 15.04
MN10 L639	91		90.81 19.88	1		0.0	8.000	120	35.497 13.092	K Factor = 15.24
L639 0	31		19.00	I		0.0	8.000 0.0	120	0.0	
L640	91		19.88	1.049		0.0	8.000	0.1286	1.029	Vel = 7.38
L640	91		20.64	1		0.0	8.000	120	14.121	
0 1.6/1	01		10 52	1.049		0.0	0.0	0.4804	0.0 3.843	1/0 - 15.04
L641	91		40.52	1.049		0.0	8.000	0.4804	3.843	Vel = 15.04

Aero Auto Cal Poly			Co. e LVL 6 [F	R/A=3]						Page 8 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
L641	91		23.24	1		0.0	8.000	120	17.964	
to L642	91		63.76	1.049		0.0 0.0	0.0 8.000	1.1116	0.0 8.893	Vel = 23.67
L642 to	91		28.40	1.25	1E 1T	3.0 6.0	8.500 9.000	120	26.857 -0.433	
<u>MN11</u> MN11	92		92.16 0.0 92.16	1.38		0.0	17.500	0.5778	10.112 36.536	Vel = 19.77 K Factor = 15.25
*FEED	MAIN		02.10						00.000	10.20
MN01 to	92	.0	0.0	2.5		0.0 0.0	3.833 0.0	120	35.210 0.0	
MN02	92		0.0	2.635		0.0	3.833	0	0.0	Vel = 0
MN02 to MN03	92 92	.0	0.0 0.0	2.5 2.635		0.0 0.0 0.0	8.167 0.0 8.167	120 0	35.210 0.0 0.0	Vel = 0
MN03	92	.0	0.0	2.033		0.0	5.833	120	35.210	Vei – 0
to	52	.0	0.0	2.0		0.0	0.0	120	0.0	
MN04	92		0.0	2.635		0.0	5.833	0	0.0	Vel = 0
MN04 to	92	.0	0.0	2.5		0.0 0.0	6.167 0.0	120	35.210 0.0	
MN05 MN05	92 92	.0	0.0	2.635 2.5		0.0	6.167 4.250	0	0.0 35.210	Vel = 0
to		.0				0.0	0.0		0.0	
MN06 MN06	92 92	0	0.0	2.635 2.5		0.0	4.250 7.750	0	0.0 35.210	Vel = 0
to		.0	0.0			0.0 0.0	0.0		0.0	
MN07	92	0	0.0	2.635		0.0	7.750	0	0.0	Vel = 0
MN07 to MN08	92 92	.0	0.0 0.0	2.5 2.635		0.0 0.0 0.0	1.250 0.0 1.250	120 0	35.210 0.0 0.0	Vel = 0
MN08	92		90.43	2.5		0.0	10.750 0.0	120	35.210	
to MN09	92		90.43	2.635		0.0 0.0	0.0 10.750	0.0239	0.0 0.257	Vel = 5.32
MN09 to	92		0.0	2.5		0.0 0.0	1.250 0.0	120	35.467 0.0	
MN10	92		90.43	2.635		0.0	1.250	0.0240	0.030	Vel = 5.32
MN10 to	92		90.81	2.5		0.0 0.0	12.000 0.0	120	35.497 0.0	
MN11	92		181.24	2.635		0.0	12.000	0.0866	1.039	Vel = 10.66
MN11 to	92		92.16	2.5	2I 1T	16.474	149.750 32.948	120	36.536 -0.577	
MN12	93.333		273.4	2.635		0.0	182.698	0.1851	33.825	Vel = 16.09
MN12 to	93.333		0.0	2.5	1I 1T	8.237 16.474		120	69.784 0.0	
MN13	93.333		273.4	2.635		0.0	57.544	0.1851	10.654	Vel = 16.09
MN13 to MN14	93.333 91.083		0.0 273.4	2.5 2.635	2I 1T	16.474 16.474 0.0	26.417 32.948 59.365	120 0.1852	80.438 0.974 10.992	Vel = 16.09
	01.000		210.7	2.000		0.0	00.000	0.1002	10.002	

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=3]

Page	9
Date	9-25-11

Cal Poly	Center for	r Scienc	e LVL 6 [F	R/A=3]						Date	e 9-25-'	11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf		Notoo	
MN14 to	91.083		0.0	2.5	21	16.474 0.0	9.667 16.474	120	92.404 0.0			
TOR6	91.083		273.4	2.635		0.0	26.141	0.1851	4.840	Vel = 16.0	09	
TOR6 to	91.083		0.0	2.5	1C 1B	19.22 9.61	7.083 37.067	120	97.244 3.068			
BOR6	84		273.4	2.635	11	8.237	44.150	0.1851	8.174	Vel = 16.0	09	
BOR6 to	84		0.0	2.5	1T	16.474 0.0	1.000 16.474	120	108.486 -0.433			
SP36	85		273.4	2.635		0.0	17.474	0.1851	3.235	Vel = 16.0	09	
SP36			0.0 273.40						111.288	K Factor =	- 25 92	
*S/P # 2	1		210.40						111.200		20.02	
HV1	99.750	.0	0.0	2.5	1T	12.0	0.250	120	104.098			
to SPRF	99.750		0.0	2.469		0.0 0.0	12.000 12.250	0	1.750 0.0	* Fixed los Vel = 0	ss = 1.75	
	33.730		0.0	2.403		0.0	12.200	0	0.0	Vei – 0		
SPRF			0.0						105.848	K Factor =	= 0	
HV2	99.750	.0	0.0	2.5	1T	12.0	0.250	120	104.098			
to	00 750		0.0	2 460		0.0	12.000	0	1.750	* Fixed los	ss = 1.75	
SPRF SPRF	99.750	0	0.0	2.469 6	41	0.0	12.250 30.000	0 120	0.0	Vel = 0		
to	99.750	.0	0.0	Ø	41	40.0 0.0	40.000	120	6.388			
SP16	85		0.0	6.065		0.0	70.000	0	0.0	Vel = 0		
SP16	85	.0	0.0	6		0.0	16.000	120	112.236			
to SP15	69		0.0	6.065		0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0		
SP15 SP15	<u>69</u>	.0	0.0	6		0.0	16.000	120	119.166	vei = 0		
to	03	.0	0.0	0		0.0	0.0	120	6.930			
SP14	53		0.0	6.065		0.0	16.000	0	0.0	Vel = 0		
SP14	53	.0	0.0	6	1T	30.0	8.500	120	126.096			
to SP01	45		0.0	6.065		0.0 0.0	30.000 38.500	0	3.465 0.0	Vel = 0		
0101	J		0.0	0.000		0.0	50.500	0	0.0			
SP01			0.0						129.561	K Factor =	= 0	
SP13	37	.0	0.0	6	1T	30.0	7.500	120	133.025			
to SP01	45		0.0	6.065		0.0 0.0	30.000 37.500	0	-3.465 0.0	Vel = 0		
-			0.0			-			-	-		
SP01			0.0						129.560	K Factor =	= 0	
*S/P # 3	3											
HV3 to	101	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	102.608 1.750	* Fixed los	ss = 1.75	
SPR3	101		0.0	2.469	-	0.0	25.750	0	0.0	Vel = 0		
SPR3 to	101	.0	0.0	6		0.0 0.0	16.000 0.0	120	104.358 6.930			_
SP36	85		0.0	6.065		0.0	16.000	0	0.0	Vel = 0		
SP36	85	H50	323.40	6		0.0	16.000	120	111.288			
to SP35	69		323.4	6.065		0.0 0.0	0.0 16.000	0.0043	6.930 0.069	Vel = 3.5	59	

Aero Automatic Sp Cal Poly Center for

Node1

to

Elev1

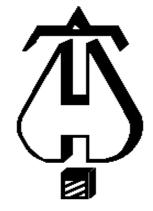
prinkler Co or Science		R/A=3]					
К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe
Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf

Page Date

10

Notes

9-25-11


Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pe Pf	Notes
SP35 to	69	H50	50.00	6		0.0 0.0	16.000 0.0	120	118.287 6.930	
SP34	53		373.4	6.065		0.0	16.000	0.0057	0.091	Vel = 4.15
SP34 to	53		0.0	6		0.0 0.0	16.000 0.0	120	125.308 6.930	
SP33	37		373.4	6.065		0.0	16.000	0.0056	0.090	Vel = 4.15
SP33 to	37		0.0	6	1T	30.0 0.0	8.417 30.000	120	132.328 3.392	
SP05	29.167		373.4	6.065		0.0	38.417	0.0057	0.219	Vel = 4.15
SP05			0.0 373.40						135.939	K Factor = 32.03
SP32 to	21	.0	0.0	6	1T	30.0 0.0	7.583 30.000	120	139.476 -3.537	
SP05	29.167		0.0	6.065		0.0	37.583	0	0.0	Vel = 0
SP05 to	29.167		373.40	6	1I 1B	10.0 10.0	34.167 50.000	120	135.939 0.0	
SP03	29.167		373.4	6.065	1T	30.0	84.167	0.0057	0.479	Vel = 4.15
SP03			0.0 373.40						136.418	K Factor = 31.97
	OPIPE FE									
SP01 to	45	.0	0.0	6	1B 6I	10.0 60.0	34.417 70.000	120	129.560 7.399	
SP02	27.917		0.0	6.065		0.0	104.417	0	0.0	Vel = 0
SP02 to	27.917	.0	0.0	6	21	20.0 0.0	235.417 20.000	120	136.959 -0.541	
SP03	29.167		0.0	6.065		0.0	255.417	0	0.0	Vel = 0
SP03 to	29.167		373.40	6	41	40.0 0.0	27.500 40.000	120	136.418 0.469	
SP04	28.083		373.4	6.065		0.0	67.500	0.0057	0.384	Vel = 4.15
SP04 to	28.083		0.0	6	21	20.0 0.0	79.330 20.000	120	137.271 6.677	
SPC1	12.667		373.4	6.065		0.0	99.330	0.0057	0.564	Vel = 4.15
SPC1 to	12.667		0.0	6	1T	30.0 0.0	7.833 30.000	120	144.512 0.0	
SPC2	12.667		373.4	6.065		0.0	37.833	0.0057	0.215	Vel = 4.15
SPC2 to	12.667		0.0	8	1I 1B	13.0 12.0	14.750 70.000	120	144.727 4.692	
PO	1.833		373.4	7.981	1C	45.0	84.750	0.0015	0.127	Vel = 2.39
PO			0.0 373.40						149.546	K Factor = 30.53
Safety I	Demand Margin lation Pre		e			149.546 25.499 175.045				
Pressur	re @ Purr re From P re @ Purr	^J ump Cu				175.045 -124.263 50.782				
PI to	1.750		0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	50.782 -2.166	
POC	6.750		373.4	7.981	1T	35.0	66.000	0.0015	0.099	Vel = 2.39

Aero Aut Cal Poly			Co. ce LVL 6 [F	R/A=3]						Pa Da	-	1
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf			
POC	6.750		0.0	8	2E	56.936	41.000	140	48.715			
to						0.0	56.936		-2.707			
BF1	13		373.4	8.27		0.0	97.936	0.0009	0.093	Vel = 2.	23	
BF1	13		0.0	8	1Zic	0.0	4.000	120	46.101			
to						0.0	0.0		5.955	* Fixed lo	ss = 5.955	
BF2	13		373.4	7.981		0.0	4.000	0.0015	0.006	Vel = 2.	39	
BF2	13		0.0	8	2E	56.936	46.000	140	52.062			
to					1G	6.326	118.616		0.0			
SRC	13		373.4	8.27	1T	55.354	164.616	0.0009	0.155	Vel = 2.	23	
			150.00							Qa = 15	0.00	
SRC			523.40						52.217	K Factor		

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science LVL 6 [R/A=4]Building: FP-6.06ELocation: San Luis Obispo, Ca.System: 6-4Contract: 10034Data File: Cal Poly CFS LVL 6-4.WXF

HYDRAULIC CALCULATIONS for

Project name: Cal Poly Center For Science *Location:* San Luis Obispo, Ca. *Drawing no:* FP-6.06E *Date:* 9-25-2011

Design

Remote area number: 6-4 Remote area location: 6 th. Floor Office/Lobby Occupancy classification: Light Hazard Density: 0.10 - Gpm/SqFt Area of application: 1500 - SqFt Coverage per sprinkler: 210 - SqFt Type of sprinklers calculated: Tyco; Mod. TY-FRB; 1/2"; 1/2";K=5.6; 155 Deg No. of sprinklers calculated: 14 In-rack demand: N/A - GPM Hose streams: 100 - GPM Total water required (including hose streams): 447.28 - GPM @ 39.09 - Psi Type of system: WET Volume of dry or preaction system: N/A - Gal

Water supply information

Date:8-19-2011Location:N. Poly View DriveSource:Fluid Resource Management

Name of contractor: Aero Automatic Sprinkler Co.
Address: 21605 N. Central Ave. Phoenix, Az. 85024
Phone number: 623-580-7847
Name of designer: Neal Larsen
Authority having jurisdiction: C.S.F.M.
Notes: (Include peaking information or gridded systems here.) Flow Test Information : Hydrant # 63; Static = 60 psi; Res.= 55 psi {Elev.=351.0'}
Hydrant # 64; Flow = 914 gpm
FLOW TEST USED IN HYD. CALCS REDUCED BY 10 % [STATIC=54psi; RES.=49psi] Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=4]

City Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 City Water Adjusted to Pump Inlet	Pump Data: P1 - Pump Churn Pressure P2 - Pump Rated Pressure P2 - Pump Rated Flow P3 - Pump Pressure @ Max Flo P3 - Pump Max Flow	: 1382.9	Demand: D1 - Elevation D2 - System Flow D2 - System Pressur Hose (Adj City) Hose (Demand)	: <u> </u>
or Pf - Elev - Hose Flow A1 - Adjusted Static: 51.872 A2 - Adj Resid : 49.314 @ 790.2 A3 - Adj Resid : 40.224 @ 1382.9	City Residual Flow @ 0 City Residual Flow @ 20 City Water @ 150% of Pun	= 3307.91 = 2576.03 np = 43.24	D3 - System Demand Safety Margin	1 : 447.282 : 13.576
210				
196 AI + P1				
182 AI + P1 168 D2 A2 + P2				
140 D3				
126	A3 +	D 2		
98 84 84 84 84 84 84 84 84 84 84 84 84 84				
70				
56 C1 A2 C	2	A3		
42 A1 D1	θ	_A3		
28 D1				
				<u></u>
200 400 600 800	1000 1200 14 FLOW(N ^ 1.85)	400 1600	1800	

Fittings Used Summary

	Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=4]											Page 3 Date 9-25-11									
Fitting L Abbrev.	egend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve Generic Check Vlv	0	0	2.25 5	2	2.5 9	6 11	7	10 16	0	12 22	9 27	10 32	12	19	21	0	0	0	0	0
F	90' Standard Elbow	4	5	5 2	3	9 4	5	14 6	7	19 8	22 10	27 12	32 14	45 18	55 22	65 27	76 35	87 40	98 45	109 50	130 61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	ng gener	ates a Fi	xed Los	s Base	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=4]

Page Date	4 9-25-11	

		-						
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
S651	90.5	5.6	7.06	na	14.88	0.1	112	7.0
S652	90.5	5.6	7.0	na	14.82	0.1	143	7.0
S653	90.5	5.6	9.47	na	17.23	0.1	112	7.0
S654	90.5	5.6	11.3	na	18.82	0.1	154	7.0
S655	90.5	5.6	13.46	na	20.55	0.1	112	7.0
S656	90.5	5.6	14.84	na	21.57	0.1	180	7.0
S657	90.5	5.6	18.84	na	24.3	0.1	112	7.0
S658	90.5	5.6	20.38	na	25.28	0.1	150	7.0
S659 S660	90.5 90.5	5.6 5.6	33.1 27.64	na	32.22 29.44	0.1 0.1	112 168	7.0 7.0
S661	90.5	5.6	28.46	na na	29.44	0.1	112	7.0
S662	90.5	5.6	34.26	na	32.78	0.1	210	7.0
S663	90.5	5.6	36.85	na	33.99	0.1	210	7.0
S664	90.5	5.6	31.71	na	31.53	0.1	168	7.0
L651	92.417		6.93	na				
L653	92.417		9.84	na				
L654	92.417		11.88	na				
L655	92.417		14.28	na				
L656	92.417		16.2	na				
L657	92.417		20.26	na				
L658	92.417		21.99	na				
L660	92.417		30.93	na				
MN01 MN02	92.0 92.0		59.45 59.45	na na				
MN02 MN03	92.0		59.45	na				
MN04	92.0		59.45	na				
MN05	92.0		59.45	na				
MN06	92.0		59.45	na				
MN07	92.0		59.45	na				
MN08	92.0		59.45	na				
MN09	92.0		59.45	na				
MN10	92.0		59.45	na				
MN11	92.0		59.45	na				
MN40	92.417		35.2	na				
MN41	92.417		35.21	na				
MN42	92.417		35.7	na				
MN43 MN44	92.417 92.417		38.45 43.22	na				
MN44 MN45	92.417		43.22	na na				
MN12	93.333		58.87	na				
MN13	93.333		75.45	na				
MN14	91.083		93.54	na				
TOR6	91.083		101.07	na				
BOR6	84.0		116.86	na				
HV1	99.75		114.66	na				
HV2	99.75		114.66	na				
SPRF	99.75		116.41	na				
SP16	85.0		122.8	na				
SP15	69.0		129.73	na				
SP14	53.0		136.66	na				
SP13 HV3	37.0 101.0		143.59 112.79	na				
SPR3	101.0		114.54	na na				
SP36	85.0		121.47	na	50.0			
SP35	69.0		128.5	na	50.0			
SP34	53.0		135.56	na	20.0			
SP33	37.0		142.61	na				
SP32	21.0		149.85	na				
SP05	29.167		146.31	na				
SP01	45.0		140.12	na				
5000	27.917		147.52	na				
SP02 SP03	29.167		146.98	na				

Flow Summary - Standard

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=4]

	omatic Sprinkle Center for Scie	Page Date	5 9-25-11					
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
SP04	28.083		147.98	na				
SPC1	12.667		155.45	na				
SPC2	12.667		155.75	na				
PO	1.833		160.62	na				
PI	1.75		51.35	na				
POC	6.75		49.32	na				
BF1	13.0		46.74	na				
BF2	13.0		52.45	na				
SRC	13.0		52.67	na				

The maximum velocity is 24.81 and it occurs in the pipe between nodes L658 and MN41

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=4]

Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	notes
*FLOW	ING SPR	INKLER F	R/A # 4							
S651	90.5		14.88	1	2E	4.0	5.333	120	7.057	
0	0010	0.00	1 1100	•		0.0	4.000	120	-0.830	
L651	92.417		14.88	1.049		0.0	9.333	0.0752	0.702	Vel = 5.52
1054			0.0						0.000	
L651	00 5	F 00	14.88	4	4 -	2.0	0.407	400	6.929	K Factor = 5.65
S652 o	90.5	5.60	14.82	1	1E 1T	2.0 5.0	3.167 7.000	120	7.000 -0.830	
L651	92.417		14.82	1.049		0.0	10.167	0.0747	0.759	Vel = 5.50
			0.0							
L651			14.82						6.929	K Factor = 5.63
S653	90.5	5.60	17.23	1	1E	2.0	5.083	120	9.471	
to L653	92.417		17.23	1.049	1T	5.0 0.0	7.000 12.083	0.0988	-0.830 1.194	Vel = 6.40
L033	92.417		0.0	1.049		0.0	12.005	0.0900	1.134	vei – 0.40
L653			17.23						9.835	K Factor = 5.49
S654	90.5	5.60	18.82	1	1E	2.0	5.167	120	11.299	
to					1T	5.0	7.000		-0.830	
L654	92.417		18.82	1.049		0.0	12.167	0.1163	1.415	Vel = 6.99
			0.0						11 001	K Fastar E 46
L654	00 5	5.00	18.82	4	4 -	2.0	E 000	400	11.884	K Factor = 5.46
S655 to	90.5	5.60	20.54	1	1E 1T	2.0 5.0	5.083 7.000	120	13.460 -0.830	
L655	92.417		20.54	1.049		0.0	12.083	0.1367	1.652	Vel = 7.62
			0.0							
L655			20.54						14.282	K Factor = 5.44
S656	90.5	5.60	21.57	1	2E	4.0	5.667	120	14.836	
to	02 417		21 57	1 0 4 0	1T	5.0	9.000	0 1 4 0 7	-0.830	Val - 9.01
L656	92.417		21.57	1.049		0.0	14.667	0.1497	2.195	Vel = 8.01
L656			0.0 21.57						16.201	K Factor = 5.36
S657	90.5	5.60	24.30	1	1E	2.0	5.083	120	18.835	
to		0.00			1T	5.0	7.000		-0.830	
L657	92.417		24.3	1.049		0.0	12.083	0.1866	2.255	Vel = 9.02
1057			0.0						00.000	
L657	00 -	E 00	24.30		4 5	• •	E 403	400	20.260	K Factor = 5.40
S658 to	90.5	5.60	25.28	1	1E 1T	2.0 5.0	5.167 7.000	120	20.376 -0.830	
L658	92.417		25.28	1.049		0.0	12.167	0.2007	-0.830 2.442	Vel = 9.38
			0.0							
L658			25.28						21.988	K Factor = 5.39
S659	90.5	5.60	32.22	1	1E	2.0	2.333	120	33.098	
	00 447		22.02	1 0 4 0	1T	5.0	7.000	0.04.40	-0.830	
MN40	92.417		32.22	1.049		0.0	9.333	0.3143	2.933	Vel = 11.96
MN40			0.0 32.22						35.201	K Factor = 5.43
S660	90.5	5.60	29.44	1	2E	4.0	6.500	120	27.635	111000 - 0.40
0	50.5	5.00	20.44	1	2L 1T	4.0 5.0	9.000	120	-0.830	
L660	92.417		29.44	1.049		0.0	15.500	0.2661	4.124	Vel = 10.93

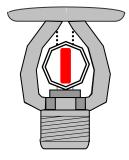
Page

6

Cal Poly									_	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
			0.0							
L660			29.44						30.929	K Factor = 5.29
S661	90.5	5.60	29.87	1	1E	2.0	5.083	120	28.456	
o L660	92.417		29.87	1.049	1T	5.0 0.0	7.000 12.083	0.2734	-0.830 3.303	Vel = 11.09
			0.0							
L660			29.87						30.929	K Factor = 5.37
S662 o	90.500	5.60	32.78	1	1T	5.0 0.0	2.000 5.000	120	34.263 -0.830	
MN42	92.417		32.78	1.049		0.0	7.000	0.3246	2.272	Vel = 12.17
			0.0							
MN42 S663	90.500	5.60	32.78 33.99	1	1T	5.0	2.000	120	35.705 36.846	K Factor = 5.49
3003 :0	90.000	5.00	55.99	I		0.0	5.000	120	-0.830	
MN43	92.417		33.99	1.049		0.0	7.000	0.3471	2.430	Vel = 12.62
MN43			0.0 33.99						38.446	K Factor = 5.48
S664	90.500	5.60	31.53	1	3E	6.0	24.833	120	31.709	
0					2T	10.0	16.000		-0.830	
MN44	92.417		31.53	1.049		0.0	40.833	0.3021	12.337	Vel = 11.70
MN44			0.0 31.53						43.216	K Factor = 4.80
*BRAN	CH LINES	8 R/A # 4								
L651	92.417		29.69	1		0.0	10.750	120	6.929	
to L653	92.417		29.69	1.049		0.0 0.0	0.0 10.750	0.2703	0.0 2.906	Vel = 11.02
L653	92.417		17.24	1		0.0	3.250	120	9.835	
o L654	92.417		46.02	1 0 4 0		0.0	0.0	0 6205	0.0	
L654	92.417		46.93 18.82	1.049 1.25		0.0	3.250 7.750	0.6305	2.049 11.884	Vel = 17.42
:0	52.417		10.02			0.0	0.0	120	0.0	
L655	92.417		65.75	1.38		0.0	7.750	0.3094	2.398	Vel = 14.10
L655 to	92.417		20.55	1.25		0.0 0.0	3.750 0.0	120	14.282 0.0	
L656	92.417		86.3	1.38		0.0	3.750	0.5117	1.919	Vel = 18.51
L656	92.417		21.57	1.25		0.0	5.250	120	16.201	
to L657	92.417		107.87	1.38		0.0 0.0	0.0 5.250	0.7731	0.0 4.059	Vel = 23.14
L657	92.417		24.30	1.5		0.0	3.250	120	20.260	
0						0.0	0.0		0.0	
L658 L658	92.417		132.17	<u>1.61</u> 1.5	1T	0.0 8.0	3.250 10.000	0.5317 120	1.728 21.988	Vel = 20.83
L658 0	92.417		25.28	1.5	11	8.0 0.0	8.000	120	21.988 0.0	
MN41	92.417		157.45	1.61		0.0	18.000	0.7347	13.224	Vel = 24.81
MN41			0.0 157.45						35.212	K Factor = 26.53
L660	92.417		59.31	1.25	1T	6.0	10.750	120	30.929	N I AULUI - 20.00
0						0.0	6.000		0.0	
MN41	92.417		59.31	1.38		0.0	16.750	0.2557	4.283	Vel = 12.72

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Aero Aut Cal Poly			Co. e LVL 6 [F	R/A=4]						Page 8 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
			0.0							
MN41			59.31						35.212	K Factor = 9.99
*FEED	MAIN									
MN01	92	.0	0.0	2.5		0.0	3.833	120	59.446	
to						0.0	0.0		0.0	
MN02	92		0.0	2.635		0.0	3.833	0	0.0	Vel = 0
MN02	92	.0	0.0	2.5		0.0 0.0	8.167 0.0	120	59.446 0.0	
to MN03	92		0.0	2.635		0.0	0.0 8.167	0	0.0	Vel = 0
MN03	92	.0	0.0	2.5		0.0	5.833	120	59.446	
to			010			0.0	0.0		0.0	
MN04	92		0.0	2.635		0.0	5.833	0	0.0	Vel = 0
MN04	92	.0	0.0	2.5		0.0	6.167	120	59.446	
to MN05	92		0.0	2.635		0.0 0.0	0.0 6.167	0	0.0 0.0	Vel = 0
MN05	92	.0	0.0	2.035		0.0	4.250	120	59.446	ver = 0
to	92	.0	0.0	2.5		0.0	4.250 0.0	120	0.0	
MN06	92		0.0	2.635		0.0	4.250	0	0.0	Vel = 0
MN06	92	.0	0.0	2.5		0.0	7.750	120	59.446	
to						0.0	0.0	_	0.0	
MN07	92		0.0	2.635		0.0	7.750	0	0.0	Vel = 0
MN07	92	.0	0.0	2.5		0.0	1.250 0.0	120	59.446	
to MN08	92		0.0	2.635		0.0 0.0	0.0 1.250	0	0.0 0.0	Vel = 0
MN08	92	.0	0.0	2.5		0.0	10.750	120	59.446	
to	02	.0	0.0	2.0		0.0	0.0		0.0	
MN09	92		0.0	2.635		0.0	10.750	0	0.0	Vel = 0
MN09	92	.0	0.0	2.5		0.0	1.250	120	59.446	
to	00		0.0	2.635		0.0	0.0	0	0.0 0.0	Vel = 0
MN10	92	0				0.0	1.250			ver = 0
MN10 to	92	.0	0.0	2.5		0.0 0.0	12.000 0.0	120	59.446 0.0	
MN11	92		0.0	2.635		0.0	12.000	0	0.0	Vel = 0
MN11	92	.0	0.0	2.5	21		149.750	120	59.446	
to					1T		32.948		-0.577	
MN12	93.333		0.0	2.635		0.0	182.698	0	0.0	Vel = 0
MNIAO			0.0							K Fastar 0
MN12	00 447		0.0	25		0.0	2 000	100	58.869	K Factor = 0
MN40 to	92.417		32.22	2.5		0.0 0.0	3.083 0.0	120	35.201 0.0	
MN41	92.417		32.22	2.635		0.0	3.083	0.0036	0.011	Vel = 1.90
MN41	92.417		216.76	2.5		0.0	3.167	120	35.212	
to						0.0	0.0		0.0	
MN42	92.417		248.98	2.635		0.0	3.167	0.1557	0.493	Vel = 14.65
MN42	92.417		32.78	2.5		0.0	14.000	120	35.705	
to MN43	92.417		281.76	2.635		0.0 0.0	0.0 14.000	0.1958	0.0 2.741	Vel = 16.58
111143	32.417		201.70	2.030		0.0	14.000	0.1900	2.141	ver – 10.00

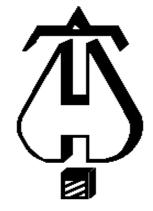

Aero Automatic Sprinkler Co. Cal Poly Center for Science LVL 6 [R/A=4]

Cal Poly	Center fo	r Scienc	e LVL 6 [F	R/A=4]						Date	9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	*****	Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf		
MN43 :o	92.417		33.99	2.5	11	8.237 0.0	11.500 8.237	120	38.446 0.0		
MN44	92.417		315.75	2.635		0.0	19.737	0.2417	4.770	Vel = 18.5	8
MN44 to	92.417		31.53	2.5	1T	16.474 0.0	0.917 16.474	120	43.216 0.0		
MN45	92.417		347.28	2.635		0.0	17.391	0.2882	5.012	Vel = 20.4	3
MN45 :o	92.417		0.0	2.5	31	24.711 0.0	13.583 24.711	120	48.228 -0.397		
MN12	93.333		347.28	2.635		0.0	38.294	0.2882	11.037	Vel = 20.4	3
MN12 to	93.333		0.0	2.5	1I 1T	8.237 16.474	32.833 24.711	120	58.868 0.0		
MN13	93.333		347.28	2.635		0.0	57.544	0.2882	16.585	Vel = 20.4	3
MN13 to	93.333		0.0	2.5	2I 1T	16.474 16.474	26.417 32.948	120	75.453 0.974		
MN14	91.083		347.28	2.635		0.0	59.365	0.2882	17.111	Vel = 20.4	3
MN14 to	91.083		0.0	2.5	21	16.474 0.0	9.667 16.474	120	93.538 0.0		•
TOR6	91.083		347.28	2.635		0.0	26.141	0.2882	7.534	Vel = 20.4	3
TOR6	91.083		0.0	2.5	1C 1B	19.22 9.61	7.083 37.067	120	101.072 3.068		•
BOR6	84		347.28	2.635	11	8.237	44.150	0.2882	12.724	Vel = 20.4	3
BOR6	84		0.0	2.5	1T	16.474 0.0	1.000 16.474	120	116.864 -0.433		•
SP36	85		347.28	2.635		0.0	17.474	0.2882	5.036	Vel = 20.4	3
SP36			0.0 347.28						121.467	K Factor =	31.51
*S/P # ′	1										
HV1 :o	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	114.659 1.750	* Fixed los	s = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0	
SPRF			0.0 0.0						116.409	K Factor =	0
HV2 o	99.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	114.659 1.750	* Fixed los	s = 1.75
SPRF	99.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0	
SPRF to	99.750	.0	0.0	6	41	40.0 0.0	30.000 40.000	120	116.409 6.388		
SP16	85		0.0	6.065		0.0	70.000	0	0.0	Vel = 0	
SP16 to	85	.0	0.0	6		0.0 0.0	16.000 0.0	120	122.797 6.930		
SP15	69		0.0	6.065		0.0	16.000	0	0.0	Vel = 0	
SP15 o	69	.0	0.0	6		0.0 0.0	16.000 0.0	120	129.726 6.930		
	53		0.0	6.065		0.0	16.000	0	0.0	Vel = 0	
SP14	00			•	1T	30.0	8.500	120	136.656		
	53	.0	0.0 0.0	6 6.065	11	0.0	30.000	120	3.465		

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
to	LIEVI	K	Qa	NOIT	or		Ftng's	Of act	Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
SP01			0.0						140.121	K Factor = 0
SP13 to	37	.0	0.0	6	1T	30.0 0.0	7.500 30.000	120	143.586 -3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01			0.0 0.0						140.121	K Factor = 0
*S/P # 3	3									
HV3 to	101	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	112.788 1.750	* Fixed loss = 1.75
SPR3	101		0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SPR3 to SP36	101 85	.0	0.0 0.0	6 6.065		0.0 0.0 0.0	16.000 0.0 16.000	120 0	114.538 6.930 0.0	Vel = 0
SP36	85	H50		6		0.0	16.000	120	121.467	Vei – 0
to	00	1100	557.20	0		0.0	0.0	120	6.930	
SP35	69		397.28	6.065		0.0	16.000	0.0064	0.102	Vel = 4.41
SP35 to	69	H50	50.00	6		0.0 0.0	16.000 0.0	120	128.499 6.930	
SP34	53		447.28	6.065		0.0	16.000	0.0079	0.127	Vel = 4.97
SP34 to	53		0.0	6		0.0 0.0	16.000 0.0	120	135.556 6.930	
SP33	37		447.28	6.065		0.0	16.000	0.0079	0.930	Vel = 4.97
SP33 to	37		0.0	6	1T	30.0 0.0	8.417 30.000	120	142.612 3.392	
SP05	29.167		447.28	6.065		0.0	38.417	0.0080	0.306	Vel = 4.97
SP05			0.0 447.28						146.310	K Factor = 36.98
SP32 to	21	.0	0.0	6	1T	30.0 0.0	7.583 30.000	120	149.847 -3.537	
SP05	29.167		0.0	6.065	41	0.0	37.583	0	0.0	Vel = 0
SP05 to SP03	29.167 29.167		447.28 447.28	6 6.065	1I 1B 1T	10.0 10.0 30.0	34.167 50.000 84.167	120 0.0079	146.310 0.0 0.668	Vel = 4.97
01 03	23.107		0.0	0.000	11	50.0	04.107	0.0019	0.000	voi – +.JI
SP03	OPIPE FE	ED	447.28						146.978	K Factor = 36.89
SP01	45	.0	0.0	6	1B	10.0	34.417	120	140.121	
to SP02	43 27.917	.0	0.0	6.065	61	60.0 0.0	70.000	0	7.399 0.0	Vel = 0
SP02	27.917	.0	0.0	6	21	20.0	235.417	120	147.519	
to SP03	29.167		0.0	6.065		0.0 0.0	20.000 255.417	0	-0.541 0.0	Vel = 0
SP03 to	29.167		447.28	6	41	40.0 0.0	27.500 40.000	120	146.978 0.469	
SP04	28.083		447.28	6.065		0.0	67.500	0.0079	0.536	Vel = 4.97
SP04 to	28.083		0.0	6	21	20.0 0.0	79.330 20.000	120	147.983 6.677	
SPC1	12.667		447.28	6.065		0.0	99.330	0.0079	0.789	Vel = 4.97

	omatic Sp Center fo		Co. ce LVL 6 [F	R/A=4]						Page 11 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or)	Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
SPC1	12.667		0.0	6	1T	30.0	7.833	120	155.449	
to SPC2	12.667		447.28	6.065		0.0 0.0	30.000 37.833	0.0079	0.0 0.300	Vel = 4.97
SPC2	12.667		0.0	8	11	13.0	14.750	120	155.749	
to PO	1.833		447.28	7.981	1B 1C	12.0 45.0	70.000 84.750	0.0021	4.692 0.177	Vel = 2.87
FU	1.000		0.0	7.901	10	43.0	04.730	0.0021	0.177	Ver - 2.07
PO			447.28						160.618	K Factor = 35.29
	Demand	Pressu	re			160.618				
Safety I Continu	viargin iation Pre	ssure				13.576 174.194				
	re @ Pum					174.194				
	re From P re @ Purr		irve			-122.847 51.347				
PI	1.750		0.0	8	1G	4.0	14.000	120	51.347	
to POC	6.750		447.28	7.981	1I 1T	13.0 35.0	52.000 66.000	0.0021	-2.166 0.138	Vel = 2.87
POC	6.750		0.0	8	2E	56.936	41.000	140	49.319	Ver - 2.07
to						0.0	56.936		-2.707	
BF1	13		447.28	8.27		0.0	97.936	0.0013	0.130	Vel = 2.67
BF1 to	13		0.0	8	1Zic	0.0 0.0	4.000 0.0	120	46.742 5.700	* Fixed loss = 5.7
BF2	13		447.28	7.981		0.0	4.000	0.0020	0.008	Vel = 2.87
BF2	13		0.0	8	2E	56.936	46.000	140	52.450	
to SRC	13		447.28	8.27	1G 1T		118.616 164.616	0.0013	0.0 0.217	Vel = 2.67
	10		0.0	0.21		00.004	104.010	0.0010		
SRC			447.28						52.667	K Factor = 61.63

Standpipe # 1 [1000 & 750]



This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-C16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science SP 1-1 [1000 GPM]Building: Center for ScienceLocation: San Luis Obispo, Ca.System: S/P # 1Contract: 10034Data File: Cal Poly CFS SP 1-1.WXF

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

S

W

Name - Cal Poly Center For Science Date - 9-25-2011 Location - San Luis Obispo, Ca. Building - Center for Science System No. - S/P # 1 Contract No. - 10034 Contractor - Aero Automatic Sprinkler Co. Calculated By - Neal Larsen Drawing No. -Occupancy - Light / Ordinary Hazard Gr. 1 Number of Standpipes ()1 ()2 ()3 (X)4 () (X)NFPA 14 Υ ()Other S ()Specific Ruling Made by Date Т Е Flow at Top Most Outlet - 500 Gpm System Type М Pres. at Top Most Outlet - 100 Psi (X) Wet () Dry Flow For Ea. Additional Standpipe - 500 Gpm Total Additional Flow D - 1000 Gpm Hose Valve Connection ()1 1/2" (X)2 1/2" Class Service (X)T ()= Ε S ()II (X)III I G Note: At 5 th level there are three (3) standpipes available. Ν {Standpipe # 1, 3 & 4} Gpm Required 1000 Calculation Psi Required 47.18 At SRC Summary C-Factor Used: Overhead 120 Underground 140 Water Flow Test: Pump Data: Tank or Reservoir: Date of Test - 9-19-2011 Cap. N/A Α Time of Test - 9:12 a.m. Elev. N/A т Rated Cap. 750 Е Static (Psi) - 60 [54] @ Psi 113 Residual (Psi) - 55 [49] Elev. 1'-9" Well R Flow (Gpm) - 914 Proof Flow Gpm N/A - 13'-0" S Elevation U Ρ Location: Static & Residual pressures taken from Hydratn # 63. Flow taken from Hydrant # 64 along N. Poly View Drive

HYDRAULIC DESIGN INFORMATION SHEET

Ρ Source of Information: Fluid Resource Management {R. Ellison} L

Υ Note : Flow test used in Hyd. Calculations was reduced by 10 % Page 1 9-25-11 Date

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 1-1 [1000 GPM]

ity Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 ity Water Adjusted to Pump Inlet or Pf - Elev - Hose Flow A1 - Adjusted Static: 51.872	Pump Data:1 - Pump Churn Pressure125.2P2 - Pump Rated Pressure110.9P2 - Pump Rated Flow790.2P3 - Pump Pressure @ Max Flow67.9P3 - Pump Max Flow1382.9City Residual Flow @ 03307.91City Residual Flow @ 202576.03	Demand: D1 - Elevation : 24.254 D2 - System Flow : D2 - System Pressure : 144.081 Hose (Adj City) : Hose (Demand) : 1000 D3 - System Demand : 1000 Safety Margin : 0.911
A2 - Adj Resid : 49.314 @ 790.2 A3 - Adj Resid : 40.224 @ 1382.9	City Water @ 150% of Pump = 43.24	
210		
196 182 AI + P1		
162 A2 + P2		
154 D2		
140 D3		
126	A3 + P3	
98		
84		
70 C1 A2 C2		
42 A1	A3	
28 D 1		
14		
200 400 600 800 1	000 1200 1400 FLOW (N ^ 1.85)	1600 1800

Fittings Used Summary

Wilkens 350ADA

	utomatic Sprinkler Co. y Center for Science SP 1	I-1 [1000	GPM]															_	.9-	3 9-25-11	
Fitting Le Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve	0	0	2.25	2	2.5	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
C E	Generic Check VIv 90' Standard Elbow	4	5	5	7	9 4	11 5	14 6	16 7	19 8	22 10	27 12	32 14	45 18	55 22	65 27	76 35	87 40	98 45	109 50	130 61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Fitting generates a Fixed Loss Based on Flow

Units Summary

Zic

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 1-1 [1000 GPM]

Cal Poly	Center for Scie	ence SP 1-1 [1000	GPMJ				Date	9-25-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
HV1	99.75		91.19	na				
HV2	99.75		91.19	na				
SPRF	99.75		92.94	na				
SP16	85.0		99.33	na				
HV4	69.0		100.0	na	250.0			
HV5	53.0		106.97	na	250.0			
SP15	69.0		106.26	na				
SP14	53.0		113.23	na				
SP13	37.0		120.53	na				
HV3	101.0		88.52	na	250.0			
SPR3	101.0		95.82	na				
SP36	85.0		102.8	na				
HV6	69.0		108.02	na				
HV7	53.0		114.99	na				
SP35	69.0		109.77	na				
SP34	53.0		116.74	na				
SP33	37.0		123.71	na				
SP32	21.0		130.75	na				
SP05	29.167		127.21	na				
SP01	45.0		117.07	na				
SP02	27.917		125.49	na				
SP03	29.167		127.44	na				
SP04	28.083		129.3	na				
SPC1	12.667		137.82	na				
SPC2	12.667		138.61	na	250.0			
PO	1.833		144.08	na				
PI	1.75		46.96	na				
POC	6.75		45.4	na				
BF1	13.0		43.27	na				
BF2	13.0		47.13	na				
SRC	13.0		48.1	na				

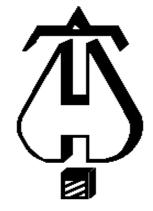
The maximum velocity is 16.75 and it occurs in the pipe between nodes HV4 and SP15

Page Date 4 9-25-11

N a da 4		K	0-	Nam			Dine	C Fast		
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	******* Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
*S/P # 1	I REMOT	E ROOF H	IOSE V	ALVES						
HV1	99.750	.0	0.0	2.5	1T	12.0	0.250	120	91.188	
o SPRF	99.750		0.0	2.469		0.0 0.0	12.000 12.250	0	1.750 0.0	* Fixed loss = 1.75 Vel = 0
OFIN	00.700		0.0	2.400		0.0	12.200	0	0.0	
SPRF			0.0						92.938	K Factor = 0
HV2	99.750	.0	0.0	2.5	1T	12.0	0.250	120	91.188	
0						0.0	12.000		1.750	* Fixed loss = 1.75
SPRF	99.750	-	0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPRF	99.750	.0	0.0	6	41	40.0 0.0	30.000 40.000	120	92.938 6.388	
o SP16	85		0.0	6.065		0.0	40.000 70.000	0	0.388	Vel = 0
SP16	85	.0	0.0	6		0.0	16.000	120	99.326	
to			0.0			0.0	0.0		6.930	
SP15	69		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP15			0.0 0.0						106.256	K Factor = 0
HV4	69	H250 2		2.5	1T	12.0	2.917	120	100.000	
:0					1E	6.0	18.000		1.750	* Fixed loss = 1.75
SP15	69	2	50.0	2.469		0.0	20.917	0.2154	4.506	Vel = 16.75
SP15		2	0.0 50.00						106.256	K Factor = 24.25
HV5	53	H250 2	50.00	2.5	1T	12.0	2.917	120	106.973	
to					1E	6.0	18.000		1.750	* Fixed loss = 1.75
SP14	53	2	50.0	2.469		0.0	20.917	0.2154	4.506	Vel = 16.75
SP14		2	0.0 50.00						113.229	K Factor = 23.49
SP15	69		50.00	6		0.0	16.000	120	106.256	N 1 dolo1 – 20.49
30	03	2	.00.00	0		0.0	0.0	120	6.930	
SP14	53	2	50.0	6.065		0.0	16.000	0.0027	0.043	Vel = 2.78
SP14	53	2	50.00	6	1T	30.0	8.500	120	113.229	
to	45	-	00.0	6 005		0.0	30.000	0.0007	3.465	
SP01	45	5	00.0	6.065		0.0	38.500	0.0097	0.375	Vel = 5.55
SP01		5	0.0 00.00						117.069	K Factor = 46.21
SP13	37	.0	0.0	6	1T	30.0	7.500	120	120.534	
to	-				-	0.0	30.000		-3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
0001			0.0						447.000	
SP01			0.0						117.069	K Factor = 0
*S/P # 3		11050 0	50.00	0.5	05	40.0	4 750	400	00.505	
HV3 :o	101	H250 2	50.00	2.5	2E 1T	12.0 12.0	1.750 24.000	120	88.525 1.750	* Fixed loss = 1.75
SPR3	101	2	50.0	2.469	11	0.0	24.000 25.750	0.2154	5.547	Vel = 16.75
SPR3	101		0.0	6		0.0	16.000	120	95.822	-
to						0.0	0.0		6.930	
SP36	85	2	50.0	6.065		0.0	16.000	0.0027	0.043	Vel = 2.78

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP .

	omatic Sp Center fo		Co. e SP 1-1	[1000 GF	PM]					Page 6 Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
SP36	85		0.0	6		0.0	16.000	120	102.795	
to SP35	69		250.0	6.065		0.0 0.0	0.0 16.000	0.0027	6.930 0.043	Vel = 2.78
SP35			0.0 250.00						109.768	K Factor = 23.86
HV6 to	69	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	108.018 1.750	* Fixed loss = 1.75
SP35	69		0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SP35 HV7	53	.0	0.0	2.5	2E	12.0	1.750	120	109.768 114.990	K Factor = 0
to SP34	53	_	0.0	2.469	1T	12.0 0.0	24.000 25.750	0	1.750 0.0	* Fixed loss = 1.75 Vel = 0
SP34			0.0 0.0						116.740	K Factor = 0
SP35 to	69		250.00	6		0.0 0.0	16.000 0.0	120	109.768 6.930	
SP34 SP34	53 53		250.0 0.0	6.065 6		0.0	16.000 16.000	0.0026 120	0.042	Vel = 2.78
to SP33	37		250.0	6.065		0.0 0.0	0.0 16.000	0.0027	6.930 0.043	Vel = 2.78
SP33 to	37		0.0	6	1T	30.0 0.0	8.417 30.000	120	123.713 3.392	
SP05	29.167		250.0 0.0	6.065		0.0	38.417	0.0027	0.105	Vel = 2.78
SP05			250.00		· -		7 500		127.210	K Factor = 22.17
SP32 to SP05	21 29.167	.0	0.0 0.0	6 6.065	1T	30.0 0.0 0.0	7.583 30.000 37.583	120 0	130.747 -3.537 0.0	Vel = 0
SP05 to	29.167		250.00	6	1I 1B	10.0 10.0 10.0	34.167 50.000	120	127.210 0.0	
SP03	29.167		250.0 0.0	6.065	1D 1T	30.0	84.167	0.0027	0.228	Vel = 2.78
SP03	OPIPE FE		250.00						127.438	K Factor = 22.15
SP01 to	45	U	500.00	6	6I 1B	60.0 10.0	34.417 70.000	120	117.069 7.399	
SP02	27.917		500.0	6.065	10	0.0	104.417	0.0098	1.019	Vel = 5.55
SP02 to	27.917		0.0	6	21	20.0 0.0	235.417 20.000	120	125.487 -0.541	
SP03	29.167		500.0	6.065		0.0	255.417	0.0098	2.492	Vel = 5.55
SP03 to	29.167		250.00	6	41	40.0 0.0	27.500 40.000	120	127.438 0.469	
SP04	28.083		750.0	6.065	41	0.0	67.500	0.0207	1.395	Vel = 8.33
SP04 to SPC1	28.083 12.667		0.0 750.0	6 6.065	11	10.0 0.0 0.0	79.330 10.000 89.330	120 0.0207	129.302 6.677 1.845	Vel = 8.33


arr ory		r Science SP 1-1	[1000 0]	IVIJ					Dat	e 9-25-	
Node1	Elev1	K Qa	Nom	Fitting	ļ	Pipe	CFact	Pt	*****	N1 /	*****
to Node2	Elev2	Fact Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	*****	Notes	*****
SPC1 o	12.667	0.0	6	1T	30.0 0.0	7.833 30.000	120	137.824 0.0			
SPC2	12.667	750.0	6.065		0.0	37.833	0.0207	0.782	Vel = 8.	33	
SPC2 o	12.667	H250 250.00	8	1I 1B	13.0 12.0	14.750 70.000	120	138.606 4.692			
PO	1.833	1000.0	7.981	1C	45.0	84.750	0.0092	0.783	Vel = 6.	41	
PO		0.0 1000.00						144.081	K Factor	= 83.31	
Safety I	Demand Margin ation Pre				144.081 0.911 144.992						
Pressur	re @ Pum re From P re @ Pum	ump Curve			144.992 -98.034 46.958						
PI o	1.750	0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	46.958 -2.166			
POC POC 0	6.750 6.750	<u>1000.0</u> 0.0	7.981 8	1T 2E	35.0 56.936 0.0	66.000 41.000 56.936	0.0093 140	0.611 45.403 -2.707	Vel = 6.	41	
BF1	13	1000.0	8.27		0.0	97.936	0.0058	0.572	Vel = 5.	97	
BF1 o	13	0.0	8	1Zic	0.0 0.0	4.000 0.0	120	43.268 3.829	* Fixed lo	ss = 3.829)
BF2	13	1000.0	7.981		0.0	4.000	0.0090	0.036	Vel = 6.	41	
BF2 o	13	0.0	8	2E 1G		46.000 118.616	140	47.133 0.0			
SRC	13	1000.0	8.27	1T	55.354	164.616	0.0058	0.962	Vel = 5.	97	
SRC		0.0 1000.00						48.095	K Factor	= 144.19	

21605 North Central Ave. 623.580.7800 Phoenix, Arizona 85024 - Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501

CA-C16-901529 NV-C41-69370 NM-MS 12-354807

Fire Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Building System Contract Data File

Job Name : Cal Poly Center for Science SP 1-2 [750 GPM] : Center for Science

Location : San Luis Obispo, Ca.

: S/P # 1

: 10034

: Cal Poly CFS SP 1-2.WXF

Name - Cal Poly Center For Science Date - 9-25-2011 Location - San Luis Obispo, Ca. Building - Center for Science System No. - S/P # 1 Contract No. - 10034 Contractor - Aero Automatic Sprinkler Co. Calculated By - Neal Larsen Drawing No. -Occupancy - Light / Ordinary Hazard Gr. 1 Number of Standpipes ()1 ()2 ()3 (X)4 () S (X)NFPA 14 Υ ()Other S ()Specific Ruling Made by Date Т Е Flow at Top Most Outlet - 500 Gpm System Type М Pres. at Top Most Outlet - 100 Psi (X) Wet () Dry Flow For Ea. Additional Standpipe - 500 Gpm Total Additional Flow D - 1000 Gpm - 99'-9" Feet Elevation at Highest Outlet Ε Hose Valve Connection ()1 1/2" (X)2 1/2" S ()II (X)III I Class Service (X)I G Note: At Roof level there are two (2) standpipes available. {Standpipe # 1 & 3} Ν Calculation Gpm Required 750 Psi Required 44.73 At SRC Summary C-Factor Used: Overhead 120 Underground 140 Water Flow Test: Pump Data: Tank or Reservoir: W Date of Test - 9-19-2011 Cap. N/A Α Time of Test - 9:12 a.m. Elev. N/A т Rated Cap. 750 Е Static (Psi) - 60 [54] @ Psi 113 Residual (Psi) - 55 [49] Elev. 1'-9" Well R Flow (Gpm) - 914 Proof Flow Gpm N/A - 13'-0" S Elevation U Ρ Location: Static & Residual pressures taken from Hydratn # 63. Flow taken Ρ from Hydrant # 64 along N. Poly View Drive Source of Information: Fluid Resource Management {R. Ellison} L

HYDRAULIC DESIGN INFORMATION SHEET

Y Note : Flow test used in Hyd. Calculations was reduced by 10 %

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 1-2 [750 GPM]

Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914 Water Adjusted to Pump Inlet Pf - Elev - Hose Flow A1 - Adjusted Static: 51.872 A2 - Adj Resid : 49.314 @ 790.2 A3 - Adj Resid : 40.224 @ 1382.9	Pump Data:125.2P1 - Pump Churn Pressure125.2P2 - Pump Rated Pressure110.9P2 - Pump Rated Flow790.2P3 - Pump Pressure @ Max Flow67.9P3 - Pump Max Flow1382.9City Residual Flow @ 03307.91City Residual Flow @ 202576.03City Water @ 150% of Pump43.24	Demand: D1 - Elevation : 37.57 ⁻ D2 - System Flow : D2 - System Pressure : 156.36 Hose (Adj City) : Hose (Demand) : 750 D3 - System Demand : 750 Safety Margin : 5.795
-		
0		
32 AI + P1		
68 D2 A2 + P2		
10 D3		
26		
2	A3 + P3	
2 P D 1	A3	
3 D1		
200 400 600 800	000 1200 1400	
200 400 600 800	000 1200 1400 FLOW (N ^ 1.85)	1600 1800

Fittings Used Summary

	utomatic Sprinkler Co. ly Center for Science SP 1	-2 [750 G	SPM]																age (ate (3 9-25-11	
Fitting L Abbrev.	egend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve Generic Check Vlv	0	0 5	2.25 5	2	2.5 9	6 11	7 14	10 16	0 19	12 22	9 27	10 32	12 45	19 55	21 65	0 76	0 87	0 98	0 109	0 130
F	90' Standard Elbow	4	2	2	3	9 4	5	6	7	8	10	12	32 14	45 18	22	27	35	40	98 45	109 50	61
Ğ	Generic Gate Valve	0	ō	ō	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	ng gener	ates a Fi	xed Los	s Base	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co.

13.0

13.0

13.0

BF1

BF2

SRC

	Center for Scie	ence SP 1-2 [750 (GPM]				Date	9-25-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
HV1	99.75		100.0	na	250.0			
HV2	99.75		100.0	na	250.0			
SPRF	99.75		104.39	na				
SP16	85.0		111.46	na				
SP15	69.0		118.55	na				
SP14	53.0		125.63	na				
SP13	37.0		132.94	na				
HV3	101.0		100.93	na	250.0			
SPR3	101.0		108.22	na				
SP36	85.0		115.2	na				
SP35	69.0		122.17	na				
SP34	53.0		129.14	na				
SP33	37.0		136.12	na				
SP32	21.0		143.15	na				
SP05	29.167		139.61	na				
SP01	45.0		129.47	na				
SP02	27.917		137.89	na				
SP03	29.167		139.84	na				
SP04	28.083		141.71	na				
SPC1	12.667		150.43	na				
SPC2	12.667		151.22	na				
PO	1.833		156.37	na				
PI	1.75		49.6	na				
POC	6.75		47.8	na				
	10.0		15 10					

na

na

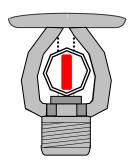
na

Page 4

The maximum velocity is 16.75 and it occurs in the pipe between nodes HV1 and SPRF

45.43

49.97

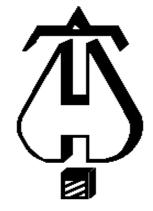

50.53

		orinkler Co. r Science SP 1-2 [750 GPI	M]					Page 5 Date 9-25-11
Node1	Elev1	K Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes ******
*S/P # 1	I REMOT	E ROOF HOSE V	ALVES						
HV1	99.750	H250 250.00	2.5	1T	12.0	0.250	120	100.000	
to SPRF	99.750	250.0	2.469		0.0 0.0	12.000 12.250	0.2154	1.750 2.639	* Fixed loss = 1.75 Vel = 16.75
	55.750	0.0	2.405		0.0	12.200	0.2104	2.000	VCI = 10.75
SPRF		250.00						104.389	K Factor = 24.47
HV2	99.750	H250 250.00	2.5	1T	12.0	0.250	120	100.000	
0	00 750	050.0	0.400		0.0	12.000	0.0454	1.750	* Fixed loss = 1.75
SPRF	99.750	250.0	2.469	41	0.0	12.250	0.2154	2.639	Vel = 16.75
SPRF :o	99.750	250.00	6	41	40.0 0.0	30.000 40.000	120	104.389 6.388	
SP16	85	500.0	6.065		0.0	70.000	0.0098	0.683	Vel = 5.55
SP16	85	0.0	6		0.0	16.000	120	111.460	
0 8015	60	500.0	6.065		0.0	0.0	0 0009	6.930	
SP15 SP15	69 69	500.0 0.0	6		0.0	16.000 16.000	0.0098	0.156	Vel = 5.55
0	09	0.0	0		0.0	0.0	120	6.930	
SP14	53	500.0	6.065		0.0	16.000	0.0098	0.156	Vel = 5.55
SP14	53	0.0	6	1T	30.0	8.500	120	125.632	
o SP01	45	500.0	6.065		0.0 0.0	30.000 38.500	0.0097	3.465 0.375	Vel = 5.55
5101	40	0.0	0.000		0.0	30.300	0.0037	0.575	ver = 0.00
SP01		500.00						129.472	K Factor = 43.94
SP13	37	.0 0.0	6	1T	30.0	7.500	120	132.937	
	45	0.0	0.005		0.0	30.000	0	-3.465	
SP01	45	0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01		0.0 0.0						129.472	K Factor = 0
*S/P # 3	3								
HV3	101	H250 250.00	2.5	2E	12.0	1.750	120	100.928	
0				1T	12.0	24.000		1.750	* Fixed loss = 1.75
SPR3	101	250.0	2.469		0.0	25.750	0.2154	5.547	Vel = 16.75
SPR3	101	0.0	6		0.0 0.0	16.000 0.0	120	108.225 6.930	
SP36	85	250.0	6.065		0.0	16.000	0.0027	0.043	Vel = 2.78
SP36	85	0.0	6		0.0	16.000	120	115.198	
0					0.0	0.0		6.930	
SP35	69	250.0	6.065		0.0	16.000	0.0026	0.042	Vel = 2.78
SP35 o	69	0.0	6		0.0 0.0	16.000 0.0	120	122.170 6.930	
.0 SP34	53	250.0	6.065		0.0	16.000	0.0027	0.043	Vel = 2.78
SP34	53	0.0	6		0.0	16.000	120	129.143	
:0	~-				0.0	0.0		6.930	
SP33	37	250.0	6.065	47	0.0	16.000	0.0027	0.043	Vel = 2.78
SP33	37	0.0	6	1T	30.0 0.0	8.417 30.000	120	136.116 3.392	
to SP05	29.167	250.0	6.065		0.0	30.000 38.417	0.0027	3.392 0.105	Vel = 2.78

Jai Poly	Center for	Scienc		730 GFI	vij					Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe Etna's	CFact	Pt Pe	****** Notoo *****
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
			0.0							
SP05	04		250.00		4.7	00.0	7 500	400	139.613	K Factor = 21.16
SP32 to	21	.0	0.0	6	1T	30.0 0.0	7.583 30.000	120	143.150 -3.537	
SP05	29.167		0.0	6.065		0.0	37.583	0	0.0	Vel = 0
SP05	29.167		250.00	6	11	10.0	34.167	120	139.613	
to SP03	20 167		250.0	6.065	1B 1T	10.0 30.0	50.000 84.167	0.0027	0.0 0.228	$V_{0} = 2.79$
3803	29.167		0.0	0.005	11	30.0	84.167	0.0027	0.220	Vel = 2.78
SP03			250.00						139.841	K Factor = 21.14
*STANE	DPIPE FE	ED								
SP01	45		500.00	6	1B	10.0	34.417	120	129.472	
to	07.047		500.0	0.005	61	60.0	70.000	0 0000	7.399	
SP02 SP02	27.917 27.917		500.0	6.065 6	21	0.0	104.417 235.417	0.0098	1.019 137.890	Vel = 5.55
to	27.917		0.0	0	21	20.0	20.000	120	-0.541	
SP03	29.167		500.0	6.065		0.0	255.417	0.0098	2.492	Vel = 5.55
SP03	29.167		250.00	6	41	40.0	27.500	120	139.841	
to SP04	28.083		750.0	6.065		0.0 0.0	40.000 67.500	0.0207	0.469 1.395	Vel = 8.33
SP04	28.083		0.0	6	21	20.0	79.330	120	141.705	ver = 0.00
to	20.000		0.0	0	21	0.0	20.000	120	6.677	
SPC1	12.667		750.0	6.065		0.0	99.330	0.0206	2.051	Vel = 8.33
SPC1	12.667		0.0	6	1T	30.0	7.833	120	150.433	
to SPC2	12.667		750.0	6.065		0.0 0.0	30.000 37.833	0.0207	0.0 0.782	Vel = 8.33
SPC2	12.667		0.0	8	11	13.0	14.750	120	151.215	
to					1B	12.0	70.000		4.692	
PO	1.833		750.0	7.981	1C	45.0	84.750	0.0054	0.460	Vel = 4.81
PO			0.0 750.00						156.367	K Factor = 59.98
	Demand	Drossur				156.367			150.507	K Facior = 59.90
Safety I		i iessui	C			5.795				
	ation Pres	ssure				162.162				
	e @ Pum					162.162				
	e From P e @ Pum		rve		-	-112.559 49.603				
PI	1.750		0.0	8	1G	4.0	14.000	120	49.603	
to					11	13.0	52.000		-2.166	
POC	6.750		750.0	7.981	1T	35.0	66.000	0.0054	0.359	Vel = 4.81
POC to	6.750		0.0	8	2E	56.936 0.0	41.000 56.936	140	47.796 -2.707	
BF1	13		750.0	8.27		0.0	97.936	0.0034	0.336	Vel = 4.48
BF1	13		0.0	8	1Zic	0.0	4.000	120	45.425	
to	4.5					0.0	0.0		4.520	* Fixed loss = 4.52
BF2	13		750.0	7.981	05	0.0	4.000	0.0055	0.022	Vel = 4.81
BF2 to	13		0.0	8	2E 1G	56.936 6.326	46.000 118.616	140	49.967 0.0	
SRC	13		750.0	8.27	10 1T		164.616	0.0034	0.565	Vel = 4.48

Aero Auto Cal Poly (Co. ce SP 1-2	750 GP	M]					Pag Dat		11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf			
			0.0									
SRC			750.00						50.532	K Factor	= 105.51	

Standpipe # 4 [1000]


This page intentionally left blank.

21605 North Central Ave. 623.580.7800 Phoenix, Arizona 85024 - Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501

CA-C16-901529 NV-C41-69370 NM-MS 12-354807

Fire Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Building Location : San Luis Obispo, Ca. System : S/P # 4 Contract Data File

Job Name : Cal Poly Center for Science SP 4 [1000 GPM] : Center for Science

: 10034

: Cal Poly CFS SP 1-3.WXF

Location - San Luis Obispo, Ca. Building - Center for Science

Calculated By - Neal Larsen

(X)NFPA 14

()Other

S Y

HYDRAULIC DESIGN INFORMATION SHEET Name - Cal Poly Center For Science Date - 9-25-2011 System No. - S/P # 4 Contract No. - 10034 Contractor - Aero Automatic Sprinkler Co. Drawing No. -Occupancy - Light / Ordinary Hazard Gr. 1 Number of Standpipes ()1 ()2 ()3 (X)4 ()

S	()Specific Ruling	Made by	Date	
Т		F 00 G	Quarte and Theory	
E	Flow at Top Most Outlet	- 500 Gpm - 100 Psi		
Μ	Pres. at Top Most Outlet Flow For Ea. Additional Sta		(X) Wet () Dry	
D	Total Additional Flow			
E	Elevation at Highest Outlet		+	
S	Hose Valve Connection (
I	Class Service (X)I (
G	Note:At 5 th level (Roof)		standpipes available.	
N	{Standpipe # 1, 3 & 4}			
	culation Gpm Required 1000 mary C-Factor Used:			
W	Water Flow Test:	Pump Data:	Tank or Reservoir:	
А	Date of Test - 9-19-2011	-	Cap. N/A	
т	Time of Test - 9:12 a.m.	Rated Cap. 750	Elev. N/A	
Е	Static (Psi) – 60 [54]	@ Psi 113		
R	Residual (Psi) - 55 [49]	Elev. 1'-9"	Well	
	Flow (Gpm) - 914		Proof Flow Gpm N/A	
S	Elevation - 13'-0"			
U				
P	Location: Static & Residual	-	m Hydratn # 63. Flow taken	
P	from Hydrant # 64 along N. I			
L Y	Source of Information: Fluid			
T	Note : Flow test used in Hyd	. Calculations Was	reduced by IU S.	

