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ABSTRACT 

 

Will Oakland Burn Again:  

Understanding the Fire Hazard in an Urban Park System 
 

Alessandra Milena Zambrano 

 

 Though almost thirty years have passed since the 1991 Tunnel Fire, the wildfire 

hazard is still present in the Oakland Hills. This study was conducted to determine if the 

vegetation in the Oakland Hills had reverted back to fuel conditions that contributed to 

the Tunnel Fire, examine how the fire hazard has changed since 1991, and evaluate 

planned wildfire mitigation. The goal was to determine how fuel conditions have changed 

since 1991 and compare potential fire behavior to that of the Tunnel Fire. Additionally, 

the study examined the effectiveness of the mitigation actions described in the East Bay 

Regional Park District’s Wildfire Hazard Reduction and Resource Management Plan on 

lowering extreme fire behavior. Through the use of remote sensing, historical aerial 

imagery, satellite imagery, and Landsat imagery the 1991 and 2018 fuel conditions were 

analyzed. ArcGIS Pro and FlamMap 6 were used to compare hectares of fuel and 

changed in fire behavior between the two year. Mitigation actions were modeled with 

FlamMap 6 and ArcGIS Pro and fire behavior was compared between untreated 

conditions and post treatment conditions. The vegetation in the Oakland Hills, in the 

absence of fire, returned to a mature state, similar to the 1991 conditions. However, there 

was a reduction in the overall hectares of fuel model 147 in 2018. Modeled fire behavior 

indicated an overall reduction in extreme fire behavior when comparing 1991 to 2018. 

This reduction varied on a park level with each park performing differently. When 

modeled, mitigation was able to lower extreme fire behavior across the landscape but 
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success varied on an individual park basis.  In conclusion, should ignition occur 

presently, under foehn wind conditions, a fire would still exhibit very extreme behavior 

with a high potential for catastrophic loss, and implantation of planned mitigation 

measures may be able to lower the degree of extreme fire behavior. 

 

Keywords: [Oakland Hills, fire hazard, wildland fire hazard, WUI fire, fire mitigation] 
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CHAPTER 1: INTRODUCTION 

In 1991 a fire in the Oakland Hills of California changed the traditional view of 

fire hazards. The 1991 Tunnel Fire ushered in the current era of catastrophic fires in the 

wildland-urban interface (WUI). The fire remains one of the most destructive and one of 

the deadliest fires in California history (CAL FIRE, 2020; California Office of 

Emergency Services, 1992). Nevertheless, a comparison of current wildfire hazard 

conditions to those that caused the Tunnel Fire event is largely unknown. Understanding 

how past fire events compare to current fire hazards may help in shaping wildfire 

management. There is a need to understand similarities and differences to the fire hazard 

in 1991 and to determine the potential effect of fuel mitigation.  

The Tunnel Fire originally started as a small grass fire by the Temescal Tunnel in 

the East Bay Regional Park District (EBRPD) in Oakland, California on October 19, 

1991. The following day, a spike in Diablo wind conditions caused the small fire to 

rekindle, flare up and rapidly move down the ridgeline spreading from EBRPD lands into 

residential areas (California Office of Emergency Services, 1992; Ewell, 1995; Pagni, 

1993; U.S Fire Adiministration, 1991). Within an hour the fire was considered to be out 

of control (U.S Fire Adiministration, 1991). The main factors that drove extreme fire 

behavior were 48-110 kph winds, dense accumulation of fuels such as eucalyptus, and the 

layout of homes (California Office of Emergency Services, 1992; Ewell, 1995; Pagni, 

1993; U.S Fire Adiministration, 1991). Many homes in the area were made with wood 

shingle roofs, set into vegetation, and difficult to access by road (California Office of 

Emergency Services, 1992; U.S Fire Adiministration, 1991). In less than ten hours, 25 
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lives were lost and over 2,000 homes were destroyed (California Office of Emergency 

Services, 1992; U.S Fire Adiministration, 1991).  

Almost thirty years have passed since the original fire and in that time the fire 

hazard in the Oakland Hills seems to have returned to a high level (CAL FIRE, 2008). 

The local area has had a significant fire history with wildfires occurring in 1923, 1970, 

and 1980 (California Office of Emergency Services, 1992; U.S Fire Adiministration, 

1991). It is not unreasonable to expect the area to burn again. Both then and now, 

thousands of homes exist in the WUI of the area, many at the top of the EBRPD western 

border (California Office of Emergency Services, 1992; U.S Fire Adiministration, 1991). 

Furthermore, since the Tunnel Fire, vegetation within the parks has regrown, matured, 

and changed in composition, influencing the fire hazard in the region.  

The EBRPD parklands were last assessed between 2007-2010 by the EBRPD for 

the Wildfire Hazard Reduction and Resource Management Plan. The mitigation plan 

outlined a fuel modification action plan for reducing wildfire hazards within the park 

system (LSA Associates Inc. & East Bay Regional Park District, 2010a). The plan largely 

focused on reducing hazardous fuels within close proximity to neighborhoods, removing 

and thinning Blue Gum Eucalyptus (Eucalyptus globulus), and creating firefighter safety 

zones (LSA Associates Inc. & East Bay Regional Park District, 2010a). A common 

challenge to fuel mitigation in large areas is conflicts between management objectives 

and public expectations (Ager, Vaillant, & Finney, 2010), this is why large-scale 

mitigation has yet to be fully implemented in the EBRPD. Furthermore, the delay 

between the wildfire assessment and mitigation implementation means that it is unclear if 

the recommended treatments would be effective on the present-day fire hazard  
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Understanding the current fire hazard provides a starting point for wildfire 

management and hazard mitigation in a given locality. But it is not often that current fire 

hazards are extensively compared to historical ones. To effectively manage wildfire, the 

specific factors that influence fire hazards, especially in WUI areas, need to be 

understood (Syphard et al., 2007; Bründl et al., 2009, Brenkert-Smith et al., 2012; Ager 

et al., 2015). One of these factors is how a fire hazard on a landscape has changed. Which 

is why it is important to go beyond simply modeling the present by hazard but to also 

model historical fire events. In areas with a significant fire history, examining how the 

current fire hazard compares to the historical one on a fire behavior level can not only 

shed light on how the landscape has altered but also contextualize how a fire might 

behave today. Thus, allowing for this hazard to be more readily understood and prepared 

for. While, the Oakland hills area was previously assessed by the EBRPD there was no 

extensive comparison to the historical conditions in 1991, which was due in part to a lack 

of historical fuels data at the time. However, to best determine how a potential fire could 

burn locally and the mitigation steps necessary to reduce the hazard, it is imperative to 

compare known current fuel conditions and fire behavior that occurred in the 1991 

Tunnel Fire with current physical conditions. 

For this project, there were two main objectives. The first was to quantify and 

compare how the present-day fire hazard to the fire hazard that existed at the time of the 

1991 Tunnel Fire in order to better understand how fire might behave on the landscape. 

The second objective was to evaluate how the EBRPD mitigation plan affects the 

occurrence of extreme fire behavior based on the present-day fire hazard. To that end, via 

remote sensing, I compared (i) the hectares of fuel in 1991 vs. 2018 in the EBRPD, (ii) 
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fuel composition for 1991 vs. 2018, (iii) simulated and compared potential wildfire 

behavior under average conditions and extreme conditions for 1991 and 2018, and (iv) 

determined how potential mitigation actions may lower extreme fire behavior in the 

EBRPD. 
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CHAPTER 2: LITERATURE REVIEW 

THE MULTIFACED NATURE OF FIRE: LOOKING BEYOND THE BIOPHYSICAL 

HAZARD 

2.1 Introduction 

In California, fires are a frequent and powerful disturbance. Their prevalence is 

exacerbated by the state’s climatic system and native vegetation (Steinberg, 2002). 

Summer and early fall are especially fire-prone due to high temperatures and offshore 

wind events (Holmes et al., 2008). This dries out fuels and drives the potential for 

extreme fire behavior (Holmes et al., 2008). However, as more people move into the 

Wildland Urban Interface (WUI), the challenge and threat of fire have become more 

complex (Calkin, Thompson, & Finney, 2015; Olsen et al., 2017; Syphard et al., 2007). 

The result is an increase in human-caused ignitions (Cardille, Ventura, & Turner, 2008; 

T. W. Collins, 2005; Dennison, Brewer, Arnold, & Moritz, 2014) extreme fire behavior, 

and home loss (Calkin et al., 2015; Marlon et al., 2012). The wildfire problem in 

California goes beyond the biophysical realm and it is increasingly costly to manage 

(Kramer, Mockrin, Alexandre, & Radeloff, 2019). To understand the wildfire problem 

not only does the biophysical hazard need to be considered, but wildfire mitigation 

measures and social dimensions of fire must be assessed as well.  

2.1.1 Biophysical Fire Hazard Components 

The biophysical fire hazard is the basis for fire management, fire risk assessment, 

and people’s relationship with fire. It cannot be ignored when doing anything related to 

fire. The fire hazard reflects the condition of the forest and the condition of the fuels 

within it (Calkin et al., 2015). Currently, our fire systems are under great stress, and the 
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fire hazard in many locations is quite high (Calkin et al., 2015). We have affected fire and 

fuels in both very intentional and unintentional ways (Safford, Schmidt, & Carlson, 

2009). Policy decisions regarding suppression, consequences of climate change, and 

where we build our homes have changed how fire returns to the landscape (Dombeck, 

Williams, & Wood, 2004; Safford et al., 2009). 

2.1.1.1 Wildland Areas Fire Hazard 

One of the biggest deliberate effects we have had on the fire system is the legacy 

of suppression. Large scale suppression activities started in the 1920s and by the 1940s 

the effects of those decisions were evident (Stephens, 2005). While the intention was to 

make the wildlands safer, removing fire has only increased the hazard and the danger.  

The fire problem we are currently facing is increased frequency, increased 

severity, and a positive feedback loop (T. W. Collins, 2005; Marlon et al., 2012). 

Suppression policies have caused the fire hazard to worsen over time and management 

decisions are still contributing to the problem. In the Western U.S, long-term exclusion 

and suppression have changed the fuel composition by increasing fuel density and fuel 

homogeneity (Calkin et al., 2015; Snider, Daugherty, & Wood, 2006). The changes in 

fuel structure have resulted in fires shifting from surface fires to crown fires (Calkin et 

al., 2015; Snider et al., 2006). Despite efforts to remove fire from the landscape fire 

cannot be suppressed, it will always return (Calkin et al., 2015). However, as fire returns 

it may no longer fit the management goals of that landscape. The longer that fire has been 

excluded from a system the more it shifts towards extremes, increasing wildfire hazards 

and changing fire behavior (Calkin et al., 2015). Our deliberate choices to remove fire 

have made the landscape more hazardous than ever before. 
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As the system moves toward extremes, fires are happening more often and the 

area burned is increasing (Olsen et al., 2017). Dennison et al. (2014) found that this  

positive trend occurs in areas with a high history of suppression (Figure 1-1) (Dennison et 

al., 2014). Across all high suppression areas fire increased at a rate of seven large fires 

per year (Figure 1-1). Within California, except in the Mediterranean region where fire 

has remained relatively constant, all other regions had a positive trend with fire 

increasing from 1984-2011 (Figure 1-1). However, the Mediterranean region had the 

highest frequency of large fires overall (Dennison et al., 2014). They also found that in all 

nine ecoregions total fire area increased by a rate of 355 km2 per year. The positive 

feedback loop contributes to more large fires which in turn results in more suppression. 

This illustrates that as we keep trying to remove fire from the landscape it continuously 

returns at a greater level than before.  

Fig. 2-1: Trends of the number of large fires across the Western U.S. from 1984-2011. The black line 

indicates the trend for each ecoregion. Large fires are classified by a burned area of greater than 1000 

acres. Reprinted from “Large wildfire tends in the western United States, 1984-2011” by P.E. 

Dennison et al, 2014, AGU, 41(8), p.2929, Copyright 2014 by American Geophysical Union. Reprinted 

with permission. 
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           While suppression was an intentional decision we made, other choices have 

unintentionally affected the fire hazard as well. Climate change is altering the aspects of 

the natural environment daily. Our choices regarding it have had an unintentional effect 

on fire. How climate change is altering fire is still in the process of being understood, but 

it cannot be ignored. One of the most evident effects of climate change is the lengthening 

of the fire season (Westerling, Hidalgo, Cayan, & Swetnam, 2006). Since 1980, the fire 

season has been increasing by the delay of winter and the advancement of spring 

(Westerling et al., 2006). Overall, the fire season is 78 days longer than before and will 

continue to grow (Westerling et al., 2006). This means fuels will be drier, the 

opportunities for ignitions will increase, and extreme fire behavior will be more common 

(Schulte & Miller, 2010). This effect will likely continue in the future, making 

containment even more difficult (Schulte & Miller, 2010).  

Climate change also affects moisture variability (Westerling et al., 2006). This 

can cause an increase in the  fluctuation between wet/dry conditions, promoting a period 

of biomass growth followed by a period of higher dry fuel availability (Westerling et al., 

2006). Northern California has been greatly affected by climate change (Westerling et al., 

2006). The advancing spring and delayed rains have created moisture deficits and 

increased the number of high fire risk days (Schulte & Miller, 2010; Westerling et al., 

2006). Drier fuels and increased red flags days could result in more catastrophic wildfires 

in Northern California and beyond. Increased fuel may result in higher fire frequency and 

severity than current vegetation types are accustomed to (Calkin et al., 2015; Russell & 

McBride, 2003). Therefore, there is a need to better understand the fire hazard as it 

relates to the region it affects. 
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           With a history of large-scale fire suppression and worsening of climate change, the 

wildland fire hazard has grown (Calkin et al., 2015; Marlon et al., 2012; Schulte & 

Miller, 2010). Removing fire from a system has had an opposite effect by increasing the 

level of fuels and extremity of fire behavior (Calkin et al., 2015; Snider et al., 2006). We 

need to understand what this effect will mean for the future of fire management. 

However, fire does not exist exclusively in wildland systems. Not only do we have to 

consider the consequences we have had on the ecological system, but we also must 

consider that where we choose to live greatly effects the wildfire hazard. This intersection 

is becoming increasingly important and crucial to study and understand. 

2.1.1.2 Wildland Urban Interface Fire Hazard 

 Wildfire is strongly influenced by where people choose to build their homes and 

the actions they take on their property (Cardille et al., 2008). In the wildland urban 

interface (WUI), fires can start in either wildland areas and burn into residential areas or 

vice versa (Mell, Manzello, Maranghides, Butry, & Rehm, 2010). A WUI fire will 

consume both home and wildland fuels and is very difficult to suppress. California, 

Arizona, and Colorado have the highest percentages of WUI residential areas 

(Schoennagel, Nelson, Theobald, Carnwath, & Chapman, 2009). These states also have 

some of the highest suppression areas (Dennison et al., 2014). An unintentional effect of 

historical suppression is that it allowed for people to move further into the wildlands, 

increasing the area of the WUI (S. McCaffrey, 2004). As the WUI grows, ignitions in 

these regions increase and are more likely to be human-caused (Marlon et al., 2012; 

Safford et al., 2009). In California, the rise in human-caused ignitions is most evident in 

chaparral and coastal scrub communities where the population is increasing (Syphard et 



10 

 

al., 2007). Syphard et al. (2007) found that the number of fires is highest in WUI areas 

with shorter distances to the intermix or interface, (Figure 1-2). However, this trend starts 

to level off when the distance to the WUI area reaches 9-10km for intermix and 14-15 km 

for interface (Figure 1-2) (Syphard et al., 2007). The trend illustrates that the closer 

people live to wildland areas the more likely WUI fires are to occur. This results in a 

different fire hazard with a high percentage of assets at risk. The consequences of WUI 

growth need to be considered in fire hazard assessment.  

 
Fig. 2-2: The proportion of the number of fires and the mean distance to the WUI intermix. 

Reprinted from “Human Influence on California Fire Regimes,” by A. D. Syphard et al, 2007, 

Ecological Society of America, 17(5), p.1395, Copyright 2007 by Ecological Society of America. 

Reprinted with permission. 

 

 WUI areas are also where the most destructive fires tend to occur (Kramer et al., 

2019). WUI fires are highly destructive due to the relatively short distances between 

homes and fuels (Kramer et al., 2019). These types of fires comparatively need minimal 

wildland fuel to cause extensive damage versus fires that occur exclusively in wildland 

fuels (Kramer et al., 2019). Once a fire transitions into the WUI, home to home spread 

makes devastation high and containment difficult. In the 1991 Oakland Firestorm, the 
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quick transition from wildland fuels to residential structures resulted in over 2,000 homes 

being lost in a few hours (Kemper, Blonski, & Honeycutt, 2001; Pagni, 1993; U.S Fire 

Adiministration, 1991). 75% of structures lost during wildfires exist in areas classified as 

WUI (T. W. Collins, 2005). In terms of home distribution, most homes tend to be in the 

WUI interface but the WUI intermix is generally more widespread (Kramer et al., 2019). 

