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ABSTRACT 

 
Until recently, affordable music equipment has always been seen as “budget”, providing 

a poor user experience. Inexpensive equipment was plagued with audible noise, signal integrity 

issues, and convoluted user interfaces. Companies like Teenage Engineering have proven that 

this does not have to be the case, in 2019 introducing their "Pocket Operator” series for $89. Due 

to the modern availability of low cost, high quality, consumer off the shelf [COTS] analog and 

digital components as well as creative engineering, the quality of inexpensive audio equipment 

has increased significantly. Despite these industry advances, the market is relatively small and 

shows a great potential for growth.  

This senior project capitalizes on this market possibility, providing a low-cost analog/ 

digital hybrid synthesizer architecture without the aforementioned caveats of poor signal 

integrity, user interface and sound quality. The synthesizer provides a low latency, simple to use, 

visual interface to the user. This visual interface allows intuitive and simple-to-learn access to 

the synthesizer’s parameters. The value of these parameters can also be loaded or saved from 

non-volatile memory. The power will be provided locally by a battery. Therefore, the 

synthesizer’s power draw will be low enough to ensure a significant on-time. Physically, the 

synthesizer provides industry standard audio connectivity to be interfaced with the end user’s 

existing equipment.  
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  SECTION 1 - INTRODUCTION 
 
 I am fascinated with the intersection of technology, engineering, and art. My interest in 

taking apart stereos, keyboards, and other devices grew by the time I was in high school. I 

actually had a pretty successful stereo and music equipment repair business going fixing all of 

my friends’ secondhand gear. I love how electronic instrument companies have spent so much 

time engineering devices to help musicians make sounds! They have generated decades of 

history, building on previous innovations all in the pursuit of more effective tools for artists. I 

decided last year that I wanted to complete a senior project that delves into some of these 

interests. 

 

 The first idea I had was to build my senior project around the goal of creating a 

synthesizer. The synthesizer has a rich history filled with challenges, creativity and innovation. 

Being one of the oldest electronic musical instruments, the first few models we would recognize 

today emerged in the 1950s [1]. Early synthesizers were fully analog systems, essentially 

retrofitted analog computers converted to sound making devices. This architecture was riddled 

with pitfalls, as analog systems are inherently sensitive to environmental conditions. It was not 

uncommon for synthesizers to need to be tuned every time they were turned on, much like 

acoustic instruments [2]. 

 

 This era of analog synthesis was bound to end, as in the 1980s digital electronics were 

entering the consumer musical electronics field with force. In 1983 the MIDI standard for 

musical devices to interface with each other over a serial bus was released [3]. This drove the 

digitalization of synthesizers even further. Once the floodgates were open, more and more digital 
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circuitry made its way into synthesizers. Instead of tuned LC oscillators, digital-to-analog 

converters [DAC’s] served up arbitrary waveforms from memory (at perfect pitch thanks to 

quartz clocks) [4]. These methods of digital synthesis were originally very ‘lean’, as the 

computational power of microprocessors and the size of memory was still small and very 

expensive. This initial limitation actually drove engineers to develop efficient methods of 

reproducing sound. These methods, wavetable and FM synthesis for example live on today [5]. 

 

The explosion of consumer electronics has enabled almost every device to be designed, 

manufactured, and sold for cheaper than ever before. Recently this has led to a generation of 

capable, low-cost synthesizers to meet the market. For example, the ‘Pocket Operator’ series 

from teenage engineering are capable synthesizers that cost merely $89.00 [6]. This senior 

project follows this trend, combining a legacy of digital and analog synthesis circuitry into a 

portable, low-cost product. Combining some of the benefits of a digital system with the 

historically beloved sound of analog filter and compression architectures [7], [8]. Using a 

modern, low cost, microprocessor enables inexpensive devices with plenty of features, low 

latency and low cost [9], [10]. 
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SECTION 2 - PROJECT MOTIVATION 

2.1  CUSTOMER NEEDS 
 

Determining customer needs is an essential step in the initial design of any system or 

project. Engineering specifications that do not satisfy a customer’s needs could be the end of a 

product. Interestingly, engineering functionality a customer never needed could derail a project 

just as quickly. Thus, it is paramount to accurately determine the needs of a customer early on. 

 

For some engineering problems it can be simple to determine what the system 

requirements and specifications are. For example, a drop-in component replacement has well 

defined requirements. The project unfortunately is much more open ended, leading to needing 

much more rigorous design specifications. Being a consumer device, many of the specifications 

are driven by cost rather than functionality. In the design process especially, I was forced to 

weigh the customer value of a feature versus its implementation cost. For example, the 

component cost required to improve the synth from a paraphonic architecture to a fully 

polyphonic architecture was vastly larger than the value it adds to the final project. 

 

I found two main areas of focus while establishing customer needs. The first being the 

final cost of the product. Small, low-cost synthesizers are a growing market in the music 

equipment area. I decided it would be competitive for the product to be priced similarly as other 

budget synthesizers on the market. This is where I determined the $100.00 cost of manufacturing 

limit. This ensures that the synthesizer falls within the sub $150.00 consumer cost range roughly 

equivalent devices sell at. 
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The second aspect I focused on was the final design’s compliance with established 

interface and other standards. As musicians often interconnect many brands and types of musical 

equipment, customers want the ability to easily connect devices with no issues. To insure this, I 

set up engineering specifications to define the levels and connectivity of all inputs and outputs.  
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2.2  REQUIREMENTS AND SPECIFICATIONS 
 

TABLE I 
Low Cost Hybrid Musical Synthesizer Requirements and Specifications 

Marketing 
Requirements 

Engineering 
Specifications Justification 

1 Total component and assembly cost <100$ with low 
quantity production( <100 units) 
 

Maintains competitive pricing in consumer synthesizer market 

2 All synthesizer parameters are accessible in less 
than two menu levels 
 

Ensures simple/fast user interface without ‘menu diving’ 

3 Size of device less than 3x4in by 0.5in thick 
 

Ensures portability 

3 No non ROHS components exposed to the user Ensures user safety with device on their person 
4 Device average current draw from 3V source less 

than 150mA 
Ensures 12+ hours use out of 2 standard 2000 mAh AA size cells 

5 Female ¼ in TRS line jack with audio “line” level 
of +4 dBu 

Glenn M. Ballou, ed. (1998). Handbook for Sound Engineers: 
The New Audio Cyclopedia, Second Edition. Focal Press. p. 
761. ISBN 0-240-80331-0 

5 Female ⅛ in TRS with audio “headphone” power of 
10-20mW into a 32 ohm load 

Glenn M. Ballou, ed. (1998). Handbook for Sound Engineers: 
The New Audio Cyclopedia, Second Edition. Focal Press. p. 
761. ISBN 0-240-80331-0 

5 MIDI note to audio response latency less than 
100ms 

J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How Much 
Faster is Fast Enough?,” Proceedings of the 33rd Annual ACM 
Conference on Human Factors in Computing Systems - CHI '15, 
2015.  

6 User input to interface response and input to audio 
latency less than 100ms 
 

J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How Much 
Faster is Fast Enough?,” Proceedings of the 33rd Annual ACM 
Conference on Human Factors in Computing Systems - CHI '15, 
2015. 

7 Noise at audio line out at least 60dB less than “note 
on” output amplitude 

“Signal to Noise Ratio (SNR) - How it can destroy your 
recording,” Magroove Blog, 02-Nov-2019. [Online]. Available: 
https://magroove.com/blog/en-us/snr/. [Accessed: 17-Nov-
2020].  

Marketing Requirements 
1. Low final cost 
2. Easy to navigate user interface 
3. Small, portable, on person device 
4. Long battery life 
5. Standard audio connectivity 
6. Responsive interface 
7. Low Noise 
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SECTION 3 -  INITIAL DESIGN 
 
3.1 LEVEL ZERO FUNCTIONAL DECOMPOSITION 
 

 
FIGURE 1: LEVEL 0 BLOCK DIAGRAM 

 

The level zero decomposition is almost a direct reflection of the requirements and 

specifications. The project is one module, and therefore all inputs and outputs described in table 

1 must be present. The user inputs including the knobs, buttons, and keyboard are all inputs. The 

input signals including the battery voltage and MIDI data connection are also inputs. The outputs 

follow the same convention, mirroring the specifications for audio output and screen. 
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TABLE II 
Music Synthesizer Module Breakdown 

Module Music Synthesizer 

Inputs MIDI: ⅛ in trs standard MIDI input 

Outputs Screen: OLED matrix display with onboard display controller, SPI/I2C 
Audio Jack: ⅛ in and ¼ in trs and Line level or headphone level output 1.41Vpp 

Functionality Decode user input to synthesizer parameters, which can be saved locally. These 
parameters are displayed on the OLED screen. When a key is pressed or a MIDI note 
received, an appropriate audio tone is generated on the output. 
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3.2 LEVEL ONE FUNCTIONAL DECOMPOSITION 
 

FIGURE 2: LEVEL 1 BLOCK DIAGRAM 

 In figure two, the level zero functional diagram is broken down further into a level one 

decomposition. This decomposition begins to outline the methods intended to accomplish the 

various function within the device. Tables 3a, 3c, 3d, and 3i outline various standard functions of 

a handheld device. Namely the power supply, input isolation, and peripheral controls. These 

functional blocks handle the functions the main synthesis engine needs to interreact with the 

interfaces and be powered. 

 The main synthesis architecture is outlined by tables 3c, 3f, 3g, and 3h. The signal chain 

is as follows. A micro-controller interprets user input as well as MIDI data to determine the 

frequency of notes required. A wavetable defined waveform is calculated for each note and 

presented on the DAC’s digital bus, then clocked out as an analog waveform at the output of the 
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DAC. This portion follows a relatively standard wavetable synthesis architecture [5]. The output 

of the DAC is filtered by a digitally controlled analog filter [DCF] [7]. The signal then is 

attenuated by the digitally controlled amplifier and finally output to the amplifier to be amplified 

to appropriate line and headphone levels (specified in table III-i ). 

TABLE III-a 
POWER SUPPLY MODULE BREAKDOWN 

Module Power Supply 

Inputs Batteries: 2X AA size rechargeable cells 

Outputs DC: 3.3V for digital electronics, +8V  and +4Vref for analog circuits 

Functionality The Power Supply regulates the battery voltage to digital and analog power rails for the 
other electronics. 

