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ABSTRACT 

3D Printing Path Reallocation for Concurrent IDEX Systems  

Spencer Gautreaux 
Department of Computer Science 

Texas A&M University 

Research Faculty Advisor: Dr. Dylan Shell 
Department of Computer Science 

Texas A&M University 

3D Printing is a growing field of interest, with research topics and commercial 

advancements in materials, processes, and systems. One of these advancements is the 

introduction of Independent Dual Extrusion (IDEX) Fused Deposition Modeling (FDM) printers 

in both the enterprise and consumer space. The unique feature on these printers is their dual 

extruders, which allows them to use multiple materials to create a printed part. These two 

extruders, in collaboration with two hotends, are responsible for the controlled deposition of 

material. In present systems, only one hotend can operate on the part at a time. However, as 

implied by the name, the hotends can be positioned independently. Therefore, the ability to 

utilize the two hotends concurrently could significantly reduce print time, a behavior not 

presently available. In this document we develop an algorithm to enable Collaborative Dual 

Extrusion (CODEX) printing, a model in which both hotends can be utilized simultaneously on 

one part. To do so we outline a two-phase greedy algorithm for transforming an input GCode 

file, intended for a traditional FDM printer, into one that could be utilized on IDEX printers. This 

algorithm exploits the sequential nature of GCode to find large runs of concurrently printable 
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segments. These runs are then linked to produce output paths. Approximately 13,500 publicly 

available GCode files are utilized to test and validate the algorithm across three different 

conceptual models for IDEX printers. The first model provides a theoretical maximum upper 

bound on efficiency. The second represents a mechanically feasible model. The final model 

simulates those IDEX printers available today. We show an approximate 24% and 20% 

improvement for the first two models, and a 9% deterioration on the final model. The document 

concludes with a discussion of possible improvements and directions for future work. 
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NOMENCLATURE 

Base Efficiency The ratio of raw base time to base time 
 
Base Time The time, including the non-print movements in the 

recomputed file 
 
Chain A collection of consecutive, coplanar segments 
 
Chain-Pair A pair of two chains, one for each hotend  
 
Minimum Separation Distance The minimum distance between two hotends without 

interference 
 
FDM Fused Deposition Modeling, a standard form of 3D printing 
 
GCode Standard file format for Computerized Numerical Control 

(CNC) machines, used by most consumer 3D printers 
 
G1 An instruction in GCode representing a movement of linear 

interpolation from the current position to the position 
specified by the instruction 

 
Hotend The component of an FDM 3D printer responsible for 

heating and depositing material to realize the printing 
process 

 
IDEX Independent Dual Extrusion, a form of 3D printing printer 
 
Layer A collection of segments that are all coplanar 
 
Position A (X, Y) coordinate point in a specific Z-Layer 
 
Print Efficiency  The ratio of raw print time to print time 
 
Print Segment A segment which contains an instruction in the print 

dimension, resulting in the deposition of new material 
 
Print Time The time of all print segments in the recomputed file 
 
Raw Base Time The base time of the original file 
 
Raw Print Time The print time of the original file 
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Recompute The process of rearranging the file in order to utilize both 
hotends concurrently. 

 
Segment  A single, linear move from one position to another position, 

represented by G1 in GCode 
 
State A pair of two positions, corresponding to the positions of 

the two hotends 
 
Z-Layer A layer where the plane shared by all segments is parallel 

to the plane Z = 0 
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1. INTRODUCTION 

1.1 Fused Deposition Modeling Process Introduction 

Fused Deposition Modeling (FDM) is one of many forms of 3D printing [1] [8] [10]. In 

this printing format, consecutive layers of material are deposited to construct a larger part. On 

each layer, a hotend is utilized to control the deposition of material, traditionally a thermoplastic, 

in a controlled pattern. By stacking several of these layers, a 3D printed part is constructed.  

GCode is a semi-standardized file format for Computerized Numerical Control (CNC) 

machines. The GCode is generated by a program known as a slicer which translates a 3D model 

into GCode [8] [10]. This process involves many parameters for controlling the FDM machine. 

Selection of these parameters are non-trivial as the parameters greatly influences the output part 

[1] [8]. However, by operating at the GCode layer, much of this complexity can be ignored as it 

is encoded into the path within the GCode file. 

Each line of the GCode file contains a command for the machine. The most prevalent 

command in the 3D printing space is G1: linear interpolation. The G1 command specifies an end 

point to which the machine must move. This forms a segment, with the start point being the 

machine’s position prior to the instruction being ran. Any axis not specified, is simply left 

unchanged. Examples of additional axis are ‘E’ for extrusion and ‘F’ for feed rate. A more 

through discussion of the GCode file format can be found on the RepRap glossary [12]. Figure 

1.1 shows example GCode and figure 1.2 shows the path corresponding to the GCode in Figure 

1.1. 
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Figure 1.1: Sample GCode as viewed in Visual Studio Code with the “nc-gcode” syntax highlighter [6] [7]. 

 

Figure 1.2: Path represented by the GCode in Figure 1.1. Note, the print segment from (0,0) to (30,0) on line 1 is 
occluded by the latter movement segment from (0,0) to (60,0) on line 10. Figure generated using Python3  

matplotlib [5]. 

