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ABSTRACT

Using write buffers in Systolic Array architectures to mitigate the number of memory access
produced by Row Stationary dataflows

Daniel U. Peralta Velazquez
Department of Electrical and Computer Engineering

Texas A&M University

Research Faculty Advisor: Paul V. Gratz
Department of Electrical and Computer Engineering

Texas A&M University

Research Faculty Advisor: Kevin Nowka
Department of Electrical and Computer Engineering

Texas A&M University

New applications of Deep Neural Networks are being designed such as fraud detection [1],

short term weather precipitation forecasts [2], and cancer prognosis prediction [3]. Nonetheless,

their respective models are getting more complex with an increasing number of depth layers. These

models require millions of computations that conventional CPU and GPU architectures will take

a significant amount of computational time. The data distribution of these models is well known;

they mostly consist of dot product operations between inputs and filters. Applications such as

self-driving cars required fast response time and accurate predictions. Current research [4][5] in-

troduces accelerator architectures based on 2D systolic arrays as they provide high efficiency in

performing multiplication and accumulation operations. Computational and power cost define per-

formance, memory accesses attribute the highest cost to current architecture models [6]. In order

to enhance the performance of DNN accelerators, parallelism is extracted by breaking convolution

into partial computations at the expense of segmenting output memory accesses. This thesis ex-
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plores the implementation of an accumulator microarchitecture component based on column pipe-

lined adder trees with the purpose of collecting and aggregating output computed values based on

destination address. The results of this work showed a 3.3x and 2.15x speedup for Tiny-YOLO and

AlexNet CNN using a 32x64 Systolic Array. Through the reduction of computed values developers

will be able to explore novel data mappings to extract parallelism based on data locality.
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NOMENCLATURE

CNN Convolutional Neural Network

DNN Deep Neural Network

HPRC High Performance Research Computing

FLOAT Floating Point

PE Processing Element

SAS Systolic Array Simulator

IPC Intructions per Cycle

ISA Instrucion Set Architecture
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1. INTRODUCTION

1.1 Convolutional Neural Networks

Convolutional Neural Networks are a type of Neural Networks often used for image recog-

nition through raw data classification. Frank Rosenblatt, introduced the idea of the perceptron as

a predicate that can be represented as whether certain subsets of points are a member of a family

of classes [7]. In brief, the perceptron serves as the building block classifier that gave rise to many

Artificial Intelligence applications. Convolutional Neural Networks are composed of several lay-

ers represented as numerical matrices. These layers are formed of filters and convolutional feature

outputs with the first layer being the input data Figure 1.1. Filters are designed to identify a specific

feature from the raw data and are typically smaller in dimensions. The main interaction between

layers consists of hovering the filter in the data layer and compute a convolution operation for

every data point Figure 1.2. A convolution involves computing the dot product between the filter

and data matrices to produce an output feature layer. The number of convolutions needed increase

rapidly as the number of filters and the size of input data increase.

Figure 1.1: AlexNet CNN Model ©Alex Krizhevsky
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Figure 1.2: Convolutional Layer ©Fei-Fei Li

1.2 GPU Architecture

The large amount of computations and dataflow of a CNN requires dedicated hardware ca-

pable of parallelizing convolutional operations. Previous work by Alex Krizhevsky presents one

of the first modern image recognition CNN. In order to achieve significant results a highly opti-

mized GPU implementation of 2D convolution was written to properly train the respective CNN.

Additionally, two GPUs were used due to memory limitations and the training lasted between five

and six days to be completed [8]. GPUs are vector machines that can compute and parallelize

data operations at higher computational speeds due to the independence and homogeneity of the

data operations. GPUs are particularly useful in image processing because of the ability to apply a

linear transformation to 3D images and can be re-purposed via General Programming for GPU to

calculate a convolution of a matrix [4]. However while capable, adaptable GPUs are not designed

to train CNNs and more dedicated hardware is needed to make operations more efficient and attain

higher performance.

1.3 TPU Architectures and Systolic Arrays

Systolic Arrays consists of a set of interconnected Processing Elements, capable of per-

forming a simple operation [9] Figure 1.3. Current research proposes Systolic Arrays based archi-

tectures because of the ability to perform multiply and accumulate (MAC) operations, and reuse

and share data between PEs [4][5]. There are many dataflow implementations that position filters,

outputs, and input elements differently in these architectures; Output Stationary, Input Stationary,
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and Weight Stationary. These implementations have different design trade offs including memory

accesses, data re utilization, and output reductions. Ongoing research is being conducted to find

an optimized data mapping depending on the characteristics of the neural network model.