 
 

TABLE III-b 
MICRO-CONTROLLER MODULE BREAKDOWN 

Module μController 

Inputs Digital Bus(peripheral values): Peripheral Values reported on 8bit digital bus 
MIDI (isolated): MIDI data, isolated and 3V3 level shifted 
Memory: I2C bus for non-volatile memory 
DC: 3V3 

Outputs Screen: SPI Peripheral Bus 3V3 Logic 
DAC: 8bit internal DAC 
Memory: I2C bus for non-volatile memory 
DCF, DCA: I2C bus to control filter and amplifier parameters 

Functionality The μController manages all of the user inputs, screen outputs, generating wavetable 
tones through the DAC, and controlling the DCF and DCA states. 
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TABLE III-c 
ISOLATOR MODULE BREAKDOWN 

Module Isolator 

Inputs MIDI: ⅛ in trs standard MIDI input 
DC: 3.3V 

Outputs MIDI: 3.3V isolated MIDI 

Functionality The Isolator protects the microcontroller from voltages present on the MIDI input jack, 
as well as level shifting the MIDI signals to 3.3V logic. 

 
 

TABLE III-d 
PERIPHERAL CONTROLLER MODULE BREAKDOWN 

Module Peripheral Controller 

Inputs User Encoder: Digital quadrature signal 
Parameter Knobs: Analog voltage 
User Keyboard: Digital input per ‘key’ 
DC: 3.3V 

Outputs Digital Bus: Values reported on change 
Interrupt Line: Interrupt low edge on parameter change 

Functionality The Peripheral Control block manages muxing and polling all of the user inputs, then 
reporting them to the microcontroller through a digital bus and interrupt line.  

 
 

TABLE III-e 
MEMORY MODULE BREAKDOWN 

Module Memory 

Inputs Digital Bus: I2C bidirectional 
DC: 3.3V 

Outputs Digital Bus: I2C bidirectional 

Functionality The nonvolatile Memory saves and returns parameters and wavetable data for the 
uController. 
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TABLE III-f 
DAC MODULE BREAKDOWN 

Module DAC 

Inputs Digital Bus: 8BIT audio stream 
DC: 3.3V, 5V, 2.5Vref 

Outputs Audio: 8Vpp audio signal 

Functionality The DAC converts the wavetable digital audio stream to an analog audio signal to be 
filtered and amplified in the analog signal path. 

 
 

TABLE III-g 
DCF (DIGITALLY CONTROLLED FILTER) MODULE BREAKDOWN 

Module DCF (Digitally Controlled Filter) 

Inputs Audio: 3.3Vpp audio signal 
Control Signal: I2C filter control commands from uController 
DC: 3.3, 5V, 2.5Vref 

Outputs Audio: 4Vpp audio signal 

Functionality The DCF filters the audio signal with a resonance and cutoff determined by control 
values on the I2C bus. 

 
 

TABLE III-h 
DCA (DIGITALLY CONTROLLED AMPLIFIER) MODULE BREAKDOWN 

Module DCA (Digitally Controlled Amplifier) 

Inputs Audio: 4Vpp audio signal 
Control Signal: I2C filter control commands from uController 
DC: 3.3V, 5V, 2.5Vref 

Outputs Audio: 4Vpp audio signal 

Functionality The DCA amplifies the audio signal with an amplitude and saturation value from the 
I2C bus. 
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TABLE III-i 
FINAL AMP MODULE BREAKDOWN 

Module Final AMP (Buffer Amplifier) 

Inputs Audio: 4Vpp audio signal 
User Volume Knob: Analog resistance Value 
DC: 3.3V, 5V, 2.5Vref 

Outputs Line Output: 1.41Vpp audio signal 
Headphone Output: 0-15mW into 32ohm load 

Functionality The Final AMP amplifies and isolates the audio signal for the Line output. It also drives 
the headphone output with appropriate power (determined from user volume input). 
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SECTION 4 - DESIGN 

4.1 HARDWARE DESIGN AND ASSOCIATED SOFTWARE CONTROL 

 The following chapter outlines the design process followed in constructing and testing 

each “module” of the circuitry. To ensure the overall design was valid for the entire project, I 

opted to construct and verify both the hardware and software for each portion of the power, user 

control, and audio circuitry. This ensured that the final construction of the entire circuit would 

not harbor so many issues that it proves very difficult to debug. I found this technique especially 

important while building the host of code that controls each portion of the synthesizer because as 

a whole, the interdependencies of the full software build make debugging the peripheral errors 

very difficult. 

 

4.2  ESP32 S2 WORKFLOW 

In the final revision of the project, an ESP32S2 microcontroller is implemented with all 

the supporting hardware on the main PCB. Though, as the ESP32S2 is a surface mount 

microcontroller and comes without a USB UART for programming, power supply, or reset 

buttons, I opted to use a development board while prototyping. This allowed me to get a 

functional microcontroller up and running without first ordering a PCB to program and easily 

break out the ESP32S2’s I/O to a breadboard. 
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The development board I choose was the ESP32S2 Saola-1, a very inexpensive 

development platform for the ESP32S2 chipset with USB to UART, I/O breakout, and onboard 

voltage regulation. 

 
FIGURE 3: ESP32SA SOALA 1 DEVELOPMENT BOARD AND BLOCK DIAGRAM 

 

The ESP32S2 requires a toolchain to allow the compiling/linking and uploading of code 

to the ESP32 S2 chipset. These tools and their installation instructions can be found on 

Espressif’s support page for the ESP32S2 [13]. My experience was initially frustrating with these 

Python based tools, as linking the directory and ensuring it ran the scrips in Python 3 was 

difficult on my machine. Though, once installed and properly setup compiling and uploading 

code was as simple as running two command line scripts. 

 

4.3 VOLTAGE REGULATION and VOLTAGE REFERENCE 

 The power supply for this project focuses mainly on isolating the analog and digital 

supplies to prevent bleed through of digital switching noise into the audio path. The first stage is 

tasked with boosting the battery voltage of 3V to an unregulated 6.5V volt rail that supplies the 

linear regulators and the LED display. I choose the LM2623 switch mode boost regulator as it 
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can be bootstrapped to operate on very low input voltages and boasts up to 90% efficiency even 

at low input voltages. In this configuration it can supply up to 2A of output current with an input 

above 0.8V. This low drop out voltage ensures that the regulator will provide an output as the 

AA cells drain and their nominal voltage drops from 3V down to 2V. The circuit below is a 

direct implementation of the “typical application circuit” in the LM2623 datasheet [19] 

 
FIGURE 4: SWITCHMODE BOOST CONVERTER 

 

 
FIGURE 5: 3.3V AND 5V0 LINEAR REGULATORS 

 
This 6.5V switch mode regulated supply is then lowered to 5V and 3.3V rails via two 

linear regulators. I choose two standard low-drop-out (LDO) regulators, the MCP1703A-3302 

and the MCP1703A-5002. They are implemented in a standard positive rail linear regulator 

configuration with input and output filtering via 1uF capacitors. This provides two isolated 
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supplies: a 3.3V logic supply (noisy digital rail) and a 5V analog supply. The separate linear 

regulators ensure adequate isolation between the noise on the digital supply and the analog 

supply. 

 Because all the op amps and analog circuitry in the synthesizer are powered from a single 

5V rail, a centered analog reference voltage of 2.5V is required for bias and centering. This was 

generated using a spare op amp in the MCP6L02 package. This op amp is wired as a unity-gain 

buffer and stiffens a 2.5V voltage reference created using two 10K resisters in a voltage divider 

configuration. Note the filtering capacitors at both the input and output of the buffer. These 

ensure the buffer is not sensitive to noise on in the voltage divider nor susceptible to oscillations 

caused by the direct negative feedback in the buffer. 

 
FIGURE 6: 2.5V ANALOG REFERENCE VOLTAGE GENERATION 
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4.4  DAC and FILTERING 

 Initially, the design outlined the use of a DAC IC to convert the waveform data generated 

in the ESP32 S2 microcontroller to an analog waveform that can be filtered and amplified by the 

rest of the analog audio chain. After reading the technical reference on the ES32S2 chipset, I 

found that there were two onboard DAC’s that use an internally hardwired I2S port. 

Unfortunately I ran into issues with updating this I2S DAC at a sufficient rate without significant 

software overhead. 

 The final solution was to use a dithered PWM peripheral on the ESP32S2 to generate a 

PWM waveform with a duty cycle representative for the desired “DAC” output. This “Sigma 

Delta” PWM peripheral requires a setup struct to set its channel, clock prescale, initial duty, and 

output GPIO. 

 
FIGURE 7: SIGMA DELTA INITIALIZATION 

 
To change the PWM duty, or value of the DAC output, we simply need to load a new 

duty value into the register using the “set_duty” call. 

 
FIGURE 8: UPDATING THE SIGMA DELTA DUTY CYCLE 

 
  

static void sigmadelta_init(void) 
{ 
    sigmadelta_config_t sigmadelta_cfg = { 
        .channel = SIGMADELTA_CHANNEL_0, 
        .sigmadelta_prescale = 1, 
        .sigmadelta_duty = 0, 
        .sigmadelta_gpio = GPIO_NUM_21, 
    }; 
    sigmadelta_config(&sigmadelta_cfg); 
} 

sigmadelta_set_duty(SIGMADELTA_CHANNEL_0, current_sample); 
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This output is not suitable for our audio chain, as it is not centered about the 2.5V analog 

reference and contains high frequency content from the PWM switching. The following circuit 

conditions the PWM signal by decoupling it with a 10uF film capacitor then passing this signal 

into an MCP6l02 OP amp in a unity gain configuration. The op amp both buffers and low-pass 

filters the signal to frequencies below the GBW of the OPAMP. Also note the 470K resistor 

between the decoupled input and the 2.5V reference rail. This resistor ensures the decoupled 

signal tends to center at the 2.5V reference, it also ensures that the op amp stage remains biased.  

 
FIGURE 9: LOWPASS AND BUFFERING OF SIGMA DELTA PWM 

 

4.5  DIGITALLY CONTROLLED FILTER 

 The digitally controlled filter is one of the most important circuits in the synthesizer. In 

many synthesizers the filter’s “character” defines the sound of the synth. For this synthesizer I 

needed a low cost, simple to implement, two pole lowpass with a cutoff that can be controlled by 

the microcontroller. 

 This is a design challenge in many ways, as often a voltage or clock controllable filter is a 

complicated and expensive circuit. I elected to implement the MAX7490 switched capacitor 

building block. This IC has two identical filter stages that contain a clocked capacitor element to 

change their pole locations.  
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The majority of this design was obtained from the MAX7490 datasheet reference 

example section [14]. I implemented the mode 1 second order filter in a lowpass configuration. 

 
FIGURE 10: MAX7490 MODE 1 ARCHITECTURE [14] 

 
 

The mode 1 design equations from the same section provide the derived cutoff frequency, 

peak gain, and resonance/Q of the entire system. 

