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Abstract 

This document serves as the Final Design Report (FDR) for a senior project developed by our team: four 

senior Mechanical Engineering students and one computer engineering student at California Polytechnic 

State University, San Luis Obispo (Cal Poly). While the project was completed for, and sponsored by, 

Professor Simon Xing of Cal Poly, the remainder of the university’s controls professors will be indirectly 

benefited from this project. Our goal was to design and implement a functional CNC Feed Drive to be used 

for educational demonstrations and data collection. This document discusses our early product research and 

benchmark goals, which established constraints for our product design, as well as identifies our design 

process and conclusions. Through this evaluation of the feed drive form and function, we determined 

optimal system components - including a DC motor with rotary encoders, a ballscrew, linear bearings, and 

a load table with screws for fixturing. This FDR also discusses our design progression, beginning with the 

structural prototype and followed by a description of the final design. This will include the manufacturing 

steps taken, the front-end and back-end code generated and used to control the system, and the associated 

user’s manual. Lastly, this report will discuss the test procedures that we derived from the design 

verification requirements and include an overview of our test results. We conclude with our final 

acknowledgments, and we wanted to mention that we are extremely grateful to have worked on this project. 

The team has learned so much throughout the year, and we look forward to handing the prototype over to 

Professor Xing.  
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1. Introduction  
Professor Simon Xing, a Cal Poly controls professor, desires a tool to demonstrate a CNC feed drive control 

system to his lab students. The “Motomatic Servo Control” lab is currently run in all controls classes, 

however this lab has been around for over a decade and has become antiquated; hence the need for a new 

product to replace it. Most feed drives are comprised of a linear stage-ballscrew combination and are readily 

available in industry at a variety of quality levels and price points. However, there are no existing products 

that are both within the university’s budget and educationally effective. We – Caleb O’Gorman, Juan 

Majano, Nick De Simone, and Ryan Funchess – have answered the call and are looking to create a tool that 

will meet all of Professor Xing’s needs and will be used for years to come within Cal Poly’s engineering 

department.  

The following sections begin by highlighting in detail the existing products we have discovered in our 

preliminary research, including contemporary patents and processes. Afterwards, Professor Xing’s problem 

is more explicitly defined with the help of a House of Quality (see Appendix A.2). We have defined each 

of these background research and problem definition sections further in Chapters 2 and 3 of this report – 

titled “Background” and “Objectives”, respectively. Much of this project initialization was refined through 

ideation, matrix analysis, and prototyping, all of which may be observed in Chapter 4 “Concept Design”, 

whereupon our team landed on a final direction for the product.  Following design selection, the “Final 

Design” chapter introduces our structural prototype, along with a presentation of our manufacturing and 

design verification plan – Chapters 5, 6, and 7, respectively. Our indented Bill of Materials (see Appendix 

A.11), drawing package (see Appendix A.15), and failure modes and effects analysis (see Appendix A.12) 

are also presented and evaluated as appendices. Lastly, we discuss our project management in Chapter 8, 

explicitly outlining the year’s schedule in our Gantt Chart (see Appendix A.3).  

2. Background 
We had the pleasure of first meeting with our sponsor Dr. Xing on September 25th, 2020. We performed 

brief introductions, went over our version of the project objective, and established a bi-weekly meeting 

time. In the following meeting we went through our problem definition with Dr. Xing and conducted further 

inquiry as to his wants and needs for the project moving forward. He dictated that he needs a CNC feed 

drive system that is cost effective, educational, and built to last a long time. In addition, we gained insight 

about what would be desired from consulting with Professor Birdsong and Professor Hemanth 

Porumamilla. 

2.1 Existing Designs and Patent Research 
In performing our patent research, we examined existing products within an actual CNC machine to develop 

an understanding of system functions. After taking the time to learn about components of a CNC feed drive, 

we began our patent research by looking at linear stage applications. We learned that a feed drive consists 

of a motor driven by an electronic controller, a feed system driven by a motor, as well as a housing for all 

components. In addition, the feed motor provides constant torque at steady state and allows for high 

precision actuation of a mass along an axis. According to an article from Tooling World [19] some qualities 

of a CNC feed drive include: 

• Maximum motor speeds of 3000 rpm 

• Low electrical and mechanical time constants 

• Low armature or rotor inertia 

• High peak torque for quick responses 
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We deduced that industry standard linear stages, such as from Newport and Aerotech, have a standard 

minimum cost of $5,000 depending on application. 

Our goal is to mitigate cost and maintain quality by looking at each component individually. Table 1 

displays patent descriptions of products related to our project. 

Table 1: List of Patents for Current Models 

Patent Name Patent Number Key Highlights 

Automatically guided tools [1] US 10067495 B2 

• Method and tool for guiding a tool during its use 

based on its location relative to the material being 

worked on. 

• Introduces the idea of a rig or frame with stage 

that can be positioned on the surface of a piece of 

material. 

Servomotor controller for 

controlling a serve motor designed 

to drive the feed axis in a machine 

tool [2] 

DE 102013103341 

B4 

• A servo motor control apparatus which performs 

feedback control of a servo motor adapted to 

drive a feed axis 

High-speed high precision servo 

linear motor sliding table [3] CN 10184431 4A 
• The servo linear motor sliding table can be 

applied to high precision feeding mechanisms of 

numerical control turning machines. 

Exposure apparatus movable body 

apparatus, flat panel display 

manufacturing method, and device 

manufacturing [4] 

KR 101911717 B1 

• The object holding member holding the object 

together with the first moving body is driven in 

the direction parallel to the first direction. 

Power Tool with a linear motor [5] US 6705408 B2 
• Linear motor which includes a movable element 

having a tool on it on end. 

 

We conducted our patent search by using Google Patents and identifying keywords which are applicable to 

our project (i.e. “servo system components” or “feed drive applications”). We are aware that similar 

products exist, however, our main goal is to make a feed drive as affordable and as classroom ready as 

possible, which proved to not be a readily available application of such product. Please see Table 2 for a 

list of similar servo system products and their key descriptions, which we have and will use to inform our 

own design moving forward. 
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Table 2: Current Products 

Company Product Type Key Highlights 

Aerotech[6] Linear Stage 

• High precision (5nm) actuation of a table along a single axis. 

Long travel distance, high resolution and speed, high price. 

Zero backlash, zero friction. 
• Uses a recirculating linear guide bearing system with encoders 

Newport[7] Linear Stage 

• High precision(10nm) linear stage actuation. High load, travel, 

repeatability models available. High price. 

• Options with Piezo, stepper, DC, brushless DC, and linear 

motors. All closed loop options use encoders. 

Misumi[8] Linear Stage 
• Lower precision stage (microns) ballscrew actuation at 

required table length.  
• Variety of motor options 

Grainger[9] Linear Actuator 

• High load linear actuation using gears, including worm gears 

for high load 
• Short stroke length, no feedback, low precision 

Alum-a-Lift[10] Custom Lifts 
• Custom actuators used to move high load in multiple axes. 

Worked with many companies in industry. 

McMaster-Carr[11] Hydraulic Actuator 
• Hydraulic positioners that can produce very high force with 

lower precision than ballscrews and gears 

 

2.2  Technical Information 
We sought further understanding of our project scope through research into scholarly journals. In this 

research, we were informed as to the complexity of servo systems, such as by Kaan Erkorkmaz and Yusuf 

Altintas in their International Journal of Machine Tools and Manufacture journal article, which presented 

methods for identifying the dynamic parameters and frictional characteristics of machine tool drives. In 

addition, they demonstrated the overall axis model used in designing a high-speed feed drive control 

system.[12] 

The second journal written by Kuldeep Verma and R.M Belokar investigates the performance and 

positioning accuracy of numerical controlled (CNC) feed drive systems while using a ball screw-based 

preloading impact factor.[13]   From this the main thing we learned was that the optimum pre-loading value 

had been determined by analyzing the available ranges from there it was proposed that those optimal results 

have been achieved at 5 percent of dynamic load rating. This will help us when it comes to controlling the 

movement of the table.  

The third journal written by Breaz Radu-Eugen and team goes into the tuning process for a CNC feed drive 

which will serve a purpose later in the project life. [14] This journal a general insight into how the time values 

having to be changed by the user to preserve positioning and contouring accuracy of the machine. This will 

be very helpful when it comes to tuning the motor that we decide to move forward with.  

The same group of authors that wrote about the tuning process published another journal article where they 

focused on the dynamic behavior using MATLAB and Simulink. They then used these analyses to give 

suggestions to optimize the design and improve the system’s dynamic behavior. [15] Looking at a block 

diagram put the process in relatable terms as we all have experience modeling controls systems in Simulink. 

It gave us a better understanding of how a closed-loop model would work. 

One of the things we considered during this early design phase was possible alternatives for the motion 

actuation. R.J. Wai published a journal entry about using induction in combination with a servomotor to 
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get a more precise motion. [17] A notable downside of this system is the high cost and magnetic interference. 

They mention that an adaptive sliding-mode control system is used to control the position of an induction 

servomotor drive. This will help us when it comes to moving the table over the full range of motion. 

For safety and durability matters, we also investigated the vibration patterns of a typical ballscrew feed 

drive. Ya Zhang and a team of researchers conducted an in-depth analysis of the natural frequencies and 

transient response of a ball screw drive using a 6 Degree of Freedom model. [18] 

Additionally, we sought out information from various sources relating to high precision actuation. Tooling 

World provided specifications based on current CNC Feed Drives, such as typical degree of precision, 

speeds, and the necessity of feedback in the control system [19]. Newport’s Technical Notes have also proven 

to be a valuable resource. Their technical note “Stage Components Considerations” details the positives 

and negatives of different modes of mechanical actuation, motor selection, as well as materials choice. [20] 

We are hoping that these journals and online manufacturer publications will help to support our project by 

delivering insight into the accomplishments in our project area, as well as components that need research 

and development. 

2.3  Codes and Standards 
Industry codes and standards provided our team insight as to how we may need to conduct the 

manufacturing, installation, and eventual operation of our servo system. We encountered the NAICS 5 

33531 Electrical Equipment Manufacturing Code[21] which covers the manufacturing of an electric motor 

like our product’s servo motor, as well as the Occupational Safety and Health Administration’s Electronic 

Code of Federal Regulations (eCFR), which informs into standard safety practices for the installation and 

operation of our electromechanical system[22]. 

3 Objectives 
After performing research related to current products and technologies, we focused in on project specifics 

relating to customer desires, design criteria, and engineering specifications.  

3.1  Customer Needs and Wants 
After discussion with both our sponsor and other Cal Poly Controls Professors, including Dr. Hemanth 

Porumamilla, Dr. Charles Birdsong, and Dr. John Ridgely who is leading the design of the new ME 418 

Controls Lab, we drafted a problem statement and identified custom needs and wants. Our problem 

statement stemmed from the idea of the system as an educational tool for future controls students, rather 

than as a simple linear actuation device. Our problem statement is detailed here: 

“Dr. Xing and the Mechanical Engineering department need a cost-effective way to physically demonstrate 

concepts related to motor controlled linear actuation in the form of a CNC feed drive to their control’s 

students in order to augment the controls laboratory experience and allow students to learn by doing.” 

 Based on this problem statement, we communicated with our sponsor about his needs and wants. From the 

categories listed in the provided template, we organized customer desires as shown in Table 3. 
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Table 3: Customer Needs and Wants 

Category Needs and Wants 

Geometry Travel distance of at least 30cm. 

Motion/Kinematics Precise linear actuation along a single axis.  

Forces/Torques Motor torque transports 5kg payload along single axis. 

Material 
Rails must handle payload transport; other materials 

must minimize degradation over time 

Signals Digital Inputs 

Safety 

Direct protection (eyeglasses), operational safety 

(pinch points; do not put hand in track or near motor; 

do not be in contact with system during operation; 

refrain from having hair, jewelry, clothing, and etc. 

near mechanism). Use of limit and kill switches. 

Human Factors/Ergonomics Visible components, clearness of layout  

Quality Control 
Possibilities of testing and measuring, application of 

special regulations and standards   

Assembly 

Easy to assemble and modular in nature. Special 

regulations, installation, siting, foundations. Use of 

standard parts to decrease cost.  

Operation 
Easy to work with for students with standard software 

(Simulink, MicroPython).   

Costs As low cost as possible to stay within our budget.  

Schedules 
End date of development, project planning and control, 

delivery date.  

Portability 

Dr. Xing desires a small, yet fully functional, model to 

be shared amongst controls labs. Dr. Xing prefers a 

transportable model. Consider microcontroller to drive 

servo system and accomplish portability  

Durability 

Model must be able to withstand handling by multiple 

labs and repeated usages across school years, designed 

for fatigue.  

 

These needs and wants were selected for the purpose of a system that can precisely actuate a payload along 

a single axis, as well as for ease of work for students. For ease of work, the system must be compatible with 

software that students are familiar with, such as MATLAB and MicroPython, and a clear layout must be 

selected during system design. The use of digital inputs, rather than the analog inputs that are currently used 

on the “Motomatic” lab experiment, will allow for ease of data collection and communication between the 

encoders and the lab computers. Professor Xing ultimately desires a portable system for increased flexibility 

and use between controls labs. 

The motorized system must be able to allow translation of a payload mass at reasonable speed and with 

reasonable accuracy to ensure timely, accurate data collection and laboratory practices.  Strength and 

stiffness must be considered during design to ensure a CNC Feed Drive model that is durable in the long 

run. In addition to machine safety, the safety of humans working with the machinery must be optimized to 

minimize pinch points and hazards relating to rotating components. 

3.2  Boundary Diagram 
Figure 1 below addresses our project scope as a boundary diagram. This sketch includes our sponsor and 

the students who will be benefitting the most from this project. They are presented outside of the boundary 
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because they are out the scope when it comes to producing the product however, they are still important, 

nonetheless. What is included inside of the scope are some the major components needed to achieve project 

requirements these needs/wants will be discussed momentarily.  

 

Figure 1: This Boundary Diagram includes the focus of the project which happens to be the objects 

within the boundary in addition to outside influences. 

3.3  Quality Functional Diagram (QFD) 
After discussion of Customer Needs and Wants, we used the Quality Functional Deployment method (QFD) 

in order to match customer requirements to engineering specifications, gain a better understanding of the 

problem that we are trying to solve, see which of our criteria matters most, and observe what we can bring 

to the table that our competitors have not already. We identified the main stakeholders and weighted the 

wants and needs of each stakeholder with Pairwise Comparison Charts, as attached in Appendix A.1. We 

observed our competition on the right side of the House of Quality and we found that although linear stages 

exist that are designed for high load and precision, no model competitor that we observed had a design for 

educational purposes. In addition, linear translation devices for the specified travel distance are more 

expensive than our budget. Finally, we came up with engineering specifications that could be used to 

quantify and fulfill each need and want and we compared each specification against each other in the roof 

to observe the relationship between these specifications. The House of Quality that we developed can be 

observed in Appendix A.2. 

  

3.4  Specifications Table 
Based on our QFD, we developed the Specifications Table seen in Table 4. The purpose of this table is to 

assign measurable targets to the engineering specifications that will be used to fulfill our customers’ needs 

and wants. Each of the ten specifications can be measured with a target value that stands as either a 

maximum, minimum, or target value for the requirement. The risk of each specification is also laid out as 

Low(L), Medium(M), or High (H). Finally, the Compliance column dictates how each of these 
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specifications will be verified. The verification methods used for these specifications include Analysis (A), 

Testing (T), Inspection (I), and Similarity to Existing Designs (S). 

 

Table 4: Specifications Table 

Spec. # Parameter Description Requirement or Target Tolerance Risk Compliance 

1 Table Travel Distance 30 cm Target L I 

2 Load Requirement 5kg Payload Min H A, T 

3 Mobility of Unit System Mass 50lb Max M I 

4 Intuitive 
Must be able to be 

understood in 30 min 
Max H T 

5 Low Travel Tolerances 50 Microns Min M A, T, S 

6 Low Cost $500 System Cost Max H A 

7 Drop Height Durable 
Survive drop height of 

3.5 ft 
Min M A 

8 # of Cycles 60 hrs/yr Min M A 

9 Power 200 W Max L A, I, T 

10 Speed 1 cm/s Min M A, T 
*Note: H=High; M=Medium; L=Low; A=Analysis; T=Testing; I=Inspection; S=Similarity 

Each of these specifications is described in further detail here: 

1. Travel Distance Requirement: The payload that is mounted onto the linear stage should be able 

to linearly traverse a 30cm distance. This will be tested by inspection of sizes when we are 

designing the system and ordering parts. 

2. Load Requirement: This system will actuate payloads with maximum mass greater than 5kg. This 

will be tested through both analysis of the power transmission to the mass from motor to payload, 

as well as testing with payloads of variable mass before commission. 

3. Mobility of Unit: System mass excluding the payload shall be under 50lbs in order to maximize 

mobility of the unit. This will be tested by inspection. We will keep track of the mass of all parts 

and add the mass of all components to calculate a lump sum mass for the system. We will 

additionally weigh the system prior to commission.  

4. Intuitive: The system must be intuitive enough to be understood by users within a 30-minute 

timespan. The intuitive aspect of the design will be tested with focus groups of students that have 

both passed Controls, as well as those who have fulfilled the prerequisites and will take the class 

in the future. 

5. Low Travel Tolerances: The payload position must be certain along the axis of travel to within 

50 microns. This will require analysis based on the motor, gearbox, and actuation system that we 

choose to use, as well as testing in the lab to ensure these tolerances can be satisfied. Due to the 

similarity of this technology to other linear actuators, we expect this requirement to be satisfied 

with standard parts. 

6. Low Cost: Overall system cost requires a sponsor cost of no more than $500 to Dr. Xing. Cost will 

be verified through analysis by keeping a Bill of Materials (BOM) and vendor prices as we receive 

quotes for our hardware. 

7. Drop Height Verified: This system must be designed to survive a drop height of 3.5 ft in the case 

misusage. We will conduct a shock load analysis for the system. 
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8. # of Cycles: This system must be able to run 60 hrs/year, which was based on the duration that this 

system will run in lab, average amount of labs per week, and average academic weeks per year. 

While testing is not possible given current time and resources, we will perform a fatigue analysis 

on rotating components to design for long life. 

9. Power: The system will draw a maximum of 200 W of power. We will inspect motor power 

consumption while purchasing parts, perform analysis if required power draw will meet other 

system requirements, and test motor power draw in the lab with the use of a multimeter for 

measurement of voltage and current. 

10. Speed: The payload shall actuate at a minimum top speed of 1 cm/s. This will be verified through 

power transmission analysis and testing in lab. 

4.    Concept Design  

After performing extensive background research and firmly establishing the needs of our customers, we set 

forth on the process of ideating. The ideation process consisted of first suggesting rudimentary solutions 

for each of our 6 functions, followed by a method of controlled convergence in which we eliminated the 

less desirable ideas and methodically arrived at our concept prototype, which represents our proposed 

design direction.  
 

4.1.         Functional Decomposition and Ideation Models   
The ideation process began with functional decomposition, where we defined the CNC feed drive’s overall 

operation with six independent functions. Naturally, the six functions housed sub functionalities to provide 

a comprehensive definition of the feed drive product; please see Figure 2 for our Functional Decomposition 

Function Tree. Note that six major functions are identified in the first level of the function tree; their 

subfunctions are defined in the second level and any third level of functionality is meant to further clarify 

its parent functions. 
  
 

 
Figure 2: Functional Decomposition Function Tree 

 

The six main functions of Figure 2 informed subsequent idea generation. These task descriptions (“move 

table”, “support table”, etc.) were used to prompt mechanical means for their execution, and our initial 

approach for product development was quantitative and unrefined. We focused on generating ideas for 

product components in large numbers, rather than limiting or criticizing suggestions based on their 

feasibility. Our team held virtual collaboration on Google’s “Jamboard” to record any proposed solutions 
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– again regardless of their practicality. For example, the function header “Move Table” prompted responses 

that ranged from “rack and pinion” to “blow on it really hard with a fan” we had to come with as many 

ideas as possible regardless of silliness. Please see published photos of our “Jamboard” ideation results in 

Appendix A.4 for a visual of all our generated ideas.  

The team’s brainstorm sessions led into physical conceptualization of function mechanisms through the 

construction of ideation models. Each member used rudimentary materials, i.e. cardboard and hot glue, to 

test basic practicality of our generated ideas in rapid fashion (see Appendix A.5 for photos of ideation 

models). This practice allowed for insight into component feasibility, informing a more tangible 

understanding of system interactions and of the parts the system will need to operate correctly. Out of this 

ideation, we moved into evaluation and synthesis of our function idea lists and rudimentary models.  
 

4.2.         Controlled Convergence Method   
We refined the ideas and models generated during our ideation phase through “controlled convergence”. 

Here, we looked to filter design and component proposals by evaluating them for feasibility and efficacy. 

Many of our Google’s “Jamboard” suggestions were eliminated to produce a list of reasonable design 

considerations for our main functions. These condensed function lists allowed us to create Pugh matrices 

for each of the functions, and our team evaluated the components against one another using the matrices, 

ultimately producing the most suitable options. Subsequent convergence involved further system evaluation 

and refinement through morphological and weighted decision matrices, each described at length in the 

sections below. 
 

4.2.1         Pugh Matrices   
Our Pugh matrices were constructed by using our customer needs and wants as criteria to evaluate product 

considerations against each other. One Pugh matrix was constructed for each system function, with the most 

apt idea set as a datum for comparison. Note that subsequent ideas were assigned a “+,” “-,” or “s” for their 

ability to meet the design criteria for better than, worse than, or the same as the datum, respectively. These 

symbols were counted as 1, -1, and 0, respectively, then summed to produce total values for each design 

idea. Low scoring ideas were eliminated while high scoring ones were carried into the next ideation phase, 

which involved morphological matrices and system sketches and is discussed in Section 5.2.2.  

Please see Appendix A.7 for each of our five Pugh matrices: Move Table, Support Table, Monitor Position, 

Support Load and Portable System. The datums largely remained the best-performing system components, 

but we were able to glean one or two additional ideas for consideration in the final concept prototype.  
   