One-third of these homes are built in areas where ignitions are more likely to occur (T. 

W. Collins, 2005), leaving a high proportion of homes potentially at risk. From 1996 to 

2016 approximately over 1,449 residence were destroyed annually in WUI fires alone 

(Mockrin, Fishler, & Stewart, 2018). Every fire season this number continues to increase.  

Structure loss in WUI areas is due to a combination of weather, wind, home 

ignitability, and suppression (Ager et al., 2010). The attributes and characteristics of a 

house drive its home ignitability potential (T. W. Collins, 2005; Meldrum et al., 2015). 

Home ignitability is also be affected by wildland conditions (P. A. Champ, Donovan, & 

Barth, 2013) and surrounding property characteristics (Meldrum et al., 2015). The 

complexity of multiple driving factors can make reducing ignitability a serious challenge. 

Because so many factors can influence structure loss and WUI fires, this issue is 

incredibly difficult to manage. WUI fires are complex and have a high potential for 

damage. This also means that the WUI hazard is unique to each community in which it is 

being evaluated (Brenkert, Champ, & Flores, 2005). There is a need to understand how 

fire hazards apply to the specific community it will affect. As the WUI grows, fire 

management cannot have a one-size-fits-all approach; it must be appropriate to the setting 

and the scale of the hazard that exists (Brenkert et al., 2005). 
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2.1.2 Wildfire Mitigation Measures  

 Suppression, climate change, and population densities have made wildfire 

management more complex and dangerous than ever before (Kramer et al., 2019). Our 

suppression system on average costs 1 billion dollars each year and this total is expected 

to rise (Ager, Kline, & Fischer, 2015; Calkin et al., 2015). The cost of suppression also 

pulls from land management and is an inappropriate substitution for mitigation (Calkin et 

al., 2015; T. W. Collins, 2005; Steelman & Burke, 2007). Just as our actions can increase 

the wildfire hazard, we can also intentionally reduce the wildfire hazard. Mitigation 

reduces the potential effect or damages the hazard may inflict (Godschalk, 2003). Within 

fire management, there are two main types of mitigation, wildland mitigation, and 

property mitigation (Toman, Stidham, Shindler, & Mccaffrey, 2011). These factors do 

not exist independently and must be considered in conjunction when mitigating for fire 

(Cohen & Jack, 2008; T. W. Collins, 2005).  

2.1.2.1 Wildland Fuels Mitigation Measures 

 Management decisions can directly reduce or increase a wildfire hazard (P. A. 

Champ et al., 2013). Effectively managing a landscape requires first understanding the 

way the historical fire regime was altered (Syphard et al., 2007). The current fire regime 

and the desired fire regime outcome will influence the type of wildfire mitigation 

undertaken. Often wildfire mitigation falls to local government agencies (Kramer et al., 

2019). They can provide expertise regarding their area and more freedom in management. 

Large scale forest managers often are not fully supported by their institutions (P. A. 

Champ et al., 2013). The longer a manager is in an agency, the more susceptible they are 

to the status quo; typically defaulting to suppression (Wilson, Winter, Maguire, & 
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Ascher, 2011). However, support for fuels management is growing, likely due to 

increased awareness (Toman et al., 2011). In 1970, prescribed fire was reintroduced as a 

tool for the National Park System and the U.S. Forest Service (Wilson et al., 2011). This 

marked the start of considering alternate management options for mitigating wildfire. 

 One of the biggest questions regarding fuel treatments is its long-term 

effectiveness. Although treatments are often implemented, they are not always monitored 

(B. M. Collins, Stephens, Moghaddas, & Battles, 2010). The long-term effects of fuels 

mitigation depend on the rate of treatment and the type of application (M. A. Cochrane et 

al., 2011). This can vary greatly; a treatment rate of 1-30% of the area can last from one 

year to two decades (B. M. Collins et al., 2010; Finney et al., 2007). Part of this variance 

is due to differences in treatment types and the rate treatments degrade overtime (M. A. 

Cochrane et al., 2011; Vaillant, Noonan-Wright, Dailey, Ewell, & Reiner, 2013). To 

maintain effectiveness, mitigation is an ongoing process rather than a one-time 

application.  

In general, treatments will be either mechanical based or fire-based (Vaillant et 

al., 2013). Mechanical treatments initially increase 1-100 hour fuels before reducing fuel 

loads for up to eight years (Mark A Cochrane et al., 2011; Vaillant et al., 2013). Adding 

prescribed fire to mechanical treatment can reduce the initial spike in fuels (Mark A 

Cochrane et al., 2011; Safford et al., 2009; Vaillant et al., 2013). Fuel loads post fire-

based treatment generally will have an initial sharp decrease and then increase over time 

(Safford et al., 2009; Vaillant et al., 2013). Fire-based treatments can reduce fuels by 

75% for about eight to ten years; before returning to previous levels (Mark A Cochrane et 

al., 2011; T. W. Collins, 2005; Vaillant et al., 2013). Properly prescribed treatment can 
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effectively reduce surface fuels and crown fire behavior, resulting in lower severity 

(Safford et al., 2009; Vaillant et al., 2013). However, while prescribed fire can be an 

effective mitigation tool, it requires extensive risk (Wilson et al., 2011) and smoke 

management (Mark A Cochrane et al., 2011). This makes the implementation of 

prescribed fire very difficult and is why it has largely been eclipsed (Wilson et al., 2011). 

In California, most mitigation efforts occur near WUI areas (Safford et al., 2009). 

The goal is to reduce the spread and potential impact of fire from wildlands to residential 

areas. In Northern California, prescribed fire is the most effective fuel treatments, 

reducing severity for up to ten years (Mark A Cochrane et al., 2011). Attitudes towards 

prescribed fire and jurisdictional restrictions can make implementation difficult. 

Mechanical treatments are generally used in the place of prescribed fire. However, in 

Northern California mechanical treatments such as mastication may have a detrimental 

effect on fire hazard reduction (Mark A Cochrane et al., 2011). There is a need to 

increase our understanding of how fuel treatments affect potential fire behavior.  

2.1.2.2 Property-Based Mitigation Measures 

 Home attributes can drive ignitability (T. W. Collins, 2005) and ignitability is 

determined by the materials used and the level of exposure (Mell et al., 2010). However, 

properties that are defended during a fire have a 77% survival rate (Handmer, Van der 

Merwe, & O’Neill, 2019). Measures like defensible space give fire personnel room to 

defend properties from flames. For a home to be effectively defended mitigation needs to 

be in place. Property mitigation can come in a variety of forms. The main issues property 

mitigation tries to adress are community adaptation, structural materials, and exposure to 

fuels (McGee, 2011) Whether or not homeowners implement mitigation on their property 
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is the primary factor in the likelihood of property loss (J. G. Champ et al., 2012; Olsen et 

al., 2017). Active mitigation can be the difference between catastrophic home loss and 

property damage.  

Local governments or the individual property owners are typically the responsible 

for property mitigation (Mockrin et al., 2018). Measures can take the form of codes, 

ordinances, programmatic measures, or voluntary compliance (Kramer et al., 2019). 

Neighborhood and community-based mitigation programs may effectively reduce 

property fire hazards (Olsen et al., 2017). However, Olsen et al., (2017) only found this to 

be true in areas where a strong community relationship was in place before implementing 

a program (Olsen et al., 2017).  

The goal of the National Fire Plan, Firewise program, and other fire-safe 

programs is to encourage wildfire adaptation through mitigation and stewardship 

(McGee, 2011). Fire adapted communities acknowledge the risk of wildfires and can 

withstand wildfires without the loss of life or property (Mockrin, Stewart, Radeloff, 

Hammer, & Alexandre, 2015). The Healthy Forest Restoration Act facilitates the 

Community Wildfire Protection Plan program (CWPP), to attempt to foster residential 

based fire adaptations. A CWPP can help communities build capacity to solve and 

leverage fire problems (Jakes & Sturtevant, 2013). In communities with active CWPPs  

that later experienced a fire, the residents cited that the CWPP helped them prepare, 

recover, and change for the future (Jakes & Sturtevant, 2013). Many residents felt that 

without the CWPP the fire could have been worse (Jakes & Sturtevant, 2013).The local 

context of mitigation programs drives its level of success. Having mitigation measures 

tailored to the local community is crucial (Brenkert et al., 2005). Programs need to 
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consider people and the environment but also feasibility, willingness to participate, and 

local culture (Brenkert et al., 2005). Wildfire mitigation programs that include local 

context rather than a generalized approach are more likely to succeed (Brenkert et al., 

2005).  

The main forms of homeowner mitigation measures are structural materials, 

landscaping, and property maintenance (McGee, 2011). The overall goal is to reduce the 

likelihood of property ignition. These actions can be carried out independently or 

programmatically. One of the most well-known actions is defensible space (McCaffrey, 

Stidham, Toman, & Shindler, 2011). A study by McCaffrey found that most homeowners 

undertake activities related to landscaping, thinning, lawn maintenance, and self-

exclusion (McCaffrey et al., 2011). This was found to be consistent across five different 

WUI communities (McCaffrey et al., 2011). Often these actions were carried out only 

when fire protection also satisfied aesthetic values or other property values (McCaffrey et 

al., 2011). When mitigation is carried out, the community fire-related behaviors are fairly 

consistent year to year (Table 1-1) (Wolters, Steel, Weston, & Brunson, 2017). At least 

40% of property owners continuously engaged in property protection activities, 

landscaping maintenance, and materials selection in regards to fire risk reduction, (Table 

1-1) (Wolters et al., 2017) 
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Table 2-1: Percent participation by residents in firewise based activities across three survey 

years in Central Oregon. Reprinted from “Determinants of residential Firewise behaviors in 

Centeral Oregon,” E. A. Walters et al, 2017, The Social Science Journal, 54(2), p. 173. 

Copyright 2017 by Wester Social Science Association. Reprinted with permission.  

However, the activities undertaken are those that already have a relationship to 

property maintenance or property values. There is a need to identify what actions 

homeowners are likely to engage with automatically and those that may require 

additional agency support. These factors need to be considered when designing a 

mitigation plan for a community.  

2.1.3. Social Dimensions of Fire 

 Hazards cannot be understood nor prevented without consideration of humans 

(Eiser et al., 2012). The threat to human lives and values is often what makes hazards so 

important. A large portion of California communities exists in WUI areas, leaving a high 

proportion of lives and assets at risk (Schoennagel et al., 2009). However, to effectively 

evaluate hazards social factors need to be considered in conjunction with biophysical 

factors (Ager et al., 2015). Both elements greatly influence each other and in turn, 
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influence the potential for loss. How people perceive the risk from a fire hazard can differ 

greatly from the physical hazard condition. But someone's belief in the fire hazard is no 

guarantee that mitigation will be undertaken (Olsen et al., 2017; Eiser et al., 2012).  

2.1.3.1 Risk Perceptions of Fire Hazards 

 Measuring fire risk involves judging the likelihood that a fire hazard will result in 

ignition with the potential for damage and personal consequences (McGee, 2011). People 

who live in hazardous areas often view hazard-related risks differently. Residents judge 

the risk from fire based on social and cultural learning, which will vary community to 

community (Wachinger, Renn, Begg, & Kuhlicke, 2013). People in high risk areas also 

tend to evaluate the fire risk based on the level of controllability, the voluntariness of 

mitigation, catastrophic potential, and the degree of outcome certainty (W. E. Martin, 

Martin, & Kent, 2009). How residents view and respond to the fire problem can be very 

different from the expectations of fire professionals. Understanding these gaps may lend 

insights into the role of how communities view and deal with the fire hazard problem.  

Risk perception influences the decisions people make to live and remain in a 

hazardous area (P. A. Champ et al., 2013). Many residents do understand the fire hazard 

but respond differently (P. A. Champ et al., 2013). In general, the fire risk in the 

wildlands is viewed as greater than the fire risk to personal property (Olsen et al., 2017). 

A study by Martin et al. (2009) looked at how subjective knowledge of fire, fire 

experience, responsibility, and self-efficacy affect risk perception (W. E. Martin et al., 

2009). They also examined how risk perceptions changed based on full time versus part-

time resident status (W. E. Martin et al., 2009). There was a significant effect between the 

subjective knowledge of fire, self- efficacy, and residential status on risk perceptions, 
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(Table 1-2) (W. E. Martin et al., 2009). Despite what many believe, direct experience 

with fire was not found to have a significant impact on risk perceptions, (Table 1-2) (W. 

E. Martin et al., 2009).These factors can either raise or lower risk perceptions depending 

on the resident (I. M. Martin, Bender, & Raish, 2007). This is why it is important to 

understand what people believe they know about fire (W. E. Martin et al., 2009) and how 

people view their ability to take action (Brenkert-Smith, Champ, & Flores, 2012; W. E. 

Martin et al., 2009).  

Table 2-2: The relationship between independent variables and risk perception. Location is a 

dummy variable. FT represents full-time status. As excerpted from Reprinted from “The role of 

W. E. Martin et al, 2009, Journal of Environmental Management, 91(2), p. 495. Copright 2009 by 

Elsevier Ltd. Reprinted with permission. 

 Perceptions of fire will differ from community to community but also within the 

community as well (Alexandre, Mockrin B, Stewart, Hammer, & Radeloff, 2015).  There 

are four community archetypes within WUI communities: (1) Formalized Suburban 

Communities, (2) High-Amenity High Resource Communities, (3) Rural Lifestyle 

Communities, and (4) Working Landscape/Resource Dependent Communities (Paveglio 

et al., 2015). These communities differed in their attitudes towards the fire problem and 

who has the main responsibility for it. Archetype 1 felt that the fire problem was largely a 

fuel issue and should be handled through formal programs (Paveglio et al., 2015). 

Whereas, archetype 2 viewed fire as an ecosystem issue and had mixed opinions but 
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ultimately favored programmatic implementation (Paveglio et al., 2015). Both archetypes 

3 and 4 agreed that the fire problem was a forest health and fuel reduction issue, but 

archetype 3 favored grassroots efforts while archetype 4 favored individual resident 

responsibility (Paveglio et al., 2015). Community make-up can greatly influence how fire 

is understood and residents’ willingness to participate. There is a wide variety of WUI 

communities in California, and managers need to consider community dynamics when 

discussing fire hazards, fire-related risk, and potential mitigation efforts. 

Risk perception is often coupled with the perceived capacity to respond 

(Brenkert-Smith et al., 2012). If people feel they have the means and skill to respond to 

the fire hazard, they will evaluate their risk as lower. A common assumption is that if 

people experience fire they will view it differently; however, experience does not 

significantly influence homeowners' decisions regarding risk (W. E. Martin et al., 2009; 

S. McCaffrey, 2004). Understanding this relationship can shed light on areas in which 

managers can influence resident risk perceptions of fire. 

 Another challenge is that the risk perception of the fire hazard by homeowners is 

not always aligned with experts (Meldrum et al., 2015). Often this is due to homeowners 

emphasizing different factors in their risk assessment process (Meldrum et al., 2015). For 

experts it is often very clear how to evaluate the risk from a fire hazard; there are set 

criteria. However, for homeowners, many competing factors in their daily lives influence 

how they view the fire. When experts and homeowners aggregate individual risk 

differently gaps occur in fire management (Meldrum et al., 2015). Understanding the 

divergence between the two groups is necessary to move forward in fire hazard reduction. 

Many residents do perceive the risk from fire in some way and will engage to a certain 
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degree, but predominantly when implementation cost is low and is associated with 

existing property maintenance (Wolters et al., 2017). It is not guaranteed that the way 

they are viewing the fire hazard and taking action is within the expectation of experts. 

Risk perception gaps demonstrate where residents understand the risk, where they do not, 

and what actions they are willing to undertake (Wolters et al., 2017). While a high-risk 

perception of fire is necessary for mitigation it is not sufficient (T. W. Collins, 2005; S. 

McCaffrey, 2004; Wolters et al., 2017). 

 Fire cannot be considered outside the realm of society. Societal factors need to be 

considered in California. How residents of the WUI measure the fire hazard and measure 

risk is a key component of reducing fire hazards. Gaps in fire perception illustrate 

differences in how residents and how experts think of fire. Taking into consideration 

community dynamics when designing mitigation efforts may help maximize the 

likelihood of participation. Moving forward, there is a need to understand how residents 

measure fire hazard and fire risk in comparison to experts.  