 
FIGURE 11: MAX7490 MODE 1 DESIGN EQUATIONS [14] 
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The first stage of the design sets R1 and R2 and R3 to a value of 100K to obtain a unity 

gain single pole lowpass with a Q-factor of 1. This is fed to the second lowpass stage. This stage 

is different as R3 and R2 are ganged together as a combination of a 100K potentiometer and two 

47K resistors. This allows the resonance of the second lowpass stage to be modified via RV2. As 

the variable resistor is adjusted from one extreme to the other, the ratio of R3/R2 is varied from 

147K/47K to 47K/147K varying the Q from 0.32 to 3.13. 

 
FIGURE 12: SECOND ORDER VARIABLE Q DCF USING MAX7490 IC 

 
Also of important note is that the cutoff of the whole filter block is controlled by the 

clock signal present on pin 9. As shown in the design equation, the cutoff is proportional to this 

clock by a ratio of 1/100. For example the cutoff would be set to 1kHz if the clock provided is 

100kHz. The benefit of this architecture is that no digital to analog conversion of a control 

voltage is required, only a clock signal 100x the desired cutoff.  

 The code block below sets up a PWM output peripheral using the MSP32S2 LEDC 

peripheral. Typically, LEDC is used to control the brightness of an LED or similar PWM 

controlled system. I leveraged this peripheral to generate a variable frequency clock signal at a 

50% duty cycle. This LEDC peripheral is initialized to a 50% duty which we never change. The 

clock output from this GPIO is connected directly to pin 9 of the MAX7490. 
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FIGURE 13: INITIALIZING THE LEDC PERIPHERAL TO GENERATE THE DCF CLK SIGNAL 

 
 To update the cutoff frequency, the LEDC register is first updated to load the last 

frequency that was requested. Then, a new desired cutoff is loaded into the “ledc_freq_hz” 

register to be updated on the next call. 

 
FIGURE 14: CHANGING THE DCF CLK FREQUENCY 

 
 
4.6  DIGITALLY CONTROLLED AMPLIFIER 

 The next large building block of any synthesizer is an automated gain stage called a DCA 

or VCA, both controllable amplifiers. Since the synthesizer’s parameters are all controlled by the 

ESP32S2 microcontroller, I opted to implement a three-wire serial bus controlled volume 

integrated circuit. The LM1971 was a good option as its price is relatively low, it requires very 

few external components, operates at a 5V analog rail (with 3.3V tolerant I/O), and has a “mute” 

mode in which the input and output are essentially isolated. 

  

  

ledc_channel_config_t ledc_channel_fltr_clk = { 
        .channel    = LEDC_CHANNEL_1, 
        .duty       = 0, 
        .gpio_num   = FLTR_CLK_PIN, 
        .speed_mode = LEDC_LOW_SPEED_MODE, 
        .hpoint     = 0, 
        .timer_sel  = LEDC_TIMER_2 
}; 
 

//push last val to pwm reg, do this first for timing reasons 
ledc_timer_config(&ledc_timer_fltr_clk); 
update_DCA(DCA_aten); 
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The final schematic design is obtained entirely from the typical application design in the 

datasheet [15]. The only difference is that in the implemented design the output is not buffered 

because it is driving an op amp in the final amplifier section not a low impedance line load 

directly. 

 
FIGURE 15: LM1971 RECOMMENDED APPLICATION [15] 

 
 

 
FIGURE 16: IMPLEMENTATION OF LM1971 VOLUME CONTROL IC 
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To control the LM1971 IC I implemented a simple “bit banged” 3 wire serial bus 

interface. First the I/O is initialized in an output mode and set to the default states of the bus. 

 
FIGURE 17: INITIALIZATION OF DCA 3-WIRE SERIAL I/O 

 
 The following code loops over the requested 2 bytes to be sent, masking each bit and 

clocking and latching it onto the bus. The first byte is a channel selection byte which is ignored 

by the LM1971 as it is a single channel device. The second byte sets the channel attenuation 

between 0dB (0X00) and 96dB (0X3F). 

 
FIGURE 18: IMPLEMENTATION OF 3-WIRE SERIAL FOR DCA 

  

    // 3 WIRE BUS FOR DISPLAY 
    gpio_reset_pin(DIS_DAT); 
    gpio_reset_pin(DIS_CLK); 
    gpio_reset_pin(DIS_LAT); 
    gpio_set_direction(DIS_DAT, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DIS_CLK, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DIS_LAT, GPIO_MODE_OUTPUT); 
    gpio_set_level(DIS_CLK, 0); 
    gpio_set_level(DIS_LAT, 0); 
 

//// UPDATES DCA OVER 3WIRE BUS //// 
void update_DCA(int volume){ 
    gpio_set_level(DCA_CLK, 0); //clk low 
    gpio_set_level(DCA_LAT, 0); //load low 
    uint16_t data_bytes = 0x0000 | volume; 
 
    for(int bit=0; bit<=15; bit++){ 
        gpio_set_level(DCA_CLK, 0); //falling edge clk line 
 
        //check if cur bit is high 
        if(((0x8000 >> bit) & data_bytes) > 0){gpio_set_level(DCA_DAT, 1);} 
        else{gpio_set_level(DCA_DAT, 0);} 
 
        gpio_set_level(DCA_CLK, 1);//rising edge clk line 
    } 
 
    gpio_set_level(DCA_LAT, 1); //latch high 
    gpio_set_level(DCA_DAT, 1); 
} 
 



 30 

4.7  LINE and HEADPHONE AMPLIFIER 
 
 The line and headphone amplifier sections are tasked with amplifying the final audio 

signal in the path and conditioning it to both a line level output and a headphone output while 

also allowing user volume control. The first stage amplifies the output of the DCA with an 

inverting amplifier setup of gain 4.7X. This amplified signal is then attenuated by the user 

volume control knob and coupled to the line output via a 10uF coupling capacitor. 

The second stage handles duplicating and amplifying the line level output to two suitable 

headphone output channels. This is accomplished by the OPA1688, a purpose built low voltage 

headphone amplifier OP AMP.  

 
FIGURE 19: OPA1688 RECOMMENDED HEADPHONE AMPLIFIER CIRCUIT [20] 

 

The OPA1688 is implemented differently than the recommended datasheet configuration 

[20]. The setup is modified to be used in single supply mode of 5V. Instead of driving the input 

with a balanced signal, the non-inverting input is tied to VREF (the 2.5 volt reference). The 

output is also coupled using two 100uF capacitors. The coupling capacitors ensure the output has 

no DC bias, lowering the drive power at idle and ensuring the headphones never experience a 

damaging DC bias. 
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FIGURE 20: LINE AND HEADPHONE AMPLIFIER CIRCUIT AS IMPLEMENTED 
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4.8  MIDI IMPLEMENTATION 

 The MIDI implementation is an important part of the synthesizer as it allows a MIDI 

keyboard or sequencer to control what notes are played as well as whether the filter or amplifier 

envelopes are triggered. The MIDI standard has been in place since 1983 and is well 

documented [3]. 

 The circuit below converts the midi current loop from the controlling device into a 3v3 

logic level signal the ESP32S2 can interpret. The midi signal is first passed through switch that 

allows the user to invert the polarity of the 1/8in midi jack. This jack is now included in the 

MIDI standard with a standardized pinout, but unfortunately many manufacturers already 

implemented 1/8 in TRS MIDI with a reverse polarity in many devices. The switch ensures that a 

user will be able to use this synth with a MIDI device of either polarity. 

The signal is then current limited with a 330 ohm resistor and used to drive the LED in 

the H11L1 Schmidt triggered optocoupler. A reverse polarity protection diode is also connected 

to shunt current when the polarity switch is in the wrong position for the incoming midi current 

loop. The output of the optoisolator is pulled up to logic 3.3V with a 10Kohm resistor then 

applied directly to pin 19 of the ESP32 to be read in as serial data. 

 
FIGURE 21: MIDI ISOLATION AND LEVEL CONVERSION 
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Because MIDI follows a standard serial format with a baud rate of 31,250, the ESP32S2’s 

serial UART can be setup to handle the receiving and buffering of the MIDI data directly without 

any software polling or loops. 

 
FIGURE 22: INITIALIZATION OF ESP32S2 UART FOR RECEIVING MIDI DATA 

 

  

//// UART DRIVER INIT FOR MIDI //// 
void midi_uart_init(void){ 
    /* Configure parameters of an UART driver, 
     * communication pins and install the driver */ 
    uart_config_t uart_config = { 
        .baud_rate =  ECHO_UART_BAUD_RATE, 
        .data_bits = UART_DATA_8_BITS, 
        .parity    = UART_PARITY_DISABLE, 
        .stop_bits = UART_STOP_BITS_1, 
        .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 
        .source_clk = UART_SCLK_APB, 
    }; 
    int intr_alloc_flags = 0; 
 
    #if CONFIG_UART_ISR_IN_IRAM 
    intr_alloc_flags = ESP_INTR_FLAG_IRAM; 
    #endif 
 
    ESP_ERROR_CHECK(uart_driver_install(ECHO_UART_PORT_NUM, BUF_SIZE * 2, 0, 0, 
NULL, intr_alloc_flags)); 
    ESP_ERROR_CHECK(uart_param_config(ECHO_UART_PORT_NUM, &uart_config)); 
    ESP_ERROR_CHECK(uart_set_pin(ECHO_UART_PORT_NUM, ECHO_TEST_TXD, 
ECHO_TEST_RXD, ECHO_TEST_RTS, ECHO_TEST_CTS)); 
} 
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The MIDI must be parsed into controls for the synth as well as pitch data. The next code 

snippet shows the runtime loop that reads available data from the UART, checks if it is an 

appropriate length, checks if it is a “note on” or “note off” command, and adds or removes notes 

from the notes structure. 

 
FIGURE 23: READING AND PARSING MIDI DATA FROM THE UART BUFFER 

 

  

// Read data from the MIDI UART and handle adding/removing notes 
        int len = uart_read_bytes(ECHO_UART_PORT_NUM, data, BUF_SIZE, 20 / 
portTICK_RATE_MS); 
        if(len >= 3){ 
            for(int byte_index = 0; byte_index <= len - 3; byte_index++){ 
 
                if((data[byte_index] & 0xF0) == 0x90){ 
                    if(data[byte_index + 2] == 0){ 
                        remove_note((int)data[byte_index + 1]); 
                    } 
                    else{ 
                        add_note((int)data[byte_index + 1]); 
                    } 
                } 
                else if((data[byte_index] & 0xF0) == 0x80){ 
                    remove_note((int)data[byte_index + 1]); 
                } 
            } 
        } 
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4.9  DISPLAY MULTIPLEXING 

 Instead of implementing an LCD or multicharacter screen, I choose the PSA08-115RWA 

16 segment LED display to show the waveform and synth state. The PSA08-115RWA contains 

no logic or LED drive circuitry and therefore requires external components to control it with the 

ESP32 [16].  