Figure 1.3: Processing Element ©Lopez Carrasco

1.4 Accelerators Data Movement

Convolutional Neural Networks perform heavy data movement. According to Tushar Kr-

ishna [6], memory accesses highly limit the performance of current hardware and ALU operation

costing x1, PE x3, and DRAM access of x500. The properties of a Systolic Array allow tempo-

rary storage and access to other PE of partial data accumulations for a specific data point without

constantly accessing the main memory hierarchy. However, after a convolution is computed the

resulting value needs to be sent to memory in order to clear the Systolic Array and begin with the

next convolution. In order to reduce direct access to DRAM, a memory buffer or scratchpad needs

to be implemented and unlike conventional CPU instructions the data is well known and there is

no need for a cache hierarchy. A buffer system will decrease memory accesses and increase the

performance of future accelerators architectures.
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2. METHODS

The main focus on reducing memory accesses consisted of reducing convolution computed

values by aggregating values belonging to the same address on memory. Several design imple-

mentations were explored and are discussed in the following subsections to take advantage of data

locality and re utilization.

2.1 Full Architecture: Comparison and changes

Previous accelerator architectural designs consist of exploiting parallelism from convolu-

tions at the expense of segmenting memory due to the heavy flow of data from the main computing

unit. This is applicable to row-wise dataflows where data locality allows to exploit parallelism at a

higher degree. The previous CNN accelerator architecture as shown in Figure 2.1 consist of a set

of feeding registers to populate the main computing unit. The main computing unit is composed

of a Systolic Array of Processing Elements and post processing of data takes place at a collection

and write out buffer where several computing cycles are used to write back to main memory.

Figure 2.1: Previous Accelerator Architecture ©Cesar Lopez Carrasco
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As part of reducing main memory accesses this work proposed system level and microar-

chitecture design changes in order to maintain a steady dataflow of processed data. The proposed

changes take place in the post processing of data after the Systolic Array computes the correspond-

ing FLOAT adding and dot product operations between layers.

In early stages of development adder trees column-wise were implemented to directly

mapped every PE output to the inputs of the adder tree. The early stage of development as shown in

Figure 2.2 produced promising results through a significant reduction of computing cycles. Despite

the reduction of computing clock cycles two main issues arise from this design implementation;

hardware expensive components (expensive to scale up in input size) and under utilization of adder

trees.

Figure 2.2: Early Stage Accelerator Architecture ©Daniel U. Peralta Velazquez
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Final design stages focus on scheduling an prefetching of data as potential solution to adder

trees under utilization and hardware size reduction. In this design buffering and registers with

padding characteristics were taken into consideration. The final design (Figure 2.3) implements

per column buffers and padded registers. The buffer has a multiplier capacity based on the size of

input batches of data and its purpose involves allowing to collect multiple batches of data without

stalling the Systolic Array or idling the adder trees. The padded register allowed to feed zero values

from buffering values into the adder tree and preventing data corruption by padding the rest of the

input values.

Figure 2.3: Final Proposed Accelerator Architecture ©Daniel U. Peralta Velazquez
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2.2 Accumulator: Adder Tree

2.2.1 Adder Tree Building Component

As part of the design of an accumulator microachitecture component an adder tree was

implemented to collect computed values from the Systolic Array. The adder trees as shown in

Figure 2.4 are composed of interconnected full adders with two inputs and one output value. The

connection between these full adders follow a binary tree structure in which the output of a previous

level in the adder tree is connected to the inputs of the following level. The data movement is then

controlled by series of update and evaluation calls initiated by the main architecture control unit.

Figure 2.4: Adder Tree: Update & Evaluate Call ©Daniel U. Peralta Velazquez

2.2.2 Scalability

The number of maximum input values depend on the number of rows or columns of PE’s

in the Systolic array this is to obtain and reduced a one Systolic Array cycle worth of computed

values. Figure below shows a representation of an 8-input adder tree suitable for an 8 by 8 Systolic

Array. Input values consists of floating point 32 bit.
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2.2.3 Pipeline and address forwarding

The Systolic Array will produce batches of data at different amount of clock cycles, there-

fore, when necessary the adder tree will be stall from new data and a validation flag will maintain

track of data belonging to memory. Additionally, the adder tree forward addresses per level to keep

track of the destination of reduced values when they reach the output of the accumulator.