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 4 [1000 GPM]

ity Water Supply: C1 - Static Pressure : 54 C2 - Residual Pressure: 49 C2 - Residual Flow : 914	Pump Data:: 125.2P1 - Pump Churn Pressure: 125.2P2 - Pump Rated Pressure: 110.9P2 - Pump Rated Flow: 790.2P3 - Pump Pressure @ Max Flow: 67.9	Demand: D1 - Elevation : 23.712 D2 - System Flow : D2 - System Pressure : 142.748 Hose (Adj City) :
ity Water Adjusted to Pump Inlet r Pf - Elev - Hose Flow A1 - Adjusted Static: 51.872 A2 - Adj Resid : 49.314 @ 790.2 A3 - Adj Resid : 40.224 @ 1382.9	P3 - Pump Max Flow : 1382.9 City Residual Flow @ 0 = 3307.91 City Residual Flow @ 20 = 2576.03 City Water @ 150% of Pump = 43.24	Hose (Demand) : 1000 D3 - System Demand : 1000 Safety Margin : 2.244
10		
96 82 Al + P1		
68 A2 + P2		
54 D2 40		
26 D3	A3 + P3	
12 8		
4		
0 C1 A2 C2		
2 A1	A3	
8 D1 D1		
E		1600 1800

Fittings Used Summary

	Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 4 [1000 GPM]												_	Page 3 Date 9-25-11							
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve	0	0	2.25	2	2.5	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
F	Generic Check Vlv 90' Standard Elbow	4	5	5	3	9 4	11 5	14 6	16 7	19 8	22 10	27 12	32 14	45 18	55 22	65 27	76 35	87 40	98 45	109 50	130 61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
I	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	ng gener	ates a Fi	xed Los	s Base	d on Flo	w													

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pounds per Square Inch Pressure Units

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Cal Poly Center for Scient

Elevation

99.75

99.75

99.75

85.0

69.0

53.0

37.0

99.0

99.0

85.0

69.0

53.0

37.0

21.0

29.167

67.75

67.75

67.75

53.0

37.0

21.0

5.0

37.0

37.0

Node

No.

HV1

HV2

SPRF

SP16

SP15

SP14

SP13

HV3

SPR3

SP36

SP35

SP34

SP33

SP32

SP05

HV8

HV9

SPR4

SP44

SP43

SP42

SP41

HV10

SP53

r Co. nce SP 4 [1000 GPM]						4 9-25-11
K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
	93.26 95.9 97.65 104.23 111.2	na na na na	250.0			

250.0

250.0

250.0

na

HV11	21.0	124.04	na
SP52	21.0	125.79	na
SP51	5.0	133.28	na
SPC5	12.5	130.04	na
SPC4	13.75	133.09	na
SPC3	12.667	134.08	na
SP01	45.0	121.74	na
SP02	27.917	129.42	na
SP03	29.167	129.57	na
SP04	28.083	130.22	na
SPC1	12.667	137.17	na
SPC2	12.667	137.27	na
PO	1.833	142.75	na
PI	1.75	46.96	na
POC	6.75	45.4	na
BF1	13.0	43.27	na
BF2	13.0	47.13	na
SRC	13.0	48.09	na

118.17

125.21

97.58

99.33

105.39

112.32

119.25

126.18

133.11

129.57

100.0

100.0

104.39

111.84

119.91

127.99

136.88

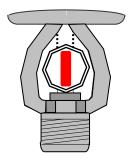
111.24

118.54

The maximum velocity is 16.75 and it occurs in the pipe between nodes HV1 and SPRF

	omatic Sp Center for		Co. e SP 4 [10	000 GPM	1]					Page 5 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes ******
*S/P # 1	I REMOT	E ROOF	- HOSE V	ALVES						
HV1	99.750	H250	250.00	2.5	1T	12.0	0.250	120	93.260	
to SPRF	99.750		250.0	2.469		0.0 0.0	12.000 12.250	0.2154	1.750 2.639	* Fixed loss = 1.75 Vel = 16.75
JE NI	99.750		0.0	2.409		0.0	12.230	0.2134	2.039	ver= 10.75
SPRF			250.00						97.649	K Factor = 25.30
HV2	99.750	.0	0.0	2.5	1T	12.0	0.250	120	95.899	
0	00 750		0.0	0.400		0.0	12.000	0	1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469	41	0.0	12.250	0	0.0	Vel = 0
SPRF :o	99.750		250.00	6	41	40.0 0.0	30.000 40.000	120	97.649 6.388	
SP16	85		250.0	6.065		0.0	70.000	0.0027	0.190	Vel = 2.78
SP16	85		0.0	6		0.0	16.000	120	104.227	
o SP15	60		250.0	6.065		0.0	0.0 16.000	0.0027	6.930 0.043	\/ol - 2.79
SP15 SP15	69 69		250.0	6		0.0	16.000	120	111.200	Vel = 2.78
0	09		0.0	0		0.0	0.0	120	6.930	
SP14	53		250.0	6.065		0.0	16.000	0.0026	0.042	Vel = 2.78
SP14	53		0.0	6	1T	30.0	8.500	120	118.172	
o SP01	45		250.0	6.065		0.0 0.0	30.000 38.500	0.0027	3.465 0.104	Vel = 2.78
5101	40		0.0	0.005		0.0	30.300	0.0027	0.104	Ver = 2.70
SP01			250.00						121.741	K Factor = 22.66
SP13	37	.0	0.0	6	1T	30.0	7.500	120	125.206	
	45		0.0	0.005		0.0	30.000	0	-3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01			0.0 0.0						121.741	K Factor = 0
*S/P # 3	3									
HV3	99	.0	0.0	2.5	2E	12.0	1.750	120	97.578	
0					1T	12.0	24.000		1.750	* Fixed loss = 1.75
SPR3	99		0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SPR3	99	.0	0.0	6		0.0 0.0	16.000 0.0	120	99.328 6.063	
SP36	85		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP36	85	.0	0.0	6		0.0	16.000	120	105.391	
0						0.0	0.0		6.930	
SP35	69		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP35 :o	69	.0	0.0	6		0.0 0.0	16.000 0.0	120	112.321 6.930	
SP34	53		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP34	53	.0	0.0	6		0.0	16.000	120	119.251	
to	07		0.0	0.005		0.0	0.0	0	6.930	
SP33	37		0.0	6.065	4.7	0.0	16.000	0	0.0	Vel = 0
SP33 to	37	.0	0.0	6	1T	30.0 0.0	8.417 30.000	120	126.180 3.392	
SP05	29.167		0.0	6.065		0.0	38.417	0	0.0	Vel = 0

	omatic Sp Center fo			000 GPM	1]					Page 6 Date 9-25-11
Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
			0.0							
SP05			0.0						129.572	K Factor = 0
SP32 to	21	.0	0.0	6 6.065	1T	30.0 0.0	7.583 30.000	120	133.110 -3.537 0.0	Vol – 0
SP05 SP05	29.167 29.167	.0	0.0	6	11	0.0	37.583 34.167	0 120	129.573	Vel = 0
to		.0			1B	10.0	50.000		0.0	
SP03	29.167		0.0	6.065	1T	30.0	84.167	0	0.0	Vel = 0
SP03			0.0						129.573	K Factor = 0
*S/P # 4		11250	250.00	25	4.7	10.0	0.050	100	100.000	
HV8 to	67.750	H20U	250.00	2.5	1T	12.0 0.0	0.250 12.000	120	100.000	* Fixed loss = 1.75
SPR4	67.750		250.0 0.0	2.469		0.0	12.250	0.2154	2.639	Vel = 16.75
SPR4			250.00						104.389	K Factor = 24.47
HV9 to	67.750	H250	250.00	2.5	1T	12.0 0.0	0.250 12.000	120	100.000 1.750	* Fixed loss = 1.75
SPR4	67.750		250.0	2.469		0.0	12.250	0.2154	2.639	Vel = 16.75
SPR4 to	67.750		250.00	4		0.0 0.0	14.750 0.0	120	104.389 6.388	
SP44	53		500.0	4.026		0.0	14.750	0.0718	1.059	Vel = 12.60
SP44 to	53		0.0	4		0.0 0.0	16.000 0.0	120	111.836 6.930	
SP43	37		500.0	4.026		0.0	16.000	0.0718	1.148	Vel = 12.60
SP43 to	37		0.0	4		0.0 0.0	16.000 0.0	120	119.914 6.930	V-1 40.00
SP42 SP42	21 21		500.0 0.0	4.026	1T	0.0 20.0	16.000 7.250	0.0718 120	1.148 127.992	Vel = 12.60
to						0.0	20.000		3.140	
SPC4	13.750		500.0 0.0	4.026		0.0	27.250	0.0718	1.956	Vel = 12.60
SPC4			500.00						133.088	K Factor = 43.34
SP41 to	5	.0	0.0	4	1T	20.0 0.0	8.750 20.000	120	136.878 -3.790	
SPC4	13.750		0.0	4.026		0.0	28.750	0	0.0	Vel = 0
SPC4			0.0 0.0						133.088	K Factor = 0
*S/P # 5	5									
HV10 to	37	H250	250.00	2.5	2E 1T	12.0 12.0	1.750 24.000	120	111.241 1.750	* Fixed loss = 1.75
SP53	37		250.0	2.469		0.0	25.750	0.2154	5.547	Vel = 16.75
SP53 to	37		0.0	4		0.0 0.0	16.000 0.0	120	118.538 6.930	
SP52	21		250.0	4.026		0.0	16.000	0.0199	0.318	Vel = 6.30
SP52			0.0 250.00						125.786	K Factor = 22.29

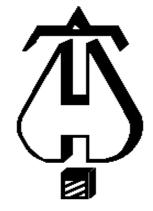

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 4 [1000 GPM]

Aero Auto Cal Poly			Co. e SP 4 [10	000 GPN	1]					Page 7 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes ******
HV11 to	21	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	124.036 1.750	* Fixed loss = 1.75
SP52	21		0.0	2.469	4.7	0.0	25.750	0	0.0	Vel = 0
SP52 to SPC5	21 12.500		250.00 250.0	4 4.026	1T	20.0 0.0 0.0	8.500 20.000 28.500	120 0.0199	125.786 3.681 0.568	Vel = 6.30
_0100	12.000		0.0	4.020		0.0	20.000	0.0133	0.000	Ver = 0.30
SPC5			250.00						130.035	K Factor = 21.92
SP51 to	5	.0	0.0	4	1T	20.0 0.0	7.500 20.000	120	133.283 -3.248	
SPC5	12.500		0.0	4.026		0.0	27.500	0	0.0	Vel = 0
SPC5			0.0 0.0						130.035	K Factor = 0
*STANE	OPIPES #	4 & 5 F	EED							
SPC5 to	12.500		250.00	4	1B 5I	12.0 35.0	139.667 67.000	120	130.035 -0.072	
SPC3	12.667		250.0 0.0	4.026	1T	20.0	206.667	0.0199	4.114	Vel = 6.30
SPC3			250.00						134.077	K Factor = 21.59
SPC4 to	13.750		500.00	6	3I 1B	30.0 10.0	13.333 40.000	120	133.088 0.469	
SPC3	12.667		500.0	6.065		0.0	53.333	0.0098	0.520	Vel = 5.55
SPC3 to	12.667		250.00	6	2I 1T	20.0 30.0	104.667 50.000	120	134.077 0.0	
SPC2	12.667		750.0	6.065		0.0	154.667	0.0207	3.196	Vel = 8.33
SPC2			0.0 750.00						137.273	K Factor = 64.01
	DPIPES #	‡1&3 F								
SP01 to	45		250.00	6	6I 1B	60.0 10.0	34.417 70.000	120	121.741 7.399	
SP02	27.917		250.0	6.065		0.0	104.417	0.0027	0.283	Vel = 2.78
SP02 to	27.917		0.0	6	21	20.0 0.0	235.417 20.000	120	129.423 -0.541	
SP03	29.167		250.0	6.065		0.0	255.417	0.0027	0.691	Vel = 2.78
SP03 to	29.167		0.0	6	41	40.0 0.0	27.500 40.000	120	129.573 0.469	
SP04	28.083		250.0	6.065		0.0	67.500	0.0027	0.183	Vel = 2.78
SP04 to	28.083		0.0	6	21	20.0 0.0	79.330 20.000	120	130.225 6.677	
SPC1	12.667		250.0	6.065	4-	0.0	99.330	0.0027	0.268	Vel = 2.78
SPC1 to	12.667		0.0	6	1T	30.0 0.0	7.833 30.000	120	137.170 0.0	
SPC2	12.667		250.0	6.065		0.0	37.833	0.0027	0.103	Vel = 2.78
SPC2 to	12.667		750.00	8	1I 1B	13.0 12.0	14.750 70.000	120	137.273 4.692	
PO	1.833		1000.0	7.981	1C	45.0	84.750	0.0092	0.783	Vel = 6.41
			0.0							

	comatic S Center fo	Page 8 Date 9-25-11										
Node1 to Node2	Elev1 Elev2	K Fact	Qa Qt	Nom Act	Fitting or Eqv.	g Ln.	Pipe Ftng's Total	CFact Pf/Ft	Pt Pe Pf	*****	Notes	*****
	-											
PO		1	000.00						142.748	K Factor =	= 83.70	
Safety		l Pressure				142.748 2.244 144.992						
Pressu		np Outlet ^P ump Curv np Inlet	/e			144.992 -98.033 46.959						
PI to	1.750		0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	46.959 -2.166			
POC	6.750	1	0.000	7.981	1T	35.0	66.000	0.0092	0.610	Vel = 6.4	1	
POC to	6.750		0.0	8	2E	56.936 0.0	41.000 56.936	140	45.403 -2.707			
BF1	13	1	0.000	8.27		0.0	97.936	0.0058	0.572	Vel = 5.9)7	
BF1 to	13		0.0	8	1Zic	0.0 0.0	4.000 0.0	120	43.268 3.829	* Fixed los	ss = 3.829)
BF2	13	1	0.000	7.981		0.0	4.000	0.0092	0.037	Vel = 6.4	1	
BF2 to	13		0.0	8	2E 1G	56.936 6.326	46.000 118.616	140	47.134 0.0			
SRC	13	1	0.000	8.27	1T	55.354	164.616	0.0058	0.961	Vel = 5.9)7	
SRC		1	0.0 000.00						48.095	K Factor =	= 144.19	

This page intentionally left blank.

Standpipe # 5 [1000]


This page intentionally left blank.

21605 North Central Ave. 623.580.7800 Phoenix, Arizona 85024 - Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501

CA-C16-901529 NV-C41-69370 NM-MS 12-354807

Fire Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Building System : S/P # 5 Contract Data File

Job Name : Cal Poly Center for Science SP 5 [1000 GPM] : Center for Science

- Location : San Luis Obispo, Ca.

 - : 10034
 - : Cal Poly CFS SP 1-4.WXF

Location - San Luis Obispo, Ca. Building - Center for Science

Calculated By - Neal Larsen

(X)NFPA 14

S

Name - Cal Poly Center For Science Date - 9-25-2011 System No. - S/P # 5 Contract No. - 10034 Contractor - Aero Automatic Sprinkler Co. Drawing No. -Occupancy - Light / Ordinary Hazard Gr. 1 Number of Standpipes ()1 ()2 ()3 (X)4 ()

Y	()Other							
S	()Specific Ruling	Made by	Date					
Т								
Е	Flow at Top Most Outlet	- 500 Gpm	System Type					
М	Pres. at Top Most Outlet	- 100 Psi	(X) Wet () Dry					
	Flow For Ea. Additional Sta							
D	Total Additional Flow	- 1000 Gpm						
Е	Elevation at Highest Outlet	- 37'-0" Fee	t					
S	Hose Valve Connection ()1 1/2" (X)2 1/2	п					
I	Class Service (X)I ()II (X)III						
G	Note:At 3 rd. level there a	are four (4) standpi	pes available.					
Ν	{Standpipe # 1, 3, 4 & 5}							
a 1								
	culation Gpm Required 1000							
Sum	mary C-Factor Used:	Overhead 120	Underground 140					
W	Water Flow Test:	Pump Data:	Tank or Reservoir:					
A	Date of Test - 9-19-2011	rump Data	Cap. N/A					
Т	Time of Test - 9:12 a.m.	Rated Cap. 750						
Е	Static (Psi) - 60 [54]							
R	Residual (Psi) - 55 [49]		Well					
	Flow (Gpm) - 914		Proof Flow Gpm N/A					
S	Elevation - 13'-0"		L					
U								
Ρ	Location: Static & Residual	pressures taken fro	m Hydratn # 63. Flow taken					
Ρ	from Hydrant # 64 along N. H		_					
L	Source of Information: Fluid		t {R. Ellison}					
Y	Note : Flow test used in Hyd		reduced by 10 %.					

HYDRAULIC DESIGN INFORMATION SHEET

Page 1 Date 9-25-11 Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 5 [1000 GPM]

City Water Supply:54C1 - Static Pressure : 54C2 - Residual Pressure: 49C2 - Residual Flow : 914City Water Adjusted to Pump InletDr Pf - Elev - Hose FlowA1 - Adjusted Static: 51.872A2 - Adj Resid : 49.314 @A3 - Adj Resid : 40.224 @		ssure : 110.9 w : 790.2 @ Max Flow : 67.9 : 1382.9 w @ 0 = 3307.91	Demand: D1 - Elevation D2 - System Flow D2 - System Pressu Hose (Adj City) Hose (Demand) D3 - System Deman Safety Margin	: : 1000
A3 - Adj Resid : 40.224 @	1362.9			
210				
196				
182 AI + P1				
	A2 + P2			
154 D2				
140	D3			
126		A3 + P3		
112		A3 + P3		
98				
84				
70 C1				
56	A2 C2	A3		
⁴² A1		0		
28				
200 400 600 800	1000 1200	1400 16	00 1800	
	FLOW(N ^ 1.85)			

Fittings Used Summary

	Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 5 [1000 GPM]													_	Page 3 Date 9-25-11						
Fitting L Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
B C	Generic Butterfly Valve Generic Check Vlv	0 4	0 5	2.25 5	2 7	2.5 9	6 11	7 14	10 16	0 19	12 22	9 27	10 32	12 45	19 55	21 65	0 76	0 87	0 98	0 109	0 130
Ē	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
<u> </u>	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
l Zic	90' Flow Thru Tee Wilkens 350ADA	3 Fittin	4 ng gener	5 ates a Fi	6 xed Los	8 is Based	10 d on Flov	12 w	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

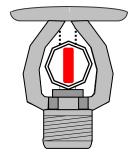
Aero Automatic Sprinkler Co. Cal Poly Center for Science SP 5 [1000 GPM]

	Center for Sci	ence SP 5 [1000 GPN	vij				Dale	9-25-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
HV1	99.75		94.22	na	250.0			
HV2	99.75		96.86	na				
SPRF	99.75		98.61	na				
SP16	85.0		105.18	na				
SP15	69.0		112.16	na				
SP14	53.0		119.13	na				
SP13	37.0		126.16	na				
HV3	99.0		98.54	na				
SPR3	99.0		100.28	na				
SP36	85.0		106.35	na				
SP35	69.0		113.28	na				
SP34	53.0		120.21	na				
SP33	37.0		127.14	na				
SP32	21.0		134.07	na				
SP05	29.167		130.53	na				
HV8	67.75		105.17	na	250.0			
HV9	67.75		107.81	na				
SPR4	67.75		109.56	na				
SP44	53.0		116.24	na				
SP43	37.0		123.49	na				
SP42	21.0		130.74	na				
SP41	5.0		138.21	na				
HV10	37.0		100.0	na	250.0			
SP53	37.0		107.3	na				
HV11	21.0		107.25	na	250.0			
SP52	21.0		114.54	na				
SP51	5.0		123.52	na				
SPC5	12.5		120.27	na				
SPC4	13.75		134.42	na				
SPC3	12.667		135.04	na				
SP01	45.0		122.7	na				
SP02	27.917		130.38	na				
SP03	29.167		130.53	na				
SP04	28.083		131.18	na				
SPC1	12.667		138.13	na				
SPC2	12.667		138.23	na				
PO	1.833		143.71	na				
PI	1.75		46.96	na				
POC	6.75		45.4	na				
BF1	13.0		43.27	na				
BF2	13.0		47.13	na				
SRC	13.0		48.09	na				

The maximum velocity is 16.75 and it occurs in the pipe between nodes HV1 and SPRF

Page 4 Date 9-25-11

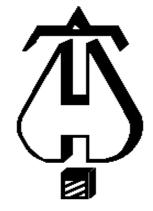
	omatic Sp Center for		Co. e SP 5 [10	000 GPN	1]					Page 5 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	******* Notes ******
*S/P # ⁻	1 REMOT	e roof	F HOSE V	ALVES						
HV1	99.750	H250	250.00	2.5	1T	12.0	0.250	120	94.217	
to SPRF	99.750		250.0	2.469		0.0 0.0	12.000 12.250	0.2154	1.750 2.639	* Fixed loss = 1.75 Vel = 16.75
	33.730		0.0	2.403		0.0	12.200	0.2104	2.009	Ver= 10.75
SPRF			250.00						98.606	K Factor = 25.18
HV2	99.750	.0	0.0	2.5	1T	12.0	0.250	120	96.856	
to	00 750		0.0	0.400		0.0	12.000	0	1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469 6	41	0.0	12.250	0 120	0.0	Vel = 0
SPRF to	99.750		250.00	0	41	40.0 0.0	30.000 40.000	120	98.606 6.388	
SP16	85		250.0	6.065		0.0	70.000	0.0027	0.190	Vel = 2.78
SP16	85		0.0	6		0.0	16.000	120	105.184	
to SP15	69		250.0	6.065		0.0 0.0	0.0 16.000	0.0027	6.930 0.043	Vel = 2.78
SP15	69 69		0.0	6		0.0	16.000	120	112.157	Ver = 2.70
to	03		0.0	0		0.0	0.0	120	6.930	
SP14	53		250.0	6.065		0.0	16.000	0.0027	0.043	Vel = 2.78
SP14	53		0.0	6	1T	30.0	8.500	120	119.130	
to SP01	45		250.0	6.065		0.0 0.0	30.000 38.500	0.0027	3.465 0.104	Vel = 2.78
0101			0.0	0.000		0.0	00.000	0.0021	0.104	VCI - 2.70
SP01			250.00						122.699	K Factor = 22.57
SP13	37	.0	0.0	6	1T	30.0	7.500	120	126.163	
to	45		0.0	0.005		0.0	30.000	0	-3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01			0.0 0.0						122.698	K Factor = 0
*S/P # 3	3									
HV3	99	.0	0.0	2.5	2E	12.0	1.750	120	98.535	
to					1T	12.0	24.000		1.750	* Fixed loss = 1.75
SPR3	99		0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SPR3 to	99	.0	0.0	6		0.0 0.0	16.000 0.0	120	100.285 6.063	
SP36	85		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP36	85	.0	0.0	6		0.0	16.000	120	106.349	
to	<u></u>		0.0	0.005		0.0	0.0	0	6.930	
SP35	<u>69</u>		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP35 to	69	.0	0.0	6		0.0 0.0	16.000 0.0	120	113.278 6.930	
SP34	53		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP34	53	.0	0.0	6		0.0	16.000	120	120.208	
to	27		0.0	6 005		0.0	0.0	0	6.930	$V_{0} = 0$
SP33	37	0	0.0	6.065 6	1T	0.0	16.000 8.417	0	0.0	Vel = 0
SP33 to SP05	37 29.167	.0	0.0 0.0	6 6.065	11	30.0 0.0 0.0	8.417 30.000 38.417	120 0	127.137 3.392 0.0	Vel = 0
	23.107		0.0	0.000		0.0	50.417	U	0.0	v GI = 0


Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	****** Notoo ******
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
			0.0							
SP05			0.0						130.529	K Factor = 0
SP32 :0	21	.0	0.0	6	1T	30.0 0.0	7.583 30.000	120	134.067 -3.537	
SP05 SP05	29.167 29.167	.0	0.0	6.065 6	11	0.0	37.583 34.167	0 120	0.0	Vel = 0
3F05 :0	29.107	.0	0.0	0	1B	10.0	50.000	120	0.0	
SP03	29.167		0.0	6.065	1T	30.0	84.167	0	0.0	Vel = 0
SP03			0.0 0.0						130.530	K Factor = 0
*S/P # 4	1		0.0						130.330	
HV8 :0	67.750	H250	250.00	2.5	1T	12.0 0.0	0.250 12.000	120	105.172 1.750	* Fixed loss = 1.75
SPR4	67.750		250.0	2.469		0.0	12.250	0.2153	2.638	Vel = 16.75
SPR4			0.0 250.00						109.560	K Factor = 23.88
HV9	67.750	.0	0.0	2.5	1T	12.0	0.250	120	107.810	
:0						0.0	12.000		1.750	* Fixed loss = 1.75
SPR4	67.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPR4	67.750		250.00	4		0.0 0.0	14.750 0.0	120	109.560 6.388	
SP44	53		250.0	4.026		0.0	14.750	0.0199	0.294	Vel = 6.30
SP44 :o	53		0.0	4		0.0 0.0	16.000 0.0	120	116.242 6.930	
SP43	37		250.0	4.026		0.0	16.000	0.0199	0.318	Vel = 6.30
SP43 o	37		0.0	4		0.0 0.0	16.000 0.0	120	123.490 6.930	
SP42	21		250.0	4.026		0.0	16.000	0.0199	0.319	Vel = 6.30
SP42	21		0.0	4	1T	20.0	7.250	120	130.739	
o SPC4	13.750		250.0	4.026		0.0 0.0	20.000 27.250	0.0199	3.140 0.542	Vel = 6.30
			0.0			0.0		0.0100	0.0.12	
SPC4			250.00						134.421	K Factor = 21.56
SP41	5	.0	0.0	4	1T	20.0 0.0	8.750 20.000	120	138.211 -3.790	
o SPC4	13.750		0.0	4.026		0.0	20.000 28.750	0	-3.790	Vel = 0
			0.0							
SPC4	_		0.0						134.421	K Factor = 0
*S/P # 5		11050	050.00	25	25	10.0	4 750	100	100.000	
HV10 :o	37	п25U	250.00	2.5	2E 1T	12.0 12.0	1.750 24.000	120	100.000 1.750	* Fixed loss = 1.75
SP53	37		250.0	2.469		0.0	25.750	0.2154	5.547	Vel = 16.75
SP53	37		0.0	4		0.0	16.000	120	107.297	
o SP52	21		250.0	4.026		0.0 0.0	0.0 16.000	0.0199	6.930 0.318	Vel = 6.30
			0.0			- • •				
SP52			250.00						114.545	K Factor = 23.36

Node1 Elev1 K Qa Nom Fitting or or Pio Fing's or CFact Fing's Total Pt/Ft Pt Notes HV11 21 H250 250.00 2.5 2E 12.0 1.750 1750 * Fixed loss = 1.75 * Fixed loss = 1.75 SP52 21 250.00 2.460 0.0 25750 0.2154 5547 Vel = 16.75 SP52 21 250.00 4 17 20.0 8.500 120 114.545 to 0.0 20.000 3.881 sector 9.00 3.881 sector 9.00 3.881 sector 9.00 3.824 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.07 120 120.272 K Factor = 0 120.272 K Factor = 0 120.272 K Factor = 0 120.072 10.072 10.072 10.072 10.072			orinkler Co. r Science S		000 GPN	1]					Page 7 Date 9-25-11
to corr Prings Prings	Node1	Elev1	К	Qa	Nom	Fitting			CFact		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Elev2	Fact	Qt	Act		Ln.		Pf/Ft		****** Notes *****
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to						12.0	24.000		1.750	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1T					ver = 10:75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to						0.0	20.000		3.681	Vel - 12.60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01 00	12.000	0		4.020		0.0	20.000	0.0710	2.040	VCI = 12.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPC5		5							120.272	K Factor = 45.59
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5	.0	0.0	4	1T			120		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SPC5	12.500			4.026		0.0	27.500	0	0.0	Vel = 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPC5									120.272	K Factor = 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*STANE	OPIPES #	4 & 5 FEE	ED							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to					51	35.0	67.000		-0.072	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SPC3	12.667	5		4.026	1T	20.0	206.667	0.0718	14.835	Vel = 12.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPC3		5							135.035	K Factor = 43.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to						10.0	40.000		0.469	V 4 0 70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											Vel = 2.78
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	to						30.0	50.000		0.0	Vel - 833
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01 02	12.007			0.005		0.0	104.007	0.0207	5.135	Ver = 0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				50.00						138.230	K Factor = 63.79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to						10.0	70.000		7.399	V 1 0 70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2								Vel = 2.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to		2			21	0.0	20.000		-0.541	Vel = 278
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SP03					41	40.0	27.500		130.530	V01- 2.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		28.083	2	250.0	6.065				0.0027		Vel = 2.78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						21					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to		2				0.0	20.000		6.677	Vel = 2.78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1T					
SPC2 12.667 750.00 8 11 13.0 14.750 120 138.230 to 1B 12.0 70.000 4.692 PO 1.833 1000.0 7.981 1C 45.0 84.750 0.0092 0.783 Vel = 6.41	to		2				0.0	30.000		0.0	Vel = 2.78
to 1B 12.0 70.000 4.692 PO 1.833 1000.0 7.981 1C 45.0 84.750 0.0092 0.783 Vel = 6.41						11					
	to					1B	12.0	70.000		4.692	$V_{0} = 6.41$
0.0		1.033	10	0.0	1.901	10	40.0	04.700	0.0092	0.703	vei= 0.41

		orinkler Co. or Science SP 5 [1000 GPN	/]					Page 8 Date 9-25-12	1
Node1 to Node2	Elev1 Elev2	K Qa Fact Qt	Nom Act	Fitting or Eqv.	g Ln.	Pipe Ftng's Total	CFact Pf/Ft	Pt Pe Pf	****** Notes	****
PO		1000.00	I					143.705	K Factor = 83.42	
Safety		Pressure			143.705 1.287 144.992					
Pressu		np Outlet Pump Curve np Inlet			144.992 -98.033 46.959					
PI to	1.750	0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	46.959 -2.166		
POC	6.750	1000.0	7.981	1T	35.0	66.000	0.0092	0.610	Vel = 6.41	
POC	6.750	0.0	8	2E	56.936	41.000	140	45.403		
to					0.0	56.936		-2.707		
BF1	13	1000.0	8.27		0.0	97.936	0.0058	0.572	Vel = 5.97	
BF1	13	0.0	8	1Zic	0.0	4.000	120	43.268		
to					0.0	0.0		3.829	* Fixed loss = 3.829	
BF2	13	1000.0	7.981		0.0	4.000	0.0092	0.037	Vel = 6.41	
BF2	13	0.0	8	2E	56.936	46.000	140	47.134		
to	40	4000.0	0.07	1G		118.616	0.0050	0.0		
SRC	13	1000.0	8.27	1T	55.354	164.616	0.0058	0.961	Vel = 5.97	
SRC		0.0 1000.00	1					48.095	K Factor = 144.19	

This page intentionally left blank.


STANDPIPE STATIC & FLOW FOR PRESSURE REDUCING VALVE SETTING 'E'

This page intentionally left blank.

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-C16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science SP - STATICBuilding: Center for ScienceLocation: San Luis Obispo, Ca.System: S/P # 1,3,4,5Contract: 10034Data File: Cal Poly CFS SP 1-1-STATIC.WXF

Page 1 Date 9-25-11

HYDRAULIC DESIGN INFORMATION SHEET Name - Cal Poly Center For Science Date - 9-25-2011 Location - San Luis Obispo, Ca. Building - Center for Science System No. - S/P # 1,3,4,5 Contractor - Aero Automatic Sprinkler Co. Contract No. - 10034 Calculated By - Neal Larsen Drawing No. -Occupancy - Light / Ordinary Hazard Gr. 1 Number of Standpipes ()1 ()2 ()3 (X)4 () S (X)NFPA 14 Υ ()Other S ()Specific Ruling Made by Date Т Е Flow at Top Most Outlet - 0.05 Gpm System Type М Pres. at Top Most Outlet - N/A Psi (X) Wet () Dry Flow For Ea. Additional Standpipe - N/A Gpm Total Additional Flow D - 0.05 Gpm Hose Valve Connection ()1 1/2" (X)2 1/2 Class Service (X)T Ε S (X)2 1/2" ()II (X)III I Class Service (X)I G Note: This is a static Calculation to determine were Pressure Reducing Va. Ν are required (only three (3) on 1 st. floor) Gpm Required 0.05 Psi Required 59.99 Calculation At SRC Overhead 120 Summary C-Factor Used: Underground 140 Water Flow Test: Pump Data: Tank or Reservoir: W Date of Test - 9-19-2011 Cap. N/A Α Time of Test - 9:12 a.m. Elev. N/A т Rated Cap. 750 Е Static (Psi) - 60 @ Psi 113 Residual (Psi) - 55 Elev. 1'-9" Well R Flow (Gpm) - 914 Proof Flow Gpm N/A - 13'-0" S Elevation U Ρ Location: Static & Residual pressures taken from Hydratn # 63. Flow taken Ρ from Hydrant # 64 along N. Poly View Drive Source of Information: Fluid Resource Management {R. Ellison} L Y Note : Full Flow test was used in this Static Hyd. Calculation.

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP - STATIC

y Water Supply: C1 - Static Pressure : 60 C2 - Residual Pressure: 55 C2 - Residual Flow : 914	Pump Data: P1 - Pump Churn Pressur P2 - Pump Rated Pressur P2 - Pump Rated Flow P3 - Pump Pressure @ Ma	e : 110.9 : 0 ax Flow : 67.9	Demand: D1 - Elevation : 37.571 D2 - System Flow : D2 - System Pressure : 183.028 Hose (Adj City) : Hose (Demand) : 0.05				
y Water Adjusted to Pump Inlet Pf - Elev - Hose Flow A1 - Adjusted Static: 0 A2 - Adj Resid : 0 @ 0 A3 - Adj Resid : 0 @ 0	P3 - Pump Max Flow City Residual Flow @ City Residual Flow @ City Water @ 150% o Pump flow terminated at adjusted	20 = 2812.57 f Pump = 60.00	Hose(Demand) : 0.05 D3 - System Demand : 0.05 Safety Margin : 0.008				
10							
96 D2							
82 6 9 03							
54							
40							
26 Al + P1 26 A2 + P2							
3							
4 A3 + P3 2 C1							
6 C1	C2						
2 D 1							
3							
A2							
200 400 600 800 A1	1000 1200 FLOW(N ^ 1.85)	1400 1600	1800				

Fittings Used Summary

	utomatic Sprinkler Co. Iy Center for Science SP - \$	STATIC																_	age 3 ate 9	3 9-25-11	
Fitting L Abbrev.	egend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
B C E	Generic Butterfly Valve Generic Check Vlv 90' Standard Elbow	0 4 2	0 5 2	2.25 5 2	2 7 3	2.5 9 4	6 11 5	7 14 6	10 16 7	0 19 8	12 22 10	9 27 12	10 32 14	12 45 18	19 55 22	21 65 27	0 76 35	0 87 40	0 98 45	0 109 50	0 130 61
G I T Zic	Generic Gate Valve 90' Ell Grvd-Vic #10 90' Flow Thru Tee Wilkens 350ADA	0 0 3 Fittin	0 0 4 g gener	0 2 5 ates a Fi	1 3 6 xed Los	0 4 8 s Based	1 3.5 10 d on Flov	1 6 12 w	1 5 15	1 8 17	2 7 20	2 8.5 25	3 10 30	4 13 35	5 17 50	6 20 60	7 23 71	8 25 81	10 33 91	11 36 101	13 40 121

Units Summary

Diameter Units Inches Length Units Flow Units Feet US Gallons per Minute Pressure Units Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science SP - STATIC

							Bato	20 11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
HV1	99.75		138.87	na	0.05			
HV2	99.75		138.87	na	0.00			
SPRF	99.75		140.62	na				
SP16	85.0		147.01	na				
SP15	69.0		153.94	na				
SP14	53.0		160.87	na				
SP13	37.0		167.8	na				
HV3	99.0		139.2	na				
SPR3	99.0		140.94	na				
SP36	85.0		147.01					
SP35	69.0		153.94	na				
SP35 SP34				na				
	53.0		160.87	na				
SP33	37.0		167.8	na				
SP32	21.0		174.73	na				
SP05	29.167		171.19	na				
HV8	67.75		152.73	na				
HV9	67.75		152.73	na				
SPR4	67.75		154.48	na				
SP44	53.0		160.87	na				
SP43	37.0		167.8	na				
SP42	21.0		174.73	na				
SP41	5.0		181.66	na				
HV10	37.0		166.05	na				
SP53	37.0		167.8	na				
HV11	21.0		172.98	na				
SP52	21.0		174.73	na				
SP51	5.0		181.66	na				
SPC5	12.5		178.41	na				
SPC4	13.75		177.87	na				
SPC3	12.667		178.34	na				
SP01	45.0		164.33	na				
SP02	27.917		171.73	na				
SP03	29.167		171.19	na				
SP04	28.083		171.66	na				
SPC1	12.667		178.34	na				
SPC1 SPC2	12.667		178.34					
PO	1.833		183.03	na				
				na				
PI	1.75		57.87	na				
POC	6.75		55.71	na				
BF1	13.0		53.0	na				
BF2	13.0		60.0	na				
SRC	13.0		60.0	na				

Page Date

4

9-25-11

The maximum velocity is 0 and it occurs in the pipe between nodes and

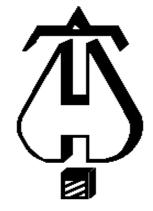
		orinkler Co r Science		ATIC						Page 5 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	******
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes *****
*S/P # ⁻	1 REMOT	e roof i	HOSE V	ALVES						
HV1	99.750	H0.05	0.05	2.5	1T	12.0 0.0	0.250 12.000	120	138.870 1.750	* Fixed loss = 1.75
to SPRF	99.750		0.05	2.469		0.0	12.000	0	0.0	Vel = 0
-			0.0							
SPRF			0.05						140.620	K Factor = 0
HV2	99.750	.0	0.0	2.5	1T	12.0	0.250	120	138.870	
to	00 750			0.400		0.0	12.000	•	1.750	* Fixed loss = 1.75
SPRF	99.750		0.0	2.469	41	0.0	12.250	0	0.0	Vel = 0
SPRF to	99.750		0.05	6	41	40.0 0.0	30.000 40.000	120	140.620 6.388	
SP16	85		0.05	6.065		0.0	40.000 70.000	0	0.388	Vel = 0
SP16	85		0.0	6		0.0	16.000	120	147.008	
to						0.0	0.0		6.930	
SP15	69		0.05	6.065		0.0	16.000	0	0.0	Vel = 0
SP15	69		0.0	6		0.0	16.000	120	153.938	
	50		0.05	0.005		0.0	0.0	0	6.930	
SP14	53		0.05	6.065	4.7	0.0	16.000	0	0.0	Vel = 0
SP14 to	53		0.0	6	1T	30.0 0.0	8.500 30.000	120	160.868 3.465	
SP01	45		0.05	6.065		0.0	38.500	0	-0.001	Vel = 0
			0.0							
SP01			0.05						164.332	K Factor = 0
SP13	37	.0	0.0	6	1T	30.0	7.500	120	167.797	
to						0.0	30.000		-3.465	
SP01	45		0.0	6.065		0.0	37.500	0	0.0	Vel = 0
SP01			0.0 0.0						164.332	K Footor – 0
*S/P # 3	>		0.0						104.332	K Factor = 0
HV3		.0	0.0	2.5	2E	12.0	1 750	120	120 105	
HV3 to	99	.0	0.0	2.3	∠E 1T	12.0 12.0	1.750 24.000	120	139.195 1.750	* Fixed loss = 1.75
SPR3	99		0.0	2.469	••	0.0	25.750	0	0.0	Vel = 0
SPR3	99	.0	0.0	6		0.0	16.000	120	140.945	
to						0.0	0.0		6.063	
SP36	85		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP36	85	.0	0.0	6		0.0	16.000	120	147.008	
to SP35	69		0.0	6.065		0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0
SP35 SP35		.0	0.0	6.065		0.0	16.000	120	153.938	v CI – U
5P35 to	69	.0	0.0	U		0.0 0.0	16.000 0.0	120	153.938 6.930	
SP34	53		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP34	53	.0	0.0	6		0.0	16.000	120	160.868	
to		-				0.0	0.0		6.930	
SP33	37		0.0	6.065		0.0	16.000	0	0.0	Vel = 0
SP33	37	.0	0.0	6	1T	30.0	8.417	120	167.797	
	00 407		0.0	6 005		0.0	30.000	0	3.392	
SP05	29.167		0.0	6.065		0.0	38.417	0	0.0	Vel = 0

Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to	LIEVI	IX.	Qa	NOIT	or		Fipe Ftng's	CI act	Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
			0.0							
SP05			0.0						171.189	K Factor = 0
SP32	21	.0	0.0	6	1T	30.0 0.0	7.583 30.000	120	174.727 -3.537	
SP05	29.167		0.0	6.065		0.0	37.583	0	0.0	Vel = 0
SP05 to SP03	29.167 29.167	.0	0.0 0.0	6 6.065	1I 1B 1T	10.0 10.0 30.0	34.167 50.000 84.167	120 0	171.190 0.0 0.0	Vel = 0
5603	29.107		0.0	0.005	11	30.0	04.107	0	0.0	ver – o
SP03 *S/P # 4	1		0.0						171.190	K Factor = 0
HV8 to	67.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	152.729 1.750	* Fixed loss = 1.75
SPR4	67.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPR4			0.0 0.0						154.479	K Factor = 0
HV9 :o	67.750	.0	0.0	2.5	1T	12.0 0.0	0.250 12.000	120	152.729 1.750	* Fixed loss = 1.75
SPR4	67.750		0.0	2.469		0.0	12.250	0	0.0	Vel = 0
SPR4 to	67.750	.0	0.0	4		0.0 0.0	14.750 0.0	120	154.479 6.388	
SP44	53		0.0	4.026		0.0	14.750	0	0.0	Vel = 0
SP44 to SP43	53 37	.0	0.0 0.0	4 4.026		0.0 0.0 0.0	16.000 0.0 16.000	120 0	160.868 6.930 0.0	Vel = 0
SP43	37	.0	0.0	4.020		0.0	16.000	120	167.797	vei – 0
SP43 SP42	21	.0	0.0	4.026		0.0 0.0 0.0	0.0 16.000	0	6.930 0.0	Vel = 0
SP42	21	.0	0.0	4	1T	20.0 0.0	7.250 20.000	120	174.727 3.140	
SPC4	13.750		0.0	4.026		0.0	27.250	0	0.0	Vel = 0
SPC4			0.0 0.0						177.867	K Factor = 0
SP41 :o	5	.0	0.0	4	1T	20.0 0.0	8.750 20.000	120	181.656 -3.790	
SPC4	13.750		0.0	4.026		0.0	28.750	0	0.0	Vel = 0
SPC4			0.0 0.0						177.866	K Factor = 0
*S/P # 5										
HV10 :o	37	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	166.047 1.750	* Fixed loss = 1.75
SP53	37		0.0	2.469		0.0	25.750	0	0.0	Vel = 0
SP53 to	37	.0	0.0	4		0.0 0.0	16.000 0.0	120	167.797 6.930)/el - 0
SP52	21		0.0	4.026		0.0	16.000	0	0.0	Vel = 0
SP52			0.0 0.0						174.727	K Factor = 0

		orinkler Co r Science		ATIC						Page 7 Date 9-25-11
Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	
to Node2	Elev2	Fact	Qt	Act	or Eqv.	Ln.	Ftng's Total	Pf/Ft	Pe Pf	****** Notes ******
HV11 to	21	.0	0.0	2.5	2E 1T	12.0 12.0	1.750 24.000	120	172.977 1.750	* Fixed loss = 1.75
SP52	21	0	0.0	2.469	4.7	0.0	25.750	0	0.0	Vel = 0
SP52 to SPC5	21 12.500	.0	0.0 0.0	4 4.026	1T	20.0 0.0 0.0	8.500 20.000 28.500	120 0	174.727 3.681 0.0	Vel = 0
01 00	12.000		0.0	4.020		0.0	20.000	0	0.0	VCI - 0
SPC5			0.0						178.408	K Factor = 0
SP51 to	5	.0	0.0	4	1T	20.0 0.0	7.500 20.000	120	181.656 -3.248	
SPC5	12.500		0.0	4.026		0.0	27.500	0	0.0	Vel = 0
SPC5			0.0 0.0						178.408	K Factor = 0
*STANE	DPIPES #	‡ 4 & 5 FE	ED							
SPC5 to	12.500	.0	0.0	4	1B 5I	12.0 35.0	139.667 67.000	120	178.408 -0.072	
SPC3	12.667		0.0	4.026	1T	20.0	206.667	0	0.0	Vel = 0
SPC3			0.0 0.0						178.336	K Factor = 0
SPC4 to	13.750	.0	0.0	6	3I 1B	30.0 10.0	13.333 40.000	120	177.867 0.469	
SPC3	12.667		0.0	6.065		0.0	53.333	0	0.0	Vel = 0
SPC3 to	12.667	.0	0.0	6	2I 1T	20.0 30.0	104.667 50.000	120	178.336 0.0	
SPC2	12.667		0.0	6.065		0.0	154.667	0	0.0	Vel = 0
SPC2			0.0 0.0						178.336	K Factor = 0
*STANE	DPIPES #	‡1&3 FE	ED							
SP01 to	45		0.05	6	6I 1B	60.0 10.0	34.417 70.000	120	164.332 7.399	
SP02	27.917		0.05	6.065		0.0	104.417	0	0.0	Vel = 0
SP02 to SP03	27.917 29.167		0.0 0.05	6 6.065	21	20.0 0.0 0.0	235.417 20.000 255.417	120 0	171.731 -0.541 0.0	Vel = 0
SP03 to	29.167		0.03	6	41	40.0 0.0	27.500 40.000	120	171.190 0.469	
SP04	28.083		0.05	6.065		0.0	67.500	0	0.403	Vel = 0
SP04	28.083		0.0	6	21	20.0	79.330	120	171.659	
to SPC1	12.667		0.05	6.065		0.0 0.0	20.000 99.330	0	6.677 0.0	Vel = 0
SPC1	12.667		0.0	6	1T	30.0	7.833	120	178.336	
to SPC2	12.667		0.05	6.065		0.0 0.0	30.000 37.833	0	0.0 0.0	Vel = 0
SPC2	12.667		0.0	8	11	13.0	14.750	120	178.336	-
to PO	1.833		0.05	7.981	1B 1C	12.0 45.0	70.000 84.750	0	4.692 0.0	Vel = 0
	1.000		0.0	1.001		10.0	01.100	5	0.0	

Aero Automatic Sprinkler Co.

		orinkler Co or Science S		ATIC						Pag Date		11
Node1 to Node2	Elev1 Elev2	K Fact	Qa Qt	Nom Act	Fitting or Eqv.	Ln.	Pipe Ftng's Total	CFact Pf/Ft	Pt Pe Pf	*****	Notes	*****
PO			0.05						183.028	K Factor =	= 0	
Safety I		Pressure essure				183.028 0.008 183.036						
Pressu		np Outlet Pump Curve np Inlet	9			183.036 -125.164 57.872						
PI to	1.750		0.0	8	1G 1I	4.0 13.0	14.000 52.000	120	57.872 -2.166			
POC	6.750		0.05	7.981	1T	35.0	66.000	0	0.0	Vel = 0		
POC	6.750		0.0	8	2E	56.936	41.000	140	55.706			
to						0.0	56.936		-2.707			
BF1	13		0.05	8.27		0.0	97.936	0	0.001	Vel = 0		
BF1	13		0.0	8	1Zic	0.0	4.000	120	53.000			
to						0.0	0.0		7.000	* Fixed los	ss = 7	
BF2	13		0.05	7.981		0.0	4.000	0	0.0	Vel = 0		
BF2	13		0.0	8	2E	56.936	46.000	140	60.000			
to	10		0.05	0.07	1G		118.616	0	0.0			
SRC	13		0.05	8.27	1T	55.354	164.616	0	0.0	Vel = 0		
SRC			0.0 0.05						60.000	K Factor =	= 0.01	


This page intentionally left blank.

21605 North Central Ave. 623.580.7800 Phoenix, Arizona 85024 - Fax 623,434,3154

AZ-L16-234798 AZ-¢16-234797 UT-S370-6690455-5501

CA-C16-901529 NV-C41-69370 NM-MS 12-354807

Fire Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Building System Contract : 10034 Data File

Job Name : Cal Poly Center for Science 1 st. flr. Riser [250 gpm] : Center for Science Location : San Luis Obispo, Ca. : 1 st floor

- : Cal Poly CFS LVL 1-250.WXF

HYDRAULIC DESIGN INFORMATION SHEET

Name - Cal Poly Center For Science Location - San Luis Obispo, Ca. Building - Center for Science Contractor - Aero Automatic Sprinkler Co. Calculated By - Neal Larsen Occupancy - Light / Ordinary Hazard Gr. 1

System No. - 1 st floor Contract No. - 10034 Drawing No. -

Number of Standpipes ()1 ()2 ()3 (X)4 () S (X)NFPA 14 Υ ()Other S ()Specific Ruling Made by Date Т Е Flow at Top Most Outlet - 250 Gpm System Type М Pres. at Top Most Outlet - N/A Psi (X) Wet () Dry Flow For Ea. Additional Standpipe - N/A Gpm Total Additional Flow D - 250 Gpm - 3'-0" Feet Elevation at Highest Outlet Е Hose Valve Connection ()1 1/2" S (X)2 1/2" ()II (X)III I Class Service (X)I G Note: This is a flow Calculation for 250 gpm @ 1 st. flr riser to determine Ν the residual pressure for setting the Pressure Reducing Va. [Setting 'E'] Gpm Required 250 Psi Required 59.54 Calculation At SRC C-Factor Used: Overhead 120 Summary Underground 140 Water Flow Test: Pump Data: Tank or Reservoir: W Date of Test - 9-19-2011 Cap. N/A Α Time of Test - 9:12 a.m. Elev. N/A т Rated Cap. 750 Е Static (Psi) - 60 @ Psi 113 Residual (Psi) - 55 Elev. 1'-9" Well R Flow (Gpm) - 914 Proof Flow Gpm N/A - 13'-0" S Elevation U Ρ Location: Static & Residual pressures taken from Hydratn # 63. Flow taken Ρ from Hydrant # 64 along N. Poly View Drive Source of Information: Fluid Resource Management {R. Ellison} L Y Note : Full Flow test was used in this Static Hyd. Calculation.

Page 1 Date 9-25-11 Water Supply Curve (C)

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [250 gpm]

 / Water Supply: C1 - Static Pressure : 60 C2 - Residual Pressure: 55 C2 - Residual Flow : 914 / Water Adjusted to Pump Inlet Pf - Elev - Hose Flow A1 - Adjusted Static: 0 A2 - Adj Resid : 0 @ 0 	Pump Data: P1 - Pump Churn F P2 - Pump Rated F P2 - Pump Rated F P3 - Pump Pressur P3 - Pump Max Flo City Residual F City Residual F City Water @ 1	ressure : 110.9 low : 0 e @ Max Flow : 67.9 w : 0 low @ 0 = 3501.77	Demand: D1 - Elevation : -4.331 D2 - System Flow : D2 - System Pressure : 182.600 Hose (Adj City) : Hose (Demand) : 250 D3 - System Demand : 250 Safety Margin :
A2 - Adj Resid : 0 @ 0 A3 - Adj Resid : 0 @ 0	Pump flow terminated at a	djusted curve 0 psi	
10			
96 D2			
82			
68 P3			
54			
40 Al + P1 26			
A2 + P2			
8			
4			
A3 + P3			
6	C2		
2			
8			
4 A2			
[©] 20@ ₁₄₀₀ 600 800 A1	1000 1200 FLOW (N ^ 1.85	1400 160	0 1800

Fittings Used Summary

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [250 gpm]

Page 3 Date 9-25-11

	-																				
Fitting Le	egend																				
Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve	0	0	2.25	2	2.5	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
С	Generic Check VIv	4	5	5	7	9	11	14	16	19	22	27	32	45	55	65	76	87	98	109	130
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
1	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	ng gener	ates a Fi	xed Los	s Based	d on Flo	N													

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

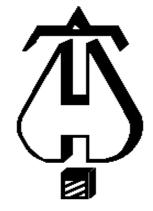
Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [250 gpm]

	omatic Sprinkle Center for Scie	er Co. ence 1 st. flr. Rise	r [250 gpm]				Page Date	4 9-25-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
BR01	3.0		174.52	na	250.0			
SPC1	12.667		177.75	na				
SPC2	12.667		177.85	na				
PO	1.833		182.61	na				
PI	1.75		57.87	na				
POC	6.75		55.75	na				
BF1	13.0		53.09	na				
BF2	13.0		59.47	na				
SRC	13.0		59.55	na				

The maximum velocity is 14.71 and it occurs in the pipe between nodes BR01 and SPC1

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [250 gpm]


Cal Poly	Center fo	r Scienc	e 1 st. flr.	Riser [2	50 gpm	ן]				Date 9-25-11
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftng's	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf	
BR01	3		250.00	2.5	21	16.474	14.333	120	174.519	
to	3	HZ90	250.00	2.5	∠ı 1T	16.474	32.948	120	-4.187	
SPC1	12.667		250.0	2.635		0.0	47.281	0.1569	7.419	Vel = 14.71
SPC1	12.667		0.0	6	1T	30.0	7.917	120	177.751	
to				•		0.0	30.000		0.0	
SPC2	12.667		250.0	6.065		0.0	37.917	0.0027	0.103	Vel = 2.78
SPC2	12.667		0.0	8	11	13.0	14.750	120	177.854	
to					1B	12.0	70.000		4.692	
PO	1.833		250.0	7.981	1C	45.0	84.750	0.0007	0.060	Vel = 1.60
			0.0							
PO			250.00						182.606	K Factor = 18.50
	Demand	Pressur	е			182.606				
Safety I						0.0				
	ation Pre					182.606				
	re @ Pum					182.606				
	re From P re @ Pum		rve			-124.735 57.871				
PI	1.750	ip mict	0.0	8	1G	4.0	14.000	120	57.871	
to	1.750		0.0	0	11	4.0 13.0	52.000	120	-2.166	
POC	6.750		250.0	7.981	1T	35.0	66.000	0.0007	0.047	Vel = 1.60
POC	6.750		0.0	8	2E	56.936	41.000	140	55.752	
to				•		0.0	56.936		-2.707	
BF1	13		250.0	8.27		0.0	97.936	0.0005	0.045	Vel = 1.49
BF1	13		0.0	8	1Zic	0.0	4.000	120	53.090	
to						0.0	0.0		6.379	* Fixed loss = 6.379
BF2	13		250.0	7.981		0.0	4.000	0.0008	0.003	Vel = 1.60
BF2	13		0.0	8	2E	56.936	46.000	140	59.472	
to					1G		118.616		0.0	
SRC	13		250.0	8.27	1T	55.354	164.616	0.0004	0.074	Vel = 1.49
0.0.0			0.0							
SRC			250.00						59.546	K Factor = 32.40

Page 5

21605 North Central Ave. 623,580,7800 Phoenix, Arizona 85024 Fax 623,434,3154

AZ-L16-234798 AZ-C16-234797 UT-S370-6690455-5501 CA-C18-901529 NV-C41-69370 NM-MS 12-354807

Line Protection by Computer Design

Aero Automatic Sprinkler Co. 21605 N. Central Ave. Phoenix, Arizona 85024 623-580-7800

Job Name: Cal Poly Center for Science 1 st. flr. Riser [328 gpm]Building: Center for ScienceLocation: San Luis Obispo, Ca.System: 1 st floorContract: 10034Data File: Cal Poly CFS LVL 1-328.WXF

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

HYDRAULIC DESIGN INFORMATION SHEET

Name - Cal Poly Center For Science Location - San Luis Obispo, Ca. Building - Center for Science Contractor - Aero Automatic Sprinkler Co. Calculated By - Neal Larsen Occupancy - Light / Ordinary Hazard Gr. 1

System No. - 1 st floor Contract No. - 10034 Drawing No. -

Number of Standpipes ()1 ()2 ()3 (X)4 () S (X)NFPA 14 Υ ()Other S ()Specific Ruling Made by Date Т Е Flow at Top Most Outlet - 328 Gpm System Type М Pres. at Top Most Outlet - N/A Psi (X) Wet () Dry Flow For Ea. Additional Standpipe - N/A Gpm Total Additional Flow D - 328 Gpm - 3'-0" Feet Elevation at Highest Outlet Е Hose Valve Connection ()1 1/2" S (X)2 1/2" ()II (X)III I Class Service (X)I Note: This is a flow Calculation for 328 gpm @ 1 st. flr riser to determine G Ν the residual pressure for setting the Pressure Reducing Va. [Setting 'E'] Gpm Required 328 Psi Required 59.24 Calculation At SRC C-Factor Used: Overhead 120 Summary Underground 140 Water Flow Test: Pump Data: Tank or Reservoir: W Date of Test - 9-19-2011 Cap. N/A Α Time of Test - 9:12 a.m. Rated Cap. 750 Elev. N/A т Е Static (Psi) - 60 @ Psi 113 Residual (Psi) - 55 Elev. 1'-9" Well R Flow (Gpm) - 914 Proof Flow Gpm N/A - 13'-0" S Elevation U Ρ Location: Static & Residual pressures taken from Hydratn # 63. Flow taken Ρ from Hydrant # 64 along N. Poly View Drive Source of Information: Fluid Resource Management {R. Ellison} L Y Note : Full Flow test was used in this Static Hyd. Calculation.

Page 1 Date 9-25-11 Water Supply Curve (C)

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [328 gpm] Page 2 Date 9-25-11

C2 - Residual Pressure C2 - Residual Flow Water Adjusted to Pump f - Elev - Hose Flow A1 - Adjusted Static: 0	: 55 P : 914 P o Inlet P	 Pump Churn Pressure Pump Rated Pressure Pump Rated Flow Pump Pressure @ Max F Pump Max Flow City Residual Flow @ 0 City Residual Flow @ 20 	: 0 = 3501.77 = 2812.57	Demand: D1 - Elevat D2 - Syster D2 - Syster Hose (Adj Hose (Der D3 - Syster Safety Mar	n Flow : n Pressure : 182.18 City) : nand) : 328 n Demand : 328
A2 - Adj Resid : 0 A3 - Adj Resid : 0	@ 0 @ 0 Pump fl	City Water @ 150% of Pu ow terminated at adjusted cu	imp = 60.00 rve 0 psi		
0					
6 D2					
8 D3					
4					
0 Al + P1					
2 A2 + P2					
A3 + P3					
	C2				
A2					
⁶ 20 1 400 600 A1	800 1000	1200 FLOW (N ^ 1.85)	1400 160	00 1	300

Fittings Used Summary

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [328 gpm]

Page 3 Date 9-25-11

	-																				
Fitting Le	egend																				
Abbrev.		1/2	3⁄4	1	1¼	1½	2	21⁄2	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
В	Generic Butterfly Valve	0	0	2.25	2	2.5	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
С	Generic Check VIv	4	5	5	7	9	11	14	16	19	22	27	32	45	55	65	76	87	98	109	130
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	1	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
1	90' Ell Grvd-Vic #10	0	0	2	3	4	3.5	6	5	8	7	8.5	10	13	17	20	23	25	33	36	40
Т	90' Flow Thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zic	Wilkens 350ADA	Fittir	ng gener	ates a Fi	xed Los	s Based	d on Flo	N													

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Pressure / Flow Summary - STANDARD

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [328 gpm]

	omatic Sprinkle Center for Scie	er Co. ence 1 st. flr. Rise	r [328 gpm]				Page Date	4 9-25-11
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
BR01	3.0		169.15	na	328.0			
SPC1	12.667		177.23	na				
SPC2	12.667		177.4	na				
PO	1.833		182.19	na				
PI	1.75		57.73	na				
POC	6.75		55.65	na				
BF1	13.0		53.01	na				
BF2	13.0		59.13	na				
SRC	13.0		59.25	na				

The maximum velocity is 19.3 and it occurs in the pipe between nodes BR01 and SPC1

Aero Automatic Sprinkler Co. Cal Poly Center for Science 1 st. flr. Riser [328 gpm]

		r Scienc	e 1 st. flr.	Riser [32	28 gpm]				Dat		1
Node1 to	Elev1	К	Qa	Nom	Fitting or	9	Pipe Ftng's	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqv.	Ln.	Total	Pf/Ft	Pf			
5504						40.474		400	100 151			
BR01	3	H328	328.00	2.5	2I 1T	16.474 16.474	14.333 32.948	120	169.154 -4.187			
to SPC1	12.667		328.0	2.635	11	0.0	32.948 47.281	0.2593	12.261	Vel = 19	.30	
SPC1	12.667		0.0	6	1T	30.0	7.917	120	177.228			
to						0.0	30.000		0.0			
SPC2	12.667		328.0	6.065		0.0	37.917	0.0045	0.169	Vel = 3.	64	
SPC2	12.667		0.0	8	11	13.0	14.750	120	177.397			
to					1B	12.0	70.000		4.692			
PO	1.833		328.0	7.981	1C	45.0	84.750	0.0012	0.100	Vel = 2.	10	
			0.0									
PO			328.00						182.189	K Factor	= 24.30	
	Demand	Pressur	е			182.189						
Safety I						0.0						
	ation Pre					182.189						
	re @ Pum re From P					182.189 -124.455						
	re @ Pum		ive			57.734						
PI	1.750		0.0	8	1G	4.0	14.000	120	57.734			
to	1.750		0.0	0	11	4.0 13.0	52.000	120	-2.166			
POC	6.750		328.0	7.981	1T	35.0	66.000	0.0012	0.078	Vel = 2.	10	
POC	6.750		0.0	8	2E	56.936	41.000	140	55.646		-	
to	0.700		0.0	U	26	0.0	56.936	110	-2.707			
BF1	13		328.0	8.27		0.0	97.936	0.0007	0.073	Vel = 1.	96	
BF1	13		0.0	8	1Zic	0.0	4.000	120	53.012			
to	-			-		0.0	0.0	-	6.110	* Fixed lo	oss = 6.11	
BF2	13		328.0	7.981		0.0	4.000	0.0012	0.005	Vel = 2.	10	
BF2	13		0.0	8	2E	56.936	46.000	140	59.127			
to					1G	6.326	118.616		0.0			
SRC	13		328.0	8.27	1T	55.354	164.616	0.0007	0.122	Vel = 1.	96	
			0.0									
SRC			328.00						59.249	K Factor	= 42.61	

Page 5

Appendix D - Sprinkler System Drawings

SHOP DRAWINGS **SUBMITTAL**

SECTION:

DIVISION 21 – FIRE SUPPRESSION

21 0500 ; 21 1200 ; 21 1300 ; 21 3000

PROJECT:

CAL POLY CENTER FOR SCIENCE 1 GRAND AVE., BUILDING #70 SAN LUIS OBISPO, CA 93407

FOR THE:

GILBANE BUILDING COMPANY 1 GRAND AVE., BUILDING #70 SAN LUIS OBISPO, CA 93407

AS PRESENTED BY:

Aero Automatic Sprinkler Company

21605 North Central Ave.

Phoenix, AZ 85024

623-580-7800 623-434-3420 (fax)

This submittal has been reviewed by Aero Automatic Sprinkler Co. and approved with respect to the means, methods, techniques, sequences, and procedures of construction, and safety precautions and programs incidental thereto. Aero Automatic Sprinkler Co. also warrants that this submittal complies with the Contract Documents and comprises no variation to.