To drive the display, I implemented the TLC59283 LED drive IC. This IC allows the 

control of 16 common anode LED’s at a constant current set by a single external resistor [17]. 

This resistor was chosen to provide a minimum legible brightness to conserve current draw. The 

rest of the connections are identical to the application example in the datasheet. The current is 

sunk through the IC from each LED channel. The only interesting design decision here is that the 

LED common anode is driven from the unregulated supply to prevent any switching current 

variations from generating noise in the analog path. The TLC59283 is powered via the 3.3V 

logic net as it is controlled via 3.3V logic levels. 

 
FIGURE 24: CONNECTION OF TLC59283 AND PSA08-115RWA 
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The three-wire bus code is very similar to the code that controls the DCA. First the I/O is 

initialized. 

 
FIGURE 25: INITIALIZATION OF DISPLAY 3-WIRE SERIAL I/O 

 
Then the bus can be driven via the same “bit banged” three wire bus code. This presents a 

bit masked bit of the two bytes on the data line, toggles the clock, and latches the data in. 

 
FIGURE 26: IMPLEMENTATION OF 3-WIRE SERIAL FOR DISPLAY DRIVER 

 

    // 3 WIRE BUS FOR DISPLAY 
    gpio_reset_pin(DIS_DAT); 
    gpio_reset_pin(DIS_CLK); 
    gpio_reset_pin(DIS_LAT); 
    gpio_set_direction(DIS_DAT, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DIS_CLK, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DIS_LAT, GPIO_MODE_OUTPUT); 
    gpio_set_level(DIS_CLK, 0); 
    gpio_set_level(DIS_LAT, 0); 

//// UPDATES DISPLAY OVER 3WIRE BUS //// 
void update_display(uint16_t data_bytes){ 
 
    gpio_set_level(DIS_LAT, 1); //pulse latch 
    gpio_set_level(DIS_LAT, 0); 
 
    for(int bit=0; bit<=15; bit++){ 
        //check if cur bit is high 
        if(((0x8000 >> bit) & data_bytes) > 0){ 
            gpio_set_level(DIS_DAT, 1); 
        } 
        else{ 
            gpio_set_level(DIS_DAT, 0); 
        } 
 
        //pulse clk line 
        gpio_set_level(DIS_CLK, 1); 
        gpio_set_level(DIS_CLK, 0); 
    } 
 
    gpio_set_level(DIS_LAT, 1); //pulse latch 
    gpio_set_level(DIS_LAT, 0); 
    gpio_set_level(DIS_DAT, 0); 
} 
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4.10  USER INPUT 

 Because almost all of the synth’s parameters are controlled by the ESP32S2 

microcontroller, it is necessary for the user to provide an input that the ESP32S2 can read. The 

circuit is simply a filtered voltage divider that provides a voltage output between zero and 2.6 

volts. 

 The 2.6 volt maximum arises from a quirk using the ESP32S2’s internal ADC’s in which 

even at the highest attenuation mode, the 13bit value overflows past an input of 2.6 volts [18]. 

The filtering provided by the 0.1uf capacitor ensures that no high frequency noise on the 3V3 rail 

will be coupled into the analog voltage at the ADC pin. This stabilizes the reading significantly. 

 
FIGURE 27: USER INPUT POTENTIOMETERS AND FILTERING 

 
 The following code snipped shows the initialization of the ADC’s with the attenuation 

settings described previously. 

 
FIGURE 28: CONFIGURATION OF ESP32S2 ADC’s 

 
 Unfortunately, even with the capacitor filtering, the ADC readings still vary 10 or 15% 

due to noise. To stabilize the ADC reading, I implemented a multisampling system in which the 

ADC is polled a number of times to average the reading across a longer time span. The 

    // ADC CONFIG for KNOBS 
    adc1_config_width(ADC_WIDTH_BIT_13); 
    adc1_config_channel_atten(ADC1_CHANNEL_0,ADC_ATTEN_DB_11); 
    adc1_config_channel_atten(ADC1_CHANNEL_1,ADC_ATTEN_DB_11); 
    adc1_config_channel_atten(ADC1_CHANNEL_2,ADC_ATTEN_DB_11); 
    adc1_config_channel_atten(ADC1_CHANNEL_3,ADC_ATTEN_DB_11); 
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ADC_POS is an accumulation of these reads, to extract the KNOB_POS the ADC_POS value is 

divided by the number of reads. 

 
FIGURE 29: READING AND AVERAGING POTENTIOMETER ADC VALUES 

 
 The other user input that is required is the mode button. This is a simple circuit consisting 

of a momentary single pole NO switch that is pulled up to 3V3. When depressed, a falling edge 

is generated on the I/O pin of the ESP32S2. This falling edge is debounced and toggles a state 

flag that can be read by the other functions. 

 
FIGURE 30: MODE SELECTION BUTTON 

 

  

        //clear last vals 
        int ADC_POS[] = {0,0,0,0}; 
 
        //check knob positions 
        for (int i = 0; i < MULTISAMP; i++) { 
            ADC_POS[0] += adc1_get_raw(ADC1_CHANNEL_0);     
            ADC_POS[1] += adc1_get_raw(ADC1_CHANNEL_1); 
            ADC_POS[2] += adc1_get_raw(ADC1_CHANNEL_2); 
            ADC_POS[3] += adc1_get_raw(ADC1_CHANNEL_3); 
        } 
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SECTION 5 - FINAL DEVELOPMENT PLATFORM 

5.1  CONSTRUCTION 

 Initially, testing of each circuit was done on a breadboard. This allowed quick 

modification and troubleshooting of the circuits as well as for the circuit to be fully tested and 

verified as functional before the final schematics were completed and the circuit was moved to a 

more permanent perf board construction. 

 
FIGURE 31: INITIAL BREADBOARD TESTING 

 
 After the whole circuit was verified and minor modifications to the design noted in the 

final schematics, the circuit was moved to a perf board setup. The perf board allows components 

to be soldered into a semi-permanent development platform that is much more stable than the 

initial tests on breadboards. The perf board also made it easier to structurally mount 

potentiometers, connectors, and bulkier components like the LED display. 

 



 40 

 
FIGURE 32: FINAL PERF BOARD ASSEMBLY 

 
 The figures below show the wiring on the bottom of the perf board. Most connections can 

be made directly with the preconnected copper features that run along the rows. These can be cut 

with a small drill bit to separate them into smaller lengths. 20-gauge stranded wire was used 

where connections needed to be made between these strips. On the display board, a ribbon cable 

was split out to make the connections between the display and driver IC as the smaller gauge 

wire was perfect for the more dense connections. 

 
FIGURE 33: BOTTOM DETAIL OF FINAL PERF BOARD ASSEMBLY 
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5.2  SOFTWARE FLOW DIAGRAMS 

FIGURE 34: SOFTWARE FLOW DIAGRAM OF MAIN LOOP 
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FIGURE 35: SOFTWARE FLOW DIAGRAM OF OSCILLATOR AND DCA/DCF ISR’s  
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SECTION 6 – TESTING 

 The following chapter outline the testing and verification of the finalized circuitry 

assembled as the final development platform. 

6.1  POWER CONSUMPTION 

To verify that the synthesizer meets the power draw engineering specification of less than 

150mA (see table I) the device-under-test [DUT] was connected to a lab power supply though a 

mA resolution digital multimeter. The device was powered, and various waveform modes were 

toggled while measurements were taken. The DUT was also measured while notes were being 

played as well as while notes were not being played. 

 
FIGURE 36: BATTERY POWER DRAW TESTING 

 

 

  

Design Specification: <150mA nominal current draw 
Measured: 60mA and 74mA current draw 
DUT PASSES 
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6.2 LINE LEVEL OUTPUT 

 Verifying the synthesizer’s “line” level output consisted of measuring the voltage at the 

“line output” connector with the HP54645A Oscilloscope. The test was performed with a single 

note being played in “square wave” mode. 

 
FIGURE 37: MEASUREMENT OF LINE OUTPUT AMPLITUDE 

 

 

 Despite the DUT failing this test, the output was deemed acceptable as it is well above 

the standard “consumer” line level of 0.36 Vrms.  

Design Specification: +4dBu (1.228 Vrms) 
Measured: 1.225Vrms 
DUT FAILS 
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6.3 HEADPHONE DRIVE CAPABILITY 

 The synthesizer also provides the user with a “headphone” output. This output consists of 

identical left and right amplifier’s which are both driven from the “line” output signal. It is 

important for this output to provide the appropriate power into a headphone load. To test the 

output power, a dummy load was constructed to have a nominal resistance close to the 32ohm 

impedance specified in the design requirements.  

 
FIGURE 38: MEASUREMENT AND SETUP OF HEADPHONE “DUMMY LOAD” 
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The left channel was connected to the resistor load and a middle C (262Hz) was played in 

sine wave mode. The voltage potential across the load was measured with the HP54645A 

Oscilloscope and the RMS voltage noted. 

 
FIGURE 39: MEASUREMENT OF HEADPHONE POWER VIA LOAD VOLTAGE 
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Design Specification: 10-20mW power per channel into 32ohm nominal load 
Measured: 15.7mW 
DUT PASSES 
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6.4 MIDI LATENCY 

 As the synthesizer is controlled via MIDI note data, it is important to characterize the 

latency between the receiving of a MIDI command and the production of the requested audio at 

the output. Channel-1 of the HP54645A Oscilloscope was used to probe the serial data at the 

Schmidt triggered output of the optoisolator. Channel-2 was used to probe the output audio 

waveform at the “line” output. 

 
FIGURE 40: SETUP FOR MEASURING MIDI INPUT AND AUDIO OUTPUT 
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The horizontal markers were used to find the delta time between the end of the MIDI 

packet and the start of the output waveform. 17.2ms was recorded as the latency. 

 
FIGURE 41: MEASUREMENT OF MIDI TO AUDIO LATENCY 

 

 

  

Design Specification: MIDI “note on” command to audio output latency less than 100ms 
Measured: 17.2ms 
DUT PASSES 
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6.5 SIGNAL TO NOISE RATIO 

 To measure the signal-to-noise-ratio [SNR] of the synthesizer, voltage measurements of 

the “headphone” output were made with a note being played and without. 

 
FIGURE 42: MEASUREMENT OF NOTE ON AND NOTE OFF VOLTAGE AMPLITUDE 

 
 The signal to noise ratio was then calculated as a ratio between these measurements and 

converted to log voltage. 