4.2.2        Morphological Matrix and System Sketches   
After narrowing down our list of solutions to about 5 top ideas per function, we used a morphological matrix 

to pair the various ideas to create 4 system-level alternatives. During functional decomposition, we had 

initially defined 7 main functions; however for the morphological matrix we determined that two of the 

functions, “Teach Students” and “Digital Inputs,” were uninfluenced by the other system components, and 

thus were not included. In other words, each of the solutions under these two functions could be paired just 

as easily with any other solution and be completely unaffected. Furthermore, many of the solutions under 

these functions were not mutually exclusive with each other and the system could very well be benefited 

by the inclusion of all of them.   
 

After listing out the functions and their corresponding ideas, each group member selected a set of solutions, 

one for each function, and created a system level sketch incorporating all the ideas. The goal was to analyze 

how the different functions interact with each other and assess the feasibility of the different combinations. 

The various mixes that were derived are presented below in Table 5. The functions are organized by 
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columns and the system level alternatives are presented row-by-row. Scans of the drawings for each of the 

four concepts are shown in Figures 3-6.    

 

 
 

  
Table 5:Functional Combinations from Morphological Matrix 

System  
#  

Move Table  Support Table  Monitor Position  Support Load  
Make System 

Portable  

1.  Ballscrew  Monorail  Linear Encoder  Screws  Briefcase  

2.  Ballscrew  Wheels and Rail  Linear Encoder  Vice  Removable Cart  

3.  Rack and Pinion  Linear Bearing  
Rotational 

Encoders  
Screws  Fixed Cart  

4.  Ballscrew  Linear Bearing  Linear Encoder  L-Bracket  Suitcase  

  

 
Figure 3: Sketch of System 1, a “monorail” concept where the table travels along and wraps around a 

linear rail with corresponding grooves as shown in Section A-A above. 
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Figure 4: Sketch of System 2, in which a ball screw and servomotor is implemented. 

  
  

 
Figure 5: Sketch of System 3, where the table would be driven by a “rack and pinion” motor and rail 

configuration, as shown by parts (1) and (2) above. 
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Figure 6: Sketch of System 4, which has a characteristic “suitcase” carrying feature. 

The basic characteristics that each system sketch share are all integral parts of linear stages that we 

designated “non-negotiables,” considering our product is educational in nature and meant to resemble feed 

drives commonly found in industry. These attributes include a horizontal table with which to carry the mass 

and, except for System 2, a box-shaped enclosure in which to contain the system. System 2 explored 

somewhat of a unique approach to modularity in which the system was mounted on supports included on a 

portable cart. This idea was new to us and was included in our subsequent decision matrices.   

The sketches served their purpose in helping us assess the feasibility of several of the pairings. For one, 

systems 1 and 4 revealed that geometrical constraints make it difficult to pair a centrally located table 

support, such as the monorail, with a centrally located drive, such as a ballscrew or rack and pinion. 

Subsequently, the unpracticality of alternative drive systems acting on the system’s periphery began to steer 

us towards peripheral table supports such as the rail and wheels or the linear bearings. It therefore came as 

no surprise that these are the support mechanisms that represent industry-standard.  
 

4.2.3        Weighted Decision Matrices   
After developing four system-level alternatives, we began the process of determining the best model with 

which to move forward. Our initial plan was to create a weighted decision matrix with the concepts we had 

sketched from the morphological matrix; however, after some preliminary discussion we felt that we could 

get a better result if we looked beyond these and instead created a new system-level combination. We 

wanted our design direction to encompass all the “best” ideas for each function, assuming that they were 

all compatible with each other. Therefore, we decided to pursue 5 different weighted decision matrices, one 

for each function, to settle which were the leading design elements.   

The final decision matrices are displayed in Appendix A.8. The rows are organized by our customer’s needs 

and wants, while the columns are arranged by the different design ideas for each function. Each cell assesses 

its column’s ability to address the requirement presented in its row’s heading. The cells were ranked on a 
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1-3 scale, 3 meaning they addressed the need very well, and 1 meaning they hardly accomplished the goal 

at all. Each customer requirement was given a weight based on its priority that we determined during the 

research phase. Note that not all customer specifications were included for each function, as not every 

function is meant to accomplish every need/want. The culmination of the top scoring elements for each 

function is presented below in Table 6.  
  

Table 6: Proposed Design Direction 

Function  Solution  

Move Table  Ballscrew  

Support Table  Linear Bearings  

Monitor Position  Linear Encoder  

Support Load  Screws   

Make System Portable  Cart  

  
For moving the table, we opted for the ballscrew method of actuation. While ballscrews oscillate at 

a low natural frequency at long lengths, and cost more than belts, they are high in precision, strength, and 

durability. In addition, they are industry standard for precision actuation over the specified travel distance, 

rotate with low friction, and provide a direct transmission of power from the motor’s rotary motion to the 

linear motion of the payload. To support the table, a linear bearing was chosen. The deciding factor was its 

high precision actuation and educational effectiveness.  We believe it will minimize friction, which will 

allow students to model this as a linear system. To secure the mass atop the table’s surface we decided 

to include screws and threaded holes to fasten it. This mechanism is easy to setup and effective in 

the classroom laboratory setting, especially considering its low cost, strength, and portability.   

To precisely locate the table’s position, the linear encoder is a better option than rotational encoders. While a 

linear encoder costs more and requires more wiring, it is also more precise and measures the true position 

of the table, rather than the output position of the motor. This will contribute to the educational simplicity 

of the model, as it will not require a gain to convert between motor output angle and linear travel. Finally, 

to meet Dr. Xing’s portability requirement, the clear direction seems to be wheeling the system on a small 

cart. While the alternatives, such as the suitcase or briefcase model, seemed both effective and stylistically 

desirable, they were greatly outscored in terms of cost, both fiscal and effort.   

To ensure the feasibility of this proposed design direction, we conducted a preliminary numerical analysis 

in Appendix A.9 to estimate the amount of power required to drive the ballscrew at an assumed speed of 

0.01 m/s. Using conservative estimates for frictional losses and efficiency of the motor, geartrain, and 

ballscrew we found the required motor power to be in the range of 2.5 W. Even had we assumed a speed of 

10x this, i.e. 10 cm/s, the required power would only be 25 W. This speed would allow the table to cover 

the entire table distance of 30 cm in 3 s, significantly faster than what we either expect to be needed, or 

what we expect the ballscrew’s natural frequency to permit. Even still, this estimate of 25 W is well below 

the rated power output of some Servo motors that we have found, which are often between 50 and 200 W.   
  

4.3.         Concept Prototype   
In this section, we discuss the conceptual solid model design that we used to construct a basic system layout, 

as well as our physical concept prototype that was used to show the validity of our ideas in real life.  
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4.3.1        Concept Solid Model  
After completion of the weighted decision matrix, we constructed a CAD model in Solidworks to better 

visualize the placement of all components for development of the system. A labeled isometric of our 

conceptual CAD assembly can be observed in Figure 7.  

 
Figure 7: Annotated CAD Assembly 

 

When designing, we started with the essentials of the power transmission from motor rotation to payload 

motion. Power is transmitted from the motor to the speed reduction gearbox, where torque increases 

proportionally to the decrease in velocity. This gear reduction will allow for higher precision by decreasing 

output positional uncertainty by the same amount as output velocity, in addition to increasing motor torque 

to allow for use of a smaller motor. Detailed gearbox design will occur during system detailed design. The 

output gear will be connected to the ballscrew shaft through a mating keyway and either press fit or secured 

with setscrews. The ballscrew will be supported by two bearings to allow for shaft rotation, while inhibiting 

translation. One of the bearings will be selected as a thrust bearing, which will be used to provide axial 

support to the ballscrew. Rotation of the ballscrew causes the internal ball bearings to circulate, which 

drives the ballnut longitudinally with minimal internal friction. The ballnut will directly connect to the table 

through either bolts or welds to ensure a rigid connection between the two components.  Two linear bearings 

attached to the table will slide on rails parallel to the ballscrew, which both support weight and prevent 

tipping by adding a moment reaction. The use of a single linear bearing on each side will decrease chances 

of the system binding up during translation. 

The mass to be mounted on the table will be a series of thin plates with 4 clearance holes to line up with 

the four tapped holes on the table of the CNC Feed Drive. Screws will thread into the table while clamping 

down the mass, which keeps a rigid connection between the table and mass while maintaining the screw in 

tension. This will allow students to easily stack a variable amount of masses to observe the effect of 

increased mass on system response.   
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For structural stability and transportation, the entire system will be constructed within a structural base that 

will provide support to the rails, bearings, microcontroller, and linear encoder reader. This structure will be 

sized to fit all subsystems and will likely either be 3D printed from Polylactic Acid (PLA), manufactured 

from sheet metal, or cast, depending on the necessary reaction forces required. A cover made of the same 

material will be used to cover hazardous rotating machinery when in use, as well as prevent dust and other 

substances from accumulating in critical spots, such as the linear encoder scale. 

In order for the system to run in closed loop configuration, the linear encoder has been selected to return 

information regarding table positioning to the controls algorithm that we will develop in order to locate the 

table to a position using a PID controller. A linear encoder reader that travels with the table will work in 

conjunction with a linear encoder scale that runs the travel length of the table to send voltage output to the 

microcontroller, which will use built in board functionality to digitally measure distance. Cables will travel 

with the table to provide a direct connection between the linear encoder reader and the microcontroller. 

Using the control system that we will design; the microcontroller will incrementally determine the amount 

of voltage to apply to the motor driving the system. For safety, we will additionally install a limit switch 

and a kill switch at the limits of the table’s translation in order to cut power to the system before catastrophic 

failure occurs in the event of a control system error or malfunctioning of the microcontroller.   

 

4.3.2       Physical Prototype  
After development of the solid model, the next step was to build a physical concept design, which would 

allow our team to demonstrate the physical functions of the feed drive. We took the top ideas for each 

function presented in Table 6 and integrated them into a physical model based off the conceptual Solidworks 

Model. Our team made great use of the Lego Technic pieces from the ME 329 Build Kits that were provided 

to us by Professor Schuster.  

We began our prototype build day by cutting a cardboard frame. Next, we selected our Lego pieces, which 

included the axles, spacers, connectors, spur gears, and worm gears. We used joined colinear Lego worm 

gears to represent a ballscrew, and the table was constructed using Lego beams and joints. We punched 

holes in the frame to create the placement for the rails, and we actuated the table by mating a rigid spur gear 

from the table to the joined worm gears, such that the rotation of the worm gear caused translation of the 

table. A temporary cart was crafted to illustrate system portability, with four clamps used to secure the 

system at the corners.  

From this process, we experienced firsthand that additional thought will have to be put into placement of 

components in the system. The Solidworks model allows for easy manipulation of the system to illustrate 

the interaction between system components but lacks a feel of real effects such as gravity, friction, 

deflection, and other imperfections. For example, our prototype forced us to mount the input gear to a 

bearing on the structure and ensure a small lever arm between the gear and the structure to avoid shaft 

deflection. At the same time, the gears were not allowed to contact the structure due to effects caused by 

friction, so an adequate length was found by trial and error. Due to the robust design of our ballnut and 

rails, space is much tighter than anticipated, and we will have to design the structure to be spacious enough 

to fit all necessary components, including the linear encoder cables, scale, and the microcontroller that will 

run the motor. We will have to design our layout such that cables do not interfere with linear translation. 

Additionally, the table had to be aligned precisely with the ballscrew and rails for uninterrupted linear 

translation to occur, so special attention must be paid to alignment and location of these cylindrical 

components during manufacturing. A picture of our physical prototype can be seen in Figure 8 below. 
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Figure 8: Isometric View of Physical Concept Prototype.  

   

4.4       Preliminary Design Hazards  
Before starting detailed design, we identified potential hazards for users of this device using the Design 

Hazard Checklist, as seen in Appendix A.10. We identified potential risks regarding rotating machinery, 

pinch points, high forces and accelerations, potential to fall, vibration, and malfunction of the controls 

system. We have observed existent hazard prevention to include education of users, the use of safety glasses 

and avoiding contact with machinery during operation, although the implementation of our prototype into 

a classroom necessitated further considerations. In terms of design, we will need to ensure a critical speed 

of the ballscrew shaft that is high above the operating point, as well as assuring high strength and stiffness 

of all components. There is possibility that the controls system that runs the motor will malfunction, which 

can lead to excessive voltage or motor torque. This can be resolved by adding a Saturation Value to the 

controls system model, which will effectively put a ceiling on the maximum output voltage that the controls 

system will demand. Additionally, the use of limit switches and kill switches at extreme points in the table’s 

motion will shut off power to the system before contact is made between two physical components. A hard 

stop will serve as a final defense in mechanically stopping the table’s actuation.  
  

4.5       Anticipated Challenges  
While our team is familiar with the overall design process, some areas of the design for this project have 

special challenges that will take additional research and creativity. Staying within our budget will be 

challenging, but we expect to be able to remain within our means by comparing prices from multiple 
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vendors and keeping a Bill of Materials to keep track of all materials and total cost. Electronics design, 

including communication between the encoder reader and the microcontroller, communication between the 

microcontroller and the motor, and the implementation of the controls system on the microcontroller is a 

skill that we will all develop over the course of this project, and will come with hard work and study. 

Finally, we will need to create a design that is optimized for educational purposes while still being safe and 

relatable to real world systems. We conducted ideation regarding designing the system to be as educational 

as possible but will need to implement these designs into our solid model and detailed design. 

5. Final Design 
Considering the components, functions, and design constraints necessary for our feed drive prototype, we 

proceeded to compile a final design after accounting for the design choices and concept prototypes made 

per the previous chapter. Please refer to the following sections for detailed descriptions on part verification, 

selection, and analysis. 

 

As will be discussed, our final design is composed of a DC motor with rotary encoder, ballscrew, ball and 

thrust bearings, linear rails, aluminum table and frame, and Nucleo microcontroller with corresponding 

MATLAB User Interface (Figure 12 for full system assembly). 

5.1 Subsystem and Component Verification  
The following sections describe the calculations, simulations, and prototyping of system components that 

were necessary to justify their inclusion in our proposed product. Final design entailed detailed analysis 

and selection of subsystem components, where the adequacy of our design was determined against the 

specifications in Table 4 and will be discussed at length below. All mechanical components were designed 

for a payload mass of 50 lbs (~25 kg). This applied load is far above the table’s actual 5kg load carried 

during experiments, but our intent was to design for misuse, such that an average person leaning on the 

table would not cause catastrophic system failure. The following sections are organized first by subsystem 

and then by component. 

5.1.1 Drive Train Analysis  
Before any components could be selected from off the shelf, we built an analysis tool in Excel to find part 

specifications that would allow for the fulfillment of system level requirements. We designed parts based 

on the system specifications is Table 4, with the most driving requirements for our preliminary analysis 

being table travel distance, load requirement, number of cycles, and speed. 

5.1.1.1 Motor 
The motor specifications came from a conservative payload mass of 25kg and a maximum speed of 10cm/s. 

A ballscrew pitch of 5mm was specified based on availability in the market and ability to meet our specified 

precision of 50 microns, meaning the table must be placed at a physical location within 50 microns of a 

user’s inputted table location in the GUI. We used a conservative estimate for a friction coefficient and 

motor efficiency to account for variability in the motor’s performance and amount of friction between the 

ballnut and ballscrew. Based on our analysis, we calculated an operating speed of 1200 rpm, steady state 

drive torque of 0.18 Nm, which equates to a required motor power input of 30.22W based on a work energy 

equivalence analysis. This analysis can be found in Appendix A.14. 

5.1.1.2 Ballscrew 
Our ballscrew was designed around four potential failure modes: static loading on the threads, fatigue, 

buckling, and vibration at natural frequency. For static loading on the threads, we used powerscrew 

equations from Shigley’s Mechanical Engineering Design to compute thread stresses due to friction as well 

as the normal stress due to bending, which was calculate for the most conservative loading situation when 
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the table is in the middle of the ballscrew. From there, we computed principal stresses using equations based 

on Mohr’s Circle and utilize the Tresca Failure Theory for a conservative safety factor. After static loading, 

we investigated fatigue effects on the ballscrew at 99% reliability based on the Mod-Goodman Fatigue 

Method.  During fatigue analysis we accounted for effects due to surface finish, shaft rotation, and 

reliability. This analysis was completed to ensure a decrease in ultimate strength over the life of the material 

would not cause yield. We also considered a buckling failure due to compressive loads on the ballscrew, 

but using Johnson Buckling Criteria we determined that buckling would not be a significant constraint when 

compared to other failure modes. We found the limiting factor for the ballscrew to be its natural frequency. 

In the end, the ballscrew we selected yields a critical speed safety factor of 1.559, when driven at a linear 

speed of 10 cm/s. The safety factors for the other failure modes were all over 100. The spreadsheet used to 

determine these values can be found in Appendix A.14.  

5.1.2 Motion Support  
The Motion Support subsystem defines the components that guide and support the table’s linear travel. As 

shown in Figure 9, two subcategories are further identified, namely the “Rail Assembly”, composed of 

linear rails, bearings, and bearing mounts, and the “Ballscrew Support Assembly”, composed of thrust and 

ball bearings. 

 

Figure 9: CAD showing both the support components. 

5.1.2.1 Rail Assembly 
Rail assembly selection was primarily driven by deflection analysis. In practice, we needed to eliminate 

virtually all bending and binding of the linear rails, which lead our team through the following design 

methods. Analysis began with the rail sizing excel calculator in Appendix A.14. To determine an adequate 

shaft diameter, we conservatively modeled the rail as a simply supported beam - a conservative estimate 

because, in actuality, the rail is fully supported on its undermost face, and fixtured at four hole locations as 

in Figure 6.  A carbon steel material yield strength, taken from railway manufacturer specifications, was 

applied, along with a shaft length of 30 cm and 50 lb load (safety factor of 4.5x over our applied plate 

loadings), with which the calculator determined a minimum railway shaft radius of 6 mm.  

This minimum radius leads us back to the manufacturer, where we found a rail of proper length at 16mm 

in diameter (an additional safety factor of 1.3 on top of the conservative estimates already discussed). 

Finally, we selected rails with a trapezoidal base support, ensuring our parts were fully supported rather 

than suspended. Our chosen SBR16 rail and bearing pairs were modeled in CAD, then analyzed using the 
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finite element analysis (FEA) studies in Figure 10. Characteristic features of the SBR16 rails include apt 

sizing and functional application to the feed drive system and an anti-rust chrome-plated coating. 

 

Figure 10: Finite Element Analysis of Linear Rails. 

From the railway FEA, we found that under a 50 lb loading, the maximum stress in the rail was 983kPa - 

under the 220 MPa material yield strength by a factor of 224x - and a maximum of deflection of 0.02618 

microns, which is too low impact our 50 micron resolution. Ultimately, our team took consideration to 

eliminating deflection with each design decision, and the resultant product is well-suited to our 

specifications. 

SBR16UU linear bearing and block components will be inserted concentrically along the rail and will serve 

as the connections between the table and rail system. The linear bearing will be used to stabilize the table’s 

motion by applying a reaction force at a distance from the ballscrew pivot to oppose ballscrew rotation. 

5.1.2.2 Ballscrew Support Assembly 
The second motion support subcategory, “Ballscrew Support Assembly”, is comprised of a FF20 ball 

bearing and FK20 thrust bearing. The ball bearing was designed to support radial loading, while the thrust 

bearing was designed for axial loading produced by the ballscrew threads. Taking the bearing’s projected 

lifespan of 3000 hours into consideration, we calculated the catalog life of a ball bearing with an applied 

load of 50lbs on the table. This analysis can be seen in Appendix A.14. Bearings were specified by the 

manufacturer in tandem with our selected ball screw, thus their selection and purchase happened 

concurrently. Due to the low axial load on the thrust bearing, and the oversized specifications on the ball 

bearing from our selected manufacturer compared to our specified catalog life for the ball bearing, we 

reasoned that the manufacturer’s thrust bearing would fit our engineering needs. 

5.1.3 Mass Support  
The mass support subsystem is comprised of the table and frame structures necessary to accommodate our 

5kg load designation and weight of all system components, respectively.  

5.1.3.1 Table  
Our sponsor indicated that the feed drive must be able to carry a 5 kg payload across a 30 cm travel distance, 

which prompted our design of a table that satisfies those requirements. In keeping with our goal to create 

an educational feed drive model, we determined that the payload should be available in incremental plate 

masses, allowing students to vary how much load they place on the system and observe its subsequent 

behavior – such as changes in linear speed, system vibrations, and motor output. The table spans the width 
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of the frame and is fixed atop the four linear bearings and central ballnut, shown in Figure 16. Because the 

ballscrew and linear rail components have been designed to handle vertical reaction forces of the mass load, 

as discussed in sections 6.2.1 and 6.2.2, we have allowed for lateral motion at the table attachment holes. 

The choice of aluminum table material was verified through construction of our structural prototype, with 

physical confirmation that the table will travel linearly under its 5 kg load without fracture.  

5.1.3.2 Frame 
To accommodate the placement of our feed drive components, we designed a frame that can be used to 

mount component geometries in the desired configuration. Clearance holes are provided at the location of 

the ball bearing, thrust bearing, and rails for a nut and bolt interface, as well as at the motor to interface 

with the threaded holes on the motor face. Slots under the frame allow for users to screw nuts onto the bolts 

for the rails and direct wiring safely underneath the system for electrical connection to the limit switches 

and rotary encoder. An extrude feature was used to bring the rails to the same height as the ballnut bracket 

for table alignment. In minimizing our system mass, we removed material where we could, with extruded 

cuts into the body of the frame and a trapezoidal thin-walled shape assigned to the support walls. These 

features can be observed in the frame schematic in Figure 11 below. 

 

Figure 11:Frame isometric views with key features labeled.  

In addition to our kinematic design and mass considerations, we additionally made some structural 

considerations to minimize frame stress and deflection. We added fillets to sharp corners to minimize the 

extremity of discontinuities to combat stress concentrations. These sharp corner breaks also serve as an 

additional safety measure on outer corners. We increased frame area at locations of high force and added 

structural ribs to provide additional inertia at critical points, such as the support wall for the thrust bearing. 

Finally, we minimized the distance from support material that high loads would be applied at. By decreasing 

the lever arm at locations such as the motor mount wall and thrust bearing wall, the applied moment is 

decreased, which minimizes normal stresses in the material. 