Neal Larsen Bv:

Date: 9-29-2011

Gilbane

Cal Poly Center for Science Gilbane Project #: 174338010

REVIEWED

Building Name/#:	
Bid Package No:	21A
Submittal No:	003
Spec. Section:	21 05 00
Reviewed By:	Scott Gurley
Date:	10/3/11

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions

Gilbane

Cal Poly Center for Science Gilbane Project #: 174338010

REVIEWED

Building Name/#:	
Bid Package No:	21A
Submittal No:	002
Spec. Section:	21 12 00
Reviewed By:	Scott Gurley
Date:	10/3/11

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions.

Gilbane

Cal Poly Center for Science Gilbane Project #: 174338010

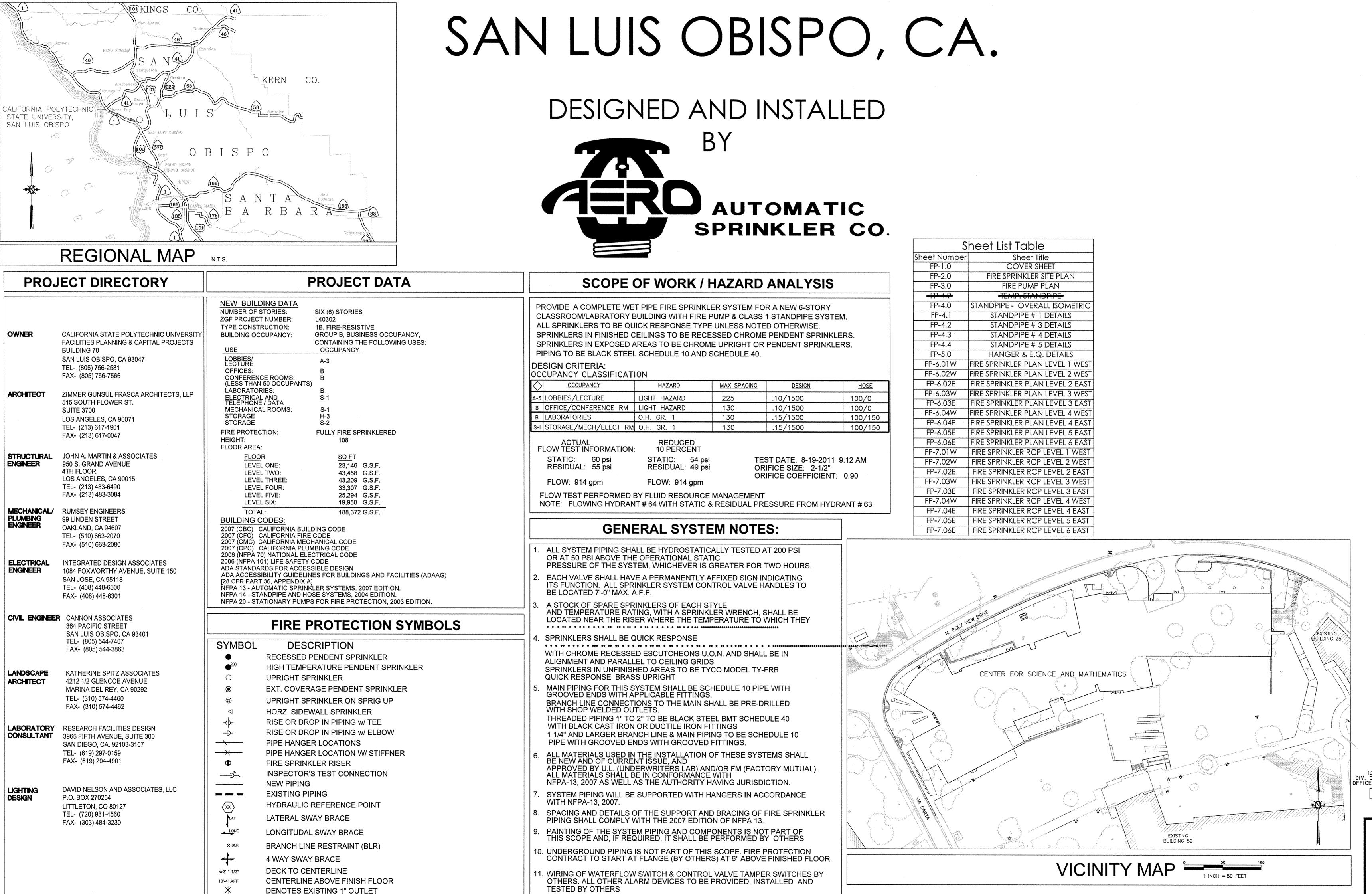
REVIEWED

Building Name/#:	
Bid Package No:	21A
Submittal No:	002
Spec. Section:	21 13 00
Reviewed By:	Scott Gurley
Date:	10/3/11

This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions.

Gilbane

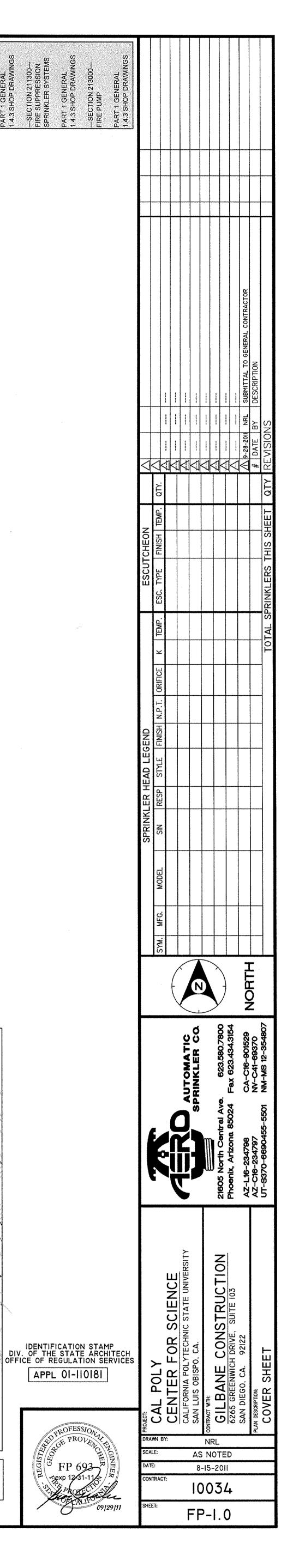
Cal Poly Center for Science Gilbane Project #: 174338010

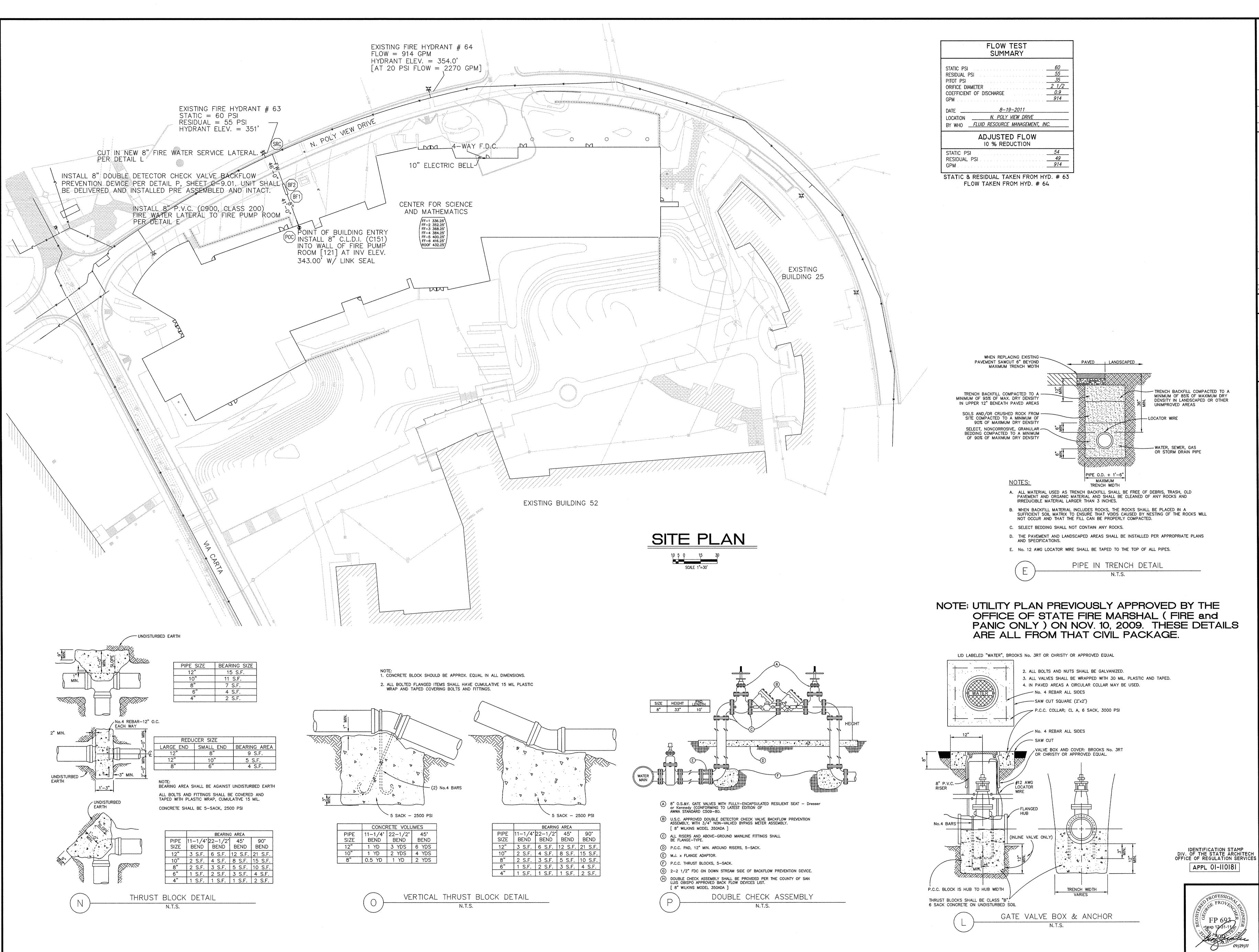

REVIEWED

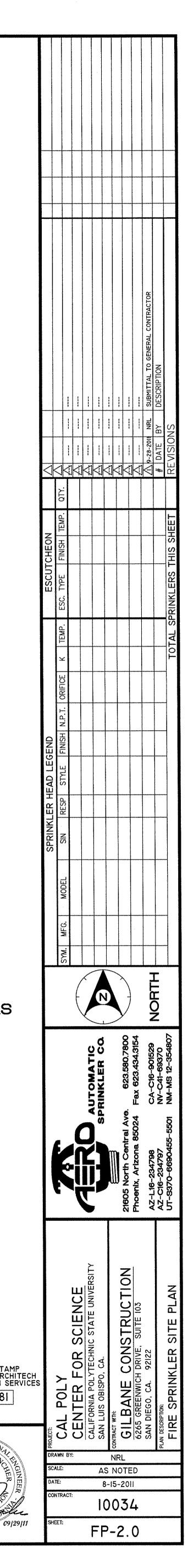
Building Name/#:	
Bid Package No:	21A
Submittal No:	002
Spec. Section:	21 30 00
Reviewed By:	Scott Gurley
Date:	10/3/11

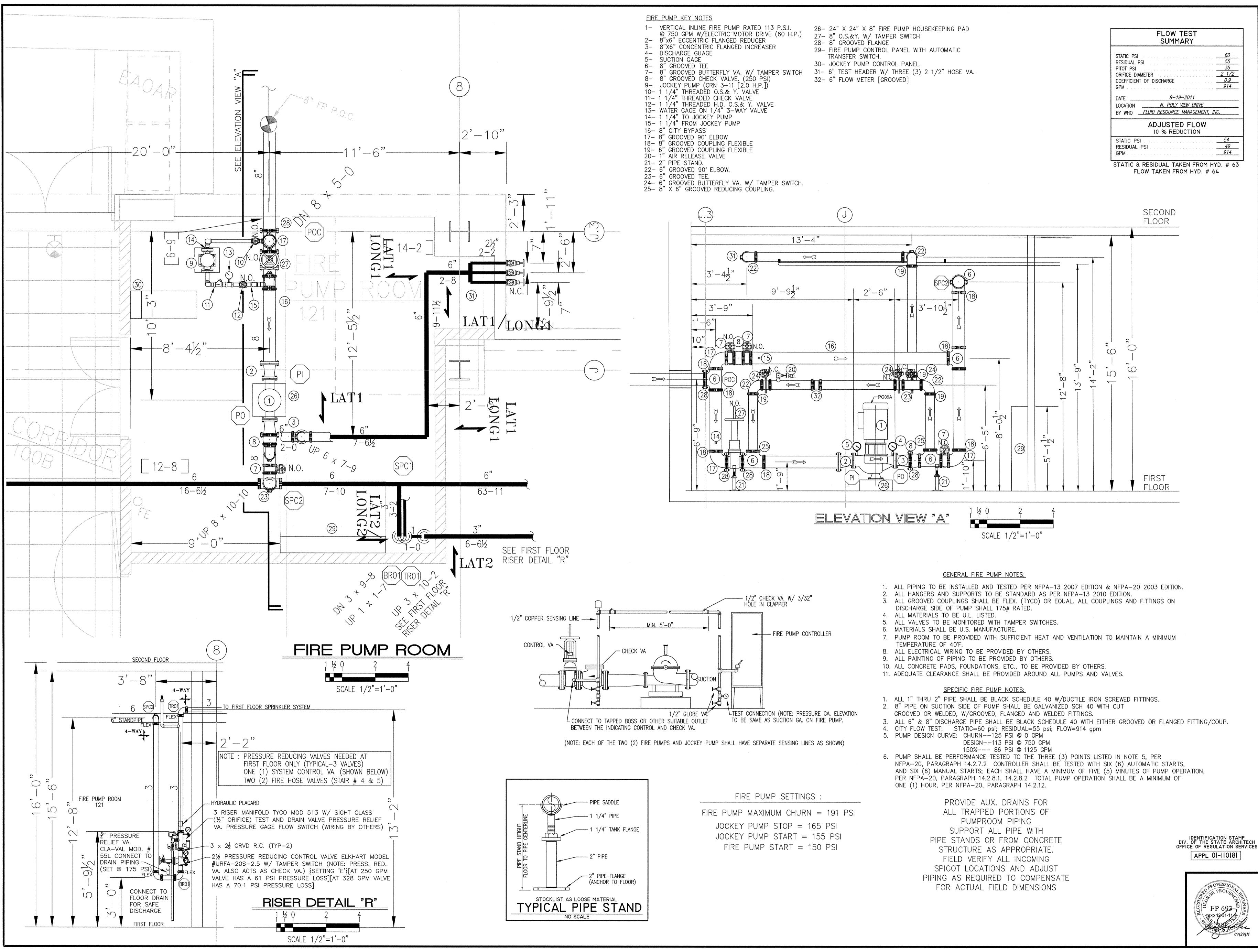
This review does not constitute nor does it assume design responsibility nor does it relieve the trade contractor/supplier from complying with the contract requirements, coordinating their work with other trade contractors and verifying field dimensions.

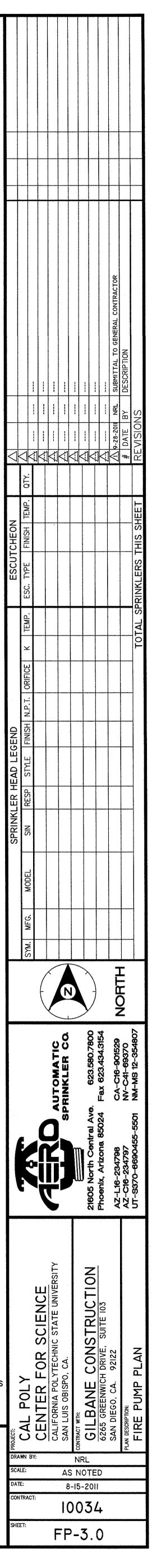
This page intentionally left blank.

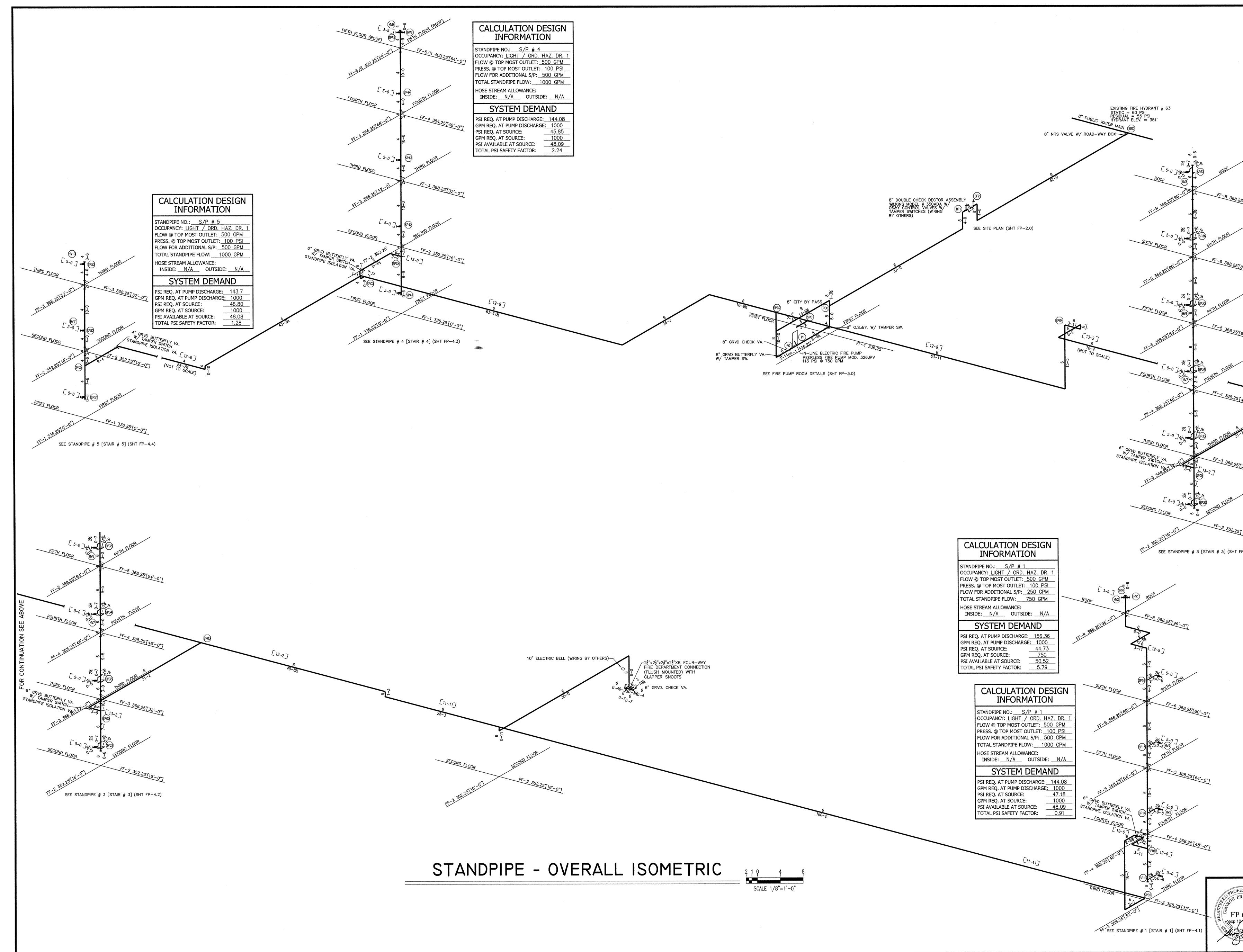

CAL POLY CENTER FOR SCIENCE CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA.

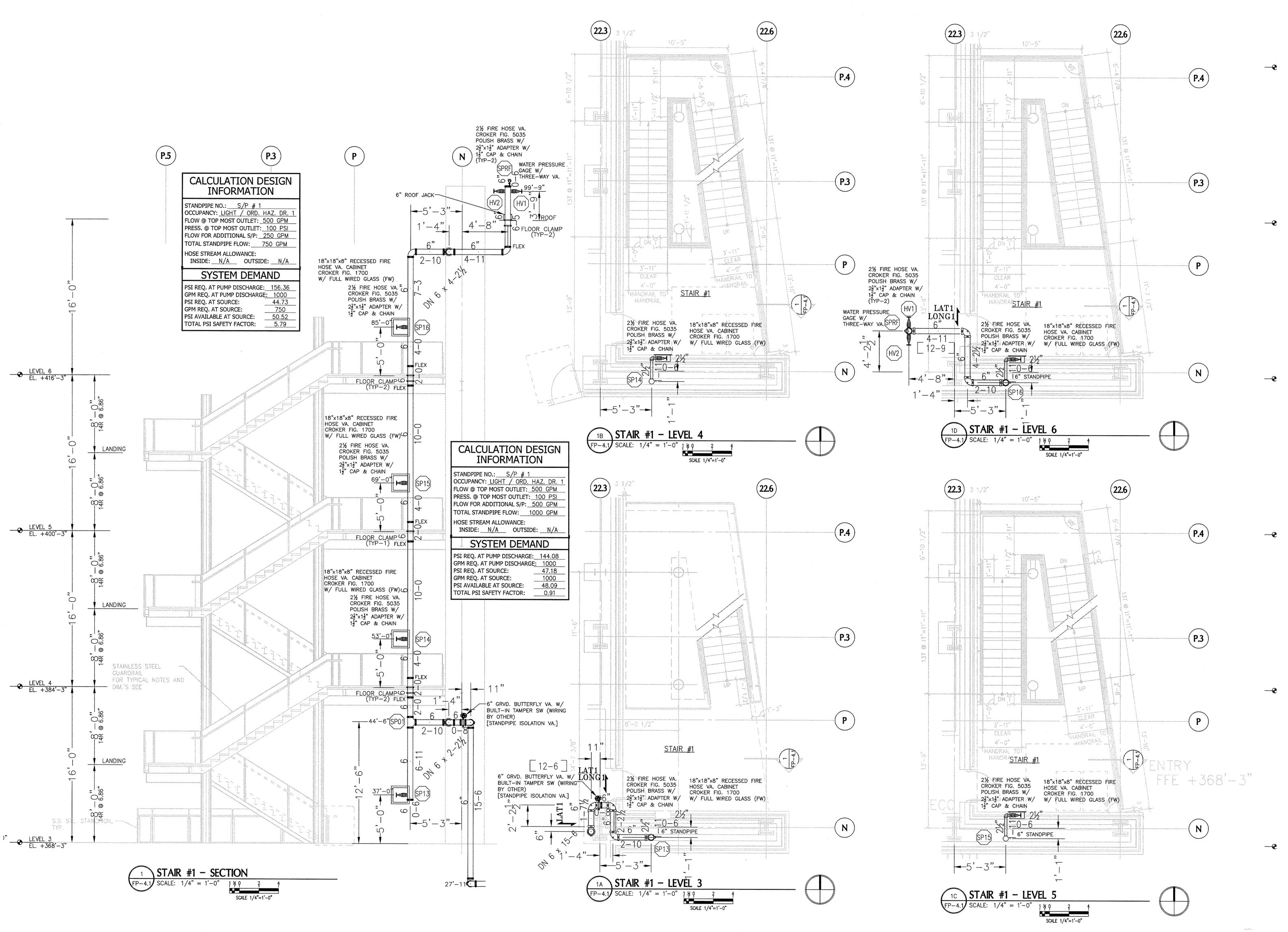


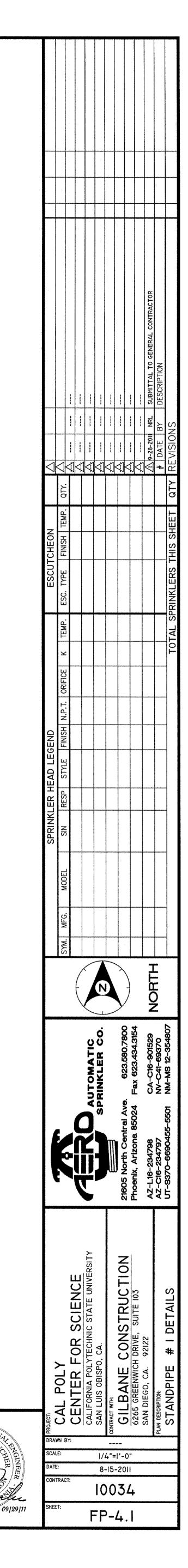

DESIGNED	AND	INSTALLED
----------	-----	-----------

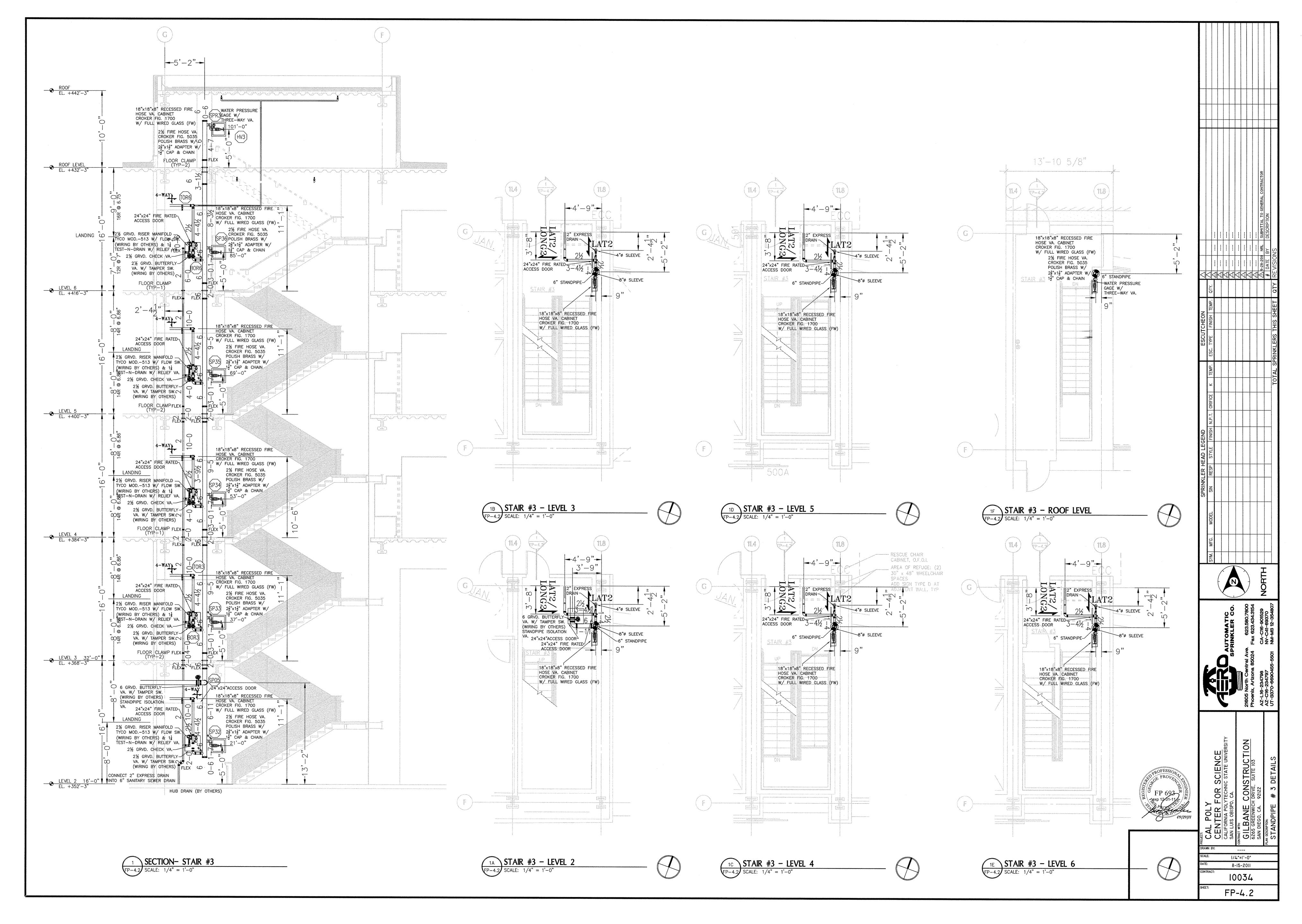

TESTED BY OTHERS

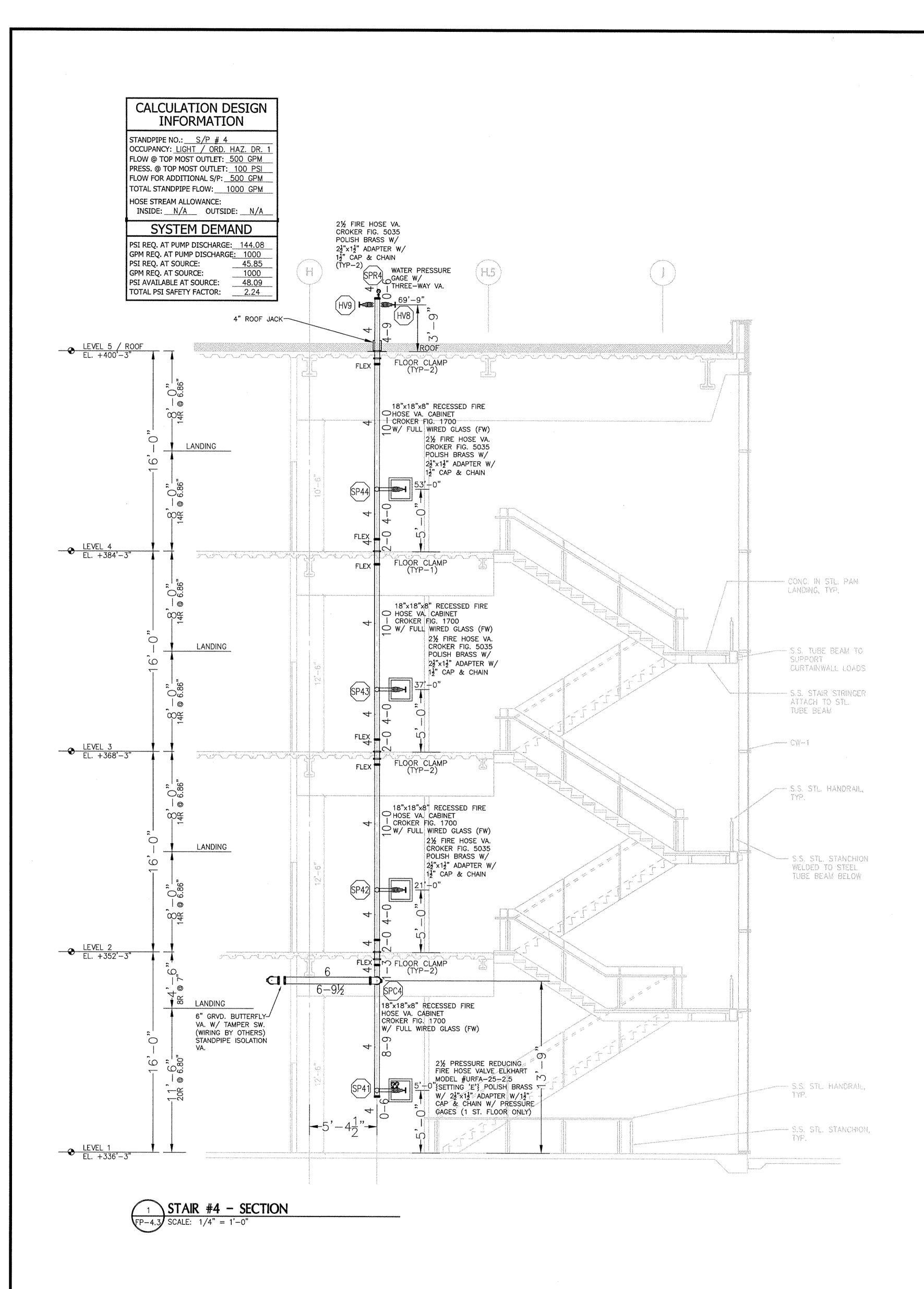

S	heet List Table
Sheet Number	Sheet Title
FP-1.0	COVER SHEET
FP-2.0	FIRE SPRINKLER SITE PLAN
FP-3.0	FIRE PUMP PLAN
-FP-4.9	-TEMP: STANDPIPE-
FP-4.0	STANDPIPE - OVERALL ISOMETRIC
FP-4.1	STANDPIPE # 1 DETAILS
FP-4.2	STANDPIPE # 3 DETAILS
FP-4.3	STANDPIPE # 4 DETAILS
FP-4.4	STANDPIPE # 5 DETAILS
FP-5.0	HANGER & E.Q. DETAILS
FP-6.01W	FIRE SPRINKLER PLAN LEVEL 1 WEST
FP-6.02W	FIRE SPRINKLER PLAN LEVEL 2 WEST
FP-6.02E	FIRE SPRINKLER PLAN LEVEL 2 EAST
FP-6.03W	FIRE SPRINKLER PLAN LEVEL 3 WEST
FP-6.03E	FIRE SPRINKLER PLAN LEVEL 3 EAST
FP-6.04W	FIRE SPRINKLER PLAN LEVEL 4 WEST
FP-6.04E	FIRE SPRINKLER PLAN LEVEL 4 EAST
FP-6.05E	FIRE SPRINKLER PLAN LEVEL 5 EAST
FP-6.06E	FIRE SPRINKLER PLAN LEVEL 6 EAST
FP-7.01W	FIRE SPRINKLER RCP LEVEL 1 WEST
FP-7.02W	FIRE SPRINKLER RCP LEVEL 2 WEST
FP-7.02E	FIRE SPRINKLER RCP LEVEL 2 EAST
FP-7.03W	FIRE SPRINKLER RCP LEVEL 3 WEST
FP-7.03E	FIRE SPRINKLER RCP LEVEL 3 EAST
FP-7.04W	FIRE SPRINKLER RCP LEVEL 4 WEST
FP-7.04E	FIRE SPRINKLER RCP LEVEL 4 EAST
FP-7.05E	FIRE SPRINKLER RCP LEVEL 5 EAST
FP-7.06E	FIRE SPRINKLER RCP LEVEL 6 EAST

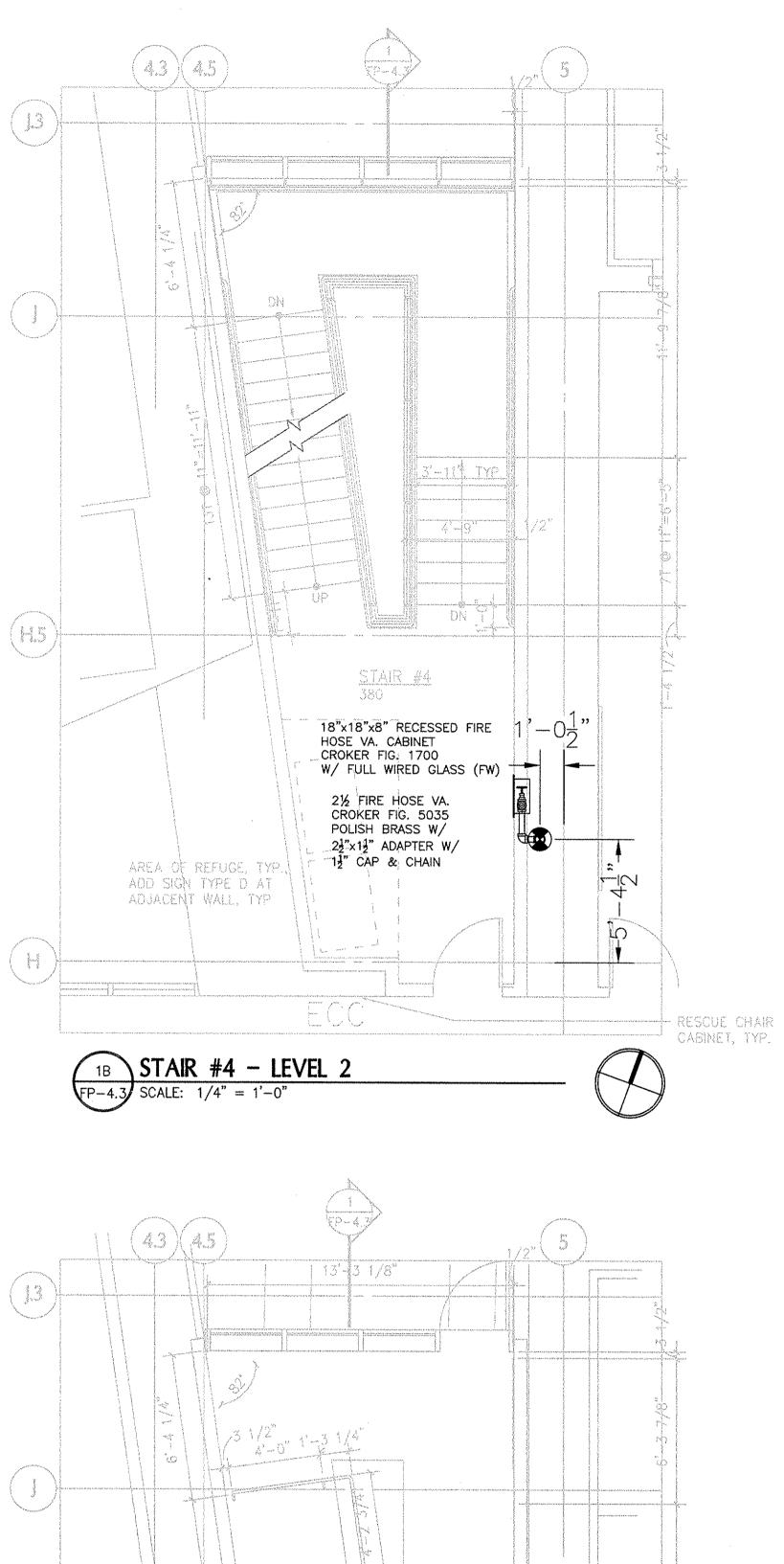


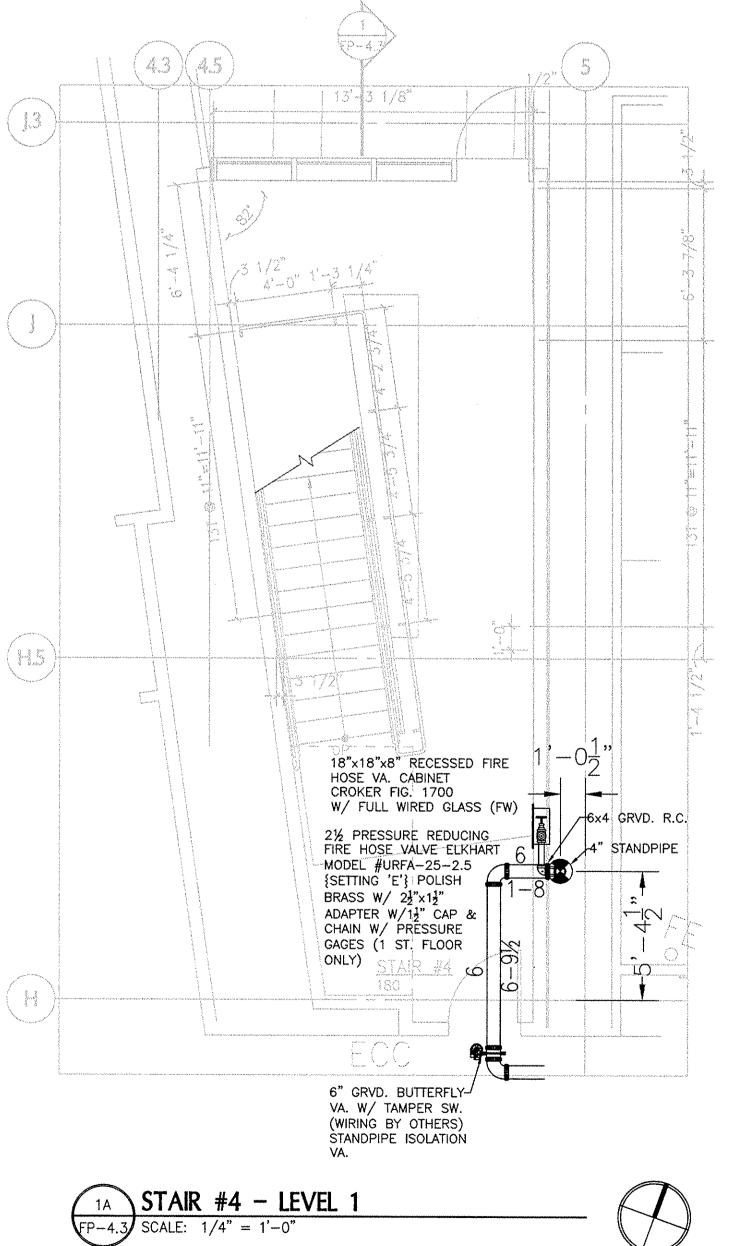


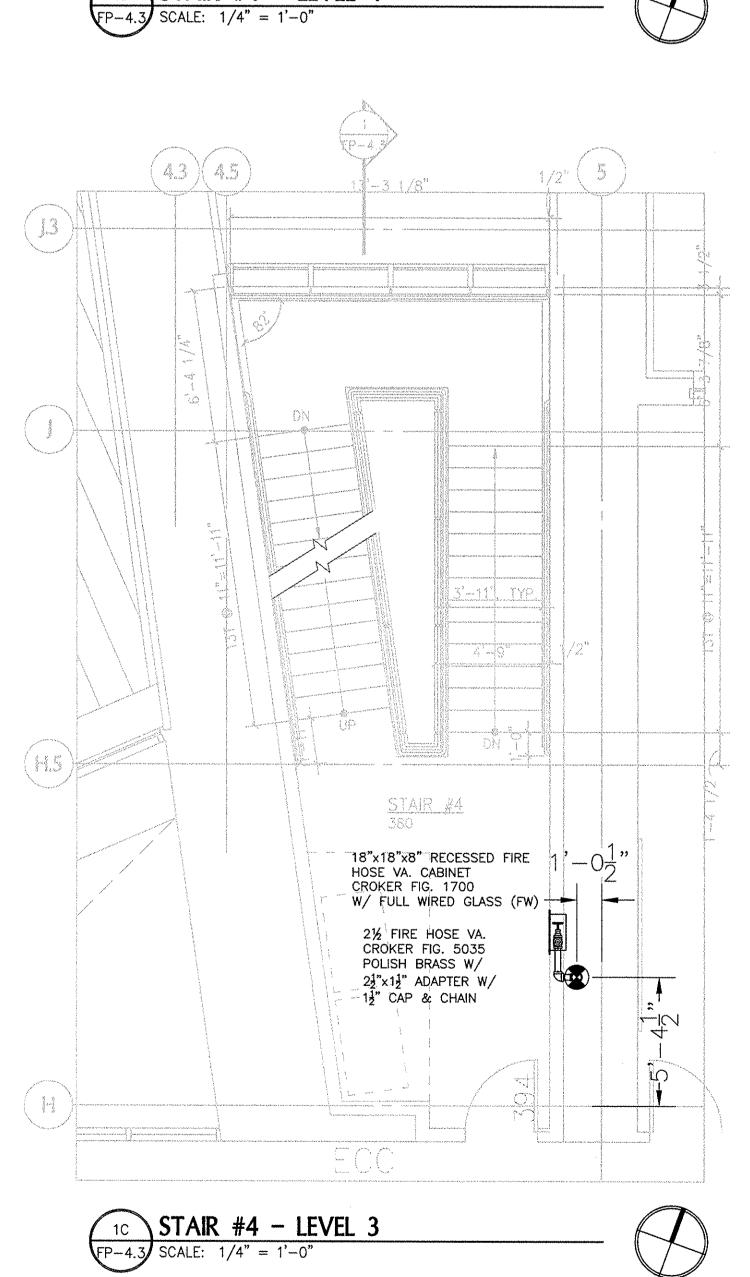


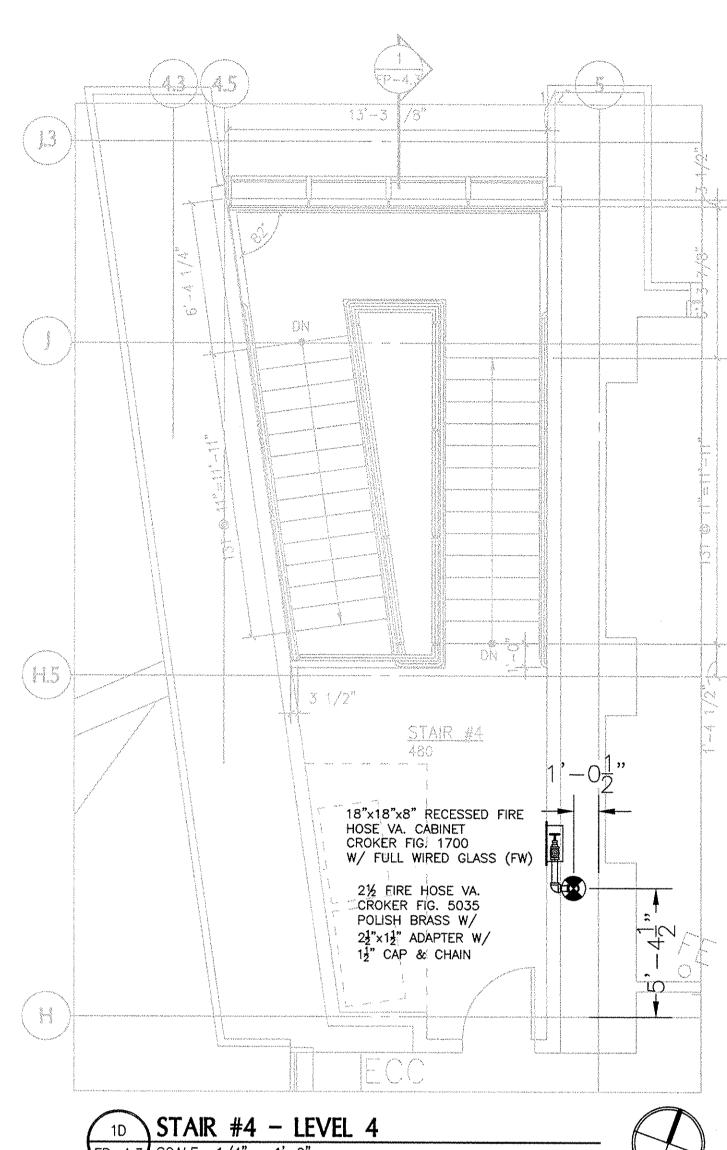


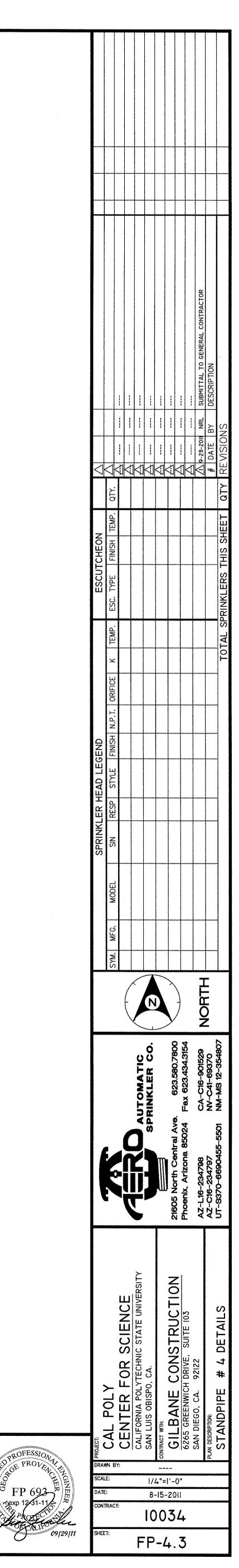

ALIF 09/29/11	PROVENCIE PROVENCIE PROVENCIE P 693			T FP-4.2)	25'[16'-0"]	25/[32'-0"]	6	25'[48'-0"]	FOR CONTIN	FOR CONTINUATION SEE BELOW		5'[80'-0"]	8.25796'-0"]				
SHE	DR/ DR/ SC/ DA				SPRIN	SPRINKLER HEAD LEGEND	EGEND		Ш́	ESCUTCHEON							
				SYM. MFG. MC	MODEL SIN	RESP STYLE	FINISH	N.P.T. ORIFICE K	TEMP. ESC. TYPE	YPE FINISH TEMP.	MP. QTY. 🕂						
1.	¥:		(X	3					
											$\overline{\Delta}$						
I FI	[SPRINKLER CO.									$\overline{\mathbb{A}}$	1 3 3 1 1 1 1	L				
0	1/8 8-1										$\overline{\nabla}$		1				
	8 "= 5-2										\forall						
	201	ń									\forall						
	**	Phoenix, Arizona 85024 Fax 623.434.3154									\leq						
	SAN DIEGO, CA. 92122	A7-116-034708 CA-C16-901529									\bigtriangledown	∆ 9-28-2011 NRL 5	SUBMITTAL TO GENERAL CONTRACTOR	. CONTRACTOR		 	
	pi an infectoriphical	NV-C41-69370									#	DATE BY	DESCRIP TION				
	STANDPIPE - OVERALL ISOMETRIC	UT-S370-6690455-5501 NM-MS 12-354807				-		TOT	TAL SPRINKLE	TOTAL SPRINKLERS THIS SHEET	ļ	QTY REVISIONS					

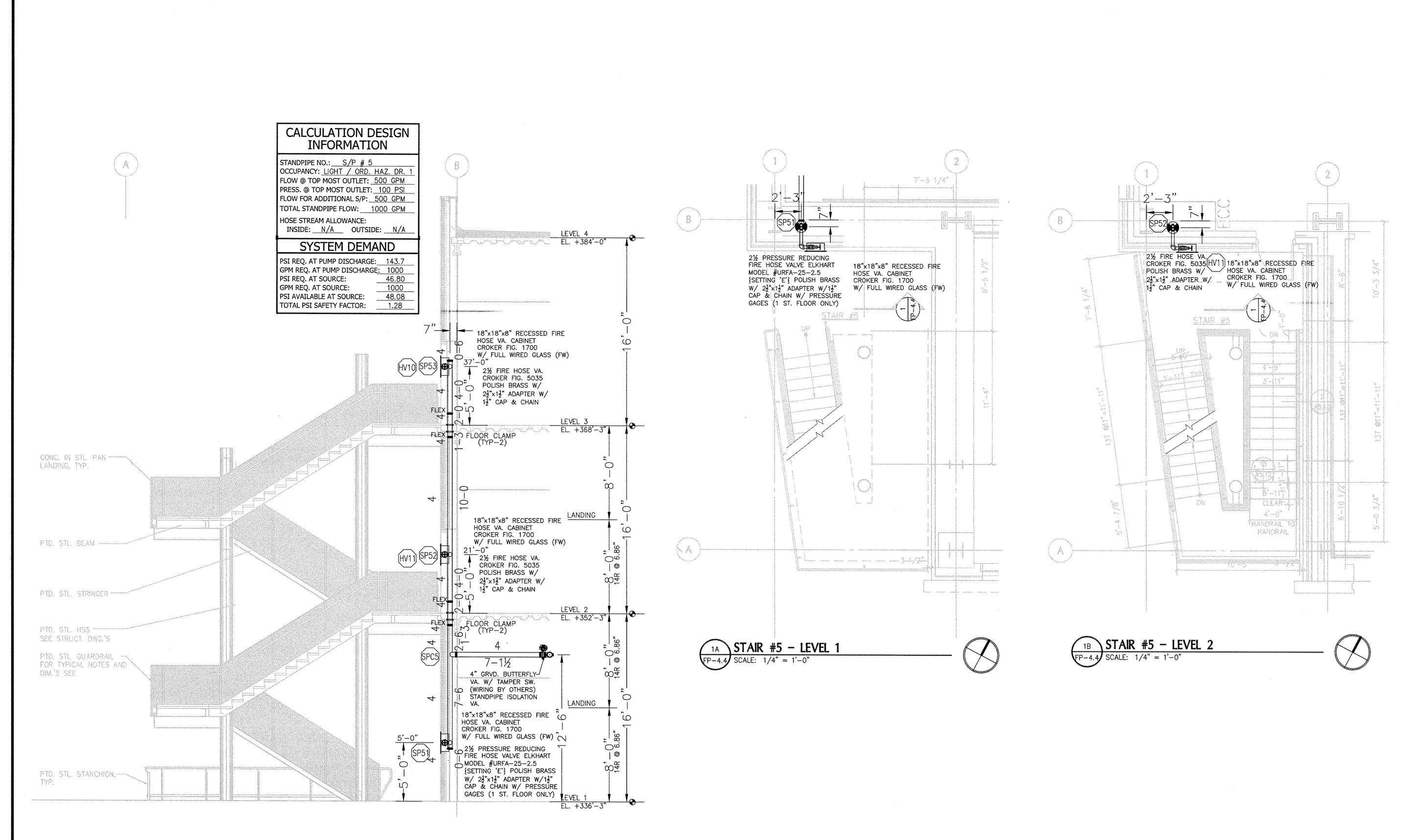


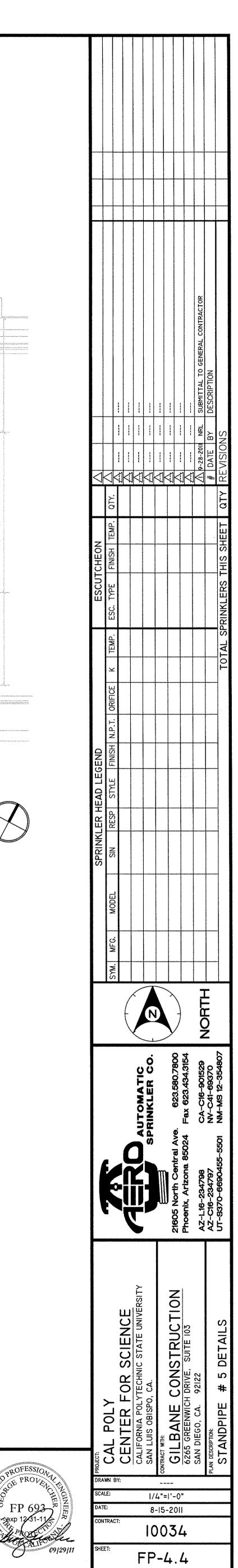


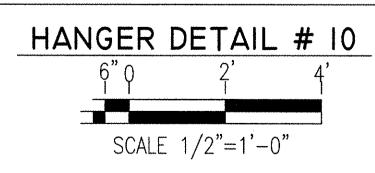


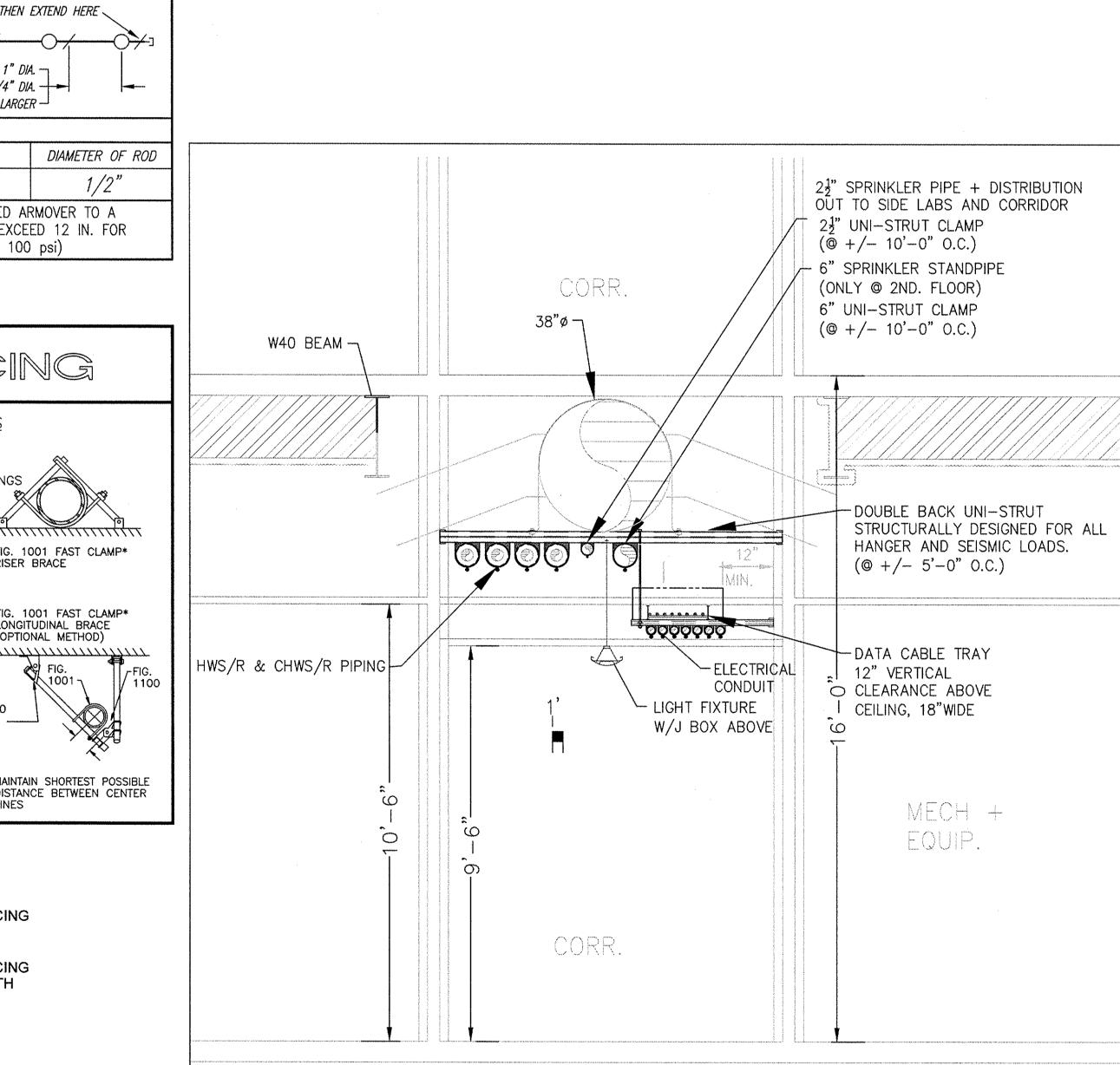


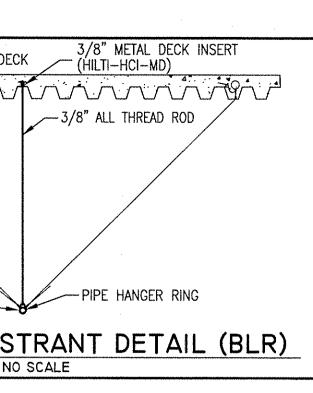




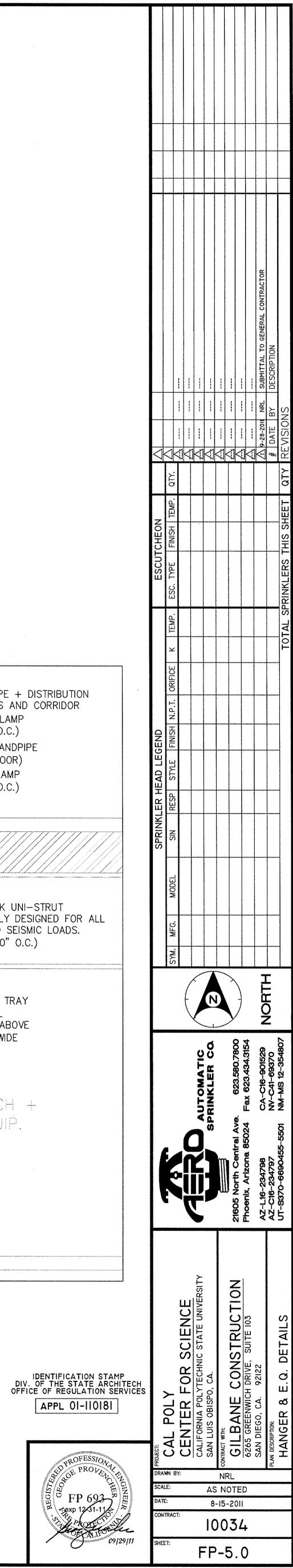


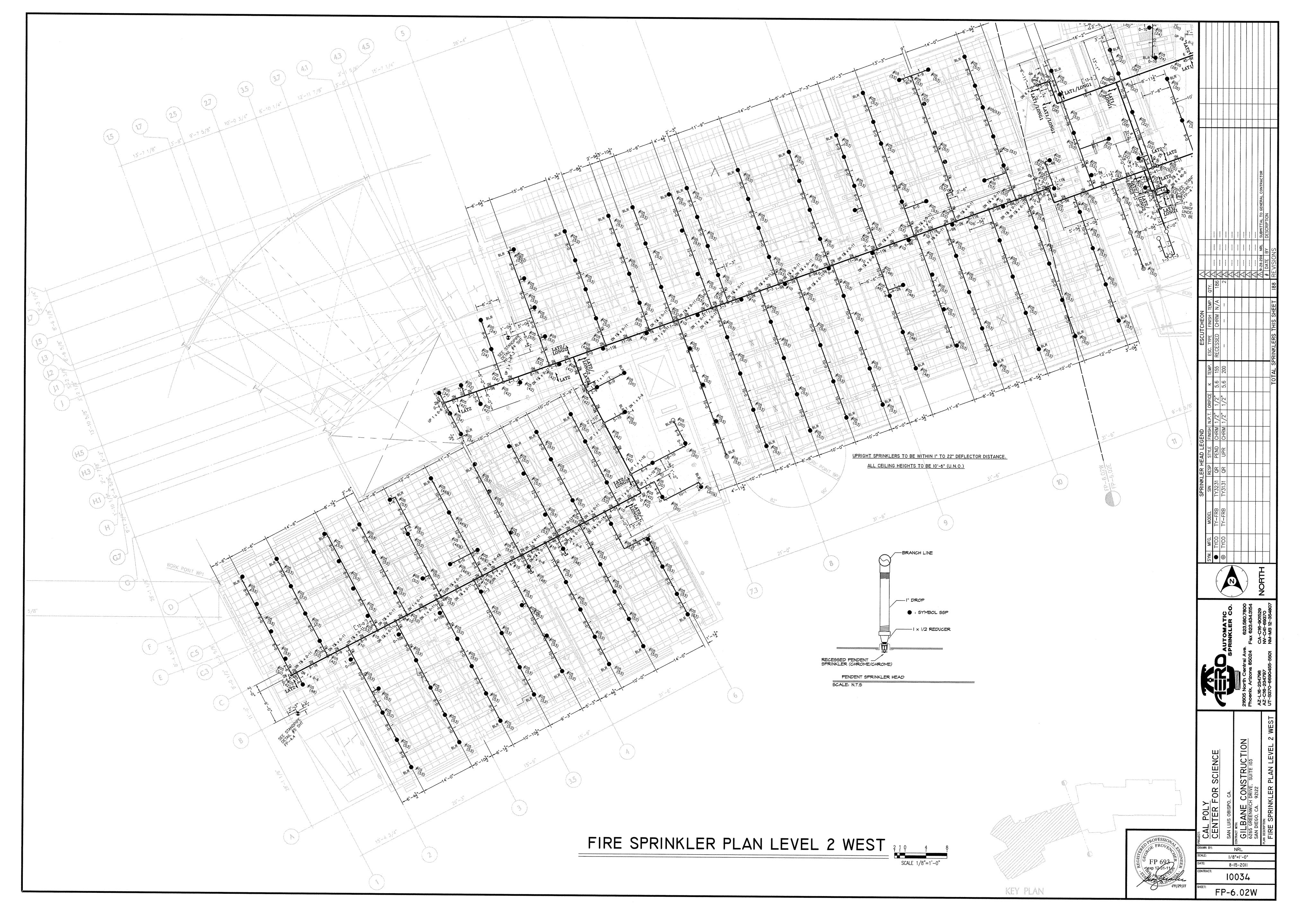

-(8) 21/2 FIRE HOSE VA. CROKER FIG. 5035 HV1018"x18"x8" RECESSED FIRE POLISH BRASS W/ LOSE VA. CABINET 21"x11" ADAPTER W/ CROKER FIG. 1700 W/ FULL WIRED GLASS (FW) STAIR 3 1 DUEAR 4'-0" HANDRAIL \bigcirc Leven between the state of the state of the (1c) STAIR #5 - LEVEL 3FP-4.4 SCALE: <math>1/4" = 1'-0"