2.1.3.2 Motivations and Hurdles to Wildfire Mitigation 

 Two main categories influence people’s relationships with natural hazards such as 

wildfire (S. McCaffrey, 2004). First are factors that affect their awareness and perception, 

and second are factors that drive how people turn knowledge of hazards into action 

(McCaffery, 2004). A multitude of social components affects the likelihood that residents 

will implement mitigation measures around their homes. A common assumption is that 

education and knowledge are all that is needed to get people to mitigate (McCaffery, 

2004; S. M. McCaffrey et al., 2011). However understanding risk, while necessary, does 

not guarantee mitigations actions are taken (Olsen et al., 2017). Understanding what 
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hurdles prevent people from mitigating and what motivates them to take action may be 

the key to solving the wildfire problem.  

 Property owners are more likely to mitigate when the perceived risk of fire is high 

and the mitigation actions do not compromise their landscape preferences (McGee, 

2011). This combination is difficult to achieve. Wildfire mitigation is often viewed by 

homeowners as a trade-off between desirable attributes on their property and the benefit 

of risk reduction (McFarlane, McGee, & Faulkner, 2011). WUI residents tend to place 

high values on nature and privacy; it is often why they within the WUI. Commonly, 

mitigation creates more open space or changes the physical composition of the 

surrounding vegetation. The conflict between potential mitigation actions and desired 

property values can be a direct barrier to mitigation (Wolters et al., 2017). Residents, not 

only consider the trade-offs between mitigation and resource availability in their decision 

making, but also potential conflicts of interest, personal values, and beliefs about nearby 

wildlands (S. McCaffrey, Wilson, & Konar, 2018). If the comprise is too great it is 

unlikely that mitigation will be carried out fully or at all. People need to believe that the 

actions will work without major sacrifices. Mitigation plans and mangers need to 

acknowledge these conflicts and provide solutions for residents.  

 Mitigation is not as simple as implementing a program or educating the public 

(McCaffery, 2004). Factors of everyday life influence the likelihood that mitigation will 

be undertaken. Self-efficacy and response-efficacy are crucial and can either help or 

hinder mitigation efforts (Brenkert-Smith et al., 2012; Bubeck, Botzen, & Aerts, 2012; I. 

M. Martin et al., 2007; W. E. Martin et al., 2009). Self-efficacy deals with people’s 

ability to carry out mitigation actions and response-efficacy deals with their beliefs in the 
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action’s worth (Brenkert-Smith et al., 2012; Bubeck et al., 2012; I. M. Martin et al., 

2007). For people to mitigate both types of efficacies must be high (I. M. Martin et al., 

2007). This affects the type of mitigation behaviors people are willing to engage with, 

(W. E. Martin et al., 2009), which can be a major problem for mitigation plans. More 

complex mitigation actions will only be carried out by those who feel they have the 

means to accomplish it. Communities do not always have the level of ability or financial 

resources available to carry out necessary mitigation actions (Kunreuther, 2001). Within 

the four WUI archetypes, efficacy differs (Paveglio et al., 2015). Archetypes 1 and 2, 

suburban-based WUI communities, have the lowest level of local efficacy whereas, 

archetypes 3 and 4, rural-based WUI communities, have the highest levels of local 

efficacy (Paveglio et al., 2015). This may be because rural WUI communities are often 

more self-reliant that suburban WUI communities. Mitigation plans need to consider 

ways to raise residents’ level of efficacy and their belief in the effectiveness of the action. 

Without belief in the action and belief in themselves, it is unlikely that mitigation will be 

carried out (W. E. Martin et al., 2009; McGee, 2011). 

 It is easy to think that if people experience a wildfire they will change and 

implement future mitigation measures, especially in California where wildfires are 

frequent (Dennison et al., 2014). However, direct experience with wildfire guarantees 

nothing (I. M. Martin et al., 2007; McGee, 2011; Wachinger et al., 2013). The effect is 

inconsistent and can result in a positive or negative outcome (I. M. Martin et al., 2007; 

McGee, 2011; Wachinger et al., 2013). If experience increases awareness it may only be 

a temporary effect that fades over time (S. McCaffrey, 2004). In Oakland, California after 

the 1991 Tunnel Fire a property tax was created to fund fuel management activities; 
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however six years after the fire the tax was removed (S. McCaffrey, 2004). Fading 

awareness or interest can be attributed to the concept of disaster subculture (S. 

McCaffrey, 2004). This is a phenomenon where people get so accustomed to a natural 

hazard that it feels inevitable and mitigation seems pointless (S. McCaffrey, 2004).  

Mockrin et al. (2018) studied how experience with fire changes community 

behavior. They looked at how local government and community-level wildfire response 

changed after experiencing wildfire across eight different WUI communities (Mockrin et 

al., 2018). They found that changes were most common in emergency response or 

suppression based activities followed by revision of planning documents (Figure 1-3) 

(Mockrin et al., 2018). Alterations in fire education and outreach only occurred at half the 

sites and were in areas where some level of education existed before the fire (Figure 1-3) 

(Mockrin et al., 2018). At the neighborhood level, changes in mitigation were informal, 

modest, and only if they were considered non-controversial to the resident (Mockrin et 

al., 2018). None of the sites enacted WUI regulations that focused on homes (Mockrin et 

al., 2018). Overall, the effect of experience with fire was inconsistent, and changes 

predominantly occurred in the public sector or programmatic level rather than at the 

homeowner level (Mockrin et al., 2018). It is not reliable nor enough to assume that 

experience with catastrophic wildfire will change human behavior. 
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Fig. 2-3: Percent of study sites reporting community-level changes in regards to wildfire 

mitigation. For vegetation management on public lands, this only applied to six of the 

communities in the study. The categories were based on areas where denominate actions were 

undertaken. Reprinted from “Does Wildfire Open a Policy Window? Local Government and 

Community Adaptation After Fire in the United States,” by Mockrin et al, 2018, Environmental 

Management, 62, p. 219. Copyright 2018 by Springer Science+Business Media LLC. Reprinted 

with permission.  

 

 Finally, the level of trust a community has within itself and outside agencies can 

define the level of motivation people have for mitigation. Communities tend to support 

fuel management on adjacent public lands (Toman et al., 2011). However, they can be 

reluctant to support fuel management on their properties (Paveglio et al., 2015). A lack of 

trust not only in a public agency but the disaster management system as a whole can be a 

significant barrier to mitigation (Richard Eiser et al., 2012). As repeated catastrophic 

wildfire events demonstrate how this system has failed. Trust and community relations 

will vary based on the community but is an important aspect of mitigation to consider 

(Toman et al., 2011). Trust can reduce uncertainty and overcome judgments surrounding 

mitigation measures (Wachinger et al., 2013). Building trust can also help build the 

resiliency of a community and increase the likelihood that residents carry out mitigation 

actions (Brenkert et al., 2005).  
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 The lack of emphasis on the sociopolitical setting has resulted in an inadequate 

integration of social-based risk into the biophysical setting (Ager et al., 2015). While 

efforts have been made in fuel reduction and mitigation measures, we have failed to 

understand the role of residents. Disregarding what motivates people and what prevents 

people from undertaking mitigation leaves our systems vulnerable and disconnected 

(Ager et al., 2015). We need to build up the capacity of communities so that mitigation 

goes beyond general information (Wolters et al., 2017). This starts by trying to not only 

understand how people view hazards but also how they are motivated to take action.  

2.2 Conclusions 

 Fire in California is an inevitable (Steinberg, 2002) challenge that has increased in 

complexity over the years (Calkin et al., 2015; Olsen et al., 2017; Syphard et al., 2007). 

We are seeing changes in the frequency and severity of fire due to suppression activities 

(T. W. Collins, 2005; Dennison et al., 2014; Marlon et al., 2012), climate change 

(Westerling et al., 2006), and the growing WUI (Cardille et al., 2008; Syphard et al., 

2007). Suppression has resulted in fire returning to the landscape in a more extreme form 

than before (Calkin et al., 2015; Dennison et al., 2014). The effects of climate change are 

something we are still determining and areas such as Northern California are already 

seeing an increased number of high fire risk days (Schulte & Miller, 2010; Westerling et 

al., 2006). Wildfires are also driven by where people live and the WUI is growing 

(Cardille et al., 2008). We can reduce the wildfire hazard with mitigation actions in the 

wildlands and around homes (Safford et al., 2009; Vaillant et al., 2013). But there is a 

need to further study how mitigation affects potential fire behavior. Additionally, hazard 

assessment and mitigation plans often fail to emphasize social factors (Ager et al., 2015). 
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This results in a lack of understanding of how people view risk and their decisions 

regarding mitigation (Olsen et al., 2017). Wildfire cannot be analyzed in a vacuum. 

Biophysical factors, mitigation, and social drivers need to be integrated when 

determining how a wildfire will affect an area. Moving forward there is a need to 

undertake hazard assessments within the local context of a community and look beyond 

the biophysical setting. 
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CHAPTER 3: METHDOLOGY 

3.1 STUDY AREA 

The project area consisted of four parks, totaling 1337.21 hectares within the 

Oakland Hills in Oakland, California (Figure 3- 1), including Claremont Canyon 

Regional Preserve (CC), Sibley Volcanic Regional Preserve, Huckleberry Botanic 

Regional Preserve, and Reinhardt Redwood Regional Preserve (RED). For the purpose of 

this study, Sibley Volcanic Regional Preserve and Huckleberry Botanic Regional 

Preserve were grouped for modeling and collectively referred to as Sibley Volcanic 

Preserve (SIB), as Huckleberry Preserve bisected Sibley Preserve with no physical 

boundary and the vegetation existed continuously between the two areas. All parks were 

managed by the East Bay Regional Park District (EBRPD), a multijurisdictional park 

system for both Alameda County and Contra Costa County. The terrain varied in 

topography ranging from steep canyons to flat meadows.  

The dominant vegetation communities differ in each park. Claremont Canyon 

consists predominantly of coastal scrub and chaparral (LSA Associates Inc. & East Bay 

Regional Park District, 2010d). Sibley Volcanic Preserve is dominated by a mixture of 

Oak-Bay Woodlands and California Annual Grassland (LSA Associates Inc. & East Bay 

Regional Park District, 2010d). Finally, Redwood Preserve is mostly Oak-Bay Woodland 

and Redwood forest (LSA Associates Inc. & East Bay Regional Park District, 2010d) 

(Figure 3-2). 

The parks varied in size; Claremont Canyon Preserve was 88.9 hectares; Sibley 

Preserve was 471.88 hectares, and Redwood Preserve was 770.37 hectares. Of the total 

park area, 207.69 hectares were designated by EBRPD as proposed wildfire mitigation 
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treatment areas (LSA Associates Inc. & East Bay Regional Park District, 2008, 2010c) 

(Figure 3-3).  

 
Fig. 3-1: Map of study area displaying the four parks in the EBRPD. These parks are located in 

the Oakland Hills of Oakland, California.  

 

 
Fig. 3-2: a) California annual grassland, b) Redwood forest, c) coastal scrub/chaparral, and d) 

oak woodland 
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Fig. 3-3: Map of RTA within the project boundaries. Treatment areas are divided into initial 

treatments and maintenance treatments. Initial treatments are priority areas. 

 

3.2 DATA SOURCES 

In order to establish baseline vegetation composition, I used vegetation 

classification shapefiles, created by the EBRPD for their Wildfire Hazard Reduction and 

Resource Management Plan (LSA Associates Inc. & East Bay Regional Park District, 

2010e). The 1991 Tunnel Fire fuel reconstruction required both an aerial mosaic from 

June 1991 and a 30-m resolution Landsat 5 image from October 13, 1991 (Keane, 

Burgan, & van Wagtendonk, 2002; Mitsopoulos, Mallinis, & Arianoutsou, 2014; Xiao-

rui, McRae, Li-fu, & Ming-yu, 2008), courtesy of the U.S. Geological Survey, which was 

captured seven days before the start date of the 1991 Tunnel Fire.  

To determine the 2018 fuel composition, I analyzed an ESRI Wayback image at 

0.5-m resolution from September 8, 2018, and a Landsat 8 image from October 7, 2018 

courtesy of the U.S Geological Survey (Keane et al., 2002; Mitsopoulos et al., 2014; 
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Xiao-rui et al., 2008). To create the fuel models for the untreated landscape and the 

treated landscape I used a combination of vegetation shapefiles from the EBRPD 

Wildfire Mitigation and Resource Management Plan (WMRMP) and the vegetation-to-

fuels crosswalk from the EBRPD wildfire assessment (LSA Associates Inc. & East Bay 

Regional Park District, 2008, 2010c). Details regarding mitigation actions and desired 

vegetation outcomes were obtained from the EBRPD Wildfire Mitigation and Resource 

Management Plan, the Recommended Treatment (RTA) area map, as wells as 

supplementary resource mitigation assessment documents (East Bay Regional Park 

District, 2018; LSA Associates Inc. & East Bay Regional Park District, 2008).  

Topographic data for fire behavior simulations were provided by LANDFIRE at a 

30-m resolution. Weather conditions and wind velocities for fire behavior simulation runs 

were acquired from the Remote Automated Weather Station (RAWS), Oakland North, on 

Grizzly Peak in Oakland, California .  

3.3 METHDOLOGY 

3.3.1.1991 vs. 2018 Fire Hazard Assessment 

3.3.1.1 Fuel Modeling Methodology 

To determine how the 2018 fuel conditions and potential fire behavior compared 

to the 1991 Tunnel Fire conditions, fuel models were created for both years within 

ArcGIS Pro (Keane et al., 2002; Xiao-rui et al., 2008) and modeled fire scenarios using 

FlamMap 6 during average and extreme weather conditions (Mitsopoulos et al., 2014). 

The EBRPD vegetation shapefiles served as a starting point for reconstructing the 1991 

pre-fire conditions (LSA Associates Inc. & East Bay Regional Park District, 2010e). This 

data was used due to the lack of fuel data for the 1991 Tunnel Fire and because it was 
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created from a park wide-field survey (LSA Associates Inc. & East Bay Regional Park 

District, 2010e). It was assumed, due to this being a managed park system, there would 

not be major conversions in vegetation type, rather, there would only be changes in 

existing area and extent. In order to convert the vegetation map into a fuel model, the 

vegetation to fuels crosswalk created by the EBRPD was used (LSA Associates Inc. & 

East Bay Regional Park District, 2008) and the Scott & Burgan Standard Fire Behavior 

fuel models (Scott & Burgan, 2005). This base fuel model was overlaid on the 1991 

aerial mosaic of the Oakland Hills and zoomed in to a ratio of 1:3000 within ArcGIS Pro. 

To reconstruct the pre-fire conditions, direct mapping was used to assign fuel 

characteristics and modify polygons based on the visible extent of fuel within the image 

(Keane et al., 2002; Xiao-rui et al., 2008). The fuel model was converted and stored as a 

raster with 30-m resolution for modeling and analysis. 

Using the 1991 fuel model, the fuel conditions for 2018 were constructed. The 

1991 fuel model was overlayed onto the ESRI Wayback image from October 7th, 

2018.The assumptions were for this procedure remained the same. The same 

methodology was used for creating the 1991 fuel model to create the 2018 fuel model 

(Keane et al., 2002; Xiao-rui et al., 2008). The fuel model was converted and stored as a 

raster with 30-m resolution for modeling and analysis. 

3.3.1.2 Canopy Coverage Modeling Methodology 

An important component of fire modeling is a canopy coverage layer that matches 

the fuel model (Polinova, Wittenberg, Kutiel, & Brook, 2019). Custom canopy coverage 

files were created (a required input for FlamMap 6 simulations) from the Landsat images 

rather than depending on LANDFIRE data because the LANDFIRE canopy files only 
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existed for 2018. Landsat images can be used to create a canopy layer when LANDFIRE 

data is unavailable or insufficient (Brandis & Jacobson, 2003; Gitelson, Stark, & 

Rundquist, 2002; Polinova et al., 2019). This allowed for canopy coverage information to 

be consistent between the two years. Further, Landsat imagery can provide the vegetation 

and canopy coverage needed for fire modeling (Brandis & Jacobson, 2003). Thus, canopy 

coverage can be estimated from Landsat images using the Visible Atmospheric 

Reflection Index (VARI) (Eq. 1.) (Gitelson et al., 2002; Polinova et al., 2019).  

Eq. 1 VARI = Green-Red / Green + Red Blue 

VARI uses the visible color spectrum to assess the level of “greenness” and estimate 

vegetation characteristic of for fuel parameters (Gitelson et al., 2002; Polinova et al., 

2019). Each output was created at 30-m resolution raster that matched the extent of the 

respective fuel model. The results were then calibrated using the FlamMap 6 canopy 

coverage classes. This procedure was done with both the Landsat 5 image for 1991 and 

with the Landsat 8 image for 2018. 

3.3.1.3 Fire Behavior Modeling Methodology 

In order to model fire in FlamMap 6, I made landscape models for 1991 and 2018. 