We conducted Finite Element Analysis (FEA) in a Solidworks Static Study to verify our design with applied 

loads to the system. Material properties for PLA, including Elastic Modulus, Yield Strength, Ultimate 

Tensile Strength, and Poisson’s Ratio, were sourced from an MIT Open Source Article[23] . The assumptions 

we made for our FEA was for a static, linear elastic, homogenous loading situation. Although the 3D printer 

prints in layers at different angles, we modeled our analysis as isotropic with conservative material 

properties. We applied conservative vertical loads of 120N at both bearings’ locations and a 100N axial 

load distributed over the thrust bearing wall. We assumed a fixed support at the table, and we used a 

reasonably fine mesh to obtain a precise analysis with reasonable computational time. We observed a 

maximum Von Mises Stress of 383kPa, well below the literature yield strength of 70 MPa [23]. We 



 
 

29 
 

additionally observed a maximum deflection of 16.1 microns, which is within reason for a system precision 

of 50 microns.  
 

 

  

Figure 12: Solidworks FEA performed on the frame to ensure reasonable strength and stiffness. A 

maximum Von Mises stress of 383kPa and a maximum deflection of 16.1 microns is observed. 

 

Initially, we considered the frame to be printed as a single part out of Polyactic Acid (PLA), but found that 

manufacturing complexities and questions on prolonged structural integrity led us to design the frame out 

¼” and ½” 6061 Aluminum stock, where its design was greatly simplified to be three vertical walls fixed 
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to a bottommost base plate. This conversion offered more effective manufacturing methods and was 

afforded by selecting a 12V DC servomotor with rotary encoder attached. 

5.1.4 Controls 
To assist with the development of our controls system and user interface, we have recruited Samuel 

Wong, a Computer Engineering student, as an interim member of our team for the remainder of the 

project. The following section will cover our current progress on our controls, and briefly touch on our 

plan for further development.  

 

5.1.4.1 Microcontroller and GUI 
A Nucleo L476RG microcontroller will be used to interface with the encoder, motor, and the PC that 

controls it. The PC will communicate with the microcontroller via a serial port, which will be facilitated 

with a USB cable. A GUI will be created for ease of use, and a simple-to-implement GUI library will be 

used for possible future changes to the program. The GUI is currently setup to take the position and 

proportional gain as the inputs to the control system. The prototype GUI model can be seen in Figure 13. 

below. It currently reads out positional data on a moving graph using the Matplotlib python library. 

Improving the graphical and functional appeal of the GUI, as well as implementation of the controls system 

will be a major focus moving forward into spring quarter. 

 

 

Figure 13: The current dummy GUI used for prototyping. 

 

5.1.4.2 Rotary Encoder 

We decided to switch our design direction from using a linear encoder to using a rotary encoder due to 

lower complexity and cost. We have selected a rotary encoder with 14-bit resolution that fits our resolution 

requirements and uses a SPI output, which is compatible with our microcontroller. The rotary encoder will 

mount onto the encoder adapter, which will be coupled with the same frame clearance holes that the ball 

bearing housing is concentric with. The rotary encoder spindle will connect to the ballscrew shaft end via 

an encoder coupling. Both the encoder coupling and encoder adapter were designed by our team and 

included in the drawing package to be 3D printed during the manufacturing process. A schematic showing 

the components for connection between the ballscrew shaft, and the encoder can be seen in Figure 14 below. 
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Figure 14: Encoder mounting scheme from rotary encoder to ballscrew shaft. 

 

5.2 Final Design Selection  
After developing component specifications based on concepts rooted in engineering mechanics, we moved 

on to detailed component selection and assembly into a final CAD model. All pieces in the assembly were 

designed with clearance from other components, and the frame design served as the foundation in securing 

parts. All components are to be purchased from external vendors except for the frame, table, encoder 

adapter, and encoder coupling which will be 3D printed. With no threads designed into the frame, nuts and 

bolts will be used to assemble the bearings and rails onto the structure. The rails were cut down in CAD to 

match the travel length of the ballscrew, which will need to occur with a circular saw during manufacturing. 

For motion control, the rotary encoders to monitor table position will be mounted on the ballscrew shaft 

adjacent to the ball bearing, with limit switches placed at the extreme ends of the table’s motion. A full 

assembly schematic of our CDR CAD can be seen in Figure 15 below. 

 

Figure 15: Full Assembly with final parts. 
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5.3 Safety, Maintenance, and Repair Considerations  
We are committed to designing a system that is both effective and safe for the user. Because of this, our 

team created a Failure Modes and Effects Analysis, which is in Appendix A.12. This analysis investigates 

the potential failure modes while describing the potential effects, causes, preventive activities, and current 

detection activities of these failure modes. The team has included a factor of safety for all our components 

and has considered worst-case scenarios. 

Most of the system safety precautions come from the drive train and motion support components failing 

due to the transfer of motion from the electric motor which could cause deflection or fatigue. The team has 

run some analysis on these components presented in Appendix A.14.  

Other protective measures include an exposed kill switch on the microcontroller to prevent extraneous 

motion of the masses and effective cable management to prevent any wiring catastrophes. Our goal is to 

make sure it is difficult for the user to do something dangerous with the device. The team developed a step-

by-step assembly plan that will describe to the user how to replace parts if necessary, located in the 

Manufacturing Plan in Section 6. 

5.4 Cost Analysis Summary  
After researching vendors and compiling their prices into an indented Bill of Materials in Appendix A.11, 

the total cost of the system came to $761.82. However, there is a good chance we will be over budget due 

to the hardware we need to obtain for the controls, and we will need a power supply. We are planning on 

contacting Dr. Birdsong to request some funding through the Controls Lab budget. The bulk of the system’s 

costs will come from the electric motor ($189.61) which is justified based on the requirements that it 

satisfies.  

Cost for our drivetrain and motion support function were able to be minimized by one vendor 

(Automation4Less) that provided a great deal on components like the ball-screw and bearings. Also, since 

our larger components like the frame and table will be 3D-printed this minimized the manufacturing cost 

and only cost-effective spools of PLA needed to be purchased.  

The team is confident they can stay under budget as the project continues even though they still need to 

purchase their control system components. As they assemble to structural prototype, they will have wiggle 

room when it comes to purchase extra or replace parts. In addition, as they run their design test, they see 

what needs to be changed. A summary of major component cost is shown below. 

Table 7:Summary of Costs 

Component Approximate Cost 

Electric Motor $189.61 

Ball Screw $100.00 

Ball nut Bracket $31.50 

Rail and Linear Bearing $30.00 

Ball Bearing $36.00 

Thrust Bearing $95.40 

Microcontroller $14.60 

Fasteners $20.00 
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5.5 Structural Prototype  
For our structural prototype, our team decided to order the final parts for the drive train and 3D print the 

table to observe the actuation of the table with our own eyes. We wanted to ensure that for a given turn of 

the input shaft, the mass supported on the table would actuate predictably. After purchasing the necessary 

components, we started by securing the ballnut bracket to the ballnut with the use of 6 M6x1 screws. 

The ballnut was installed onto the ballscrew and then each of the bearings were press fit onto 

the ballscrew with the use of a rubber mallet and WD-40 lubrication. Finally, we 3D print the envelope of 

the table using a Creality Ender 3 Printer and mounted this table on the ballnut bracket using 4 M6x1 

screws. An overhead picture of our structural prototype can be observed in Figure 16 below.   
 

 
Figure 16: Schematic of the structural prototype 

 

The opportunity to put our hands-on hardware brought a few immediate lessons to our attention. The vendor 

from which we sourced our powertrain components did not provide part mass, so we got to experience with 

our own hands the significant mass of the ballscrew and bearings. We experienced difficulty 3D printing 

large masses from PLA using our personal 3D printer, which brought us to consider a custom print from a 

manufacturer. Ultimately, after receiving quotes outside the budget range, our system was redesigned to be 

manufactured from ¼” 6061 aluminum stock.  

 

5.6 Post CDR Design Changes 
Due to the low availability of 3D printers that would support the print for a piece as large as our frame, 

we redesigned our frame from Delrin, a machinable plastic. After consulting with Eric Pulse, we received 

the recommendation that the deformation of Delrin during machining will be too significant for the 

accuracy that our system requires. We learned about the devastating deflection that heat of machining can 

have on precision components, so we redesigned our frame again from aluminum. We decided that we 

would cut stock metal and machine the pieces ourselves, dividing the frame into motor face, base plate, 

ball bearing face, thrust bearing face, table, spacers, and legs. Due to the acceptable strength and cheap 

cost, we decided on an aluminum thickness of 0. 25in.The only exceptions were the spacers and thrust 

bearing face being machined from 0.5in. stock for dimensional constraints and minimal deflection 

respectively. We decided to connect all components with threaded fasteners for both strength of 

connection and ease of disassembly when needed, with the use of 90-degree angle brackets to attach the 

outer walls to sides of the base plate. All fasteners are to be secured with nuts. We implemented two 

counterbored legs in our design to elevate the base plate to allow for nuts to be fastened on the bottom of 

the structure. A picture of our final CAD model can be seen in Figure 17. 



 
 

34 
 

 

 

Figure 17: Final CAD assembly, with the implemented aluminum structure replacing the 3D Printed 

frame. The structure consists of a base plate, three walls, two spacers, and two legs. 

In addition to this structural change, we found an economical face-mount motor with built in encoders 

with speed and torque specifications within our range from Servocity. While a motor with a built-in 

encoder does not as clearly visually illustrate the control loop upon which our control system is based, it 

is more like systems encountered in real life and provides for a more compact total design. This addition 

allowed us to neglect our original encoder mounting design and focus simply on a face mounted single 

unit motor and encoder. 

Additionally, while we originally planned for optical limit switches in our final design, we switched to 

two purely mechanical roller switches operating as normally closed, such that contact with the switch 

opens the circuit and causes the pin reading from the switches to read contact. This change was driven by 

the special constraints on the sides of the base plate, the lower cost, and less effort, as the original optical 

switches that we sourced were designed for much smaller applications. 

6. Implementation 
Due to the machining precision required and the market readiness of the required parts, we sourced and 

purchased most of the feed drive’s components from 3rd party vendors. We manufactured the aluminum 

frame that we designed as discussed in Section 5.6 based on the produced drawings that can be found in the 

drawing package in Appendix A.12.We made great use of the Cal Poly Machine Shops for manufacturing, 

including The Hanger and Mustang 60. Final assembly and implementation of coding took place in San 

Luis Obispo. 

6.1 Part Procurement  
As we approached Verification Prototype Sign Off, we still needed to acquire a few components to give a 

clear representation of our system. These parts included the Motor Driver breakout board purchased from 

ST Microelectronics, the limit switches, purchased from Amazon, shaft coupling purchased from McMaster 

Carr, the lid purchased from Target, and the aluminum sheets we purchased from Grainger. The remaining 

electrical parts included the motor which we purchased from ServoCity, the Nucleo microcontroller from 

ST Microelectronics, and the 24V DC power supply from Amazon. The parts added to our inventory before 

the CDR included the ballscrew, the two supporting bearings, the ballnut, and the ballnut bracket which we 

ordered in a package deal from online supplier Automation4Less. Similarly, we purchased the rails and 

linear bearing, as well as the PLA for the printed components, from Amazon.  
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6.2 Final Budget Status 
After the completion of the verification prototype, our final cost amounted to $758.54, including tax costs 

and shipping fees. This left us with $32 remaining from our $800 budget to be put towards any future 

modifications by our sponsor. 

 

Table 8: Summarized Cost of Componentry 

 

 

6.3 Manufacturing/Assembly Process 
The following section details the assembly process of our system. It will also touch on the keyframe 

manufacturing steps that we performed in the Mustang 60 and Hangar shops.  

 

Drive Train  

Motor (111000) 

Purchased 

Assembly 

Items Purchased Vendor Subtotal Shipping/handling/tax 

PLA Filament Amazon  $22.99   $1.78  

Ball Screw, Ballnut, and Bearings Automation4Less  $262.90   $20.77  

Rails and linear bearings assembly Vevor  $29.99   $-    

NUCLEO-L476RG 

(Microcontroller) ST Microelectronics  $22.59   $4.35  

Limit Switches and shaft couplings McMaster-Carr  $12.68   $-    

Aluminum Sheets Grainger  $194.82   $44.91  

Motor Driver ST Microelectronics  $12.88   $5.00  

Power Supply Amazon  $13.99   $1.22  

Roller Switches Amazon  $6.99   $0.61  

Motor Driver ST  $12.88   $-    

56 Fasteners and Corner Brackets Ace Hardware  $33.31   $2.91  

Female Bullet Adaptors ServoCity  $3.99   $-    

Motor ServoCity  $39.99   $6.99  
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1. Placed the motor securely against the motor mounting face and aligned the four counterbored M4 

Clearance holes with the M4 tapped holes on the motor’s face. We secured this connection with 

four M4 fasteners. 

 

Figure 18: Isometric view of the assembly, with the motor driving the ballscrew via flexible shaft 

coupling. Channel A leads from the motor driver the motor, powered by a 24V wall outlet source and 

controlled by a Nucleo Microcontroller. 

2. Placed the motor shaft inside the small diameter side of the flexible shaft coupling. 

3. Secured flexible shaft coupling as described below in “Flexible Shaft Coupling.” 

4. Connected motor leads to the bullet lead to motor driver adapter, which is connected to the Motor 

A output pins on the Motor Driver board. Secured this screw terminal connection with a flat head 

screwdriver. 

Ballnut (114000) 

Purchased 

Assembly 

1. Screwed the ball nut onto the ballscrew by spinning the ball nut onto the ballscrew. We completed 

this by flipping the ball nut onto the ballscrew top and screwing the ball nut onto the screw until 

the arbor disconnects from the ball nut. 

Ball Screw (113000) 

 Purchased 

 Assembly 

1. Press-fit free machined end of ball screw into the ball bearing. 

2. Used Circlip/Snap ring to secure screw to the ball bearing. 

3. Press fit the fixed end (17mm) side of the ballscrew through the thrust bearing (Motor Side). 

4. Positioned machined end in the flexible shaft coupling and securing it with set screws. Followed 

instructions below under “Flexible Shaft Coupling” before proceeding. 

Motor Face 
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Flexible Shaft Coupling (116000) 

Purchased 

Assembly 

1. Ensured the flexible shaft coupling rested in the mounting area and that the motor shaft and 

ballscrew end contacted the inner surface of their respective coupling hubs. 

2. Ensured that the two coupling hubs firmly gripped the spider.  

3. Tightened the set screws on both coupling hubs to fix each shaft to the hub by through the friction 

of the set screw. Ensure that both hubs still contact the spider. 

Ballnut Bracket (114000) 

Purchased 

Assembly 

1. Fastened the ballnut bracket to the ballnut by aligning the threaded holes in the hexagonal pattern 

on the bracket’s side with the flange on the ballnut and clamping the two components together with 

6 M8x0.8 screws. 

Motion Support 

Rails and Linear Bearings (121000) 

 Purchased 

 Assembly 

1. Fastened rails to the bottom of the frame and linear bearings will run the rails and mounted to the 

mass support table.  

Ball Bearing (122000)  

 Purchased 

 Assembly 

 
Figure_ . Drawing for the ball screw ball bearing. 

 

Figure 19:Expanded view of Assembly. 

1. Positioned the bearing on the opposite side of the ball screw to allow for ball screw rotation.  
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2. Ran the ball screw through the FF mounted body then the sealed ball bearing and lastly secured by 

the snap ring.  

3. Mounted to the frame using four M6x1mm thread, 8mm long screws.  

 

 

Figure 20: Ball bearing mounting configuration on the ball bearing mounting face. The ball bearing 

protrudes through the ball bearing mounting face and is secured with four M6 nuts and bolts. 

 

Thrust Bearing (123000)  

 Purchased 

 Assembly 

 

Figure 21:Drawing for thrust bearing. 
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Figure 22: Expanded view for assembly. 

 

1. Positioned the bearing on the motor side of the ball screw. 

2. As seen in the diagram above we ran the ball screw through those parts and secured it by the 

securing nut with set screws.  

3.  Mounted to the frame using the same M6x1mm thread, 8mm long screws. 

Mass Support 

Table (132000) 

Vertical Bandsaw 

1. Cut the table from stock Al-6061 0.25” stock to length. Sanded to smooth the edges to ensure 

flatness. 

Drill Press 

2. Drilled four M6 clearance holes as measured for alignment with the ballnut bracket and eight M5 

clearance holes for alignment with the linear rails on both sides of the table. 

Assembly 

3. Mounted the table onto the ballnut bracket by aligning the four clearance holes in the middle of the 

table with the 4 M6x0.8 tapped holes on the ballnut bracket. Secured the connection with fasteners. 

4. Secured the table to the linear bearings with M5 screws. 

=  

Figure 23: Top view of the system depicting the length of the ballscrew, with the ball nut connected to 

the table and driving on the linear rails. 
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Structure 

Frame-Main Manufacturing Process (142000)  

Assembly 

1. Aligned each of the three walls (datum face, motor face, ball-bearing face) with their respective 

clearance holes. 

2. Fastened the pieces together with the two clearance holes at the side of each component. Each 

screw meshed with a nut to secure the pieces of the frame together. 

Note: The frame underwent redesign over Winter Quarter, with our team deciding to manufacture the 

previously singularly printed frame as a four-piece aluminum structure consisting of a base plate, datum 

face, motor face, and ball bearing face. We joined these pieces together using L-brackets. 

 

Figure 24: Cut out of all frame pieces. 

Base Plate (Manufacturing) 

1. Cut Al-6061 0.25” stock to length (plate width matches the 8” width of the stock). Used a 2-flute 

3/8” end mill on the shop mills in Hangar. 

2. Used appropriately sized drill bits on the mill’s drill chuck to cut the L-bracket, linear rail, and 

datum face clearance holes. 

Motor Face (Manufacturing) 

1. Used vertical saw in the Hangar to cut AI-6061 0.25’’ stock to length dimensions of 2.93x8 in. 

2. Used a 2-flute 3/8’’ end mill to trim and clean up edges in Mustang 60. 
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Figure 25: Flattening and squaring the edges of the motor face on the Hangar mill. 

3. Used a combination square to scribe hole locations. 

a. Hole Designations 

i. Four 0.45’’ in thru-holes. 

ii. One .090’’ thru-hole is all cut by the drill press.  

4. Used appropriately sized drill bits on the mill’s drill chuck to cut the clearance holes of the motor 

face in the Hangar. 

a. Hole Designations:  

i. One M9 clearance hole for joining of the motor spindle and flexible shaft coupling. 

ii. Four M5.5 clearance holes for mounting of the motor onto the face. 

 

Datum Face (Manufacturing) 

1. In the Hangar cut Al-6061 0.25” stock to length (face width matches the 8” width of the stock). 

Used 2-flute 3/8” end mill on the shop mills. 

2. Cut legs on either end of datum face as per the drawing. These legs allowed the datum face to be 

pin-located atop the base plate. 

3. Measured out holes using a combination square, digital calipers, and scribe to fit 50-micron 

tolerance. Punched drive indents to make hole locations clear when using the mill. (Hangar). 
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Figure 26: Measuring and marking hole locations on the base plate and datum face using a combination 

square, digital calipers, and scribe. 

4. Started the center hole of the datum face using a 2-inch diameter hole saw on the mill in Mustang 

60. 

 

Figure 27: Cutting a starting center hole of the datum face using a hole saw. 

5. In increments of 0.020”, reamed out the rest of the center hole using a bore bar on the Mustang 60 

Mill. 
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Figure 28: Using a bore bar on the Mustang 60 mill to cut the center hole of our “Datum Face”. 

6. Lost the set screw of the bore bar in the only crevice of the Mustang 60 Mill. Hired a shop tech to 

find the screw as it was the only size that did not exist in the shop’s extra hardware bins. 

 

Figure 29: Getting help from a shop tech to find a lost set screw in the Mustang 60 mill. He found it! 

7. Used appropriately sized drill bits on the mill’s drill chuck to cut the clearance holes of the datum 

face in Mustang 60. 

a. Hole Designations:  

i. Two ¼-20 clearance holes for locating the face atop the base plate. 

ii. Four M6 clearance holes for mounting of the thrust bearing onto the face. 

Ball Bearing Face (Manufacturing) 

1. Cut Al-6061 0.25” stock to length (face width matches the 8” width of the stock). Used a 2-flute 

3/8” end mill on the shop mills. We performed these steps in the Hangar. 
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2. Cut four M6 clearance holes for mating with the ball bearing housing clearance holes using a drill 

press in Mustang 60. 

3. Used a 58mm hole saw bit on the drill press to drill a clearance hole for the ballscrew at the specified 

position in Mustang 60. 

Assembly 

1. Used L-brackets with M6 screws to secure the motor and ball bearing faces to the base plate. 

2. Drove a ¼-20 pin through the vertical holes on either side of the datum face to secure it to the top 

of the base plate. 

Lid (142000) 

Purchased 

Assembly 

1. Place the lid on the frame. 

Controls 

Microcontroller (151000) 

Purchased 

Assembly 

1. Mounted Nucleo microcontroller to the side of the housing in the MCU bracket 

2. Connected wires based on wiring diagram from MCU to motor via jumper cables, MCU to rotary 

encoders via jumper cables, and MCU to computer via USB connection. 

Microcontroller Housing 

Manufactured 

1. Redesigned a Nucleo part file that was posted on a shared community design drive.  

2. Made changes to fit our current setup. 

3. Created an stl. File and 3D printed the enclosure.  

Assembly 

1. Placed Nucleo three-hole cutouts on the enclosure mounting pillars.  

 

 

Figure 30: Enclosure with Nucleo mounted. 

 

Rotary Encoder (152000) 

Purchased 

Assembly 
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1. Integrated into motor upon purchase. 

2. Connected jumper cables of power, ground, Channel A, and Channel B to the microcontroller based 

on the wiring diagram. 

Limit Switches (153000) 

Purchased 

Assembly 

1. Cut two female jumper cables to 2-inch length for each limit switch 

2. Strip half of the cable with a wire stripper to reveal the inner copper. For one of the two female 

connectors, we wrapped the wire three times around the “C” terminal on the switch, and for the 

other wire, we completed this wrap around the “NC” Terminal (Normally Closed). 

3. Soldered each of these two wires to the switch to ensure structural integrity. 

 

Figure 31:A soldered connection between cut wires and switch terminals. We soldered one wire to the 

“Common” terminal and one wire to the “Normal Closed” terminal. 