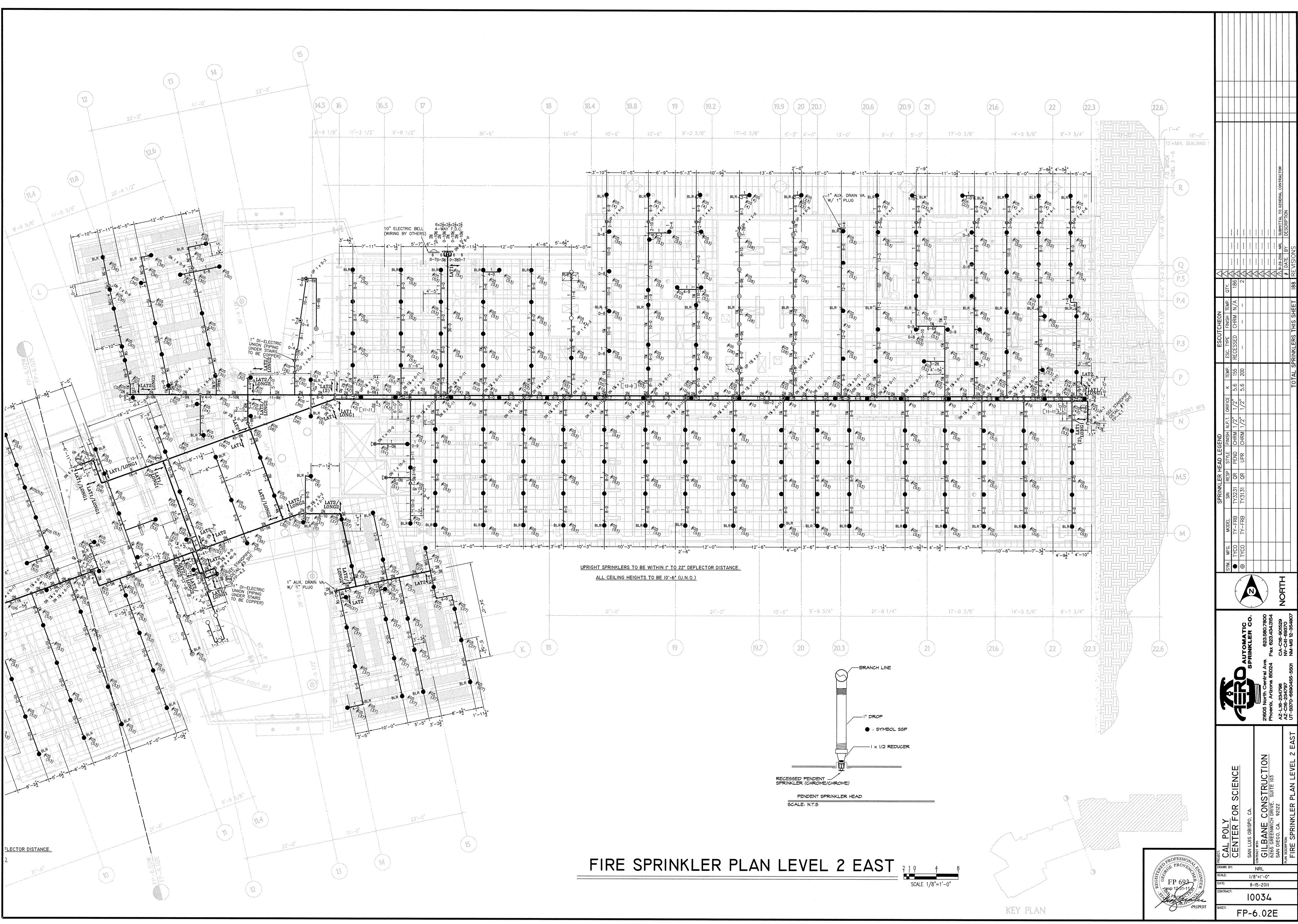


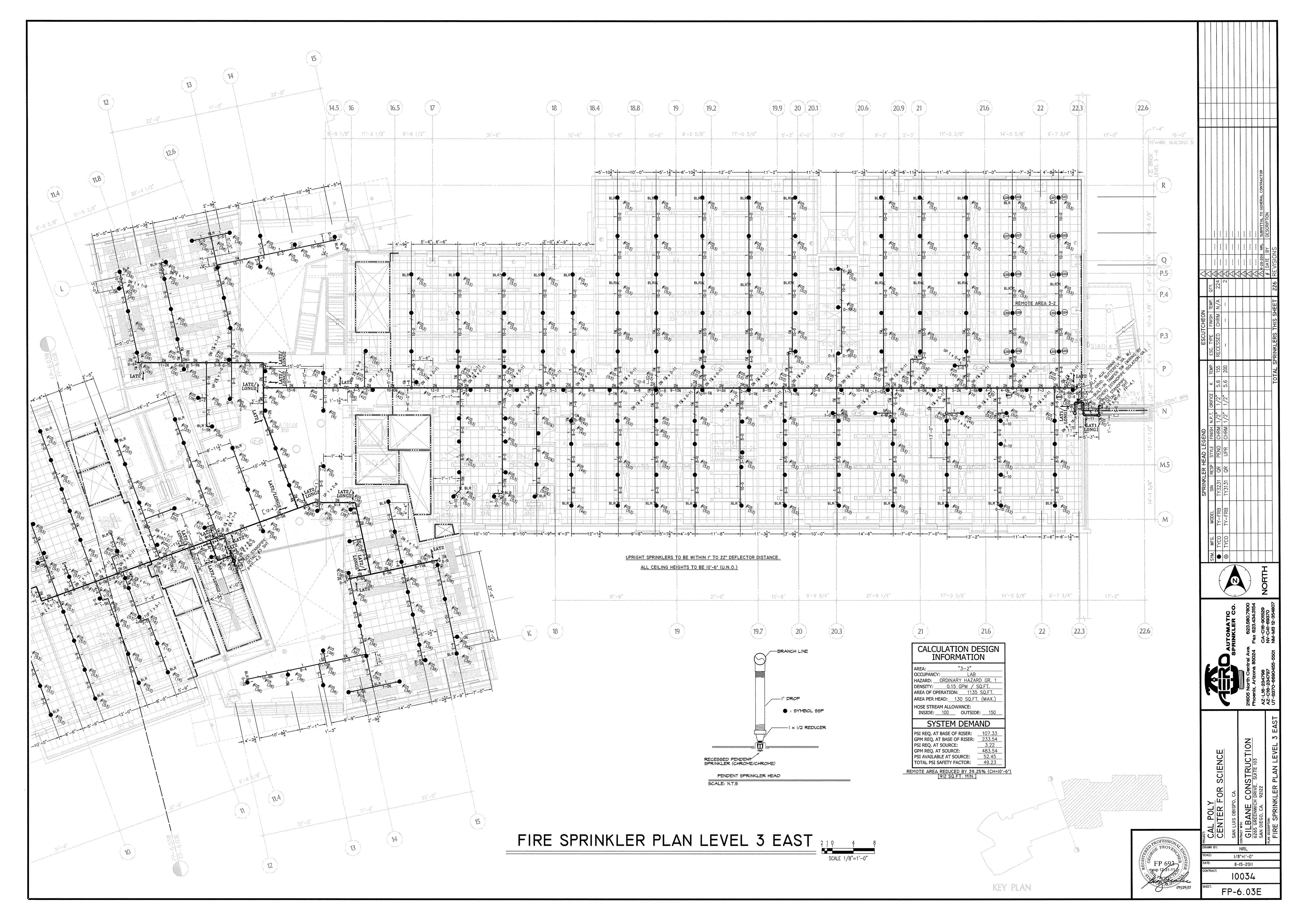


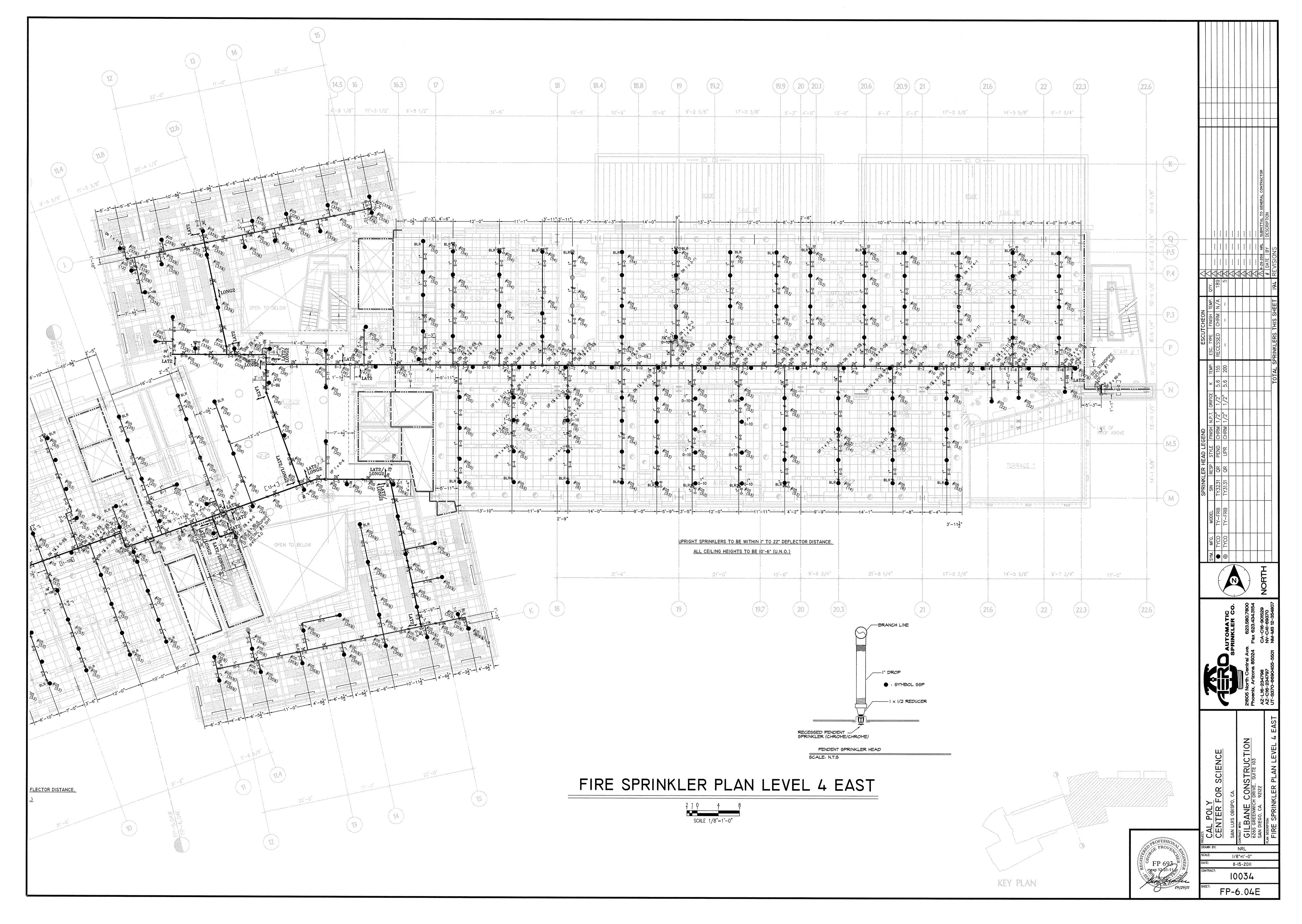
HILTI HCI-MD CONCRETE INSERT	Image: Stop Anchor Image: Stop Anchor Image: Stop An	NO. 12 WIRE OR RESTRAINT CABLE (RED) W/ 2" LOOP & 4" PIG TAIL POURED INTO 6" CONC. DECK (TYPICAL-2) BRANCH LINE PIPE HANGER RING
Tol-Brace Seismic Calculations Project Address: Calculations Project Address: Calculations Call on the Polynachnic State University Calculations San Luis Objeps, Ca. Calculations San Luis Objeps, Ca. Calculations based on 2007 MPIA Pampipie #32 Tole Offormation Tole Offormation Maximum Spacing 40 °C (2219 m) Brace Information Tole Ocomponent Fig. Number Adjusted Load Maximum Spacing 40 °C (2219 m) Bracing Material 1 °Coo Component Fig. Number Adjusted Load Maximum Date 2027 BP/ Coo Component Fig. Number Adjusted Load Bracing Material 1 °Coo Component Fig. Number Adjusted Load Maximum Date 200 °C (2219 m) Force Factor (Cp) 0.61 Fastener Information Toco Office Factor Fastener Orientation NPPA Type A Type HET-TZ Diameter J2 M	Tol-Brace Seismic Calculations Project Address: fail Pety Center for Science. Colfornia Polynachnic Sante University Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10037 Catalog N. Centeral Ave. Dob # 10034 Catalog N. Centeral Ave. Dob # 10037 Centeral	SPRINKLER PIPE HANGER SPACING N.F.P.A. 15, 2007 EDITIONTABLE 9.2.2.1 MAXIMUM DISTANCE BETWEEN HANGERS (FT-IN.)NOMINUL PIPE SIZE $34"$ 1" $11/4"$ $11/2"$ $2"$ $21/2"$ $3''_{24}$ 6"8"STEEL PIPE IHREADED UPREADED LIGHTMALLN/A $12-0$ $12-0$ $15-0$ $15-0$ $15-0$ $15-0$ $15-0$ $15-0$ CPPC C 5-6 $5-6$ $6-6$ $7-0$ $8-0$ $9-0$ N/A N/A FIGURE A-9.2.3.4 DISTANCE FROM SPRINKLER TO HANGER $12"$ MAX. FOR 1" DA. (100 ps) $12"$ MAX. FOR 1" DA. (100 ps) $12"$ MAX. FOR 1" DA. (100 ps) $12"$ MAX. FOR 1 1/2" DA. OR LARGERFIGURE A-9.2.3.4 DISTANCE FROM SPRINKLER TO HANGER $12"$ MAX. FOR 1 1/2" DA. OR LARGER $12"$ MAX. FOR 1 1/2" DA. OR LARGERFIGURE A-9.2.3.4 DISTANCE FROM SPRINKLER TO HANGERTABLE 9.1.2.1 HANGER ROD SIZEPIPE SIZEDIAMETER OF RODUP TO AND UP TO AND $3/8"$ 6" AND 8" $1/2"$ THE CUMULATIVE HORIZONTAL LENGTH OF AN UNSUPPORTED ARMOVER TO A SPRINKLER, SPRINKLER DROP, OR SPRIO-UP SHALL NOT EXCEED 12 IN. FOR STEEL OR 6 IN. FOR COPPER TUBE. (PRESSURE EXCEEDS 100 psi)
Percentage added for Fittings and Sprinklers 15% 116 lbs (52.62 kg) Total Adjusted Load of all pipe within Zone of Influence 889 lbs (403 kg) (ToF-Brace Version 7) (402 kg) Total Adjusted Load of all pipe within Zone of Influence Influence (ToF-Brace Version 7) Total Adjusted Load of all pipe within Zone of Influence Influence Influence Influence Influence Influence Call Poly Center for Science California Polytechnic State University California Polytechnic State University California Polytechnic State University California Polytechnic State University Calculations based on 2007 NFPA Pamphiler #13 Tolco Brace Components Tolco Component Fig. Number Maximum Spacing 25 0° (10.67 m) Tolco Component Fig. Number Adjusted Load Fig.1001 Clamp 1007 lbs (457 kg) 1027 lbs (457 kg) 1027 lbs (457 kg)	Percentisge added for Fittings and Sprinklers. 15% 130 lbs (58.97 kg) Total Adjusted Load of all pipe within Zone of Influence 1000 lbs (454 kg) (Tol-Brace Seismic Calculations Image: Total Adjusted Load of all pipe within Zone of Influence 1000 lbs (454 kg) (Tol-Brace Version 7) Total Adjusted Load of all pipe within Zone of Influence Total Adjusted Load of all pipe within Zone of Influence Total Adjusted Load of all pipe within Zone of Influence Total Adjusted Load of all pipe within Zone of Influence Total Adjusted Load of all pipe within Zone of Influence Total Adjusted Load of all pipe within Zone of Influence Total Adjusted Load California Polycechnic Science California Polycechnic State University California Polycechnic State University California Polycechnic State University San Luis Obispo, Ca. Calculations based on 2007 WFPA Pamphlet #13 Brace Information Tolco Component Fig. Number Maximum Brace Length 7' 0' (2.14 m) Tolco Component Fig. Number Adjusted Load Maximum Brace Length 7' 0' (2.14 m)	SWAY BRACEING FIG. 980 TYPICAL FIG. 1001 FAST CLAMPS* UNDERWRITERS LABORATORIES LISTED MUST BE USE WITH TOLCO U.L. LISTED ATTACHMENTS. FIG. 980 SWIVEL FITTINGS FIG. 1001 FAST CLAMP* INDERWRITERS LABORATORIES LISTED MUST BE USE WITH TOLCO U.L. LISTED ATTACHMENTS. FIG. 980 SWIVEL FITTINGS FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* IST 100 FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LONGITUDINAL BRACE FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* FIG.
Bracing Material 1" Sch.40 Fig.980 Universal Swivel 1382 lbs (627 kg) Angle from Vertical 30° Min. "Calculation Based on CONCENTRIC Loading Least Rad. of Gyration 0.421" (11 mm) "Calculation Based on CONCENTRIC Loading L/R Value 200 "Calculations are for Tobic components only. Use of any other components wids these calculations and the listing of the assembly." Max Horizontal Load 1227 lbs (557 kg) Force Factor (Cp) Assembly Detail Force Factor (Cp) 0.61 TOLCO FIG. 980-UNIVERSAL SWAY BRACE TOLCO FIG. 980-UNIVERSAL SWAY BRACE Fastener Orientation NFPA Type A TOLCO FIG. 1001-FAST CLAMP STEEL PIPE Diameter 1/2 TOLCO FIG. 1001-FAST CLAMP TOLCO FIG. 1001-FAST CLAMP Length 33/4 Brace Identification on Plans LAT.2 Orientation of Brace Braced Pipe: 3" Sch.10 Steel Pipe Load Information Load Information	Bracing Material 1" Sch.40 Angle from Vertical 30° Min. Least Rad. of Gyration 0.421" (11 mm) LR Value 200 Max Horizontal Load 1227. bs (557 kg) Force Factor (Cp) 0.61 TOLCO FIG. 980 Force Factor (Cp) Diameter 1/2 Length 3.3/4 Maximum Load 1412 bs (640 kg) Braced Pipe: 3" Sch.10 Steel Pipe Load Information	HEX NUTS UNTIL LEAF SPRING DISTANCE BETWEEN CENTER INTEL NUTS UNTIL LEAF SPRING INTEL DEL NUTS INTEL LEAF SPRING DISTANCE BETWEEN CENTER INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING DISTANCE BETWEEN CENTER INTEL LEAF SPRING INTEL LEAF SPRINKLER SWAY BRACING OF SPRINKLER SYSTEM 6" MAINS WAY BRACING OF SPRINKLER SYSTEM 6" MAINS. MAX SPACING 45'-0". INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING PARACING INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRI
Size and Type of PipeTotal LengthTotal Calculated Load3" Sch 10 Steel Pipe (76.2 mm)35ft (10.7 m)170 lbs (77 kg)1.5" Sch 40 Steel Pipe (38.1 mm)10ft (3 m)22 lbs (10 kg)1.25" Sch 40 Steel Pipe (31.75 mm)31ft (9.4 m)55 lbs (25 kg)1" Sch 40 Steel Pipe (25.4 mm)140ft (42.7 m)175 lbs (79 kg)Percentage added for Fittings and Sprinklers15%63 lbs (28.58 kg)Total Adjusted Load of all pipe within Zone of Influence485 lbs (220 kg)	Size and Type of Pipe Total Length Total Calculated Load 3" Soh 10 Steel Pipe (76.2 mm) 80ft (24.4 m) 387 lbs (176 kg) Percentage added for Fittings and Sprinklers 15%. 58 lbs (26.31 kg) Total Adjusted Load of all pipe within Zone of Influence 446 lbs (202 kg) {Tol-Brace Version 7} 15%. 58 lbs (26.31 kg)	SEISMIC DESIGN CATEGORY D SEISMIC IMP. FACTOR 1.0 SITE SOIL PROFILE TYPE B SPECTRAL RESPONSE ACCELERATIONS: Ss = 1.26* S1 = 0.481* SEISMIC COEFFICIENT: Cp = 0.61** *Ss & S1 VALUES TAKEN FROM STRUCTURAL DRAWING S 1.01 - DATED 10-23-2009 ** VALUE INTERPOLATED FROM TABLE 9.3.5.6.2 OF N.F.P.A.

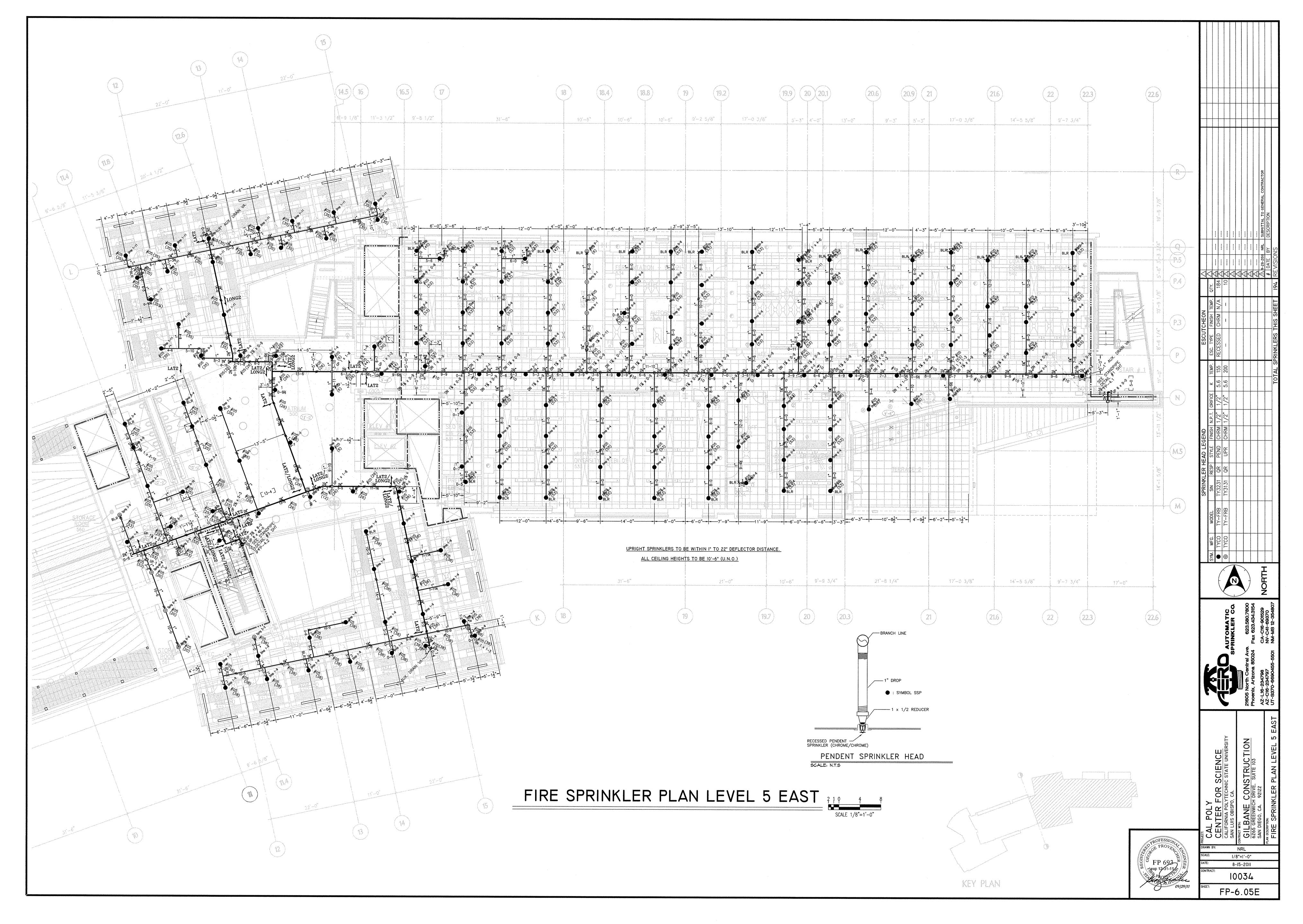

WEIGHT OF WATER FILLED PIPE [LB./FT.]												
		NOMINAL SIZE	1"	1 1⁄4"	1 1/2"	2"	2 1/2"	3"	4"	6"	8"	
THREADED OR GROOVED PIPE	SCHEDULE 40	I.D.	2.05	2.93	3.61	5.13	7.89	10.82	16.40	31.69	47.70	
GROOVED PIPE	SCHEDULE 10	I.D.	NOT USED	NOT USED	NOT USED	4.22	5.89	7.94	11.78	23.03	40.08	

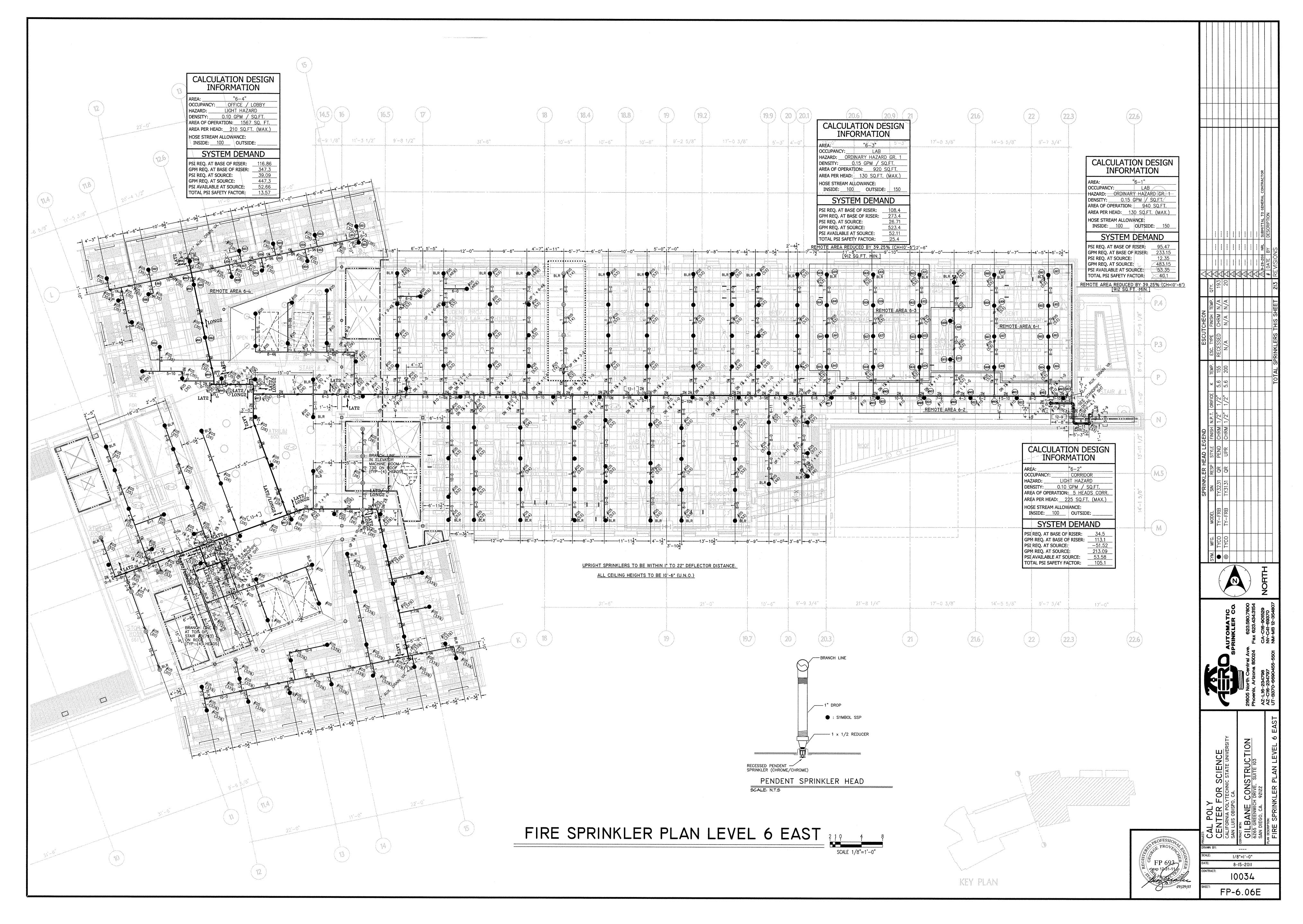




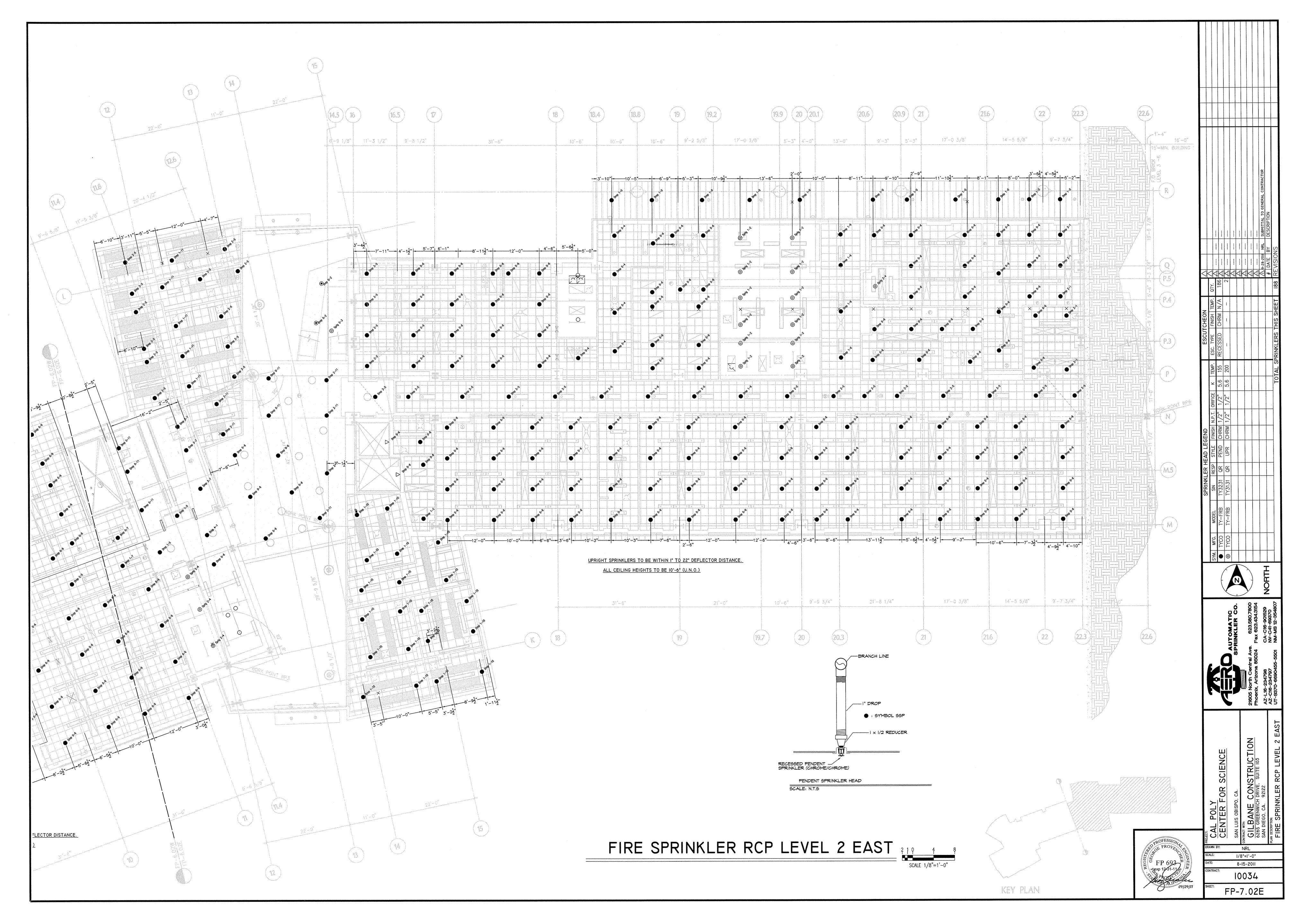


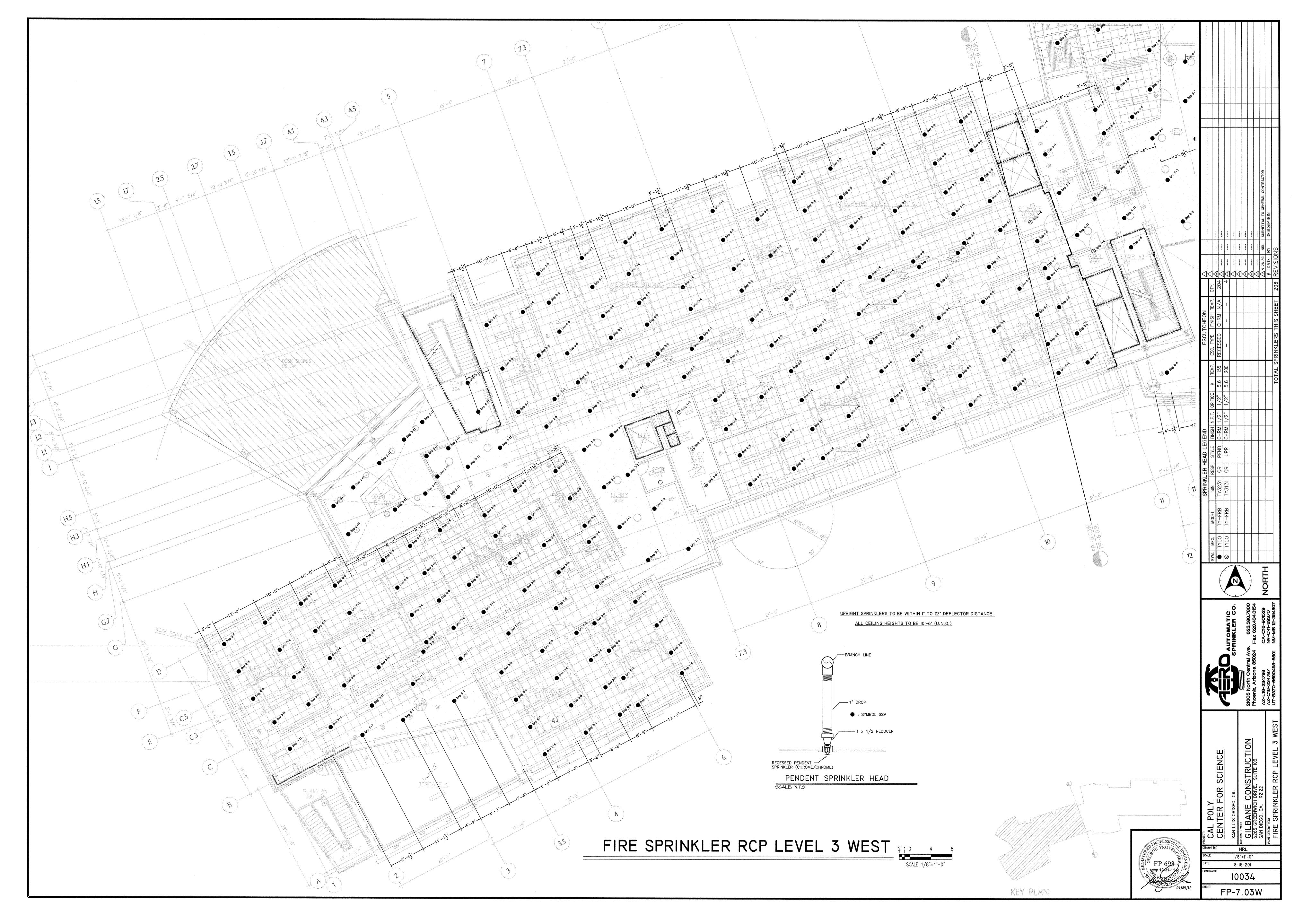


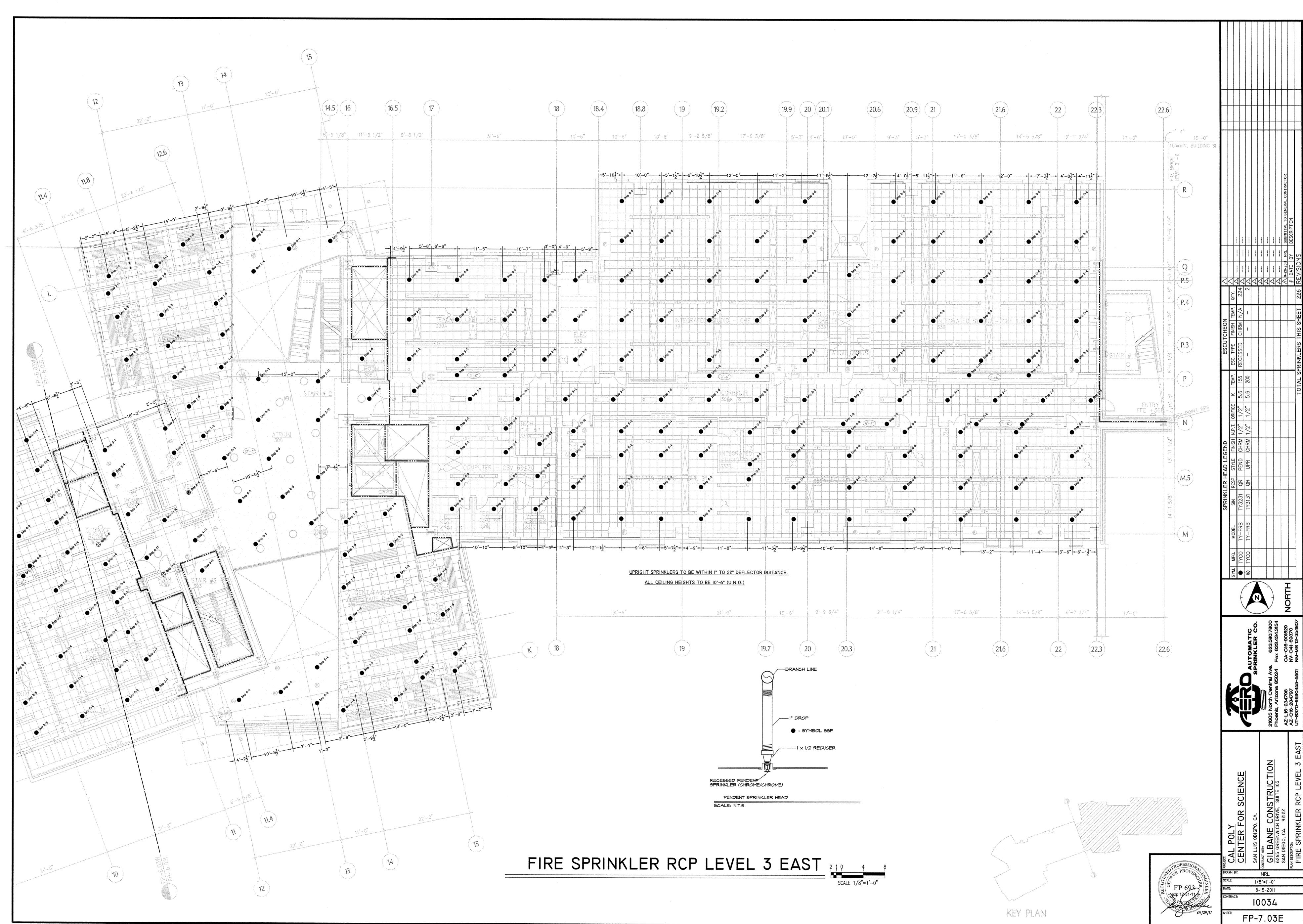


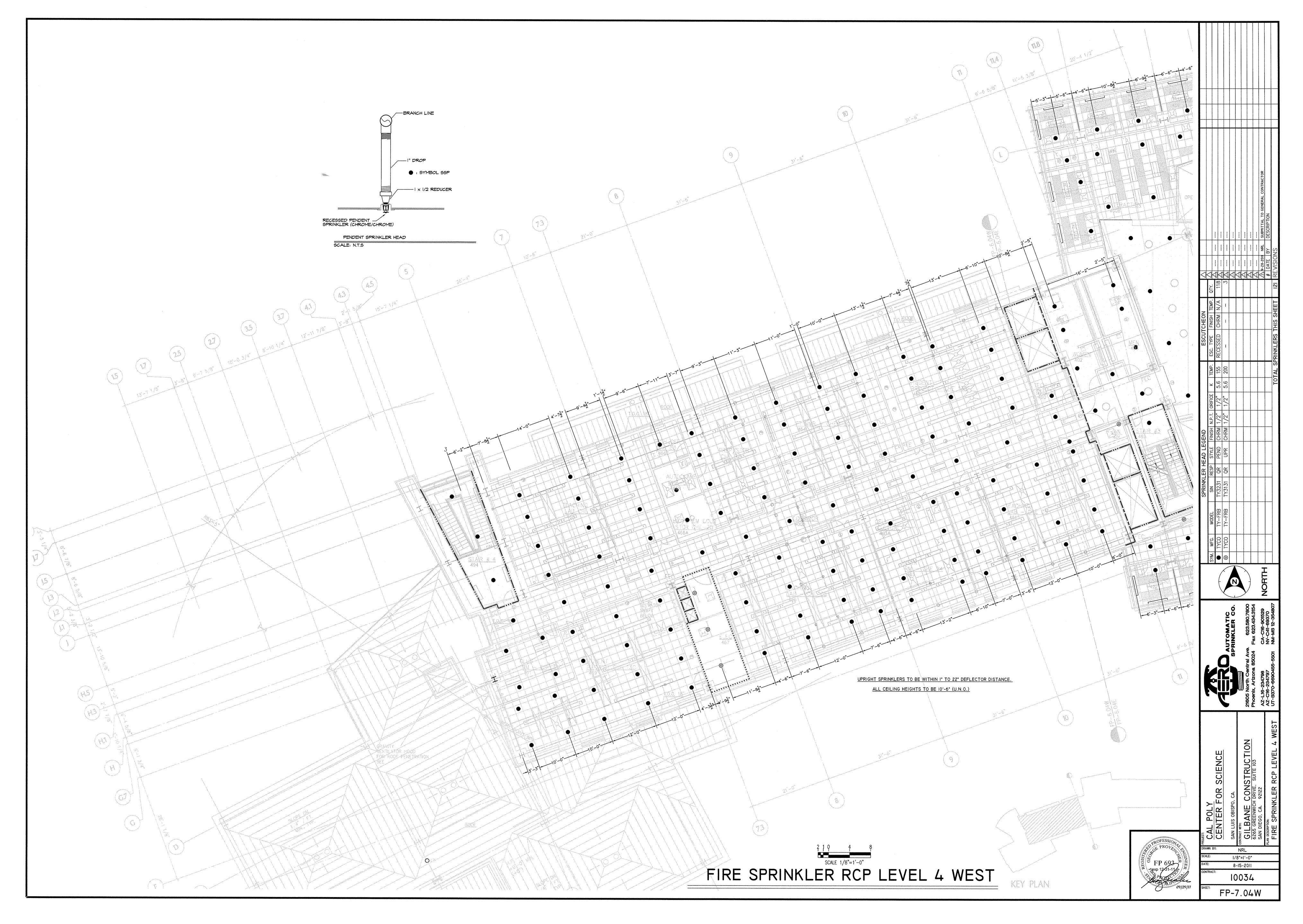


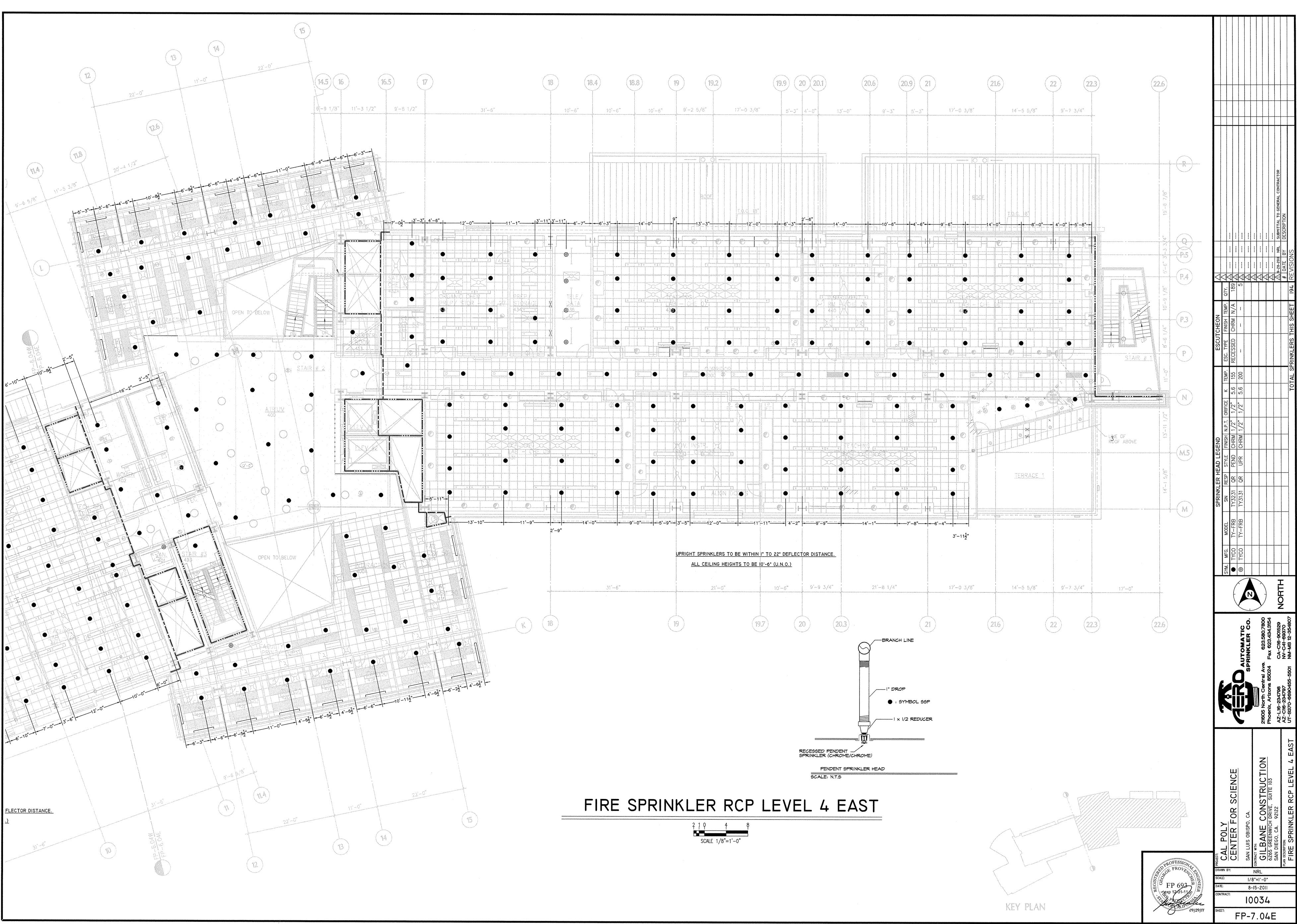


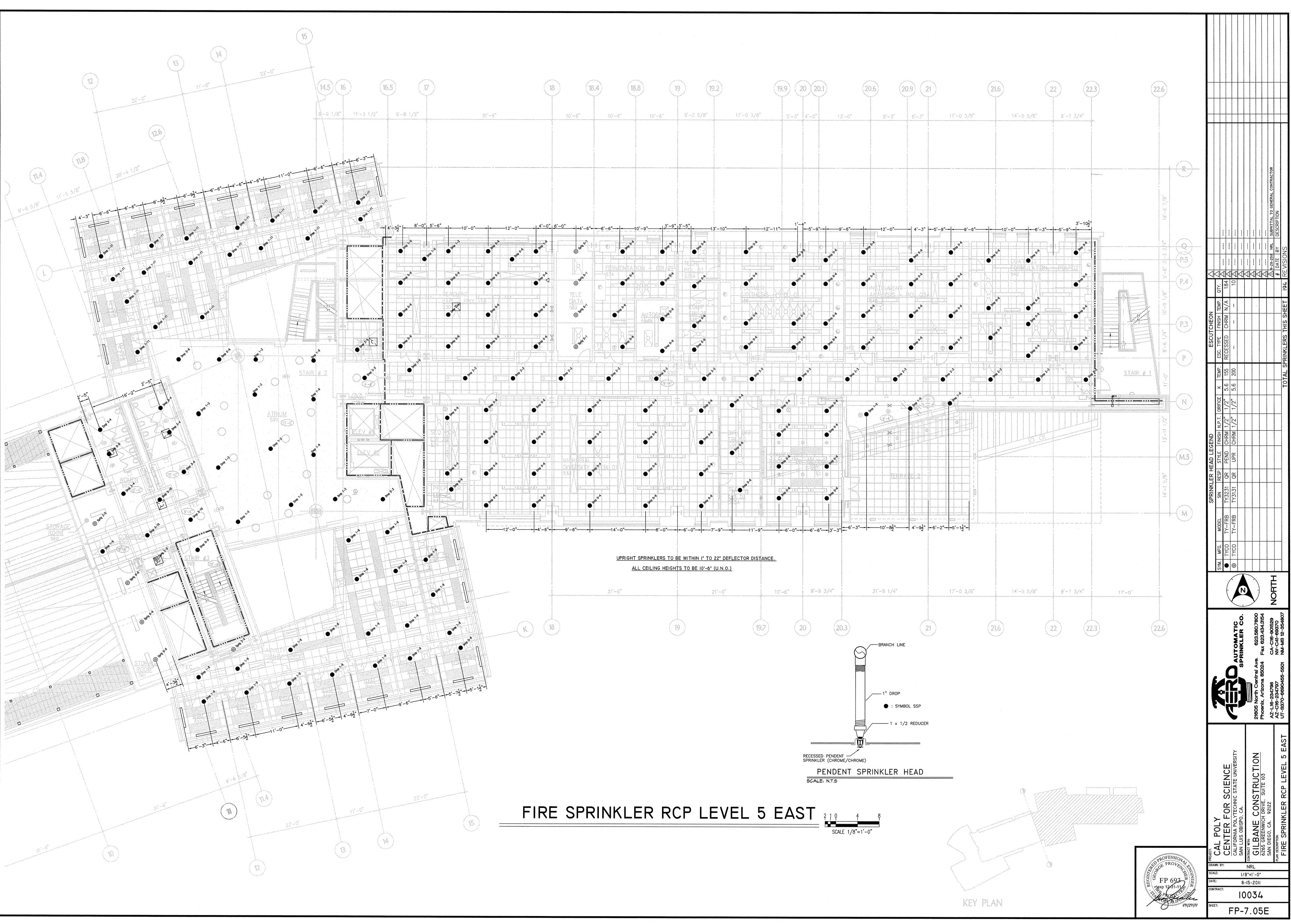


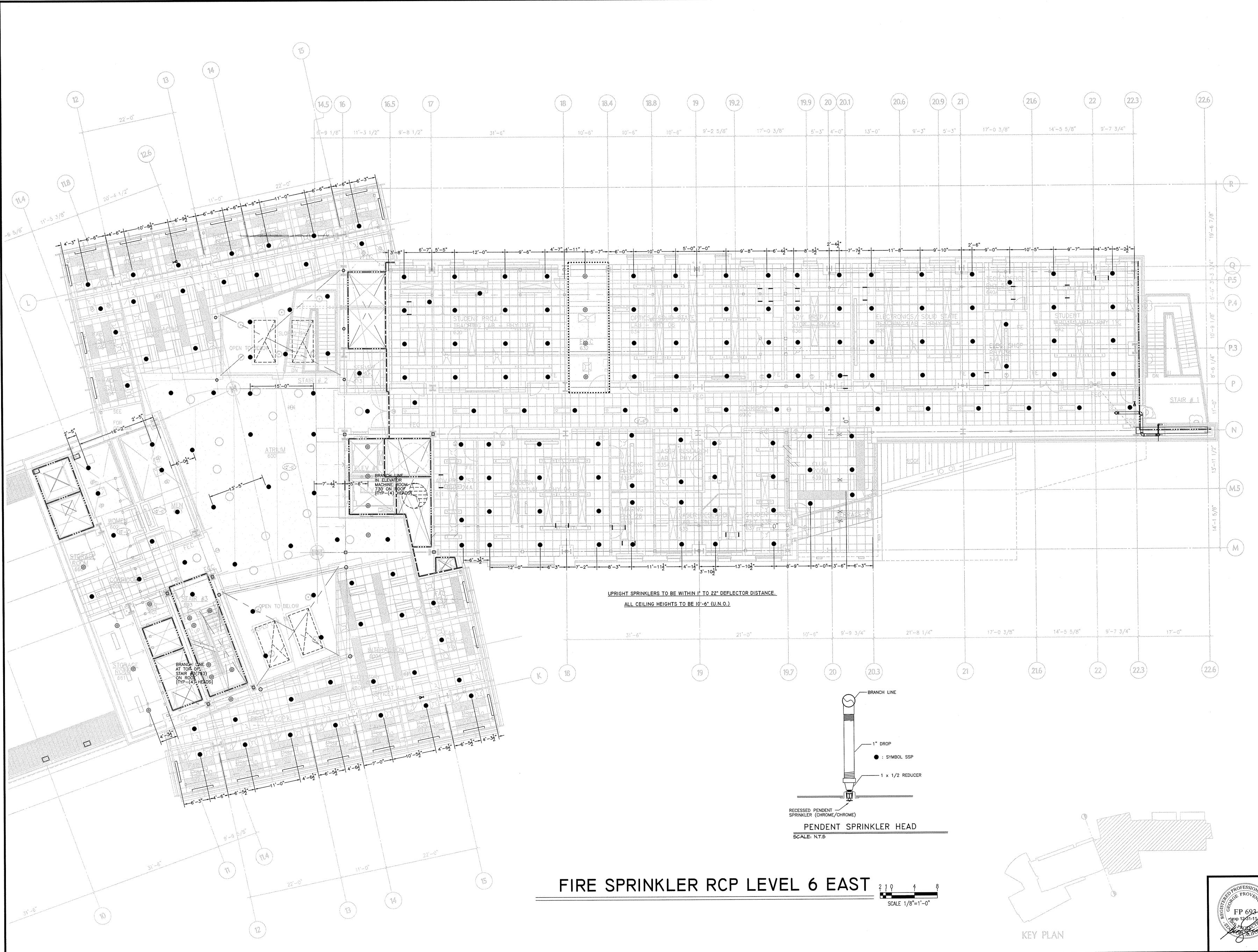


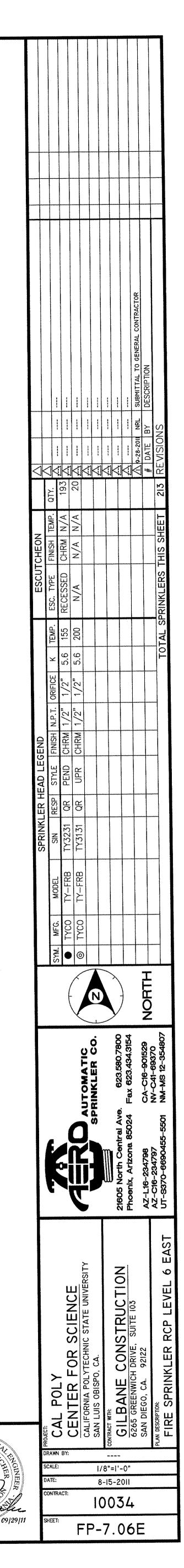












P, q

MS

PROV

GENERAL NOTES

1. NOTIFICATION DEVICES CANNOT BE T-TAPPED. ADDRESSABLE (IDC) DEVICES CAN BE T-TAPPED. ALL FIRE ALARM CABLING SHALL SHALL BE RUN FROM DEVICE TO DEVICE, WITH NO SPLICES. ANY REQUIRED TERMINATIONS MUST BE MADE IN APPROVED BOX.

2. ALL INTERIOR INITIATING DEVICES, NOTIFICATION DEVICES, AND MODULES REQUIRE 4"SQUARE SPECIAL DEEP BACK BOXES U.O.N.

3. PANEL BACK BOXES AND OTHER LISTED BACK BOXES SHALL BE PROVIDED TO THE EC BY DBI. ALL CONTROL PANELS, POWER SUPPLIES, AND BATTERY BOXES SHALL UTILIZE ONLY FACTORY KNOCKOUTS NEAR THE TOP OF THE CAN TO ALLOW PLACEMENT OF BATTERIES.

4. ALL FIRE ALARM CONDUIT TO BE $\frac{3}{4}$ " EMT MINIMUM U.O.N. FIRE ALARM CONDUIT SHALL BE SEPARATE FROM CONDUIT SYSTEM FOR SECURITY ALARM CABLING AND OTHER SYSTEMS.

5. WALL MOUNT AUDIO/VISUAL DEVICES SHALL BE MOUNTED 80" AFF TO BOTTOM OF THE STROBE LENS.

6. MANUAL PULL STATIONS SHALL BE MOUNTED 48" AFF TO CENTERLINE OF BOX. MPS SHALL BE DOUBLE ACTION AND KEYED THE SAME AS THE FACP.

7. DEDICATED 120 VAC CIRCUIT WITH LOCKOUT @ BREAKER TO BE PROVIDED BY OTHERS AT LOCATION OF PANELS AND POWER SUPPLIES.

8. KNOX BOX, PIV, SUPERVISORY SWITCHES, FLOW SWITCHES, SOLENOIDS, AND SPRINKLER BELLS SHALL BE PROVIDED BY OTHERS.

9. SMOKE DETECTORS SHALL NOT BE PLACED WITHIN 3' OF ANY SUPPLY AIR REGISTER OR WHERE THE AIR MOVEMENT EXCEEDS THE MANUFACTURER'S LISTING.

10. FIRE FIGHTER TELEPHONE RISER IS CLASS A, STYLE Z

11. VOLTAGE DROP CALCULATIONS FOR NOTIFICATION DEVICES ARE BASED ON THE LAYOUT SHOWN. DEVIATION FROM THESE PLANS COULD RESULT IN ADDITIONAL CONDUIT WORK, REENGINEERING, UPSIZED CABLE AND/OR ADDITIONAL POWER REQUIREMENTS.

12. PAINT ALL FIRE ALARM JUNCTION BOXES AND COVERS RED IN UNFINISHED AREAS (IE ABOVE CEILINGS, MECHANICAL ROOMS ETC.) IN FINISHED AREAS CONDUIT AND JUNCTION BOXES CAN BE PAINTED TO MATCH THE ROOM FINISH, THE INSIDE COVER IF THE JUNCTION BOX MUST BE IDENTIFIED AS "FIRE ALARM" AND THE CONDUIT MUST HAVE PAINTED RED BANDS $\frac{3}{4}$ " WIDE AT 10' CENTERS AND AT EACH SIDE OF A FLOOR, WALL, OR CEILING PENETRATION.

13. UPON COMPLETION OF INSTALLATION OF THE FIRE ALARM SYSTEM A SATISFACTORY TEST OF THE ENTIRE SYSTEM SHALL BE MADE IN THE PRESENCE OF THE AUTHORITY HAVING JURISDICTION (AHJ).

14. ALL NOTIFICATION DEVICES SHALL BE SYNCHRONIZED.

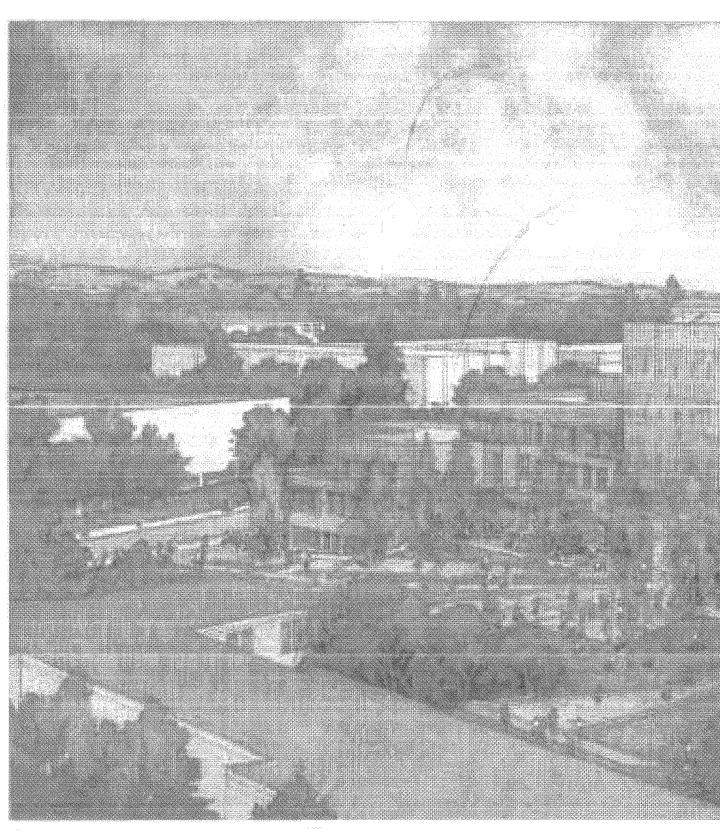
15. A STAMPED SET OF APPROVED FIRE ALARM PLANS SHALL BE AT THE JOBSITE AND USED FOR INSTALLATION.


16. SIGNALING LINE CIRCUIT IS CLASS B, STYLE 4

17. NOTIFICATION APPLIANCE CIRCUIT IS CLASS B, STYLE Y

18. ALL SMOKE DETECTORS SHALL BE INSTALLED AT LEAST 1'-0" FROM FLUORESCENT LIGHT FIXTURES TO AVOID UNWANTED ALARMS AND SHALL BE INSTALLED IN AREAS THAT DO NOT EXCEED THE MANUFACTURE'S OPERATING TEMPERATURE RANGE BETWEEN 32°F AND 120°F.