FlamMap 6 composites elevation, aspect, slope, fuel, and canopy coverage files into one 

landscape that can be used to simulate fire behavior. The same elevation, slope, and aspect 

layers from LANDFIRE were inputted for both 1991 and 2018. The topographic inputs 

remained constant for the 1991 and 2018 models. However, fuel and canopy coverage 

inputs changed in accordance with the fuels that were present during each specific time 

period, to ensure that changes in fire behavior resulted solely from changes in fuels between 

the two time periods. 
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 Fire behavior scenarios were created for average weather conditions and extreme (i.e. 

97th percentile) weather conditions from August through October, which is considered 

fire season in the region (Mitsopoulos et al., 2014). 1991 and 2018 fire model used the 

same calculated weather scenarios to model potential fire behavior. RAWS data from 

1995 to 2018 were summarized and used to calculate average weather conditions and 97th 

percentile weather conditions (Table 3-1). For the 97th percentile, the weather conditions 

recorded during the 1991 Tunnel Fire were used to calibrate RAWS values (California 

Office of Emergency Services, 1992; Radke, 1995; U.S Fire Adiministration, 1991). 

Because the Oakland North weather station did not exist until 1995, RAWS data did not 

exist on the day of the 1991 Tunnel. Fire. However, incident reports from the fire 

contained did contain limited weather data. In areas, where this was appropriate such as 

temperature and wind speed, these data points were substituted for calculated weather 

data values for the 97th percentile weather scenario (U.S Fire Administration, 1991; 

California Office of Emergency Services, 1992; Radke, 1995). The purpose was to have 

the 97th percentile scenario more closely reflect the conditions that occurred on the day 

on the actual fire event (U.S Fire Administration, 1991; California Office of Emergency 

Services, 1992; Radke, 1995). Each model, 1991 and 2018, used the same weather files 

for fire behavior simulation, allowing for comparability between the results of both 

models. Fuel moistures for fire simulation were generated for both scenarios using 

standard fuel moisture conditions, with respect to each weather scenario (Scott & Burgan, 

2005) (Table 3-1). 
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Table 3-1: Weather inputs for FlamMap 6 for average conditions and 97th percentile conditions. 

WEATHER INPUTS AVERAGE CONDITIONS 97TH PERCENTILE 

Month 10 10 

Day 19-23 19-23 

Precipitation (mm) 00 00 

Time of lowest temp 600 600 

Time of highest temp 1500 1500 

Low temp c° 11.7° 22.8° 

High temp c° 16.7° 33.3° 

Low rh (%) 73 18 

High rh (%) 68 10 

Elevation (m) 457.2 457.2 

WIND CONDITIONS   

Month 10 10 

Day 19-23 19-23 

Km hr 16 48 

Wind direction (from north) 194 329 

% Cloud cover 0 0 

FUEL MOISTURE   

1-hr 9 3 

10-hr 10 4 

100-hr 11 5 

Live herbaceous 90 30 

Live woody 120 60 

Each fire behavior run produced 3 outputs: average flame length (m), rate of 

spread (m/min), and fireline intensity (kW/m) (Mitsopoulos et al., 2014). The outputs are 

contained within grid ASCII files at 30-m resolution and with over 140,000 individual 

cells. For the purpose of this study, canopy-based outputs were excluded due to 

insufficient canopy data. While canopy coverage was available for each year, other 

canopy data, with base height and canopy height, were not available and therefore were 

insufficient to model fire behavior. As a result, there was not enough data to model 

spotting. However, spotting was assumed to be a likely fire behavior due to historical 

conditions of the 1991 Tunnel Fire and identified spotting areas in the EBRPD vegetation 
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management plan (U.S Fire Administration, 1991; California Office of Emergency 

Services, 1992; LSA Associates & East Bay Regional Park District, 2010). The outputs 

from each year were uploaded to ArcGIS Pro the six standard fire behavior classes for 

flame length (FL), rate of spread (ROS), and fireline intensity (FLI) were then used to 

classify and organize the results into classes 1-6 for each fire behavior output (Khakzad, 

2018; Scott, Thompson, & Calkin, 2013) )(Table 3-2). Fire behavior between classes 1 

and 3 is considered low to moderate whereas fire behavior that falls between classes 4 

and 6 is considered a highly vigorous fire to a conflagration (Khakzad, 2018; Scott et al., 

2013). Each scenario was uploaded into ArcGIS Pro and converted into 30-m resolution 

raster files.  

Table 3-2: Fire intensity classes for the three fire behavior outputs flame length, rate of spread, 

and fireline intensity.  

FIRE INTENSITY 

CLASS 

FLAME LENGTH 

(M) 

RATE OF SPREAD 

(M/MIN) 

FIRELINE INTENSITY 

(KW/M) 

1 0-0.6 0-1 0-10 

2 0.6-1.2 1-3 10-100 

3 1.2-1.8 3-10 100-1,000 

4 1.8-3.7 10-18 1,000-10,000 

5 3.7-15 18-25 10,000-30,000 

6 >15 >25 >30,000 

3.3.2 Wildfire Mitigation Assessment 

3.3.2.1 Fuel Modeling Methodology 

To assess the effectiveness of the proposed wildfire mitigation, fuel models were 

created for the untreated landscape and the treated landscape. These models were based 

on 2018 fuel conditions and modeled using direct mapping in ArcGIS Pro (Keane et al., 

2002; Xiao-rui et al., 2008). The 2018 fuel model represented the untreated fuel 

conditions, as no fuel mitigation from the plan has yet to be implemented on the project 

areas (East Bay Regional Park District, 2018). The EBRPD vegetation files and map 
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served as the base fuel model for both scenarios. The same assumptions about fuel were 

made as in the fuel models for the 1991 vs. 2018 fire hazard assessment. 

The EBRPD Wildfire Mitigation and Resource Management Plan (WMRM) 

detailed specific locations and actions to reduce wildfire within the RTA (LSA 

Associates Inc. & East Bay Regional Park District, 2010b). Actions were divided into 

two phases, the initial treatment phase and maintenance phase (LSA Associates Inc. & 

East Bay Regional Park District, 2010c). Initial treatments were defined as priority 

treatments that will progress into maintenance treatments. The best-case scenario occurs 

when all mitigation has been completed, is in the maintenance phase, and operating at 

maximum effectiveness on the landscape (M A Cochrane et al., 2012). The treated 

models used here represented the best-case scenario for wildfire mitigation in the 

EBRPD.  

To model mitigation, first a table was created detailing treatment location, 

treatment methods, current vegetation, current fuel, vegetation goal, and fuel goal (LSA 

Associates Inc. & East Bay Regional Park District, 2008) (Appendix I). Mitigation 

information was obtained from the WMRM and the RTA shapefile provided by EBRPD 

(LSA Associates Inc. & East Bay Regional Park District, 2008). Using the vegetation-to-

fuel crosswalk and standard fuel models, the current vegetation and vegetation goals were 

converted into standard fuel models (LSA Associates Inc. & East Bay Regional Park 

District, 2008; Scott & Burgan, 2005). The table was then uploaded into ArcGIS Pro and 

added to the RTA shapefile. The RTA layer was then combined with the 2018 fuel 

model, as they occurred in the same geographic location. The purpose was to have the 

2018 fuel map served as a base layer because the RTA file only contained areas where 
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treatment was being proposed rather than the full park extent. This ensured that it would 

encompass the total project area and create comparable outputs when modeling fire 

behavior. Furthermore, by including the total park area in this procedure it more 

accurately reflects how mitigation may affect fire behavior, since mitigation in one area 

can affect the entirety of a landscape (M A Cochrane et al., 2012; B. M. Collins et al., 

2010; Finney et al., 2007; Vaillant et al., 2013). Fuels in the RTA areas were altered from 

the base layer to reflect the fuel treatment goals, while fuels outside treatment areas 

remained the same (B. M. Collins et al., 2010; LSA Associates Inc. & East Bay Regional 

Park District, 2008) (Appendix I). The treated landscape fuel map was converted and 

stored as a 30-m raster. 

3.3.2.2 Canopy Coverage Modeling Methodology 

The 2018 canopy layer was used for the untreated canopy coverage layer, which 

was calibrated with FlamMap 6 Canopy Coverage Classes and stored as a 30-m raster. 

Because fuel models in the treated landscape reflected theoretical fuel conditions, there 

was no corresponding Landsat image available. To overcome this issue, the untreated 

canopy coverage layer served as a basis for the treated canopy coverage layer. ArcGISPro 

to calculate the majority count of each canopy class for each fuel model in the untreated 

canopy coverage layer, and then designated which canopy coverage class occurred most 

often for each fuel model. Based on this information, I estimated which canopy coverage 

class would coordinate with the new fuels on the treated landscape. For fuels that were 

not part of the RTA, the originally assigned canopy coverage classes from VARI were 

used. The file was converted and stored as a 30-m raster. 
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3.3.2.3 Fire Behavior Modeling Methodology 

To model differences in potential fire behavior, the same procedure as in the 1991 

vs. 2018 hazard assessment was followed. The LCP file for 2018 represented the 

untreated constions and a new LCP was made for the treated scenario that incorporated 

the relevant raster layers of fuel models, canopy coverage, and topography information 

(i.e. elevation, slope, and aspect) (Mitsopoulos et al., 2014; Scott et al., 2013). Fuel 

models and canopy coverage files, for both scenarios, were created in ArcGIS Pro, and 

topography files were downloaded from LANDFIRE.  

Fire behavior for the mitigation assessment was only modeled under extreme 

weather conditions on the untreated and treated landscape. This was because the main 

goal of the EBRPD mitigation plan was to reduce extreme wildfire behavior under 97th 

percentile weather conditions (B. M. Collins et al., 2010; LSA Associates Inc. & East 

Bay Regional Park District, 2010c). The 97th percentile weather conditions were based on 

RAWS weather data from 1995 to 2018 and conditions recorded during the 1991 Tunnel 

Fire (California, 1991; California Office of Emergency Services, 1992) (Table 3-1). Fuel 

moisture conditions for fire modeling were generated using standard fuel moisture (Scott 

& Burgan, 2005) (Table 3-1).  

Fire behavior modeling was performed on the untreated LCP and on the treated 

LCP, which resulted in three outputs for each scenario: flame length (m), rate of spread 

(m/min), and fireline intensity (kW/m) (Mitsopoulos et al., 2014; Scott et al., 2013). The 

fire behavior outputs for scenario were also organized and reclassified into classes 1-6 

based on six standard fire for each output (Khakzad, 2018; Scott et al., 2013) (Table 3-2). 

As with the fire hazard assessment, fire behavior between categories 1 and 3 is 
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considered low to moderate whereas fire behavior that falls between categories 4 and 6 is 

considered a highly vigorous fire to a conflagration (Khakzad, 2018; Scott et al., 2013). 

These files were uploaded into ArcGIS Pro and converted into a 30-m raster with over 

140,000 cells. 
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CHAPTER 4: RESULTS 

4.1 FIRE HAZARD FUEL RESULTS 

4.1.1 1991 vs. 2018 Fuel Analysis 

ArcGIS Pro and remote sensing were used to model differences in the hectares of 

twenty-one fuel models in 1991 versus 2018 (Figure 4-1). In 1991 there were 18 of the 21 

fuel models present with a total area of 1352.52 hectares. In 2018 all 21 fuel models were 

present and had an area of 1334.25 hectares. Fuel model 147 had the most evident change 

in hectares (Figure 4-1).  

 
Fig. 4-1: Plot of the areas (hectares) of the 21 fuel models within the project area in 1991 vs. 

2018. 

The change in hectares of fuel model from 1991 to 2018 was analyzed with a two-

way ANOVA. The response variable was the computed change in hectares of fuel model. 

The effects were location (CC, SIB, RED) and fuel model. For location there was 2 levels 
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and 20 levels for fuel models. There was no two-way interaction between location and 

fuel model because there was only one observation per fuel model per location. The 

effects test found that the difference in fuel models based on location was not significant 

(p = 0.985) (Table 4-1). However, there was a highly significant difference (p = 0.001) in 

the average change in hectares based on the individual fuel models.  

Table 4-1: Effects test for two-way ANOVA on Fuel Results 

 

 

 

An estimated model calculated the average change in hectares of fuel for each 

fuel model with 95% confidence (Figure 4-2). All fuel model, except for 147, had 

confidence intervals that included zero (Figure 4-2). These average changes were not 

significantly different from zero and therefore not considered significant (Figure 4-1) For 

fuel model 147 the confidence interval did not contain zero, indicating the average 

change was significant (Figure 4-2). The estimated average change for fuel model 147 

was 86.73 hectares of fuel and significant at a p-value level of less than 0.05 (Table 4-2). 

Positive average change indicated that there was a reduction in hectares of fuel from 1991 

to 2018 for fuel model 147.  

SOURCE N df F p 

Location 2 2 0.01 0.989 

Fuel Model 20 20 3.15 0.001* 

*Significant at p ≤ .05 level 
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Fig. 4-2: The average change (open circle) for each fuel model in response to changes in 

hectares of fuel from 1991 vs 2018. The bars indicate 95% confidence intervals. Confidence 

intervals containing zero were considered not significantly different from zero.  

 

Table 4-2: Least square means table for fuel model showing the estimated average change of 

each fuel model from 1991 to 2018 with a 95% confidence interval. Intervals without zero were 

considered significant. Negative estimates indicated an increase in hectares whereas a positive 

estimate indicated a reduction in hectares from 1991 to 2018. 

SOURCE Estimate Std Error N Lower 95% Upper 95% 

91 -1.17 12.11 3 -25.65 23.31 

93 -0.84 12.11 3 -25.31 23.64 

98 -1.44e-15 12.11 3 -24.48 24.48 

104 -24.84 12.11 3 -49.32 -0.37 

105 -5.55e-16 12.11 3 -24.48 24.48 

121 0.06 12.11 3 -24.42 24.54 

122 -0.87 12.11 3 -25.35 23.61 

124 -1.44e-15 12.11 3 -24.48 24.48 

142 -1.05 12.11 3 -25.53 23.43 

145 11.70 12.11 3 -12.78 36.18 

147* 86.73 12.11 3 62.25 111.21 

148 -21.54 12.11 3 -46.02 2.94 

149 0.03 12.11 3 -24.45 24.51 

163 -15.03 12.11 3 -39.51 9.45 

165 -0.33 12.11 3 -24.81 24.15 

181 -0.75 12.11 3 -25.23 23.73 

182 -12.81 12.11 3 -37.29 11.67 

183 -10.83 12.11 3 -35.31 13.65 

184 0.12 12.11 3 -24.36 24.59 

186 -0.18 12.11 3 -24.66 24.29 

189 2.43 12.11 3 -22.05 26.91 

*Significant at p ≤ 0.05 level  
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4.2 1991 VS. 2018 FIRE BEHAVIOR RESULTS 

FlamMap 6 produced twelve maps that were separated into four maps per fire 

behavior output: flame length, rate of spread, and fireline intensity. The maps were 

further divided based on year and weather scenario. The outputs were then classified 

based on the six standard fire intensity classes for each output (Khakzad, 2018; Scott et 

al., 2013) and then lumped into two categories, category 1-3 and category 4-6. Category 

1-3 represented classes 1-3 or low to moderate fire behavior. Category 4-6 was composed 

of classes 4-6 or high to extreme fire behavior. 

  Two nominal logistic regressions analyzed the differences in fire behavior. The 

first nominal logistic regression modeled for the likelihood of fire behavior falling in 

category 4-6 over category 1-3. The second nominal logistic regression was used to 

estimate differences in the percentage of category 4-6 based on the three-way interaction. 

The response variable for the first regression was category 4-6 and the output was binary. 

Whereas for the second regression the response variable was count which represented the 

number of fire behavior instances that fell in category 4-6; the outcome was also binary. 

Both models had three main effects park location (CC, SIB, RED), year (1991 and 2018), 

and weather scenario (average and extreme). The two-way interactions consisted of park 

* weather, year * weather, and year * park. Finally, there was a three-way interaction 

between year * park * weather. The estimates from the first model were interpreted using 

odds ratios of category 4-6 versus category 1-3 with 95% confidence intervals. Odds 

ratios that were greater than one were considered more likely to occur. The second 

logistic regression interpreted these estimates using pairwise comparison and Bonferroni 

adjusted p-values.  



 

45 

 

4.2.1 Flame Length (m) 1991 vs. 2018 Results 

When comparing flame lengths under average conditions for 1991 versus 2018, in 

1991 there were more instances where flame lengths were class 4 or higher (Figure 4-3). 

For flame lengths in the extreme weather scenario, the two years were fairly similar with 

some reduction in flame lengths in the upper classes in 2018 (Figure 4-4). 

 
Fig. 4-3: Modeled flame lengths under average weather conditions in 1991 (a) and 2018 (b). 

Flame lengths were classified based on the six standard flame length classes.   

 

 
Fig. 4-4: Modeled flame lengths under extreme weather condition s from 1991 (a) and 2018 (b). 