2.3 Buffering: Write-out Buffer and Padded register

2.3.1 Write out buffer Design

As part of the collection process a write-out buffer with a first-in-first-out flow method is

implemented. As shown in the upper portion of figure 2.5, the buffer receives input batches of

systolic array row size through two main wiring components for data values and corresponding

addresses. The wiring needed to connect these components increases linearly as the size of the

systolic array rows increase.

After directing data and addresses from the systolic array. Data values are inserted one-by-

one with their corresponding address. In order to prevent buffer overflow capacity of the buffer is

compared to against the size of the incoming data batch to determine if sufficient storage space is

available. If sufficient all data points are pushed into the buffer else a flag is raised to allow the

control unit to stall the systolic array and preserve the incoming data values until sufficient capacity

space is available.

The ejection protocol consists of ejecting computed values into a register. The protocol is

defined based on address comparison of address similarity. A pointer to the buffer is then used

to select the first-in value address and later checked to determine if adjacent values with equal

address are present in the buffer. The comparison method was selected based on possible overhead

when comparing addresses. Two options were explored; comparison address across all elements

of the buffer and adjacent address checking until a different address was found. Given the data

locality from the systolic array the second method is prefer given computed values have address

commonality based on dataflow mappings. Additionally, exploring all stored values will increase

14



overhead significantly as the capacity size of the buffer increases.

2.3.2 Padded Register

A padded register became an essential component to bridge output size from buffer incon-

sistency and the defined input size of the accumulator component. The padded register purpose

consist of prefetching data batches before accumulation by populating the rest of the input batch

with zero values. This helps our input value remain consistent in size regardless of the number

of output values ejected from the write-in buffer. The size of the padded register as shown in the

middle of figure 2.5, consists of a register of accumulator input size as well as a smaller regis-

ter used to store the corresponding address. After input data has been padded the output register

ejects its contents into the input of the accumulator at every evaluate call. The wiring size remains

consistent based on the padded register size plus address length and independent from the Systolic

Array dimensions. If no valid data is received the register remains zero padded and the address

null.

Figure 2.5: Prefetching and scheduling: Buffer & Padded Register ©Daniel U. Peralta Velazquez
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2.4 Design and Structure: Systolic Array Simulator (SAS)

In order to test the proposed architectural changes to the accelerator a clock cycle based

simulator was designed to simulate the processing of full DNN topologies. The simulator is break

down in two main aspects; data generation and collection and structured modulation of architec-

ture components behavior. The later consist of implementing the behavior of the the component

through C/C++ classes adhering to structural code as much as possible to facilitate hardware fabri-

cation in future research. Given an architecture component was designed using this code structured

several test cases were design under make file options and tests directory structures to test every

component for its stand alone behavior. This feature of the simulator allows to verify and test

unusual cases that could be present in the overall architecture at some point. These tests are later

discuss in this chapter.

The second aspect of the simulator consists of data generation through python scripts and

determine by dimensions and quantity of input and filter layers. The topologies of the correspond-

ing DNNs tests is design through a single layer bash file that takes inline inputs to determine the

size of every layer. Through this file we can create additional bash files containing interconnected

single layers with dimensions corresponding to those of the DNN being tested. The data produced

by the architecture is then placed in output maps and can be verify easily based on the properties

of the data generated.

2.5 Testing: Systolic Array Simulator (SAS)

Part of the design process consisted of conducting testing on the accumulator components

including full adders and adder tree. The phase consisted of designing tests that check for self

operation, special cases, data forwarding and validation of the data accumulated. After checking

proper behavior of the building components, the next step consisted of validating the adder tree op-

eration and verifying the simulator implementation remained hardware compliant. The following

subsections describe testing procedures in detail.
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2.5.1 Full Adder

The implementation of a single adder consists of two input wires, two inputs, and one

output. Additionally, the adder has an “Update” and “Evaluate” function call. Update is takes data

on the wires of the adder an initializes them as inputs. Evaluate performs a summation of both input

values and assigns the result to the output component. In order to check for proper functionality of

the adder, a test was created in which the correct sequence of functions was (update -> evaluate Test

1) was implemented and other test with the wrong order of function calls was executed (update-

>update->evaluate – Test 2) Figure 2.6. This help us understand the behavior of the adder each

clock cycle and maintain a structural code approach for easier hardware application.