CODE REGULATIONS


	CALIFORNIA CODE REGULATIONS	
APP	PLICABLE CODES	
	2007 BUILDING STANDARDS ADMINISTRATIVE CODE	TITLE 24 PART 1
	2007 CALIFORNIA BUILDING CODE (CBC)	TITLE 24 PART 2
	2007 CALIFORNIA ELECTRICAL CODE (CEC)	TITLE 24 PART 3
	2007 CALIFORNIA MECHANICAL CODE (CMC)	TITLE 24 PART 4
	2007 CALIFORNIA PLUMBING CODE (CPC)	TITLE 24 PART 5
	2007 CALIFORNIA ENERGY CODE	TITLE 24 PART 6
	2007 CALIFORNIA ELEVATOR SAFETY CONSTRUCTION CODE	TITLE 24 PART 7
	2007 CALIFORNIA HISTORICAL BUILDING CODE	TITLE 24 PART 8
	2007 CALIFORNIA FIRE CODE (CFC)	TITLE 24 PART 9
	2007 CALIFORNIA REFERENCED STANDARDS CODE	TITLE 24 PART 1
APP	LICABLE STANDARDS & GUIDELINES	
	2007 AUTOMATIC SRINKLER SYSTEMS	NFPA 13
	2007 STATIONARY PUMPS	NFPA 20
	2007 NATIONAL FIRE ALARM CODES (CALIFORNIA AMENDED)	NFPA 72
	2007 STANDARD FOR INSTALLATION OF AIR-CONDITIONING	NFPA90A
	2007 STANDARD FOR INSTALLATION OF WARN AIR HEATING	NFPA 90B
	2006 STANDARD FOR SMOKE-CONTROL SYSTEMS UTILIZING BARRIERS AND PRESSURE DIFFERENCES	NFPA 92A
	2005 STANDARD FOR SMOKE MANAGEMENT SYSTEMS IN MALLS, ATRIA, AND LARGE SPACES	NFPA 92B

4

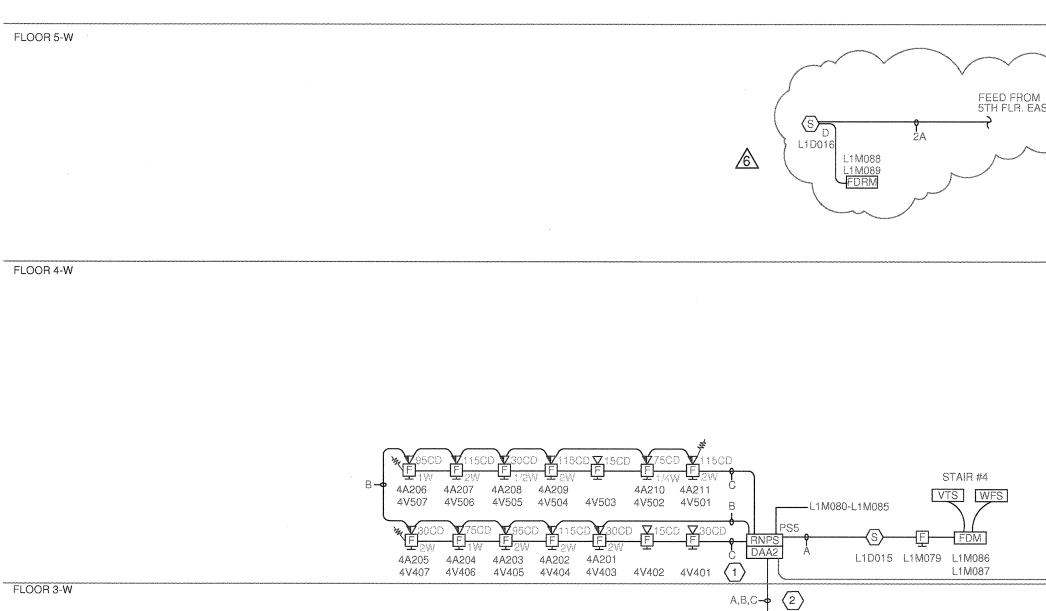
CENTER FOR SCIENCE AN CALIFORNIA STATE POLYTE SAN LUIS OBISPO, CAL FIRE ALARM & EMERGENCY COMM

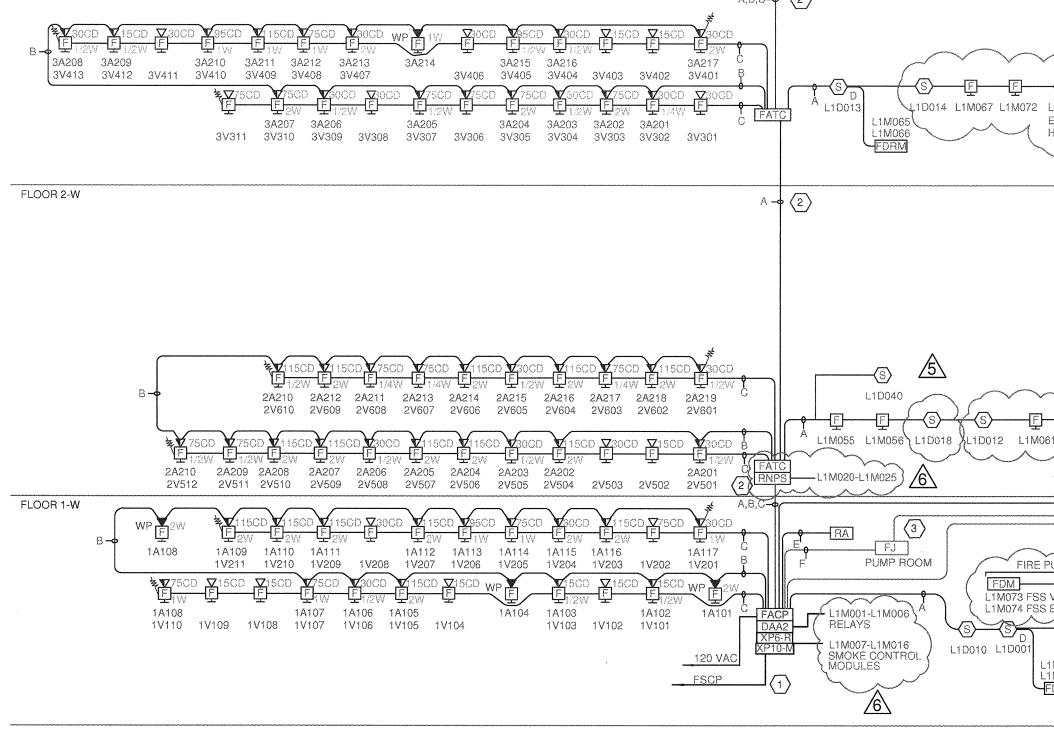
SITE PLAN

CENTER FOR SCIEN

PROJECT DESCRI

- 1. OCCUPANCY TYPE: A, B, AND H3
- 2. SYSTEM TYPE: CLASS B, ADDRESSABLE, MANUAL
- 3. METHOD OF COMMUNICATION: TELEPHONE
- 4. SCOPE OF WORK: FIRE ALARM & VOICE EVACUATION SYST

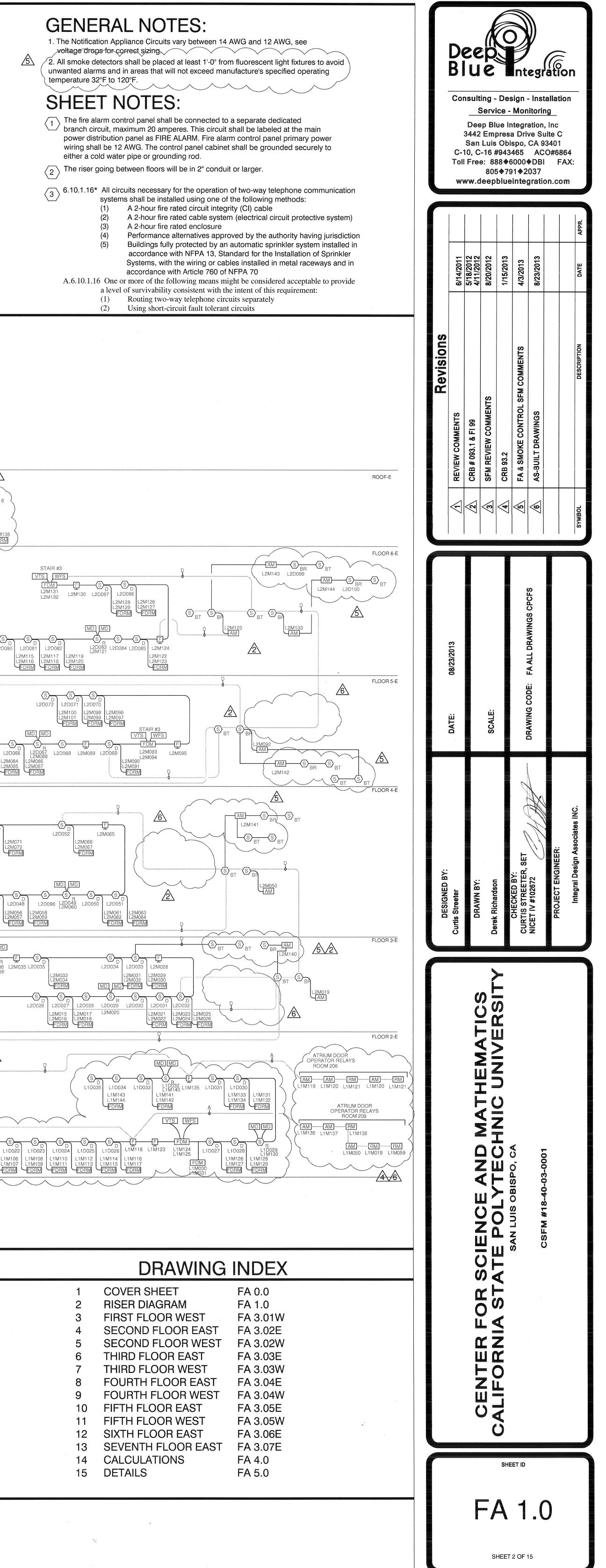

SEQUENCE OF OPERATIO


			×					
							. Ć	The state
						4	Ň	
						Ŷ		/
							_ /	/ /
			SOL AND			<u>/</u> _`	٢.	
						\$/	``\\`	1
				/	$\langle \eta \rangle$	$\sqrt{3}$	7.C)	<u>/</u>
				/	V.,	$\mathbb{N}_{\mathbb{Z}}$:Vaš	\$7
				() () ()	K)	(7 ²)		
			1à	$\mathbb{Z}^{\mathbb{Z}}$	X	X de		/;
			\$ ⁰ /{	\mathcal{O}_{c}	<u>```</u>	£7.	~//	£)/
		$\langle g \rangle$	Ś		<u> 1</u>	XŠ.	(ssp)	$\langle \diamond \rangle$
EVENT	/ 2	\$%	2/2	<u>}</u> /{{	\$%	S/ S	<u>5) / X</u>	Ľ,
		$\langle \cdots \rangle$	E CHI HI		`	<u> </u>		
FIRE ALARM CONTROL UNIT					****			
PANEL SUPERVISORY CONDITION (TEST BYBASS) ON ACM-24 AT	X				X			
PANEL TROUBLE CONDITION (AC POWER FAIL, LOW BATTERY, OPEN CIRCUIT, GROUND FAULT, ETC.)		+ x			X	1	<u> </u>	
PANEL ALARM CONDITION			X	X	X		X	
MANUAL PULL STATION ACTIVATION		+	X	X	X			
SPOT SMOKE DETECTOR ACTIVATION		****	X	Х	X			
DUCT SMOKE DETECTOR ACTIVATION		1	X	Х	X	1		
AIR HANDLING UNIT DUCT SMOKE DETECTOR ACTIVATION		-	X	Х	X		X	
SPRINKLER TAMPER SWITCH	X	1	1		X	1		
SPRINKLER WATER FLOW ACTIVATION		1	X	Х	Х	1		
FIRE PUMP RUNNING		1	X	Х	Х	1		
FIRE PUMP LOSS OF PH ASE	Х				X			human
FIRE PUMP PHASE REVERSAL	X		1		X			
HEAT DETECTOR ACTIVATION (ELEVATOR EQUIPMENT)			X	X	X	X		
ELEVATOR LOBBY/ EMR SMOKE / ELEVATOR HOISTWAYS			X	Х	X			X
SHUNT TRIP POWER SUPERVISION	X				X			
GENERAL ALARM (ANYWHERE WITHIN THE BUILDING)			X	X	X		X	
ATRIUM SMOKE CONTORL SYSTEM ALARM		ļ	X	Х	X			L
BEAM SMOKE DETECTION WITHIN ATRIUM			X	Х	X			Ļ
PULL STATION WITHIN ATRIUM		ļ	X	Х	X	ļ	ļ	ļ
SPRINKLER WATER FLOW WITHIN ATRIUM		<u> </u>	X	X	X	<u> </u>		

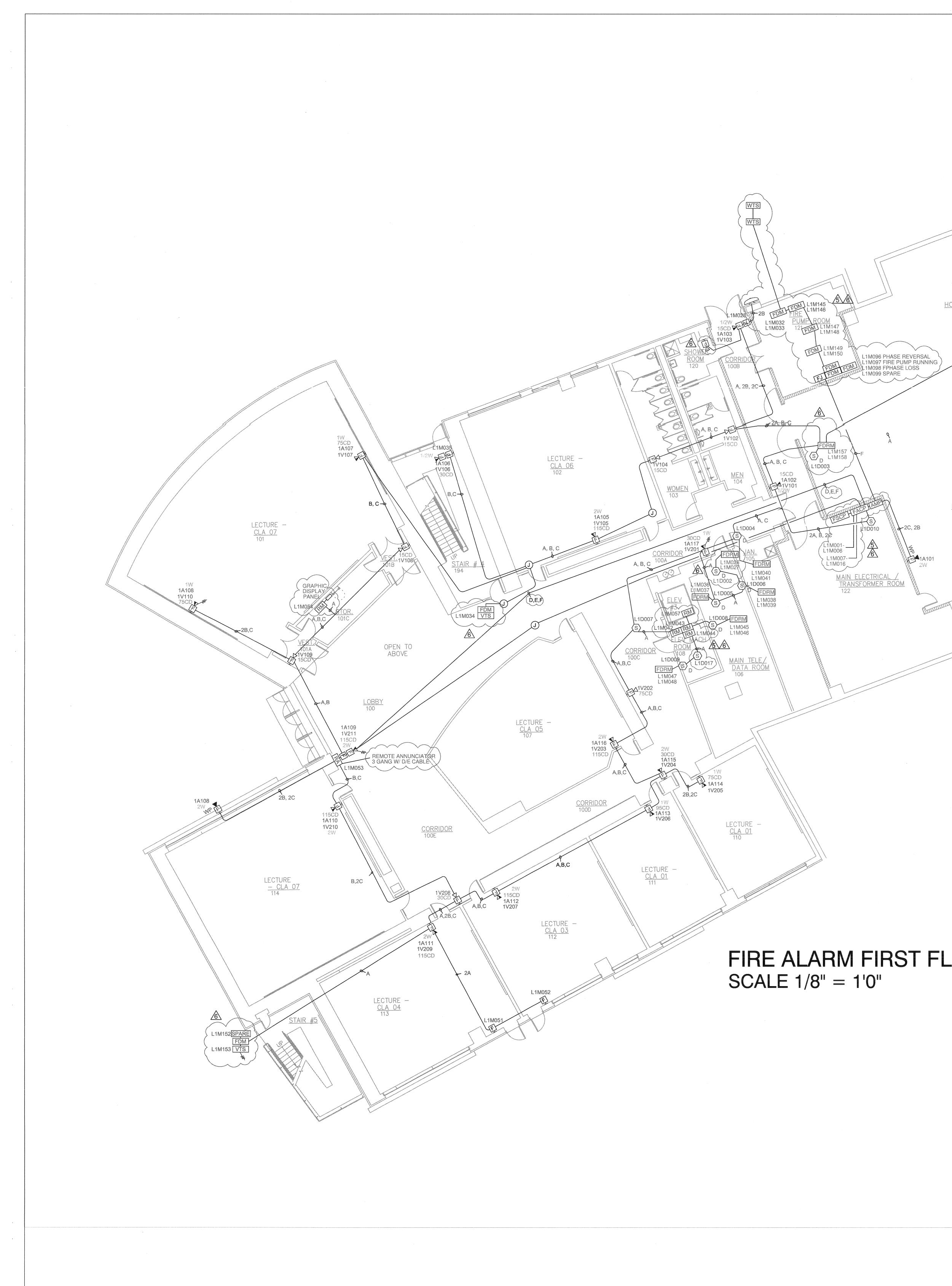
	SYMBOL LEGEND											
ND MATHEMATICS	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #	De Bl	ep ue	Integra						
ECHNIC UNIVERSITY	31 F MANUAL PULL STATION	NBG-12LX	7150-0028:0199	Con		esign - Install	lation					
_IFORNIA 93407	73 F STROBE ONLY	SW	7320-1653:201	3	Deep Blue	- Monitoring Integration, Ir sa Drive Suite	nc					
MUNICATION SYSTEM	165 V SPEAKER/STROBE	SPWS	7320-1653:201	C-1	San Luis O 0, C-16 #94 Free: 8884	bispo, CA 934 I3465 ACO≴ ♦6000♦DBI	01 #6864					
	6 F SPEAKER ONLY	SPW	7320-1653:201	WW		791 \$2037 Jeintegration	.com					
	7 WP F SPEAKER - WEATHER PROOF	SPWK	7320-1653:201				PPR.					
	(H) HEAT DETECTOR	FST-851	7270-0028:196		12 12	2 0 0 0						
	18 (S) SMOKE DETECTOR	FSP-851	7272-0028:206	6/14/20	5/18/201 4/11/201 8/20/201	4/3/2013 8/23/2015	DATE					
	64 (S) SMOKE DETECTOR - DUCT	DNR	3242-1653:209									
	23 (S) BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	ons		NTS	PTION					
	15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	Revisions		A COMMENTS	DESCRIF					
	1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243		MENTS	rrol sfm GS						
	5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	COMMENTS	# 093.1 & FI 99 REVIEW COMMENTS	DRAWINGS						
	4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A	REVIEW (CRB # 093.1 & FI 99 SFM REVIEW COMM	FA & SMOKE AS-BUILT DR						
	32 美 END OF LINE RESISTOR	N/A	N/A				6					
	2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209				SYMB					
	8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS									
	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219			ocFS						
	12 RM RELAY MODULE	FRM-1	7300-0028:219			WINGS CF						
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS	23/2013		ALL DRAV						
	6 10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	08/2		DE: FA						
NCE	1 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	DATE:	SCALE:	WING CO						
	64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	D	sc	DRA						
RIPTION	12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182									
	4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				INC.					
	1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				sociates					
TEMS	A XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	3Y:		P ER. SET	VGINEER: Design As					
				DESIGNED s Streeter	DRAWN BY: k Richardson	CHECKED B TIS STREET ET IV #102675	PROJECT E					
	WIRING LEG	iEND		Curtis	Dere	CHE CURTIS NICET IV						
	LABEL GAUGE USE	TYPE (OR EQU	•		\succ	orandi eta in 1000 ang an Marandi Pangana						
	A 16/2 UTP SLC B 16/2 TSP SPEAKER C 14 NAC VISUAL	WEST PENN D WEST PENN D THHN			SCS							
	D 14 24 VDC E 16/4 TS ANNUNCIATOR	THHN WEST PENN 9			ATIC ER							
ONS MATRIX	F 14/2 TSP FIRE FIGHTERS PHONE	WEST PENN D	995		NN/							
					E E E C E							
					A MA							
	DRAWING IN					0, CA -0001						
					M T T	OBISP -40-03-						
	1 COVER SHEET	FA 0.0			NC NC	I LUIS FM #18						
	3 FIRST FLOOR WEST	FA 1.0 FA 3.01W				SAN						
CINPLOC CINVAC AND	5 SECOND FLOOR WEST	FA 3.02E FA 3.02W FA 3.03E			s sc TAT							
	7 THIRD FLOOR WEST	FA 3.03W FA 3.04E			U U U U U U							
X X X X X X X X X X	10 FIFTH FLOOR EAST	FA 3.04W FA 3.05E										
X X X X X X X X	12 SIXTH FLOOR EAST	FA 3.05W FA 3.06E FA 3.07E			ЩЩС							
X X X X X X	14 CALCULATIONS	FA 4.0 FA 5.0										
X X X X X X X X X X X X X X X		1 /										
	A.7 - 131	Jí			S	HEET ID						
2 3 4					,							
					FA	4-0						
		VER S	HEET		SHEE	T 1 OF 15						
				C.								

SYMBOL LEGEND

		FIRE AL	ARM SYMBOLS	MODEL #	CSFM LISTING #
	31	F	MANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	L F	STROBE ONLY	SW	7320-1653:201
	165	F	SPEAKER/STROBE	SPWS	7320-1653:201
	6	F	SPEAKER ONLY	SPW	7320-1653:201
	7	WP F	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201
A	0	(H)	HEAT DETECTOR	FST-851	7270-0028:196
5	18	S	SMOKE DETECTOR	FSP-851	7272-0028:206
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209
Δ	23		BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121
	15	(S) _{BR}	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
	1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
	4	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A
	32	草	END OF LINE RESISTOR	N/A	N/A
	2	RA	REMOTE ANNUNCIATOR	FDU-80	7120-0028:209
	8	MD	MAGNETIC DOOR HOLDER	N/A	BY OTHERS
	21	AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219
	12	RM	RELAY MODULE	FRM-1	7300-0028:219
	16	WFS	WATER FLOW SWITCH	N/A	BY OTHERS
	10	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS
A	21	[FDM]	DUAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12		FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224
		XP6-R	SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219
4	1	XP10-M	TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219