Flame length instances were classified based on the six fire intensity classes for flame length. 

4.2.1.1 Nominal Logistic Regression for Likelihood 

The effects test showed the three main effects were significant (p ≤ .0001, p ≤ 

.0001, p ≤ .0001) and therefore affected the likelihood of category 4-6 (Table 4-3). All 
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three two-way interactions were significant as well (p ≤ .0001, p ≤ .0001, p ≤ .0001). For 

year * park the effect year has on the likelihood of category 4-6 varied by park location. 

Park * weather was significant so the effect of park location was dependent on the 

weather scenario. Year * weather was significant as well and the effect year had on 

category 4-6 varied based on the weather scenario (Table 4-3). However, for flame 

length, the three-way interaction between year, park, and the weather was not significant 

and therefore dropped from the model (Table 4-3). 

Table 4-4: Effects for nominal logistic regression for the likelihood of flame length categories in 

1991 vs. 2018 

 

 

 

 

 

The odds ratios found that CC was more likely to produce category 4-6 flame 

lengths than RED and SIB (Table 3-6) (p ≤ .0001). The odds between SIB and RED were 

also significant, with SIB having a higher likelihood for category 4-6 flame lengths (p ≤ 

.0001). Between 1991 and 2018, 1991 was three times more likely than 2018 was to have 

category 4-6 flame lengths (p ≤ .0001). Extreme weather had a twenty-seven-time 

stronger likelihood than average weather to produce category 4-6 flame lengths (p ≤ 

.0001) (Table 4-5). 

 

 

SOURCE df L-R χ2 p 

Park 2 922.55 <.0001* 

Year 1 626.93 <.0001* 

Year * Park 2 1106.88 <.0001* 

Weather 1 8229.52 <.0001* 

Park * Weather 2 102.33 <.0001* 

Year * Weather 1 1187.75 <.0001* 

*Significant at p ≤ .05 level 
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Table 4-5: Odds ratio details for flame length categories with odds of 4-6 vs. 1-3 for 1991 vs. 

2018. Odds ratios that are greater than one meant that the level 1 effect was more likely to have 

category 4-6 flame lengths.  

 

 

 

 

 

 

 

 

 

 

 

4.2.1.2 Nominal Logistic Regression for Percentage 

The three main effects park, year, and weather were significant (p ≤ .0001) (Table 

4-6). The two-way interactions year * park, park * weather, and year * weather were 

significant (p ≤ .0001, p ≤ .0001, p ≤ .0001). The three-way interaction between year, 

park, and the weather was not significant (p = 0.58). However, in this scenario it was kept 

in the model because when it was removed the outcomes were not affected. Keeping the 

interaction, the model also allowed it to remain consistent with the other regressions for 

percentage (Table 4-6). 

 

 

 

 

 

 

 

 

 

Odds Ratios 

Odds Ratios for Park 

Level 1            Level 

2 

Odds 

Ratio 

      p Lower 95% Upper 95% 

RED CC 0.21 <.0001* 0.19 0.23 

SIB CC 0.44 <.0001* 0.39 0.45 

SIB RED 2.13 <.0001* 1.97 2.29 

CC RED 4.79 <.0001* 4.31 5.32 

CC SIB 2.25 <.0001* 2.02 2.51 

RED SIB 0.47 <.0001* 0.44 0.51 

Odds Ratios for Year 

2018 1991 0.30 <.0001* 0.27 0.3 

1991 2018 3.32 <.0001* 2.98 3.71 

Odds Ratios for Weather 

AVG EX 0.04 <.0001* 0.03 0.04 

EX AVG 27.70 <.0001* 24.83 30.91 

*Significant at p ≤ .05 level 
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Table 4-6: Nominal logistic regression effects test for the estimated percentage of flame lengths 

in category 4-6 for 1991 vs. 2018. 

 

 

 

 

 

 

The pairwise analysis showed that all parks except for SIB followed a similar 

trend of a reduction in the percentage for category 4-6 in 2018 (Figure 4-5). There was a 

notable reduction in percentage from 1991 to 2018 for CC AVG (Figure 4-5). The rate of 

decline for CC EX and RED EX were similar. Under the average weather scenario, the 

percentage of category 4-6 flame lengths in CC decreased by 22.97% (p ≤ .0001), and 

under extreme weather it only decreased by 7.32% (p = 0.0039). RED the average 

scenario dropped by 4.69% (p ≤ .0001) and by 7.69% in the extreme scenario (p ≤ .0001) 

(Table 4-7). However, SIB EX deviated from the group by increasing in percentage 4-6 

flame lengths in 2018 (Figure 4-5). For SIB, in the average weather scenario category 4-6 

decreased by 5.14% (p ≤ .0001). But, under the extreme weather scenario, the percentage 

increased from 23.27% in 1991 to 57.51% in 2018 for park SIB (p ≤ .0001). 

SOURCE df Wald χ2 p 

Park 2 243.46 <.0001* 

Year 1 286.21 <.0001* 

Weather 1 2107.54 <.0001* 

Year * Park 2 263.15 <.0001* 

Park * Weather 2 48.29 <.0001* 

Year * Weather 2 424.52 <.0001* 

Year * Park*Weather 2 1.09 0.58 

*Significant at p ≤ .05 level 
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Fig. 4-5: The percent of modeled flame lengths in category 4-6, ≥ 1.8m, for 1991 vs. 2018 based 

on the park location and weather scenario.  

 

Table 4-7: The estimated percentage of modeled flame lengths in category 4-6 for 1991 vs. 2018 

based on the park location and weather scenario with Bonferroni adjusted p-values. 

 

 

 

 

 

4.2.2 Rate of Spread (m/min) 1991 vs. 2018 Results 

The 1991 average weather scenario had more instances of rate of spreads being 

class four or higher than in 2018 (Figure 4-6). For the extreme weather scenario, both 

years showed an increase in class 6 (Figure 4-7). Rate of spreads were faster in CC and 

SIB in 1991 and 2018 under extreme weather (Figure 4-7).  
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CC AVG CC EX SIB AVG SIB EX RED AVG RED EX

EFFECT Estimated % 1991 Estimated % 2018 Adj p 

CC * AVG 24.11% 1.14% <.0001* 

CC * EX 69.68% 62.36% 0.0039* 

SIB * AVG 7.00% 1.86% <.0001* 

SIB * EX 23.27% 57.51% <.0001* 

RED * AVG 5.76% 0.18% <.0001* 

RED * EX 35.12% 27.43% <.0001* 

*Significant at p ≤ 0.05 level  
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Fig. 4-6: Modeled rate of spread instances under average weather scenario for 1991 (a) and 

2018 (b). The rate of spread instances was classified based on the six standard fire intensity 

classes for the rate of spread.   

 

 
Fig. 4-7: Modeled rate for spread instances under the extreme weather scenario for 1991 (a) and 

2018 (b). The rate of spread instances was classified based on the six fire intensity classes for the 

rate of spread.  

4.2.2.1 Nominal Logistic Regression for Likelihood 

The main effects were all significant (p ≤ .0001, p ≤.0001) (Table 4-8). All two-

way interactions were significant as well (p ≤ .0001, p ≤.0001, p ≤.0001). In the rate of 

spread model, the three-way interaction of year*park*weather was significant (p ≤ 

.0001). The likelihood of category 4-6 rate of spread was affected by year but this effect 

was not only dependent on park location but on weather scenario as well (Table 4-8). 
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Table 4-8: Effects for nominal logistic regression for the likelihood of rate of spread categories 

for 1991 vs. 2018. 

 

 

 

 

 

 

The odds ratios found that CC and SIB were more likely to produce a category 4-

6 rate of spreads than RED (p ≤ .0001, p ≤ .0001) (Table 4-9). The difference in the 

likelihood of the category 4-6 rate of spreads between CC and SIB was insignificant (p = 

0.2645). Between 1991 and 2018, 1991 had the higher likelihood for category 4-6 rate of 

spread instances (p ≤ .0001). The extreme scenario was more likely to produce a category 

4-6 rate of spreads that the average weather scenario; this was highly significant (p ≤ 

.0001) (Table 4-9).  

Table 4-9: Odds ratio details for the rate of spread categories with odds of 4-6 vs 1-3 for 1991 vs. 

2018. Where odds ratios were greater than one the level one effects were more likely to have 

category 4-6 values.  

 

 

 

 

 

 

 

 

 

 

 

SOURCE df L-R χ2 p 

Park 2 280.51 <.0001* 

Year 1 899.32 <.0001* 

Year*Park 2 72.79 <.0001* 

Weather 1 9031.89 <.0001* 

Park*Weather 2 22.31 <.0001* 

Year*Weather 1 548.42 <.0001* 

Year*Park*Weather 2 60.50 <.0001* 

*Significant at p ≤ .05 

Odds Ratios 

Odds Ratios for Park 

Level 1           Level 

2 

Odds 

Ratio 

p Lower 95% Upper 95% 

RED CC 0.17 <.0001* 0.10 0.28 

SIB CC 0.81 0.2645 0.57 1.17 

SIB RED 4.83 <.0001* 3.38 6.91 

CC RED 5.94 <.0001* 3.62 9.74 

CC SIB 1.23 0.2645 0.86 1.76 

RED SIB 0.21 <.0001* 0.14 0.30 

Odds Ratios for Year 

2018 1991 0.12 <.0001* 0.27 0.3 

1991 2018 8.16 <.0001* 2.98 3.71 

Odds Ratios for Weather 

AVG EX 71.37 <.0001* 51.10 99.71 

EX AVG 0.01 <.0001* 0.01 0.02 

*Significant at p ≤ .05 level 
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4.2.2.2 Nominal Logistic Regression for Percentage  

The main effects for percentage of rate of spread instances in category 4-6 were 

significant (p ≤ .0001, p ≤ .0001, p ≤ .0001) (Table 3-11). As with the previous 

regression, all two-way interactions were significant (p = .00019, p ≤ .0001, p ≤ .0001). 

The three-way interaction, year*park*weather was also significant (p ≤ .0001) meaning 

that the effect of year percentage of category 4-6 was dependent on the park they 

occurred in and under which weather scenario (Table 4-10). 

Table 4-10: Nominal logistic regression effects test for the estimated percentage of rate of 

spreads in category 4-6 for 1991 vs. 2018. 

 

 

 

 

 

 

The pairwise analysis graph of the three-way interaction showed all six 

combinations trended downwards, representing a decrease in category 4-6 rate of spreads 

when going from 1991 to 2018 (Figure 4-8). This was most evident in CC AVG, where 

the decrease in percentage was sharper than SIB AVG and RED AVG (Figure 4-8). The 

decline in the percentage of category 4-6 from 1991 to 2018 was very similar for CC EX 

and SIB EX. CC AVG changed from 14.74% in 1991 to 0. 21% (p ≤ .0001) and under 

extreme weather it reduced from 66.02% in 1991 to 59.15% in 2018 (p = 0.0104) (Table 

4-11). SIB AVG and SIB EX had similar reductions, changing by 5.01% and 5.21% 

respectively (p ≤ .0001, p ≤ .0001). Finally, for RED, the percentage of category 4-6 fell 

from 3.52% in 1991 to 0.027% in 2018 (p ≤ .0001) in the average weather scenario; but 

SOURCE df Wald χ2 p 

Park 2 77.29 <.0001* 

Year 1 151.49 <.0001* 

Weather 1 626.49 <.0001* 

Year * Park 2 35.66 <.0001* 

Park * Weather 2 12.51 0.0019* 

Year * Weather 2 110.24 <.0001* 

Year * Park * Weather 2 30.91 <.0001* 

*Significant at p ≤ .05 level 
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in the extreme weather scenario it fell from 30.80% in 1991 to 23.09% in 2018 (p ≤ 

.0001). 

 
Fig. 4-8: The percent of the modeled rate of spreads in category 4-6, ≥ 10 m/min, for 1991 vs. 

2018 based on the park location and weather scenario. 

 

Table 4-11: The estimated percentage of modeled rate of spreads in category 4-6 for 1991 vs. 

2018 based on the park location and weather scenario with Bonferroni adjusted p-values. 

 

 

 

 

 

 

4.2.3 Fireline Intensity Results (kW/m) 1991 vs. 2018 

 As with the previous results fireline intensity decreased when going from average 

to extreme weather for both years (Figure 4-9, 4-10). 2018 had much lower fireline 

intensities under the average weather conditions than 1991 (Figure 4-9). CC consistently 

showed that under extreme weather for both years there was a high concentration of 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1991 2018

%
 o

f 
R

O
S

 i
n
 C

at
eg

o
ry

 4
-6

Year

Percentage of ROS in Category 4-6 Based on 

Location, Weather, and Year
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EFFECT Estimated % 1991 Estimated % 2018 Adj p 

CC * AVG 19.74% 0.21% <.0001* 

CC * EX 66.02% 59.15% 0.0104* 

SIB * AVG 6.00% 0.99% <.0001* 

SIB * EX 52.08% 46.87% <.0001* 

RED * AVG 3.52% 0.02% <.0001* 

RED * EX 30.80% 23.09% <.0001* 

*Significant at p ≤ 0.05 level  
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fireline intensities in class 6 (Figure 4-10). However, in 2018 there were more areas of 

lower fireline intensities than in 1991 (Figure 4-10). 

 
Fig. 4-9: Modeled fireline intensity instances under average weather scenario for 1991 (a) and 

2018 (b). Fireline intensity instances were classified based on the six standard fire intensity 

classes for fireline intensity.  

 

 
Fig. 4-10: Modeled fireline intensity instances under extreme weather conditions for 1991 (a) and 

2018 (b). Fireline intensity was classified based  on the six fire intensity classes for fireline 

intensity 

4.2.3.1 Nominal Logistic Regression for Likelihood 

As with the previous logistic regressions all three main effects were significant (p 

≤ .0001, p ≤ .0001, p ≤ .0001) (Table 4-12). The two-way interactions were significant as 

well (p ≤ .0001, p = 0.0389, p ≤ .0001). The year*park*weather three-way interaction 
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was also significant (p ≤ .0001) resulting in the likelihood being effected by year which 

varied based on park location and weather scenario (Table 4-12).  

Table 4-12: Effects of nominal logistic regression for the likelihood of fireline intensity categories 

for 1991 vs. 2018. 

 

 

 

 

 

 

 

For fireline intensity, CC was significantly more likely to have fireline intensities 

be in category 4-6 than all other parks (p ≤ .0001, p ≤ .0001) (Table 4-13). RED was the 

least likely park to have category 4-6 fireline intensities (p ≤ .0001). As with previous 

odds ratios, 1991 had a significantly higher likelihood than 2018 (p ≤ .0001). The 

extreme weather scenario was 36 times more likely to have category 4-6 fireline 

intensities than the average weather scenario and this was highly significant (p ≤ .0001) 

(Table 4-13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOURCE df L-R χ2 p 

Park 2 435.30 <.0001* 

Year 1 928.30 <.0001* 

Year * Park 2 98.98 <.0001* 

Weather 1 9265.04 <.0001* 

Park * Weather 2 6.49 0.0389* 

Weather * Year 1 523.49 <.0001* 

Year * Park * 

Weather 

2 82.80 <.0001* 

*Significant at p ≤ .05 



 

56 

 

Table 4-13: Odds ratio details for fireline intensity with odds of 4-6 vs 1-3 for 1991 vs. 2018. 

Ratios that were greater than one were more likely to have category 4-6 fireline intensity.  

 

 

 

 

 

 

 

 

 

 

 

4.2.3.2 Nominal Logistic Regression for Percentage 

The main effects in this nominal logistic regression where significant as well (p ≤ 

.0001, p ≤ .0001, p ≤ .0001) (Table 4-14). The interaction between park and weather was 

not significant (p = 0.064). Year*park and year*weather were significant (p ≤ .0001), so 

the effect of year varied based on park location and varied based on weather. However, 

the three-way interaction was significant resulting in the percentage varying based on 

year but this variance was dependent on park and weather (Table 4-14). 

Table 4-14: Nominal logistic regression effects test for the estimated percentage of fireline 

intensity in category 4-6 for 1991 vs. 2018. 