𝑉"#$%	#"	 = 	872.4	𝑚𝑉𝑟𝑚𝑠 

𝑉"#$%	#''	 = 	17.25	𝑚𝑉𝑟𝑚𝑠 

𝑆𝑁𝑅 = 	10	𝑙𝑜𝑔 G
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10	𝑙𝑜𝑔 G
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 50 

Unfortunately, this measurement is due to the noise floor of the HP54645A Oscilloscope 

and not the noise floor of the DUT. Measuring the noise of the testing setup directly by 

connecting the probe to the ground net of the DUT showed the presence of 20.5mVrms of noise. 

This indicates that the Oscilloscope does not have a low enough internal noise floor to measure 

the signal to noise ratio of the DUT. Due to Covid 19 protocols I was unable to access an audio 

signal analyzer to obtain a valid signal to noise ratio. 

 
FIGURE 43: HP54645A OSCILLOSCOPE NOISE WITH INPUT GROUNDED 

 

 

 

  

Design Specification: Noise at headphone output at least 60dB less than “note on” amplitude 
Measured: NO MEASUREMENT 
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SECTION 7 - CONCLUSIONS and FUTURE WORK 

 Completing this senior project over the last three quarters has widened my familiarity 

with design in multiple ways. Working through the project from a framework of designing for a 

customer helped to structure and focus my design before I even specified the electronics. 

Without these steps I do not believe the final design would be as cost effective and efficient as it 

is in final form. Looking at the entire lifecycle from construction to end of life considerations 

allowed a clearer view of the project’s impact on its user and the environment.  

As a learning experience, this project presented a plethora of electrical and computer 

engineering challenge. On a more technical level, it provided an opportunity to become more 

familiar with low voltage analog electronics engineering as well as design for cost and 

manufacturing. Designing a device with analog and digital systems presented real world hybrid 

electronic design problems. Building a consumer synthesizer required simultaneous 

consideration of noise, sensitive analog systems, power draw requirements, and an overarching 

cost issues. 

Moving forward with this project would see the polishing of the product into a sale ready 

unit. The architecture and software are essentially complete, so PCB layout and component 

sourcing would be the next step. If the year was not riddled with component supply and PCB 

manufacturing issues from the COVID-19 pandemic, a more final version of the synthesizer 

would have likely been possible. It also feels pertinent to mention that in the future the Electrical 

Engineering department would benefit from acquiring an audio analyzer for these types of 

projects. I was unable to test the noise floor nor obtain accurate spectrum analysis of my 

synthesizers output due to a lack of any audio range lab equipment. 
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SECTION 8 – AUDIO DEMONSTRATION 

 This project is at its base an instrument. It would be a loss if this report did not include an 

example of the synthesizer doing what it was designed and constricted to do, play music! The 

permanent link below leads to an uploaded recording of the synthesizer reciting a MIDI 

transcription of Claud Debussy’s Clair de Lune. The MIDI file was sent to the synthesizer via a 

USB to MIDI interface. Other than the addition of outboard reverb, all the audio in this 

demonstration was generated in real time by the hybrid audio synthesizer.  

https://gymprofessor.bandcamp.com/track/senior-project-demo-clair-de-lune 
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APPENDIX A.      ABET SENIOR ANALYSIS 
 

Project Title: Low Cost Hybrid Music Synthesizer 

Student’s Name: Spencer Drewry 

Student’s Signature: 

1. Summary of Functional Requirements  

The ‘Low Cost Hybrid Music Synthesizer’ is an inexpensive and versitile music 
synthesizer module. Building on a history of affordable pro audio equipment, the project will 
provide a flexible and easy to use interface to a powerful hybrid paraphonic synthesizer in a low 
cost, portable formfactor. The device provides standard line level, headphone, and MIDI 
connectivity and an easy to understand layout and interface.  

2. Primary Constraints  

This project has posed several challenges so far. Initially, I ran into the challenge of 
technically defining a consumer musical instrument effectively. Price is a limiting factor as the 
end user is in the consumer electronics market and expects devices to be cheap. This meant that 
the design has needed to be economically efficient with the way it satisfies its design 
requirements. Is there a simpler way to provide the same experience for the user for less 
cost/parts? 

3. Economic 

Gantt Chart and Price/Labor estimates are included in appendix B. 

The economic impacts of the project are small in comparison to other consumer or 
industrial electronics projects. The quantity I plan to produce is less than 1000 units, the methods 
of which the device will be produced are standard, and the economic profits less than $20,000 a 
year. Regardless, attention must be taken to the companies and people providing both the 
components, PCB assembly, and production abilities. Their economic, human, and 
environmental impacts are directly driven, at least partially, by employing their services to 
manufacture this project. 

As mentioned, the project has a relatively small impact as the reach is constrained 
effectively. If the device were to be produced it would be produced by myself solely and sold in 
relatively small quantities. Following the previously calculated profit estimations, it is clear that 
the net income the device would generate is modest even if collected a single person. 

The device is purely artistic in nature, provides no real use beyond it’s value to an artist. 
Therefore, the economic impact of its price, production, etc, is minimal on the end consumer. 
The benefits are defined by the end user. This also means that the projects value is accrued most 
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entirely in the design phase. The devices functionality and design determine its value as a 
musical instrument. Not necessarily the device solving a problem. 

With regards to timing, the device is entering a relatively untapped market, and thusly 
should be expedited. I would expect that as a real consumer product it would likely be well 
within its window if released before the end of 2021. This feels like a viable timeline for the 
project as the manufacturing takes advantage of already well established and well-defined 
processes. One the design is completed; devices could be ready for sale within a month. 

After the project ends, I hope the project not only satisfies the ABET requirements of our 
senior project, but the device is completed enough to prove my merit as both a practical and 
artistically minded electrical engineer. I hope to use the project to “sell” myself to companies 
that see merit in the creative side of circuits and electrical engineering. 

4. If manufactured on a commercial basis: 

The manufacturing of the device on a commercial basis is directly linked to PCB 
manufacturing services and lead times. As the device is in essence a raw PCB, other 
manufacturing processes for an enclosure or other parts are not required. This leads to the only 
manufacturing bottleneck being associated with the board house and availability of components. 

 At relatively low quantities (100 or less), the PCB manufacturer should have no problem 
supplying the product at standard lead times. The components are all standard and supplied in 
large quantities, and the PCB’s can be panelized and produced at a high rate. 

Estimated Number of 
Devices Sold (Annually) 

Estimated Manufacturing 
Cost     (Per Device) 

Estimated Purchase Price Estimated Profit Per Year 

500 $60.00 $100.00 $20,000 

 If the device were to reach sales above the manufacturing ability of one board house or 
IC supplier, it would be very simple to employ other companies to supply PCB’s in parallel. In 
this case, quality control may become an issue if different standards are followed by each 
manufacturer. This could be mitigated by ensuring standard PCB substrates and solder masks are 
used by each company. 

5. Environmental 

The environmental impact of the project is that of a consumer electronic device. The 
components, PCB, and manufacturing all carry environmental issues. The standard electronic 
components require the mining of heavy metals including lead, cadmium and nickel and use 
significant amounts of both water and energy in their production [1]. The PCB manufacturing 
and assembly process also uses nonrenewable resources and consumes both water and energy. 
There are also harsh chemicals and industrial waste associated with PCB manufacturing. Etching 
PCB substrates requires caustic compounds like copper sulfate and sulfuric acid [1]. 

The device also requires batteries to function. If these cells are non-rechargeable they will 
add to the waste generated by the devices life. One method of reducing this waste flow would be 
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to ship the device with rechargeable cells and provide a way of recharging aforementioned cells 
with the device.  

Initial low quantity manufacturing will likely be completed with overseas board houses as 
their turnaround times and cost points are significantly better than US board houses. Once a 
production run is reached, the device will be manufactured in the United States as large-scale 
production overseas leverages relaxed environmental standards. Despite the increased cost 
associated with local manufacturing, an increased production quantity should decrease the per 
unit cost to a price similar to low quantity production overseas. 

6. Manufacturability 

The main challenge for the manufacturing is related to the devices lack of enclosure. To 
keep the price of the device low, and the use of material low as well, the PCB will be the main 
frame, circuit, and interface of the device. This means that the PCB must carry all the physical 
load as well as all electronic functionality. To accomplish this, special measures must be taken in 
layout and design. 

It is also important to ensure the components, processes, and final product are lead and 
heavy metal free. The entire process must be ROHS compliant as the end user will be in physical 
contact with the PCB [2]. 

7. Sustainability  

The device poses one main issue when it comes to sustainability. Because it is a 
consumer device, and is built to a price point, it is important to consider the inevitably short 
lifecycle of the device. The components and manufacturing techniques sacrifice some component 
and process quality for a decrease in per device cost. The device uses preexisting user electronic 
pathways and resources in its manufacturing and distribution, and therefore buys into the 
sustainability issues that already plague user electronics. The device is environmentally costly to 
manufacture, and environmentally costly to dispose of. 

Some of these impacts could be mitigated by redesigning the device and the process in 
which it is manufactured. For example, the lifetime of the product could be increased by 
investing in higher quality components. Especially with buttons, potentiometers, and connectors 
an increase in quality would lead to a longer device lifetime. 

Unfortunately, as mentioned before it is imperative that the project is priced 
competitively, or it does not fit in the market. Upgrading some components may be viable, but a 
complete redesign to include all of the highest quality components would surely push the devices 
cost far above the market price point. 

 

8. Ethical  
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Because the device is of a consumer, artistic, nature the ethical implications of its use are 
relatively unproblematic. The use of the device is entirely determined by the user. 

The main ethical framework I believe impacts this project is captured in the first IEEE ethics 
statement: 

1. To hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design and 
sustainable development practices, to protect the privacy of others, and to disclose promptly factors that might 

endanger the public or the environment 
 

It’s paramount that the device is safe to the user without and enclosure. As mentioned 
previously, the PCB must be safe physically for the user to be in contact with. All the 
components must be ROHS compliant and the PCB must be free of any materials that would be 
unsafe to the end user. It is my responsibility as the designer to ensure that the manufacturing of 
the product adheres to these standards. 

 
IEEE ethical framework 1 also outlines the importance of minimizing the ecological 

impact of the device. It is my responsibility as the designer to ensure that the components and 
PCB processes used in producing the product adhere to modern standards. The components must 
be ethically sourced, and the PCB manufacturing process must be as responsible or more 
responsible ecologically. 
 
The second IEEE ethics statement I found connected with the project is number five: 
 
5. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, to be honest and 

realistic in stating claims or estimates based on available data, and to credit properly the contributions of others 
 

It is very common in audio devices to see the uncredited use or adaptation of historic 
circuits. Following the IEEE ethics code, I am working towards the goal of crediting effectively 
all the inspirations of the final device. Despite the commonplace nature of mimicking and 
cloning filter and amplifier circuits, I pledge to appropriately modify and attribute any designs I 
take inspiration from.   