WEST


FIRE ALARM RISER DIAGRAM NTS

	ļ	4					
	7120-0028:209						
	BY OTHERS						
	7300-0028:0219						
	7300-0028:219						
	BY OTHERS						
	BY OTHERS						
	7300-0028:0219						
	7300-0028:0219						
~	7300-1652:0182					STAIR 3	
	7170-0028:223 7170-0028:224					Y 5/7	<u>/6)</u>
_	7300-0028:0219					6A116A 6V313A	10CD ASOCD ZISCD ZISCD Z
_	7300-0028:0219					FF 6A116B	5CD $6A116$ $6A115$ $6V212$ $6V211$ $6V210$ $6V210$
						6A116B 6V313B	
						¢	
~							110CD ¥30CD ▼ 15CD ▼ 15CD ▼
~~~						STA	₩ [™] ┍ <u>-¹₽_{2₩} </u> <u>₽</u> _{1/4₩} <u>₽</u> <u>₽</u> <u>₽</u>
S							$\left\{ \begin{array}{c} \mathbf{v}_{15/75CD} \mathbf{v}_{15/75CD} \\ \mathbf{F}_{1/2W}  \mathbf{F}_{1/2W} \end{array} \right\}$
							5A115B 5A115A 5V313B 5V313A F
							(
		STAIR 4					
						[FJ]	B <b>-</b> •
							FT75CD FT15CD
							4A108 4A107B 4 4V107 4V106B 4
		<del>e</del> F				<b>6</b> -F	
							B→ B→ B→ B→ B→ B→ B→ B→ B→ B→
		· FJ				FJ	3V211 3V210 3V2 3V211 3V210 3V2 3V211 3V210 3V2
EL H(	LEV. #3 DISTWAY						3A109 3A108 3A107 3A1 3V112 3V111 3V110 3V1
••••							
		<b>₽</b> -F				<b>6</b> -F	B & & & & 22 2A12 2V411 2V410 2V40
							× 11500 1500 ▼1 F2W F1/4W F1 2A120 2A119
	Â	3				3	2A120 2A119 2V311 2V310 2V30
~						FJ IN ATF	B- <b>-</b> RIUM 2A10 2V20
1	L1M062 L1M063						2020 ₩ \Z30CD \Z30CD \Z15CD \Z3 F F F
							도 도구W 도 도 2A107 2V111 2V110 2V109 2V10
	A A F			GRAPHIC DISPLAY	STAIR #5		
	MP MONITOR	STAIR #4		RM         F           L1M054         L1M053         L1M	M052 L1M051 L1M052 L1M053		
s, S	ALVES L1M075 1ST FLOOR YPASS L1M076 VALVE TAM		{\$ <u>}_{</u> {\$}_ <u>{</u> }_{ <u></u> }}	( )	<u>56</u>		
		6 L1M098 L1M033 L1M035   7 L1M099 L1M034	L1M026 L1M036 L1M038	L1D007 L1M042 L1M043 L L1M040 (EM)	2008 L1D017 L1D009	7	ſ
D	1017 L1M157 L1M097 1018 L1M158 RM FDRM	(AM) L1M032 OS&Y	L1M027 FDRM FDRM FDRM	EDRM	CIMO46 LIMO46 FDRM FDRM	8	
							real sector of the sector of t

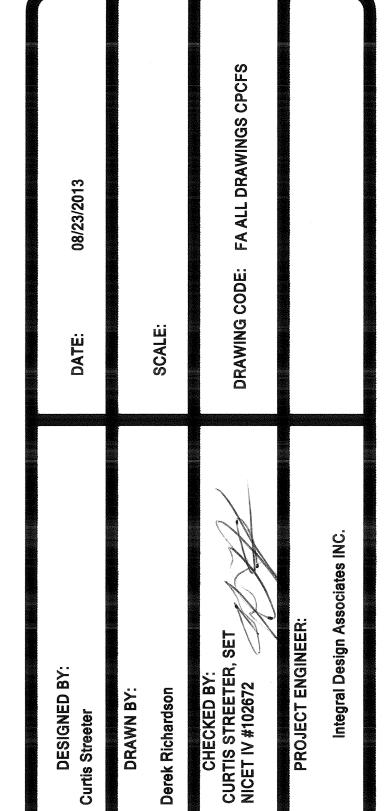


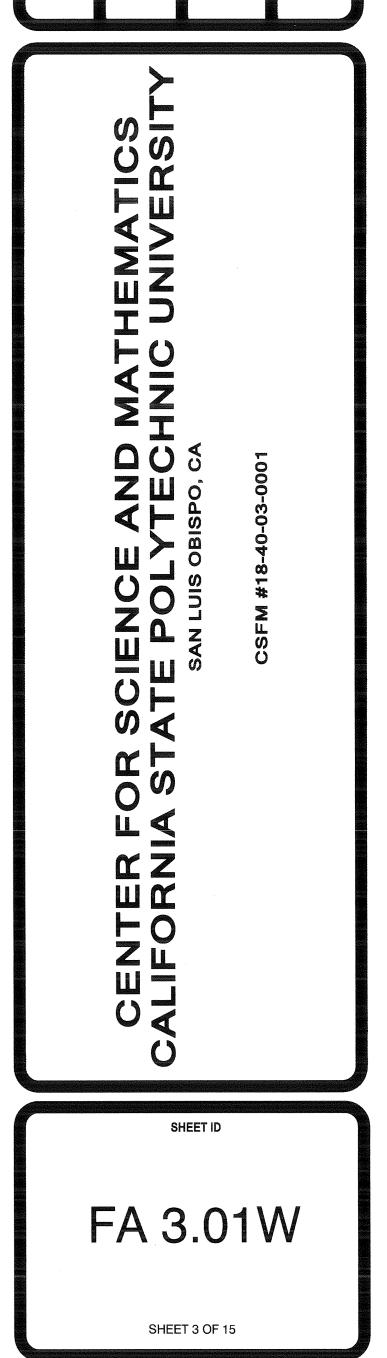


	WIR	NG LEGEND		D
LABEL A B C D E F	GAUGE USE 16/2 UTP SLC 16/2 TSP SPEAKER 14 NAC VISUA 14 24 VDC 16/4 TS ANNUNCIA 14/2 TSP FIRE FIGHT	WES WES L THH THH TOR WES	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	COVER S RISER DIA FIRST FLO SECOND SECOND THIRD FL THIRD FL FOURTH FOURTH FIFTH FLO SIXTH FLO SEVENTH CALCULA DETAILS

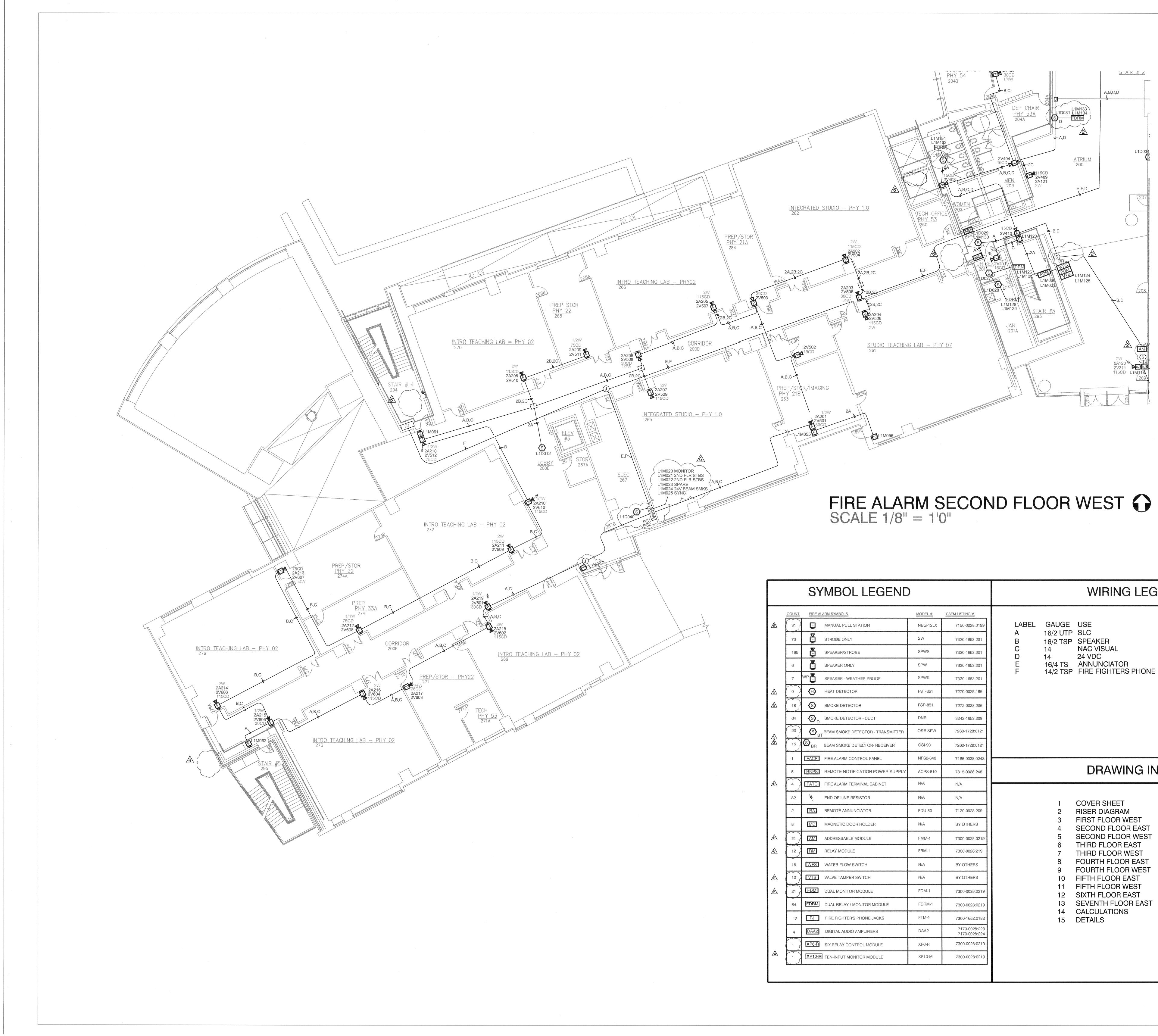


<u>PIPE CHASE</u> <u>ABOVE</u>	
HORIZONTAL DUCT & PIPE CHASE	
FDRM S L1D001	
A	
MECHANICAL 123	
LOOR WEST 🕢	


2W


			SYMBOL LE	GEND	
	COUNT	FIRE ALAR	M SYMBOLS	MODEL #	CSFM LISTING #
			IANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	 又	TROBE ONLY	SW	7320-1653:201
	165	V7	PEAKER/STROBE	SPWS	7320-1653:201
	6	▼	PEAKER ONLY	SPW	7320-1653:201
	7		PEAKER - WEATHER PROOF	SPWK	7320-1653:201
ß	$\square$		EAT DETECTOR	FST-851	7270-0028:196
<u></u>			MOKE DETECTOR	FSP-851	
237	64		MOKE DETECTOR	DNR	7272-0028:206
	23			OSE-SPW	3242-1653:209
		6	EAM SMOKE DETECTOR - TRANSMITTER		
			EAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
				NFS2-640	7165-0028:0243
	5		EMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
203	$\left(\begin{array}{c} 4\\ \end{array}\right)$	L			N/A
	32	\ 		N/A	N/A
	2		EMOTE ANNUNCIATOR	FDU-80	7120-0028:209
<u>,</u>	8	MD M	AGNETIC DOOR HOLDER	N/A	BY OTHERS
Â		AM A	DDRESSABLE MODULE	FMM-1	7300-0028:0219
	(12)	RM R	ELAY MODULE	FRM-1	7300-0028:219
	16	WFS W	ATER FLOW SWITCH	N/A	BY OTHERS
		VTS V	ALVE TAMPER SWITCH	N/A	BY OTHERS
A	(21)	FDM D	UAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM D	UAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12	FJ F	IRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2 D	IGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224
•	$\left( \right)$	XP6-R S	X RELAY CONTROL MODULE	XP6-R	7300-0028:0219
	$\left( \begin{array}{c} 1 \end{array} \right)$	XP10-M TI	EN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219
			WIRING LEC	GEND	
LA A B C D E F	BEL	16/2 U ⁻ 16/2 TS 14 14 16/4 TS	E USE TP SLC SP SPEAKER NAC VISUAL 24 VDC S ANNUNCIATOR SP FIRE FIGHTERS PHO	WE WE TH THI WE	
			DRAWING I	NDEX	
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	CALCULATIONS	FA 3.02 FA 3.02 FA 3.03 FA 3.03 FA 3.04 FA 3.04 FA 3.05 FA 3.05 FA 3.05	

Co	nsult	ing -	Des	ign -	- Ins	tallat	tion						
		Servi	ce -	Mon	itori	ng							
Deep Blue Integration, Inc 3442 Empresa Drive Suite C													
San Luis Obispo, CA 93401													
	-												
Tol	I Free						FAX:						
W	ww.d					on.c	om						
								APPR.					
								AP					
-	20	8	~		m								
/201	/201	/201	/201	2013	/201			DATE					
6/14	5/18	8/20	1/15	4/3/2	8/23			ā					
				လ				NO					
				ENT				RIPT					
				MMC				DESCRIPTION					
				M CC									
	6/14/2011 6/14/2011 A	Dee 3442 San C-10, C Toll Free www.d	Servi Deep Bl 3442 Emp San Luis C-10, C-16 # Toll Free: 88 805 www.deep	Service - Deep Blue In 3442 Empresa San Luis Obis C-10, C-16 #9434 Toll Free: 888¢6 805¢79 www.deepblue	Service - Mon         Deep Blue Integra         3442 Empresa Driv         San Luis Obispo,         C-10, C-16 #943465         Toll Free:         805\$791\$2         www.deepblueinteg         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013 <t< th=""><th>Service - Monitoria         Deep Blue Integration         3442 Empresa Drive Si         San Luis Obispo, CA 9         C-10, C-16 #943465         C-10, C-16 #943465         Toll Free:         88\$6000\$DB         805\$791\$2037         www.deepblueintegration         11/12/5013         8/20/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         9/11/2014         101         11/12/2015         8/3/2013         8/3/2013         8/3/2013         9/3/2013         9/3/2013         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2013         11/12/2013         11/12/2013         11/12/2013         12/12/2013         13/2013         13/2013         14/3/2013         15/2013          16/2013     &lt;</th><th>Service - Monitoring           Deep Blue Integration, Inc           3442 Empresa Drive Suite G           San Luis Obispo, CA 9340           C-10, C-16 #943465           Toll Free:           805\$791\$2037           www.deepblueintegration.c</th><th>Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\\$6000\\$DBI FAX: 805\\$791\\$2037 www.deepblueintegration.com</th></t<>	Service - Monitoria         Deep Blue Integration         3442 Empresa Drive Si         San Luis Obispo, CA 9         C-10, C-16 #943465         C-10, C-16 #943465         Toll Free:         88\$6000\$DB         805\$791\$2037         www.deepblueintegration         11/12/5013         8/20/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         9/11/2014         101         11/12/2015         8/3/2013         8/3/2013         8/3/2013         9/3/2013         9/3/2013         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2013         11/12/2013         11/12/2013         11/12/2013         12/12/2013         13/2013         13/2013         14/3/2013         15/2013          16/2013     <	Service - Monitoring           Deep Blue Integration, Inc           3442 Empresa Drive Suite G           San Luis Obispo, CA 9340           C-10, C-16 #943465           Toll Free:           805\$791\$2037           www.deepblueintegration.c	Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\\$6000\\$DBI FAX: 805\\$791\\$2037 www.deepblueintegration.com					


Deep Blue Integration

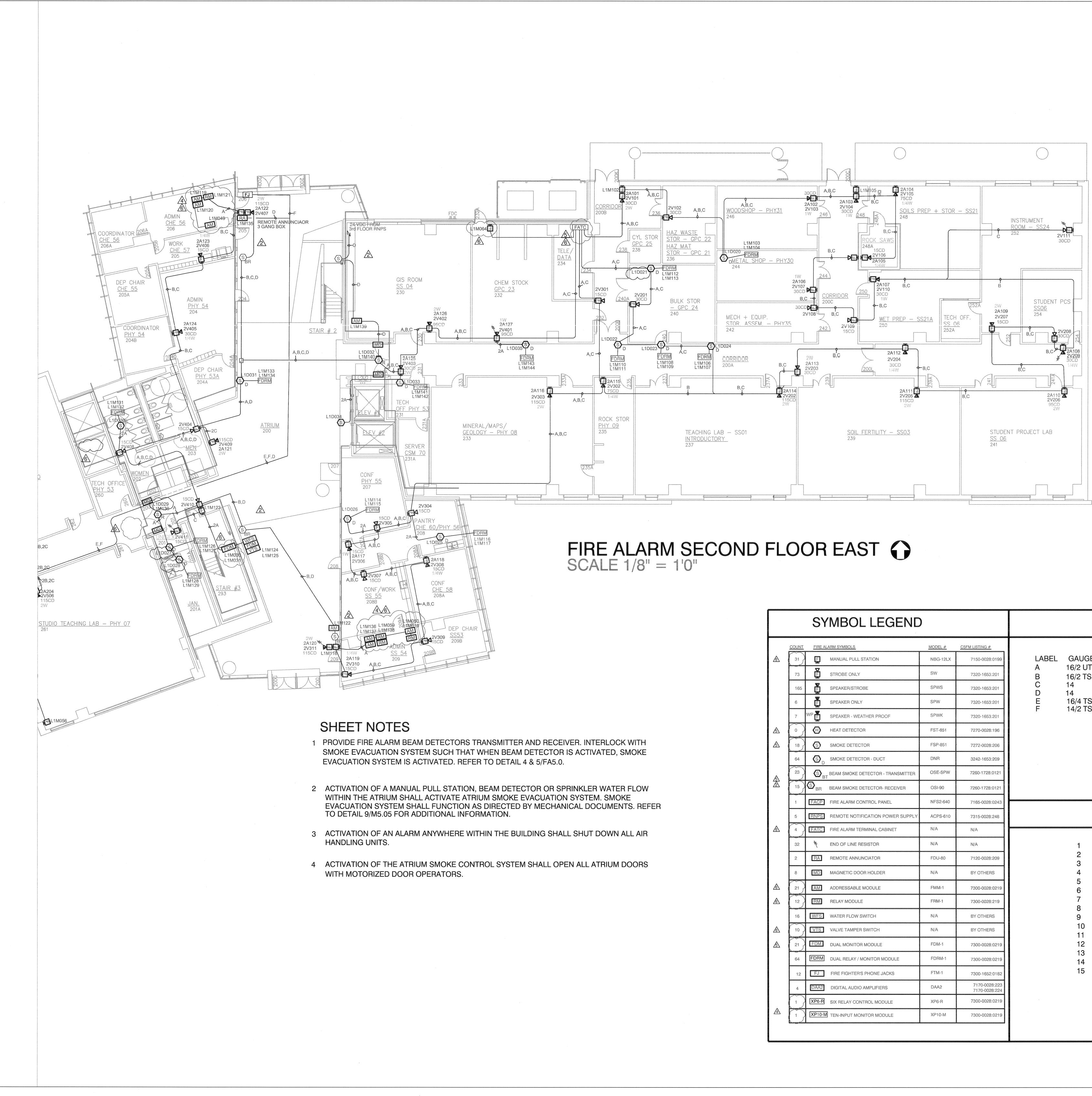
# 





VALENT)




	F	٢E		A	٢N	/	5	C	$\bigcirc$	$\mathbb{N}$	D		J	$\bigcup$	$\prec$
3(		AL		/8	NUMANUMANA NUMANUMANA		I ()								

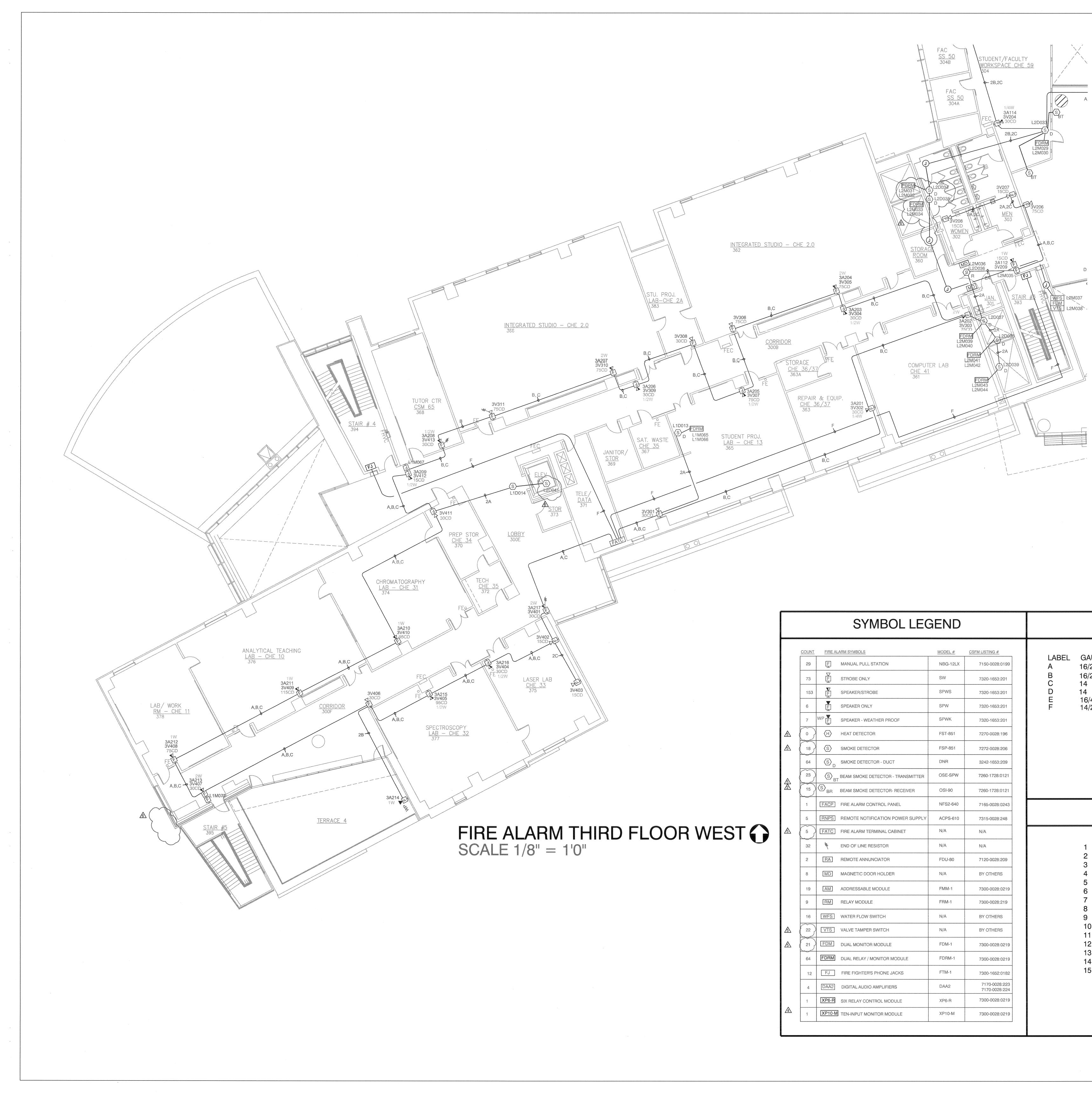
		SY	MBOL LEGEND	)				WIRING LEG	END
	COUNT	<u>FIRE AI</u>	LARM SYMBOLS	MODEL #	CSFM LISTING #				
ß	31	F	MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL	GAUGE	USE	TYPE (OF
	73	E	STROBE ONLY	SW	7320-1653:201	A B	16/2 UTP 16/2 TSP	_	WEST PE WEST PE
	165		SPEAKER/STROBE	SPWS	7320-1653:201	C D	14 14	NAC VISUAL 24 VDC	THHN THHN
	6	Ē	SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS	ANNUNCIATOR	WEST PE WEST PE
	7	WPE	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	Г	14/2 15P	FIRE FIGHTERS PHONE	WESTPE
∕	$\bigcirc$	<b>(H)</b>	HEAT DETECTOR	FST-851	7270-0028:196				
∕	18	6	SMOKE DETECTOR	FSP-851	7272-0028:206				
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
A	23	© _B	BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
A A	15	𝔅 _{BR}	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
	1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			<b>DRAWING IN</b>	DEX
	$\left( \begin{array}{c} 4 \end{array} \right)$	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A				
	32	草	END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	FA 0.0
	2	RAI	REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2	RISER DIAGRAM	FA 1.0
	8	[MD]	MAGNETIC DOOR HOLDER	N/A	BY OTHERS		3 4	FIRST FLOOR WEST SECOND FLOOR EAST	FA 3.01W FA 3.02E
ß	21	AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219		5	SECOND FLOOR WEST	FA 3.02W
Â	12	RM	RELAY MODULE	FRM-1	7300-0028:219		6 7	THIRD FLOOR EAST THIRD FLOOR WEST	FA 3.03E FA 3.03W
	16	WFS	WATER FLOW SWITCH	N/A	BY OTHERS		8 9	FOURTH FLOOR EAST FOURTH FLOOR WEST	FA 3.04E FA 3.04W
Â	10	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS		9 10	FIFTH FLOOR EAST	FA 3.05E
A	21	FDM	DUAL MONITOR MODULE	FDM-1	7300-0028:0219		11 12	FIFTH FLOOR WEST SIXTH FLOOR EAST	FA 3.05W FA 3.06E
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13	SEVENTH FLOOR EAST	FA 3.07E
	12	FJ	FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		14 15	CALCULATIONS DETAILS	FA 4.0 FA 5.0
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
		XP6-R	SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
A		XP10-M	TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				

YPE (OR EQUIVALENT) VEST PENN D990 VEST PENN D991 THHN HHN VEST PENN 993 VEST PENN D995

Deep Blue Integration Consulting - Design - Installation Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\$6000\$DB1 FAX: 805�791�2037 www.deepblueintegration.com 6/14/2011 5/18/2012 4/11/2012 8/20/2012 ____ Revisions AND MATHEMATICS TECHNIC UNIVERSI⁻ spo, cA CENTER FOR SCIENCE ALIFORNIA STATE POLY SAN LUIS OE SHEET ID FA 3.02W

SHEET 4 OF 15




		SYMBOL LEGEN	)		WIRING LEGEND	
	COUNT	FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #		
	31	F MANUAL PULL STATION	NBG-12LX	7150-0028:0199		•
	73	STROBE ONLY	SW	7320-1653:201	A 16/2 UTP SLC WES B 16/2 TSP SPEAKER WES	
	165	SPEAKER/STROBE	SPWS	7320-1653:201	C14NAC VISUALTHHD1424 VDCTHH	
	6	F SPEAKER ONLY	SPW	7320-1653:201	E 16/4 TS ANNUNCIATOR WES F 14/2 TSP FIRE FIGHTERS PHONE WES	ST F
	7	WP F SPEAKER - WEATHER PROOF	SPWK	7320-1653:201		)  [
\$	$\bigcirc$	HEAT DETECTOR	FST-851	7270-0028:196		
\$	18	SMOKE DETECTOR	FSP-851	7272-0028:206		
	64	SMOKE DETECTOR - DUCT	DNR	3242-1653:209		
A	23	S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121		
	15	BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121		
	Annual A	FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243		
	5	RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DRAWING INDEX	
<u>6</u>	$\left(\begin{array}{c}4\end{array}\right)$	FATC FIRE ALARM TERMINAL CABINET	N/A	N/A		
	32	专 END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA 0.0	
	2	RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 1.0 3 FIRST FLOOR WEST FA 3.01V	V
	8	MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS	4 SECOND FLOOR EAST FA 3.02E	
<u></u>	21	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219	5 SECOND FLOOR WEST FA 3.02V 6 THIRD FLOOR EAST FA 3.03E	
<u></u>	12	RM RELAY MODULE	FRM-1	7300-0028:219	7 THIRD FLOOR WEST FA 3.03V	
	16	WFS WATER FLOW SWITCH	N/A	BY OTHERS	- 8 FOURTH FLOOR EAST FA 3.04E 9 FOURTH FLOOR WEST FA 3.04V	
$\land$	10	VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 3.05E 11 FIFTH FLOOR WEST FA 3.05V	
∕₳	21	FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	12 SIXTH FLOOR EAST FA 3.06E	
	64	FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	13 SEVENTH FLOOR EAST FA 3.07E 14 CALCULATIONS FA 4.0	•
	12	FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	15 DETAILS EASO	
	4	DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224		
	$\left( \begin{array}{c} 1 \end{array} \right)$	XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219		
4		XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219		

	Cor C-  Toll	Dee 3442	ing - Servi Emp Luis -16 # e: 88	ice - ue In presa 943 \$943 \$8\$6 5\$79	<b>Mon</b> <b>Mon</b> <b>itegr</b> <b>a</b> Driv <b>spo</b> , 465 50004 1 <b></b>	- Ins iitori ation ve S CA S AC DB 037	tallat ng , Inc uite ( )340 ⁻ ;O#6 I I	C I 864 FAX:	
									APPR.
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013			DATE
Revisions		2 CRB # 093.1 & FI 99	SFM REVIEW COMMENTS	4 CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	AS-BUILT DRAWINGS			37MBOL DESCRIPTION
DATE: 08/23/2013 SCALE: BRAWING CODE: FA ALL DRAWINGS CPCFS									
DESIGNED BY:	Curtis Streeter	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET	NICET IV #102672	PROJECT ENGINEER:	Integral Design Associates INC.	
	CENTER FOR SCIENCE AND MATHEMATICS CALIFORNIA STATE POLYTECHNIC UNIVERSITY SAN LUIS OBISPO, CA CSFM #18-40-03-0001								
			4		ET ID				

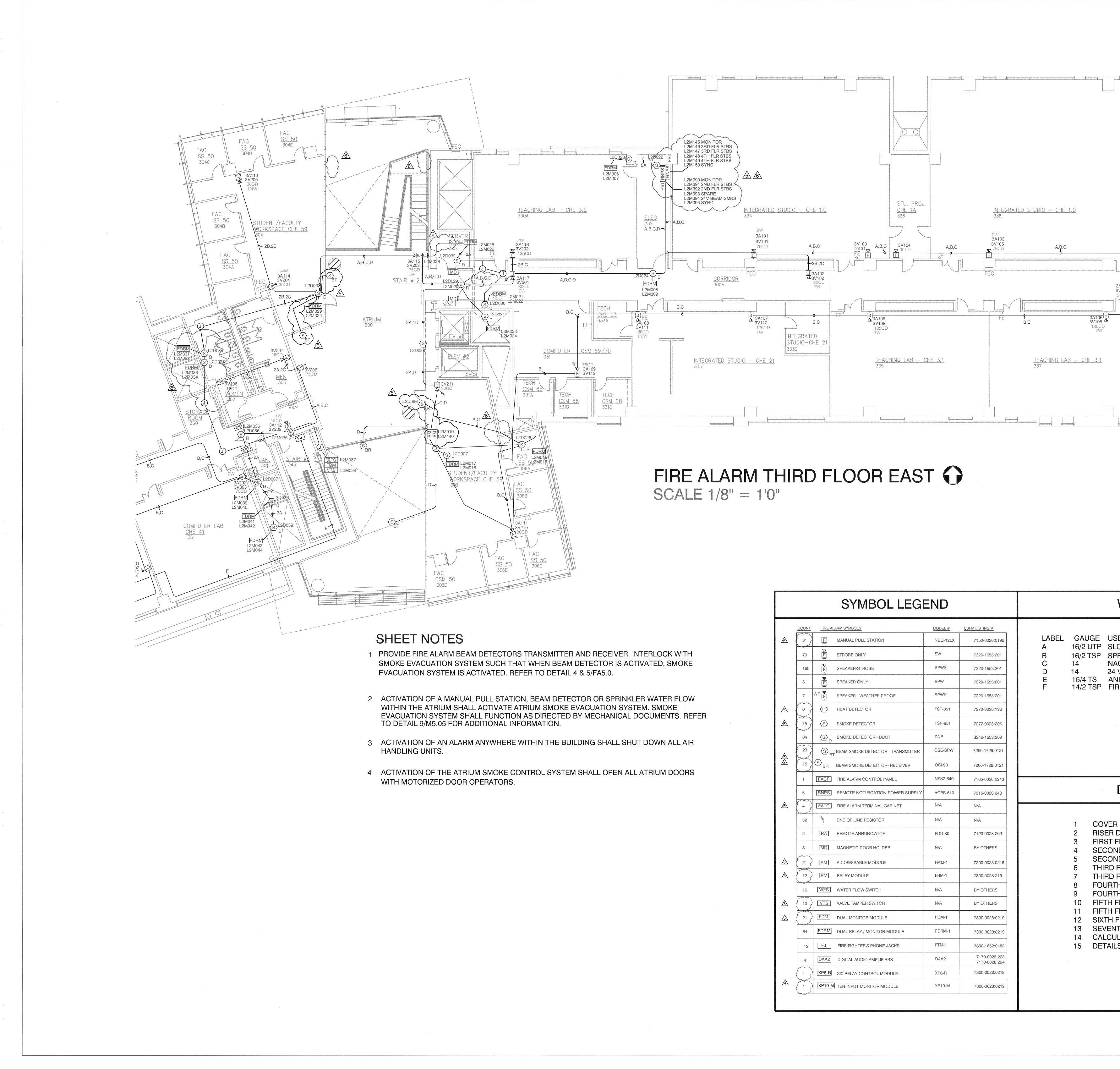
# GEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

### NDEX

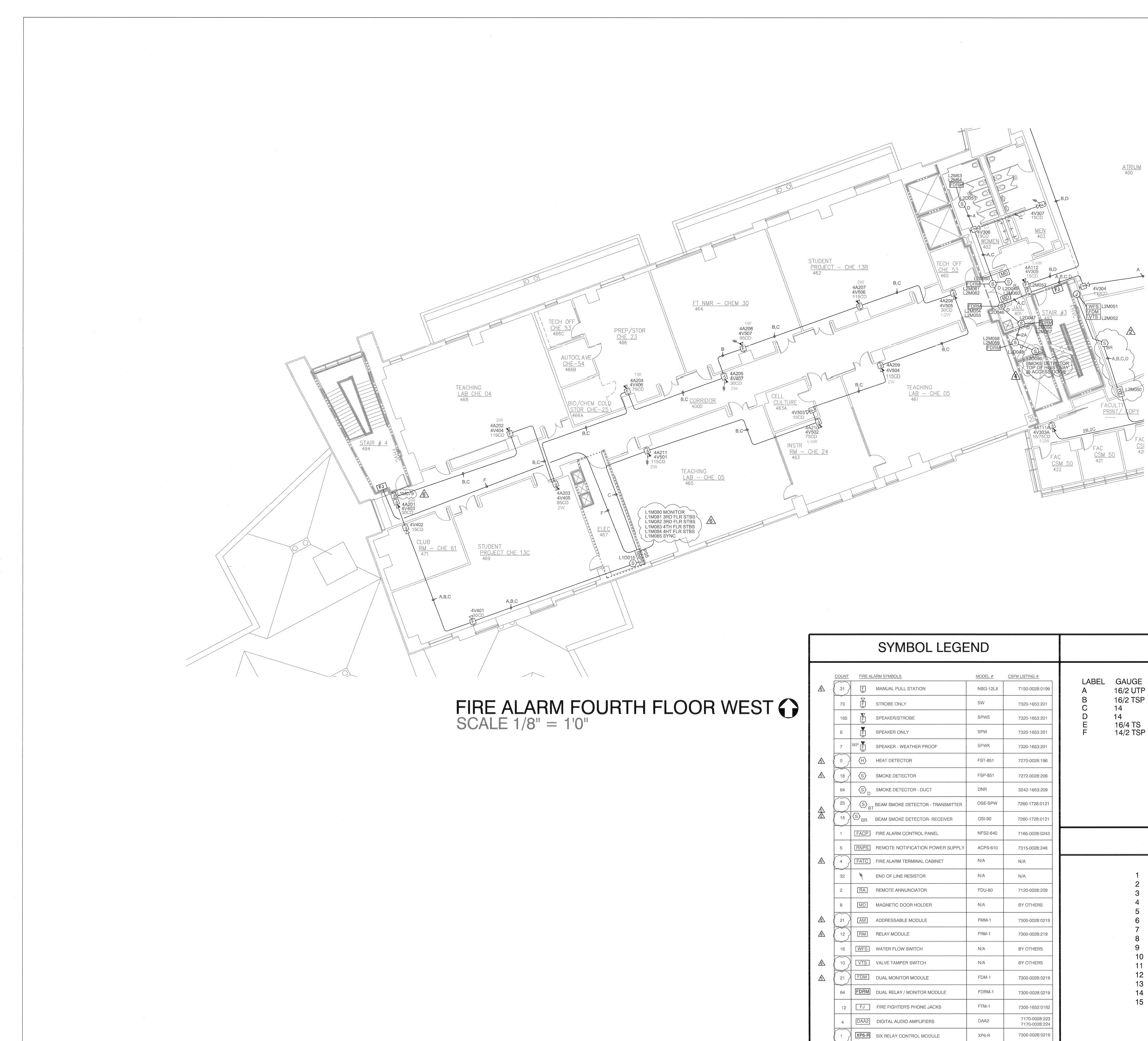


WIRING LE		SYMBOL LEGEND								
		CSFM LISTING #	MODEL #	E ALARM SYMBOLS	FIRE AL	COUNT				
GAUGE USE 16/2 UTP SLC		7150-0028:0199	NBG-12LX	MANUAL PULL STATION		29				
16/2 TSP SPEAKER 14 NAC VISUAL	B 16/2	7320-1653:201	SW	STROBE ONLY	V F	73				
14 24 VDC	D 14	7320-1653:201	SPWS	SPEAKER/STROBE		153				
16/4 TS ANNUNCIATOR 14/2 TSP FIRE FIGHTERS PHON		7320-1653:201	SPW			6				
		7320-1653:201	SPWK	SPEAKER - WEATHER PROOF	WP F	7				
		7270-0028:196	FST-851	HEAT DETECTOR	H	$\bigcirc$	ß			
		7272-0028:206	FSP-851	SMOKE DETECTOR	s	18	∕∕			
		3242-1653:209	DNR	SMOKE DETECTOR - DUCT	(S) _D	64				
		7260-1728:0121	OSE-SPW	BT BEAM SMOKE DETECTOR - TRANSMITTER	(S) _{bt}	23	A			
		7260-1728:0121	OSI-90	R BEAM SMOKE DETECTOR- RECEIVER	(S) _{BR}	15				
		7165-0028:0243	NFS2-640	P FIRE ALARM CONTROL PANEL	FACP	1				
DRAWING		7315-0028:248	ACPS-610	S REMOTE NOTIFICATION POWER SUPPLY	RNPS	5				
		N/A	N/A	C FIRE ALARM TERMINAL CABINET	FATC	5	A			
1 COVER SHEET	1	N/A	N/A	END OF LINE RESISTOR	M	32				
2 RISER DIAGRAM 3 FIRST FLOOR WEST		7120-0028:209	FDU-80	REMOTE ANNUNCIATOR	RA	2				
4 SECOND FLOOR EAST	4	BY OTHERS	N/A	MAGNETIC DOOR HOLDER	MD	8				
5 SECOND FLOOR WEST 6 THIRD FLOOR EAST		7300-0028:0219	FMM-1	ADDRESSABLE MODULE	AM	19				
7 THIRD FLOOR WEST	7	7300-0028:219	FRM-1	] RELAY MODULE	RM	9				
<ul><li>8 FOURTH FLOOR EAST</li><li>9 FOURTH FLOOR WEST</li></ul>		BY OTHERS	N/A	S WATER FLOW SWITCH	WFS	16				
10 FIFTH FLOOR EAST 11 FIFTH FLOOR WEST		BY OTHERS	N/A	S VALVE TAMPER SWITCH	VTS	22	∕			
12 SIXTH FLOOR EAST	12	7300-0028:0219	FDM-1	DUAL MONITOR MODULE	FDM	21	∕₿			
<ul><li>13 SEVENTH FLOOR EAST</li><li>14 CALCULATIONS</li></ul>	_	7300-0028:0219	FDRM-1	M DUAL RELAY / MONITOR MODULE	FDRM	64				
15 DETAILS		7300-1652:0182	FTM-1	FIRE FIGHTER'S PHONE JACKS	FJ	12				
		7170-0028:223 7170-0028:224	DAA2	2 DIGITAL AUDIO AMPLIFIERS	DAA2	4				
		7300-0028:0219	XP6-R	R SIX RELAY CONTROL MODULE	XP6-R	4				
		7300-0028:0219	XP10-M	0-M TEN-INPUT MONITOR MODULE	XP10-M	1				


	Cor C- ⁻ Tol	Dee 3442 San 10, C	ing - Servi P Bl Emp Luis -16 # e: 88	ice - ue In presa 0bi \$943 38\$6 5\$79	sign - Mon tegra a Driv spo, 465 50004 01◆2	- Ins ation ve S CA 9 AC DB 037	, Inc uite ( )3401 ;O#6	ion 864 AX:	
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013			DATE APPR.
Revisions		2 CRB # 093.1 & FI 99	SFM REVIEW COMMENTS	4 CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	6 AS-BUILT DRAWINGS			SYMIBOL
	DATE: 08/23/2013		SCALE:			URAWING CODE: FA ALL URAWINGS CPCFS			
DESIGNED BY:	Curtis Streeter	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET	NICET IV #102672	PROJECT ENGINEER:	Internal Design Associates INC	
	CENTER FOR SCIENCE AND MATHEMATICS CALIFORNIA STATE POLYTECHNIC UNIVERSITY SAN LUIS OBISPO. CA CSFM #18-40-03-0001								
		F	4	3.			W	7	

# LEGEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 HONE WEST PENN D995


# **A INDEX**

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

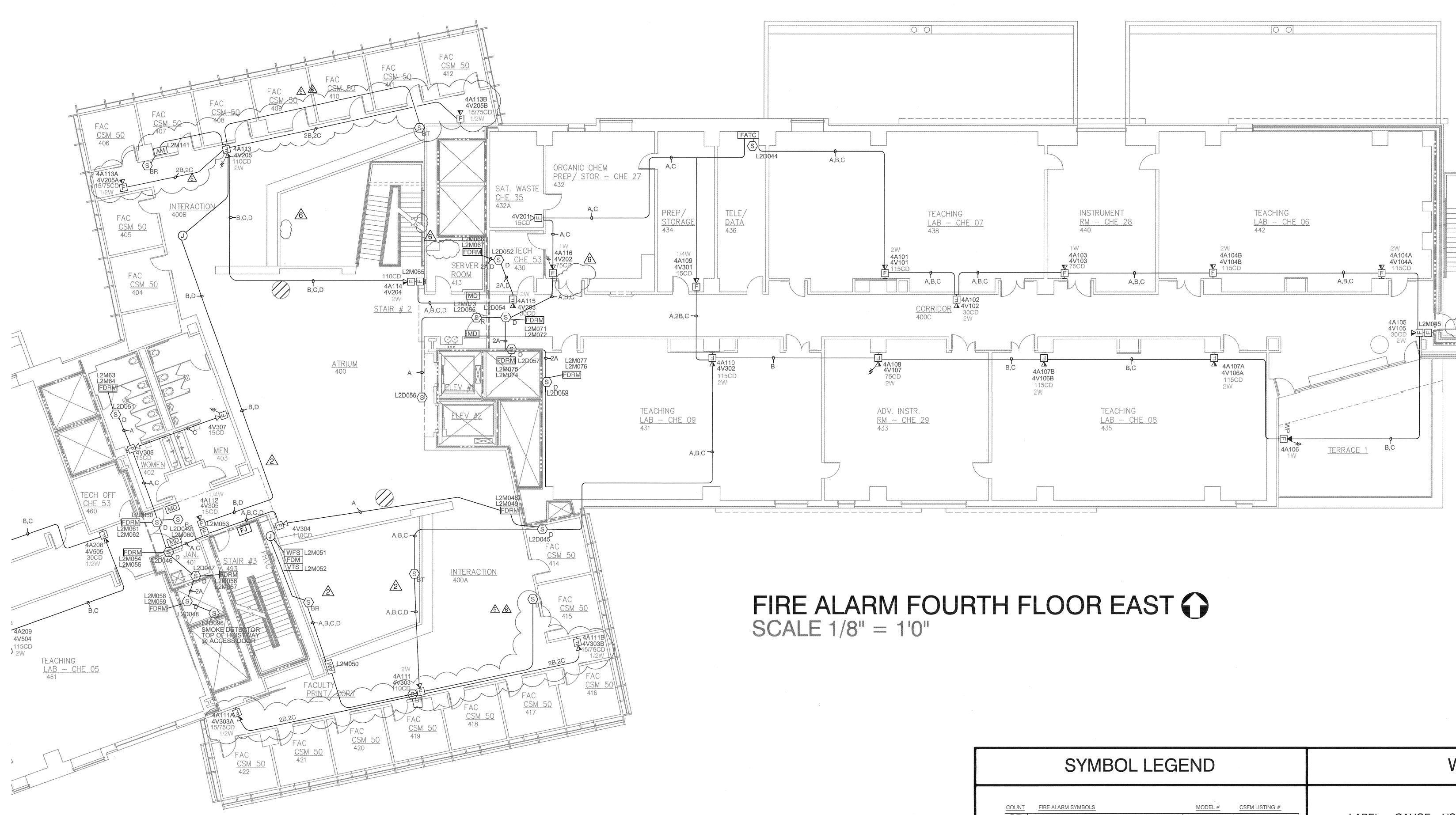


TED STUDIO - CHE 1.0 STUDIO -	TED STUDD D-E LD ABO STUDD D-E LD STUDD D-E LD STU	Image: State of the state
THIRD FLOOR EAST O	WIRING LEGEND	DESIGNED BY:     DATE:     08/23/2013       Curtis Streeter     DRAWN BY:     08/23/2013       DRAWN BY:     DRAWN BY:     SCALE:       Derek Richardson     SCALE:     SCALE:       CHECKED BY:     SCALE:     SCALE:       CHECKED BY:     SCALE:     SCALE:       CURTIS STREETER, SET     MMING CODE:     FAALL DRAWINGS CPCFS       PROJECT IV #102672     MMING CODE:     FAALL DRAWINGS CPCFS       Integral Design Associates INC.     Integral Design Associates INC.
COUNTFIRE ALARM SYMBOLSMODEL #CSFM LISTING #Image: constraint of the symbol of t	LABEL       GAUGE       USE       TYPE (OR EQUIVALENT)         A       16/2 UTP       SLC       WEST PENN D990         B       16/2 TSP       SPEAKER       WEST PENN D991         C       14       NAC VISUAL       THHN         D       14       24 VDC       THHN         E       16/4 TS       ANNUNCIATOR       WEST PENN 993         F       14/2 TSP       FIRE FIGHTERS PHONE       WEST PENN D995	CE AND MATHEMATICS LYTECHNIC UNIVERSITY S OBISPO, CA 18-40-03-0001
32       *       END OF LINE RESISTOR       N/A       N/A         2       IRA       REMOTE ANNUNCIATOR       FDU-80       7120-0028:209         8       MD       MAGNETIC DOOR HOLDER       N/A       BY OTHERS         21       IAM       ADDRESSABLE MODULE       FMM-1       7300-0028:0219         12       IRM       RELAY MODULE       FRM-1       7300-0028:0219         16       IVFS       WATER FLOW SWITCH       N/A       BY OTHERS         10       IVTS       VALVE TAMPER SWITCH       N/A       BY OTHERS         64       FDRM       DUAL MONITOR MODULE       FDM-1       7300-0028:0219         12       FJ       FIRE FIGHTER'S PHONE JACKS       FTM-1       7300-0028:0219         12       FJ       FIRE FIGHTER'S PHONE JACKS       DAA2       71170-0028:223	1COVER SHEETFA 0.02RISER DIAGRAMFA 1.03FIRST FLOOR WESTFA 3.01W4SECOND FLOOR EASTFA 3.02E5SECOND FLOOR WESTFA 3.02W6THIRD FLOOR EASTFA 3.03E7THIRD FLOOR WESTFA 3.03W8FOURTH FLOOR EASTFA 3.04E9FOURTH FLOOR WESTFA 3.04W10FIFTH FLOOR EASTFA 3.05E11FIFTH FLOOR WESTFA 3.05W12SIXTH FLOOR EASTFA 3.06E13SEVENTH FLOOR EASTFA 3.07E14CALCULATIONSFA 4.015DETAILSFA 5.0	CENTER FOR SCIENC ALIFORNIA STATE PO SAN LUI

SHEET 7 OF 15



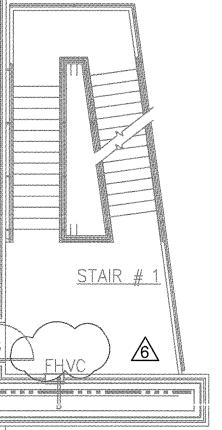
DUNT     FIRE ALARM SYMBOLS       31     F       MANUAL PULL STATION	MODEL #					
		CSFM LISTING #				
	NBG-12LX	7150-0028:0199	LABEL A	GAUGE 16/2 UTP	USE SLC	,
73 F STROBE ONLY	SW	7320-1653:201	B C	16/2 TSP 14	SPEAKER NAC VISUAL	,
165 <b>V</b> SPEAKER/STROBE	SPWS	7320-1653:201	D	14	24 VDC	
6 F SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS 14/2 TSP	ANNUNCIATOR FIRE FIGHTERS PHONE	
7 WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201				
0 (H) HEAT DETECTOR	FST-851	7270-0028:196				
18 S SMOKE DETECTOR	FSP-851	7272-0028:206				
64 $\langle S \rangle_{D}$ SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
23 (S) BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			DRAWING IN	U
4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A				
32 美 END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	F
2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2 3	FIRST FLOOR WEST	F
8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS		4	SECOND FLOOR EAST	F
21 AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219		6	THIRD FLOOR EAST	F
12 RM RELAY MODULE	FRM-1	7300-0028:219		7	THIRD FLOOR WEST FOURTH FLOOR FAST	F
16 WFS WATER FLOW SWITCH	N/A	BY OTHERS		9	FOURTH FLOOR WEST	F
10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS		10 11	FIFTH FLOOR EAST FIFTH FLOOR WEST	F
21 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219		12	SIXTH FLOOR EAST	F
64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13	CALCULATIONS	F
12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		15	DETAILS	F
4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
1 XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				
	7       WP F       SPEAKER - WEATHER PROOF         0       (H)       HEAT DETECTOR         18       (S)       SMOKE DETECTOR         64       (S)       D         64       (S)       MOKE DETECTOR         7       (S)       BEAM SMOKE DETECTOR - DUCT         7       (S)       BEAM SMOKE DETECTOR - DUCT         7       (S)       BEAM SMOKE DETECTOR - TRANSMITTER         15       (S)       BR       BEAM SMOKE DETECTOR - TRANSMITTER         15       (S)       BR       BEAM SMOKE DETECTOR - RECEIVER         1       (FACP)       FIRE ALARM CONTROL PANEL       E         10       (FATC)       FIRE ALARM TERMINAL CABINET       E         12       (RM)       RELAY MODULE       E         14       (DAA)       DADRESSABLE MODULE       E         15       VALVE TAMPER SWITCH       E       E	7       WP I SPEAKER - WEATHER PROOF       SPWK         0       H HEAT DETECTOR       FST-851         18       S SMOKE DETECTOR       FSP-851         64       S D SMOKE DETECTOR - DUCT       DNR         23       S BT BEAM SMOKE DETECTOR - TRANSMITTER       OSE-SPW         15       S BR       BEAM SMOKE DETECTOR - RECEIVER       OSI-90         1       IFACP       FIRE ALARM CONTROL PANEL       NFS2-640         5       IRNPS       REMOTE NOTIFICATION POWER SUPPLY       ACPS-610         64       IFATC       FIRE ALARM TERMINAL CABINET       N/A         20       END OF LINE RESISTOR       N/A         21       FAA       REMOTE ANNUNCIATOR       FDU-80         8       MD       MAGNETIC DOOR HOLDER       N/A         21       FAM       ADDRESSABLE MODULE       FRM-1         12       IEM       RELAY MODULE       FRM-1         14       WES       WATER FLOW SWITCH       N/A         21       FDM       DUAL MONITOR MODULE       FDM-1         14       IDAA2       DIGITAL AUDIO AMPLIFIERS       DAA2         14       IDAA2       DIGITAL AUDIO AMPLIFIERS       DAA2	7         WP         SPEAKER - WEATHER PROOF         SPWK         7320-1663:201           0         H         HEAT DETECTOR         FST-861         7220-0028:198           18         (S)         SMOKE DETECTOR         FSP-851         7272-0028:206           64         (S)         SMOKE DETECTOR         DNR         3242-1663:209           23         (S)         BEAM SMOKE DETECTOR - DUCT         DNR         3242-1663:209           23         (S)         BEAM SMOKE DETECTOR - TRANSMITTER         OSE-SPW         7260-1728:0121           15         (S)         BEAM SMOKE DETECTOR - RECEIVER         OSI-80         7280-1728:0121           15         (S)         BR         BEAM SMOKE DETECTOR - RECEIVER         OSI-80         7280-1728:0121           16         (FACP)         FIRE ALARM CONTROL PANEL         NFS2-640         7165-0028:023         5           17         (FACP)         FIRE ALARM TERMINAL CABINET         N/A         N/A         N/A           21         FATC         FIRE ALARM TERMINAL CABINET         N/A         N/A         N/A           22         END OF LINE RESISTOR         N/A         N/A         N/A         S           23         (MD         MAGNETIC DOOR HOLDER         FMM-	7         WP II         SPEAKER - WEATHER PROOF         SPWK         7320-1633-201           0         (F)         HEAT DETECTOR         FST-851         7270-028-196           18         (S)         SMOKE DETECTOR         FST-851         7272-028-2806           18         (S)         SMOKE DETECTOR         FST-851         7272-028-2806           18         (S)         SMOKE DETECTOR - DUCT         DNR         3242-1653-209           23         (S)         FBT BEAM SMOKE DETECTOR - TRANSMITTER         0SE-SPW         7280-1728-0121           15         (S)         BR         BEAM SMOKE DETECTOR - TRANSMITTER         0SE-SPW         7280-1728-0121           15         (S)         BR         BEAM SMOKE DETECTOR - RECEIVER         0SI-90         7260-1728-0121           16         (FACE)         FIRE ALAPM CONTROL PANEL         NFS2-840         7136-0028-248           16         [FACE)         FIRE ALAPM CONTROL PANEL         N/A         N/A           2         ERA         REMOTE NOTIFICATION POWER SUPPLY         ACPS-610         7316-0028-208           32         END OF LINE RESISTOR         N/A         N/A         N/A           2         IEA         REMOTE ANNUNCIATOR         FDU-90         7120-0028-2019 <td>7         WF III         SPEAKER - WEATHER PROOF         SPWK         7380-1653.201           0         (H)         HEAT DETECTOR         FST-851         7270-0028.196           18         (S)         SMOKE DETECTOR         FST-851         7270-0028.196           18         (S)         SMOKE DETECTOR         FST-851         7270-0028.206           23         (S)         D         SMOKE DETECTOR - DUCT         DNR         3242-1663.201           15         (S)         BR         DEAM SMOKE DETECTOR - RECEIVER         OSI-90         7260-1728.0121           16         (S)         BR         DEAM SMOKE DETECTOR - RECEIVER         OSI-90         7260-1728.0121           17         (FACE)         FIRE ALARM CONTROL PANEL         N-FS240         7165-0028.0248           10         (FATE)         FREADER MONTONE OPWER SUPPLY         ACPS-610         7315-0028.248           2         (FAC)         REMOTE ANNUNCIATOR         FDU-80         7120-0028.299         3           2         (FAC)         REMOTE ANNUNCIATOR         FDU-80         7120-0028.299         3           3         (MD)         MAGHETIC DOOR HOLDER         N/A         8Y OTHERS         5           41         MOD DESSABLE MODULE</td> <td>7         9⁺ E         3⁺ EARDER WEATHER PRIOD         5⁺ W/K         7350 1483 301           0         (C)         HEAT DETEOTOR         FBT 651         7227-002 200           1         (C)         HEAT DETEOTOR         FBT 651         7227-002 200           2         (C)         SMORE DETECTOR         DNP         SMORE DETECTOR         DNP           3         (C)         (C)         FBT 643         7270-020 200         DOE           3         (C)         (C)         DNP         SMORE DETECTOR         DNN           3         (C)         (C)         (C)         DNN         SMORE DETECTOR         DNN           1         (EC)         RREALARM CONTROL PANEL         MF02-40         /166-0285-204         DRAWING INIT           1         (EC)         RARAM CONTROL PANEL         MF02-40         /166-0285-204         RISER DIAGRAM           2         (EC)         REMOTE NOTIFICATION FOWER SUPPLY         ACP6-510         7315-029-204         PARAMAN         DRAWING INIT           2         (EC)         MAGNETIC DOOR HOUSER         N/A         N/A         2         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISE</td>	7         WF III         SPEAKER - WEATHER PROOF         SPWK         7380-1653.201           0         (H)         HEAT DETECTOR         FST-851         7270-0028.196           18         (S)         SMOKE DETECTOR         FST-851         7270-0028.196           18         (S)         SMOKE DETECTOR         FST-851         7270-0028.206           23         (S)         D         SMOKE DETECTOR - DUCT         DNR         3242-1663.201           15         (S)         BR         DEAM SMOKE DETECTOR - RECEIVER         OSI-90         7260-1728.0121           16         (S)         BR         DEAM SMOKE DETECTOR - RECEIVER         OSI-90         7260-1728.0121           17         (FACE)         FIRE ALARM CONTROL PANEL         N-FS240         7165-0028.0248           10         (FATE)         FREADER MONTONE OPWER SUPPLY         ACPS-610         7315-0028.248           2         (FAC)         REMOTE ANNUNCIATOR         FDU-80         7120-0028.299         3           2         (FAC)         REMOTE ANNUNCIATOR         FDU-80         7120-0028.299         3           3         (MD)         MAGHETIC DOOR HOLDER         N/A         8Y OTHERS         5           41         MOD DESSABLE MODULE	7         9 ⁺ E         3 ⁺ EARDER WEATHER PRIOD         5 ⁺ W/K         7350 1483 301           0         (C)         HEAT DETEOTOR         FBT 651         7227-002 200           1         (C)         HEAT DETEOTOR         FBT 651         7227-002 200           2         (C)         SMORE DETECTOR         DNP         SMORE DETECTOR         DNP           3         (C)         (C)         FBT 643         7270-020 200         DOE           3         (C)         (C)         DNP         SMORE DETECTOR         DNN           3         (C)         (C)         (C)         DNN         SMORE DETECTOR         DNN           1         (EC)         RREALARM CONTROL PANEL         MF02-40         /166-0285-204         DRAWING INIT           1         (EC)         RARAM CONTROL PANEL         MF02-40         /166-0285-204         RISER DIAGRAM           2         (EC)         REMOTE NOTIFICATION FOWER SUPPLY         ACP6-510         7315-029-204         PARAMAN         DRAWING INIT           2         (EC)         MAGNETIC DOOR HOUSER         N/A         N/A         2         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISER DIAGRAM         RISE


	3 C-1 Toll	Dee 3442 San 0, C	ing - Servi Emp Luis -16 # 805	Des ce - ue In oresa Obis 9434 88 \$6 5 \$79	ign - Mon tegra a Driv spo, 465 0004 1 <b>*</b> 2	egr Inst itorin ation, ve Su CA 9 AC DBI 037 gratic	allat Ig lite C 3401 O#68	ion 364 AX:	
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013		DATE APPR.	
Revisions		2 CRB # 093.1 & FI 99	3 SFM REVIEW COMMENTS	▲ CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	6 AS-BUILT DRAWINGS		SYMIBOL DESCRIPTION	
	Curtis Streeter DATE: 08/23/2013	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET		PROJECT ENGINEER:	Integral Design Associates INC.	
					SAN LUIS OBISPO, CA	CSFM #18_40_03_0001			
			A		- •	)4	W	/	

END

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

# DEX


FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0



### SHEET NOTES

- PROVIDE FIRE ALARM BEAM DETECTORS TRANSMITTER AND RECEIVER. INTERLOCK WITH SMOKE EVACUATION SYSTEM SUCH THAT WHEN BEAM DETECTOR IS ACTIVATED, SMOKE EVACUATION SYSTEM IS ACTIVATED. REFER TO DETAIL 4 & 5/FA5.0.
- 2 ACTIVATION OF A MANUAL PULL STATION, BEAM DETECTOR OR SPRINKLER WATER FLOW WITHIN THE ATRIUM SHALL ACTIVATE ATRIUM SMOKE EVACUATION SYSTEM. SMOKE EVACUATION SYSTEM SHALL FUNCTION AS DIRECTED BY MECHANICAL DOCUMENTS. REFER TO DETAIL 9/M5.05 FOR ADDITIONAL INFORMATION.
- 3 ACTIVATION OF AN ALARM ANYWHERE WITHIN THE BUILDING SHALL SHUT DOWN ALL AIR HANDLING UNITS.
- 4 ACTIVATION OF THE ATRIUM SMOKE CONTROL SYSTEM SHALL OPEN ALL ATRIUM DOORS WITH MOTORIZED DOOR OPERATORS.

		SYMBOL LEGE		WIRING LEG	
	<u>COUNT</u> <u>FIF</u>	RE ALARM SYMBOLS	MODEL #	<u>CSFM LISTING #</u>	
$\bigtriangleup$	(31) E	MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL GAUGE USE A 16/2 UTP SLC
	73 F	7 STROBE ONLY	SW	7320-1653:201	B 16/2 TSP SPEAKER
	165 F	SPEAKER/STROBE	SPWS	7320-1653:201	C 14 NAC VISUAL D 14 24 VDC
	6 F		SPW	7320-1653:201	D 14 24 VDC E 16/4 TS ANNUNCIATOR F 14/2 TSP FIRE FIGHTERS PHON
	7 WP	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	
$\bigtriangleup$	0 (H	HEAT DETECTOR	FST-851	7270-0028:196	
ß	18 (5	SMOKE DETECTOR	FSP-851	7272-0028:206	
	64 (S	SMOKE DETECTOR - DUCT	DNR	3242-1653:209	
A	- N - / I	BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	
	15 S _B	R BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	
	1 [FAC	P FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243	DRAWING IN
	5 RNI	PS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DNAVING IN
Â	4 FAT	C FIRE ALARM TERMINAL CABINET	N/A	N/A	
	32 考	END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA
	2 R/	A REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 3 FIRST FLOOR WEST FA
	8 MI	D MAGNETIC DOOR HOLDER	N/A	BY OTHERS	4 SECOND FLOOR EAST FA 5 SECOND FLOOR WEST FA
	21 AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219	6 THIRD FLOOR EAST FA
		M RELAY MODULE	FRM-1	7300-0028:219	7 THIRD FLOOR WEST FA 8 FOURTH FLOOR EAST FA
	16 WF	S WATER FLOW SWITCH	N/A	BY OTHERS	9 FOURTH FLOOR WEST FA
		S VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 11 FIFTH FLOOR WEST FA
ß	21 FD	M DUAL MONITOR MODULE	FDM-1	7300-0028:0219	12 SIXTH FLOOR EAST FA 13 SEVENTH FLOOR EAST FA
	64 FDF	M DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	14 CALCULATIONS FA
	12 F.	J FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	15 DETAILS FA
	4 [DA	A2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224	
١		3-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219	
		10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	



## GEND

NE

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

### NDEX

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

Blue **Consulting - Design - Installation** Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888 \$6000 \$DBI FAX: 805�791�2037 www.deepblueintegration.com 8 4 2 0 HEMATICS UNIVERSI CENTER FOR SCIENCE AND MAT ALIFORNIA STATE POLYTECHNIC SAN LUIS OBISPO, CA U SHEET ID FA 3.04E SHEET 9 OF 15

# GENERAL NOTES

1. NOTIFICATION DEVICES CANNOT BE T-TAPPED. ADDRESSABLE (IDC) DEVICES CAN BE T-TAPPED. ALL FIRE ALARM CABLING SHALL SHALL BE RUN FROM DEVICE TO DEVICE, WITH NO SPLICES. ANY REQUIRED TERMINATIONS MUST BE MADE IN APPROVED BOX.

2. ALL INTERIOR INITIATING DEVICES, NOTIFICATION DEVICES, AND MODULES REQUIRE 4"SQUARE SPECIAL DEEP BACK BOXES U.O.N.

3. PANEL BACK BOXES AND OTHER LISTED BACK BOXES SHALL BE PROVIDED TO THE EC BY DBI. ALL CONTROL PANELS, POWER SUPPLIES, AND BATTERY BOXES SHALL UTILIZE ONLY FACTORY KNOCKOUTS NEAR THE TOP OF THE CAN TO ALLOW PLACEMENT OF BATTERIES.

4. ALL FIRE ALARM CONDUIT TO BE  $\frac{3}{4}$ " EMT MINIMUM U.O.N. FIRE ALARM CONDUIT SHALL BE SEPARATE FROM CONDUIT SYSTEM FOR SECURITY ALARM CABLING AND OTHER SYSTEMS.

5. WALL MOUNT AUDIO/VISUAL DEVICES SHALL BE MOUNTED 80" AFF TO BOTTOM OF THE STROBE LENS.

6. MANUAL PULL STATIONS SHALL BE MOUNTED 48" AFF TO CENTERLINE OF BOX. MPS SHALL BE DOUBLE ACTION AND KEYED THE SAME AS THE FACP.

7. DEDICATED 120 VAC CIRCUIT WITH LOCKOUT @ BREAKER TO BE PROVIDED BY OTHERS AT LOCATION OF PANELS AND POWER SUPPLIES.

8. KNOX BOX, PIV, SUPERVISORY SWITCHES, FLOW SWITCHES, SOLENOIDS, AND SPRINKLER BELLS SHALL BE PROVIDED BY OTHERS.

9. SMOKE DETECTORS SHALL NOT BE PLACED WITHIN 3' OF ANY SUPPLY AIR REGISTER OR WHERE THE AIR MOVEMENT EXCEEDS THE MANUFACTURER'S LISTING.

10. FIRE FIGHTER TELEPHONE RISER IS CLASS A, STYLE Z

11. VOLTAGE DROP CALCULATIONS FOR NOTIFICATION DEVICES ARE BASED ON THE LAYOUT SHOWN. DEVIATION FROM THESE PLANS COULD RESULT IN ADDITIONAL CONDUIT WORK, REENGINEERING, UPSIZED CABLE AND/OR ADDITIONAL POWER REQUIREMENTS.

12. PAINT ALL FIRE ALARM JUNCTION BOXES AND COVERS RED IN UNFINISHED AREAS (IE ABOVE CEILINGS, MECHANICAL ROOMS ETC.) IN FINISHED AREAS CONDUIT AND JUNCTION BOXES CAN BE PAINTED TO MATCH THE ROOM FINISH, THE INSIDE COVER IF THE JUNCTION BOX MUST BE IDENTIFIED AS "FIRE ALARM" AND THE CONDUIT MUST HAVE PAINTED RED BANDS  $\frac{3}{4}$ " WIDE AT 10' CENTERS AND AT EACH SIDE OF A FLOOR, WALL, OR CEILING PENETRATION.

13. UPON COMPLETION OF INSTALLATION OF THE FIRE ALARM SYSTEM A SATISFACTORY TEST OF THE ENTIRE SYSTEM SHALL BE MADE IN THE PRESENCE OF THE AUTHORITY HAVING JURISDICTION (AHJ).

14. ALL NOTIFICATION DEVICES SHALL BE SYNCHRONIZED.

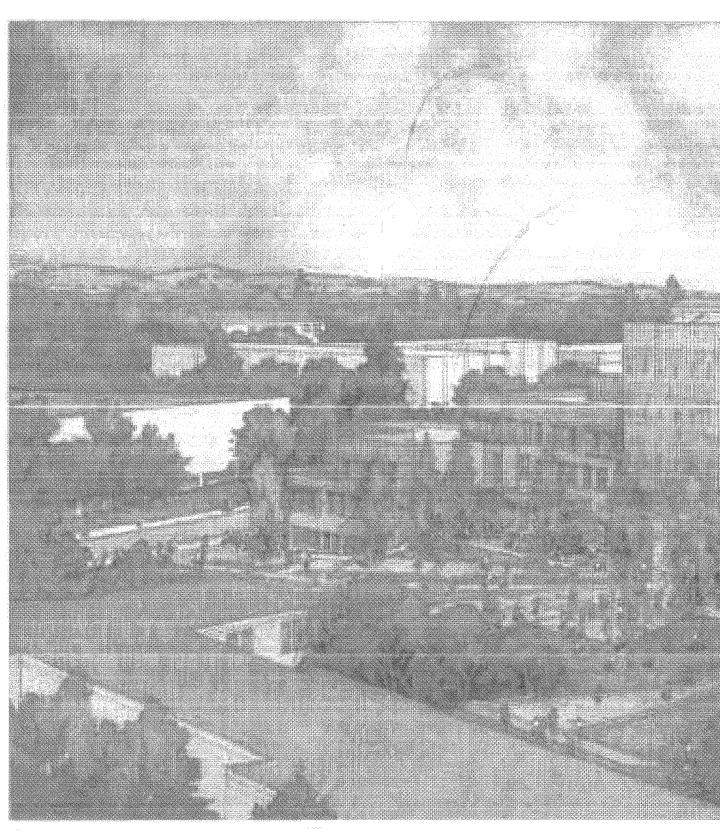
15. A STAMPED SET OF APPROVED FIRE ALARM PLANS SHALL BE AT THE JOBSITE AND USED FOR INSTALLATION.


16. SIGNALING LINE CIRCUIT IS CLASS B, STYLE 4

17. NOTIFICATION APPLIANCE CIRCUIT IS CLASS B, STYLE Y

18. ALL SMOKE DETECTORS SHALL BE INSTALLED AT LEAST 1'-0" FROM FLUORESCENT LIGHT FIXTURES TO AVOID UNWANTED ALARMS AND SHALL BE INSTALLED IN AREAS THAT DO NOT EXCEED THE MANUFACTURE'S OPERATING TEMPERATURE RANGE BETWEEN 32°F AND 120°F.

# CODE REGULATIONS


CALIFORNIA CODE REGULATIONS	
APPLICABLE CODES	
2007 BUILDING STANDARDS ADMINISTRATIVE CODE	TITLE 24 PART 1
2007 CALIFORNIA BUILDING CODE (CBC)	TITLE 24 PART 2
2007 CALIFORNIA ELECTRICAL CODE (CEC)	TITLE 24 PART 3
2007 CALIFORNIA MECHANICAL CODE (CMC)	TITLE 24 PART 4
2007 CALIFORNIA PLUMBING CODE (CPC)	TITLE 24 PART 5
2007 CALIFORNIA ENERGY CODE	TITLE 24 PART 6
2007 CALIFORNIA ELEVATOR SAFETY CONSTRUCTION CODE	TITLE 24 PART 7
2007 CALIFORNIA HISTORICAL BUILDING CODE	TITLE 24 PART 8
2007 CALIFORNIA FIRE CODE (CFC)	TITLE 24 PART 9
2007 CALIFORNIA REFERENCED STANDARDS CODE	TITLE 24 PART 12
APPLICABLE STANDARDS & GUIDELINES	
2007 AUTOMATIC SRINKLER SYSTEMS	NFPA 13
2007 STATIONARY PUMPS	NFPA 20
2007 NATIONAL FIRE ALARM CODES (CALIFORNIA AMENDED)	NFPA 72
2007 STANDARD FOR INSTALLATION OF AIR-CONDITIONING	NFPA90A
2007 STANDARD FOR INSTALLATION OF WARN AIR HEATING	NFPA 90B
2006 STANDARD FOR SMOKE-CONTROL SYSTEMS UTILIZING BARRIERS AND PRESSURE DIFFERENCES	NFPA 92A
STANDARD FOR SMOKE MANAGEMENT SYSTEMS IN MALLS, 2005	NFPA 92B



4

# **CENTER FOR SCIENCE AN** CALIFORNIA STATE POLYTE SAN LUIS OBISPO, CAL FIRE ALARM & EMERGENCY COMM

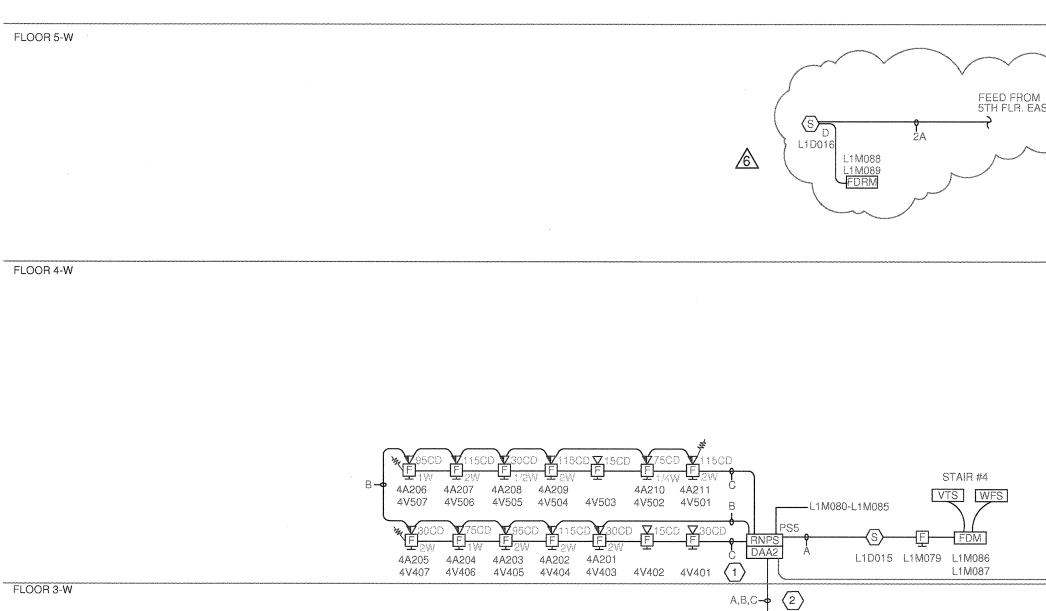
# SITE PLAN

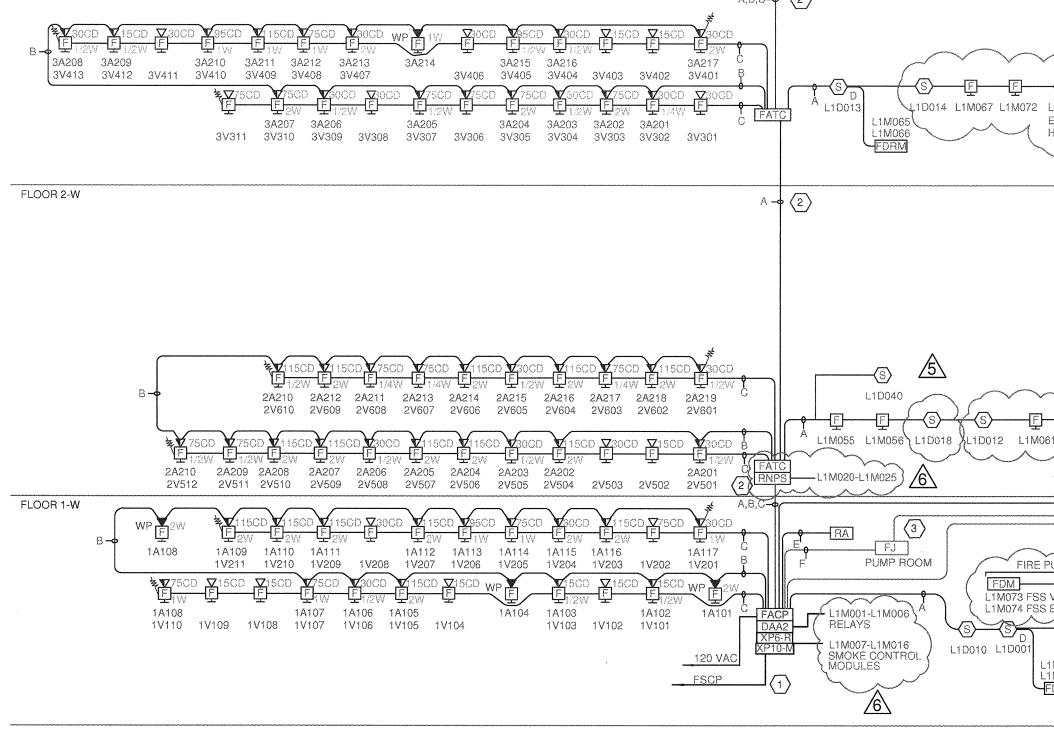


### **CENTER FOR SCIEN**

# **PROJECT DESCRI**

- 1. OCCUPANCY TYPE: A, B, AND H3
- 2. SYSTEM TYPE: CLASS B, ADDRESSABLE, MANUAL
- 3. METHOD OF COMMUNICATION: TELEPHONE
- 4. SCOPE OF WORK: FIRE ALARM & VOICE EVACUATION SYST

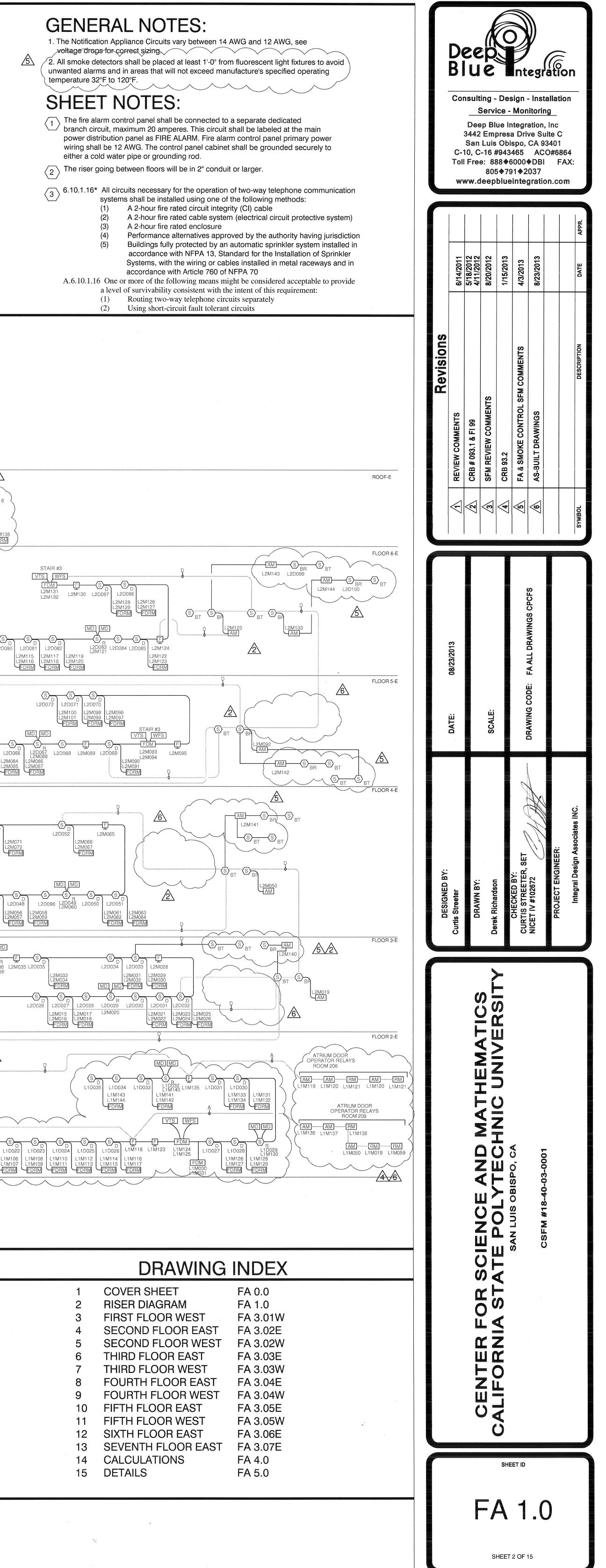

# SEQUENCE OF OPERATIO


			×					
							. Ć	The state
						4	Ň	
						Ŷ		/
							_ /	/ /
			SOL AND			<u>/</u> _`	<u>کر</u>	
						\$/	``\\`	1
				/	$\langle \eta \rangle$	$\sqrt{3}$	7.C)	<u>/</u>
				/	V.,	$\mathbb{N}_{\mathbb{Z}}$	:Vaš	\$7
				() () ()	K)	(7 ² )		
			1à	$\mathbb{Z}^{\mathbb{Z}}$	X	X de		/;
			\$ ⁰ /{	$\mathcal{O}_{c}$	<u>```</u>	£7.	~//	£)/
		$\langle g \rangle$	Ś		<u> 1</u>	XŠ.	(ssp)	$\langle \diamond \rangle$
EVENT	/ 2	\$%	2/2	<u>}</u> /{{	\$%	S/~	<u>5) / X</u>	Ľ,
		$\langle \cdots \rangle$	E CHI H		`	<u> </u>		
FIRE ALARM CONTROL UNIT					****			
PANEL SUPERVISORY CONDITION (TEST BYBASS) ON ACM-24 AT	X				X			
PANEL TROUBLE CONDITION (AC POWER FAIL, LOW BATTERY, OPEN CIRCUIT, GROUND FAULT, ETC.)		+ x			X	1	<u> </u>	
PANEL ALARM CONDITION			X	X	X		X	
MANUAL PULL STATION ACTIVATION		+	X	X	X			
SPOT SMOKE DETECTOR ACTIVATION		****	X	Х	X			
DUCT SMOKE DETECTOR ACTIVATION		1	X	Х	X	1		
AIR HANDLING UNIT DUCT SMOKE DETECTOR ACTIVATION		-	X	Х	X		X	
SPRINKLER TAMPER SWITCH	X	1	1		X	1		<b> </b>
SPRINKLER WATER FLOW ACTIVATION		1	X	Х	Х	1		
FIRE PUMP RUNNING		1	X	Х	Х	1		
FIRE PUMP LOSS OF PH ASE	Х				X			human
FIRE PUMP PHASE REVERSAL	X		1		X			
HEAT DETECTOR ACTIVATION (ELEVATOR EQUIPMENT)			X	X	X	X		
ELEVATOR LOBBY/ EMR SMOKE / ELEVATOR HOISTWAYS			X	Х	X			X
SHUNT TRIP POWER SUPERVISION	X				X			
GENERAL ALARM (ANYWHERE WITHIN THE BUILDING)			X	X	X		X	
ATRIUM SMOKE CONTORL SYSTEM ALARM		ļ	X	Х	X			L
BEAM SMOKE DETECTION WITHIN ATRIUM			X	Х	X			Ļ
PULL STATION WITHIN ATRIUM		ļ	X	Х	X	ļ	ļ	ļ
SPRINKLER WATER FLOW WITHIN ATRIUM		<u> </u>	X	X	X	<u> </u>		

	SYMBOL LEG	END			K	3	
ND MATHEMATICS	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #	De Bl	ep ue	Integra	
ECHNIC UNIVERSITY	31   F   MANUAL PULL STATION	NBG-12LX	7150-0028:0199	Con		esign - Install	lation
_IFORNIA 93407	73 F STROBE ONLY	SW	7320-1653:201	3	Deep Blue	- Monitoring Integration, Ir sa Drive Suite	nc
MUNICATION SYSTEM	165 V SPEAKER/STROBE	SPWS	7320-1653:201	C-1	San Luis O 0, C-16 #94 Free: 8884	bispo, CA 934 I3465 ACO≴ ♦6000♦DBI	01 #6864
	6 F SPEAKER ONLY	SPW	7320-1653:201	WW		791 <b>\$2037</b> Jeintegration	.com
	7 WP F SPEAKER - WEATHER PROOF	SPWK	7320-1653:201				PPR.
	(H) HEAT DETECTOR	FST-851	7270-0028:196		12 12	2 0 0 0	
	18 (S) SMOKE DETECTOR	FSP-851	7272-0028:206	6/14/20	5/18/201 4/11/201 8/20/201	4/3/2013 8/23/2015	DATE
	64 (S) SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
	23 (S) BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	ons		NTS	PTION
	15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	Revisions		A COMMENTS	DESCRIF
	1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243		MENTS	rrol sfm GS	
	5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	COMMENTS	# 093.1 & FI 99 REVIEW COMMENTS	DRAWINGS	
	4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A	REVIEW (	CRB # 093.1 & FI 99 SFM REVIEW COMM	FA & SMOKE AS-BUILT DR	
	32 美 END OF LINE RESISTOR	N/A	N/A				6
	2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209				SYMB
	8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS				
	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219			ocFS	
	12 RM RELAY MODULE	FRM-1	7300-0028:219			<b>WINGS CF</b>	
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS	23/2013		ALL DRAV	
	10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	08/2		DE: FA	
NCE	1 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	DATE:	SCALE:	WING CO	
	64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	D	sc	DRA	
RIPTION	12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182				
	4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				INC.
	1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				sociates
TEMS	A XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	3Y:		P ER. SET	VGINEER: Design As
				DESIGNED   s Streeter	DRAWN BY: k Richardson	CHECKED B TIS STREET ET IV #102675	PROJECT E
	WIRING LEG	iEND		Curtis	Dere	CHE CURTIS NICET IV	
	LABEL GAUGE USE	TYPE (OR EQU	•		$\succ$	orandi eta in 1000 ang an Marandi Pangana	
	A 16/2 UTP SLC B 16/2 TSP SPEAKER C 14 NAC VISUAL	WEST PENN D WEST PENN D THHN			SCS		
	D 14 24 VDC E 16/4 TS ANNUNCIATOR	THHN WEST PENN 9			ATIC ER		
ONS MATRIX	F 14/2 TSP FIRE FIGHTERS PHONE	WEST PENN D	995		NN/		
					E E E C E		
					<b>A</b> MA		
	DRAWING IN					0, CA -0001	
					M T T	OBISP -40-03-	
	1 COVER SHEET	FA 0.0			NC NC	I LUIS FM #18	
	3 FIRST FLOOR WEST	FA 1.0 FA 3.01W				SAN	
CINPLOC CINVAC AND	5 SECOND FLOOR WEST	FA 3.02E FA 3.02W FA 3.03E			s sc TAT		
	7 THIRD FLOOR WEST	FA 3.03W FA 3.04E			U U U U U U		
X     X       X     X       X     X       X     X       X     X	10 FIFTH FLOOR EAST	FA 3.04W FA 3.05E					
X     X       X     X       X     X       X     X	12 SIXTH FLOOR EAST	FA 3.05W FA 3.06E FA 3.07E			ЩЩС		
X     X       X     X       X     X	14 CALCULATIONS	FA 4.0 FA 5.0					
X     X     X       X     X     X       X     X     X       X     X     X       X     X     X		1 /					
	A.7 - 131	Jí			S	HEET ID	
2 3 4					<b>,</b>		
					FA	4-0	
		VER S	HEET		SHEE	T 1 OF 15	
				C.			

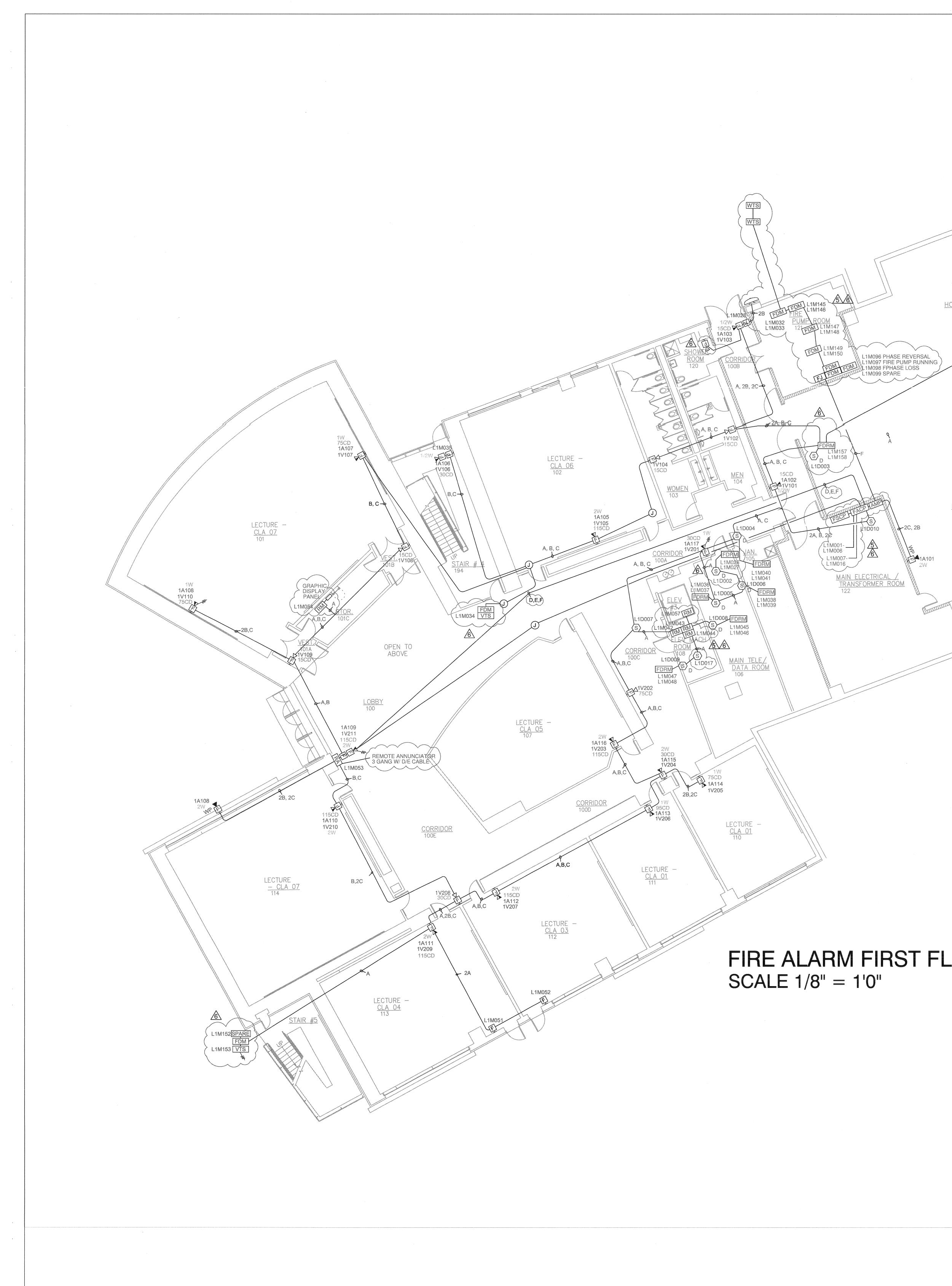
### SYMBOL LEGEND

		FIRE AL	ARM SYMBOLS	MODEL #	CSFM LISTING #
	31	F	MANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	L F	STROBE ONLY	SW	7320-1653:201
	165	F	SPEAKER/STROBE	SPWS	7320-1653:201
	6	F	SPEAKER ONLY	SPW	7320-1653:201
	7	WP F	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201
A	0	(H)	HEAT DETECTOR	FST-851	7270-0028:196
5	18	S	SMOKE DETECTOR	FSP-851	7272-0028:206
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209
Δ	23		BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121
	15	(S) _{BR}	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
	1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
	4	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A
	32	草	END OF LINE RESISTOR	N/A	N/A
	2	RA	REMOTE ANNUNCIATOR	FDU-80	7120-0028:209
	8	MD	MAGNETIC DOOR HOLDER	N/A	BY OTHERS
	21	AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219
	12	RM	RELAY MODULE	FRM-1	7300-0028:219
	16	WFS	WATER FLOW SWITCH	N/A	BY OTHERS
	10	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS
A	21	[FDM]	DUAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12		FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224
		XP6-R	SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219
4	1	XP10-M	TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219





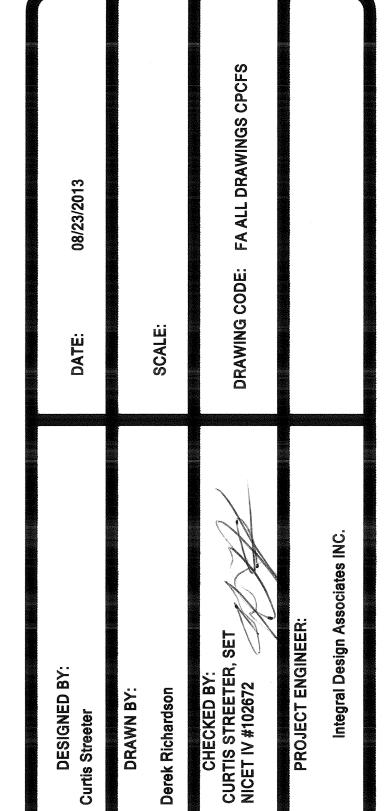

WEST

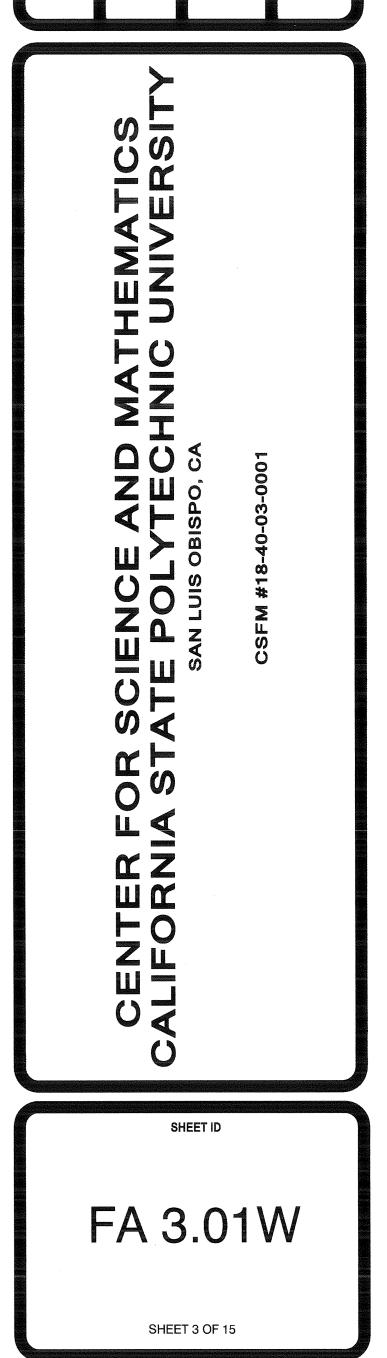

# FIRE ALARM RISER DIAGRAM NTS

	ļ	4					
	7120-0028:209						
	BY OTHERS						
	7300-0028:0219						
	7300-0028:219						
	BY OTHERS						
	BY OTHERS						
	7300-0028:0219						
	7300-0028:0219						
~	7300-1652:0182					STAIR 3	
	7170-0028:223 7170-0028:224					<b>Y</b> 5/7	<u>/6)</u>
_	7300-0028:0219					6A116A 6V313A	10CD ASOCD ZISCD ZISCD Z
_	7300-0028:0219					FF 6A116B	5CD $6A116$ $6A115$ $6V212$ $6V211$ $6V210$ $6V210$
						6A116B 6V313B	
						¢	
~							110CD ¥30CD ▼ 15CD ▼ 15CD ▼
~~~						STA	₩ [™] ┍ <u>-¹₽_{2₩} </u> <u>₽</u> _{1/4₩} <u>₽</u> <u>₽</u> <u>₽</u>
S							$\left\{ \begin{array}{c} \mathbf{v}_{15/75CD} \mathbf{v}_{15/75CD} \\ \mathbf{F}_{1/2W} \mathbf{F}_{1/2W} \end{array} \right\}$
							5A115B 5A115A 5V313B 5V313A F
							(
		STAIR 4					
						[FJ]	B - •
							FT75CD FT15CD
							4A108 4A107B 4 4V107 4V106B 4
		e F				6 -F	
							B→ B→ B→ B→ B→ B→ B→ B→ B→ B→
		· FJ				FJ	3V211 3V210 3V2 3V211 3V210 3V2 3V211 3V210 3V2
EL H(LEV. #3 DISTWAY						3A109 3A108 3A107 3A1 3V112 3V111 3V110 3V1
••••							
		₽ -F				6 -F	B & & & & 22 2A12 2V411 2V410 2V40
							× 11500 1500 ▼1 F2W F1/4W F1 2A120 2A119
	Â	3				3	2A120 2A119 2V311 2V310 2V30
~						FJ IN ATF	B- - RIUM 2A10 2V20
1	L1M062 L1M063						2020 ₩ \Z30CD \Z30CD \Z15CD \Z3 F F F
							도 도구W 도 도 2A107 2V111 2V110 2V109 2V10
	A A F			GRAPHIC DISPLAY	STAIR #5		
	MP MONITOR	STAIR #4		RM F L1M054 L1M053 L1M	M052 L1M051 L1M052 L1M053		
s, S	ALVES L1M075 1ST FLOOR YPASS L1M076 VALVE TAM		{\$ <u>}_{</u> {\$}_ <u>{</u> }_{ <u></u>	()	<u>56</u>		
		6 L1M098 L1M033 L1M035 7 L1M099 L1M034	L1M026 L1M036 L1M038	L1D007 L1M042 L1M043 L L1M040 (EM)	2008 L1D017 L1D009	7	ſ
D	1017 L1M157 L1M097 1018 L1M158 RM FDRM	(AM) L1M032 OS&Y	L1M027 FDRM FDRM FDRM	EDRM	CIMO46 LIMO46 FDRM FDRM	8	
							real sector of the sector of t

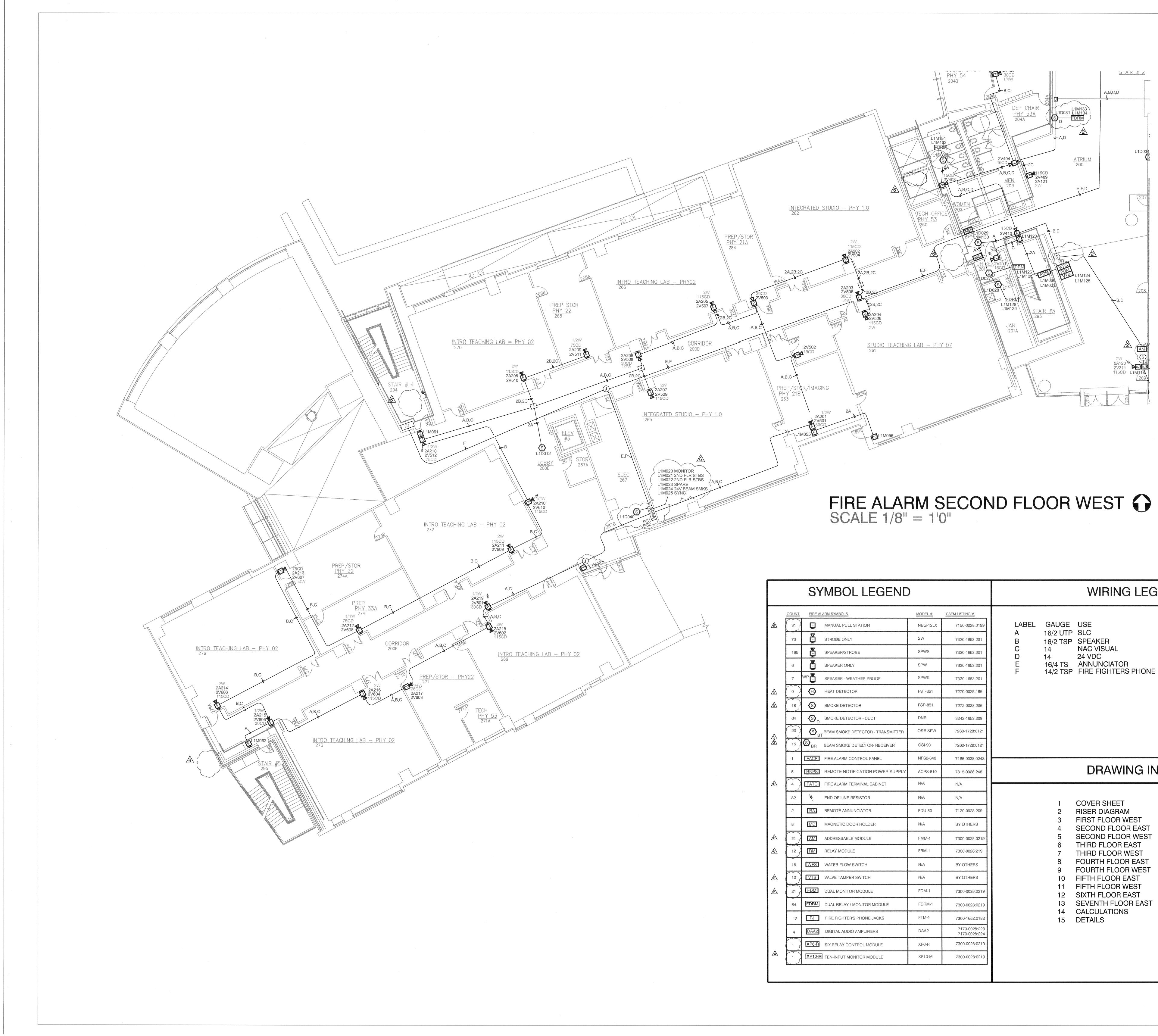
	WIR		D		
LABEL A B C D E F	GAUGE USE 16/2 UTP SLC 16/2 TSP SPEAKER 14 NAC VISUA 14 24 VDC 16/4 TS ANNUNCIA 14/2 TSP FIRE FIGHT	WES WES L THH THH TOR WES		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	COVER S RISER DIA FIRST FLO SECOND SECOND THIRD FL THIRD FL FOURTH FOURTH FIFTH FLO SIXTH FLO SEVENTH CALCULA DETAILS

<u>PIPE CHASE</u> <u>ABOVE</u>	
HORIZONTAL DUCT & PIPE CHASE	
FDRM S L1D001	
A	
MECHANICAL 123	
LOOR WEST 🕢	

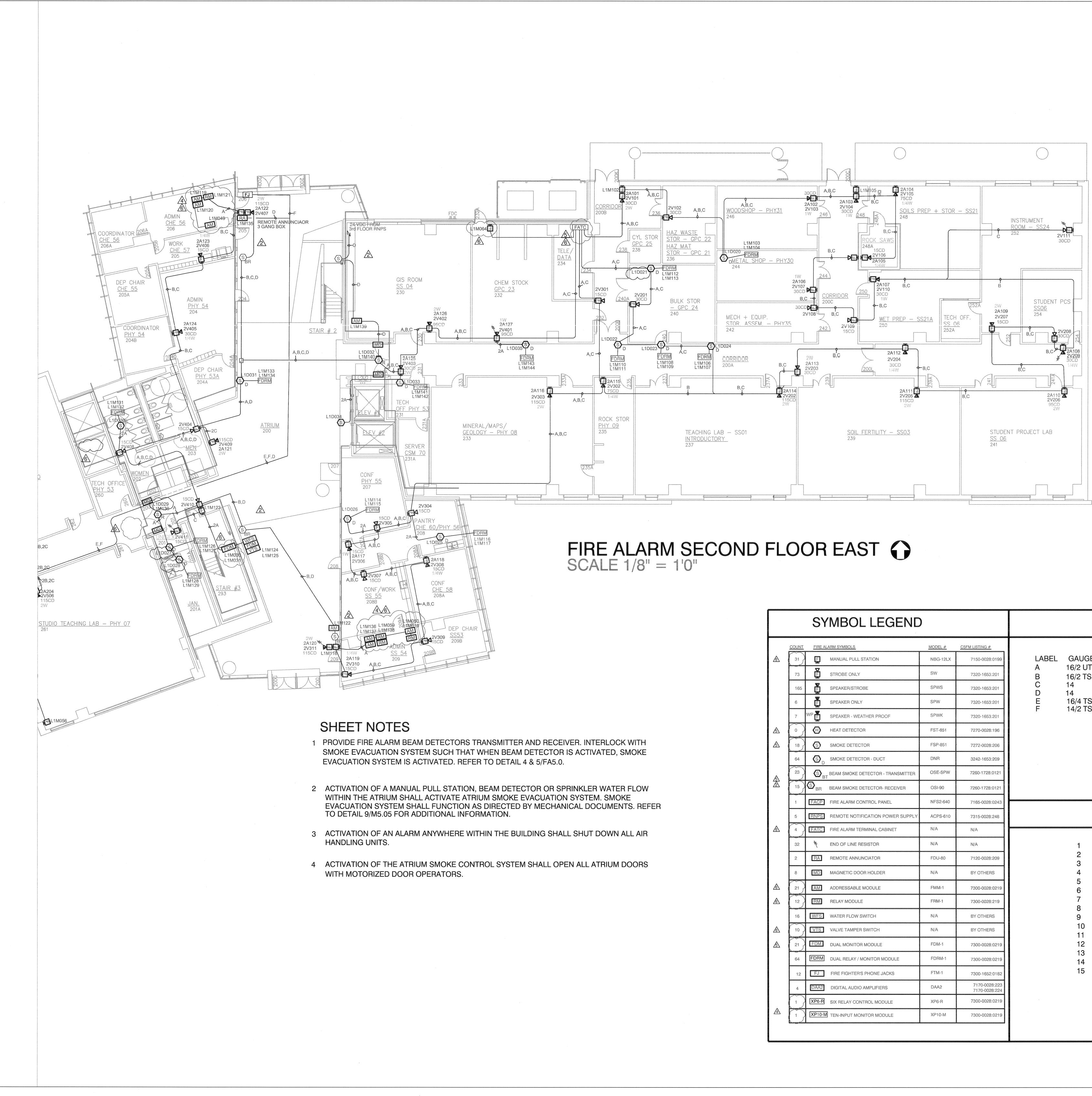

2W


			SYMBOL LE	GEND	
	COUNT	FIRE ALAR	M SYMBOLS	MODEL #	CSFM LISTING #
			IANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	 又	TROBE ONLY	SW	7320-1653:201
	165	V7	PEAKER/STROBE	SPWS	7320-1653:201
	6	▼	PEAKER ONLY	SPW	7320-1653:201
	7		PEAKER - WEATHER PROOF	SPWK	7320-1653:201
ß	\square		EAT DETECTOR	FST-851	7270-0028:196
<u></u>			MOKE DETECTOR	FSP-851	
237	64		MOKE DETECTOR	DNR	7272-0028:206
	23			OSE-SPW	3242-1653:209
		6	EAM SMOKE DETECTOR - TRANSMITTER		
			EAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
				NFS2-640	7165-0028:0243
	5		EMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
203	4	L			N/A
	32	\ 		N/A	N/A
	2		EMOTE ANNUNCIATOR	FDU-80	7120-0028:209
<u>,</u>	8	MD M	AGNETIC DOOR HOLDER	N/A	BY OTHERS
Â		AM A	DDRESSABLE MODULE	FMM-1	7300-0028:0219
	(12)	RM R	ELAY MODULE	FRM-1	7300-0028:219
	16	WFS W	ATER FLOW SWITCH	N/A	BY OTHERS
		VTS V	ALVE TAMPER SWITCH	N/A	BY OTHERS
A	(21)	FDM D	UAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM D	UAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12	FJ F	IRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2 D	IGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224
•	$\left(\right)$	XP6-R S	IX RELAY CONTROL MODULE	XP6-R	7300-0028:0219
	$\left(\begin{array}{c} 1 \end{array} \right)$	XP10-M TI	EN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219
			WIRING LEC	GEND	
LA A B C D E F	BEL	16/2 U ⁻ 16/2 TS 14 14 16/4 TS	E USE TP SLC SP SPEAKER NAC VISUAL 24 VDC S ANNUNCIATOR SP FIRE FIGHTERS PHO	WE WE TH THI WE	
			DRAWING I	NDEX	
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	CALCULATIONS	FA 3.02 FA 3.02 FA 3.03 FA 3.03 FA 3.04 FA 3.04 FA 3.05 FA 3.05 FA 3.05	