Figure 2.6: Adder Test Results ©Daniel U. Peralta Velazquez

2.5.2 Adder Tree

The formation of every adder tree was derived from the adder testing and design. Every

adder tree within simulation can be instantiated with a given input size and further levels are cre-

ated to reach a reduction to one. Once every adder tree is created in simulation, a sequence of

"evaluation" and "update" function calls is executed to reduce and move all values in every level

in the adder tree. The simulator is able to handle input data with no real destination address or

meaningful value these data is also known as stall cycles. Additionally, the testing and simulation

of the adder tree maintains track of validation bits, output register, and terminates the adder tree

operation upon return of a false busy flag from the evaluate function call. Additional test options

are shown in Figure 2.7 .
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Figure 2.7: Available Subsystem Integration Tests ©Daniel U. Peralta Velazquez

2.5.3 Write-out Buffer

In order to properly simulate the behavior of a buffer component a instance of deque from

the standard library is used. The deque is capable of pushing a pair value of type value-address

and is controlled based on a predefined capacity set by the user at compilation time. The deque

was tested for overflow by fetching batches of data with singular addresses to increase the input

flow and decrease output flow as much as possible. This test allow us to reach limit capacity of

the buffer and determine if invalid access or behavior is preventable. The test allow us to define

the number of clock cycles to overflow the buffer as well as perceive the state of other connected

components.

2.5.4 Padded Register

The padded register holds an important role when prefetching and scheduling data between

the buffering component and accumulator. The testing of the padded register (Figure 2.7) consisted

of collecting ejected values from buffer and determining if the new batch of data was properly

adjusted in size in reference to the adder tree input. This resizing consisted of folding larger inputs

of data, zero padding smaller inputs of data and properly feeding the output batch of data into the

corresponding full adder level of the adder tree.

2.5.5 Adder Tree size reduction

The integration of a buffering system, padded register, and the overall adder tree accumula-

tors has the intend to reduce hardware while maintaining a similar accumulation flow. In order to

18



test for hardware reduction particularly adder tree input size, test were conducted were the size of

the adders were reduced by half its size and executed for as many clock cycles as the user prefer.

As shown in Figure 2.8, the test consisted of introducing two different batches of data with com-

mon address to determine if the buffering component was folding correctly and the accumulator

utilization increase. This test can be modify to include larger and different batches of input data

along with a variability of execution of computing clock cycles.

Figure 2.8: 8 input test with half adder tree sizes ©Daniel U. Peralta Velazquez
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3. RESULTS

Given previous testing of the functionality and reliability of every component that forms the

accumulation stage of the accelerator the integration of such laid a great reduction of computing

clock cycles and memory accesses.

In order to asses the improvement of the accumulator based on the per-column adder tree

components a full execution of CNN layers was conducted.

3.1 AlexNet CNN Execution using SAS and Accumulation

The execution of the convolution of CNN layers was conducted with the use of the HPRC

cluster. The simulation consisted of modifying an input bash file to define the dimensions and

properties of the CNN to be executed. As shown in Figure 3.1, we define the dataflow as "CW2"

referring to channel-wise as well as the number of filters and dimensions of every tensor. After

defining every parameter, data is generated and the execution of the data is conducted. The time

of every simulation is proportional to the number of layers and size of filters. Additionally, the

clock execution simulator is able to detect mismatch errors used to determine the reliability of the

computed data.

Figure 3.1: CNN Layer Execution & Error Handling ©Daniel U. Peralta Velazquez
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As shown in Figure 3.2, The implementation of an accumulator produced an incremental

improvement of 2.15x on runtime in AlexNet executions. The results were obtained using a 32-by-

64 Systolic Array. The utilization of the Systolic Array in both implementation remain the same

despite the difference in clock cycles. This can be attribute to the multiple reductions of computed

values and reduction of execution time spent in memory handling.

Figure 3.2: AlexNet CNN Layer Execution & Cycle Count ©Daniel U. Peralta Velazquez

3.2 YoloTiny CNN Execution using SAS and Accumulation

Additional execution of full DNNs was conducted. As shown in figure 3.3, YOlOTINY

produced an improvement of 3.3x on runtime executions using a 32-by-64 Systolic Array. These

improvement results are based on clock cycle count alone. The runtime improvement shows a

positive increase of performance compared to an increase of the amount and size of interconnected

layers. In order to test this hypothesis other complex DNN models can be use to compute a larger

number of layers and data.