 

 

 

 

 

 

Odds Ratios 

Odds Ratios for Park 

Level 1             Level 

2 

Odds 

Ratio 

p Lower 

95% 

Upper 95% 

RED CC 0.19 <.0001* 0.15 0.24 

SIB CC 0.60 <.0001* 0.51 0.72 

SIB RED 3.19 <.0001* 2.73 3.73 

CC RED 5.27 <.0001* 4.25 6.55 

CC SIB 1.65 <.0001* 1.39 1.96 

RED SIB 0.31 <.0001* 0.27 0.37 

Odds Ratios for Year 

2018 1991 0.21 <.0001* 0.19 0.25 

1991 2018 4.65 <.0001* 4.00 5.40 

Odds Ratios for Weather 

AVG EX 0.03 <.0001* 0.02 0.03 

EX AVG 36.87 <.0001* 31.76 42.81 

*Significant at p ≤ .05 level 

SOURCE df Wald χ2 p 

Park 2 271.95 <.0001* 

Year 1 406.92 <.0001* 

Weather 1 2241.61 <.0001* 

Year * Park 2 76.43 <.0001* 

Park * Weather 2 5.49 0.064 

Year * Weather 2 258.17 <.0001* 

Year * Park * 

Weather 

2 65.12 <.0001* 

*Significant at p ≤ .05 level 
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All park and weather combinations saw a downward trend in the percentage of 

fireline intensity in category 4-6 when going from 1991 to 2018 (Figure 4-11). For the 

average weather scenarios this was most notable in CC (Figure 4-15). CC EX, SIB EX, 

and RED EX had similar rates in decline in category 4-6 when going from 1991 to 2018 

(Figure 4-11). CC in the average scenario had a large decrease in category 4-6 going form 

23.05% in 1991 to 1.47% in 2018 (p ≤ .0001) (Table 5-15). RED decreased by 5.24% 

under average conditions and by 7.76% under extreme conditions (Table 4-15). However, 

in the extreme weather scenario, while there was a higher amount of category 4-6, CC 

only decreased by 7.02% from 1991 to 2018 (p = .0067) (Table 3-16). SIB AVG and SIB 

EX changed by 6.44% (p ≤ .0001, p ≤ .0001) (Table 4-15). 

 
Fig. 4-11: The percent of modeled fireline intensity in category 4-6, ≥  1000 kW/m, for 1991 vs. 

2018 based on the park location and weather scenario. 
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Table 4-15: The estimated percentage of modeled fireline intensity in category 4-6 for 1991 vs. 

2018 based on the park location and weather scenario 

 

 

 

 

 

 4.3 MITIGATION ASSESSMENT FIRE BEHAVIOR RESULT 

The same statistical analysis was used to compare the differences in fire behavior 

in the untreated landscape and the treated landscape. FlamMap 6 produced three fire 

behavior models for each scenario. Each fire behavior output was analyzed with two 

nominal logistic regression, one for the likelihood of category 4-6 and the other for the 

percentage of category 4-6 based on the interaction between scenario and park. The 

effects were park (CC, SIB, and RED), scenario (untreated and treated), and the two-way 

interaction scenario*park. The outcome of the regressions were binary. The parameter 

estimates for the first nominal logistic regression were interpreted as odds ratios 

modeling for the likelihood over fire behavior being in category 4-6 over category 1-3. 

The estimates from the second nominal logistic regression were interpreted using 

pairwise analysis and Bonferroni adjusted p-values. 

4.3.1 Flame Length (m) Results Untreated vs. Treated 

 Overall flame length conditions in the untreated landscape were fairly similar to 

the treated landscapes (Figure 4-12). There were areas where flame lengths were reduced, 

and this was most noticeable for CC in the untreated landscape to the treated landscape 

(Figure 4-12). 

EFFECT Estimated % 1991 Estimated % 2018 Adj p 

CC * AVG 23.05% 1.14% <.0001* 

CC * EX 69.07% 62.05% 0.0067* 

SIB * AVG 6.58% 1.76% <.0001* 

SIB * EX 57.07% 50.63% <.0001* 

RED * AVG 5.39% 0.15% <.0001* 

RED * EX 34.59% 26.83% <.0001* 

*Significant at p≤0.05 level  
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Fig. 4-12: Modeled flame lengths from FlamMap 6 comparing the untreated landscape (a) to the 

treated landscape (b). Flame lengths were classified into the six standard fire intensity classes 

from flame length. 

 

4.3.1.1 Nominal Logistic Regression for Likelihood 

 The effects test showed that both the main effects and the two-way interaction 

were significant with p-values of ≤ .0001 (Table 4-16). However, because the two-way 

interaction was significant the effect of the scenario had on the likelihood of flame 

lengths being in category 4-6 varied by the park location (Table 4-16). 

Table 4-16 Nominal logistic regression effects test for the estimated percentage of flame length in 

categories 4-6 for the untreated vs. treat scenario. 

 

 

 

The odds ratios found that CC and SIB were significantly (p ≤ .0001, p ≤ .0001) 

more likely to produce flame lengths in category 4-6 than RED (Table 4-17). However, 

there was no significant difference in the odds of flame lengths being in category 4-6 

when comparing CC to SIB. The odds between the mitigation treatment scenarios 

showed that the untreated scenario was significantly more likely to have flame lengths in 

category 4-6 than the treated scenario was (Table 4-17). 

SOURCE df L-R χ2 p 

Park 2 2307.09 <.0001* 

Scenario 1 150.73 <.0001* 

Scenario * Park 2 55.89 <.0001* 

*Significant at p≤0.05 level 
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Table 4-17: Odds ratios details for untreated vs. treated flame length with odds of 4-6 vs. 1-3. 

Odds ratios that are greater than one meant that the level 1 effect was more likely to have 

category 4-6 flame lengths.  

4.3.1.2 Nominal Logistic Regression for Percentage 

 The main effects were significant (p ≤ .0001, p ≤ .0001) (Table 4-18). The two-

way interaction was also significant; meaning that the effect scenario had on the 

percentage of flame lengths in category 4-6 varied by which park it was in (Table 4-18).  

The main effects were significant (p ≤ .0001, p ≤ .0001) (Table 4-18). The two-way 

interaction was also significant; meaning that the effect scenario had on the percentage of 

flame lengths in category 4-6 varied by which park it was in (Table 4-18).  

Table 4-18 Nominal logistic regression effects test for the estimated percentage of flame length in 

categories 4-6 for the untreated vs. treat scenario. 

 

 

 

Pairwise comparison showed that under each scenario, the parks produced 

different percentages of category 4-6 flame lengths (Figure 4-13). Overall, the three parks 

displayed a reduction in the percentage of category 4-6 flame lengths when moving from 

the untreated scenario to the treated scenario (Figure 4-13). CC had the biggest reduction 

Odds Ratios 

Odds Ratios for Park 

Level 1 Level 2 Odds Ratio p Lower 95% Upper 95% 

RED CC 0.32 <.0001* 0.29 0.36 

SIB CC 1.09 0.090 0.99 1.20 

SIB RED 3.32 <.0001* 3.15 3.49 

CC RED 3.04 <.0001* 2.76 3.36 

CC SIB 0.92 0.090 0.83 1.01 

RED SIB 0.30 <.0001* 0.29 0.32 

Odds Ratios for Scenario 

Treated Untreated 0.65 <.0001* 0.60 0.69 

Untreated Treated 1.54 <.0001* 1.44 1.65 

*Significant at p ≤ .05 level 

SOURCE df Wald χ2 p 

Park 2 2224.99 <.0001* 

Scenario 1 147.81 <.0001* 

Scenario * Park 2 55.11 <.0001* 

*Significant at p ≤ 0.05 level 
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with flame lengths in category 4-6 reducing from 62.36% in the untreated scenario to 

41.01% in the treated scenario (p ≤ .0001) (Table 4-19). SIB had a moderate when 

changing from the untreated scenario treated scenario (p ≤ .0001) (Table 3-20). RED had 

the smallest reduction in the percentage of category 4-6 flame lengths only changing by 

2.69% (p = .0002) (Table 4-19). 

 
Fig. 4-13: The percent of modeled flame lengths in category 4-6 for each mitigation scenario 

untreated vs. treated with the three park locations.  

Table 4-19: The estimated percentage of modeled flame lengths in categories 4-6 based 

on mitigation scenario and park location the untreated vs. treated landscape. 

EFFECT Untreated % Treated % Adj p 

CC 62.36% 41.01% <.0001* 

SIB 57.51% 50.25% <.0001* 

RED 27.43% 24.74% 0.0002* 

*Significant at p ≤ .05 level 

4.3.2 Rate of Spread (m/min) Results Untreated vs. Treated 

In both scenarios, there was noticeably faster rate of spreads along the edges of 

the parks (Figure 4-15). CC had the most visible change with large abundance of class 6 

reducing in the treated model. The upper half of SIB had little change when going from 

the untreated to the treated conditions, especially when compared to the lower half of SIB 
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which displayed a reduction in the rate of spread speed. Overall RED remained relatively 

similar under both scenarios (Figure 4-15). 

 
Fig. 4-15: Modeled rate of spread output from FlamMap 6 for the untreated conditions (a) and 

the treated conditions (b). The rate of spread outputs was classified based on the six standard fire 

intensity classes for the rate of spread. 

4.3.2.1 Nominal Logistic Regression for Likelihood 

 The effects test showed that both main effects and the two-way interaction were 

significant (p ≤ .0001, p ≤ .0001, p ≤ .0001) (Table 3-21). Because the two-way 

interaction was significant for the rate of spreads, the likelihood of instances being in 

category 4-6 was affected by mitigation scenario but this effect varied by park location 

(Table 4-20).  

Table 4-20: Effects test of nominal logistic regression for the likelihood rate of spread categories 

for the untreated vs. treated scenario 

 

 

 

The odds ratio details found that CC was two times more likely and SIB was three 

times more likely to have a rate of spread instances in category 4-6 that RED was (p ≤ 

.0001, p ≤ .0001) (Table 4-21). However, the comparison between CC and Sib was 

insignificant (p = 0.079) neither park had a higher likelihood than the other. For the 

SOURCE df Wald χ2 p 

Park 2 1843.34 <.0001* 

Scenario 1 101.16 <.0001* 

Scenario * Park 2 133.09 <.0001* 

*Significant at p ≤ .05 level 
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mitigation scenarios, there was a statistical difference between the untreated scenario and 

the treated scenario. The untreated scenario was 1.3 times more likely to have a rate of 

spreads in category 4-6 than the treated scenario (p ≤ .0001) (Table 4-21). 

Table 4-21: Odds ratio detailed for the rate of spread with odds of 4-6 vs. 1-3 for the untreated 

vs. treated scenario. Odds ratios that were greater than one indicated that the level one effect was 

more likely to have a rate of spreads in category 4-6. 

4.3.2.2 Nominal Logistic Regression for Percentage 

 As with the previous regression the main effects were significant (p ≤ .0001, p ≤ 

.0001) as was the two-way interaction (p ≤ .0001) (Table 4-22). So once again the effect 

that scenario has on the percentage of rate of spread in category 4-6 was dependent on 

park (Table 4-22).  

Table 4-22: Nominal logistic regression effects test for the estimated percentage of rate of spread 

in category 4-6 in the untreated vs. treated scenario. 

 

 

 

 

 

The reduction category 4-6 rate of spreads for CC was quite extreme (Figure 4-

16), going from 59.15% in the untreated scenario to 32.09% in the treated scenario (p ≤ 

Odds Ratios 

Odds Ratios for Park 

Level 1 Level 2 Odds Ratio p Lower 95% Upper 95% 

RED CC 0.36 <.0001* 0.32 0.39 

SIB CC 1.09 0.079 0.99 1.21 

SIB RED 3.06 <.0001* 2.90 3.23 

 CC RED 2.79 <.0001* 2.53 3.09 

CC SIB 0.91 0.079 0.83 1.01 

RED SIB 0.33 <.0001* 0.31 0.34 

Odds Ratios for Scenario 

Treated Untreated 0.69 <.0001* 0.65 0.74 

Untreated Treated 1.44 <.0001* 1.34 1.55 

*Significant at p ≤ 0.05 level 

EFFECT Estimated Percentage Adj p 

Untreated * CC 59.15% <.0001* 

Treated * CC 32.09% <.0001* 

Untreated * SIB 46.87% 0.551 

Treated * SIB 48.17% 0.551 

Untreated * RED 23.09% 1.000 

Treated * RED 22.57% 1.000 

*Significant at p ≤ 0.05 level  
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.0001) (Table 4-23). Though SIB showed a slight uptick in the percentage of category 4-6 

in the treated scenario (Figure 4-16) this change was not significant (p = 0.551) (Table 4-

23). The change in the percentage of category 4-6 rate spreads for RED was only slight 

and insignificant (p = 1.00) (Table 4-23). 

 
Fig. 4-16: The percent of the rate of spread instances that fell in category 4-6, comparing 

the untreated scenario to the treated scenario amongst the three park locations. 

 

Table 4-23: The estimated percentage of modeled rate of spread instances in category 4-6 based 

on mitigation scenario and park location. 

 

 

 

 

4.3.3 Fireline Intensity (kW/m) Results in Untreated Vs. Treated 

 When comparing the two FlamMap 6 models there was a noticeable reduction in 

the upper fireline intensity classes in CC and RED (Figure 4-17). The change in RED was 

much less obvious and mostly concentrated in the center of the park and along the 

northwest edge.  
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Mitigation Treatment Scenario 

% of Rate of Spread in Categories 4-6 Based 

on Mitigation Scenario & Location

CC SIB RED

EFFECT Untreated % Treated % Adj p 

CC 59.15% 32.09% <.0001* 

SIB 46.87% 48.17% 0.551 

RED 23.09% 22.57% 1.000 

*Significant at p ≤ .05 level  
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Figure 4-17: Fireline intensity outputs from FlamMap 6 comparing the untreated scenario (a) to 

the treated scenario (b). Fireline intensity outputs were classified based on the six fire intensity 

classes for fireline intensity. 

4.3.3.1 Nominal Logistic Regression for Likelihood 

 As with the other fire behavior outputs the main effects and the two-way 

interaction were significant (p ≤ .0001, p ≤ .0001) (Table 4-24). Therefore, while the 

scenario does affect the likelihood of fireline intensity being in category 4-6 this effect 

was affected by park location (Table 4-24). 

Table 4-24: Effects test of nominal logistic regression for the likelihood fire intensity categories. 

 

 

 

 

Consistent with the previous odds ratios, the odds between CC and RED as well 

as between SIB and RED were significant (p ≤ .0001, p ≤ .0001) (Table 4-25). Both CC 

and SIB had a higher likelihood for category 4-6 fireline intensities than RED. However, 

between CC and SIB, neither park was more likely as their odds ratio was insignificant (p 

= 0.388). For the mitigation scenarios, the untreated landscape had a higher likelihood for 

category 4-6 fireline intensities (p ≤ .0001) (Table 4-25). 

SOURCE df L-R χ2 p 

Park 2 1921.05 <.0001* 

Scenario 1 91.97 <.0001* 

Scenario * Park 2 71.63 <.0001* 

*Significant at p ≤ 0.05 level 
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Table 4-25: Odds ratios details for fire intensity categories with odds of 4-6 vs. 1-3 for the 

untreated vs. treated mitigation scenarios. Odds ratios that were greater than one meant that the 

level one effect was that many times more likely to have category 4-6 fireline intensities. 

4.3.3.2 Nominal Logistic Regression for Percentage 

 The two main effects and the interaction between scenario and park were 

significant (p ≤ .0001, p ≤ .0001) (Table 4-26). As with the previous effects test, though 

the scenario affected the percentage of category 4-6 fireline intensity this was dependent 

the park (Table 4-26).  

Table 4-26: Nominal logistic regression effects test for the estimated percentage of fireline 

intensity categories for the untreated vs. treated scenario. 

 

 

 

 

When comparing the percentage for category 4-6 fireline intensities in the 

untreated landscape versus the treated landscape CC and RED displayed a reduction in 

percentage whereas SIB showed an increase in percentage (Figure 4-18). The percentage 

of category 4-6 in CC reduced by 21.35% (p ≤ .0001) and in RED it reduced by 2.43% (p 

= 0.0009) (Table 4-27). Despite SIB showing an increase in category 4-6 fireline 

intensities, this change was not significant (Table 3-28). 

Odds Ratios 

Odds Ratios for Park 

Level 1 Level 2 Odds Ratio p Lower 95% Upper 95% 

RED CC 0.32 <.0001* 0.29 0.36 

SIB CC 0.96 0.388 0.87 1.06 

SIB RED 2.95 <.0001* 2.80 3.10 

CC RED 3.08 <.0001* 2.79 3.39 

CC SIB 1.04 0.388 0.95 1.15 

RED SIB 0.34 <.0001* 0.32 0.36 

Odds Ratios for Scenario 

Treated Untreated 0.71 <.0001* 0.66 0.76 

Untreated Treated 1.40 <.0001* 1.31 1.50 

*Significant at p ≤ .05 level 

SOURCE df Wald χ2 p 

Park 2 1865.52 <.0001* 

Scenario 1 90.48 <.0001* 

Scenario * Park 2 70.35 <.0001* 

*Significant at p ≤ .05 level 
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Fig. 4-18: The percent of modeled fire intensity instances within category 4-6, ≥ 1000 kW/m, for 

each mitigation treatment scenario, untreated vs. treated, in the three park locations.  