9. Health and Safety 

The health and safety of the manufacturers is ensured by following standard practice with 
design and by using trustworthy and transparent manufactures with vetted policy for their 
workers and processes. 

As mentioned previously, the device MUST be safe for the end user. Electrically, no 
voltages are present above 6Vdc, and therefore do not create a safety risk for the end user [3]. 
Any misuse of the device is unlikely to lead to harm as it is artistic in nature and a failure does 
not lead to a dangerous situation. 

 

10. Social and Political 
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The social and political impacts of the project once again mirror those of the consumer 
electronics market. The manufacturing of the PCB’s, integrated circuits, and other electronic 
components impacts the economies and structures built into the overseas electronics market. It is 
extremely important to ensure that educated choices in manufacturers and suppliers are made to 
ensure the indirect exploitation of workers or communities is avoided. 

11. Development  

The development of this project has been a learning experience for me as an engineer. I 
have implemented many new tools and processes throughout the design process so far. Managing 
a project as a system has improved the scope of my planning skills. Managing design 
requirements, specifications, and cost and time estimations has allowed me to be much more 
confident in the scope and process required to complete a project.  

I think one of the most standout design techniques I have independently learned has been 
the use of the PCB as the entire structure of the product. This process allows a significant cut in 
manufacturing cost as no extra tooling, parts, or labor is required in the assembly of the device. 
The method is still relatively small in the consumer market due to some pitfalls [4]. The use of 
PCB manufacturing processes to create non formal designs, often mechanical or purely aesthetic 
parts is a relatively unexplored field that I would like to include in the project. 
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APPENDIX B.            PROJECT PLANNING 
 
 
 
ANALYSIS 
 
 The timeline of this project relies on viable iteration of the circuit design. As the system 

is a combination of analog and digital signals, or mixed signal, meeting noise and stability 

requirements will require careful physical and electrical design that will likely require a 

significant iteration. This is reflected in both the Gantt chart (figure 3) and the cost estimates 

(table 4).  

 The Gantt chart assumes the use of 2-week turnaround PCB manufacturing as well as 

worst case project layout estimates. It is also important to mention that this project does have a 

significant amount of embedded programming required. As there is a large codebase for the 

proposed microcontroller, the ESP32, the programming timeline can be shortened to a 

manageable timeline for a single year development [11]. 

The project cost is based on estimated component, assembly, and manufacturing costs. I 

determined the manufacturing costs assuming the use of PCBway’s fast turnaround PCB and 

turnkey population services [12]. This also assumes that the most expensive components include 

the microcontroller, DAC’s, and OP amps. 
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GANTT CHART 
 

 
FIGURE 44: PROJECT TIMELINE GANTT CHART 
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COST ESTIMATES 
 

TABLE IV 
COST ESTIMATES 

Task Best 
Case 
(hrs) 

Likely 
Case 
(hrs) 

Worst 
Case 
(hrs)  

Justification Hours Approx. 
Cost 

Initial Design and Schematic 20 25 50 
 

Analog design pretty simple after block 
diagram etc, initial simulations are done 28.33 $567 

Simulation and Revision 30 40 100 
 

This takes more time, revising and doing 
sensitivity analysis on initial circuit 48.33 $967 

Prototyping 
20 50 100 

 

This could go fast if the initial design 
works as intended, or could require a 
redesign of some portion 53.33 $1,067 

PCB Layout 

50 80 150 

 

I have quite a bit of layout practice, but 
this will take a long time due to the PCB 
being integral to the devices structure as 
well as mixed signal routing 86.67 $1,733 

Assembly/Testing 
50 60 100 

 

This once again could be a few days or a 
few weeks of work depending on what 
issues arise 65.00 $1,300 

 
   

 
 

  

 
   

 
 

Total: $5,633 

 
   

 
 

  
Item Best 

Case 
(USD) 

Likely 
Case 
(USD) 

Worst 
Case 
(USD) 

   
Approx. 
Cost 

Initial Components for 
Prototyping 50 80 150 

 

This is determined from adding the more 
expensive component costs as well as a 
dev kits for esp32  $113 

PCB 
Manufacturing/Population 
V1 

40 60 200 
 

Standard low quantity order from PCB 
way 

 $100 

PCB 
Manufacturing/Population 
V2 

40 60 200 
 

Standard low quantity order from PCB 
way 

 $100 

PCB Components for 
Turnkey 100 225 300 

 

Estimated component cost for 4 
populated PCB's assuming digikey and 
standard passive component prices  $292 

        

      Total: $605 
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APPENDIX C.                   SCHEMATICS 
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APPENDIX D.                 PARTS LISTING 
 
 
 

Manufacturer Part 
Number Manufacturer Digi-Key Part Number Quantity 

Unit 
Price 

Extended 
Price Description 

PTV09A-4020U-B104 Bourns Inc. PTV09A-4020U-B104-ND 6 0.83 $4.98  
POT 100K OHM 1/20W CARBON 
LINEAR 

H11L1S(TA) Everlight Electronics Co Ltd 1080-1201-1-ND 1 0.76 $0.76  
OPTOISO 5KV OPEN COLLECTOR 
6SMD 

TLC59283DBQ Texas Instruments TLC59283DBQ-ND 1 0.76 $0.76  IC LED DRIVER LINEAR 45MA 24SSOP 

PSA08-11SRWA Kingbright 754-1675-5-ND 1 3.38 $3.38  DISPLAY 16SEG 0.8" SGL RED 18DIP 

LM1971MX/NOPB Texas Instruments LM1971MX/NOPBCT-ND 1 2.06 $2.06  IC VOLUME CONTROL 8SOIC 

OPA1688IDR Texas Instruments 296-47272-1-ND 1 1.65 $1.65  IC OPAMP GP 2 CIRCUIT 8SOIC 

MAX7490EEE+ Maxim Integrated MAX7490EEE+-ND 1 7.88 $7.88  IC FILTER 40KHZ SWITCHED 16QSOP 

TL6300AF260QP E-Switch EG6117-ND 1 0.34 $0.34  
TACT SWITCH THRU HOLE 12MM X 
12M 

B32-1300 Omron Electronics Inc-EMC Div SW454-ND 1 0.32 $0.32  CAP TACTILE SQUARE IVORY 

ESP32-S2-WROVER Espressif Systems 
1965-ESP32-S2-WROVERCT-
ND 1 2.4 $2.40  

RX TXRX MOD WIFI SURFACE 
MOUNT 

MCP6L02T-E/SN Microchip Technology MCP6L02T-E/SNCT-ND 3 0.31 $0.93  IC OPAMP GP 2 CIRCUIT 8SOIC 

CL10A105KA8NNNC Samsung Electro-Mechanics 1276-1102-1-ND 10 0.036 $0.36  CAP CER 1UF 25V X5R 0603 

RR0816P-104-D Susumu RR08P100KDCT-ND 25 0.085 $2.12  
RES SMD 100K OHM 0.5% 1/16W 
0603 

CL32A107MPVNNNE Samsung Electro-Mechanics 1276-3364-1-ND 2 1.19 $2.38  CAP CER 100UF 10V X5R 1210 

SJ1-3533 CUI Devices CP1-3533-ND 3 1.6 $4.80  CONN JACK STEREO 3.5MM R/A 

LM2623AMM/NOPB Texas Instruments LM2623AMM/NOPBCT-ND 1 1.69 $1.69  IC REG BOOST ADJ 2.2A 8VSSOP 

2460 Keystone Electronics 36-2460-ND 2 1.24 $2.48  BATTERY HOLDER AA PC PIN 

MCP1703-3302E/DB Microchip Technology MCP1703-3302E/DB-ND 1 0.65 $0.65  IC REG LIN 3.3V 250MA SOT223-3 

MCP1703T-5002E/DB Microchip Technology MCP1703T-5002E/DBCT-ND 1 0.65 $0.65  IC REG LINEAR 5V 250MA SOT223-3 

JS202011JAQN C&K CKN10722CT-ND 1 0.58 $0.58  SWITCH SLIDE DPDT 300MA 6V 

NR4018T4R7M Taiyo Yuden 587-1671-1-ND 1 0.41 $0.41  FIXED IND 4.7UH 1.2A 108 MOHM 

FSMSM 
TE Connectivity ALCOSWITCH 
Switches 450-1140-ND 1 0.28 $0.28  SWITCH TACTILE SPST-NO 0.05A 24V 

SD0805S020S1R0 AVX Corporation 478-7800-1-ND 1 0.38 $0.38  DIODE SCHOTTKY 20V 1A 0805 

SD0805S020S1R0 AVX Corporation 478-7800-1-ND 1 0.38 $0.38  DIODE SCHOTTKY 20V 1A 0805 

 
FINAL PER UNIT PART COST: $42.61 (at low order volume) 
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APPENDIX E.     FULL SOFTWARE LISTING 
 
 
#include <stddef.h> 
#include <math.h> 
#include <driver/adc.h> 
#include "freertos/FreeRTOS.h" 
#include "freertos/task.h" 
#include "esp_intr_alloc.h" 
#include "esp_attr.h" 
#include "driver/timer.h" 
#include "driver/gpio.h" 
#include "driver/ledc.h" 
#include "esp_err.h" 
#include "driver/sigmadelta.h" 
#include "driver/uart.h" 
 
// IO for waveform mode button 
#define MODE_BUTTON 17 
 
// UART for midi 
#define ECHO_TEST_TXD 19 
#define ECHO_TEST_RXD 18 
#define ECHO_TEST_RTS UART_PIN_NO_CHANGE 
#define ECHO_TEST_CTS UART_PIN_NO_CHANGE 
 
#define ECHO_UART_PORT_NUM      UART_NUM_1 
#define ECHO_UART_BAUD_RATE     31250 
 
#define BUF_SIZE 128 
 
#define PI 3.14159265 
#define TIMER_PIN_1 5   //pin for timing isr duration 
#define TIMER_PIN_2 6   //pin for timing isr duration 
 
#define DCA_DAT 42      //pins for dca 3wire interface 
#define DCA_CLK 41 
#define DCA_LAT 40 
 
#define DIS_DAT 6 
#define DIS_CLK 7 
#define DIS_LAT 8 
 
#define FLTR_CLK_PIN 20 //clock output for DCF 
 
#define TMR_TICK_PER_US 0.25    //calulate and place the TMR tick duration in us here (required 
for acurate smple timing) 
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#define SAMPLE_PER_US 50        //sample rate period (sets the sample rate when timer reg setup 
happens) 
 
#define MAX_ACTIVE_NOTES 10     //max notes before rolover (this must be set to not write over 
DAC ISR period) 
 