These results remain consistent when introducing buffering and padding to increase the

accumulator utilization and reduce its hardware size. The equal utilization of the Systolic Array

with and without an accumulator component remains the same. This metric along output data and

instruction/data error handling in the architecture designed files allow to verify the results of the
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computation run.

Figure 3.3: YoloTiny CNN Layer Execution & Cycle Count ©Daniel U. Peralta Velazquez

3.3 Metrics

In order to test that these system level architecture and microarchitecture design changes

decrease memory accesses and latency, three metrics need to be measured. The first metric is

utilization. Given the size of layers and computational unit remain the same the utilization of

the Systolic array should be similar in all design changes. This metric will serve as a validation

step when validating a full batch of processing data. The second metric is cycle count. In the

simulation model writes and reads from memory take one clock cycle and data is prefetched to the

Systolic Array before cycle count begins. This approach aims to emphasize the overall parallelism

achievable by different dataflows and allows to quantify the number of memory accesses. The

third metric is cache size. The simulator is design to provide memory accesses patterns based

on selected dataflow. In order to determine the optimal size for internal caches and buffers these

memory accesses patterns are analyze to find the appropriate capacity for storage components.

22



Data correctness verification: As part of the simulation process the most important step

when designing and integrating new architecture changes becomes the correctness and validation

of the output data. The simulator produces an output memory map used to verify the throughput of

every dataflow and the correctness of architectural changes. When generating the output memory

map. array utilization and memory accesses per cycle are logged and help determine the impact

of new design changes. In order to make the verification of computed data feasible deterministic

data generator and averaging filters were applied to easily compute and verify the output of a layer

based on the filter and layer size properties.
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4. CONCLUSION

4.1 Architecture Design

Throughout this research project the main goal consisted of designing hardware architec-

ture components capable of addressing memory bottlenecks with current accelerator architectures

dataflows. The proposed hardware components had an extensive design process in which system-

level and microarchitecture was explored. The design components have features that facilitate its

integration and overall reduction of computing cycles. The main features are described below.

4.1.1 Architecture Design: Accumulator

The accumulator component is the main component when reducing cycle counts and mem-

ory accesses. The overall success of this component derives from an optimal reduction of number

rows amount of computed values to one. This component is defined a multiplier of the size of the

Systolic Array and directly mapped to external memory hierarchies. The accumulator component

allows for reductions to occur as close as possible to the main computing unit and allows to avoid

in memory operations to further reduce the dependency on off chip memory.

4.1.2 Architecture Design: Buffering & Padded Register

The buffering and padded register components serve as the main components when prefetch-

ing and maintaining data consistency when computed values are ejected from the Systolic Array.

These components play an important role in the scalability of adder trees and integrity of data

when receiving batches of data from the Systolic Array. The accumulator component allows for

input consistency as well as an independent hardware input size of the accumulator that directly

translates to a reduction in hardware while maintaining performance in comparison with direct

accumulator and Systolic Array connection.

The overall integration and design of proposed architectural changes was successful. The

overall components allowed for a significant reduction of clock cycles, consistent memory pat-
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terns, and higher hardware utilization in comparison to previous accelerator architectures based on

a Systolic Array.

4.2 Future work and areas to explore

This study introduces a Scalable Systolic Array Architecture with effective reduction and

scheduling components that allows for the exploration of different microarchitectural changes

based on dataflow mappings. This framework allows for the exploration of different sizes and

amount of interconnected layers that allows to design and generate data for different DNN models.

Additionally, we are able to explore hardware sizes for all components in the architecture as well

as exploring parallelism techniques while reducing the memory footprint. These attributes in the

Systolic Array Simulator open the doors to future exploration of data mappings, hardware size,

and DNN model exploration.

Potential future work in this study includes computing different and current DNN models to

obtain the performance of the accelerator architecture with more complex and deeper models. Not

only is the performance of the accelerator based on the DNN models. There are many accelerator

architectures that scale at an alarming rate with heavy data movement, in order to understand the

impact of hardware size a comparison between other systems such as a the Tensor Processing Unit

from Google will help determine the overall size to ratio performance of our proposed architecture

and offer a possibility to processing on edge devices. Additionally, once validation of the archi-

tecture is complete and physical hardware compliance is fully met fabrication steps will follow to

determine the fabrication of the accelerator at an optimal physical space. The physical validation

will consist of several component timing analysis, component mapping, appropriate wiring and

overall integration of the system.
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