 

Table 4-27: The estimated percentage of modeled fireline intensity in category 4-6 based on 

mitigation scenario and park location. 
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Mitigation Treatment Scenario

% of Flireline Intensity in Categories 4-6 Based on 

Location and Mitigation Scenario  

CC SIB RED

EFFECT Untreated % Treated % Adj p 

CC 62.05% 40.70% <.0001* 

SIB 50.08% 50.63% 1.000 

RED 26.83% 24.40% 0.0009* 

*Significant at p ≤ .05 level  
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 DISCUSSION 

The purpose of this study was to understand how the fire hazard in the Oakland 

Hills has changed since the 1991 Tunnel Fire. The goal was to evaluate the change in fuel 

and fire behavior and the potential effect that mitigation actions may have on extreme fire 

behavior.  

5.1.1 1991 vs. 2018 Fuel Assesment 

Fuel models were used to understand the changes in fuel between 1991 and 2018. 

Fuel models can describe the fuel status of an area and correlate with fire behavior 

modeling (Polinova et al., 2019; Radke, 1995; Scott & Burgan, 2005; Xiao-rui et al., 

2008). However, because there was no extensive fuel data for 1991, the conditions 

needed to be recreated with ariel imagery. Remote sensing and direct mapping allowed 

for the recreation of the historical fuel conditions and model present-day conditions 

(Fensham, Fairfax, Holman, & Whitehead, 2002; Keane et al., 2002; Polinova et al., 

2019; Rollins, Keane, & Parsons, 2004). This technique can capture fuel changes on a 

local level which in turn better captures the local fire hazard (Keane et al., 2002; Xiao-rui 

et al., 2008).  

In total, there were twenty-one of the forty-one standard fuels present across the 

three parks. Fuel is standardized and organized into seven fuel type categories that share 

burning characteristics (Scott & Burgan, 2005). Fuel is further classified into forty-one 

individual fuel models which are based on species characteristics and their potential fire 

behavior (Scott & Burgan, 2005; Xiao-rui et al., 2008). The majority of fuels within the 

project area fell into three fuel type categories grassland fuels, shrub fuels, and timber 
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fuels. These fuels were predominately dry climate fuel models that varied from moderate 

to high fuel loading.  

When comparing the 1991 fuel conditions to the 2018 fuel conditions only one 

fuel model showed a significant change in hectares. Meaning that the status of the 

remaining twenty fuels in 2018 was not significantly different from the fuel conditions in 

1991. This is the fuel composition that allowed the Tunnel Fire to move quickly through 

parklands and then into homes (California Office of Emergency Services, 1992; Ewell, 

1995; Pagni, 1993; U.S Fire Adiministration, 1991). One fuel of concern was fuel model 

189, Blue Gum Eucalyptus, Eucalyptus globulus, (LSA Associates Inc. & East Bay 

Regional Park District, 2010c, 2010b; Scott & Burgan, 2005) as it caused major 

firebrands in the Tunnel Fire Event (California Office of Emergency Services, 1992; 

Ewell, 1995; Pagni, 1993; U.S Fire Adiministration, 1991). However, the amount of 

Eucalyptus hasn’t significantly changed between the two years. And because they are 

originally part of a plantation, the stands are dense making it very easy for leaf and bark 

litter to build up in them, which are the primary carriers for fire in this fuel model (Agee, 

Wakimoto, Darley, & Biswell, 1973; Scott & Burgan, 2005). As the project is within a 

managed park system it is not surprising that there are not large-scale fuel changes. There 

also has not been a major disturbance event since the 1991 fire that would drive large-

scale conversion (Calkin et al., 2015). However, the current fuel conditions are very 

similar to 1991, which present a potentially very high fire hazard for Oakland. 

 Though the majority of fuels were the same, one fuel did change, fuel model 147. 

This is a shrub fuel model that is classified as a very high load dry climate shrub (Scott & 

Burgan, 2005) and is very common in chaparral and coastal communities in WUI areas 
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(Syphard et al., 2007). Loading can be at a depth between 4-6ft and the rate of spread and 

flame length is high (Barro & Conard, 1991; Scott & Burgan, 2005). The primary carrier 

of fire for this fuel is the shrubs themselves and their litter (Barro & Conard, 1991; Davis, 

Keller, Parikh, & Florsheim, 1989; Keeley & Zedler, 1978; Scott & Burgan, 2005). In 

Oakland, fuel 147 is mostly comprised of Coyote Brush, Baccharis pilularis (LSA 

Associates Inc. & East Bay Regional Park District, 2010c, 2010b). It is a fuel that can 

produce very extreme fire behavior (Barro & Conard, 1991; Sun et al., 2006). From 1991 

to 2018, fuel model 147 was reduced by an average of 86 hectares, enough to be 

significant. Having a hazardous fuel reduction is a positive sign for Oakland. However, 

this reduction was detected based on the total project area. Differences based on 

individual park location were not able to be detected as there was only one fuel 

observation per location. It is also unknown what fuel replaced fuel 147. Therefore, 

further investigation is needed to determine where and why this fuel changed. Although, 

147 changed the other twenty fuels remained the same, the fuel load that resulted in the 

1991 Tunnel Fire is largely still present. 

5.1.2 1991 vs. 2018 Fire Behavior  

The Tunnel Fire exhibited extreme fire behavior and there is concern that if a fire 

occurred again, it would behave similarly as it did in 1991. In the original event, it took 

less than a half-hour for the rate of spread to become extreme and smoke inundation 

severe (California Office of Emergency Services, 1992; Ewell, 1995; Pagni, 1993; 

Radke, 1995; U.S Fire Adiministration, 1991). The fire was considered to be a total loss 

of control within the first hour (U.S Fire Adiministration, 1991) Extreme fire behavior 

was observed with 30m flame lengths, winds pushing the rate of spread to extreme 
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speeds, fire whirls, and embers tossed across the eight-lane freeway (California Office of 

Emergency Services, 1992; Ewell, 1995; Pagni, 1993; Radke, 1995; U.S Fire 

Adiministration, 1991). The extreme nature of Tunnel Fire is why it was crucial to 

understand the current potential fire behavior and how it measured up to the past. 

Comparing the fire behavior from the Tunnel Fire to present conditions goes beyond 

standard fire history analysis common in fire hazard assessments. The values this type of 

analysis is it does more than simply establishing an area’s fire hazard but rather 

contextualizes into a more digestible and interpretable manor. It can not only help 

determine the severity of the current fire hazard but also demonstrates the consistency of 

extreme fire behavior in the area. Thus, making the fire hazard easier to understand for 

managers and the public alike.  

When the fire behavior between 1991 and 2018 was compared on a total 

landscape level, the fire behavior in 1991 was overall more extreme than the modeled 

fire behavior in 2018. Meaning that should fire occur with today's conditions it would 

not be as extreme as it was in 1991. However, this does not mean that there is no fire 

hazard in 2018 nor that a potential fire under today’s conditions wouldn’t exhibit 

extreme fire behavior. Currently, the project area is classified as a very high fire hazard 

severity zone by CAL FIRE (CAL FIRE, 2008). This was further supported by the 

results. The area is in a Mediterranean climate and under average weather conditions is 

not very fire-prone (Mitsopoulos et al., 2014), as all three fire behavior outputs had less 

than 40% occurrences in category 4-6. This trend was true for 1991 and 2018; though in 

2018 the average weather scenario produced fewer instances of fire behavior in category 

4-6. However, when fire behavior was modeled under extreme weather conditions both 
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1991 and 2018 spiked in the percentage of extreme fire behavior. Meaning that 

currently, the area still has the potential to host an extreme wildfire. It is important to 

note that while the extreme weather conditions are considered 97th percentile, weather 

conditions like this do occur in the area each year, in fact, the Tunnel Fire happened 

under this type of weather (California Office of Emergency Services, 1992; Ewell, 1995; 

Pagni, 1993; Radke, 1995; U.S Fire Adiministration, 1991). Therefore, while 2018 did 

not exhibit as extreme fire behavior as 1991, if ignition occurs during 97th percentile 

weather, extreme fire behavior is likely to happen and put the Oakland Hills community 

at risk. 

 When fire behavior was examined on the individual park scale it was more 

complex as fire in each park behaved differently. Of the three parks, the smallest park CC 

had the most notable fire behavior. In 1991 the Tunnel Fire originated from CC, where it 

gained speed and energy burning through eucalyptus and dense chaparral before moving 

into homes (California Office of Emergency Services, 1992; Ewell, 1995; U.S Fire 

Adiministration, 1991). As it stands CC had the highest fire hazard and exhibits the most 

extreme fire behavior. CC had the highest percent occurrence of category 4-6 fire 

behavior for flame length, rate of spread, and fireline intensity. This was true for 1991 

and 2018. But the percentage of category 4-6 instances did decrease when going from 

1991 to 2018. It's important to note, that despite this decrease in percentage, in 2018 

59%-60% of fire behavior was still in category 4-6. The decrease in extreme fire behavior 

was not enough to lower the majority of fire occurrences below the extreme category. 

This is concerning as this park was the origin point of the Tunnel Fire and it is still 

capable of producing extreme fire behavior. If a fire happens in CC under the current 
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conditions, it would likely produce very extreme flame lengths, rate of spread, and 

fireline intensity and may be very difficult to stop. 

 The second-largest park SIB had the second-highest extreme fire behavior. The 

Tunnel Fire only burned into the edge of SIB (California Office of Emergency Services, 

1992; U.S Fire Adiministration, 1991). However, this does not mean an ignition could 

not occur here nor that a fire couldn’t spread to the park. The fire behavior in SIB was 

more varied than the other parks; fire behavior in CC was overwhelmingly extreme and 

in RED it was consistently low. The rate of spread and fireline intensity followed similar 

trends in SIB. Both outputs decreased in extreme fire behavior from 1991 to 2018. 

Though there was a decrease, in 2018 extreme fire behavior was still over 50%. 

However, flame length in SIB behaved very differently from the other parks. It is not 

unusual that SIB had different trends in fire behavior when comparing the years. Fuel 

models can produce fire behavior that is more extreme in one behavioral output than 

others (Albini, Anderson, & Anderson, 1982; Scott & Burgan, 2005). It is also possible 

for fire models to only exhibit extreme fire behavior when the specific weather conditions 

are met (Albini et al., 1982; Scott & Burgan, 2005). Under the average weather scenario, 

SIB followed the trend of minimal extreme fire behavior that further decreased in 2018. 

However, when the extreme weather scenario was applied extreme fire behavior jumped 

from 23% in 1991 to 57% in 2018. This was a significant jump in extreme fire behavior 

and shows that SIB has gotten more hazardous than it was in 1991. Further investigation 

into SIB and how it changed after 1991 may shed light on why there was a spike in 

extreme fire behavior.  
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Though RED is the largest of the three parks with the lowest fire hazard. In 1991 

the fire did not reach RED  (California Office of Emergency Services, 1992; LSA 

Associates Inc. & East Bay Regional Park District, 2010a; U.S Fire Adiministration, 

1991). In the model, RED ranked last for likelihood of extreme fire behavior and had the 

lowest occurrences of category 4-6 fire. As with the previous parks, this was true for the 

1991 fire behavior models and 2018 fire behavior models. In 1991 all three fire behavior 

outputs only had about 30% occurrence in category 4-6, which further dropped to around 

20% in 2018. If a fire ignited today under “red flag” fire weather the majority of fire 

behavior in RED would fall in the low to moderate range. A potential reason why fire 

behavior is so much lower in RED was that the fuel in RED consists predominately of 

Redwood (Sequoia sempervirens ) and Coast Live Oak (Quercus agrifolia ) which are 

encompassed by fuel model 182. Fuel model 182 is a timber fuel model that typically has 

low to moderate fire behavior (Holmes et al., 2008; Scott & Burgan, 2005). Nevertheless, 

this does not mean it cannot be hazardous. The Basin Complex, the Soberanes Fire, and 

the CZU Lighting Complex had similar fuel composition to RED yet exhibited extreme 

fire behavior (CAL FIRE, 2021; Morris, 2020; Varner & Jules, 2016). It is also important 

to consider that while RED was the largest park and fire behavior tended to be very low, 

some locations did produce very extreme fire behavior, such as the lower park arm 

(Figure 4-4. 4-7, 4-10). It is possible that the effect of extreme fire behavior was masked 

by the large park area and if the park had been smaller it may have impacted the model 

more.  
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However, it is important to note that fire behavior was modeled based on 

conditions specific to the project area, so caution must be taken when interpreting fire 

behavior outside the project parameters. 

5.1.3 Mitigation Assessment 

Mitigation can be used to lower fire hazards in an area by reducing extreme fire 

behavior via fuel modification (Ager et al., 2010; Charnley et al., 2015; B. M. Collins et 

al., 2010; Finney et al., 2007; Safford et al., 2009; Toman et al., 2011; Vaillant et al., 

2013). This is done by altering the fuel arrangement and reducing fuel loads to change 

how fire burns on a landscape (M A Cochrane et al., 2012; Mark A Cochrane et al., 2011; 

Safford et al., 2009; Vaillant et al., 2013). To have significant lasting effect mitigation 

needs to have occurred on 20-30% of the landscape (M A Cochrane et al., 2012; B. M. 

Collins et al., 2010; Finney et al., 2007). After the Tunnel Fire, the EBRPD started 

creating their Wildfire Hazard Reduction and Resource Management Plan (LSA 

Associates Inc. & East Bay Regional Park District, 2010a). The plan sets clear vegetation 

management goals and mitigation actions to reduce the hazardous conditions that caused 

the 1991 Tunnel Fire. Prescribed fuel treatments are predominantly mechanical and hand 

treatments with prescribed fires in only a few locations (LSA Associates Inc. & East Bay 

Regional Park District, 2010e). In total the proposed treatments would affect 15.53% of 

the project area. Under the best-case scenario, where all mitigation was completed and 

operating at peak effectiveness, the EBRPD mitigation plan would affect extreme fire 

behavior. After mitigation was modeled all three fire behavior outputs produced less 

extreme fire behavior on a landscape level. Meaning that if the EBRPD can successfully 

implement their plan it can significantly affect the current wildfire hazard in the Oakland 
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Hills. However, this effect was seen when all mitigation was completed and it was hard 

to say when that would be achieved and how long the impacts would last. Independently 

the actions may not be enough to lower the fire hazard.  

When mitigation was examined on the landscape level the impact to fire behavior was 

clear; however, when the three parks were considered independently each park was 

impacted differently. The effect mitigation treatment can have will vary based on the 

landscape, fuel load, and treatment goals (Mark A Cochrane et al., 2011). The same 

treatment could be carried out in three different locations and produce three very different 

effects. (Mark A Cochrane et al., 2011). CC only makes up a small amount of the project 

area; however, of the three parks, it has the highest percentage of mitigation. 75.37% of 

the land in CC is allocated to wildfire mitigation. Treatment at this level has the potential 

to last for many years (M A Cochrane et al., 2012; B. M. Collins et al., 2010; Finney et 

al., 2007) and may also reduce severity and intensity outside the treatment zones (M A 

Cochrane et al., 2012). This amount of mitigation is consistent with CC having the 

highest fire hazard and where the Tunnel Fire started (California Office of Emergency 

Services, 1992; Ewell, 1995; U.S Fire Adiministration, 1991). The mitigation prescribed 

to CC focuses on addressing the Eucalyptus grove and the chaparral density (LSA 

Associates Inc. & East Bay Regional Park District, 2010e). When this was modeled 

mitigation had a large effect on fire behavior. All fire behavior outputs saw a significant 

reduction in extreme fire behavior post-treatment. In the untreated conditions over 55% 

of fire behavior were classified as extreme. However, in the treatment scenario, extreme 

fire behavior dropped to below 45% for the three outputs. The proposed treatment actions 

were able to lower extreme fire behavior for flame length, rate of spread, and fireline 
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intensity by 20%. If all the treatment are able to be carried out in CC it would be 

successful in lowering the fire hazard, but maybe not as low as the desired management 

goals.  

RED is the largest park in the project area, has the lowest fire hazard, and the least 

amount of prescribed mitigation. Only about 8.59% of the park area has planned 

mitigation. This mitigation was able to lower the extreme fire behavior in the park to 

below 25% for flame length and fireline intensity. Although there was a significant 

reduction, in the untreated scenario extreme fire behavior was already below 30% for 

those outputs. The rate of spread was not significantly altered in the treated scenario. 

There was the same level of extreme rate of spread in the untreated conditions and the 

treated conditions. The effect mitigation can have on fire behavior is not unilateral, 

treatments can be focused only affect certain aspects of fire behavior (M A Cochrane et 

al., 2012). The recommended treatment for RED is mostly concentrated on the northwest 

border where a Eucalyptus grove exists (Figure 3-3). The lower arm of RED has a 

concentration of extreme fire behavior (Figure 3-3) but there is only one small 

recommended treatment. This is a potential issue as there are homes near this section of 

the park. Because the original plan was created in 2010 it is possible that now the 

recommended treatment is misaligned with the current fire hazard. 