4. Attached these switches at the extreme position of the table’s motion using Command Strips. 

5. Connected wires from optical sensors to the MCU based on the wiring diagram.  
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Figure 32:  Limit switch mounting configuration. We mounted the limit switches at the extreme points of 

the table’s motion on the outside of the rail and are fixed with command strips. The switches are normally 

closed but open the circuit upon contact with the linear bearing. 

Much of our work would not have been possible without the guidance of the Cal Poly Machine Shop 

Technicians. Also, we are thankful to Eric Pulse and Professor Schuster for organizing the opportunity to 

obtain our yellow tags late in this project.   

6.4 Microcontroller Programming 
To allow students to test their controller gains and perform system characterization in the Controls Lab, we 

developed the software that ran the hardware. This involved the development of a main file, main.py, which 

controlled the timing, frontend communication, and data collection for our system. This main file creates 4 

objects to drive our hardware, cut from the other classes that we wrote: controller.py, which directs the 

control system and drives all the hardware as timed by main.py, EncoderLab6.py, which interacts with the 

encoder connected to the motor spindle, MotorDriver.py, which drives the motor through Pulse Width 

Modulation (PWM), and LimitDriver.py, which interacts with the two limit switches. The documented code 

for the five backend files is attached in Appendix A21. 

The main file main.py runs upon startup of the microcontroller, initializing serial communication and 

awaiting a comma separated list sent by the frontend, containing the three controller gains Kp, Ki, and Kd, 

as well as three reference positions, whether the system is to be run in closed loop or open loop, and the 

open loop duty cycle for if the system is to be run in open loop. After this information is obtained, main.py 

initializes all relevant objects and prompts the controller to initiate startup, which causes the ballnut to move 

in open loop in the negative direction until a limit switch is engaged, at which point the encoder is zeroed 

and the ballnut moves 1cm back in the positive direction.  

While running in the closed loop configuration, the controller attempts to reach steady state at each 

reference position by spinning the motor and moving the ballscrew based on the voltage specified by the 

implemented PID control system. Runs of the control loop are initiated at regular intervals specified in 

main.py. The current interval implemented in main.py is 30ms. When steady state is reached, the reference 

position in the control system will be set to the next input reference position. We have defined steady state 

for our system as within 0.5mm of the reference position and with an applied voltage of less than 16% of 

the maximum 12V input. This voltage constraint accounts for the fact that the system may overshoot. While 

the motion system resolution is within the specified 50 microns, reaching steady state takes excessively 

long to reach due to static friction in the system. Upon each run of the controller, time data, linear position 

in centimeters, and linear velocity in centimeters per second are sent back to the front end for real time 
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plotting via serial communication using the built in Pyboard UART module. After the table has reached all 

three positions at steady state, the word ‘DION’ is written over the serial port to communicate that data 

collection has terminated.  

While running the system in the open loop configuration, the requested PWM duty cycle is applied to the 

motor until a table travel distance of 19 cm is observed by the encoders. This open loop configurations 

allows for system characterization, such as an experimental determination of motor steady state gain and 

system time constant, as opposed to the controller design aspect presented by the closed loop configuration. 

The entirety of main.py is constructed inside of a While(True) loop, which allows a successful run of the 

system to be followed by another run from the frontend, without requiring that the system be powered 

down. 

The Motor Driver file, MotorDriver.py was heavily implemented from a similar file that we coded during 

ME 305. The Motor Driver uses three pins to run, with two used for PWM and the nSLEEP_Pin used to 

enable and disable the motor. The motor is enabled by setting nSLEEP_Pin high and disabled by setting 

nSLEEP_Pin low. The “set_duty()” method is used to set the duty cycle of the motor, with a saturation limit 

placed in the class such that only a 50% duty cycle can be applied. This saturation limit exists because we 

are running a 12V motor from a 24V source. 

We also implemented our Encoder Driver based off the encoder driver that we constructed for ME 305. 

The update() method updates the current encoder position and corrects for counter overflow by correcting 

the observed delta. If the controller calls for the encoder to zero, such as during startup, this occurs in the 

update method. All other methods return linear and rotational position and velocity, with the units that are 

convenient to the user. Rotational position in revolutions is computed from the encoder ticks times the 

encoder CPR, tabulated as 25.9 for the motor output shaft, and multiplied by 4 since our encoder is 

quadrature, which means that one encoder count is the equivalent of 4 ticks. Linear position can then be 

derived by the pitch of the ballscrew, for after one rotation of the screw, the ballnut actuates the length of 

the pitch, found to be 5mm. Finally, since we prescribe the interval at which the controller updates the 

encoder, the linear and rotational speeds are simply the change in position divided by change in time. 

The simple limit switch class, stored in LimitDriver.py uses only an input pin with a connected pullup 

resistor. The read() method returns “True” if the pin reads high, which signifies an open circuit, and returns 

“False” if the pin reads low, which signifies that the circuit is closed. 

When the controller object is created by main.py, all gains, the initial reference position, and all hardware 

driver objects are passed to the controller for full control of the system. While main.py controls the timing 

and serial communication, controller.py acts as the full control system, taking data from the encoder and 

dictating the voltage to the motor. After startup, the run() method is the main method used to control the 

system. This method runs a single iteration of a closed loop controller. Encoders update, the controller 

denotes the voltage to output to the motor, and the duty cycle is set as a percentage to the motor. If a limit 

switch is engaged due to overshoot of the system, the controller disables the motor. Data is then returned 

to main.py as a tuple of the form: 

[position[cm], velocity[cm/s], angular velocity[rpm], motor duty cycle [%]] 

The control scheme used by the controller that acts on the error is a PID controller. Additionally, students 

can implement P, PI, or PD control by setting non-relevant controller gains to 0. The P control acts as a 

spring, pulling the table toward the reference position proportional to the error. The integral control is used 

to minimize steady state error, for the longer that the error is non-zero, the harder the motor will push to 

correct the error in position. This control was implemented as a discretized integral, with e_sum storing the 
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sum of the products of all previous errors and time interval to yield the area under an error-time curve. The 

gain Ki acts on this e_sum, and e_sum is reset when a new reference position is requested. Derivative 

control is additionally used to smooth the curve between positions, acting as a damping term. This control 

was implemented by storing the previous error value and numerically computing the derivative of the error 

with respect to time with the division of the difference in error by the interval. Multiplying this term by Kd 

yields the voltage requested by derivative control. The three of these gains in conjunction comprise the PID 

controller commonly used today. Our code is backed up by a similar procedure followed by a paper from 

James Madison University [24]. 

6.4 User Interface Development 
Professor Xing requested us to develop a graphical user interface, or “GUI,” that students or other end users 

could interact with to control the feed drive and receive feedback. For this task, we opted to use a built-in 

MATLAB add-on called App Designer. We determined that the GUI was to be broken into two sections, 

one for user inputs and one for real-time data collection. The user inputs tab allows our system to maintain 

its integrity as an educational device as it lets users directly change portions of the code through serial 

communication. The data-collection tab lets the user see the results of their changes, which they then deem 

desirable or undesirable. The below figure shows the user interface after a sample closed loop run. 

 

 

Figure 33: GUI as it will appear in the Controls Lab. 

 

As can be seen in the above figure, the GUI was programmed to allow the user to select the three gains of 

the PID controller which are then written over the serial port and read/implemented on the backend. The 

user can also enter a series of three desired positions that the table will attempt to reach. The final input 

requested from the user is selecting whether the run will happen in open or closed loop. 

After the user presses the “enter button,” all the inputs are written over the serial port, the table zeros on 

the limit switch, and then the real time data collection begins. The two output variables are the tables 
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linear position and speed, both of which appear on their own set of axes. The source code has also been 

configured so that after the run is complete, three arrays corresponding to the times, positions, and 

velocities are exported to the base MATLAB workspace so that the user can save the data for later 

analysis. 

 

6.5 Challenges/Considerations 
One of our main challenges was figuring out how to manufacture the frame. After having a discussion with 

Professor Schuster and seeking the guidance of Eric Pulse we felt like it was in our best interest to machine 

the parts ourselves and utilize the shops. This ended up being a very fun experience and through this process, 

we were able to work as a team and put to practice Cal Poly’s Learn by Doing slogan. In addition, Nick De 

Simone and Juan Majano were able to get their yellow tags and take advantage of the end-mill for the higher 

precision parts. 

One challenge in manufacturing the frame was aligning holes between components. Before we had access 

to a high-precision mill, we relied on our measurements and a drill press. This forced us to oversize our 

clearance holes to ensure bolted joint connections between faces.  

7. Design Verification Plan 
To verify that our feed drive prototype will meet the system requirements in Table 4, our team conducted 

testing as detailed in the following section. Each specification has been assigned a description, 

measurement, and acceptance criteria; please note the complete Design Verification Plan in Appendix A.13 

that will served as a thorough checklist at the time of testing. 

7.1. Mechanical Specifications 
This subcategory was defined by purely mechanical test specifications and included the coworking of the 

table, ballscrew, linear rails, and linear/thrust/ball bearings. Testing occurred in Ryan and Caleb’s San Luis 

Obispo home with the components that make up our structural prototype, here the team manually verified 

the required acceptance criteria before powering the system. Per our sponsor’s initial problem statement, 

the feed drive table must carry a 5kg weight and travel up to 30 cm; the linear stage assembly – including 

the table, linear rails and bearings, and ballscrew and ballnut – must produce linear motion at the table 

through rotary motion of the ballscrew. Thus, the system must concurrently (1) match these acceptance 

criteria (2) withstand the 5 kg load without deflection and (3) travel 30 cm unimpeded, each of were verified 

by physical measurement with dial calipers and measuring tape. We also ascertained the resolution of our 

motion system, which was accomplished at the time of observing its rotary to linear motion conversion. As 

an acceptance criterion, the table should move 15 cm for 30 manual turns of the ballscrew. For the last of 

our manual specifications, we verified that the system is portable – a design request by our sponsor for use 

in the classroom as context; our current acceptance criterion lists a maximum system weight of 50 lb, where 

the total system was placed on a scale and measured against this value. 

7.2. Electromechanical Specifications

 
Our system inherently requires electromechanical operation – involving the servomotor, microcontroller, 

and user interface – and demands consequent performance specifications. Of note, the motor and 

microcontroller must communicate effectively with one another, as prompted to operate by a frontend 

computer user interface. We have specified that command prompts from the UI must travel via serial 

communication to the backend, which we tested at Ryan and Caleb’s home. Because our system will operate 

in the educational setting, its user interface should be easily navigated; an acceptable level of understanding 

was determined by asking an engineering roommate to operate the interface and run the system in less than 
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five minutes. Regarding motor performance, we needed to observe as to whether the motor spindle rotation 

will produce a table travel speed of 10 cm/s, verified by timing the table’s end-to-end travel as well as the 

speed recorded by the controller in software, as well as limit the table’s travel length to a maximum of 30 

cm (necessitating limit switches that communicate with the microcontroller and stop motion when the 

maximum distance has been reached). Concurrent to verification of these specifications, our code collects 

data in real time, performing the recording and storing of motor speed and table position, speed, and error 

over time. 

7.3 Test Procedures Conducted 
The following table contains a summary of the key results from our testing phase. Complete information 

on each of the testing procedures and their full results can be found in the DVP&R in Appendix A.13. 

Table 9: Testing Results Summary 

Test Name  Results Notes/Recommendations 

Table Travel Test 25 cm 

• Table only able to travel 25cm due to physical 

constraints. This translates to <25cm on the GUI 

side due to overshoot.  

 

• Recommendation: Increase system length or 

decrease width of the table. 
 

Microcontroller Communication 

Test 
Pass  

• When switches are pressed during the run 

function, they stop the table immediately. 
 

Load Requirement Pass  • No deflection could be measured with a caliper. 
 

Table Speed Test  7.5 cm/s 

• Under peak conditions, the table has a max 

speed of 7.5 cm/s.  

 

• Recommendation: Get a more powerful motor 

or higher quality bearings to minimize losses. 
 

Mobility Test  24.8 lb • System weighed on a scale. 
 

Open Loop Motor Output Test Pass 

• Table speed varies linearly with increasing duty 

cycle. 

 

Encoder Test .29 cm 

• Average bias error from three runs  
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• Recommendation: recalibrate and decrease the 

speed of the table during a zeroing function to 

reduce overshoot  

 

User Interface Test 29.3 s 

• Average time for 3 inexperienced users to 

design controller and run system using final 

iteration of MATLAB GUI. 

 

Motion System Resolution 15.00 cm 
• Confirmed ballscrew pitch using caliper over 3 

trials. 

 

Detailed in the following sections of Chapter 7 are brief descriptions of each test that was conducted on 

the CNC Feed Drive.  

7.4 Table Travel Test  
The purpose of this test was to verify that the table could travel 30 cm along the ball screw’s longitudinal 

axis per our sponsor’s product specification. Also, the table must be able to do so without impedance by 

misalignment or any other failure. This was done by manually turning the ball screw to verify that it 

produced linear motion of the table. Then marking the table’s center position by placing the tape on its 

side using a marker to scribe the table’s center on the tape. After that, we aligned the table and the tape to 

begin running the system. We stopped the ball screw when it was not able to travel any further. This test 

was performed in the house of two team members. The results were that the table was able to travel 25 cm 

due to physical constraints. This test failed based on our criteria and some recommendations we have are 

to increase the system length or decreases the width of the table.  

7.5 Microcontroller Communication Test 
Before the full initialization of the system, we verified the functionality of all electrical components in 

tandem with the microcontroller. This included the controller’s ability to execute MicroPython Code, 

communicate with a front-end computer via the serial port, and interface with the motor, encoder, and 

limit switches. To apply sufficient power to the motor, we used a Motor Driver breakout board stacked on 

the Nucleo, which required additional testing.  

After the completion of the three hardware drivers for the Nucleo, consisting of the Limit Switch Driver, 

Motor Driver, and Encoder Driver, we uploaded all three files to the controller for testing. We connected 

the four encoder pins and input the Counts per Revolution (CPR) of the encoder to our driver. We verified 

that one mechanical rotation of the motor spindle equated to a 360-degree revolution in software. After 

connecting our two motor output pins and enabling the motor via a third pin, we successfully ran 12V into 

the motor, which we verified with a multimeter. We additionally successfully flipped the polarity of the 

leads in software, which resulted in the motor spinning in the opposite direction. We tested our limit 

switch implementation by conducting a continuity test with a multimeter, verifying the circuit as closed 

when not engaged and open when engaged. After testing each component, we constructed the system to 

test the three pieces of hardware in parallel with a script called “Testcode.py”, which successfully ran the 

table back and forth between the two limit switches and printed the encoder readings. This verified 
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system performance and sufficient power draw from the controller. To decrease power consumption, we 

switched from using optical limit switches to mechanical switches. 

We finally tested our serial communication through the initial test code and then verified our system with 

our closed-loop control implementation. We successfully passed PID controller gains and reference 

positions to the controller from the front end and passed back time, position, and velocity in real-time. 

7.6 Load Requirement Test  
The load test was designed to test the feed drive’s capability to withstand the rated payload. As set forth 

by Dr. Xing, we designed our system to effectively carry 10lb on the table. We began by moving the table 

to the center of the ball screw at which point maximum deflection could occur. We then measured the 

vertical distance between the baseplate and the top of the table. Afterward, we stacked a 10lb weight atop 

the table and remeasured the distance. No deflection occurred that was large enough to be measured by a 

caliper with a resolution of .0001 inches. Therefore, it could be said that our maximum deflection was 

.0001 inches, and the test was passed. 

7.7 Table Speed Test  
To determine the top speed of our table, we ran our system in closed loop via our front-end user interface, 

requesting the furthest possible distance of 25cm and using a Proportional gain of 10 to ensure full 

saturation of the controller. This saturation ran the motor at the maximum possible voltage of 12V for the 

greatest possible distance within the actual context of how our system will be run in the lab. Our encoder 

driver file contains built-in tested functionality to convert the observed RPM of the motor spindle to the 

linear speed of the ball nut in cm/s via the known pitch of the ballscrew. In observing the plot of velocity 

against time on the front-end, we observed a maximum linear velocity of 7.5 cm/s. While this is less than 

the 10 cm/s outlined in our requirements document, we still believe this is sufficient for a satisfactory 

educational experience centered around linear actuation. If a higher top speed is desired, we recommend 

the purchase of a more powerful motor or higher quality drivetrain components such as the bearings to 

minimize losses due to friction. 

7.8 Mobility Test 
To function as a classroom model, our sponsor requested that the feed drive be portable. In turn, we 

designed the system to be less than 50 pounds in weight as this was determined a reasonable weight for 

one person to carry the system as needed. Thus, the system needed to weigh less than 50lb to satisfy the 

pass criterion of this mobility test, and we found, by using three springs with known constants and 

measuring their deflection while carrying the feed drive, that the system weighed 33.2lb, thus completing 

the mobility test. 

7.9 Open-Loop Motor Output Test 
The open-loop motor output test was conducted to verify effective communication between the motor and 

the microcontroller. We needed to ensure that the linear speed of the table varies in a controlled manner 

per the system’s characteristic Pulse Width Modulation (PWM) Duty Cycle. To do so, the output test was 

conducted at Team F12 Operation Base (Ryan and Caleb’s house), where variable voltages were sent to 

the motor then recorded along with motor output speed in real-time on the Matlab GUI. Our pass criteria 

were designated as the motor spinning at 1200 rpm, which was found to be true, along with the 

determination that table speed varies about linearly with increasing voltage duty cycle. 

7.10 Encoder Test  
For this test, we investigated the accuracy of our encoders with respect to our limit switch datum. For this 

test we ran the system in closed loop to a requested distance of 5cm from the limit switch. This distance 
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was measured by converting the measured rotation of the shaft to linear position by multiplying by the 

pitch. We verified the pitch of the ballscrew in the test described in section 7.12. After running our system 

in closed loop to within 0.5mm of our requested 5cm distance, we measured the distance from the switch 

to the side of the ballnut with a dial caliper. We conducted 5 tests in a row to observe the travel accuracy 

of the ballscrew and we observed a clear bias error, as seen in our results in Table 10 below: 

Table 10: Measured distance from the datum after the encoder displays 5cm of actuation on the 

computer. 

Run Number Measured Distance from the Datum [cm] 

1 5.34 

2 5.20 

3 5.33 

 

On average, we see an average position of 5.29 cm when 5 cm is read by the encoders. While additional 

testing shows very low uncertainty between two non-zero positions, such as 5 cm and 10 cm, this 0.29 cm 

bias is primarily due to our use of an “imaginary” datum. We define our datum in software to be the 

contacted limit switch when closed. Since it is difficult to consistently obtain the same datum when the 

switch closes, we observe that this test fails with respect to a datum, even though motion between two 

non-zero points has better than 50-micron accuracy. We recommend for optimization to be made with 

respect to the ballnut slowing down while approaching the limit switch to prevent overshoot into the 

switch. 

7.11 User Interface Test  
The purpose of the user interface test was to first test the reliability of the serial communication between 

the backend code and frontend code and secondly ensure that a user could run the system in a reasonable 

amount of time, given proper instruction. 

To collect valuable data, we selected three engineering students who had not previously seen the interface 

and who had little experience designing controllers. These people were thought to be representative of the 

lower 25% of users in the control lab. I then individually explained the procedure to each of the testers 

without a demonstration and in a similar manner to the prelab briefings that are commonplace in the lab. 

The three testers then separately entered all their inputs and ran the system. 

The average time between touching the keyboard and running the system was 29.3s. We thought this to 

be extremely reasonable and even a bit faster than some of the other GUIs that we have interacted with 

during controls labs. The subjects also offered great verbal feedback including saying that the interface 

was “easy to use” and “intuitive” as well as several compliments on the real-time data collection. 

7.12 Motion System Resolution  
This test consists of verifying the manufacturer's ball crew pitch of .5 cm by manually turning the ball 

screw 30 times and measuring the distance it traveled. This distance should be around 15 cm. This test 

was performed in the house of two team members and the tools consisted of a caliper and the system 

itself. Two trials were conducted, and the table was able to reach 15 cm both times. As a result, we were 

able to verify that the manufacturer's listed balls crew pitch was highly accurate. Based on our criteria this 

test was able to pass.  
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7.13 Future Testing 
The plan going forward is to utilize as much of the software code to further improve upon the mechanical 

components and testing results. We think that acquiring higher quality parts could increase the table travel 

speed to be close to 10 cm/s.  

8. Project Management 
We began our project design by identifying Professor Xing’s requested product, a CNC feed drive. Through 

problem definition, familiarization with system components, and background research, we established a 

visual on our sponsor’s desired functionalities, as well as existent product designs and usages. Through our 

House of Quality QFD - as detailed in the “Objectives” section - and initial development of a team Gantt 

chart - as seen in Appendix C - we have outlined our customer’s needs and how to accomplish them through 

design specifications, as seen in Table 3. 

We carried out ideation and generated conceptual feed drive models, with emphasis on incorporating the 

customer needs and wants into a physical model. From there, we evaluated concept prototypes on their 

ability to satisfy the design specifications and assigned a preliminary design direction (including system 

components and their layout) as we move into design analysis and part selection. Please see extensive 

concept design details in Section 4, entitled “Concept Design”. 

 

Table 11: Key Deliverables 

Deliverable Deadline 

Conceptual Models 10/27/2020 

Concept Prototype 11/3/2020 

Preliminary Design Review 11/10/2020 

Interim Design Review 1/14/2021 

Structural Prototype 1/26/2021 

Drawing & Manufacturing Plan 2/4/2021 

Critical Design Review 2/9/2021 

Safety Review 2/18/2021 

Manufacturing & Test Review 3/11/2021 

Final Design Review 5/25/2021 

Project Expo 5/28/2021 

Deliver Prototype & FDR 6/3/2021 

 

Fall 

Our preliminary design arose from concept selection – a methodical determination of appropriate model 

features, functions, and components. Critical features of our design include table travel distance (30 cm), 

accepted carrying load (5kg), product cost (preferably $300), and service as a portable, educational model. 

We have modeled each design specification in our concept prototype and have a maximum budget of $800 

to achieve a durable and effective functional prototype.  

Research into existent products informed us that equipment which accomplishes such requested system 

performance was outside of our stipulated budget goal. Therefore, we recognized that specific effort was 

needed to achieve the durable, low-cost prototype to satisfy our design specifications. Our team received 
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additional funding from Sponsor Xing for purchase of an apt motor, where preliminary design has informed 

our decision for each component’s form and function. Following PDR submission, our team initiated a bill 

of materials (BOM) as parts were selected, which prompted their analysis and system-level integration; this 

work carried into winter as our indented Bill of Materials (iBOM, see Appendix A.11). 