Co	nsult	ing -	Des	ign -	- Ins	tallat	tion	
		Servi	ce -	Mon	itori	ng		
		•				-		
		•						
	-							
Tol	I Free						FAX:	
W	ww.d					on.c	om	
								APPR.
								AP
-	20	8	~		m			
/201	/201	/201	/201	2013	/201			DATE
6/14	5/18	8/20	1/15	4/3/2	8/23			ā
				လ				NO
				ENT				RIPT
				MMC				DESCRIPTION
				M CC				
	6/14/2011 6/14/2011 A	Dee 3442 San C-10, C Toll Free www.d	Servi Deep Bl 3442 Emp San Luis C-10, C-16 # Toll Free: 88 805 www.deep	Service - Deep Blue In 3442 Empresa San Luis Obis C-10, C-16 #9434 Toll Free: 888¢6 805¢79 www.deepblue	Service - Mon Deep Blue Integra 3442 Empresa Driv San Luis Obispo, C-10, C-16 #943465 Toll Free: 805\$791\$2 www.deepblueinteg 11/12/013 11/11/12/013 11/11/12/013 11/11/12/013 11/11/12/013 11/11/12/013 11/11/12/013 11/11/12/013 11/11/12/013 <t< th=""><th>Service - Monitoria Deep Blue Integration 3442 Empresa Drive Si San Luis Obispo, CA 9 C-10, C-16 #943465 C-10, C-16 #943465 Toll Free: 88\$6000\$DB 805\$791\$2037 www.deepblueintegration 11/12/5013 8/20/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 9/11/2014 101 11/12/2015 8/3/2013 8/3/2013 8/3/2013 9/3/2013 9/3/2013 11/12/2015 11/12/2015 11/12/2015 11/12/2015 11/12/2015 11/12/2013 11/12/2013 11/12/2013 11/12/2013 12/12/2013 13/2013 13/2013 14/3/2013 15/2013 16/2013 <</th><th>Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite G San Luis Obispo, CA 9340 C-10, C-16 #943465 Toll Free: 805\$791\$2037 www.deepblueintegration.c</th><th>Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\\$6000\\$DBI FAX: 805\\$791\\$2037 www.deepblueintegration.com</th></t<>	Service - Monitoria Deep Blue Integration 3442 Empresa Drive Si San Luis Obispo, CA 9 C-10, C-16 #943465 C-10, C-16 #943465 Toll Free: 88\$6000\$DB 805\$791\$2037 www.deepblueintegration 11/12/5013 8/20/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 8/3/2013 9/11/2014 101 11/12/2015 8/3/2013 8/3/2013 8/3/2013 9/3/2013 9/3/2013 11/12/2015 11/12/2015 11/12/2015 11/12/2015 11/12/2015 11/12/2013 11/12/2013 11/12/2013 11/12/2013 12/12/2013 13/2013 13/2013 14/3/2013 15/2013 16/2013 <	Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite G San Luis Obispo, CA 9340 C-10, C-16 #943465 Toll Free: 805\$791\$2037 www.deepblueintegration.c	Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\\$6000\\$DBI FAX: 805\\$791\\$2037 www.deepblueintegration.com


Deep Blue Integration

VALENT)

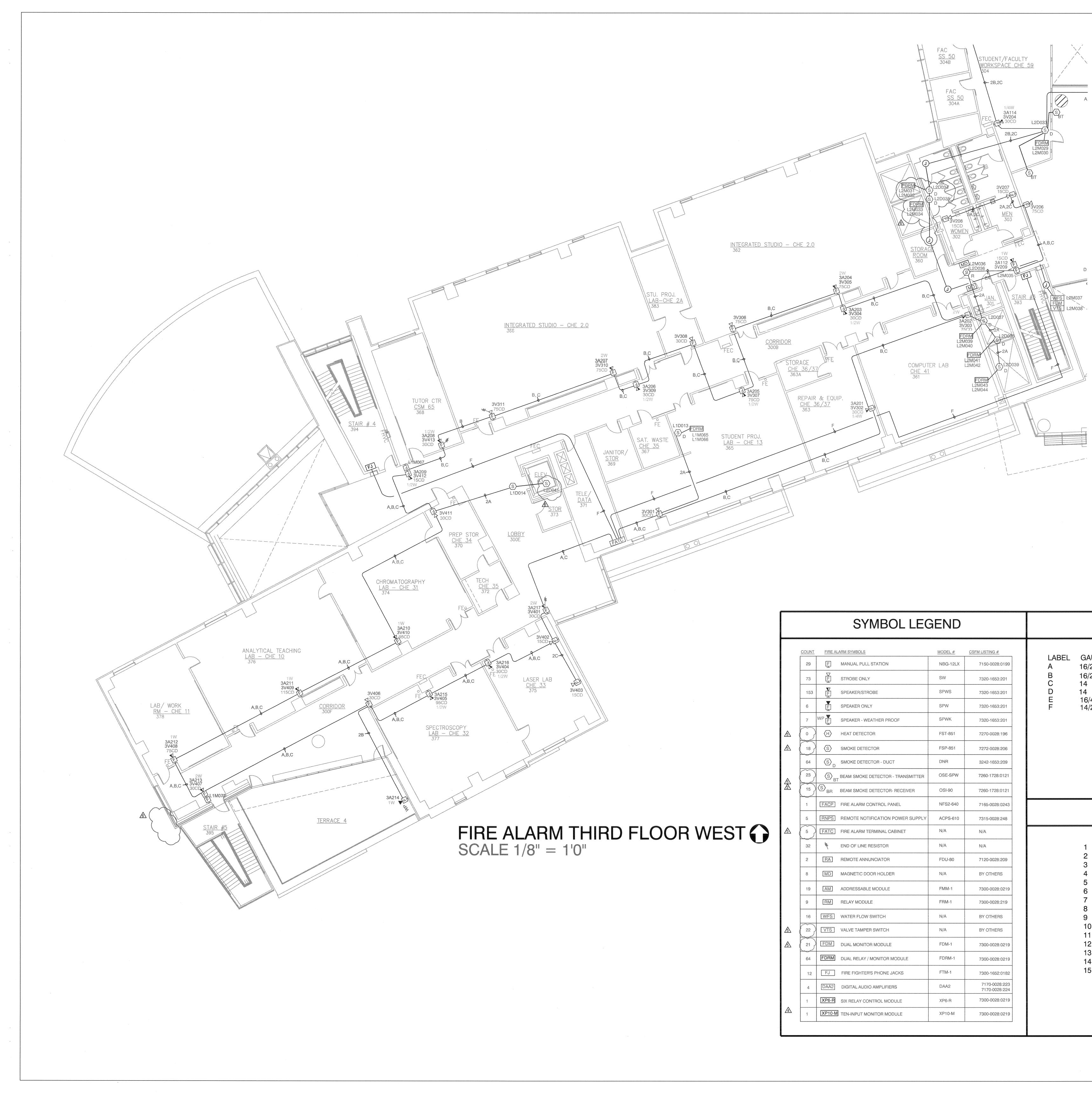

	F	٢E		A	٢N	/	5	C	\bigcirc	\mathbb{N}	D		J	\bigcup	\prec
3(AL		/8	NUMANUMANA NUMANUMANA		I ()								

		SY	MBOL LEGEND)				WIRING LEG	END
	COUNT	<u>FIRE AI</u>	LARM SYMBOLS	MODEL #	CSFM LISTING #				
ß	31	F	MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL	GAUGE	USE	TYPE (OF
	73	E	STROBE ONLY	SW	7320-1653:201	A B	16/2 UTP 16/2 TSP	_	WEST PE WEST PE
	165		SPEAKER/STROBE	SPWS	7320-1653:201	C D	14 14	NAC VISUAL 24 VDC	THHN THHN
	6	Ē	SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS	ANNUNCIATOR	WEST PE WEST PE
	7	WPE	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	Г	14/2 15P	FIRE FIGHTERS PHONE	WESTPE
∕	\bigcirc	(H)	HEAT DETECTOR	FST-851	7270-0028:196				
∕	18	6	SMOKE DETECTOR	FSP-851	7272-0028:206				
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
A	23	© _B	BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
A A	15	𝔅 _{BR}	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
	1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			DRAWING IN	DEX
	$\left(\begin{array}{c} 4 \end{array} \right)$	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A				
	32	草	END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	FA 0.0
	2	RAI	REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2	RISER DIAGRAM	FA 1.0
	8	[MD]	MAGNETIC DOOR HOLDER	N/A	BY OTHERS		3 4	FIRST FLOOR WEST SECOND FLOOR EAST	FA 3.01W FA 3.02E
ß	21	AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219		5	SECOND FLOOR WEST	FA 3.02W
Â	12	RM	RELAY MODULE	FRM-1	7300-0028:219		6 7	THIRD FLOOR EAST THIRD FLOOR WEST	FA 3.03E FA 3.03W
	16	WFS	WATER FLOW SWITCH	N/A	BY OTHERS		8 9	FOURTH FLOOR EAST FOURTH FLOOR WEST	FA 3.04E FA 3.04W
Â	10	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS		9 10	FIFTH FLOOR EAST	FA 3.05E
A	21	FDM	DUAL MONITOR MODULE	FDM-1	7300-0028:0219		11 12	FIFTH FLOOR WEST SIXTH FLOOR EAST	FA 3.05W FA 3.06E
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13	SEVENTH FLOOR EAST	FA 3.07E
	12	FJ	FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		14 15	CALCULATIONS DETAILS	FA 4.0 FA 5.0
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
		XP6-R	SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
A		XP10-M	TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				

YPE (OR EQUIVALENT) VEST PENN D990 VEST PENN D991 THHN HHN VEST PENN 993 VEST PENN D995

Deep Blue Integration Consulting - Design - Installation Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\$6000\$DB1 FAX: 805�791�2037 www.deepblueintegration.com 6/14/2011 5/18/2012 4/11/2012 8/20/2012 ____ Revisions AND MATHEMATICS TECHNIC UNIVERSI⁻ spo, cA CENTER FOR SCIENCE ALIFORNIA STATE POLY SAN LUIS OE SHEET ID FA 3.02W

SHEET 4 OF 15


		SYMBOL LEGEN)		WIRING LEGEND	
	COUNT	FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #		
	31	F MANUAL PULL STATION	NBG-12LX	7150-0028:0199		•
	73	STROBE ONLY	SW	7320-1653:201	A 16/2 UTP SLC WES B 16/2 TSP SPEAKER WES	
	165	SPEAKER/STROBE	SPWS	7320-1653:201	C14NAC VISUALTHHD1424 VDCTHH	
	6	F SPEAKER ONLY	SPW	7320-1653:201	E 16/4 TS ANNUNCIATOR WES F 14/2 TSP FIRE FIGHTERS PHONE WES	ST F
	7	WP F SPEAKER - WEATHER PROOF	SPWK	7320-1653:201		
\$	\bigcirc	HEAT DETECTOR	FST-851	7270-0028:196		
\$	18	SMOKE DETECTOR	FSP-851	7272-0028:206		
	64	SMOKE DETECTOR - DUCT	DNR	3242-1653:209		
A	23	S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121		
	15	BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121		
	Annual A	FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243		
	5	RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DRAWING INDEX	
<u>6</u>	$\left(\begin{array}{c}4\end{array}\right)$	FATC FIRE ALARM TERMINAL CABINET	N/A	N/A		
	32	专 END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA 0.0	
	2	RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 1.0 3 FIRST FLOOR WEST FA 3.01V	V
	8	MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS	4 SECOND FLOOR EAST FA 3.02E	
<u></u>	21	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219	5 SECOND FLOOR WEST FA 3.02V 6 THIRD FLOOR EAST FA 3.03E	
<u></u>	12	RM RELAY MODULE	FRM-1	7300-0028:219	7 THIRD FLOOR WEST FA 3.03V	
	16	WFS WATER FLOW SWITCH	N/A	BY OTHERS	- 8 FOURTH FLOOR EAST FA 3.04E 9 FOURTH FLOOR WEST FA 3.04V	
\land	10	VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 3.05E 11 FIFTH FLOOR WEST FA 3.05V	
∕₳	21	FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	12 SIXTH FLOOR EAST FA 3.06E	
	64	FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	13 SEVENTH FLOOR EAST FA 3.07E 14 CALCULATIONS FA 4.0	•
	12	FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	15 DETAILS EASO	
	4	DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224		
	$\left(\begin{array}{c} 1 \end{array} \right)$	XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219		
4		XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219		

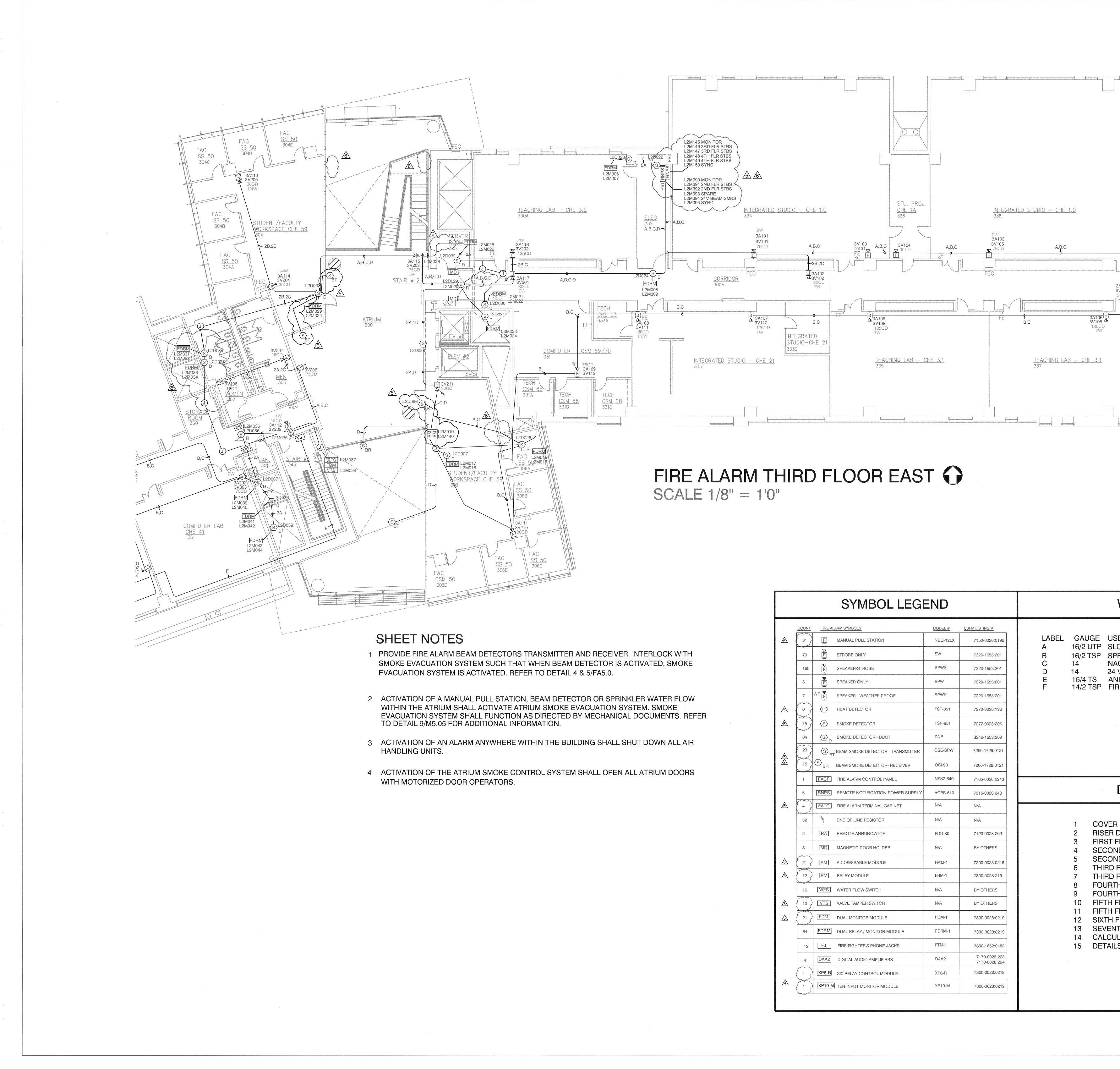
	Cor C- Toll	Dee 3442	ing - Servi Emp Luis -16 # e: 88	ice - ue In presa 943 \$943 \$8\$6 5\$79	Mon Mon itegr a Driv spo , 465 50004 1 	- Ins iitori ation ve S CA S AC DB 037	tallat ng , Inc uite ()340 ⁻ ;O#6 I I	C I 864 FAX:	
									APPR.
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013			DATE
Revisions		2 CRB # 093.1 & FI 99	SFM REVIEW COMMENTS	4 CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	AS-BUILT DRAWINGS			SYMBOL DESCRIPTION
	DATE: 08/23/2013 SCALE: BRAWING CODE: FA ALL DRAWINGS CPCFS								
DESIGNED BY:	Curtis Streeter	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET	NICET IV #102672	PROJECT ENGINEER:	Integral Design Associates INC.	
	CENTER FOR SCIENCE AND MATHEMATICS CALIFORNIA STATE POLYTECHNIC UNIVERSITY SAN LUIS OBISPO, CA CSFM #18-40-03-0001								
	SHEET ID FA 3.02E								

GEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

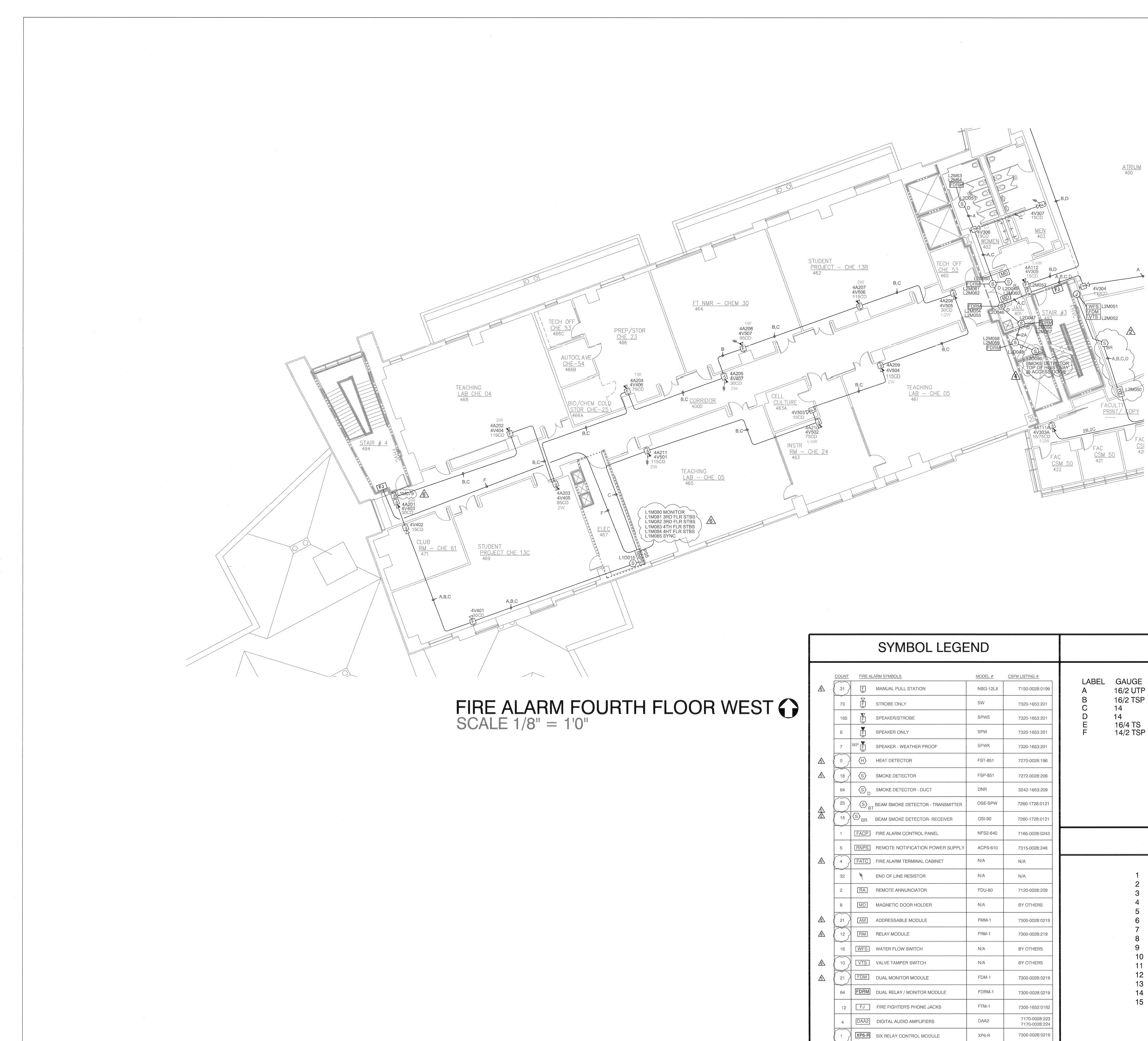
NDEX

WIRING LE		SYMBOL LEGEND								
		CSFM LISTING #	MODEL #	E ALARM SYMBOLS	FIRE AL	COUNT				
GAUGE USE 16/2 UTP SLC		7150-0028:0199	NBG-12LX	MANUAL PULL STATION		29				
16/2 TSP SPEAKER 14 NAC VISUAL	B 16/2	7320-1653:201	SW	STROBE ONLY	V F	73				
14 24 VDC	D 14	7320-1653:201	SPWS	SPEAKER/STROBE		153				
16/4 TS ANNUNCIATOR 14/2 TSP FIRE FIGHTERS PHON		7320-1653:201	SPW			6				
		7320-1653:201	SPWK	SPEAKER - WEATHER PROOF	WP F	7				
		7270-0028:196	FST-851	HEAT DETECTOR	H	\bigcirc	ß			
		7272-0028:206	FSP-851	SMOKE DETECTOR	s	18	∕あ			
		3242-1653:209	DNR	SMOKE DETECTOR - DUCT	(S) _D	64				
		7260-1728:0121	OSE-SPW	BT BEAM SMOKE DETECTOR - TRANSMITTER	(S) _{bt}	23	A			
		7260-1728:0121	OSI-90	R BEAM SMOKE DETECTOR- RECEIVER	(S) _{BR}	15				
		7165-0028:0243	NFS2-640	P FIRE ALARM CONTROL PANEL	FACP	1				
DRAWING		7315-0028:248	ACPS-610	S REMOTE NOTIFICATION POWER SUPPLY	RNPS	5				
		N/A	N/A	C FIRE ALARM TERMINAL CABINET	FATC	5	∕₿			
1 COVER SHEET	1	N/A	N/A	END OF LINE RESISTOR	M	32				
2 RISER DIAGRAM 3 FIRST FLOOR WEST		7120-0028:209	FDU-80	REMOTE ANNUNCIATOR	RA	2				
4 SECOND FLOOR EAST	4	BY OTHERS	N/A	MAGNETIC DOOR HOLDER	MD	8				
5 SECOND FLOOR WEST 6 THIRD FLOOR EAST		7300-0028:0219	FMM-1	ADDRESSABLE MODULE	AM	19				
7 THIRD FLOOR WEST	7	7300-0028:219	FRM-1] RELAY MODULE	RM	9				
8 FOURTH FLOOR EAST9 FOURTH FLOOR WEST		BY OTHERS	N/A	S WATER FLOW SWITCH	WFS	16				
10 FIFTH FLOOR EAST 11 FIFTH FLOOR WEST		BY OTHERS	N/A	S VALVE TAMPER SWITCH	VTS	22	∕			
12 SIXTH FLOOR EAST	12	7300-0028:0219	FDM-1	DUAL MONITOR MODULE	FDM	21	∕₿			
13 SEVENTH FLOOR EAST14 CALCULATIONS	_	7300-0028:0219	FDRM-1	M DUAL RELAY / MONITOR MODULE	FDRM	64				
15 DETAILS		7300-1652:0182	FTM-1	FIRE FIGHTER'S PHONE JACKS	FJ	12				
		7170-0028:223 7170-0028:224	DAA2	2 DIGITAL AUDIO AMPLIFIERS	DAA2	4				
		7300-0028:0219	XP6-R	R SIX RELAY CONTROL MODULE	XP6-R	4				
		7300-0028:0219	XP10-M	0-M TEN-INPUT MONITOR MODULE	XP10-M	1				


	Cor C- ⁻ Tol	Dee 3442 San 10, C	ing - Servi P Bl Emp Luis -16 # e: 88	ice - ue In presa 0bi \$943 38\$6 5\$79	sign - Mon tegra a Driv spo, 465 50004 01◆2	- Ins ation ve S CA 9 AC DB 037	, Inc uite ()3401 ;O#6	ion 864 AX:		
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013			DATE APPR.	
Revisions		2 CRB # 093.1 & FI 99	SFM REVIEW COMMENTS	4 CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	6 AS-BUILT DRAWINGS			SYMIBOL	
	DATE: 08/23/2013		SCALE:		URAWING CODE: FA ALL URAWINGS CPCFS					
DESIGNED BY:	Curtis Streeter	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET	NICET IV #102672	PROJECT ENGINEER:	Internal Design Associates INC		
	CENTER FOR SCIENCE AND MATHEMATICS CALIFORNIA STATE POLYTECHNIC UNIVERSITY SAN LUIS OBISPO, CA CSFM #18-40-03-0001									
	SHEET ID FA 3.03W									

LEGEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 HONE WEST PENN D995

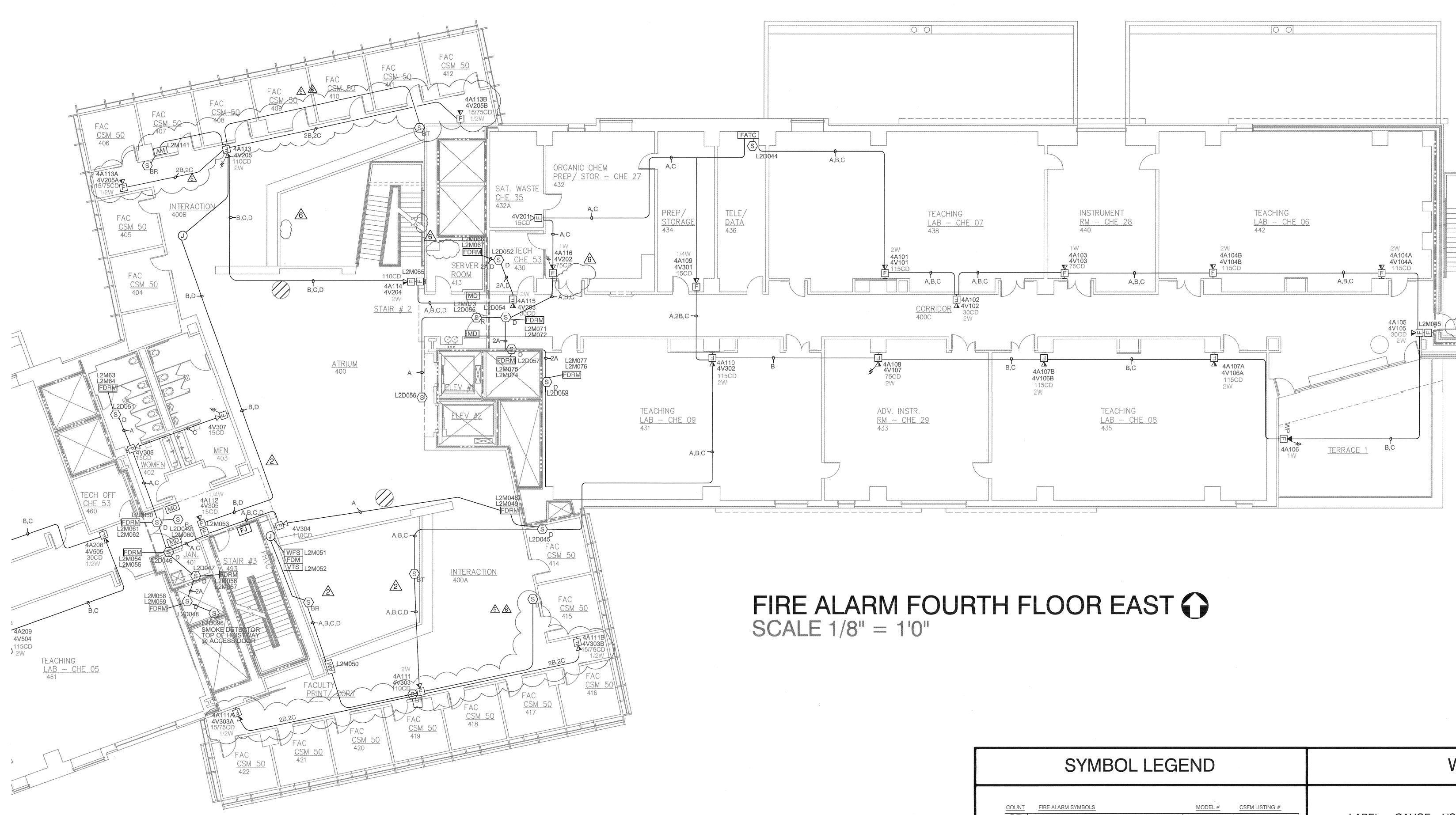

A INDEX

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

TED STUDIO - CHE 1.0 STUDIO -	TED STUDD D-E LD ABO STUDD D-E LD STUDD D-E LD STU	Image: State of the state
THIRD FLOOR EAST O	WIRING LEGEND	DESIGNED BY: DATE: 08/23/2013 Curtis Streeter DRAWN BY: 08/23/2013 DRAWN BY: DRAWN BY: SCALE: Derek Richardson SCALE: SCALE: CHECKED BY: SCALE: SCALE: CHECKED BY: SCALE: SCALE: CURTIS STREETER, SET MMING CODE: FAALL DRAWINGS CPCFS PROJECT IV #102672 MMING CODE: FAALL DRAWINGS CPCFS Integral Design Associates INC. Integral Design Associates INC.
COUNTFIRE ALARM SYMBOLSMODEL #CSFM LISTING #Image: constraint of the symbol of t	LABEL GAUGE USE TYPE (OR EQUIVALENT) A 16/2 UTP SLC WEST PENN D990 B 16/2 TSP SPEAKER WEST PENN D991 C 14 NAC VISUAL THHN D 14 24 VDC THHN E 16/4 TS ANNUNCIATOR WEST PENN 993 F 14/2 TSP FIRE FIGHTERS PHONE WEST PENN D995	CE AND MATHEMATICS LYTECHNIC UNIVERSITY S OBISPO, CA 18-40-03-0001
32 * END OF LINE RESISTOR N/A N/A 2 IRA REMOTE ANNUNCIATOR FDU-80 7120-0028:209 8 MD MAGNETIC DOOR HOLDER N/A BY OTHERS 21 IAM ADDRESSABLE MODULE FMM-1 7300-0028:0219 12 IRM RELAY MODULE FRM-1 7300-0028:0219 16 IVFS WATER FLOW SWITCH N/A BY OTHERS 10 IVTS VALVE TAMPER SWITCH N/A BY OTHERS 64 FDRM DUAL MONITOR MODULE FDM-1 7300-0028:0219 12 FJ FIRE FIGHTER'S PHONE JACKS FTM-1 7300-0028:0219 12 FJ FIRE FIGHTER'S PHONE JACKS DAA2 71170-0028:223	1COVER SHEETFA 0.02RISER DIAGRAMFA 1.03FIRST FLOOR WESTFA 3.01W4SECOND FLOOR EASTFA 3.02E5SECOND FLOOR WESTFA 3.02W6THIRD FLOOR EASTFA 3.03E7THIRD FLOOR WESTFA 3.03W8FOURTH FLOOR EASTFA 3.04E9FOURTH FLOOR WESTFA 3.04W10FIFTH FLOOR EASTFA 3.05E11FIFTH FLOOR WESTFA 3.05W12SIXTH FLOOR EASTFA 3.06E13SEVENTH FLOOR EASTFA 3.07E14CALCULATIONSFA 4.015DETAILSFA 5.0	CENTER FOR SCIENC ALIFORNIA STATE PO SAN LUI

SHEET 7 OF 15

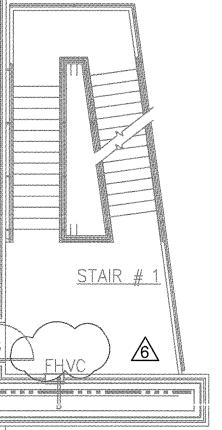
DUNT FIRE ALARM SYMBOLS 31 F MANUAL PULL STATION	MODEL #					
		CSFM LISTING #				
	NBG-12LX	7150-0028:0199	LABEL A	GAUGE 16/2 UTP	USE SLC	,
73 F STROBE ONLY	SW	7320-1653:201	B C	16/2 TSP 14	SPEAKER NAC VISUAL	,
165 V SPEAKER/STROBE	SPWS	7320-1653:201	D	14	24 VDC	
6 F SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS 14/2 TSP	ANNUNCIATOR FIRE FIGHTERS PHONE	
7 WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201				
0 (H) HEAT DETECTOR	FST-851	7270-0028:196				
18 S SMOKE DETECTOR	FSP-851	7272-0028:206				
64 $\langle S \rangle_{D}$ SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
23 (S) BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			DRAWING IN	U
4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A				
32 美 END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	F
2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2 3	FIRST FLOOR WEST	F
8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS		4	SECOND FLOOR EAST	F
21 AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219		6	THIRD FLOOR EAST	F
12 RM RELAY MODULE	FRM-1	7300-0028:219		7	THIRD FLOOR WEST FOURTH FLOOR FAST	F
16 WFS WATER FLOW SWITCH	N/A	BY OTHERS		9	FOURTH FLOOR WEST	F
10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS		10 11	FIFTH FLOOR EAST FIFTH FLOOR WEST	F
21 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219		12	SIXTH FLOOR EAST	F
64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13	CALCULATIONS	F
12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		15	DETAILS	F
4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
1 XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				
	7 WP F SPEAKER - WEATHER PROOF 0 (H) HEAT DETECTOR 18 (S) SMOKE DETECTOR 64 (S) D 64 (S) MOKE DETECTOR 7 (S) BEAM SMOKE DETECTOR - DUCT 7 (S) BEAM SMOKE DETECTOR - DUCT 7 (S) BEAM SMOKE DETECTOR - TRANSMITTER 15 (S) BR BEAM SMOKE DETECTOR - TRANSMITTER 15 (S) BR BEAM SMOKE DETECTOR - RECEIVER 1 (FACP) FIRE ALARM CONTROL PANEL E 10 (FATC) FIRE ALARM TERMINAL CABINET E 12 (RM) RELAY MODULE E 14 (DAA) DADRESSABLE MODULE E 15 VALVE TAMPER SWITCH E E	7 WP I SPEAKER - WEATHER PROOF SPWK 0 H HEAT DETECTOR FST-851 18 S SMOKE DETECTOR FSP-851 64 S D SMOKE DETECTOR - DUCT DNR 23 S BT BEAM SMOKE DETECTOR - TRANSMITTER OSE-SPW 15 S BR BEAM SMOKE DETECTOR - RECEIVER OSI-90 1 IFACP FIRE ALARM CONTROL PANEL NFS2-640 5 IRNPS REMOTE NOTIFICATION POWER SUPPLY ACPS-610 64 IFATC FIRE ALARM TERMINAL CABINET N/A 20 END OF LINE RESISTOR N/A 21 FAA REMOTE ANNUNCIATOR FDU-80 8 MD MAGNETIC DOOR HOLDER N/A 21 FAM ADDRESSABLE MODULE FRM-1 12 IEM RELAY MODULE FRM-1 14 WES WATER FLOW SWITCH N/A 21 FDM DUAL MONITOR MODULE FDM-1 14 IDAA2 DIGITAL AUDIO AMPLIFIERS DAA2 14 IDAA2 DIGITAL AUDIO AMPLIFIERS DAA2	7 WP SPEAKER - WEATHER PROOF SPWK 7320-1663:201 0 H HEAT DETECTOR FST-861 7220-0028:198 18 (S) SMOKE DETECTOR FSP-851 7272-0028:206 64 (S) SMOKE DETECTOR DNR 3242-1663:209 23 (S) BEAM SMOKE DETECTOR - DUCT DNR 3242-1663:209 23 (S) BEAM SMOKE DETECTOR - TRANSMITTER OSE-SPW 7260-1728:0121 15 (S) BEAM SMOKE DETECTOR - RECEIVER OSI-80 7280-1728:0121 15 (S) BR BEAM SMOKE DETECTOR - RECEIVER OSI-80 7280-1728:0121 16 (FACP) FIRE ALARM CONTROL PANEL NFS2-640 7165-0028:023 5 17 (FACP) FIRE ALARM TERMINAL CABINET N/A N/A N/A 21 FATC FIRE ALARM TERMINAL CABINET N/A N/A N/A 22 END OF LINE RESISTOR N/A N/A N/A S 23 (MD MAGNETIC DOOR HOLDER FMM-	7 WP II SPEAKER - WEATHER PROOF SPWK 7320-1633-201 0 (F) HEAT DETECTOR FST-851 7270-028-196 18 (S) SMOKE DETECTOR FST-851 7272-028-2806 18 (S) SMOKE DETECTOR FST-851 7272-028-2806 18 (S) SMOKE DETECTOR - DUCT DNR 3242-1653-209 23 (S) FBT BEAM SMOKE DETECTOR - TRANSMITTER 0SE-SPW 7280-1728-0121 15 (S) BR BEAM SMOKE DETECTOR - TRANSMITTER 0SE-SPW 7280-1728-0121 15 (S) BR BEAM SMOKE DETECTOR - RECEIVER 0SI-90 7260-1728-0121 16 (FACE) FIRE ALAPM CONTROL PANEL NFS2-840 7136-0028-248 16 [FACE) FIRE ALAPM CONTROL PANEL N/A N/A 2 ERA REMOTE NOTIFICATION POWER SUPPLY ACPS-610 7316-0028-208 32 END OF LINE RESISTOR N/A N/A N/A 2 IEA REMOTE ANNUNCIATOR FDU-90 7120-0028-2019 <td>7 WF III SPEAKER - WEATHER PROOF SPWK 7380-1653.201 0 (H) HEAT DETECTOR FST-851 7270-0028.196 18 (S) SMOKE DETECTOR FST-851 7270-0028.196 18 (S) SMOKE DETECTOR FST-851 7270-0028.206 23 (S) D SMOKE DETECTOR - DUCT DNR 3242-1663.201 15 (S) BR DEAM SMOKE DETECTOR - RECEIVER OSI-90 7260-1728.0121 16 (S) BR DEAM SMOKE DETECTOR - RECEIVER OSI-90 7260-1728.0121 17 (FACE) FIRE ALARM CONTROL PANEL N-FS240 7165-0028.0248 10 (FATE) FREADER MONTONE OPWER SUPPLY ACPS-610 7315-0028.248 2 (FAC) REMOTE ANNUNCIATOR FDU-80 7120-0028.299 3 2 (FAC) REMOTE ANNUNCIATOR FDU-80 7120-0028.299 3 3 (MD) MAGHETIC DOOR HOLDER N/A 8Y OTHERS 5 41 MOD DESSABLE MODULE</td> <td>7 9⁺ E 3⁺ EARDER WEATHER PRIOD 5⁺ W/K 7350 1483 301 0 (C) HEAT DETEOTOR FBT 651 7227-002 200 1 (C) HEAT DETEOTOR FBT 651 7227-002 200 2 (C) SMORE DETECTOR DNP SMORE DETECTOR DNP 3 (C) (C) FBT 643 7270-020 200 DOE 3 (C) (C) DNP SMORE DETECTOR DNN 3 (C) (C) (C) DNN SMORE DETECTOR DNN 1 (EC) RREALARM CONTROL PANEL MF02-40 /166-0285-204 DRAWING INIT 1 (EC) RARAM CONTROL PANEL MF02-40 /166-0285-204 RISER DIAGRAM 2 (EC) REMOTE NOTIFICATION FOWER SUPPLY ACP6-510 7315-029-204 PARAMAN DRAWING INIT 2 (EC) MAGNETIC DOOR HOUSER N/A N/A 2 RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISE</td>	7 WF III SPEAKER - WEATHER PROOF SPWK 7380-1653.201 0 (H) HEAT DETECTOR FST-851 7270-0028.196 18 (S) SMOKE DETECTOR FST-851 7270-0028.196 18 (S) SMOKE DETECTOR FST-851 7270-0028.206 23 (S) D SMOKE DETECTOR - DUCT DNR 3242-1663.201 15 (S) BR DEAM SMOKE DETECTOR - RECEIVER OSI-90 7260-1728.0121 16 (S) BR DEAM SMOKE DETECTOR - RECEIVER OSI-90 7260-1728.0121 17 (FACE) FIRE ALARM CONTROL PANEL N-FS240 7165-0028.0248 10 (FATE) FREADER MONTONE OPWER SUPPLY ACPS-610 7315-0028.248 2 (FAC) REMOTE ANNUNCIATOR FDU-80 7120-0028.299 3 2 (FAC) REMOTE ANNUNCIATOR FDU-80 7120-0028.299 3 3 (MD) MAGHETIC DOOR HOLDER N/A 8Y OTHERS 5 41 MOD DESSABLE MODULE	7 9 ⁺ E 3 ⁺ EARDER WEATHER PRIOD 5 ⁺ W/K 7350 1483 301 0 (C) HEAT DETEOTOR FBT 651 7227-002 200 1 (C) HEAT DETEOTOR FBT 651 7227-002 200 2 (C) SMORE DETECTOR DNP SMORE DETECTOR DNP 3 (C) (C) FBT 643 7270-020 200 DOE 3 (C) (C) DNP SMORE DETECTOR DNN 3 (C) (C) (C) DNN SMORE DETECTOR DNN 1 (EC) RREALARM CONTROL PANEL MF02-40 /166-0285-204 DRAWING INIT 1 (EC) RARAM CONTROL PANEL MF02-40 /166-0285-204 RISER DIAGRAM 2 (EC) REMOTE NOTIFICATION FOWER SUPPLY ACP6-510 7315-029-204 PARAMAN DRAWING INIT 2 (EC) MAGNETIC DOOR HOUSER N/A N/A 2 RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISER DIAGRAM RISE


	3 C-1 Toll	Dee 3442 San 0, C Free	ing - Servi Emp Luis -16 # 805	Des ce - ue In oresa Obis 9434 88 \$6 5 \$79	ign - Mon tegra a Driv spo, 465 0004 1 * 2	Inst itorin ation, ve Su CA 9 AC DBI 037 gratic	allat Ig lite C 3401 O#68	ion 364 AX:	
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013		DATE APPR.	
Revisions		2 CRB # 093.1 & FI 99	3 SFM REVIEW COMMENTS	▲ CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	6 AS-BUILT DRAWINGS		SYMIBOL DESCRIPTION	
	Curtis Streeter DATE: 08/23/2013	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET		PROJECT ENGINEER:	Integral Design Associates INC.	
					SAN LUIS OBISPO, CA	CSFM #18_40_03_0001			
			A		- •)4	W	/	

END

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

DEX

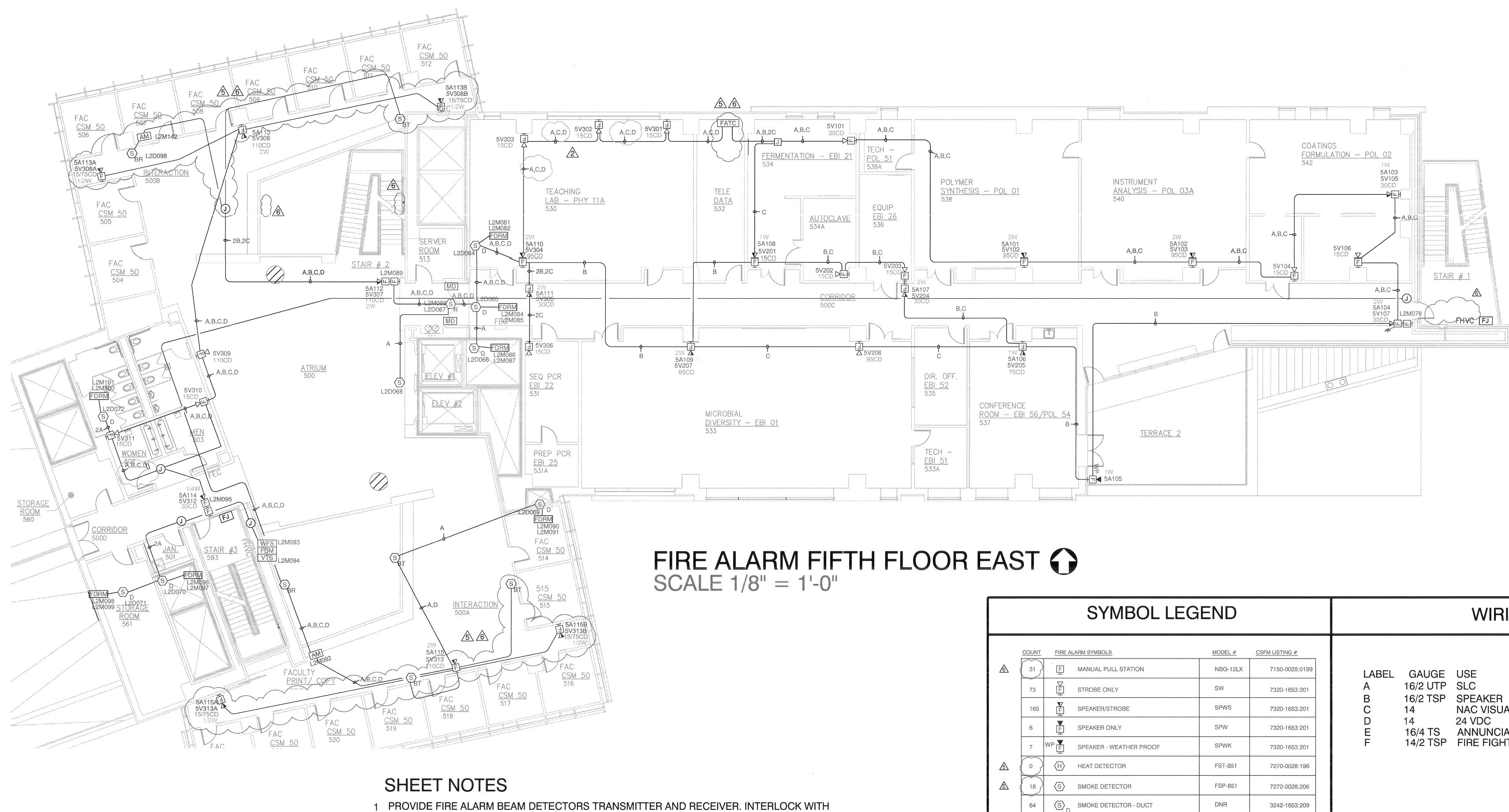

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

SHEET NOTES

- PROVIDE FIRE ALARM BEAM DETECTORS TRANSMITTER AND RECEIVER. INTERLOCK WITH SMOKE EVACUATION SYSTEM SUCH THAT WHEN BEAM DETECTOR IS ACTIVATED, SMOKE EVACUATION SYSTEM IS ACTIVATED. REFER TO DETAIL 4 & 5/FA5.0.
- 2 ACTIVATION OF A MANUAL PULL STATION, BEAM DETECTOR OR SPRINKLER WATER FLOW WITHIN THE ATRIUM SHALL ACTIVATE ATRIUM SMOKE EVACUATION SYSTEM. SMOKE EVACUATION SYSTEM SHALL FUNCTION AS DIRECTED BY MECHANICAL DOCUMENTS. REFER TO DETAIL 9/M5.05 FOR ADDITIONAL INFORMATION.
- 3 ACTIVATION OF AN ALARM ANYWHERE WITHIN THE BUILDING SHALL SHUT DOWN ALL AIR HANDLING UNITS.
- 4 ACTIVATION OF THE ATRIUM SMOKE CONTROL SYSTEM SHALL OPEN ALL ATRIUM DOORS WITH MOTORIZED DOOR OPERATORS.

		SYMBOL LEGE	END		WIRING LEG
	<u>COUNT</u> <u>FIF</u>	RE ALARM SYMBOLS	MODEL #	<u>CSFM LISTING #</u>	
\bigtriangleup	(31) E	MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL GAUGE USE A 16/2 UTP SLC
	73 F	7 STROBE ONLY	SW	7320-1653:201	B 16/2 TSP SPEAKER
	165 F	SPEAKER/STROBE	SPWS	7320-1653:201	C 14 NAC VISUAL D 14 24 VDC
	6 F		SPW	7320-1653:201	D 14 24 VDC E 16/4 TS ANNUNCIATOR F 14/2 TSP FIRE FIGHTERS PHON
	7 WP	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	
\bigtriangleup	0 (H	HEAT DETECTOR	FST-851	7270-0028:196	
ß	18 (5	SMOKE DETECTOR	FSP-851	7272-0028:206	
	64 (S	SMOKE DETECTOR - DUCT	DNR	3242-1653:209	
A	- N - / I	BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	
	15 S _B	R BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	
	1 [FAC	P FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243	DRAWING IN
	5 RNI	PS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DNAVING IN
Â	4 FAT	C FIRE ALARM TERMINAL CABINET	N/A	N/A	
	32 考	END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA
	2 R/	A REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 3 FIRST FLOOR WEST FA
	8 MI	D MAGNETIC DOOR HOLDER	N/A	BY OTHERS	4 SECOND FLOOR EAST FA 5 SECOND FLOOR WEST FA
	21 AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219	6 THIRD FLOOR EAST FA
		M RELAY MODULE	FRM-1	7300-0028:219	7 THIRD FLOOR WEST FA 8 FOURTH FLOOR EAST FA
	16 WF	S WATER FLOW SWITCH	N/A	BY OTHERS	9 FOURTH FLOOR WEST FA
		S VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 11 FIFTH FLOOR WEST FA
ß	21 FD	M DUAL MONITOR MODULE	FDM-1	7300-0028:0219	12 SIXTH FLOOR EAST FA 13 SEVENTH FLOOR EAST FA
	64 FDF	M DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	14 CALCULATIONS FA
	12 F.	J FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	15 DETAILS FA
	4 [DA	A2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224	
١		3-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219	
		10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	

GEND


NE

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

NDEX

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

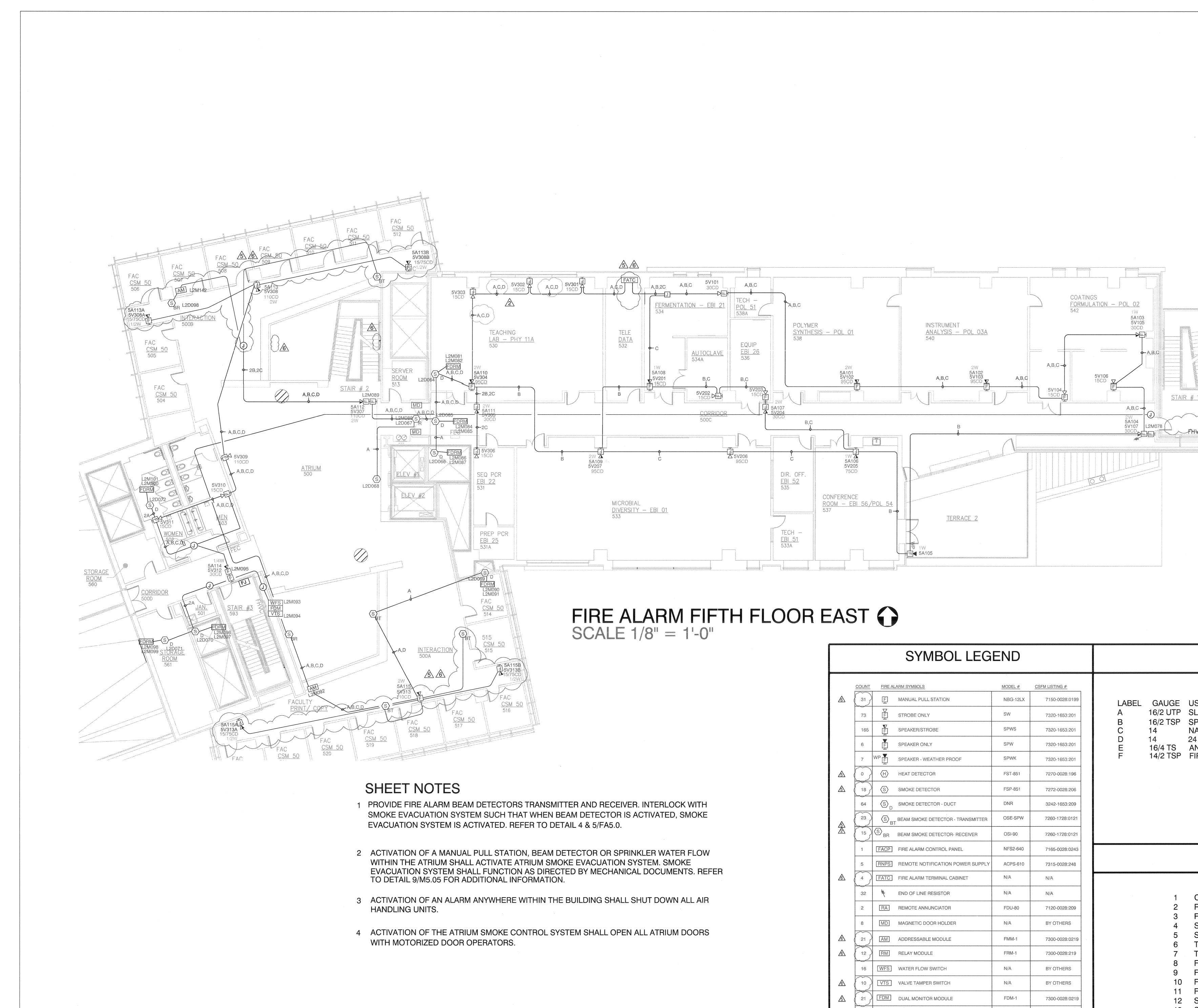
Blue **Consulting - Design - Installation** Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888 \$6000 \$DBI FAX: 805�791�2037 www.deepblueintegration.com 8 4 2 0 HEMATICS UNIVERSI CENTER FOR SCIENCE AND MAT ALIFORNIA STATE POLYTECHNIC SAN LUIS OBISPO, CA U SHEET ID FA 3.04E SHEET 9 OF 15

SMOKE EVACUATION SYSTEM SUCH THAT WHEN BEAM DETECTOR IS ACTIVATED, SMOKE EVACUATION SYSTEM IS ACTIVATED. REFER TO DETAIL 4 & 5/FA5.0.

2 ACTIVATION OF A MANUAL PULL STATION, BEAM DETECTOR OR SPRINKLER WATER FLOW WITHIN THE ATRIUM SHALL ACTIVATE ATRIUM SMOKE EVACUATION SYSTEM. SMOKE EVACUATION SYSTEM SHALL FUNCTION AS DIRECTED BY MECHANICAL DOCUMENTS. REFER TO DETAIL 9/M5.05 FOR ADDITIONAL INFORMATION.

3 ACTIVATION OF AN ALARM ANYWHERE WITHIN THE BUILDING SHALL SHUT DOWN ALL AIR HANDLING UNITS.

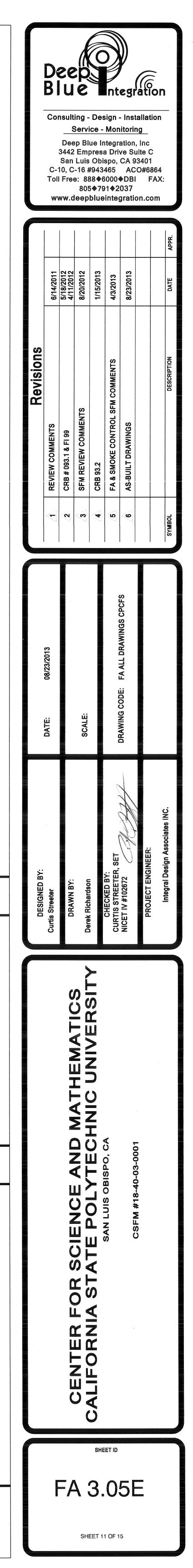
4 ACTIVATION OF THE ATRIUM SMOKE CONTROL SYSTEM SHALL OPEN ALL ATRIUM DOORS WITH MOTORIZED DOOR OPERATORS.