 The recommended mitigation was least effective in SIB. Under the mitigation 

plan, only 15.78% of SIB is prescribed fuel treatment, despite SIB having the second-

highest fire hazard. Under the recommended treatment plan only flame length was 

reduced. Though there was a significant reduction in extreme flame length it remained 

above 50%. Meaning that more than half of the modeled flame lengths were still in the 
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extreme category despite treatment. Furthermore, the proposed treatments did not have 

enough of a significant impact on the amount of extreme rate of spread and fireline 

intensity. Overall, there was still a large percentage of fire behavior that was classified as 

extreme despite fuel modification. The EBRPD fuel treatment recommendations are 

based on original fuel mapping and subsequent fire modeling that occurred in 2010 (LSA 

Associates Inc. & East Bay Regional Park District, 2010b, 2010c). Because it has been 

over ten years since the original recommendation, at that time these actions may have 

been appropriate however, currently the treatments no longer match the present 

conditions. Since the fire behavior in SIB has increased in extremity fuel modification for 

the park should be evaluated. Not addressing the change in conditions for SIB have the 

potential to be detrimental.  

5.1.4 Project Limitations  

Though the project sheds light on valuable information it is not without 

limitations. One limitation is the it was not able to determine causation between fuel and 

fire behavior. However, a relationship between the two can be inferred as fuel was only 

input to change whereas all other model inputs remained constant. Additionally, fuel 

models are standardized and directly correlate to specific fire behavior responses. 

Secondly, it was not possible to establish differences based on fuel and location. There 

was only one fuel model observation per location, which was not enough to capture 

localized fuel changes. And while this was not the level of observation that the project 

focused on, it is a future area for further analysis. Thirdly, the effect mitigation can have 

on fire behavior is something that is still trying to be understood. While the short-term 

impacts are well established, long-term studies are limited (Vaillant et al., 2013). Though 
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modeled mitigation was able to affect fire behavior on the project site it is not clear how 

long this effect would last. This effect is dependent on all the recommended treatments 

having been achieved and it is unknown when this goal would be reached. Finally, the 

study did not address social dynamics of fire hazards. Fire hazards are not just a 

biophysical issue but a social one as well. This is an area for further research.  

5.2 AREAS FOR FURTHER RESEARCH 

This thesis focused on the biophysical dynamics of fire hazards, fuel and fire 

behavior. While the study was able to examine how a fire hazard changed in a given 

locality it did not examine the perspective of residents in the Oakland Hills. Future 

research is needed to understand how resident of WUI areas with significant fire history 

measure fire hazards in comparison to land managers and fire professional. 

Understanding this dynamic may not only shed light on gaps between resident and 

professional fire hazards assessment but also provide insight on steps to be taken to close 

said gaps. 

5.3 CONCLUSIONS 

The 1991 Tunnel Fire opened eyes to the dangers and hazards in urban WUI 

areas. In Oakland, this is a hazard that continues to persist. However, it is a hazard that 

has changed. Although today's landscape still largely reflects the condition that existed 

before the Tunnel Fire there was a reduction in hazardous fuels. There was also a change 

in extreme fire behavior that overall resulted in less extreme occurrences; however, not to 

the point in which the fire hazard disappeared. Currently, there is a very real fire hazard 

across the landscape especially in CC and SIB. If the EBRPD mitigation plan is fully 

carried out the fire hazard can be lowered to a more manageable level with reservations. 
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The plan addresses the overall fire hazard and the hazard in CC it is not equally as 

effective on the other parks. While action needs to be taken it also needs to be ensured the 

prescription fits the landscape, and reevaluation may be necessary for certain areas. In 

conclusion, if ignition occurs in the Oakland Hills today it will likely burn; but 

management actions can be taken to avoid or minimize another disaster in this wildland 

urban interface. 
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APPENDIX  

Table A-1: RTA details describing the location, proposed action, current vegetation, goal vegetation, and new fuel. For the park, CC is 

Claremont Canyon Preserve; SIB is Sibley Volcanic Preserve, and RED is Redwood Preserve. 

RTA PARK PROPOSED ACTION CURRENT VEGITATION GOAL 

VEGETATION 

NEW 

FUEL 

CC001 CC Thin eucalyptus, remove pines, 

mechanical treatment, 50%-70% 

brush reduction, remove dead trees, 

herbicide 

Eucalyptus Forest/Plantation 

Oak-Bay Woodland 

Coastal Scrub 

California Annual Grassland 

Coyote Brush Scrub 

Open Eucalyptus 

Oak-Bay Woodland  

Patches of Scrub 

Grass Buffers 

161 

182 

122 

104 

CC002 CC Grazing & mowing Annual Grassland  

Oak-Bay Woodland 

Coyote Brush 

Annual Grassland 

North Coastal Scrub 

Oak-Bay Woodland 

104 

142 

182 

CC003 CC Grazing, mowing, pile/burn, limbing, 

& tree removal (pines under 24” 

DBH, eucalyptus, cypress & invasive 

species 

Coastal Scrub 

California Annual Grassland 

Broom Scrub 

Coyote Brush 

Eucalyptus Plantation 

Perennial Grassland 

Annual Grassland 

Oak-Bay Woodland 

104 

182 

CC004 CC Thin eucalyptus & eventually 

remove, plant native understory, thin 

understory, & remove 1/3 of bay 

trees 

Eucalyptus Forest/Plantation Easter Half 

Grassland and Oak-

Bay 

Western Half Oak-

Bay (Closed 

Canopy) 

122 

182 

CC005 CC Reduce shrubs, remove debris, limb 

up trees 

Eucalyptus Forest/Plantation Northern Coastal 

Scrub 

Oak Woodland 

142 

182 

CC006 CC Grazing & limb up trees Oak-Bay Woodland 

Coastal Scrub 

Oak-Bay Woodland 

with Little 

Understory 

182 

122 
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Grass with 

Scattered/Low-

Volume Shrub 

CC007 CC Grazing, herbicide, mowing, hand 

labor, & pile/burn 

Coastal Scrub, 

California Annual Grassland 

Perennial Grassland 

Annual Grassland 

104 

CC008 CC Reduce fuels by Gelston structure, 

mowing, herbicide, grazing, & 

pile/burn 

Oak-Bay Woodland 

Developed 

Coyote Brush Scrub 

Coastal Scrub  

Eucalyptus Forest/Plantation 

Landscaping 

Scrub & Oak 

Woodland 

Reduced Understory 

93  

141 

182 

CC09 CC Mowing (only plants that can cure), 

possible prescribe burn, & 

mechanical treatment 

Coastal Scrub 

Oak-Bay Woodland  

Coyote Brush  

California Annual Grassland 

Non-Native Coniferous Forest 

Young North Coastal 

Scrub 

Oak Woodland, 

Annual Grassland 

Non-Native 

Coniferous Forest, 

North Coastal Scrub 

141 

182 

104 

184 

142 

CC010 CC Invasive plant concern, grazing, 

mechanical treatment, hand 

treatment, understory & scrub 

reduction, limbing, & remove 2/3 

small bays & 1/3 medium trees 

Oak-Bay Woodland 

Coyote Brush  

Eucalyptus Forest/Plantation  

Coastal Scrub 

North Coastal Scrub 

Oak Woodland 

Eucalyptus Forest 

142 

182 

182 

CC011 CC Lower priority, concern for spreading 

broom, & potential prescribed burn 

Coastal Scrub 

Coyote Brush  

Oak-Bay Woodland 

Grass, Component If 

Non-Native Weed 

Oak Woodland 

104 

141 

182 
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CC012 CC Invasive concern, understory shrub 

removal, young pine removal, weak 

pine removal, limited mechanical 

treatment, maintain adjacent fuel 

break, grazing &/or hand labor 

Oak-Bay Woodland 

Non-Native Coniferous Forest  

Coyote Brush 

Oak-Bay Woodland 

Monterey Pine with 

Sparse Understory 

142 

183 

SR001  SIB Removal of understory shrubs, young 

pine removal, limbing mature pines, 

remove hazardous pines, limit 

mechanical treatment, maintain fuel 

break adjacent to private land, 

grazing &/or hand labor 

Oak-Bay Woodland 

Non-Native Coniferous Forest  

Coyote Brush 

Oak-Bay Woodland, 

Monterey Pine with 

Sparse Understory 

182 

181 

SR002a SIB All treatment methods possible, 

remove all eucalyptus & reduce 

shrubby fuels 

Eucalyptus Forest/Plantation 

Oak-Bay Woodland 

Coastal Scrub 

Broom Scrub 

Coyote Brush Scrub 

Oak-Bay Woodland 

Scattered North 

Coastal Scrub 

182 

141 

SR002b SIB All treatment methods possible, 

remove all eucalyptus & reduce 

shrubby fuels 

Eucalyptus Forest 

Broom Scrub 

California Annual Grassland 

Oak-Bay Woodland 

Coastal Scrub 

Oak-Bay Woodland 

Scattered North 

Coastal Scrub 

182 

141 

SR003 SIB Reduction of surface fuels by 

shortening grass and keeping scrubs 

less than 3% cover, all treatment 

methods suitable 

California Annual Grassland Annual Grassland 

Scattered North 

Coastal Scrub 

104 

141 

SR004 SIB Reduce surface fuels along the 

ridgeline, reduce ladder fuels, heavily 

thin pines & eucalyptus, remove 

young eucalyptus & pines, reduce 

brush by 50%-70%, treat eucalyptus 

Oak-Bay Woodland 

Coyote Brush 

Eucalyptus Forest/Plantation 

Non-Native Pine 

Oak-Bay Woodland 

Scattered North 

Coastal Scrub 

Annual Grassland 

182 

141 

104 
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& acacia with herbicide, pile/burn, 

limbing, remove dead/dying trees, & 

treat brush areas with herbicide 

SR005 SIB Remove eucalyptus & pine within 

100ft of the ridgeline, remove 

hazardous trees along roads/trails, 

pine trees/plants around pallid 

manzanita, & defensible space 

around private land 

Oak-Bay Woodland 

Non-Native Coniferous Forest 

Coyote Brush 

Coastal Scrub 

California Annual Grassland 

Riparian Woodland 

Developed 

Coastal Scrub 

Oak-Bay Woodland 

Scattered North 

Coastal Scrub 

Annual Grassland 

Riparian Woodland 

182 

141 

104 

182 

SR006 SIB Create defensible space around 

communication tower, thin 

eucalyptus to 25ft spacing, remove 

trees above well-developed oak-bay 

woodland, remove smaller trees, 

surface fuel reduction under retained 

trees, prune trees, mechanical 

treatment for tree removal & all other 

treatments for surface fuels 

Eucalyptus Forest/Plantation Thinned Eucalyptus 

Monterey Pine 

Oak-Bay Woodland 

Scattered North 

Coastal Scrub 

182 

184 

182 

141 

SR007 SIB Reduce shrubs beneath eucalyptus by 

grazing & tree spacing precludes 

mechanical  

Eucalyptus Forest/Plantation Red-Gum 

Eucalyptus with 

Sparse Understory 

182 

HP001 SIB Erosion control measures for 

mechanical treatment, remove all 

eucalyptus within 100ft of the 

ridgeline, thin trees below the 

ridgeline to 25ft spacing, prune all 

remaining trees, & empathize surface 

fuel reduction 

Eucalyptus Forest/Plantation Oak-Bay Woodland 

Near the Road 

Thinned Eucalyptus 

182 
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HP002 SIB The presence of Pallid Manzanita 

requires hand labor, remove non-

native shrubs, & pile/burn 

Oak-Bay Wood 

Northern Maritime Chaparral 

Pallid Manzanita 

Oak-Bay Woodland 

Pallid Manzanita 

Scattered North 

Coastal Scrub 

182 

147 

141 

HP003 SIB The presence of Pallid Manzanita 

requires hand labor, remove non-

native shrubs, & pile/burn 

Northern Maritime Chaparral 

Pallid Manzanita 

Oak-Bay Woodland 

Pallid Manzanita 

Scattered North 

Coastal Scrub 

182 

147 

141 

HP004 SIB The presence of Pallid Manzanita 

requires hand labor, remove non-

native shrubs, & pile/burn 

Oak-Bay Woodland, Coastal 

Scrub, Pallid Manzanita 

Oak-Bay Woodland 

Pallid Manzanita 

Scattered North 

Coastal Scrub 

182 

147 

141 

RD001 RED Historical fuels management, 

firefighter safety zone is a high 

priority, remove small/unhealthy 

pines, maintain low fuel load under 

Monterey Pines above Phillip’s Loop, 

reduce coastal scrub, & remove all 

brooms, all treatment methods 

suitable 

Non-Native Coniferous Forest 

Eucalyptus Forest 

California Annual Grassland 

Oak-Bay Woodland 

Coastal Scrub 

Broom Scrub 

Developed 

Open Monterey Pine 

Grassland 

Scattered Shrubs 

Annual Grass 

182 

122 

104 

RD002 RED Additional mitigation measures 

needed due to slope, remove all 

eucalyptus within 100ft of the 

ridgeline, thin trees below the 

ridgeline, selectively remove trees 

around developed oak-bay woodland, 

prune remaining trees, & reduce 

surface fuel loads 

Eucalyptus Forest Plantation Oak-Bay Woodland 

Near the Road 

Thinned Red Gum 

Below 

182 

182 

RD003 RED Lower priority, reduce shrubs 

beneath eucalyptus via grazing, not 

Eucalyptus Forest 

Riparian Woodland 

Coyote Brush 

Red-Gum 

Eucalyptus with A 

Sparse Understory 

182 

182 
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conducive to mechanical treatment or 

hand labor 

Oak-Bay Woodland 

Redwood Forest 

Developed 

Oak-Bay Woodland 

RD004 RED A long history of treatment, reduce 

surface fuel load, all treatments 

suitable, remove eucalyptus sprouts, 

remove broom, enhance conditions 

for Oakland Star Tulip and Western 

Leatherwood 

Non-Native Coniferous Forest 

Oak-Bay Woodland 

California Annual Grassland 

Coyote Brush 

Developed 

Eucalyptus Forest 

Annual Grassland 

Scattered Monterey 

Pine 

Oak-Bay Woodland 

104 

183 

182 

RD005a RED Installation of a firefighter safety 

zone, remove all eucalyptus trees, & 

brush removal 

Eucalyptus Forest Annual Grassland 102 

RD005b RED High priority is to create defensible 

space around Chabot Space & 

Science Center, remove all 

structurally unsound pine trees, prune 

all remaining trees, remove shrubs 

under tres, consider removing young 

pines & keeping shrub cover to <30% 

Non-Native Coniferous Forest 

Developed 

Redwood Forest 

Coyote Brush 

California Annual Grassland 

Oak-Bay Woodland 

Scattered Monterey 

Pine 

Oak-Bay Woodland 

Annual Grassland 

Redwood 

Landscaping 

183 

182 

104 

181 

RD006 RED Recommend creating/maintain 

defensible space around the 

recreational facility 

Oak-Bay Woodland 

Redwood Forest 

Developed 

Redwood Forest 

Oak-Bay Woodland 

Landscaping 

182 

182 

93 

RD007 RED Installation of a firefighter safety 

zone, remove all eucalyptus trees, & 

brush removal 

Eucalyptus Forest Annual Grassland 102 

RD008 RED Creating/maintain defensible space 

around Trudeau Center, coordinate 

treatments with Serpentine Pirerae 

Restoration Project, hand labor, low-

fuel landscaping, remove trees 

incompatible with serpentine prairie, 

Coyote Brush Scrub 

Developed 

Non-Native Coniferous Forest 

Serpentine Bunchgrass 

Perennial Grassland 

Landscaping 

Scattered Northern 

Coastal Scrub 

Pines 

104 

93  

141 

104 
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prescribed burns as feasible, & 

enhance conditions for Presidio 

Clarkia 

Resorted Serpentine 

Bunchgrass 

RD009 RED Creating/maintain defensible space 

around the fire station & Piedmont 

Stables is a high priority, remove 

coyote brush to restore annual 

grassland within 200ft of structures, 

remove all shrubs/small trees under 

eucalyptus/oak-bay trees, pine trees 

to 8ft, & thin eucalyptus grove of 

smaller trees 

Eucalyptus 

Forest/Plantation 

Developed 

Coastal Scrub 

Oak-Bay Woodland 

Oak-Bay Woodland 

Near The Road 

Perennial Grassland 

Annual Grassland 

182, 

104 

161 

RD010 RED Installation of the firefighter safety 

zone with mechanical treatment 

Oak-Bay Woodland 

Non-Native Coniferous Forest 

Developed 

Eucalyptus 

Redwood Forest 

Annual Grassland 104 

RD011 RED Installation of the firefighter safety 

zone 

Coastal Scrub Annual Grassland 104 

 