Winter 

Continued design work included final sizing, selection, and finite element analysis of all system 

components, as well as completion of the iBOM (Appendix A.11) and modeling of proposed components 

(Appendix A.12). Our major parts were ordered and delivered in winter - namely the table, ballscrew, ball 

and thrust bearings, and the linear rails and bearings, all of which comprised our structural prototype. 

Construction, controlling, and testing of the structural prototype took place as well and informed our team 

of updated manufacturing needs, including bearing press-fits onto the ballscrew and an altered frame/table 

design from PLA into aluminum. The Critical Design Review and Report were completed as of February 

11, 2021 and carried into manufacturing and risk assessment. Planning and testing for safety, 

manufacturing, and performance were undertaken as our team evaluated our final design going into Spring 

Quarter. 

Spring 

Project work in spring was centered around our final product – including a fully-operational prototype, a 

front-end MATLAB Graphical User Interface and back-end drivers/controllers, the Final Design Report, 

and End User Manual all delivered at the Final Design Review on June 3, 2021. Testing into such necessary 

parameters as mechanical/electrical performance and safety were conducted to confirm our sponsor’s needs 

were met, and the associated CAD and front/back-end source codes were packaged as a deliverable product, 

ultimately leading to the delivery of this and our final prototype to Professor Xing on June 3, 2021. 

9. Conclusion 
This Final Design Report outlined our background research through to concept design and selection and 

ultimately to the manufacturing and testing of our final “CNC Feed Drive” prototype. Our customer’s needs 

were addressed through the purchase and assembly of our servomotor-driven linear guide, with such 

characteristic components as the ballscrew and ballnut, linear rails and bearings, and table with plate loads. 

Along with the physical prototype, we delivered a back-end PID controller and front-end MATLAB GUI 

to control the table’s linear motion and provide real-time data collection for lab students.  

Overall, our prototype was able to meet all design specifications (as indicated in Table 9 of Chapter 7) 

except for that of total table travel distance and maximum table travel speed, where the aim was 30cm travel 

and 10cm/s speed and the actual spec was 25cm and 7.5cm/s, respectively. Much of our difficulty came 

with component implementation, especially in manufacturing our aluminum frame, table, and rail spacers 

to a tolerance required for the precision of our system, where the greatest observed detriment was in energy 

losses from friction and component misalignment. In the face of our inexperience, though, we gained much 

insight into precision manufacturing and product assembly, having now accumulated more machining hours 

than we likely imagined. We would also like to note a determined encoder bias, namely that an average 

positional error of 0.29cm is produced when the table returns to its datum location.  

To resolve these shortcomings in future prototypes, we recommend the following solutions: (1) to increase 

the ballscrew length or decrease the table width, allowing for greater table travel distance (2) to implement 

a motor with higher power rating to minimize frictional losses, thus increasing table travel speed (3) to 

build any manufactured parts through the highest precision means possible, such as using a CNC mill or 



 
 

56 
 

ordering parts to be built by an experienced manufacturer and (4) to program a “zeroing” function in which 

the table slows as it returns to its datum position, effectively decreasing the amount of encoder bias 

produced from overshoot. We see these to be the next steps for creating an effective classroom model and 

hope to hear of a feed drive implemented in future Cal Poly lab experiments. All in all, it has been an honor 

and a joy to develop this prototype for Professor Xing, and we are extremely grateful for the experience.  
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A.2. House of Quality 
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A.4. Jamboard Ideation Session  
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 A.5. Ideation Models  

 

 
 

 

 

 

Model N.1: Overall system diagram, including 

table, ball screw, and readouts. 

 

 

 
 

 

 

 

Model N.2: Top view of rolling cart assembly, 

where each system component should be 

individually visible/manipulatable. 

 

 

 
 

 

 

 

 
Model N.3: Inset load-carrying table to hold load 

in place (divots, raised lip or the like). 

 

 

 

 
 

 

 

 

 

 
Model R.1: Model of the feed drive table, railings, 

ball screw, gear train and power connection.  
  
 

 

 

 

 

 

 
Model R.2: Close-up of motor-ball screw gear 

train. 
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Model C.1: Ideation model of feed drive table, 

ball screw, railings, and motor.  

 

  
  
  
 
 

 

 
 

 

 

 

 

 

 
Model J.1: Model of “slot and pin” consideration 

for supporting the feed drive table.  

 

 

 
 

 

 

 

 

 
Model J.2: Ideation model that practices how to 

support table. 
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A.6. Additional Concept Prototype Views  
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A.7. Pugh Matrices     
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A.8. Weighted Decision Matrices  
  

  
  

  
  

 
  

  

  
  

 
 
 
 

 
 



 
 

A.9 
 

A.9. Preliminary Power Analysis  
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A.10. Design Hazard Checklist  

Y N  

  1. Will any part of  the design create hazardous revolving, reciprocating, running, 
shearing, punching, pressing, squeezing, drawing, cutting, rolling, mixing or similar 
action, including pinch points and sheer points? 

  2. Can any part of the design undergo high accelerations/decelerations? 

  3. Will the system have any large moving masses or large forces? 

  4. Will the system produce a projectile? 

  5. Would it be possible for the system to fall under gravity creating injury? 

  6. Will a user be exposed to overhanging weights as part of the design? 

  7. Will the system have any sharp edges? 

  8. Will any part of the electrical systems not be grounded? 

  9. Will there be any large batteries or electrical voltage in the system above 40 V? 

  10. Will there be any stored energy in the system such as batteries, flywheels, hanging 
weights or pressurized fluids? 

  11. Will there be any explosive or flammable liquids, gases, or dust fuel as part of the 
system? 

  12. Will the user of the design be required to exert any abnormal effort or physical 
posture during the use of the design? 

  13. Will there be any materials known to be hazardous to humans involved in either the 
design or the manufacturing of the design? 

  14. Can the system generate high levels of noise? 

  15. Will the device/system be exposed to extreme environmental conditions such as fog, 
humidity, cold, high temperatures, etc? 

  16. Is it possible for the system to be used in an unsafe manner? 

  17. Will there be any other potential hazards not listed above? If yes, please explain on 
reverse. 

 

For any “Y” responses, on the reverse side add: 

(1) a complete description of the hazard, 
(2) the corrective action(s) you plan to take to protect the user, and  
(3) a date by which the planned actions will be completed. 

 

 



 
 

A.10.2 
 

Description of Hazard Planned Corrective Action 
Planned 

Date 
Actual 
Date 

 
 

Rotating machinery 
 

The ballscrew is a rotating component that 
poses danger when contacted by humans or 
other objects. Users should wear safety glasses 
during use and tie back long hair. Users should 
keep body and foreign objects away from the 
inside of the system while system runs. 

1/26 4/5 

 
Pinch points 

 

Moving components of the system, such as the 
ballnut, are potential pinch points for users. 
People must keep bodies away from moving 
machinery while machinery runs. 

1/26 4/26 

 
High accelerations/High force 

 
 
 

The CNC Feed Drive Table can undergo high 
accelerations due to high force when being 
operated by the designed control system. Users 
must keep bodies away from moving machinery 
while machinery runs. 

1/26 5/3 

 
 

Potential to fall 
 
 

The CNC Feed Drive System is comprised of 
significant mass and can cause damage if 
dropped. The final design will include handles, or 
a similar technology that will allow ease of 
simple transport. Additionally, the cart that will 
be used to transport the system will have the 
capability to secure the system using straps or a 
similar technology. 

2/9 5/3 

 
 

Vibration 
 
 

Running the ballscrew at resonant frequency can 
create unstable vibration and high amplitude of 
oscillation. The ballscrew will be sized for a 
natural frequency well above our system’s 
operating speed, and a limit will be placed in the 
Software regarding the speed that the ballscrew 
can operate at. 

1/14 5/17 

 
High voltage/Extreme 

Position/Control System 
Malfunction 

 
 
 

If the control system or a piece of hardware 
malfunctions, limits must be put in place to 
prevent unstable operation. At the extreme 
positions, a limit switch and kill switch will be 
implemented to cut system power. Additionally, 
hard stops can be used as a last case resort. In 
the case that the control system calls for 
excessive power to the motor, Saturation Values 
can be set in the Control Algorithm, which 
designates values for voltage that will not be 
exceeded as an output. 
 

2/9 5/24 
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A.11. Indented Bill of Materials/Project Budget 
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A.12.1 
 

A.12. Failure Modes and Effects Analysis (FMEA) 
 



 
 

A.12.2 
 

 

 



 
 

A.13 
 

A.13. Design Verification Plan (DVP&R) 
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A.14. Design Selection Analysis 
Motor Sizing  

  

  

  

  

  

  

  

 

 

 

 

 



 
 

A.14.2 

Ballscrew Critical Speed, Buckling, Static Stress Analysis  

  

  

Ballscrew Fatigue Analysis  



 
 

A.14.3 

 

Preliminary Rail Sizing  

  

  

  

Bearing Analysis  

 

 



 
 

A.15.1 
 

A.15. Drawing Package 

 

10000 – Top Level Assembly 

11000 - Drive Train Assembly 

11100 – Motor Assembly 

 11110 – Motor 

 11120 - Screws 

11200 - Ballscrew Assembly 

 11210 – Ball Bearing Assembly 

  11211 – WBF-20 End Support 

  11212 – Screws 

11220 – Thrust Bearing Assembly 

 11221 – Thrust Bearing Drawing 

11222 – Screws 

11230 – Ballscrew Data Sheet 

11300 – Ballnut Assembly 

 11310 – Ballnut Data Sheet 

 11320 – Ballnut Bracket Drawing 

 11330 – M6 X 0.8 Screws Drawing 

11400 - Flexible Shaft Coupling Assembly 

11410 - 11/16" Flexible Shaft Coupling Iron Hub Drawing 

11420 - 1/4'' Flexible Shaft Coupling Iron Hub Drawing 

11430 - Buna-N Rubber Spider Drawing 

12000 - Rail Assembly 

 12100 – Rails Modification Drawing 

  12200 – Screws 

13000 - Mass Support Assembly 

 13110 - Table Drawing 

 13210 - Plate Mass 



 
 

A.15.2 
 

13220 – Bolts Drawing 

13230 – Nuts Drawing 

14000 – Structure Assembly 

14100 – Base Plate Drawing 

14200 – Rail Spacer Drawing 

14300 – Datum Face Drawing 

14400 – Motor Face Drawing 

14500 – Ball Bearing Face Drawing 

14600 – Motor-Side Leg Drawing 

14700 – Opposite-Side Leg Drawing 

14800 – Dowel Pin Data Sheet 

14900 – ¼” in – 20 Bolt Drawing 

14110 – ¼” in – 20 Nut Drawing 

14120 – Metal Bracket Data Sheet 

14130 – Plastic Corner Bracket Data Sheet 

14140 – 8-32 Screws Drawing 

14150 – 8-32 Nuts Drawing 

14260 - Lid Drawing 

15000 – Microcontroller Wiring Diagram 

15100 - Microcontroller Data Sheet 

15300 - Limit Switch Drawing 

15400 – Breadboard Data Sheet 

15500 – Wire Data Sheet 

 16000 – Lid Data Sheet 

 

 

 



 
 

A.15.3 
 

 

 



Ball Screws and Related Products……Technical Catalog 

 

 

 

Ball screws & nuts 
Expanded stock sizes now include 

16mm, 20mm, 25mm & 32mm 

diameters in 5mm & 10mm leads 

Page 1…General info/sizes 

Page 2…Ball nut dimensions 

         and load ratings 

Page 3…End machining specs  

 
BK & BF supports 

Pillow block style 

Page 4…BK fixed supports 

Page 5…BF simple/floating supports 

  
FK & FF supports 

Flange style 

Page 6…FK fixed supports 

Page 7…FF simple/floating supports 

 
Ball nut brackets Page 8 

 
Motor brackets Pages 9 & 10 

 

 

 

Flexible couplings 

(connect motor to ball screw) 

Pages 11 & 12 
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Precision Rolled Ball Screws 

 

 
 

Typical part number: BSFU1605-0350-FS 

                    BSFU16 = Our ball nut identifier and diameter (in mm) 

                          05 = Lead for screw in mm (one turn moves nut this many mm) 

                             0350 = Overall length of screw in mm (end to end) 

                                  FS = Fixed & Simple end machining 

Our stock program includes these parts/sizes 

BSFU1605-0350-FS 

BSFU1605-0450-FS 

BSFU1605-0550-FS 

BSFU1605-0650-FS 

BSFU1605-0750-FS 

BSFU1605-0850-FS 

BSFU1605-0950-FS 

BSFU1605-1150-FS 

BSFU1605-1350-FS 

BSFU1605-1550-FS 

BSFU1610-0350-FS 

BSFU1610-0450-FS 

BSFU1610-0550-FS 

BSFU1610-0650-FS 

BSFU1610-0750-FS 

BSFU1610-0850-FS 

BSFU1610-0950-FS 

BSFU1610-1150-FS 

BSFU1610-1350-FS 

BSFU1610-1550-FS 

BSFU2005-0500-FS 

BSFU2005-0750-FS 

BSFU2005-1000-FS 

BSFU2005-1500-FS 

BSFU2005-2000-FS 

BSFU2010-0500-FS 

BSFU2010-0750-FS 

BSFU2010-1000-FS 

BSFU2010-1500-FS 

BSFU2010-2000-FS 

BSFU2505-0500-FS 

BSFU2505-0750-FS 

BSFU2505-1000-FS 

BSFU2505-1500-FS 

BSFU2505-2000-FS 

BSFU2510-0500-FS 

BSFU2510-0750-FS 

BSFU2510-1000-FS 

BSFU2510-1500-FS 

BSFU2510-2000-FS 

BSFU3205-0500-FS 

BSFU3205-0750-FS 

BSFU3205-1000-FS 

BSFU3205-1500-FS 

BSFU3205-2000-FS 

BSFU3210-0500-FS 

BSFU3210-0750-FS 

BSFU3210-1000-FS 

BSFU3210-1500-FS 

BSFU3210-2000-FS 

 

Contact us for custom screws of any size, length, lead & material grade!

Overall Length (this is the FULL length of the screw including machined ends) 

Simple End Machining  

(sometimes called “floating” end) Fixed End Machining 
Ball Nut 

Stroke Length 
Note that Stroke Length is the distance 
the nut can travel before it butts against 
the end supports. Stroke Length is how 
far you can effectively move your work. 

Page 1 

Need C5 rolled or ground 

screws?  Contact us for a 

quick quote. 
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Ballnut/Ball Screw Tech Data 

 
 

Note:  Ball nuts are supplied with non-removable flange as shown.  Other styles available. 

 

Material  

Type 

Dia. 

d Lead 

Ball 

Dia. D A B L W X H 

Oil 

Q 

# of 

Circuits 

Dyn. 

kgf Ca 

Sta. kgf 

Coa 

Rigidity 

Kgf/um K 

BSFU1605 16 5 3.175 28 48 10 50 38 5.5 40 M6 4 1380 3052 32 

BSFU1610 16 10 3.175 28 48 10 44 38 5.5 40 M6 3 1103 2401 26 

BSFU2005 20 5 3.175 36 58 10 51 47 6.6 44 M6 4 1551 3875 39 

BSFU2010 20 10 3.175 36 58 10 44 47 6.6 44 M6 3 1516 3833 21 

BSFU2505 25 5 3.175 40 62 10 51 51 6.6 48 M6 4 1724 4904 45 

BSFU2510 25 10 4.762 40 62 12 85 51 6.6 48 M6 4 2954 7295 50 

BSFU3205 32 5 3.175 50 80 12 52 65 9 62 M6 4 1922 6343 54 

BSFU3210 32 10 6.35 50 80 12 90 65 9 62 M6 4 4805 12208 61 

We stock various lengths in ALL sizes shown above. Refer to page 1 of this document for list of stocked sizes. Special 
sizes also available in these materials and many others with 2-3 week lead time.  Rolled screws.  Ground screws.  Just 
about any diameter and lead you could need.  Just ask us for a quick, no-obligation quote. 

  

Rolled screws have Class 7 accuracy rating.    ACCURACY 
 

Precision Rolled Screw Runout: +/- 0.050/300mm or 0.002"/12".  

 

Ballnut: Single ballnut with anti-backlash defined as <0.015mm or <0.0006". 

 

Note:  Our standard ball screws and most of our custom screws are supplied with the “BSFU” style 

ball nut.  This is a very common design of ball nut which also carries this designation:  Type DIN 69051.  The 

ball nuts we provide are individually loaded and matched to screws for longer life and better performance.  

 

With other sizes/leads, other ball nut styles may be utilized.  We will advise you about the type of ball nut 

available for a given size at the time of quote. 
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Typical/Recommended End Machining 

 
   All dimensions in MM 

Support PN Screw Ø 

d 

Bearing Ø 

A 

Motor Coupling 

B E F M S 

BK10/FK10* 12/14/15 10 8 36 15 M10 x 1 16 

BK12/FK12* 14/15/16 12 10 36 15 M12 x 1 14 

BK15 18/20 15 12 40 20 M15 x 1 12 

FK15* 18/20 15 12 47 20 M15 x 1 12 

BK20 25/28 20 17 53 25 M20 x 1 15 

F20* 25/28 20 17 62 25 M20 x 1 15 

BK25 32/36 25 20 65 30 M25 x 1.5 18 

FK25* 32/36 25 20 76 30 M25 x 1.5 18 

BK30/FK30* 36/40 30 25 72 38 M30 x 1.5 25 

BK35 45 35 30 81 45 M35 x 1.5 28 

BK40 50 40 35 93 50 M40 x 1.5 35 

 

 

 

While BK and BF end supports are 

shown in this illustration, the same 

machining works with WBK/WBF. 

“B” Type Simple End (for BF & FF style mount) 

Support PN 

Screw Ø 

d 

Bearing 

Ø 

A E 

Snap Ring Flute 

B F G 

BF10/FF10* 12/14/15 8 10 7.6 7.9 0.9 

BF12/FF12* 14/15/16 10 11 9.6 9.15 1.15 

BF15/FF15* 18/20 15 13 14.3 10.15 1.15 

BF20/FF20* 25 thru 30 20 19 19 15.35 1.35 

BF25/FF25* 28 thru 36 25 20 23.9 16.35 1.35 

BF30/FF30* 36/40 30 21 28.6 17.75 1.75 

BF35 40/45 35 22 33 18.75 1.75 

BF40 50 40 23 38 19.75 1.95 

 

“A” Type Fixed End (BK/WBK style mount) 

Page 3 

Important note:  In some cases 

slightly different machining is 

required on the fixed end depending 

on whether you are using a BK 

mount or WBK mount.  Before we 

can provide a custom screw, we 

MUST know how you intend to 

support the ball screw. 

*Note that some manufacturers refer to their flange type simple end 

supports as “FF” style and others call them “WBF” style  Our provider 

uses the FF designation. 

*Note that some manufacturers refer to their flange type fixed end supports as “FK” style and others call them 

“WBK” style  Our provider uses the FK designation. 
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Dimensions in MM 

 

Model D1 L L1 L2 L3 B B1 H H1 b E h P C1 C2 d2 X Y Z T M 

BK10 10 25 6 29.5 5 60 34 39 32.5 30 15 22 46 13 6 5.5 6.3 10.5 5 16 M3 

BK12 12 25 6 29.5 5 60 34 42 32.5 30 18 25 46 13 6 5.5 6.3 10.5 5.5 19 M3 

BK15 15 27 6 32 6 70 38 47 38 35 18 28 54 15 6 5.5 6.3 10.5 6.5 22 M3 

BK17 17 35 10 44 7 86 48 63 55 43 28 39 68 19 8 6.6 8.7 14 8.6 24 M4 

BK20 20 35 6 43 8 88 50 59 50 44 22 34 70 19 8 6.6 8.7 14 8.5 30 M4 

BK25 25 42 6 54 9 106 62 79 70 53 33 48 85 22 10 9 10.7 17.5 10.5 35 M5 

BK30 30 45 6 61 9 128 74 88 78 64 33 51 102 23 11 11 13.7 20 13 40 M6 

BK35 35 50 10 67 12 140 86 95 79 70 35 52 114 26 12 11 13.7 20 13 50 M8 

BK40 40 61 10 76 15 160 98 109 90 80 37 60 130 33 14 14 17.7 26 17.5 50 M8 

 

Note:  BK mounts come complete with bearing spacer bushings and locking nut.  Locking nut may be supplied 

with separate brass inserts or other design to protect threads when set screws are tightened  See exploded 

diagram below for typical components. 

 

 

Exploded Parts Diagram 

1. Securing nut with set screws  

    (2) and brass inserts (2) 

2. Elastomer dust seals (2) 

3. Steel bushings/spacers (2) 

4. Bearing retainer cover with  

    cap screws (4) 

5. Angular contact ball bearings (2) 

6. BK mount body 

Load Ratings/Speed Information 

Model 

Static Load 

(kgf) 

Dynamic 

Load (kgf) 

Max Speed 

(rpm) 

BK10 266 133 16,800 

BK12 305 153 15,400 

BK15 350 175 13,300 

BK17 610 305 11,200 

BK20 670 335 10,500 

BK25 1,050 525 8,400 

BK30 1,510 755 7,000 

BK35 1,870 1,202 4,200 

BK40 2,340 1,504 3,710 

 
Note that set screws/inserts inclued with fixed supports are 
sometimes supplied as a single unit where a brass 
protective tip is integrated into the set screw or securing nut 
is of special design to protect threads.   
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Dimensions in MM 

 

Model øD1 A L B C H H1 E X Y Z N h P 

Snap 

Ring 

BF10 8 60 20 46 34 39 32.5 30 6.3 10.8 5 15 22 5.5 S08 

BF12 10 60 20 46 34 43 32.5 30 6.3 10.8 5.5 18 25 5.5 S10 

BF15 15 70 20 54 40 48 38 35 6.3 11 6.5 18 28 5.5 S15 

BF17 17 86 23 68 50 64 55 43 8.7 14 8.6 28 39 6.6 S17 

BF20 20 88 26 70 52 60 50 44 8.7 14 8.6 22 34 6.6 S20 

BF25 25 106 30 85 64 80 70 53 10.7 10.7 11 33 48 9 S25 

BF30 30 128 32 102 76 89 78 64 13.7 13.7 13 33 51 11 S30 

BF35 35 140 32 114 88 96 79 70 13.7 13.7 13 35 52 11 S35 

BF40 40 160 37 130 100 110 90 80 17.7 17.7 17.7 37 60 14 S40 

 

 

Note:  BF mounts are supplied with circlip to secure ball screw to bearing.  Ball bearing may be packaged 

separately in sealed package, but it simply slides into the housing without the need for tools or special skills. 