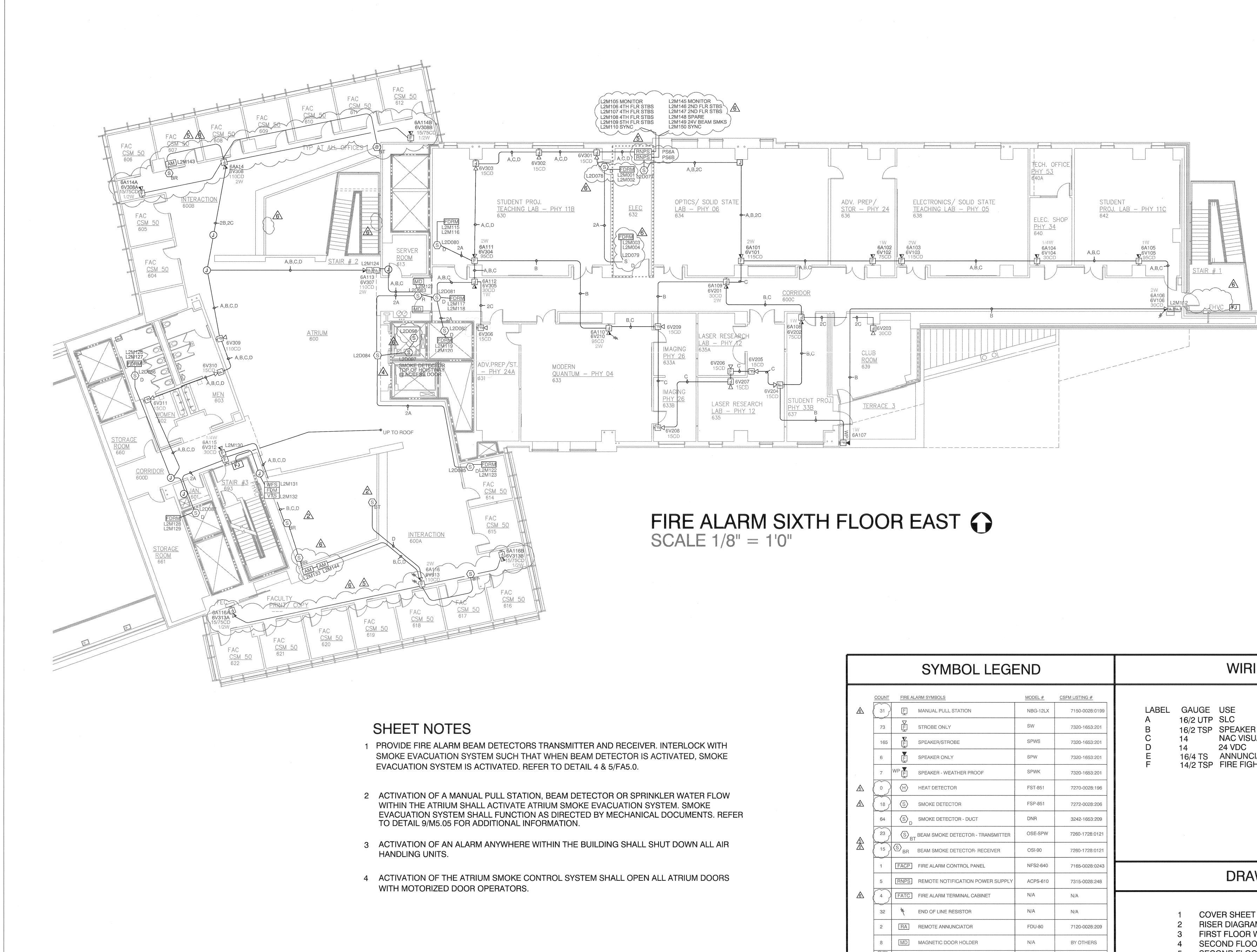

	SYMBOL LEGE	END		WIRING LEGEND
	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #	
\land	31 F MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL GAUGE USE TYPE (OR
	73 F STROBE ONLY	SW	7320-1653:201	A16/2 UTPSLCWEST PEIB16/2 TSPSPEAKERWEST PEI
	165 F SPEAKER/STROBE	SPWS	7320-1653:201	C 14 NAC VISUAL THHN
	6 F SPEAKER ONLY	SPW	7320-1653:201	D 14 24 VDC THHN E 16/4 TS ANNUNCIATOR WEST PE F 14/2 TSP FIRE FIGHTERS PHONE WEST PE
	7 WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	F 14/2 TSP FIRE FIGHTERS PHONE WEST PE
5	0 H HEAT DETECTOR	FST-851	7270-0028:196	
\$	18 (S) SMOKE DETECTOR	FSP-851	7272-0028:206	
	64 (S) SMOKE DETECTOR - DUCT	DNR	3242-1653:209	
A	23 S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	
\$ 2	15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	
	1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243	
	5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DRAWING INDEX
A	4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A	
	32 考 END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA 0.0
	2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 1.0
	8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS	3 FIRST FLOOR WEST FA 3.01W 4 SECOND FLOOR EAST FA 3.02E
\bigtriangleup	21 AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219	5 SECOND FLOOR WEST FA 3.02W
\land	12 RM RELAY MODULE	FRM-1	7300-0028:219	6 THIRD FLOOR EAST FA 3.03E 7 THIRD FLOOR WEST FA 3.03W
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS	8 FOURTH FLOOR EAST FA 3.04E 9 FOURTH FLOOR WEST FA 3.04W
\land	10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 3.05E
ß	21 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	11FIFTH FLOOR WESTFA 3.05W12SIXTH FLOOR EASTFA 3.06E
	64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	13 SEVENTH FLOOR EAST FA 3.07E
	12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	14CALCULATIONSFA 4.015DETAILSFA 5.0
	4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224	
	1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219	
4	1 XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	

ND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

EX


Blue Integration **Consulting - Design - Installation** Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\$6000\$DBI FAX: 805 \$791 \$2037 www.deepblueintegration.com 6/14/ 5/18/ 4/11/ 8/20/ 4/3/ Q Q 4 Q 4 THEMATICS C UNIVERSIT CENTER FOR SCIENCE AND MAT ALIFORNIA STATE POLYTECHNIC SAN LUIS OBISPO, CA SHEET ID FA 3.05E SHEET 11 OF 15

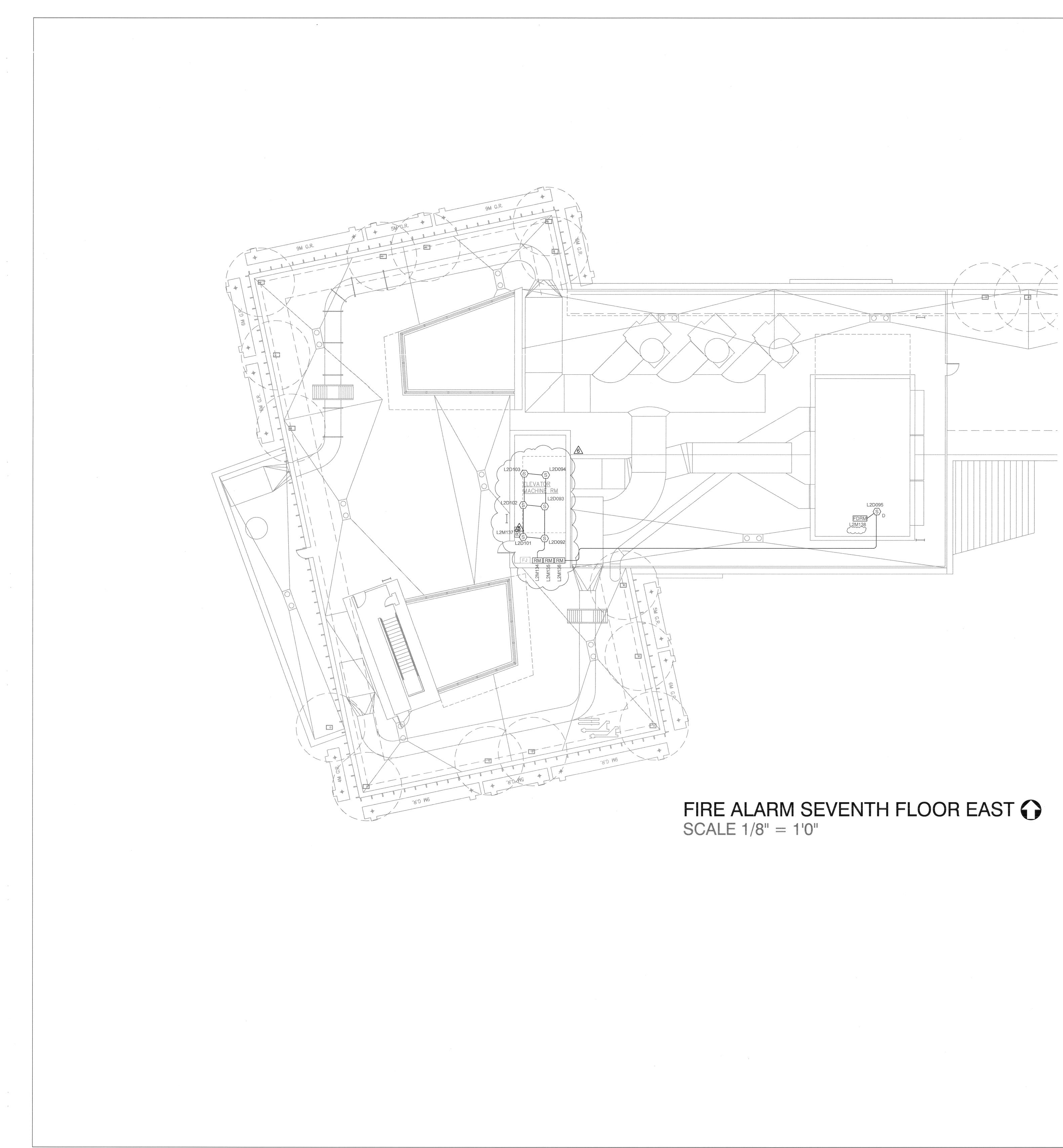


		SYMBOL LEG	END				WIRING LEGE	END
		FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #				
\bigtriangleup	31	F MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL	GAUGE	USE	TYPE (C
	73	♥ F STROBE ONLY	SW	7320-1653:201	A	16/2 UTP 16/2 TSP	SLC SPEAKER	WEST P WEST P
	165		SPWS	7320-1653:201	B C	14	NAC VISUAL	THHN
	6	SPEAKER ONLY	SPW	7320-1653:201	D E	14 16/4 TS	24 VDC ANNUNCIATOR	THHN WEST F
	7	WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	F	14/2 TSP	FIRE FIGHTERS PHONE	WEST F
A	\bigcirc	H HEAT DETECTOR	FST-851	7270-0028:196				
∕₼	18	S SMOKE DETECTOR	FSP-851	7272-0028:206				
	64	S SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
A	23	S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
	15	S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
	1	FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
	5	RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			DRAWING INI	JEX
\land	4	FATC FIRE ALARM TERMINAL CABINET	N/A	N/A				
	32	キ END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	FA 0.0
	2	RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2 3	RISER DIAGRAM FIRST FLOOR WEST	FA 1.0 FA 3.01V
	8	MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS		3 4	SECOND FLOOR EAST	FA 3.02E
∕	21	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219		5 6	SECOND FLOOR WEST THIRD FLOOR EAST	FA 3.02V FA 3.03E
Â	12	RM RELAY MODULE	FRM-1	7300-0028:219		7	THIRD FLOOR WEST	FA 3.03V
	16	WFS WATER FLOW SWITCH	N/A	BY OTHERS		8 9	FOURTH FLOOR EAST FOURTH FLOOR WEST	FA 3.04E FA 3.04V
\bigtriangleup	10	VTS VALVE TAMPER SWITCH	N/A	BY OTHERS		10		FA 3.05E
∕₿	21	FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219		11 12	FIFTH FLOOR WEST SIXTH FLOOR EAST	FA 3.05V FA 3.06E
	64	FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13 14		FA 3.07E FA 4.0
	12	FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		15		FA 5.0
	4	DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
		XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
		XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				

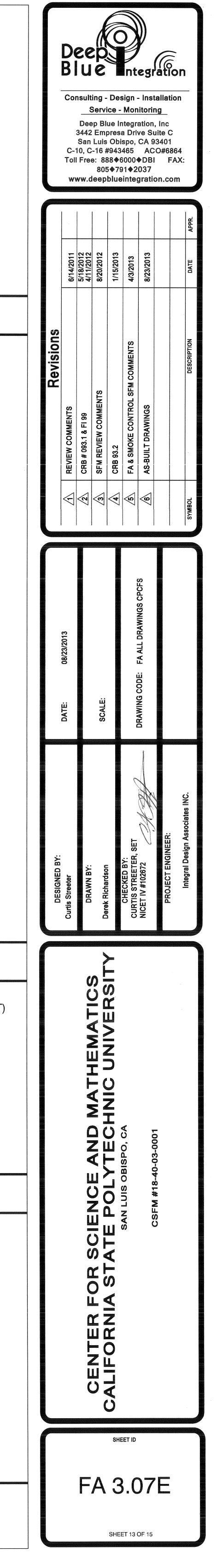
TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

1.0 A 3.01W A 3.02E A 3.02W A 3.03E 4 3.03W A 3.04E A 3.04W A 3.05E A 3.05W A 3.06E A 3.07E 4.0 5.0

	SYMBC	DL LEGEND			WIRIN	IG LE
	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #			
	31 E MANUAL PULL STATIO	N NBG-12LX	7150-0028:0199	LABEL	GAUGE USE	
	73 F STROBE ONLY	SW	7320-1653:201	A B	16/2 UTP SLC 16/2 TSP SPEAKER	
	165 V SPEAKER/STROBE	SPWS	7320-1653:201	C D	14NAC VISUAL1424 VDC	-
	6 F SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS ANNUNCIAT	
	7 WP SPEAKER - WEATHER	PROOF SPWK	7320-1653:201	Г	14/2 TSP FIRE FIGHT	ENS PAU
Δ	0 (H) HEAT DETECTOR	FST-851	7270-0028:196			
	18 S SMOKE DETECTOR	FSP-851	7272-0028:206			
	64 (S) SMOKE DETECTOR - D	UCT DNR	3242-1653:209			
X	23 (S) BEAM SMOKE DETECT	OR - TRANSMITTER OSE-SPW	7260-1728:0121			
	15 S BR BEAM SMOKE DETECT	OR- RECEIVER OSI-90	7260-1728:0121			
	1 FACP FIRE ALARM CONTROL	PANEL NFS2-640	7165-0028:0243			
	5 RNPS REMOTE NOTIFICATIO	ON POWER SUPPLY ACPS-610	7315-0028:248		DRAW	/ING
2	4 FATC FIRE ALARM TERMINAI	. CABINET N/A	N/A			
	32	R N/A	N/A		1 COVER SHEET	
	2 RA REMOTE ANNUNCIATO	R FDU-80	7120-0028:209		2 RISER DIAGRAM	OT
	8 MD MAGNETIC DOOR HOL	DER N/A	BY OTHERS		3 FIRST FLOOR WE4 SECOND FLOOR	
2	21 AM ADDRESSABLE MODU	_E FMM-1	7300-0028:0219		5 SECOND FLOOR6 THIRD FLOOR EA	
2	12 RM RELAY MODULE	FRM-1	7300-0028:219		7 THIRD FLOOR WI	EST
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS		8 FOURTH FLOOR9 FOURTH FLOOR	
Δ	10 VTS VALVE TAMPER SWITC	H N/A	BY OTHERS		10 FIFTH FLOOR EA	
$\overline{\Sigma}$	21 FDM DUAL MONITOR MODU	LE FDM-1	7300-0028:0219		11 FIFTH FLOOR WE12 SIXTH FLOOR EA	
	64 FDRM DUAL RELAY / MONITO	R MODULE FDRM-1	7300-0028:0219		13 SEVENTH FLOOF14 CALCULATIONS	≀ EAST
	12 FJ FIRE FIGHTER'S PHON	E JACKS FTM-1	7300-1652:0182		15 DETAILS	
	4 DAA2 DIGITAL AUDIO AMPLI	FIERS DAA2	7170-0028:223 7170-0028:224			
	1 XP6-R SIX RELAY CONTROL N	10DULE XP6-R	7300-0028:0219			
<u>4</u>	1 XP10-M TEN-INPUT MONITOR I	/ODULE XP10-M	7300-0028:0219			


EGEND

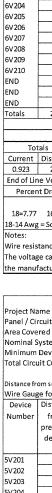
TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 PHONE WEST PENN D995


INDEX

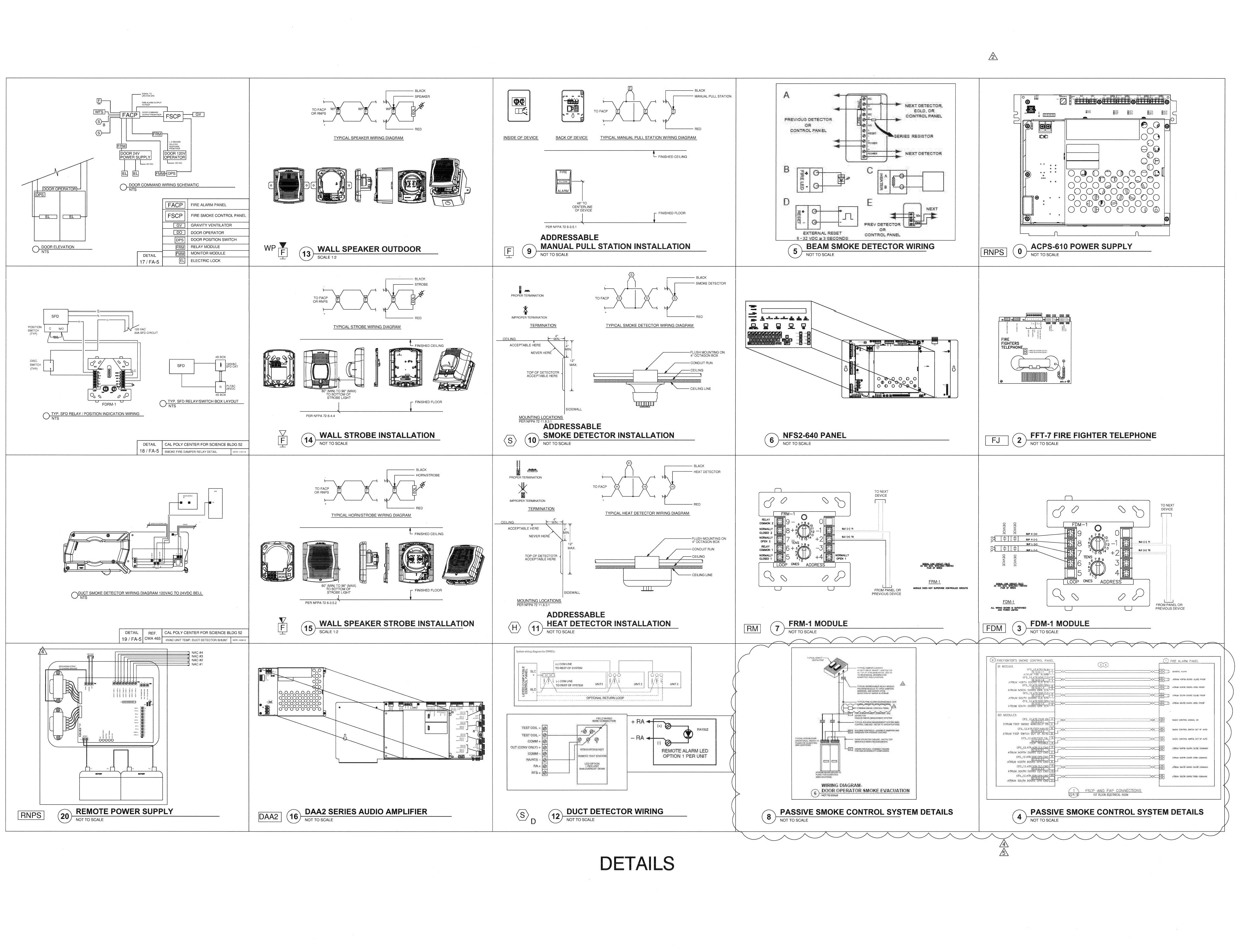
FA C	0.0
FA 1	.0
FA 3	8.01W
FA 3	3.02E
FA 3	3.02W
FA 3	3.03E
	8.03W
	3.04E
	3.04W
-	8.05E
	8.05W
	8.06E
	3.07E
FA 4	
FA 5	

			Revisions	
		Curtis Streeter 08/23/2013	A REVIEW COMMENTS 6/14/2011	Cor C- Toll
		DRAWN BY:	2 CRB # 093.1 & FI 99 5/18/2012 4/11/2012 4/11/2012	Dee 3442
S S		Derek Richardson	3 SFM REVIEW COMMENTS 8/20/2012	ing - Servi Emp Luis -16 # e: 88
	CALIFORNIA U A I B		4 CRB 93.2 1/15/2013	ue In oresa Obi \$943 \$8\$6 5\$79
3.(5 FA & SMOKE CONTROL SFM COMMENTS 4/3/2013	ign Mon itegra a Driv spo, 465 60004
			6 AS-BUILT DRAWINGS 8/23/2013	- Inst itorin ation ve Si CA 9 AC DB 037
SE		PROJECT ENGINEER:		ng , Inc uite ()3401 ;O#6 F
9		Integral Design Associates INC.	DESCENTION	ion 864 FAX:

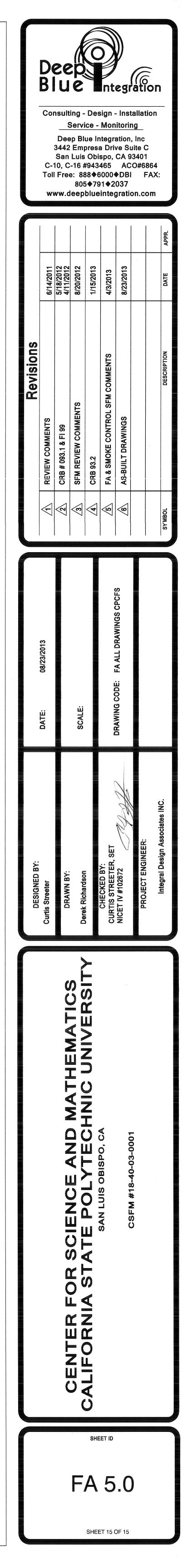
			SYMBOL LE	GEND)
		FIRE AL/	ARM SYMBOLS	MODEL #	CSFM LISTING #
	(31)	Ē	MANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	Ē	STROBE ONLY	SW	7320-1653:201
	165	 F	SPEAKER/STROBE	SPWS	7320-1653:201
	6		SPEAKER ONLY	SPW	7320-1653:201
	7	WP E	SPEAKER - WEATHER PROOF	SPWK	
۸					7320-1653:201
Â	P		HEAT DETECTOR	FST-851	7270-0028:196
Â	18		SMOKE DETECTOR	FSP-851	7272-0028:206
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209
A	23		BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121
	(15)	S BR	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
		FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
	4	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A
	32	幸	END OF LINE RESISTOR	N/A	N/A
	2		REMOTE ANNUNCIATOR	FDU-80	7120-0028:209
A	8	[MD]	MAGNETIC DOOR HOLDER	N/A	BY OTHERS
Â	21		ADDRESSABLE MODULE	FMM-1	7300-0028:0219
Â		RM	RELAY MODULE	FRM-1	7300-0028:219
	16	[WFS]	WATER FLOW SWITCH	N/A	BY OTHERS
	(10)	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS
ß	21	FDM	DUAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12	FJ	FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223
			SIX RELAY CONTROL MODULE	XP6-R	7170-0028:224
	K		TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219
			WIRING LE	GEND	
L/ A B C D E F	;	16/2 (16/2 ⁻ 14 14 16/4 ⁻	GE USE JTP SLC ISP SPEAKER NAC VISUAL 24 VDC TS ANNUNCIATOR TSP FIRE FIGHTERS PHON	WE WE THF THF WE	
A B C D		16/2 (16/2 ⁻ 14 14 16/4 ⁻	JTP SLC TSP SPEAKER NAC VISUAL 24 VDC TS ANNUNCIATOR	WE WE THF THF WE	ST PENN D990 ST PENN D991 IN ST PENN 993 ST PENN D995



Fire Alarm Voltage Drop Calculations Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier RNPS, PS5- Circuit 4V4 Area Covered 4th Floor West Nominal System Voltage 24 Minimum Device Voltage 20 Total Circuit Current 0.897		Fire Alarm Voltage Drop Calculations Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier RNPS, PS5- Circuit 4V5 Area Covered 4th Floor West Nominal System Voltage 24 Minimum Device Voltage 20 Total Circuit 1.129 Wire Gauge PEF 1000
Distance from source to 1st device 50 14 3.07 Wire Gauge for balance of circuit 14 3.07 Device Distance from previous device Voltage Current in amps. Device Model # 4V401 50 23.72 0.275 1.15% 0.094 System Sensor SCR 4V402 40 23.53 0.473 1.97% 0.066 System Sensor SCR 4V404 40 23.32 0.676 2.82% 0.210 System Sensor SCR 4V404 40 23.32 0.676 2.82% 0.210 System Sensor SCR 4V404 40 23.32 0.676 3.83% 0.181 System Sensor SCR 4V406 45 23.20 0.799 3.33% 0.181 System Sensor SCR 4V407 30 23.18 0.816 3.40% 0.000 Image: Sistem Sensor SCR END 0 23.18 0.816 3.40% 0.000 Image: Sistem Se	Device Type Candela Rating ST 30 ST 15 ST 30 ST 115 ST 95 ST 75 ST 30 ST 95 ST 75 ST 30 - - - - - - - -	Distance from source to 1st device 37 14 3.07 Wire Gauge for balance of circuit 14 3.07 Device Distance of circuit 14 3.07 Number from previous device Voltage Current in previous Device Model # Device Candela Rating 4V501 37 23.74 0.256 1.07% 0.210 System Sensor SCR ST 115 4V502 50 23.46 0.539 2.24% 0.158 System Sensor SCR ST 115 4V502 50 23.42 0.571 2.38% 0.066 System Sensor SCR ST 115 4V504 25 23.32 0.678 2.83% 0.210 System Sensor SCR ST 115 4V505 40 23.20 0.797 3.32% 0.094 System Sensor SCR ST 115 4V507 35 23.09 0.908 3.78% 0.000 I I I
Current Distance Drop 0.897 235 0.82 End of Line Voltage 23.18 Percent Drop 3.40% Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 16=4.89 14=3.07 12=1.98 18=7.77 16=4.89 14=3.07 12=1.98 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=7.77 16=4.89 14=3.07 12=1.98 12=1.04 Mug = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier RNPS, PS5- Circuit 3V3 Area Covered 3rd Floor West Nominal System Voltage 20 <tr< td=""><td>), Device Candela</td><td>Current Distance Drop 1.129 224 0.91 End of Line Voltage 23.09 Percent Drop 3.78% Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 16=4.89 14=3.07 12=1.98 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 14=3.07 12=1.98 10= Fire Alarm Voltage Drop Calculations Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier RNPS, PS5- Circuit 3V4 Area Covered <t< td=""></t<></td></tr<>), Device Candela	Current Distance Drop 1.129 224 0.91 End of Line Voltage 23.09 Percent Drop 3.78% Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 16=4.89 14=3.07 12=1.98 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 18=7.77 16=4.89 14=3.07 12=1.98 10= Fire Alarm Voltage Drop Calculations Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier RNPS, PS5- Circuit 3V4 Area Covered <t< td=""></t<>
previous device At Drop from Device Percent Source amps. Device Model # 3V301 17 23.85 0.148 0.62% 0.094 System Sensor SCR 3V302 65 23.32 0.676 2.82% 0.094 System Sensor SCR 3V303 50 22.95 1.054 4.39% 0.158 System Sensor SCR 3V304 20 22.81 1.186 4.94% 0.094 System Sensor SCR 3V305 30 22.63 1.366 5.69% 0.158 System Sensor SCR 3V306 30 22.48 1.517 6.32% 0.158 System Sensor SCR 3V307 20 22.40 1.598 6.66% 0.158 System Sensor SCR 3V308 30 22.13 1.691 7.05% 0.094 System Sensor SCR 3V309 25 22.25 1.754 7.31% 0.0158 System Sensor SCR	Type Rating ST 30 ST 30 ST 75 ST 30 ST 30 ST 30 ST 75 ST	previous device At At Drop from Device Percent source amps. Device Model # Type Rating 3V401 40 23.63 0.366 1.53% 0.094 System Sensor SCR ST 30 3V402 12 23.53 0.469 1.96% 0.066 System Sensor SCR ST 15 3V403 12 23.43 0.568 2.36% 0.094 System Sensor SCR ST 15 3V404 40 23.12 0.879 3.66% 0.094 System Sensor SCR ST 30 3V404 40 23.12 0.879 3.66% 0.094 System Sensor SCR ST 30 3V405 20 22.98 1.022 4.26% 0.181 System Sensor SCR ST 30 3V407 50 22.55 1.450 6.04% 0.094 System Sensor SCR ST 115 3V408 15 22.48
18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=14 Awg = Solid Conductors 12-10 Awg = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC Project Name Fire Alarm Voltage Drop Calculations Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier FACP- Circuit 2V5 Area Covered 2nd Floor West Nominal System Voltage 20 Total Circuit Current 1.808 Wire Gauge Per 1000 Distance from source to 1st device 60 14 3.07 Wire Gauge Distance Voltage in).	18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=14 Awg = Solid Conductors 12-10 Awg = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC). Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier FACP- Circuit 2V6 Area Covered 20 Monimal System Voltage 24 Minimum Device Voltage 20 Total Circuit Current 1.712 Wire Ohm's Gauge Per 1000 Distance from source to 1st device 40 Voltage 14 3.07 Wire Gauge for balance of circuit 14 3.07 Wire from Voltage Current Number from Voltage Current In Device Distance Current In
previous device At Drop from Device Percent Percent amps. Device Model # 2V501 60 23.33 0.666 2.78% 0.094 System Sensor SCR 2V502 23 23.09 0.908 3.78% 0.066 System Sensor SCR 2V503 25 22.84 1.161 4.84% 0.094 System Sensor SCR 2V504 30 22.55 1.447 6.03% 0.210 System Sensor SCR 2V505 13 22.45 1.547 6.45% 0.094 System Sensor SCR 2V506 8 22.06 1.945 8.10% 0.210 System Sensor SCR 2V507 68 22.01 1.994 8.31% 0.094 System Sensor SCR 2V509 46 21.86 2.143 8.93% 0.210 System Sensor SCR 2V510 48 21.74 2.256 9.40% 0.158 System Sensor SCR	Type Rating ST 30 ST 15 ST 10 ST 115 ST 75 ST 75	previous device At Dop from Device Percent source amps. Percent Drop Device Model # Type Rating 2V601 40 23.58 0.420 1.75% 0.094 System Sensor SCR ST 30 2V602 30 23.28 0.719 2.99% 0.210 System Sensor SCR ST 115 2V603 30 23.02 0.978 4.07% 0.158 System Sensor SCR ST 115 2V604 25 22.83 1.170 4.87% 0.210 System Sensor SCR ST 115 2V606 20 22.52 1.477 6.16% 0.210 System Sensor SCR ST 115 2V606 20 22.52 1.477 6.16% 0.210 System Sensor SCR ST 115 2V607 60 22.25 1.749 7.29% 0.158 System Sensor SCR ST 115 2V608 40 21.11
Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=14 Awg = Solid Conductors 12=10 Awg = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC) Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notifier FACP- Circuit 1V1 Area Covered Lit Floor West Nominal System Voltage 20 Total Circuit Current 1.016 Wire Ohm's Gauge Per 1000 Distance from source to 1st device 30 14 3.07 Wire Gauge for balance of circuit 14 3.07 Device Model # Number from previous At Drop from Percent Device Model #). Device Candela Type Rating	Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=14 Awg = Solid Conductors 12-10 Awg = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC). Fire Alarm Voltage Drop Calculations Project Name Cal Poly Building 52: Computer Math and Science Panel / Circuit # Notfier FACP- Circuit 1V2 Area Covered 1st Floor West Nominal System Voltage 20 Total Circuit Current 1.829 Wire Obistance from source to 1st device 40 14 3.07 Wire Gauge for balance of circuit 14 3.07 Urent in amps. Device Distance Voltage Current in amps. Device Model # Device Candela Rating
device At Drop from Percent Device source Drop Drop 1V101 30 23.81 0.187 0.78% 0.066 System Sensor SCR 1V102 20 23.70 0.304 1.27% 0.066 System Sensor SCR 1V103 30 23.53 0.467 1.94% 0.066 System Sensor SCR 1V104 50 23.28 0.718 2.99% 0.066 System Sensor SCR 1V105 50 23.05 0.949 3.95% 0.210 System Sensor SCR 1V106 35 22.93 1.065 4.44% 0.094 System Sensor SCR 1V107 30 22.85 1.148 4.78% 0.158 System Sensor SCR 1V108 35 22.79 1.210 5.04% 0.066 System Sensor SCR 1V109 40 22.70 1.299 5.41% 0.000	ST 15 ST 75 ST 75 ST 75 ST 75 ST 75	device At Drop from Percent Drop Drop 1V201 40 23.55 0.449 1.87% 0.094 System Sensor SCR ST 30 1V202 45 23.07 0.929 3.87% 0.158 System Sensor SCR ST 75 1V203 15 22.93 1.074 4.47% 0.210 System Sensor SCR ST 115 1V204 15 22.68 1.317 5.49% 0.158 System Sensor SCR ST 30 1V205 15 22.68 1.317 5.49% 0.188 System Sensor SCR ST 95 1V206 10 22.35 1.649 6.87% 0.210 System Sensor SCR ST 115 1V208 10 22.31 1.694 7.06% 0.094 System Sensor SCR ST 115 1V209 10 22.17 1.322 7.67% 0.210 Syst
Percent Drop 5,41% Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18=14 Awg = Solid Conductors 12=1.0 Awg = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC VDC		Standard Wire Resistance in Ohms per 1000 feet. 18=7.77 16=4.89 14=3.07 12=1.98 10=1.24 18-14 Awg = Solid Conductors 12-10 Awg = Stranded Conductors Notes: Wire resistance is doubled in the calculations for two wires (Positive and Negative) The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC).


	20	23.49	0.511	2.13%	0.094	System Sensor	SCR	ST	30
	25	23.34		2.74%	1		SCR	ST	
			0.657		0.158	System Sensor			75
	46	23.12	0.879	3.66%	0.210	System Sensor	SCR	ST	115
	41	22.98	1.025	4.27%	0.210	System Sensor	SCR	ST	115
	120	22.70	1.296	5.40%	0.210	System Sensor	SCR	ST	115
	53	22.65	1.347	5.61%	0.158	System Sensor	SCR	ST	75
		22.65	1.347	5.61%	0.000				
		22.65	1,347	5.61%	0.000				
		22.65	1.347	5.61%	0.000				
		22.65	1.347	5.61%	0.000				1
		22.65	1.347	5.61%	0.000				
-		22.65	1.347	5.61%	0.000				1
_	355	End of Lin	e Voltage	22.65	1.250				
				to Point M					
		(CIRCUIT	IS WITH	N LIMITS	S			
ot	als				Voltage				
t	Distance				Drop				
	355				1.35				
ir	e Voltage				22.65				
	t Drop				5.61%				
51	n biop		Chandrad	Vira D		hms nor 1000 f			
						hms per 1000 fee	ι,		
77		14=3.07		10=1.24					
vg	= Solid Co	nductors	12-10 A	wg = Stran	ded Condi	uctors			
						Positive and Nega	tive)		
			ast device r						
u	factures lis	ted minim	um operat	ing voltag	e (IE: rateo	d operating voltag	ge 20-32 VI	DC).	
			Fire	Alarm Vo	Itage Drop	o Calculations			
٧a	me					er Math and Scien	ce		
	rcuit #	Notifier R							
_11								1	
				,					
/e	red	3rd Floor I	East						
ve I S	red ystem Vol	3rd Floor E tage	East 24						
ve IS m	red ystem Vol Device Vo	3rd Floor I tage Itage	East	,					
ve IS m	red ystem Vol	3rd Floor E tage	East 24	Wire	Ohm's				
ve IS n	red ystem Vol Device Vo iit Current	3rd Floor I tage Itage 1.920	East 24 20	Wire Gauge	Ohm's Per 1000				
/e IS n cu	red ystem Vol Device Vo Jit Current	3rd Floor f tage Itage 1.920 p 1st device	East 24 20 48	Wire Gauge 14	Ohm's Per 1000 3.07				
/e IS n cu	red ystem Vol Device Vo uit Current om source to ge for balar	3rd Floor f tage Itage 1.920 p 1st device	East 24 20 48	Wire Gauge	Ohm's Per 1000 3.07 3.07	1			
re IS n cu	red ystem Vol Device Vo nit Current om source to te for balar Distance	3rd Floor f tage Itage 1.920 p 1st device	East 24 20 48 48	Wire Gauge 14	Ohm's Per 1000 3.07 3.07 Current				
/e IS n cu	red ystem Vol Device Vo iit Current om source to ge for balar Distance from	3rd Floor f tage Itage 1.920 p 1st device	East 24 20 48	Wire Gauge 14	Ohm's Per 1000 3.07 3.07			Device	Candel
re IS n cu	red ystem Vol Device Vo nit Current om source to te for balar Distance	3rd Floor f tage Itage 1.920 p 1st device	East 24 20 48 48	Wire Gauge 14	Ohm's Per 1000 3.07 3.07 Current	Device M	odel #	Device	
re IS n cu	red ystem Vol Device Vo iit Current om source to ge for balar Distance from	3rd Floor f tage Itage 1.920 o 1st device nce of circu	East 24 20 48 48	Wire Gauge 14	Ohm's Per 1000 3.07 3.07 Current in	Device M	odel #	Device Type	
re IS n cu	red ystem Vol Device Vo it Current om source to te for balar Distance from previous	3rd Floor f tage Itage 1.920 o 1st device nce of circu	East 24 20 48 Jit Voltage	Wire Gauge 14 14 Percent	Ohm's Per 1000 3.07 3.07 Current in	Device M	odel #		
re IS n cu	red ystem Vol Device Vo it Current om source to te for balar Distance from previous device	3rd Floor f tage 1.920 o 1st device nce of circu At Device	East 24 20 48 Jit Voltage Drop from source	Wire Gauge 14 14 14 Percent Drop	Ohm's Per 1000 3.07 3.07 Current in amps.			Туре	Rating
re IS n cu	red ystem Vol Device Vo it Current om source to te for balan Distance from previous device 48	3rd Floor f tage 1tage 1.920 b 1st device nce of circu At Device 23.43	East 24 20 48 Jit Voltage Drop from source 0.566	Wire Gauge 14 14 14 Percent Drop 2.36%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158	System Sensor	SCR	Type ST	Rating
re IS n cu	red ystem Vol Device Vo it Current om source te te for balar Distance from previous device 48 8	3rd Floor R tage 1.920 p 1st device nce of circu At Device 23.43 23.35	Last 24 20 48 iit Voltage Drop from source 0.566 0.652	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094	System Sensor System Sensor	SCR SCR	Type ST ST	Rating 75 30
re IS n cu	red ystem Vol Device Vo it Current om source te for balar Distance from previous device 48 8 38	3rd Floor f tage 1.920 to 1st device the of circu At Device 23.43 23.35 22.96	East 24 20 48 48 48 48 48 50 50 50 50 50 50 50 50 50 50 50 50 50	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158	System Sensor System Sensor System Sensor	SCR SCR SCR	Type ST ST ST	Rating 75 30 75
re IS n cu	red ystem Vol Device Vo iit Current om source to te for balar Distance from previous device 48 8 38 8	3rd Floor It tage 11age 1.920 b 1st device nce of circu At Device 23.43 23.35 22.96 22.88	East 24 20 20 48	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094	System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR	Type ST ST ST ST ST	Rating 75 30 75 30
re IS n cu	red ystem Vol Device Vo iit Current om source to ee for balarace from previous device 48 8 8 38 8 25	3rd Floor I tage 1.920 o 1st device cce of circu At Device 23.43 23.35 22.96 22.88 22.67	East 24 20 48 Jit Voltage Drop from source 0.552 1.042 1.116 1.333	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158	System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST	Rating 75 30 75 30 75
re IS n cu	red ystem Vol Device Vo iit Current om source to te for balar Distance from previous device 48 8 38 8	3rd Floor It tage 11age 1.920 b 1st device nce of circu At Device 23.43 23.35 22.96 22.88	East 24 20 20 48	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094	System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR	Type ST ST ST ST ST	Rating 75 30 75 30
re IS n cu	red ystem Vol Device Vo iit Current om source to ee for balarace from previous device 48 8 8 38 8 25	3rd Floor I tage 1.920 o 1st device cce of circu At Device 23.43 23.35 22.96 22.88 22.67	East 24 20 48 Jit Voltage Drop from source 0.552 1.042 1.116 1.333	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST	Rating 75 30 75 30 75
re IS n cu	red ystem Vol Device Vo iit Current om source to tee for balarance from previous device 48 8 8 38 8 25 40	3rd Floor I tage 1.920 o 1st device cce of circu At Device 23.43 23.35 22.96 22.88 22.67 22.36	East 24 20 20 48	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST ST ST ST	Rating 75 30 75 30 75 75 75
re IS n cu	red ystem Vol Device Vo iti Current om source tr e for balar from previous device 48 8 8 38 8 25 40 11 15	3rd Floor I tage 1.920 o 1st device the of circu 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.29	East 24 20 48 20 Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809	Wire Gauge 14 14 14 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.54%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR	Type ST	Rating 75 30 75 30 75 75 30 135
re IS n cu	red ystem Vol Device Vo iti Current Om source to te for balar Distance from previous device 48 8 38 38 8 25 40 11 15 65	3rd Floor I tage 1.920 o 1st device the of circu 23.43 23.35 22.96 22.88 22.67 22.26 22.28 22.19 22.29	East 24 20 48 Voltage Drop from source 0.565 1.042 1.116 1.333 1.642 1.716 1.809 2.120	Wire Gauge 14 14 2.36% 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST	Rating 75 30 75 30 75 75 30 135 135
re IS n cu	red ystem Vol Device Vo it Current om source to te for balarance from previous device 48 8 8 8 8 8 8 25 40 11 15 65 33	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77	East 24 20 48 Jit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.54% 8.83% 9.30%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST	Rating 75 30 75 30 75 75 30 135 135 135
re IS n cu	red ystem Vol Device Vo iit Current om source te for balar Distance from previous device 48 8 8 38 8 38 38 38 38 38 38 38 33 30	3rd Floor I tage 1.920 o 1st device ince of circu 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77 21.71	East 24 20 48 uit Voltage Drop from 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290	Wire Gauge 14 14 24 2.36% 2.72% 4.34% 4.65% 5.55% 5.55% 6.84% 7.15% 7.54% 8.83% 9.30% 9.30%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.228 0.228 0.228 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
re IS n cu	red ystem Vol Device Vo it Current om source to te for balarance from previous device 48 8 8 8 8 8 8 25 40 11 15 65 33	3rd Floor I tage 1.920 o 1st device nce of circu 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77 21.71 21.66	East 24 20 48 wit Voltage Drop from source 0.566 0.652 1.042 1.116 1.642 1.716 1.809 2.120 2.231 2.290 2.336	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.54% 8.83% 9.30% 9.30% 9.54%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST	Rating 75 30 75 30 75 75 30 135 135 135
re IS n cu	red ystem Vol Device Vo it Current om source te for balar from previous device 48 8 38 8 25 40 11 15 65 33 30 30 33	3rd Floor I tage 1.920 o 1st device the of circu 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77 21.71 21.66 21.66	East 24 20 48 Voltage Drop from source 0.566 0.565 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336	Wire Gauge 14 14 14 2.36% 2.36% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.54% 9.54% 9.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.028 0.094 0.228 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
re IS n cu	red ystem Vol Device Vo iit Current om source te for balar Distance from previous device 48 8 8 38 8 38 38 38 38 38 38 38 33 30	3rd Floor I tage 1.920 o 1st device the of circu 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77 21.71 21.66 21.66	East 24 20 48 Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e Voltage	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 6.84% 7.15% 8.83% 9.30% 9.30% 9.30% 9.74% 9.74% 21.66	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.228 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
re IS n cu	red ystem Vol Device Vo it Current om source te for balar from previous device 48 8 38 8 25 40 11 15 65 33 30 30 33	3rd Floor I tage 1.920 o 1st device the of circu 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77 21.71 21.66 21.66	East 24 20 48 Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e Voltage	Wire Gauge 14 14 14 2.36% 2.36% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.54% 9.54% 9.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.228 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	30 75 30 75 30 135 135 135 30
re IS n cu	red ystem Vol Device Vo it Current om source te for balar from previous device 48 8 38 8 25 40 11 15 65 33 30 30 33	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.28 22.99 22.88 22.67 22.28 22.19 21.88 21.77 21.71 21.66 21.66 21.66 Line	East 24 20 48 Jit Voltage Drop from source 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e. Voltage Point t	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 7.54% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.2200 0.228 0.2280 0.2280 0.2200 0.2280000000000	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
ve I S frr frr r	red ystem Vol Device Vo iit Current om source te for bistance from previous device 48 8 38 38 38 38 38 38 38 38 38 38 38 38	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.28 22.99 22.88 22.67 22.28 22.19 21.88 21.77 21.71 21.66 21.66 21.66 Line	East 24 20 48 Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e Voltage	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 7.54% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.294 0.228 0.294	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
ve I S frr frr r	red ystem Vol Device Vo it Current om source tre form previous device 48 8 38 8 38 8 25 40 11 15 65 33 30 33 30 33 34 354	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.28 22.99 22.88 22.67 22.28 22.19 21.88 21.77 21.71 21.66 21.66 21.66 Line	East 24 20 48 Jit Voltage Drop from source 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e. Voltage Point t	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 7.54% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.094 0.228 0.094 0.094 0.094 0.094 0.094 0.228 0.0940	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 135 30
ve I S frr frr r	red ystem Vol Device Vo it Current om source tr ef or balar Distance from previous device 48 8 38 8 8 25 40 111 15 65 33 30 33 30 33 354 25 40 21 25 33 30 33 30 33 354	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.28 22.99 22.88 22.67 22.28 22.19 21.88 21.77 21.71 21.66 21.66 21.66 Line	East 24 20 48 Jit Voltage Drop from source 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e. Voltage Point t	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 7.54% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.094 0.228 0.0940	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
veils state of the second seco	red ystem Vol Device Vo it Current om source te form previous device 48 8 38 8 25 40 11 15 65 33 30 33 30 334 354 bistance als Distance 354	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.28 22.99 22.88 22.67 22.28 22.19 21.88 21.77 21.71 21.66 21.66 21.66 Line	East 24 20 48 Jit Voltage Drop from source 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e. Voltage Point t	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 7.54% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.028 0.220 0.228 0.220 0.228 0.220 0.228 0.220 0.228 0.220 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200000000	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30
veils state of the second seco	red ystem Vol Device Vo it Current om source tr ef or balar Distance from previous device 48 8 38 8 8 25 40 111 15 65 33 30 33 30 33 354 25 40 21 25 33 30 33 30 33 354	3rd Floor I tage 1.920 o 1st device the of circu At Device 23.43 23.35 22.96 22.88 22.67 22.28 22.99 22.88 22.67 22.28 22.19 21.88 21.77 21.71 21.66 21.66 21.66 Line	East 24 20 48 Jit Voltage Drop from source 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 e. Voltage Point t	Wire Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 7.54% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.094 0.228 0.0940	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type ST ST	Rating 75 30 75 30 75 75 30 135 135 135 30

	device	At	Drop from	Percent					
		Device	source	Drop					
4V201	60	23.73	0.266	1.11%	0.066	System Sensor	SCR	ST	15
4V202	15	23.67	0.326	1.36%	0.158	System Sensor	SCR	ST	75
4V203	15	23.63	0.372	1.55%	0.094	System Sensor	SCR	ST	30
4V204	25	23.57	0.434	1.81%	0.202	System Sensor	SCR	ST	110
4V205	70	23.48	0.521	2.17%	0.202	System Sensor	SCR	ST	110
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
Totals	185	End of Lin	e Voltage	23.48	0.722				
			Point	to Point M	ethod				
		0	RCUITI	S WITHI	N LIMITS	5			
Tot	als				Voltage			-	
Current	Distance				Drop				
0.722	185				0.52				
	e Voltage				23.48				
Percen					2:17%			-	
, croen	- P. OP	L	Standard V	Vire Recist		nms per 1000 feet		l	
18=7.77	16=4.89	14=3.07	12=1.98	10=1.24			•		
	= Solid Co			vg = Stran	ded Condu	ictors			
Notes:	30/14 00		12-10 AI						
	tance is de	whied in +	he calculati	ons for tw	n wirec /P	ositive and Negat	ive)		
			ast device r			-	ive)		
							- 20 22 10	~	
the manuf	actures its	teo minim	un operati	ing vortage	e (ic: rateu	operating voltag	e 20-32 VD	с <u>ј</u> .	
		l	Ein	Alarm V/	ltago Drou	o Calculations			
Project Na	me					er Math and Scien	<u></u>		
Panel / Cir		Notifier D				er mach and Selen	···		
				Circuit 3V2					
				Circuit 3V2					
Area Cove	red	3rd Floor I	East	Circuit 3V2	<u>.</u>				
Area Cove Nominal S		3rd Floor I tage		Circuit 3V2	<u>.</u>				
Area Cove Nominal S Minimum	red ystem Vol	3rd Floor I tage Itage	East 24	Wire	Ohm's				
Area Cove Nominal S Minimum	red ystem Vol Device Vo	3rd Floor I tage Itage	East 24						
Area Cove Nominal S Minimum Total Circu	red ystem Vol Device Vo iit Current	3rd Floor I tage Itage	East 24 20	Wire	Ohm's				
Area Cove Nominal S Minimum Total Circu Distance fro	red ystem Vol Device Vo lit Current	3rd Floor I tage Itage 1.212	East 24 20 80	Wire Gauge	Ohm's Per 1000				
Area Cove Nominal S Minimum Total Circu Distance fro	red ystem Vol Device Vo lit Current	3rd Floor I tage Itage 1.212 o 1st device	East 24 20 80 Jit	Wire Gauge 14	Ohm's Per 1000 3.07				
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug	red ystem Vol Device Vo nit Current om source t ge for balar	3rd Floor I tage Itage 1.212 o 1st device	East 24 20 80	Wire Gauge 14	Ohm's Per 1000 3.07 3.07				
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device	red ystem Vol Device Vo iit Current om source t ge for balar Distance from	3rd Floor I tage Itage 1.212 o 1st device	East 24 20 80 Jit	Wire Gauge 14	Ohm's Per 1000 3.07 3.07 Current in	Device M	lodel #	Device	1
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device	red ystem Vol Device Vo it Current om source to te for balar Distance from previous	3rd Floor tage ltage 1.212 o 1st device nce of circu	East 24 20 80 Jit Voltage	Wire Gauge 14 14	Ohm's Per 1000 3.07 3.07 Current	Device M	lodel #	Device Type	1
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device	red ystem Vol Device Vo iit Current om source t ge for balar Distance from	3rd Floor 1 tage 1tage 0 1st device nce of circu At	East 24 20 80 Juit Voltage	Wire Gauge 14 14 Percent	Ohm's Per 1000 3.07 3.07 Current in	Device M	lodel #	1	1
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device Number	red ystem Vol Device Vo nit Current om source to te for balar Distance from previous device	3rd Floor I tage Itage 1.212 o 1st device nce of circu At Device	ast 24 20 80 Jit Voltage Drop from source	Wire Gauge 14 14 Percent Drop	Ohm's Per 1000 3.07 3.07 Current in amps.			Туре	Ratir
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device Number 3V201	red ystem Vol Device Vo it Current om source t te for balar Distance from previous device 80	3rd Floor 1 tage Itage 1.212 o 1st device nce of circu At Device 23.40	East 24 20 1it Voltage Drop from source 0.595	Wire Gauge 14 14 14 Percent Drop 2.48%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094	System Sensor	SCR	Type ST	Ratir 30
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V201	red ystem Vol Device Vo it Current om source t te for balar Distance from previous device 80 10	3rd Floor tage ltage 1.212 o 1st device nce of circu At Device 23.40 23.34	East 24 20 80 iit Voltage Drop from source 0.595 0.664	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228	System Sensor System Sensor	SCR SCRH	Type ST ST	Ratir 30 135
Area Cove Nominal S Minimum Total Circu Distance fre Wire Gaug Device Number 3V201 3V201 3V202 3V203	red ystem Vol Device Vo it Current om source t te for balar Distance from previous device 80 10 40	3rd Floor 1 tage ltage 1.212 o 1st device of circu At Device 23.40 23.34 23.12	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883	Wire Gauge 14 14 Percent Drop 2.48% 2.77% 3.68%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158	System Sensor System Sensor System Sensor	SCR SCRH SCR	Type ST ST ST ST	Ratir 30 135 75
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204	red ystem Vol Device Vo iit Current om source t te for balar Distance from previous device 80 10 40 50	3rd Floor 1 tage 1tage 1.212 o 1st device orce of circu At Device 23.40 23.34 23.12 22.89	East 24 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094	System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR	Type ST ST ST ST ST	Ratir 30 135 75 30
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204 3V205	red ystem Vol Device Vo iit Current om source te te for balaar Distance from previous device 80 10 40 50 32	3rd Floor I tage Itage 1.212 o 1st device occ of circu At Device 23.40 23.42 23.12 22.89 22.77	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 0.883 1.107 1.233	Wire Gauge 14 14 14 2.48% 2.77% 3.68% 4.61% 5.14%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR	Type ST ST ST ST ST ST	Ratir 30 135 75 30 30
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206	red ystem Vol Device Vo iit Current om source te te for balar Distance from previous device 80 10 40 50 32 65	3rd Floor 1 tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.34 23.34 22.89 22.77 22.55	East 24 20 80 iit Voltage 0.595 0.664 0.883 1.107 1.233 1.450	Wire Gauge 14 14 24 20 20 20 20 20 20 20 20 20 20 20 20 20	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR	Type ST ST ST ST ST ST ST	Ratir 30 135 75 30 30 30 75
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V203 3V203 3V205 3V205 3V205	red ystem Vol Device Vo iti Current om source t ge for balar Distance from previous device 80 10 40 50 32 65 8	3rd Floor I tage 11.212 o 1st device o 1st device of circu 23.40 23.34 23.12 22.89 22.77 22.55 22.53	East 24 20 80 	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.058 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST ST ST	Ratir 30 135 75 30 30 75 15
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204 3V205 3V206 3V207 3V208	red ystem Vol Device Vo iit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 8 20	3rd Floor I tage Itage 1.212 o 1st device occ of circu 23.40 23.34 23.12 22.89 22.77 22.53 22.53 22.49	East 24 20 80 Jit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508	Wire Gauge 14 14 14 Percent Drop 2.48% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.158 0.094 0.158 0.066	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR	Type ST	Ratir 30 135 75 30 30 30 75 15 15
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V204 3V205 3V206 3V207 3V208 3V209	red ystem Vol Device Vo it Current om source te te for balar Distance from previous device 80 10 10 40 50 32 65 8 20 40	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.55 22.49 22.43	East 24 20 80 Jit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.570	Wire Gauge 14 14 2.48% 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28% 6.28%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.094 0.094 0.094 0.094 0.066 0.066	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR	Type ST	Ratir 30 135 75 30 30 75 15 15 15 15
Area Cove Nominal S Minimum Total Circu Distance fro Wire Gaug Device Number 3V201 3V202 3V202 3V203 3V202 3V203 3V204 3V205 3V205 3V206 3V207 3V208 3V209 3V210	red ystem Vol Device Vo it Current om source te te for balar Distance from previous device 80 10 40 50 32 65 8 8 20 40 75	3rd Floor 1 tage 1.212 o 1st device occ of circu At Device 23.40 23.40 23.12 22.89 22.77 22.55 22.53 22.43 22.43	East 24 20 80 	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.28% 6.54% 6.54%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094 0.158 0.066 0.066 0.066 0.066	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device 3V201 3V202 3V202 3V203 3V204 3V205 3V206 3V206 3V207 3V206 3V207 3V209 3V210	red ystem Vol Device Vo it Current om source te te for balar Distance from previous device 80 10 10 40 50 32 65 8 20 40	3rd Floor I tage 1.212 o 1st device o 1st device of circu 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.49 22.49 22.34 22.31	East 24 20 80 wit Voltage Drop from Source 0.595 0.664 0.883 1.107 1.233 1.450 1.450 1.469 1.508 1.577 1.694	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28% 6.54% 6.54% 6.90% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.066 0.066	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR	Type ST	Ratin 30 135 75 30 30 75 15 15 15 15
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V203 3V204 3V205 3V205 3V205 3V205 3V205 3V206 3V207 3V208 3V207 3V208 3V201 3V201 3V201 SV205 3V201 SV205 3V201 SV205 S	red ystem Vol Device Vo it Current om source te te for balar Distance from previous device 80 10 40 50 32 65 8 8 20 40 75	3rd Floor I tage Itage 1.212 o 1st device orce of circu 23.40 23.34 23.12 22.89 22.75 22.55 22.53 22.49 22.43 22.43 22.43 22.31	East 24 20 80 wit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.570 1.694 1.694	Wire Gauge 14 14 24 277% 2.48% 4.61% 5.14% 6.04% 6.12% 6.28% 6.52% 6.52% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.158 0.094 0.158 0.066 0.066 0.066 0.066 0.066	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 33/201 33/202 33/203 33/204 33/204 33/205 33/206 33/207 33/208 33/207 33/208 33/207 33/208 33/207 33/208 33/209 33/211 END END	red ystem Vol Device Vo iit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65	3rd Floor I tage Itage 1.212 o 1st device occ of circu 23.40 23.34 23.12 22.89 22.77 22.53 22.49 22.43 22.34 22.34 22.31 22.31	East 24 20 80 1it Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.469 1.508 1.570 1.657 1.694 1.694 1.694	Wire Gauge 14 14 14 Percent Drop 2.48% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28% 6.54% 6.54% 6.54% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.094 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V203 3V204 3V205 3V205 3V205 3V205 3V205 3V206 3V207 3V208 3V207 3V208 3V201 3V201 3V201 SV205 3V201 SV205 3V201 SV205 S	red ystem Vol Device Vo it Current om source te te for balar Distance from previous device 80 10 40 50 32 65 8 8 20 40 75	3rd Floor I tage Itage 1.212 o 1st device occ of circu 23.40 23.34 23.12 22.89 22.77 22.53 22.49 22.43 22.34 22.34 22.31 22.31	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.450 1.508 1.570 1.657 1.694 1.694 1.694 e Voltage	Wire Gauge 14 14 2.4 Percent Drop 2.48% 2.77% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.54% 6.50% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094 0.094 0.158 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 33/201 33/202 33/203 33/204 33/203 33/204 33/205 33/206 33/207 33/208 33/207 33/208 33/207 33/208 33/207 33/208 33/209 33/211 END END	red ystem Vol Device Vo iit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.508 1.570 1.694 1.694 1.694 1.694 0.694 Voltage	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.90% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.094 0.094 0.058 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.000 1.212 ethod	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 33/201 33/202 33/203 33/204 33/203 33/204 33/205 33/206 33/207 33/208 33/207 33/208 33/207 33/208 33/207 33/208 33/209 33/211 END END	red ystem Vol Device Vo iit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.450 1.508 1.570 1.657 1.694 1.694 1.694 e Voltage	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.90% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.094 0.094 0.058 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.000 1.212 ethod	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 33/201 33/202 33/203 33/204 33/203 33/204 33/205 33/206 33/207 33/208 33/207 33/208 33/207 33/208 33/207 33/208 33/209 33/211 END END	red ystem Vol Device Vo it Current om source t fer for balan Distance from previous device 80 10 40 50 32 65 8 20 40 50 52 65 8 20 40 50 40 50 50 52 65 8 20 40 50 50 50 50 50 50 50 50 50 50 50 50 50	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.508 1.570 1.694 1.694 1.694 1.694 0.694 Voltage	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.90% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.094 0.094 0.058 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.000 1.212 ethod	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device 3V201 3V202 3V202 3V203 3V204 3V205 3V206 3V206 3V206 3V207 3V206 3V207 3V208 3V209 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V202 3V203 3V204 3V205 3V206 3V207 3V208 3V207 3V208 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V202 3V203 3V204 3V205 3V206 3V207 3V206 3V207 3V206 3V207 3V206 3V207 3V208 3V207 3V208 3V207 3V208 3V209 3V201 3V201 3V201 3V201 3V203 3V204 3V205 3V206 3V207 3V206 3V207 3V208 3V207 3V208 3V207 3V208 3V208 3V208 3V209 3V208 3V209 3V208 3V209 3V209 3V209 3V201 3V201 3V201 3V201 3V205 3V206 3V201 3V205 3V206 3V201 3V205 3V206 3V207 3V206 3V207 3V206 3V207 3V206 3V207 3V208 3V206 3V207 3V208 3V20 3V208 3V20 3V200 3V200 3V200 3V200 3V20	red ystem Vol Device Vo it Current om source t from previous device 80 10 40 50 32 65 8 20 40 75 65 65 8 20 40 75 65 65 8 20 40 75 65 8 20 40 32 20 40 32 20 40 32 20 40 32 32 32 32 32 32 32 32 32 32 32 32 32	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.508 1.570 1.694 1.694 1.694 1.694 0.694 Voltage	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.90% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.228 0.158 0.094 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.094 0.0094 0.000 1.212 ethod N LIMITS	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V203 3V204 3V205 3V205 3V205 3V206 3V207 3V208 3V207 3V208 3V207 3V208 3V201 3V205 3V206 3V207 3V206 3V201 3V205 3V206 3V201 3V201 3V205 3V206 3V201 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V205 3V205 3V201 3V205 3V201 3V205 3V201 3V205 3V205 3V205 3V201 3V205 3	red ystem Vol Device Vo it Current om source t from previous device 80 10 40 50 32 65 8 20 40 75 65 65 8 20 40 75 65 65 8 20 40 75 65 8 20 40 32 20 40 32 20 40 32 20 40 32 32 32 32 32 32 32 32 32 32 32 32 32	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.508 1.570 1.694 1.694 1.694 1.694 0.694 Voltage	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.90% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.228 0.158 0.094 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.121 2 ethod N LIMITS Voltage	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	135 75 30 30 75 15 15 15 15 30
Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204 3V205 3V206 3V206 3V207 3V208 3V209 3V200 3V201 END Totals Totals	red ystem Vol Device Vo it Current om source te for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65 65 485 20 40 75 65 65 20 40 75 65 65 20 40 75 65 65 20 40 75 65 65 20 485	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.508 1.570 1.694 1.694 1.694 1.694 0.694 Voltage	Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.54% 6.54% 6.54% 6.54% 6.90% 7.06% 7.06% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.000 1.212 ethod N LIMITS Voltage Drop	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type ST ST	Ratin 30 135 75 30 30 30 75 15 15 15 15 30


CIND		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
Totals	219	End of Lin	e Voltage	23.40	0.776			
			Point	to Point M	ethod			
		C	IRCUIT	IS WITHI	N LIMITS	;		7
To	tals	Voltage						-
Current	Distance	Drop						
0.776	219	0.60						-
End of Line Voltage		23.40						
Percent Drop		2.50%						
			Standard \	Nire Resist	ance in Of	ms per 1000 feet		·······
18=7.77	16=4.89	14=3.07	12=1.98	10=1.24				
18-14 Awg	g = Solid Co	onductors	12-10 A	wg = Stran	ded Condu	ctors		
Notes:						**************************************		
Wire resis	tance is do	oubled in t	he calculat	ions for tw	o wires (P	ositive and Negat	ive)	
		ed to the la						
	-					operating voltage	e 20-32 VD	C).
*******		dan barken i den son den er som da so						
			Fir	e Alarm Vo	ltage Droi	o Calculations		
Project Na	me	Cal Poly Building 52: Computer Math and Science						
Panel / Ci	rcuit #	Notifier RNPS, PS3- Circuit 4V3						
Area Cove	red	4th Floor I	East					
Nominal S	System Vol	tage	24	,				
Minimum	Device Vo		20					
Total Circu	uit Current	0.878		Wire	Ohm's			
				Gauge	Per 1000			
Distance fr	om source t	o 1st device	37	14	3.07			
Wire Gauge for bala		nce of circu	uit	14	3.07	·		
Device	Distance		Voltage		Current			
Number	from		vonage		in			Devi
	previous				amps.	Device N	lodel #	
	device	At	Drop from	Percent				Тур
		Device	source	Drop				
4V301	37	23.80	0.199	0.83%	0.066	System Sensor	SCR	ST
4V302	17	23.72	0.284	1.18%	0.210	System Sensor	SCR	ST
4V 303	104	23.33	0.669	2.79%	0.202	System Sensor	SCR	ST
4V304	70	23.16	0.841	3.50%	0.202	System Sensor	SCR	ST
4V305	20	23.14	0.865	3.60%	0.066	System Sensor	SCR	ST
4V306	30	23.11	0.889	3.70%	0.066	System Sensor	SCR	ST
4V307	20	23.10	0.897	3.74%	0.066	System Sensor	SCR	ST
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000		1	
END		23.10	0.897	3.74%	0.000		+	
END		23.10	0.897	3.74%	0.000		+	
Totals	298	End of Lin		23.10	0.878			l
101015	2.50	12:00 201		to Point M	and the second s	I		_
			CIRCUIT					
		<u>_</u>	JICCOII	IS WITH		,		
Totals		Voltage						
Current Distance		Drop						
0.878	298	0.90						
	e Voltage	23.10						
Percent Drop 3.74%								
			Standard \	Nire Resist	ance in Of	nms per 1000 feet		
18=7.77	16=4.89	14=3.07	12=1.98	10=1.24				
18-14 Awg	; = Solid Co	nductors	12-10 A	wg = Stran	ded Condu	ictors		
Notes:								

SHEET 14 OF 15

.

Appendix F

Smoke extraction calculations

$$Z = 27.5 m$$
$$\dot{Q} = 1500 kW$$

Zukoski

$$T_{p} = 5 * \left(\frac{\sqrt{T_{\infty}}\dot{Q}}{\sqrt{g}c_{p}\rho_{\infty}}\right)^{2/3} z^{-5/3} + T_{\infty} = 305.1 K$$

$$\rho_{p} = \frac{\rho_{\infty}T_{\infty}}{T_{p}} = 1.196 \frac{kg}{m^{3}}$$

$$\dot{m}_{p} = 0.21 \left(\frac{\rho_{\infty}^{2}g}{c_{p}T_{\infty}}\right)^{1/3} \dot{Q}^{1/3} z^{5/3} = 220.6 \frac{kg}{s}$$

$$\dot{V}_{p} = \frac{\dot{m}_{p}}{\rho_{p}} = \frac{220.6}{1.196} = 184.4 \frac{m^{3}}{s}$$

Heskestad

$$\begin{split} \dot{Q}_{c} &= 0.7 * \dot{Q} \\ z_{0} &= 0.083 \dot{Q}^{2/5} - 1.02 D = 0.53 \ m \\ T_{p} &= 9.1 * \left(\frac{\sqrt{T_{x}} \dot{Q}_{c}}{\sqrt{g} \ c_{p} \ \rho_{x}}\right)^{2/3} (z - z_{0})^{-5/3} + T_{\infty} = 308.5 \ K \\ \rho_{p} &= \frac{\rho_{x} T_{x}}{T_{p}} = 1.183 \ \frac{kg}{m^{3}} \\ \dot{m}_{p} &= 0.071 \ \dot{Q}_{c}^{-1/3} (z - z_{0})^{5/3} + 0.00192 \ \dot{Q}_{c} = 177.1 \ \frac{kg}{s} \\ \dot{V}_{p} &= \frac{\dot{m}_{p}}{\rho_{p}} = \frac{177.1}{1.183} = 149.7 \ \frac{m^{3}}{s} \end{split}$$

McCaffrey

$$T_{p} = 22.3 * \left(\frac{\dot{Q}^{2/5}}{z}\right)^{5/3} + T_{\infty} = 309.9 K$$

$$\rho_{p} = \frac{\rho_{x}T_{x}}{T_{p}} = 1.178 \frac{kg}{m^{3}}$$

$$\dot{m}_{p} = 0.21 \left(\frac{\rho_{x}^{2}g}{c_{p}T_{x}}\right)^{1/3} \dot{Q}^{1/3} z^{5/3} = 220.6 \frac{kg}{s}$$

$$\dot{V}_{p} = \frac{\dot{m}_{p}}{\rho_{p}} = \frac{220.6}{1.178} = 187.3 \frac{m^{3}}{s}$$