#define MULTISAMP 50 
 
// note struct to easily manage polyphony  
struct note { 
    int note_active;            //note on flag 
    int samples_played;         //samples played of note, used to calc wavetable position 
accurately without freq error 
    float samples_per_cycle;    //samples per cycle, used to determine wavetabel position 
accurately 
    int current_sample_index;   //sample index 
}; 
static struct note active_notes[MAX_ACTIVE_NOTES];  //global array for note structs to manage 
polyphony 
static int num_act_notes = 0;                       //counter to manage number of active notes 
 
static float midi_freq_lookup[128]; //lookup table for decoding midi vals to float freq 
(populated by build_midi_lookup) 
 
//ASR ENVELOPE CALIBRATION STUFF 
#define FILTER_BIAS 2000 
#define AMP_BIAS 5 
 
//// GLOBAL VARS FOR WAVETABLE AND SYNTH SETTINGS //// 
static int ENV_counter = 0; 
static int KNOB_POS[4] = {0}; 
 
int cur_wavetable = 0; 
 
/// GLOBAL LOOKUP TABLES -- WAVETABLE /// 
#define WAVETABLE_SIZE 100  //number of samples per cycle in wavetable (independant of output 
freq) 
static uint8_t active_wave_table[WAVETABLE_SIZE]; 
 
static int DCA_aten = 0x3F; //global DCA attenuation 
 
static intr_handle_t s_timer_handle;    //inherit the s timer struct for our intrs 
 
//// DISPLAY TABLE //// 
static uint16_t disp_patts[] = { 0x82B6, 0x4900, 0x2133, 0x8844, 0xFF00}; 
 
// config the clock devision and routing that generates ticks for the osc and filter ISR timers 
timer_config_t timer_config = { 
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        .alarm_en = true, 
        .counter_en = false, 
        .intr_type = TIMER_INTR_LEVEL, 
        .counter_dir = TIMER_COUNT_UP, 
        .auto_reload = true, 
        .divider = 20   /* .025us per tick */ 
    }; 
 
ledc_channel_config_t ledc_channel_fltr_clk = { 
        .channel    = LEDC_CHANNEL_1, 
        .duty       = 0, 
        .gpio_num   = FLTR_CLK_PIN, 
        .speed_mode = LEDC_LOW_SPEED_MODE, 
        .hpoint     = 0, 
        .timer_sel  = LEDC_TIMER_2 
}; 
 
ledc_timer_config_t ledc_timer_fltr_clk = { 
        .duty_resolution = LEDC_TIMER_1_BIT, // resolution of PWM duty 
        .freq_hz = 200000,                      // frequency of PWM signal 
        .speed_mode = LEDC_LOW_SPEED_MODE,    // timer mode 
        .timer_num = LEDC_TIMER_2,            // timer index 
        .clk_cfg = LEDC_AUTO_CLK,             // Auto select the source clock 
}; 
 
//// UPDATES DCA OVER 3WIRE BUS //// 
void update_DCA(int volume){ 
    gpio_set_level(DCA_CLK, 0); //clk low 
    gpio_set_level(DCA_LAT, 0); //load low 
    uint16_t data_bytes = 0x0000 | volume; 
 
    for(int bit=0; bit<=15; bit++){ 
        gpio_set_level(DCA_CLK, 0); //falling edge clk line 
 
        //check if cur bit is high 
        if(((0x8000 >> bit) & data_bytes) > 0){gpio_set_level(DCA_DAT, 1);} 
        else{gpio_set_level(DCA_DAT, 0);} 
 
        gpio_set_level(DCA_CLK, 1);//rising edge clk line 
    } 
 
    gpio_set_level(DCA_LAT, 1); //latch high 
    gpio_set_level(DCA_DAT, 1); 
} 
 
//// UPDATES DISPLAY OVER 3WIRE BUS //// 
void update_display(uint16_t data_bytes){ 
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    gpio_set_level(DIS_LAT, 1); //pulse latch 
    gpio_set_level(DIS_LAT, 0); 
 
    for(int bit=0; bit<=15; bit++){ 
        //check if cur bit is high 
        if(((0x8000 >> bit) & data_bytes) > 0){ 
            gpio_set_level(DIS_DAT, 1); 
        } 
        else{ 
            gpio_set_level(DIS_DAT, 0); 
        } 
 
        //pulse clk line 
        gpio_set_level(DIS_CLK, 1); 
        gpio_set_level(DIS_CLK, 0); 
    } 
 
    gpio_set_level(DIS_LAT, 1); //pulse latch 
    gpio_set_level(DIS_LAT, 0); 
    gpio_set_level(DIS_DAT, 0); 
} 
 
//// SIGMA DELTA DRIVER INIT FOR OSC //// 
static void sigmadelta_init(void) 
{ 
    sigmadelta_config_t sigmadelta_cfg = { 
        .channel = SIGMADELTA_CHANNEL_0, 
        .sigmadelta_prescale = 1, 
        .sigmadelta_duty = 0, 
        .sigmadelta_gpio = GPIO_NUM_21, 
    }; 
    sigmadelta_config(&sigmadelta_cfg); 
} 
 
//// UART DRIVER INIT FOR MIDI //// 
void midi_uart_init(void){ 
    /* Configure parameters of an UART driver, 
     * communication pins and install the driver */ 
    uart_config_t uart_config = { 
        .baud_rate =  ECHO_UART_BAUD_RATE, 
        .data_bits = UART_DATA_8_BITS, 
        .parity    = UART_PARITY_DISABLE, 
        .stop_bits = UART_STOP_BITS_1, 
        .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 
        .source_clk = UART_SCLK_APB, 
    }; 
    int intr_alloc_flags = 0; 
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    #if CONFIG_UART_ISR_IN_IRAM 
    intr_alloc_flags = ESP_INTR_FLAG_IRAM; 
    #endif 
 
    ESP_ERROR_CHECK(uart_driver_install(ECHO_UART_PORT_NUM, BUF_SIZE * 2, 0, 0, NULL, 
intr_alloc_flags)); 
    ESP_ERROR_CHECK(uart_param_config(ECHO_UART_PORT_NUM, &uart_config)); 
    ESP_ERROR_CHECK(uart_set_pin(ECHO_UART_PORT_NUM, ECHO_TEST_TXD, ECHO_TEST_RXD, ECHO_TEST_RTS, 
ECHO_TEST_CTS)); 
} 
 
//// INITIALIZE GPIO //// 
void init_io(void){ 
    //TIMING PINS 
    gpio_reset_pin(TIMER_PIN_1); 
    gpio_set_direction(TIMER_PIN_1, GPIO_MODE_OUTPUT); 
 
    gpio_reset_pin(TIMER_PIN_2); 
    gpio_set_direction(TIMER_PIN_2, GPIO_MODE_OUTPUT); 
 
    // 3 WIRE BUS FOR DCA 
    gpio_reset_pin(DCA_DAT); 
    gpio_reset_pin(DCA_CLK); 
    gpio_reset_pin(DCA_LAT); 
    gpio_set_direction(DCA_DAT, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DCA_CLK, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DCA_LAT, GPIO_MODE_OUTPUT); 
    gpio_set_level(DCA_CLK, 1); //init clk high 
    gpio_set_level(DCA_LAT, 1); //init lat high 
 
    // 3 WIRE BUS FOR DISPLAY 
    gpio_reset_pin(DIS_DAT); 
    gpio_reset_pin(DIS_CLK); 
    gpio_reset_pin(DIS_LAT); 
    gpio_set_direction(DIS_DAT, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DIS_CLK, GPIO_MODE_OUTPUT); 
    gpio_set_direction(DIS_LAT, GPIO_MODE_OUTPUT); 
    gpio_set_level(DIS_CLK, 0); 
    gpio_set_level(DIS_LAT, 0); 
 
    // GPIO for MODE BUTTON 
    gpio_reset_pin(MODE_BUTTON); 
    gpio_set_direction(MODE_BUTTON, GPIO_MODE_INPUT); 
 
    // ADC CONFIG for KNOBS 
    adc1_config_width(ADC_WIDTH_BIT_13); 
    adc1_config_channel_atten(ADC1_CHANNEL_0,ADC_ATTEN_DB_11); 
    adc1_config_channel_atten(ADC1_CHANNEL_1,ADC_ATTEN_DB_11); 
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    adc1_config_channel_atten(ADC1_CHANNEL_2,ADC_ATTEN_DB_11); 
    adc1_config_channel_atten(ADC1_CHANNEL_3,ADC_ATTEN_DB_11); 
     
} 
 
//// OSCILATOR SAMPLE UPDATE ISR //// 
static void osc_timer_isr(void* arg){ 
    gpio_set_level(TIMER_PIN_1, 1); //set the timing output high 
    //clear isr 
    TIMERG0.int_clr.t0 = 1; 
    TIMERG0.hw_timer[0].config.alarm_en = 1; 
 
    static int8_t current_sample = 0; 
 
    sigmadelta_set_duty(SIGMADELTA_CHANNEL_0, current_sample); 
 
    if(num_act_notes > 0){ 
        int sample_value_sum = 0; 
        int i; 
        for ( i = 0; i < MAX_ACTIVE_NOTES; i++ ){ 
            if(active_notes[i].note_active == 1){ //if the note is set as active 
                float pos = active_notes[i].samples_played/active_notes[i].samples_per_cycle; 
                sample_value_sum += active_wave_table[(int)(WAVETABLE_SIZE * (pos - (int)pos))]; 
                active_notes[i].samples_played++; 
            } 
        } 
        current_sample = (sample_value_sum/num_act_notes)-127; 
    } 
    else{ 
        current_sample = 0; 
    } 
    gpio_set_level(TIMER_PIN_1, 0); //set the timing output low 
} 
 
//// FILTER SAMPLE UPDATE ISR //// 
static void fltr_timer_isr(void* arg){ 
    gpio_set_level(TIMER_PIN_2, 1); //set the timing output high 
    TIMERG0.int_clr.t1 = 1; //clear ISR 
    TIMERG0.hw_timer[1].config.alarm_en = 1; 
 
    //push last val to pwm reg, do this first for timing reasons 
    ledc_timer_config(&ledc_timer_fltr_clk); 
    update_DCA(DCA_aten); 
 