 

 

 

Exploded Parts Diagram 

 

1. Circlip/snap ring retaining fastener 

2. Sealed ball bearing 

3. BF mount body 
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Dimensions in MM 

Model d1 L H F E Dg6 A PCD B L1 T1 X Y Z 

FK5 5 16.5 6 10.5 18.5 20 34 26 26 5.5 3.5 3.4 6.5 4 

FK6 6 20 7 13 22 22 36 28 28 5.5 3.5 3.4 6.5 4 

FK8 8 23 9 14 26 28 43 35 35 7 4 3.4 6.5 4 

FK10 10 27 10 17 29.5 34 52 42 42 7.5 5 4.5 8 4 

FK12 12 27 10 17 29.5 36 54 44 44 7.5 5 4.5 8 4 

FK15 15 34 17 17 36 40 63 50 52 10 6 5.5 9.5 6 

FK20 20 52 22 30 50 57 85 70 68 8 10 6.6 11 10 

FK25 25 57 27 30 60 63 98 80 79 13 10 9 15 13 

FK30 30 62 30 32 61 75 117 95 93 11 12 11 17.5 15 

Yellow shaded area above indicates sizes we do not stock but can obtain as special order in QUANTITY 

 

Notes: FK mounts come complete with bearing spacer bushings, locking nut and set screws for locking nut. 

Some manufacturers refer to their flange type simple end supports as “FK” style and others call them “WBK”  

style.  Our present provider uses the FK designation. 

 

 

 

 

 

Exploded Parts Diagram 

1. Securing nut with set screws (2)  

    and brass inserts (2) 

2. Elastomer dust seals (2) 

3. Steel bushings/spacers (2) 

4. Bearing retainer cover with  

    cap screws (4) 

5. Angular contact ball bearings (2) 

6. FK mount body 

Load Ratings/Speed Information 

Model 

Static Load 

(kgf) 

Dynamic 

Load (kgf) 

Max Speed 

(rpm) 

FK10 266 133 16,800 

FK 12 305 153 15,400 

FK 15 350 175 13,300 

FK 17 610 305 11,200 

FK 20 845 423 9,300 

FK 25 1,050 525 8,400 

FK 30 1,510 755 7,000 

 

Note that set screws/inserts inclued with fixed supports are 
sometimes supplied as a single unit where a brass 
protective tip is actually attached to the set screw.   
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Dimensions in MM 

 

Model d1 L H F Dg6 A PCD B X Y Z 

FF6 6 10 6 4 22 36 28 28 3.4 6.5 4 

FF10 8 12 7 5 34 43 35 35 4.5 6.5 4 

FF12 10 15 7 8 36 52 42 42 4.5 8 4 

FF15 15 17 9 8 40 63 50 52 5.5 9.5 5.5 

FF20 20 20 11 9 57 85 70 68 6.6 11 6.5 

FF25 25 24 14 10 63 98 80 79 9 14 8.5 

FF30 30 27 18 9 75 117 95 93 11 17.5 11 

Yellow shaded area above indicates size we do not stock but can obtain as special order in QUANTITY 

 

Some manufacturers refer to this type of end support with the “FF” designation while others use “WBF.”   

They are, in fact, the same in terms of size and function.   

 

 

Note:  FF mounts are supplied with circlip to secure ball screw to bearing.  Sealed ball bearing may be packaged 

separately, but it simply slides into the support body without need for tools or special skills. 

 

 

 

Exploded Parts Diagram 

 

1. Circlip/snap ring retaining fastener 

2. Sealed ball bearing 

3. FF mount body 
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MGD Style Ball Screw Nut Bracket 
(machined from steel) 

 

We stock the MGD16, MGD20 and MGD25 sizes.  Other 

sizes can be special-ordered. CAD drawings are available 

from our website. 
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HD Style Ball Screw Nut Bracket 
(machined from aluminum) 

 

We stock the HD16, HD20, HD25 and HD32 sizes. CAD 

drawings and PDF spec sheets are available from our 

website. 

• Precision machined from aluminum.  The HD brackets are excellent quality but 

cost significantly less than MGD brackets above. 

• Part numbers indicate the size screw upon which these are used.  For 

example, the HD16 model is used in conjunction with the ball nut typically 

installed on a 16mm Ø screw.  The barrel of the ball nut for this size is usually 

28mm Ø, so the receiving bore in the bracket is just in excess of that. 

PART #'S: 113000 (SCREW), 114000 (NUT) 



  

 

MBA Style Motor Brackets 
These brackets make it easy to build a ball screw assembly by combining common motors, flexible motor 

couplings and ball screw end supports.  Save both time and money…and get a precision result FAST. 

 

 

Model D1 W1 Y D L 

H 

±0.02 B P T S Q E E1 F J 

Wt. 

(kgs) 

Fixed 

Side 

Floating 

Side 

MBA12-C 
(NEMA 23) 38.1 66.7 M4 36 74 25 65 50 32.5 6.6 11 24 20 5 65 0.71 

FK12 
WBK12 

BF12 

MBA12-D 50 70 M5 36 74 25 65 50 32.5 6.6 11 24 20 5 65 0.71 
FK12 

WBK12 BF12 

MBA15-C 

(NEMA 23) 
38.1 66.7 M4 40 82 28 70 55 35 6.6 11 24 28 5 73 1.4 

FK15 
WBK15 BF15 

MBA-15-D 50 70 M5 40 84 28 70 55 35 6.6 11 25 28 5 74 1.4 
FK15 

WBK15 BF15 

MBA-15-E 70 90 M6 40 94 28 88 70 44 8.5 14 30 28 6 82 1.4 
FK15 

WBK15 BF15 

MBA-15-F 

(NEMA 34) 
73 98.4 M6 40 92 28 88 70 44 8.5 14 29 28 6 81 1.4 

FK15 
WBK15 BF15 

MBA20-D 50 70 M5 57 113 34 88 70 44 8.5 14 29 42 5 - 1.61 FKA20 BF20 

MBA20-E 70 90 M6 57 113 34 88 70 44 8.5 14 29 42 6 102 1.61 FKA20 BF20 

MBA20-F 

(NEMA 34) 
73 98.4 M6 57 113 34 88 70 44 8.5 14 29 42 6 102 1.61 FKA20 BF20 
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NEMA Motor Brackets 

 

   

These sturdy steel brackets make it easy to mount NEMA 

standard frame size motors.  We stock NEMA 17, NEMA 23 

and NEMA 34 versions.  Just bolt up your motor, and you are 

ready to attach it to a ball screw or other device. 

 

Quality construction with durable black paint finish.  Welded 

corner gussets provide extra rigidity.  VALUE PRICED! 

 

See images below for dimensions or visit our website to 

download full-size PDF spec sheets. 
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   DR1-C Flexible Motor Couplings (stainless steel construction) 

      

 

The DR1-C flexible motor coupling line provides an economical way to connect motors to ball screws and other 

shafts via clamping pressure applied by two set screws.  Durable stainless steel construction.  These 

couplings offer higher torque ratings than similar couplings manufactured from aluminum. 

 

Specifications and sizes (mm) [note that 6.35mm = ¼”] 

 

Part # 
Length 

(L) 

Diameter 

(D) 
d1 d2 

Rated Torque  

Max Torque 

Eccentricty 

Error 
Shaft Angle 

DR1-C-20X25-5X5 25 20 5 5 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-5X6.35 30 25 5 6.35 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-6X6.35 30 25 6 6.35 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-8X5 30 25 8 5 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-8X6.35 30 25 8 6.35 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-10X5 30 25 10 5 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-10X6 30 25 10 6 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-10X6.35 30 25 10 6.35 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-10X8 30 25 10 8 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-12X5 30 25 12 5 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-12X6.35 30 25 12 6.35 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

DR1-C-25X30-12X8 30 25 12 8 
1.5 N.m. 
3.0 N.m. ±0.2mm ≤2º 

All DR1-C couplings rated for 15,000 max. RPM. 

Note:  We will be adding additional sizes in this style.   

Special sizes can be supplied via special order (minimum quantities apply). 

 

Page 11 

 

PART #'S: 113000 (SCREW), 114000 (NUT) 



  

 

 

BR Flexible Motor Couplings (aluminum construction) 

      

 

The BR series flexible motor coupling line provides an economical way to connect motors to ball screws and other 

shafts via clamping pressure applied by two set screws.  Inexpensive, basic couplings suitable for many 

applications. 

Specifications and sizes (mm) [note that 6.35mm = ¼”] 

 

Part # 
Length 

(L) 

Diameter 

(D) 
d1 d2 

Rated Torque  

Max Torque 

Eccentricty 

Error 
Shaft Angle 

BR-20X25-5X5 25 20 5 5 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-5X6.35 30 25 5 6.35 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-6X6.35 30 25 6 6.35 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-8X5 30 25 8 5 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-8X6.35 30 25 8 6.35 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-10X5 30 25 10 5 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-10X6 30 25 10 6 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-10X6.35 30 25 10 6.35 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-10X8 30 25 10 8 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-12X5 30 25 12 5 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-12X6.35 30 25 12 6.35 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR-25X30-12X8 30 25 12 8 
0.5 N.m. 
1.0 N.m. ±0.2mm ≤2º 

BR couplings rated for 15,000 max. RPM. 

Special sizes can be supplied via special order (minimum quantities apply). 
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NUCLEO-G474RE example. Boards with
different references show different
layouts. Picture is not contractual.

Features
• Common features

– STM32 microcontroller in LQFP64 package
– 1 user LED shared with ARDUINO®

– 1 user and 1 reset push-buttons
– 32.768 kHz crystal oscillator
– Board connectors:

◦ ARDUINO® Uno V3 expansion connector
◦ ST morpho extension pin headers for full access to all STM32 I/Os

– Flexible power-supply options: ST-LINK, USB VBUS, or external sources
– On-board ST-LINK debugger/programmer with USB re-enumeration

capability: mass storage, Virtual COM port and debug port
– Comprehensive free software libraries and examples available with the

STM32Cube MCU Package
– Support of a wide choice of Integrated Development Environments (IDEs)

including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE
• Board-specific features

– External SMPS to generate Vcore logic supply
– 24 MHz HSE
– Board connectors:

◦ External SMPS experimentation dedicated connector
◦ Micro-AB or Mini-AB USB connector for the ST-LINK
◦ MIPI® debug connector

– Arm® Mbed Enabled™ compliant

Description
The STM32 Nucleo-64 board provides an affordable and flexible way for users to try
out new concepts and build prototypes by choosing from the various combinations of
performance and power consumption features, provided by the STM32
microcontroller. For the compatible boards, the external SMPS significantly reduces
power consumption in Run mode.

The ARDUINO® Uno V3 connectivity support and the ST morpho headers allow the
easy expansion of the functionality of the STM32 Nucleo open development platform
with a wide choice of specialized shields.

The STM32 Nucleo-64 board does not require any separate probe as it integrates the
ST-LINK debugger/programmer.

The STM32 Nucleo-64 board comes with the STM32 comprehensive free software
libraries and examples available with the STM32Cube MCU Package.

Product status link

NUCLEO-XXXXRX

NUCLEO-F030R8, NUCLEO-F070RB,
NUCLEO-F072RB, NUCLEO-F091RC,
NUCLEO-F103RB, NUCLEO-F302R8,
NUCLEO-F303RE, NUCLEO-F334R8,
NUCLEO-F401RE, NUCLEO-F410RB,
NUCLEO-F411RE, NUCLEO-F446RE,
NUCLEO-G070RB, NUCLEO-G071RB,
NUCLEO-G0B1RE, NUCLEO-G431RB,
NUCLEO-G474RE, NUCLEO-G491RE,
NUCLEO-L010RB, NUCLEO-L053R8,
NUCLEO-L073RZ, NUCLEO-L152RE,
NUCLEO-L452RE, NUCLEO-L476RG.

NUCLEO-XXXXRX-P

NUCLEO-L412RB-P,
NUCLEO-L433RC-P,
NUCLEO-L452RE-P.

STM32 Nucleo-64 boards

NUCLEO‑XXXXRX NUCLEO‑XXXXRX‑P

Data brief

DB2196 - Rev 14 - October 2020
For further information contact your local STMicroelectronics sales office.

www.st.com
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1 Ordering information

To order an STM32 Nucleo-64 board, refer to Table 1. For a detailed description of each board, refer to its user
manual on the product web page. Additional information is available from the datasheet and reference manual of
the target STM32.

Table 1. List of available products

Order code Board
reference

User
manual Target STM32 Differentiating features

NUCLEO-F030R8

MB1136 UM1724

STM32F030R8T6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F070RB STM32F070RBT6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F072RB STM32F072RBT6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F091RC STM32F091RCT6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F103RB STM32F103RBT6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F302R8 STM32F302R8T6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F303RE STM32F303RET6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F334R8 STM32F334R8T6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F401RE STM32F401RET6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F410RB STM32F410RBT6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F411RE STM32F411RET6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-F446RE STM32F446RET6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-G070RB

MB1360 UM2324

STM32G070RBT6 • ST-LINK/V2-1 on Micro-AB USB
connector

NUCLEO-G071RB STM32G071RBT6 • ST-LINK/V2-1 on Micro-AB USB
connector

NUCLEO‑XXXXRX NUCLEO‑XXXXRX‑P
Ordering information

DB2196 - Rev 14 page 2/7
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Order code Board
reference

User
manual Target STM32 Differentiating features

NUCLEO-G0B1RE MB1360 UM2324 STM32G0B1RET6 • ST-LINK/V2-1 on Micro-AB USB
connector

NUCLEO-G431RB

MB1367 UM2505

STM32G431RBT6U

• STLINK-V3E on Micro-AB USB
connector

• 24 MHz HSE

• MIPI® debug connector

NUCLEO-G474RE STM32G474RET6U

• STLINK-V3E on Micro-AB USB
connector

• 24 MHz HSE

• MIPI® debug connector

NUCLEO-G491RE STM32G491RET6U

• STLINK-V3E on Micro-AB USB
connector

• 24 MHz HSE

• MIPI® debug connector

NUCLEO-L010RB

MB1136 UM1724

STM32L010RBT6 • ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-L053R8 STM32L053R8T6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-L073RZ STM32L073RZT6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-L152RE STM32L152RET6
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-L412RB-P

MB1319 UM2206

STM32L412RBT6PU
• ST-LINK/V2-1 on Micro-AB USB

connector
• External SMPS

NUCLEO-L433RC-P STM32L433RCT6PU

• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Micro-AB USB
connector

• External SMPS

NUCLEO-L452RE MB1136 UM1724 STM32L452RET6U • ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO-L452RE-P MB1319 UM2206 STM32L452RET6PU
• ST-LINK/V2-1 on Micro-AB USB

connector
• External SMPS

NUCLEO-L476RG MB1136 UM1724 STM32L476RGT6U
• Arm® Mbed Enabled™

• ST-LINK/V2-1 on Mini-AB USB
connector

NUCLEO‑XXXXRX NUCLEO‑XXXXRX‑P
Ordering information
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1.1 Product marking

The sticker located on the top or bottom side of the PCB board shows the information about product identification
such as board reference, revision, and serial number.
The first identification line has the following format: “MBxxxx-Variant-yzz”, where “MBxxxx” is the board reference,
“Variant” (optional) identifies the mounting variant when several exist, "y" is the PCB revision and "zz" is the
assembly revision: for example B01.
The second identification line is the board serial number used for traceability.
Evaluation tools marked as “ES” or “E” are not yet qualified and therefore not ready to be used as reference
design or in production. Any consequences deriving from such usage will not be at ST charge. In no event, ST will
be liable for any customer usage of these engineering sample tools as reference designs or in production.
“E” or “ES” marking examples of location:
• On the targeted STM32 that is soldered on the board (For an illustration of STM32 marking, refer to the

STM32 datasheet “Package information” paragraph at the www.st.com website).
• Next to the evaluation tool ordering part number that is stuck or silk-screen printed on the board.

Some boards feature a specific STM32 device version, which allows the operation of any bundled commercial
stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number
and is not available for sales.
In order to use the same commercial stack in his application, a developer may need to purchase a part number
specific to this stack/library. The price of those part numbers includes the stack/library royalties.

1.2 Codification

The meaning of the codification is explained in Table 2.

Table 2. Codification explanation

NUCLEO-XXYYRT

NUCLEO-XXYYRT-P
Description Example: NUCLEO-L452RE

XX MCU series in STM32 Arm Cortex MCUs STM32L4 Series

YY MCU product line in the series STM32L452

R STM32 package pin count 64 pins

T

STM32 Flash memory size:
• 8 for 64 Kbytes
• B for 128 Kbytes
• C for 256 Kbytes
• E for 512 Kbytes
• G for 1 Mbyte
• Z for 192 Kbytes

512 Kbytes

-P STM32 has external SMPS function No SMPS

NUCLEO‑XXXXRX NUCLEO‑XXXXRX‑P
Product marking
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2 Development environment

2.1 System requirements

• Windows® OS (7, 8 and 10), Linux® 64-bit, or macOS®

• USB Type-A or USB Type-C® to Micro-B cable, or USB Type-A or USB Type-C® to Mini-B cable (depending
on the board reference)

Note: macOS® is a trademark of Apple Inc. registered in the U.S. and other countries.
All other trademarks are the property of their respective owners.

2.2 Development toolchains

• IAR Systems - IAR Embedded Workbench®(1)

• Keil® - MDK-ARM(1)

• STMicroelectronics - STM32CubeIDE
• Arm® - Mbed Studio(2) (3)

 

1. On Windows® only.
2. Arm and Mbed are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and or elsewhere.
3. Refer to the os.mbed.com website and to the “Ordering information” section to determine which order codes are supported.
 

2.3 Demonstration software

The demonstration software, included in the STM32Cube MCU Package corresponding to the on-board
microcontroller, is preloaded in the STM32 Flash memory for easy demonstration of the device peripherals in
standalone mode. The latest versions of the demonstration source code and associated documentation can be
downloaded from www.st.com.

NUCLEO‑XXXXRX NUCLEO‑XXXXRX‑P
Development environment
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A.16 Risk Assessment 
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A.17 Electrical Schematics/Wiring Diagrams 
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A.18 Annotated Microcontroller Code 
 

''' 

@file      controller.py 

@brief     This file contains the controller class used to institute PID 

control on the CNC Feed Drive. 

@details   This file contains a controller object that acts as a closed loop 

system.  

 

@author    Ryan Funchess 

@date      June 1, 2021 

''' 

 

import pyb 

import utime 

import math 

import shares 

pi = math.pi 

 

class controller: 

    ''' 

    @brief  This Class implements a closed loop control algorithm 

     

     

    #option for P, PI, or PD control 

    ''' 

     

     

     

    def __init__(self,Kp,Ki,Kd,posref,mot,enc,LimitSwitch,interval): 

        ''' 

        @brief  Makes controller object 

        @param Kp  Float that designates the position controller gain for the 

control system (V/rpm) 

        @param Ki  Float that designates the position controller gain for the 

control system (V/rpm) 

        @param Kd  Float that designates the position controller gain for the 

control system (V/rpm) 

        @param posref  Float that designates reference velocity of motor 

(rpm) 

        @param mot   Motor object that rotates output shaft proportional to 

the duty cycle of the motor 

        @param enc  Encoder object that is used to track the position of the 

output shaft 

        @param cloop  Closed loop object that is used to determine the 

voltage to apply to the motor given the current speed of the motor   

        @param LimitSwitch  Float that designates the position controller 

gain for the control system (V/rpm) 

        @param interval  Float that designates the position controller gain 

for the control system (V/rpm) 

        ''' 
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        ##Float that designates the proportional controller gain for the 

control system (V/rpm) 

        self.Kp=Kp #passed Kp (V/cm) 

         

        ##Float that designates the integral controller for the control 

system 

        self.Ki=Ki #passed Ki (V/cm*s) 

         

        ##Float that designates the  derivative controller for the control 

system 

        self.Kd=Kd #passed Kd (V*s/cm) 

         

         

        ##Float that designates reference position of system (rpm) 

        self.posref=posref #designated reference position in cm 

         

        ##Motor object that rotates output shaft proportional to the duty 

cycle of the motor 

        self.mot=mot 

         

        ##Encoder object that is used to track the position of the output 

shaft 

        self.enc=enc 

         

        ##Limit switches and lid switches combined 

        self.LimitSwitch=LimitSwitch 

         

        ##Interval at which controller runs in ms 

        self.interval=interval 

         

        ##Sum of the error using a Riemann Sum for the integral control 

        self.e_sum=0 #MAKE SURE TO RESET THIS WHENEVER POSREF CHANGES 

         

        ##Previous error to compute dx/dt 

        self.prev_error=0 #use for D control 

     

 

 

    def startup(self): #runs first, zeros table to limit switch 

        #bring table to limit switch and then stop 

        #zero encoder shares.clearpos=1 

        #while the left limit switch is not reading true: 

        #   set motor duty cycle to-50 

        #set motor duty to 0 after breaks through loop 

        #zero the encoder 

        #await 

        ''' 

        @brief  This method zeroes the actuating system upon startup 

        @details Upon startup, the run of this function causes the ballnut to 

move 

        in the negative direction until a limit switch is encountered, at 

which point the  
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        encoder is zeroed. To untrigger the switch, the system then actuates 

in open loop 

        to a position of about 1cm in the positive direction. 

        ''' 

         

        while(not(self.LimitSwitch.read())): #until a limit switch is 

contacted. zero to thrust bearing side 

            self.mot.set_duty(-31) #move in negative direction 

             

        self.mot.set_duty(0) #stop motor 

        self.enc.update() #update encoder 

        shares.clearpos=1 #tell encoder to zero on next update 

        self.enc.update() #update encoder 

         

        while(self.enc.get_linearpos()<1): #actuate to 1cm position in open 

loop 

            #print(self.enc.get_linearpos()) 

            self.mot.set_duty(29) #move in positive direction 

            self.enc.update() #update the encoder in order to get linear 

position 

             

        self.mot.set_duty(0) #stop motor  

         

         

         

         

    def run(self): 

        #write to UART 

        ''' 

        @brief  This method runs the closed loop control system 

        @details This method runs a single iteration of a closed loop 

controller. Encoders update, the controller 

        denotes the voltage to output to the motor, and the duty cycle is set 

as a percentage to the motor. Data is then returned 

        as a tuple of the form [position[cm], velocity[cm/s], angular 

velocity[rpm],motor duty cycle [%]]. If a limit switch is engaged 

        due to overshoot of the system, the motor is disabled. 

        ''' 

        #pseudocode 

        #if either limit switch isnt engaged 

            #update encoder 

            #get position and speed 

            #obtain voltage to apply to motor(from control system) 

            #set motor duty cycle 

            #return time, position, velocity (write to uart in main method) 

             

        #else if the limit switches are engaged 

            #disable motor 

            #set duty cycle to 0 

             

             

        if(not(self.LimitSwitch.read())): #if either limit switch is not 

engaged 
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            self.enc.update() #updates encoder to find current delta  

            posact=self.enc.get_linearpos() #linear position[cm] 

            omega=self.enc.get_speed() #obtain current velocity based on 

delta and interval time (rpm) 

            velocity=self.enc.get_linearvel() #linear speed in cm/s 

            level=self.controlVoltagePID(posact)/12*100 #obtain level to 

apply to motor, convert V to %max voltage. Obtained from required 

voltage/12=fractional percent of 12V, then multiply by 100 

            self.mot.set_duty(level) #set duty cycle on motor input voltage 

based on output from cloop 

            return [posact,velocity,omega,level] #return data 

         

        else: #if limit switch engaged 

            self.mot.disable() #disable motor 

            self.mot.set_duty(0) #set duty cycle to 0 

         

         

    def set_pos(self,newpos): 

        ''' 

        @brief This function is a setter function for reference position. 

Integral buildup is also reset. 

        @param newpos New reference position upon which error is calculated 

in cm. 

        ''' 

        self.posref=newpos #set posref to newpos 

        self.e_sum=0 #reset PI 

             

    def getPosRef(self): 

        ''' 

        @brief This function returns the current value of posref held in this 

class. 

        ''' 

        return self.posref 

         

    def controlVoltageP(self,pos): 

        ''' 

        @brief This function implements a P only control system. 

        @param pos Current position in cm measured by encoders 

        @return Vp Requested output voltage to the motor 

        ''' 

        #convert angle to distance with pitch 

        Vp=self.Kp*(self.posref-pos) # positive delta=positive 

voltage=+change in position 

        return Vp 

     

    def controlVoltagePI(self,pos): 

        ''' 

        @brief This function implements a PI control system. 

        @param pos Current position in cm measured by encoders 

        @return Vp Requested output voltage to the motor 

        ''' 

        error=self.posref-pos #calculated error 
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        self.e_sum=self.e_sum+error*(self.interval/1000) #added error to sum 

of error multiplied by interval in s, numerical integration 

         

        Vp=self.Kp*error+self.Ki*self.e_sum #requested voltage output with 

implemented P and I 

        return Vp 

     

    def controlVoltagePID(self,pos): 

        ''' 

        @brief This function implements a P only control system. 

        @param pos Current position in cm measured by encoders 

        @return Vp Requested output voltage to the motor 

        ''' 

        error=self.posref-pos #calculated error 

         

        self.e_sum=self.e_sum+error*(self.interval/1000) #added error to sum 

of error multiplied by interval in s, numerical integration 

         

        Vp=self.Kp*error+self.Ki*self.e_sum+self.Kd*(error-

self.prev_error)/(self.interval/1000) #implemented PID control 

        self.prev_error=error #store previous error for D control 

         

        return Vp 

     

    def openlooprun(self,olduty): 

        ''' 

        @brief This function runs the system in open loop for system 

characterization. 

        @details This function runs the system at the applied duty cycle for 

20cm to allow 

        students to characterize the system, experimentally find Kp, etc. 

        @param pos Current position in cm measured by encoders 

        @return Vp Requested output voltage to the motor 

        ''' 

        if(self.enc.get_linearpos()<20 and not(self.LimitSwitch.read())): 

#run in open loop until at 20cm or limit switch is hit 

            self.mot.set_duty(olduty) #move in positive direction 

            self.enc.update() #update the encoder in order to get linear 

position 

            posact=self.enc.get_linearpos() #linear position[cm] 

            omega=self.enc.get_speed() #obtain current velocity based on 

delta and interval time (rpm) 

            velocity=self.enc.get_linearvel() #linear speed in cm/s 

             

            return [posact,velocity,omega,olduty] #return data 

        else: #otherwise its stop time 

            self.mot.set_duty(0) #stop motor  

            self.mot.disable() #disable motor 

            self.enc.update() #update the encoder in order to get linear 

position 

            posact=self.enc.get_linearpos() #linear position[cm] 

            omega=self.enc.get_speed() #obtain current velocity based on 

delta and interval time (rpm) 
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            velocity=self.enc.get_linearvel() #linear speed in cm/s 

            return [posact,velocity,omega,olduty] #return data 

 

 

 

 

 

 

 

 

''' 

@file EncoderLab6.py 

 

@brief This file allows for use of the encoder. 

 

''' 

 

import pyb 

import shares 

 

 

class Encoder: 

    ''' 

    @brief      This class interacts with encoder hardware and updates 

encoder position on the MCU 

    @param position   Integer position of encoder from counter, updated by 

the update() method 

    @param zeroer   Integer that is subtracted from delta in order to zero 

the position of the encoder after user input, updated at end of update()    

    @param pitch Float that represents the pitch of the ballscrew in cm. Our 

ballscrew has a pitch of 5mm. 

    ''' 

    ##Integer position of encoder from counter, updated by the update() 

method 

    position=0 

     

    ##Integer that is subtracted from delta in order to zero the position of 

the encoder after user input, updated at end of update()  

    zeroer=0 

     

    ##Pitch in cm/rot 

    pitch=0.5 

     

    def __init__(self,tim,period,interval,CPR): 
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        ''' 

         @brief      Creates an encoder object 

         @param tim    Timer object used with two channels connected to 

encoder phase 

         @param period   Period for timer 

        ''' 

         

        ##Timer object used with two channels connected to encoder phase 

        self.tim=tim 

         

        ##Period for timer 

        self.period=period 

         

        self.interval=interval 

         

        self.CPR=CPR 

   

            

            

    def update(self): 

        ''' 

         @brief      Updates encoder position 

         ''' 

                     

        curread=self.tim.counter() #obtain current reading on encoder 

         

        #Compute delta from new reading and current position, zeroer is 

additionally subtracted 

        delta=self.get_delta(self.position+self.zeroer,curread)  

         

        if(abs(delta)>=(self.period/2)): #bad delta if greater than or equal 

to half of the period 

            if(delta>0): #positive bad delta 

                delta=delta-self.period #correct by subtracting period 

            else: #negative bad delta 

                delta=delta+self.period #correct by adding period 

         

        self.delta=delta 

        # Look at shares.py, which contains shared variables between user 

interface and this class. 

        # If clearpos==1, user desires the position reading to be zeroed. 

        if(shares.clearpos==1):  

            self.zeroer+=self.get_position() #Current position is added to 

zeroer, this is subtracted from delta to decrease/increase future deltas 

            self.set_position(0) #The current position is set to 0 

            shares.clearpos=0 #The reset variable is reset 

          

        newpos=self.position+delta #new position as calculated as the old 

position plus the corrected delta 

        self.set_position(newpos) #new position is set 

         

        #The current delta and position readings are put into shares.py for 

interaction with the user interface. 
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        shares.delta=delta 

        shares.position=newpos 

         

    def get_position(self): 

        ''' 

         @brief      Returns encoder position in ticks. MUST BE RUN AFTER 

UPDATE. 

         ''' 

        return self.position 

     

     

    def get_positionDeg(self): 

        ''' 

        @brief   Returns encoder position in degrees. MUST BE RUN AFTER 

UPDATE. 

        ''' 

        conv=self.CPR*4/360 #yields ticks/deg 

        posdeg=self.position/conv 

        return posdeg 

     

    def get_positionRot(self): 

        ''' 

        @brief   Returns encoder position in rotations. MUST BE RUN AFTER 

UPDATE. 

        ''' 

        conv=1/360 

        return(self.get_positionDeg()*conv)  

         

    def set_position(self,newpos): 

        ''' 

         @brief      Sets encoder position in ticks 

         ''' 

        self.position=newpos 

         

         

    def get_delta(self,position,curread): 

        ''' 

         @brief      Returns the difference between two values that are 

passed to this method 

         ''' 

        delta=curread-position 

        self.delta=delta 

        return delta 

     

    def get_speed(self): #MAKE SURE TO RUN THIS AFTER UPDATE 

        ''' 

        @brief Return speed in rpm. MUST BE RUN AFTER UPDATE. 

        ''' 

        conv=self.CPR*4 #yields ticks/rev 

        dx=(self.delta)/conv #revolutions since last check 

        dt=self.interval/(60000) #interval converted from ms to minute 

        speed=dx/dt #calculate speed from change in position over change in 

time 
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        return speed 

     

    def get_linearpos(self): #MAKE SURE TO RUN THIS AFTER UPDATE 

        ''' 

        @brief Returns linear position in cm. MUST BE RUN AFTER UPDATE. 

        ''' 

        #returns linear position of mass in cm 

        rot=self.get_positionRot() #rotational position 

        dist=self.pitch*rot 

        return dist 

     

    def get_linearvel(self): #MAKE SURE TO RUN THIS AFTER UPDATE 

        ''' 

        @brief Returns linear velocity in cm/s.MUST BE RUN AFTER UPDATE. 

        ''' 

        #returns linear velocity in cm/s 

        rpm=self.get_speed() #angular velocity in rpm 

        vel=rpm/60*self.pitch #rpm*60=rot/s,rot/s*pitch(dist/rot)=dist/s 

        return vel 

         

         

     

if __name__=="__main__": 

     

    # period=0xffff #Period of timer 

    # interval=30 #interval in ms 

    # tim=pyb.Timer(4) #Declare timer 4 

    # tim.init(prescaler=0,period=0xFFFF) #Initialize timer 4 with prescale 

and period 

    # tim.channel(1,pin=pyb.Pin.cpu.B6,mode=pyb.Timer.ENC_AB) #channel 1 of 

timer 4 to pin B6 

    # tim.channel(2,pin=pyb.Pin.cpu.B7,mode=pyb.Timer.ENC_AB) #chennel 2 of 

timer 4 to pin B7 

 

    # CPR=25.9 #CPR of motor output shaft, quad encoder 

    # enc=Encoder(tim,period,interval,CPR) #declare encoder object, pass 

timer,period, interval 

 

    period=0xffff #Period of timer 

    interval=30 #interval in ms 

    tim=pyb.Timer(5) #Declare timer 4 

    tim.init(prescaler=0,period=0xFFFF) #Initialize timer 4 with prescale and 

period 

    tim.channel(1,pin=pyb.Pin.cpu.A0,mode=pyb.Timer.ENC_AB) #channel 3 of 

timer 5 to pin A2 

    tim.channel(2,pin=pyb.Pin.cpu.A1,mode=pyb.Timer.ENC_AB) #chennel 4 of 

timer 5 to pin A3 

     

    CPR=25.9 #CPR of motor output shaft, quad encoder 

    enc=Encoder(tim,period,interval,CPR) #declare encoder object, pass 

timer,period, interval 
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    while True: 

        enc.update() 

        print(enc.get_positionDeg()) 

     

 

 

 

 

 

 

 

''' 

@file      LimitDriver.py 

@brief     This file contains the hardware driver for the limit switches. 

@author    Ryan Funchess 

@date      June 1, 2021 

''' 

 

import pyb 

import utime 

from pyb import Pin 

from pyb import ADC 

 

class LimitSwitch: 

    ''' 

    @brief  This Class implements a limit switch''' 

     

    # def __init__(self,sensor): 

    #     ''' 

    #     @brief  Makes limit switch object 

    #     @param sensor Pin object connected to limit switch 

    #     ''' 

    #     self.sensor=sensor 

    #     self.sensor.init(mode=Pin.ANALOG) 

    #     self.reader=ADC(self.sensor) 

         

    def __init__(self,sensor): 

        ''' 

        @brief  Makes limit switch object 

        @param sensor Pin object connected to limit switch 

        ''' 

        self.sensor=sensor 

 

         

    def read(self): 

        ''' 
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        @brief This function reads from the limit switch and returns True if 

engaged. 

        @details Returns True if limit switch is engaged and False if no 

obstruction is detected. 

        ''' 

        reading=self.sensor.value() #obtains 1 if high, 0 if low 

        if reading==1: #if high then circuit is open 

            return True  

        return False 

         

 

if __name__=="__main__": 

     

    sensorPin=Pin(Pin.cpu.A0,Pin.IN,Pin.PULL_UP) 

    sensor=LimitSwitch(sensorPin) 

     

    while True: 

        sensor.read() 

'''  

@file MotorDriver.py 

This class has been designed to work with physical motor hardware. Pulse 

Width Modulation (PWM) is used 

in order to drive motor based on a designated user input. The motor is also 

able to be enabled and disabled 

by setting the Enable pin high or low respectively. 

''' 

 

import pyb 

import utime 

 

class MotorDriver: 

    ''' 

    @brief  This Class implements a motor''' 

     

    def __init__(self,nSLEEP_Pin,IN1_Pin,IN2_Pin,timer): 

        ''' 

        @brief  Makes motor object.  

        @details Constructs motor object. Also sets saturation limit to 50%, 

        as we are running a 12V motor from a 24V variable source. 

        @param nSLEEP_Pin Enable pin 

        @param IN1_Pin  In 1 Pin 

        @param IN2_Pin  In 2 Pin 

        @param timer  Timer that works with PWM for IN1_Pin and IN2_Pin 

        ''' 

        # print('Creating a motor driver') 

        ##Enable Pin 

        self.nSLEEP_Pin=nSLEEP_Pin 

        ##In 1 Pin 

        self.IN1_Pin=IN1_Pin 

        ##In 2 Pin 

        self.IN2_Pin=IN2_Pin 

        ##Timer that works with PWM for IN1_Pin and IN2_Pin 

        self.timer=timer 
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        self.tch1=self.timer.channel(1,pyb.Timer.PWM,pin=self.IN1_Pin) 

        self.tch2=self.timer.channel(2,pyb.Timer.PWM,pin=self.IN2_Pin) 

         

        ##Saturation limit for motor, cannot go above this duty cycle 

        self.satlimit=50 

         

    def enable(self): 

        ''' 

        @brief This function enables the motor to run by setting nSLEEP high. 

        ''' 

        self.nSLEEP_Pin.high() 

        # print('Enabling motor') 

         

         

    def disable(self): 

        ''' 

        @brief This function disables the motor by setting nSLEEP low. 

        ''' 

        self.nSLEEP_Pin.low() 

        # print('Disabling motor') 

         

         

    def set_duty(self,duty): 

        ''' 

        @brief This function sets the duty cycle on the PWM for the motor, 

which by  

        increasing average voltage applied to the motor, will increase motor 

speed. This function checks 

        to make sure that the input is valid, and then sets the pins to the 

proper value to ensure the right  

        duty cycle in the correct direction. 

        ''' 

        if(not(self.is_float(duty))): #check to make sure that the passed 

value is a float 

            pass 

        else: 

            if(abs(duty)>self.satlimit): #saturation, so if a value over 50% 

is requested, 50% is maximum possible that it will return 

                duty=self.satlimit*abs(duty)/duty #abs(duty)/duty puts 

voltage in direction of originally requested duty 

            if(duty>=0): #rotate forward 

                self.tch1.pulse_width_percent(duty) #set forward pin to 

proper duty cycle 

                self.tch2.pulse_width_percent(0) #keep other pin low 

            else: #reverse direction 

                self.tch1.pulse_width_percent(0) #set forward pin low 

                self.tch2.pulse_width_percent(-1*duty) #set reverse pin to 

magnitude of passed value. Multiplying by negative corrects sign. 

             

            ##Duty cycle which controls average voltage applied to motor, 

controlling motor output speed 

            self.duty=duty 
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          #  print(duty) 

            # print('Running with new duty cycle of '+str(duty)+' %') 

     

     

    def is_float(self,n): 

        ''' 

       @brief  This function is used to ensure that a passed string is able 

to be converted 

       to a float. The general outline of this method was obtained from the 

following link: 

           https://note.nkmk.me/en/python-check-int-

float/#:~:text=Check%20if%20a%20number%20is%20integer%20or%20decimal,3%20Chec

k%20if%20numeric%20string%20is%20integer.%20''' 

        try: 

            float(n) 

        except ValueError: 

            return False #if the attempt to convert the value to float has an 

error, return false immediately 

        else: 

            n=float(n) 

            return isinstance(n,float) #returns boolean determining if value 

is float 

     

 

if __name__=='__main__': 

    #PB4 and PB5 

    pinA10=pyb.Pin(pyb.Pin.cpu.A10,pyb.Pin.OUT_PP) 

    pinB4=pyb.Pin(pyb.Pin.cpu.B4) 

    tim3=pyb.Timer(3,freq=20000) 

    t3ch1=tim3.channel(1,pyb.Timer.PWM,pin=pinB4) 

    pinB5=pyb.Pin(pyb.Pin.cpu.B5) 

    t3ch2=tim3.channel(2,pyb.Timer.PWM,pin=pinB5) 

     

    moe1=MotorDriver(pinA10,pinB4,pinB5,tim3) 

    moe1.enable() 

 

 

''' 

main.py 

 

Test code for closed loop with P, PI, PID and serial communication 

Step input from serial communication 

Test Code 5 will do open loop test and safety 

''' 

 

from LimitDriver import LimitSwitch  

from MotorDriver import MotorDriver 

from EncoderLab6 import Encoder 

from controller import controller 

import pyb 

from pyb import Pin 

import utime 

import shares 
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import array 

 

#initialize limit switch, wait for lid to be put on 

#sensor 

 

sensorPin=Pin(Pin.cpu.A6,Pin.IN,Pin.PULL_UP) 

sensor=LimitSwitch(sensorPin) 

 

while(sensor.read()): #true while the lid is off, will not do anything until 

lid is placed 

    pass 

 

while True:             

    myuart=pyb.UART(2) #initialize UART for communication with computer 

     

    #waiting for entire string of format Kp, Ki, Kd, posref 

    n=0 #loop control variable 

    while(n==0): #runs while n==0, changed from 0 when Kp received 

        if myuart.any() != 0: #if there's anything from the computer 

            frontendreq = myuart.read().decode('ascii') #read the line 

            requests=frontendreq.split(',') #split input string on space 

            Kp=requests[0] #first entry is Kp 

            Kp=float(Kp) #convert to float 

            Ki=requests[1] #second entry is Ki 

            Ki=float(Ki) #convert to float 

            Kd=requests[2] #third entry is Kd 

            Kd=float(Kd) #convert to float 

            posref=requests[3] #first reference position 

            posref=float(posref) #convert to float 

            posref2=requests[4] #second references position 

            posref2=float(posref2) #convert to float 

            posref3=requests[5] #third reference position 

            posref3=float(posref3) #convert to float 

            typeofloop=requests[6] #0 for open loop, 1 for closed loop 

            typeofloop=int(typeofloop) #convert to int 

            openduty=requests[7] #open loop duty cycle 

            openduty=float(openduty) #convert to float 

             

             

             

            positions=[posref,posref2,posref3] #put desired positions in list 

to be iterated 

             

            n=1 #break out of loop 

        

                                     

    #Motor 

    pinA10=pyb.Pin(pyb.Pin.cpu.A10,pyb.Pin.OUT_PP) #enable Pin 

    pinB4=pyb.Pin(pyb.Pin.cpu.B4) #channel 1 for PWM on motor 

    tim3=pyb.Timer(3,freq=20000) #PWM uses timer 3 

    t3ch1=tim3.channel(1,pyb.Timer.PWM,pin=pinB4) #timer 3 channel 1 

    pinB5=pyb.Pin(pyb.Pin.cpu.B5) #channel 2 for pwm on motor 

    t3ch2=tim3.channel(2,pyb.Timer.PWM,pin=pinB5) #timer 3 channel 2 
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    moe1=MotorDriver(pinA10,pinB4,pinB5,tim3) #create motor object 

    moe1.enable() #enable the motor 

     

    #encoder 

    period=0xffff #Period of timer 

    interval=30 #interval in ms 

    tim=pyb.Timer(5) #Declare timer 4 

    tim.init(prescaler=0,period=0xFFFF) #Initialize timer 4 with prescale and 

period 

    tim.channel(1,pin=pyb.Pin.cpu.A0,mode=pyb.Timer.ENC_AB) #channel 3 of 

timer 5 to pin A2 

    tim.channel(2,pin=pyb.Pin.cpu.A1,mode=pyb.Timer.ENC_AB) #chennel 4 of 

timer 5 to pin A3 

     

    CPR=25.9 #CPR of motor output shaft, quad encoder 

    enc=Encoder(tim,period,interval,CPR) #declare encoder object, pass 

timer,period, interval 

     

    #Controller, pass gains and initial reference position and hardware 

drivers 

    cont=controller(Kp,Ki,Kd,posref,moe1,enc,sensor,interval) 

     

    #startup/zero the system 

    cont.startup() 

     

    if(typeofloop==1): #closed loop 

        ## The integer timestamp for the first iteration 

        start_time = utime.ticks_ms() 

        # print('Start time:'+str(self.start_time)) 

         

        ## The integer "timestamp" for when the next run should be 

        next_time = utime.ticks_add(start_time, interval) 

         

         

        #Data collection 

        TimeData=array.array('i',[]) #list to store time values in ms 

        SpeedData=array.array('f',[])#list to store velocity data in rpm 

        PosData=array.array('f',[]) #list to store position values in cm 

         

        curr_time = utime.ticks_ms() #current time 

         

        posi=0 #indicates which of the three positions the controller is 

referenced to 

        stop=False #tells the loop when to stop 

        while(not(stop)): #runs for 15 seconds 

            curr_time = utime.ticks_ms() #current time 

            # if myuart.any() != 0: #if there's anything from the computer 

            #     newpos = myuart.read().decode('ascii') #read the line 

            #     newpos=float(newpos) 

            #     cont.set_pos(newpos) 

            if utime.ticks_diff(curr_time,next_time)>0: #runs the task if 

current time is past the next time 
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                data=cont.run() #run the control loop 

                PosData=data[0] #current position is passed from controller 

                SpeedData=data[1] 

                TimeData=curr_time-start_time #change in time from beginning 

to now 

                

myuart.write('{:},{:},{:}\r\n'.format(TimeData,PosData,SpeedData)) #write 

data over (real time data collection) 

                if(data[2]<=8 and abs(data[0]-positions[posi])<=0.05): #goes 

to next position at steady state 

                #steady state defined as requested duty cycle<8, error in 

position less than 0.01cm 

                    posi=posi+1 #iterate to next  

                    if(posi==3): #when all reference positions have been 

iterated thru 

                        stop=True #stop the loop 

                    else: 

                        cont.set_pos(positions[posi]) #set reference position 

                next_time = utime.ticks_add(next_time, interval) #set the 

next time for the task to actually run 

         

        moe1.disable() #disable motor 

             

         

         

        myuart.write('DION\r\n') #passes the terminator to tell the frontend 

that data collection is done 

     

                 

    elif(typeofloop==0): #open loop 

        ## The integer timestamp for the first iteration 

        start_time = utime.ticks_ms() 

        # print('Start time:'+str(self.start_time)) 

         

        ## The integer "timestamp" for when the next run should be 

        next_time = utime.ticks_add(start_time, interval) 

         

         

        #Data collection 

        TimeData=array.array('i',[]) #list to store time values in ms 

        SpeedData=array.array('f',[])#list to store velocity data in rpm 

        PosData=array.array('f',[]) #list to store position values in cm 

         

        curr_time = utime.ticks_ms() #current time 

         

         

        stop=False #tells the loop when to stop 

        while(not(stop)): # 

            curr_time = utime.ticks_ms() #current time 

            if utime.ticks_diff(curr_time,next_time)>0: #runs the task if 

current time is past the next time 

                data=cont.openlooprun(openduty) #run the open loop controller 

                PosData=data[0] #current position is passed from controller 
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                SpeedData=data[1] #current speed passed from controller 

                TimeData=curr_time-start_time #change in time from beginning 

to now 

                

myuart.write('{:},{:},{:}\r\n'.format(TimeData,PosData,SpeedData)) #write 

data over (real time data collection) 

                if(data[0]>19): #stops after travelling 19cm 

                    moe1.disable() #disable motor 

                    stop=True #stop the loop 

                     

                next_time = utime.ticks_add(next_time, interval) #set the 

next time for the task to actually run 

         

        moe1.disable() #disable motor 

             

         

         

        myuart.write('DION\r\n') #passes the terminator to tell the frontend 

that data collection is done 
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A.19 Test Procedures 
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A.20 User Manual 

CNC Feed Drive 

Owner’s Manual 

Written by the M.E Senior Project Team 

Nicholas DeSimone, Ryan Funchess, Juan Majano, and Caleb O’Gorman 

 

Required Personal Protective Equipment 

• Safety Glasses  

Operation Safety Rules 

• Tie up loose hair. 