    //increment the env count before calculating the next vals 
    ENV_counter++; 
 
    ledc_timer_fltr_clk.freq_hz = ((KNOB_POS[0] * KNOB_POS[0]) / 32) + FILTER_BIAS; 
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    // if(ENV_counter <= fltr_ENV[0]){ 
    //     ledc_timer_fltr_clk.freq_hz = 
100*(((FILTER_RANGE*ENV_counter*ENV_counter)/(fltr_ENV[0]*fltr_ENV[0]))+FILTER_BIAS); 
    // } 
    // else if(ENV_counter < (fltr_ENV[0]+fltr_ENV[1])){ 
    //     ledc_timer_fltr_clk.freq_hz = 
100*(((FILTER_RANGE/(fltr_ENV[1]*fltr_ENV[1]))*(ENV_counter-
(fltr_ENV[0]+fltr_ENV[1]))*(ENV_counter-(fltr_ENV[0]+fltr_ENV[1])))+FILTER_BIAS); 
    // } 
 
    // //calculate the new amp value from asr settings 
    // if(ENV_counter <= amp_ENV[0]){ 
    //     DCA_aten = (63 - ((63 * ENV_counter) / amp_ENV[0])) + AMP_BIAS; 
    // } 
    // else if(ENV_counter < (amp_ENV[0]+amp_ENV[1])){ 
    //     DCA_aten = ((63 * (ENV_counter - amp_ENV[0])) / amp_ENV[1]) + AMP_BIAS; 
    // } 
 
    gpio_set_level(TIMER_PIN_2, 0); //set the timing output low 
} 
 
//// CONFIGS THE LEDC PWM OUTPUTS //// 
void init_ledc_pwm(){ 
    // config the LEDC PWM for filt 
    ledc_timer_config(&ledc_timer_fltr_clk); 
    ledc_channel_config(&ledc_channel_fltr_clk); 
    ledc_set_duty(ledc_channel_fltr_clk.speed_mode, ledc_channel_fltr_clk.channel, 1); 
    ledc_update_duty(ledc_channel_fltr_clk.speed_mode, ledc_channel_fltr_clk.channel); 
} 
 
/// CONFIGURES THE TIMERS TO TRIGGER OSC AND FILTER ISR'S //// 
void init_timers(int osc_timer_period_ticks, int fltr_timer_period_ticks){ 
 
    timer_init(TIMER_GROUP_0, TIMER_0, &timer_config); 
    timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0); 
    timer_set_alarm_value(TIMER_GROUP_0, TIMER_0, osc_timer_period_ticks); 
    timer_enable_intr(TIMER_GROUP_0, TIMER_0); 
    timer_isr_register(TIMER_GROUP_0, TIMER_0, &osc_timer_isr, NULL, 0, &s_timer_handle); 
 
    timer_init(TIMER_GROUP_0, TIMER_1, &timer_config); 
    timer_set_counter_value(TIMER_GROUP_0, TIMER_1, 0); 
    timer_set_alarm_value(TIMER_GROUP_0, TIMER_1, fltr_timer_period_ticks); 
    timer_enable_intr(TIMER_GROUP_0, TIMER_1); 
    timer_isr_register(TIMER_GROUP_0, TIMER_1, &fltr_timer_isr, NULL, 0, &s_timer_handle); 
 
    timer_start(TIMER_GROUP_0, TIMER_0); 
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    timer_start(TIMER_GROUP_0, TIMER_1); 
} 
 
//// ADDS AN ACTIVE NOTE TO THE NOTES LIST AT MIDI NOTE ID, PLAYING IT //// 
void add_note(int note_id){ 
    if(num_act_notes <= 1){//NO CLUE why this needs to be 1 not zero 
        ENV_counter = 0; 
    } 
     
    for ( int i = 0; i < MAX_ACTIVE_NOTES; i++ ){ 
        if(active_notes[i].note_active == 0){ 
            active_notes[i].note_active = 1;    // set the note to active status 
 
            //update the notes sample playback parameters 
            float note_period_us = 1000000/midi_freq_lookup[note_id]; 
            active_notes[i].samples_per_cycle = note_period_us/SAMPLE_PER_US; 
            num_act_notes++; //inc the active notes counter 
            break; 
        } 
        //if we haven't found an open note and we have traversed the entire array, then we just 
highjack the last note 
        if(i == MAX_ACTIVE_NOTES - 1){ 
            float note_period_us = 1000000/midi_freq_lookup[note_id]; 
            active_notes[i].samples_per_cycle = note_period_us/SAMPLE_PER_US; 
        } 
    } 
} 
 
void remove_note(int note_id){ 
    //update the notes sample playback parameters 
    float note_period_us = 1000000/midi_freq_lookup[note_id]; 
    float samples_per_cycle = note_period_us/SAMPLE_PER_US; 
 
    for ( int i = 0; i < MAX_ACTIVE_NOTES; i++ ){ 
        if((active_notes[i].note_active == 1) & (active_notes[i].samples_per_cycle == 
samples_per_cycle)){ 
            active_notes[i].note_active = 0;    // set the note to inactive status 
            num_act_notes--; //subtract a note from the amount of active notes 
            break; 
        } 
    } 
} 
 
//// RESETS A THE VOICE SPECD BY NOTE ID //// 
void reset_voice(int note_id){ 
    active_notes[note_id].note_active = 0; 
    active_notes[note_id].samples_played = 0; 
    active_notes[note_id].samples_per_cycle = 100; 
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    active_notes[note_id].current_sample_index = 0; 
} 
 
void initialize_voices(){ 
    int i; 
    // initialize all the note structs by resetting them 
    for ( i = 0; i < MAX_ACTIVE_NOTES; i++ ){ 
        reset_voice(i); 
    } 
    num_act_notes = 0; 
} 
 
//// BUILDS FUNCTIONS INTO WAVETABLE //// 
void build_wavetable(int waveshape_id){ 
 
    //build functions into the wavetables 
    for ( int i = 0; i < WAVETABLE_SIZE; i++ ) { 
         
        //tbl 1 - sin 
        if(waveshape_id == 0){ 
            double wav_samp = (sin((i*2*PI)/WAVETABLE_SIZE))+1; 
            active_wave_table[ i ] = (int)(wav_samp*64); 
        } 
 
        //tbl 2 - tri 
        if(waveshape_id == 1){ 
            if( i < (WAVETABLE_SIZE/2)){ active_wave_table[ i ] = (int)(i*128)/WAVETABLE_SIZE;} 
            else{active_wave_table[ i ] = (int) 128 - ((i*128)/WAVETABLE_SIZE); } 
        } 
 
        //tbl 3 - inv saw 
        if(waveshape_id == 2){ 
            active_wave_table[ i ] = (int)(i*64)/WAVETABLE_SIZE; 
        } 
 
        //tbl 4 - square 
        if(waveshape_id == 3){ 
            if( i < (WAVETABLE_SIZE/2)){ active_wave_table[ i ] = 0;} 
            else{active_wave_table[ i ] = 128;} 
        } 
 
        //tbl 5 - junk 
        if(waveshape_id == 4){ 
            active_wave_table[ i ] = rand() % (65); 
        } 
    } 
} 
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//// BUILDS VALUES INTO MIDI NOTE LOOKUP TABLE //// 
void build_midi_lookup(){ 
    int i; 
    for ( i = 0; i < 127; i++ ){ 
        midi_freq_lookup[i] = (float)(pow(2, ((float)i - 69)/12))*400; 
    } 
} 
 
void app_main() 
{ 
    sigmadelta_init(); //initialize the sigma delta pwm output for the osc 
    init_ledc_pwm(); //initialize and start the ledc pwm channel for the fltr lock 
    init_io();  //initialize the io for timing 
 
    build_midi_lookup(); //populate the lookup table for the midi notes 
    initialize_voices(); //initialize the notes class objects in the notes list 
 
    DCA_aten = 0x05; //open the DCA fully 
    ledc_timer_fltr_clk.freq_hz = 20000 * 100; //open the DCF completely 
    build_wavetable(cur_wavetable); //build fn into wavetable 
    update_display(disp_patts[cur_wavetable]); 
 
    // initialize the sample timer and interrupts, starting the oscilator and envelope update 
timer 
    float osc_ticks_required = SAMPLE_PER_US/TMR_TICK_PER_US; 
    init_timers((int)osc_ticks_required, 100000); 
 
    add_note(midi_freq_lookup[55]); 
 
    midi_uart_init();//initialize the midi uart 
    uint8_t *data = (uint8_t *) malloc(BUF_SIZE);// Configure a temporary buffer for the incoming 
data 
 
    int last_state = 0; //flag for button debounce 
 
    //THIS ROUTINE ONLY WORKS IF ISR ROUTINE OCCURS LESS THAN 1300 times per sec 
    //ensures a 3 byte message doesnt get truncated by to frequent a read 
    while (1) { 
        // Read data from the MIDI UART and handle adding/removing notes 
        int len = uart_read_bytes(ECHO_UART_PORT_NUM, data, BUF_SIZE, 20 / portTICK_RATE_MS); 
        if(len >= 3){ 
            for(int byte_index = 0; byte_index <= len - 3; byte_index++){ 
 
                if((data[byte_index] & 0xF0) == 0x90){ 
                    if(data[byte_index + 2] == 0){ 
                        remove_note((int)data[byte_index + 1]); 
                    } 
                    else{ 
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                        add_note((int)data[byte_index + 1]); 
                    } 
                } 
                else if((data[byte_index] & 0xF0) == 0x80){ 
                    remove_note((int)data[byte_index + 1]); 
                } 
            } 
        } 
 
        //clear last vals 
        int ADC_POS[] = {0,0,0,0}; 
 
        //check knob positions 
        for (int i = 0; i < MULTISAMP; i++) { 
            ADC_POS[0] += adc1_get_raw(ADC1_CHANNEL_0);     
            ADC_POS[1] += adc1_get_raw(ADC1_CHANNEL_1); 
            ADC_POS[2] += adc1_get_raw(ADC1_CHANNEL_2); 
            ADC_POS[3] += adc1_get_raw(ADC1_CHANNEL_3); 
        } 
 
        // Only update envelope parameters if no notes are currently active 
        if (num_act_notes < 1){ 
            for (int i = 0; i < 3; i++) { 
                KNOB_POS[i] = ADC_POS[i]/MULTISAMP;     
            } 
        } 
 
        // Continually update the cuttoff knob 
        KNOB_POS[0] = ADC_POS[0]/MULTISAMP;  
 
         
        //check mode button 
        if(gpio_get_level(MODE_BUTTON) == 0 && last_state == 0){ 
            if(cur_wavetable < 4){ cur_wavetable += 1;} 
            else{cur_wavetable = 0;} 
            build_wavetable(cur_wavetable); 
            update_display(disp_patts[cur_wavetable]); 
            last_state = 1; 
        } 
        //mode button debounce 
        if(gpio_get_level(MODE_BUTTON) == 1) { 
            last_state = 0; 
        } 
         
        //loop timer 
        vTaskDelay(10 / portTICK_PERIOD_MS); 
    } 
} 