• Remove loose clothing. 

• Remove loose jewelry and set it aside. 

Before Powering the System 
Follow these instructions to ensure the necessary safety measures are in place and components are in their 

correct positions before the system can receive power. 

Placing the Feed Drive Assembly 
The feed drive assembly, including all components, contained within the aluminum frame and as 

pictured below, must be placed appropriately atop the wooden base plate before it can be 

connected to power. If the feed drive assembly is not in place atop the wooden base, carry out the 

following steps. 
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Figure 1: Isometric view of the feed drive assembly, including mechanical and electrical 

components.  

 

1. Ensure that the wooden base is located on the surface where it will be operated, which should 

be flat, clear of debris, and immobile. 

2. Two users pick up and support each end of the assembly from underneath the base plate. Note 

any pinch points and avoid them accordingly, although none should be present when the users 

support the assembly from underneath the base plate (as spacing is provided by the legs of the 

assembly). 

3. Place the feed drive atop the wooden base such that each of its four corners is aligned in the 

four designated marks on the wooden base. 

Checking Electrical Connections 
Before the use of the system, verify that all electrical connections are rigid on the Nucleo and the 

electro-mechanical components. The eight wires connected to the Nucleo/Motor Driver are 

tabulated below, with pictures corresponding to the correct placement of these components. 

Table 1: Wiring connections from Nucleo/Motor Driver to all other components. 

Pin on the Nucleo/Motor Driver Wire Destination 

Pin A6 Limit Switch Output (Motor Side) 

GND Limit Switch Input (Ball Bearing Side) 

Motor Driver Channel A + Motor + 

Motor Driver Channel A- Motor - 

3.3V Pin Vcc on Encoder 

GND GND on Encoder 

Pin A1 Encoder Channel A 

Pin A0 Encoder Channel B 

 

 

 
Figure 2: Proper wire electrical connections on the Nucleo Side 

Caution: Do NOT lift the assembly by the motor or any other exposed components. Only lift the assembly from 

beneath the base plate with full support on either end. 
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For each of the above connections, ensure that the cables are rigidly connected at both ends and 

the cable is not frayed or torn. 

Attaching the Lid 
The clear plastic storage bin must be placed atop and engaged with the four switches of the 

wooden base plate before the system can receive power.  

1. Align the clear plastic “lid” over the feed drive on the wooden base plate. 

2. Place lid over system, taking care to not unplug any wires attached to the motor or limit 

switches. 

Final Checks 
 Finally, a few final mechanical components must be checked: 

1. Check that all screws are fully fastened. 

2. Ensure that there are no obstructions in the path of the ballscrew. 

3. Check that the ballscrew appears to be lubricated. System performance is strongly directed by 

lubrication on the ballscrew. If the ballscrew does not appear damp, squirt machine oil over 

the top of the ballscrew until the screw drips slightly onto the base plate. Mesh this with the 

system by powering down the feed drive and turning the shaft coupling such that the table 

moves the length of the screw. 

4. Check to be sure that both shaft coupling hubs are fully engaged, as seen in Figure 3 below. If 

hubs are not full engaged, lightly tap the ball bearing until hubs are engaged. 

 

 
 

Figure 3: Side by side images depicting fully engaged coupling hubs (left) and non-fully engaged 

coupling hubs (right). 

Setting up the Feed Drive for Use 
After the system has been inspected, the code has been set up, and all the initial safety steps have been 

completed the system can finally be used.    

1. Ensure that the lid is closed. 

2. Ensure that the motor driver input power is plugged into the wall adapter. 
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Figure 4: Motor Driver input power connected to the DC power supply to be plugged into the wall. 

3. Plugin the wall adapter to a standard 100-240V wall outlet 

4. Plug the Nucleo into the computer via the USB. This cord is used to power both the Nucleo as 

well as allow for serial communication between the MATLAB frontend and the Nucleo Backend. 

Upon startup, the Nucleo will zero the system to the limit switches. 

 

Figure 5: USB Cable connecting Nucleo to Computer. 

 

5. Return to the computer and initiate the process. 
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Figure 6: Shows the location of the reset button on Nucleo.  

Operating the User Interface-UPDATE 

 

The user interface for the CNC feed drive is written in MATLAB and thus will be controlled from a 

computer attached to the feed drive. The following steps cover how to control your feed drive with the 

MATLAB user interface: 

1. Before attempting to run the system, ensure that the COM Port in the MATLAB Source Code 

matches the COM Port relating to the Nucleo. The COM Port relevant to the Nucleo can be found 

in the “Windows Device Manager”, as shown in Figure 7 below. 

Caution: If you hear a high-pitched squealing noise from the motor at any point during operation, 

there is excessively high current running through the motor and it has stalled. If this occurs, press the 

black “RESET” button on the Nucleo and start over on the user interface. If this occurs multiple 

times, check to see if the ballscrew requires extra lubrication and check to ensure your gains/open 

loop duty cycle are within the specified range.  

Caution: To STOP the process at any time press the reset button on the controller or unplug the motor driver 

from the controller enclosure.  

Reset Button.  
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Figure 7: Windows Device Manager showing that the Nucleo is connected to COM3. This value 

will be changed as commented in the MATLAB Source Code. 

 

2. Launch the MATLAB App titled “CNC Feed Drive GUI” from the MATLAB apps taskbar, as 

seen in Figure 8 below. 

 

Figure 8: Location of “CNC Feed Drive GUI” in the MATLAB apps taskbar, which appears once the 

installation file is run. 
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3. When the app launches, the GUI will be presented as shown in Figure 9 below. 

 
Figure 9: Graphical User Inteface (GUI) run through the “CNC Feed Drive GUI” App 

4. From here, there are two options for how the system will be run: 

 

• Open Loop Control: This involves the table zeroing out at a limit switch and then 

moving at the requested duty cycle until a travel distance of 20 cm is reached. To use this 

mode, simply leave the closed loop box unchecked and enter in a duty cycle. Since we 

are running a 12V motor from a 24V source, the maximum applied duty cycle to the 

motor is 50%, which is regulated in software on the backend. 

 

• Closed Loop Control: This mode involves PID control of the system. The table zeroes 

out to the limit switch and then approaches a series of three requested positions. Once 

steady state is reached at one positions, the next position is set as the reference. To run in 

PID closed loop with the GUI, input a value for each of the three controller gains on the 

left side of the GUI, as well as three linear positions between 0.5 and 25 cm, separated by 

commas.  

 

Note: Overly large controller gains could cause unprecedented system response and thus 

it is imperative to monitor the feed drive during operation to halt it if necessary. We 

recommend keeping all gains between 0 and 10.  

 

5. Press “Enter” to begin real time data collection. 

6. The data for the table's motion will be displayed in the axes on the bottom of the application. A 

time series of the data will also appear in the MATLAB workspace. To save this data, right-click 

on the workspace and select “Save.” 

7. After you are done and have ensured your data is saved, closeout of the GUI.  
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Powering Down System 
Once the program has gone through its cycle and data has been collect follow the steps below: 

1. Unplug the system from the wall outlet.  

2. Unplug the Nucleo from the computer 

3. Close lid. 

Parts List 
Table 2: List of parts with their respective vendors 

Items Purchased Vendor 

PLA Filament Amazon 

Ball Screw, Ballnut, and Bearings Automation4Less 

Rails and linear bearings assembly Vevor 

NUCLEO-L476RG (Microcontroller) ST Microelectronics 

Limit Switches and shaft couplings McMaster-Carr 

Aluminum Sheets Grainger 

Motor Driver ST Microelectronics 

Power Supply Amazon 

Roller Switches Amazon 

Motor Driver ST 

56 Fasteners and Corner Brackets 

• M6x0.8mm Socket Head screws and 

washers for ballnut to table assembly 

• M6 Corner Bracket.  
Ace Hardware 

Female Bullet Adaptors ServoCity 

Electric Motor ServoCity 

Attention: If the table contacts the limit switch and stops, this is part of normal operation, and it 

signifies that the system overshoot is too high to be acceptable. When a limit switch is contacted, the 

motor is disabled. If a switch is contacted during your experiment, unplug the Nucleo and Motor 

Driver and carefully turn the shaft coupling by hand until the table is an acceptable position for the 

experiment to be restarted. 
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Maintenance 

• Apply machine oil at least once a week. 

o Apply small amount spread out along ballscrew such that until the screw drips slightly 

onto the base plate. Mesh this with the system by powering down the feed drive and 

turning the shaft coupling such that the table moves the length of the screw. 

• Inspect bearings for wear. If so: 

o Contact Lab Technician for replacement. 

o Or review manufacturing plan for assembly. 

• If limit switches are faulty: 

o Obtain replacement parts from parts list follow manufacturing plan to re-install.  

• Check fasteners once a quarter for wear. Replace if necessary. 

Troubleshooting Guide 
For any issues related to the use and or operation of this system please contact Dr. Siyuan (Simon) Xing:  

sixing@calpoly.edu 
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A.21 MATLAB GUI Code 
 

classdef app1 < matlab.apps.AppBase 

  

% Properties that correspond to app components 

properties (Access = public) 

UIFigure matlab.ui.Figure 

UserControlPanel matlab.ui.container.Panel 

kp matlab.ui.control.NumericEditField 

ki matlab.ui.control.NumericEditField 

kd matlab.ui.control.NumericEditField 

ControllerLabel matlab.ui.control.Label 

KpLabel matlab.ui.control.Label 

KiLabel matlab.ui.control.Label 

KdLabel matlab.ui.control.Label 

StepInput matlab.ui.control.EditField 

StepInputControlLabel matlab.ui.control.Label 

cmLabel matlab.ui.control.Label 

EnterButton matlab.ui.control.Button 

ClosedLoopCheckBox matlab.ui.control.CheckBox 

LeaveuncheckedforOpenLoopLabel matlab.ui.control.Label 

DutyCycle matlab.ui.control.NumericEditField 

DutyCycleLabel matlab.ui.control.Label 

DataDisplayPanel matlab.ui.container.Panel 

DataPlot matlab.ui.control.UIAxes 

SpeedPlot matlab.ui.control.UIAxes 

end 

  

properties (Access = public) 

ser = serialport("COM7", 115200);  
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end 

methods (Access = private) 

function data_collection(app) 

while app.ser.NumBytesAvailable == 0 

% Wait for length 

end 

times = zeros(1, 2000); 

pos = zeros(1, 2000); 

speed = zeros(1, 2000); 

rd = ""; 

n = 1; 

while rd ~= "DION" 

rd = readline(app.ser); 

% cd = readline(app.ser); 

% dd = readline(app.ser); 

% ed = readline(app.ser); 

% message = rd + cd + dd + ed; 

if rd == "DION" 

continue 

end 

% app.Label.Text = message; 

% app.Label2.Text = string(app.ClosedLoopCheckBox.Value); 

ss = split(rd, ','); 

times(n) = str2double(ss(1))/1000; 

pos(n) = str2double(ss(2)); 

speed(n) = str2double(ss(3)); 

plot(app.DataPlot,times(1:n),pos(1:n)) 

plot(app.SpeedPlot,times(1:n),speed(1:n)) 

n = n+1; 

end 

assignin('base', 'speed', speed) 
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assignin('base', 'positions', pos) 

assignin('base', 'time', times) 

%app.TimeLabel.Text = num2str(times); 

%app.ValLabel.Text = num2str(vals); 

end 

end 

  

% Callbacks that handle component events 

methods (Access = private) 

  

% Code that executes after component creation 

function starter(app) 

flush(app.ser) 

configureTerminator(app.ser, "CR/LF") 

end 

  

% Button pushed function: EnterButton 

function EnterButtonPushed(app, event) 

if app.StepInput.Value == "splash" 

app.splash_mode(); 

else 

s = ","; 

kps = string(app.kp.Value); 

kis = string(app.ki.Value); 

kds = string(app.kd.Value); 

sts = string(app.StepInput.Value); 

if app.ClosedLoopCheckBox.Value == true 

ols = "1"; 

else 

ols = "0"; 
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end 

dts = string(app.DutyCycle.Value); 

val = kps + s + kis + s + kds + s + sts + s + ols + s + dts; 

write(app.ser, val, "string"); 

app.data_collection(); 

end 

end 

  

% Close request function: UIFigure 

function closer(app, event) 

delete(app.ser) 

delete(app) 

end 

end 

  

% Component initialization 

methods (Access = private) 

  

% Create UIFigure and components 

function createComponents(app) 

  

% Create UIFigure and hide until all components are created 

app.UIFigure = uifigure('Visible', 'off'); 

app.UIFigure.Position = [100 100 650 516]; 

app.UIFigure.Name = 'MATLAB App'; 

app.UIFigure.CloseRequestFcn = createCallbackFcn(app, @closer, true); 

  

% Create UserControlPanel 

app.UserControlPanel = uipanel(app.UIFigure); 

app.UserControlPanel.TitlePosition = 'righttop'; 

http://app.uifigure.name/
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app.UserControlPanel.Title = 'User Control'; 

app.UserControlPanel.BackgroundColor = [1 0.8902 0.5843]; 

app.UserControlPanel.Position = [1 312 650 205]; 

  

% Create kp 

app.kp = uieditfield(app.UserControlPanel, 'numeric'); 

app.kp.HorizontalAlignment = 'center'; 

app.kp.Position = [117 128 51 28]; 

app.kp.Value = 6; 

  

% Create ki 

app.ki = uieditfield(app.UserControlPanel, 'numeric'); 

app.ki.HorizontalAlignment = 'center'; 

app.ki.Position = [118 80 51 28]; 

app.ki.Value = 2; 

  

% Create kd 

app.kd = uieditfield(app.UserControlPanel, 'numeric'); 

app.kd.HorizontalAlignment = 'center'; 

app.kd.Position = [117 32 51 28]; 

app.kd.Value = 1; 

  

% Create ControllerLabel 

app.ControllerLabel = uilabel(app.UserControlPanel); 

app.ControllerLabel.HorizontalAlignment = 'center'; 

app.ControllerLabel.FontSize = 16; 

app.ControllerLabel.Position = [105 155 75 22]; 

app.ControllerLabel.Text = 'Controller'; 

  

% Create KpLabel 

http://app.kp/
http://app.ki/
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app.KpLabel = uilabel(app.UserControlPanel); 

app.KpLabel.HorizontalAlignment = 'center'; 

app.KpLabel.Position = [131 107 25 22]; 

app.KpLabel.Text = 'Kp'; 

  

% Create KiLabel 

app.KiLabel = uilabel(app.UserControlPanel); 

app.KiLabel.HorizontalAlignment = 'center'; 

app.KiLabel.Position = [130 59 25 22]; 

app.KiLabel.Text = 'Ki'; 

  

% Create KdLabel 

app.KdLabel = uilabel(app.UserControlPanel); 

app.KdLabel.HorizontalAlignment = 'center'; 

app.KdLabel.Position = [130 11 25 22]; 

app.KdLabel.Text = 'Kd'; 

  

% Create StepInput 

app.StepInput = uieditfield(app.UserControlPanel, 'text'); 

app.StepInput.Position = [427 114 65 22]; 

app.StepInput.Value = '10,15,5'; 

  

% Create StepInputControlLabel 

app.StepInputControlLabel = uilabel(app.UserControlPanel); 

app.StepInputControlLabel.HorizontalAlignment = 'center'; 

app.StepInputControlLabel.FontSize = 14; 

app.StepInputControlLabel.Position = [359 155 119 22]; 

app.StepInputControlLabel.Text = 'Step Input Control'; 

  

% Create cmLabel 
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app.cmLabel = uilabel(app.UserControlPanel); 

app.cmLabel.Position = [526 114 29 22]; 

app.cmLabel.Text = '(cm)'; 

  

% Create EnterButton 

app.EnterButton = uibutton(app.UserControlPanel, 'push'); 

app.EnterButton.ButtonPushedFcn = createCallbackFcn(app, @EnterButtonPushed, 
true); 

app.EnterButton.Position = [298 114 100 22]; 

app.EnterButton.Text = 'Enter'; 

  

% Create ClosedLoopCheckBox 

app.ClosedLoopCheckBox = uicheckbox(app.UserControlPanel); 

app.ClosedLoopCheckBox.Text = 'Closed-Loop'; 

app.ClosedLoopCheckBox.Position = [298 49 90 22]; 

app.ClosedLoopCheckBox.Value = true; 

  

            % Create LeaveuncheckedforOpenLoopLabel 

            app.LeaveuncheckedforOpenLoopLabel = uilabel(app.UserControlPanel); 

            app.LeaveuncheckedforOpenLoopLabel.Position = [298 19 185 22]; 

            app.LeaveuncheckedforOpenLoopLabel.Text = '*Leave unchecked for Open-
Loop'; 

  

            % Create DutyCycle 

            app.DutyCycle = uieditfield(app.UserControlPanel, 'numeric'); 

            app.DutyCycle.Position = [427 49 65 22]; 

  

            % Create DutyCycleLabel 

            app.DutyCycleLabel = uilabel(app.UserControlPanel); 

            app.DutyCycleLabel.Position = [526 49 86 22]; 

            app.DutyCycleLabel.Text = 'Duty Cycle (%)'; 
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            % Create DataDisplayPanel 

            app.DataDisplayPanel = uipanel(app.UIFigure); 

            app.DataDisplayPanel.TitlePosition = 'righttop'; 

            app.DataDisplayPanel.Title = 'Data Display'; 

            app.DataDisplayPanel.BackgroundColor = [1 0.8902 0.5843]; 

            app.DataDisplayPanel.Position = [1 1 650 312]; 

  

            % Create DataPlot 

            app.DataPlot = uiaxes(app.DataDisplayPanel); 

            title(app.DataPlot, 'Pos vs Time') 

            xlabel(app.DataPlot, 'Time (s)') 

            ylabel(app.DataPlot, 'Pos (cm)') 

            zlabel(app.DataPlot, 'Z') 

            app.DataPlot.PlotBoxAspectRatio = [7.95652173913043 1 1]; 

            app.DataPlot.Position = [1 153 633 128]; 

  

            % Create SpeedPlot 

            app.SpeedPlot = uiaxes(app.DataDisplayPanel); 

            title(app.SpeedPlot, 'Speed vs Time') 

            xlabel(app.SpeedPlot, 'Time (s)') 

            ylabel(app.SpeedPlot, 'Speed (cm/s)') 

            zlabel(app.SpeedPlot, 'Z') 

            app.SpeedPlot.PlotBoxAspectRatio = [7.79787234042553 1 1]; 

            app.SpeedPlot.Position = [0 24 634 130]; 

  

            % Show the figure after all components are created 

            app.UIFigure.Visible = 'on'; 

        end 

    end 
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    % App creation and deletion 

    methods (Access = public) 

  

        % Construct app 

        function app = app1 

  

            % Create UIFigure and components 

            createComponents(app) 

  

            % Register the app with App Designer 

            registerApp(app, app.UIFigure) 

  

            % Execute the startup function 

            runStartupFcn(app, @starter) 

  

            if nargout == 0 

                clear app 

            end 

        end 

  

        % Code that executes before app deletion 

        function delete(app) 

  

            % Delete UIFigure when app is deleted 

            delete(app.UIFigure) 

        end 

    end 

end 