1.2 Independent Dual Extrusion Introduction 

Independent Dual Extrusion (IDEX) is an evolution of the FDM process. Rather than a 

single hotend, and IDEX printer contains two hotends. These two hotends can be employed in a 

variety of ways. In one scenario, the two hotends are used collaboratively on the same part. In 

this scenario, the two hotends contain different materials, allowing the resulting printed part to 

selectively employ the differing material properties to its benefit. In the simplest case, this is 

utilizing two colors to create a final part with some artistic design. Another scenario for IDEX 

printers involves the use the two hotends to print two copies (or mirrored copies) of the same 

part. These features are already available in commercial IDEX 3D printers [3] [11]. 

However, one key feature is missing from all IDEX printers: the ability for the two 

hotends to work together on a single part. In theory (and as shown later in practice) these two 
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IDEX heads can be employed collaboratively to reduce the print time of a single part, allowing 

an increase in the production speed of the part. This collaboration is subject to some physical 

limitations of the printer. In the most common IDEX format, the two hotends are linked along a 

single gantry. While the hotends are independent in one axis, for example the X axis, they are 

fixed relative to each other in the Y and Z dimensions. This is a tightly constrained system and 

thus will offer less opportunity to optimize. Therefore, a more relaxed format can be envisioned 

where each hotend is on its own gantry [14]. Thus, the hotends would be independent in X and 

Y. While this is not a commercially available system today, it represents what IDEX printers 

may look like in the future. 

1.3 Prior Research 

FDM is an active area of research [1] [8] [10]. As such, the path planning aspects and 

GCode generation can be considered to also be active. Unfortunately, there is less research 

within the IDEX space. However, some benefits from FDM research will impact IDEX printers. 

For example, the two hotends in an IDEX system can be argued to each be functionally 

equivalent to a standard FDM printer. Thus, any general improvement to FDM printers should 

also improve IDEX printers.  

The path planning problem addressed in this research is one of significant complexity, 

complexity stemming from the need to coordinate multiple agents while respecting their 

geometric constraints. Fundamentally, this is an offline planning problem, one that could be 

solved in any number of ways [13]. However, this planning problem differs in that a solution is 

already provided. The input files, GCode files for traditional FDM printers, already contain a 

pathed solution for a single agent. Therefore, this problem becomes one of converting a single-

agent solution into a multi-agent one.  
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2. METHODS 

2.1 The Layer Recompute Process 

The entire recompute process operates on a layer-by-layer basis. Within each layer, a 

two-phase greedy algorithm is applied [15]. The first round focuses on finding portions of the 

layer which can be concurrently printed by the two hotends. The second round focuses on linking 

the outputs of the first round into a continuous path. Three unique recompute models are 

considered, representing three types of physical constraints which are introduced by the 

underlying construction of the machine. These constraints and their motivation are discussed in 

the IDEX Configurations Considered section. The recompute process also makes use of a 

constant, the minimum separation distance, to determine which segments can be printed without 

collision.  

Within the recompute process, the fundamental unit is the segment. Segments are 

considered in pairs, looking for pairings which satisfy the question: “Can hotend H1 print 

segment S1 while hotend H2 prints segment S2, without colliding in any configuration?” That is, 

there exists no positions P1 on S1 and P2 on S2 where P1 and P2 are colliding. Here “colliding” 

is taken to mean either the hotends being within the minimum separation distance, representing a 

physical collision, or the hotends being in a position inconsistent with the underlying physical 

system, an impossible configuration. Where the segments can be printed concurrently, it implies 

that the two hotends can print their segments without collision or synchronization. If both 

hotends follow a continuous path of segments throughout the file and synchronize at each end 

point, then the recomputed paths can be assumed to be collision free in the three-dimensional X-
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Y-Time space [9]. In this model, the Z dimension can be ignored as all print segments exist in a 

Z plane and planes are printed in strictly increasing order. 

The segments originate from prepared GCode files. The G1 (liner interpolation) 

commands are extracted and converted to a corresponding segment. Only the segments that 

correspond to a print are kept for the recompute process, the non-print segments are discarded. If 

the segment exceeds the minimum separation distance, it is split into several sub segments each 

at most one minimum separation distance in length. This is done to increase the resolution of the 

collision checking. For example, two long segments which share an endpoint may be considered 

colliding by the prior definition. However, when split into smaller segments, many of these 

segments are non-colliding and may be concurrently printed. Secondly, this splitting guarantees 

that all the segments are relatively equal in length. This allows for some simplifications such as 

treating the time to print a segment as a constant. More importantly, this prevents the need for 

one hotend to idle while the other prints a long segment.  

The GCode file implies a temporal ordering of segments. This is maintained through the 

splitting phase. If a segment is split, it is split starting at the start point and every minimum 

separation distance until the entirety of the original segment is covered by these new segments. 

The final segment may be shorter than a minimum separation distance. This splitting process is 

applied only to print segments and the new segments are inserted in temporal ordering. 

The problem then becomes efficiently finding groups of segments that can be printed 

concurrently. To do this a structure called a chain is employed. A chain is a collection of 

segments that are printed consecutively in the GCode file. These chains have several unique 

properties that make them extremely interesting. First, the chain definition ensures that end point 

of segment Sn is also the start point of segment Sn+1; these two segments can be printed without a 
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traversal in-between them. Secondly a chain implies locality. Since these segments are connected 

via their endpoints there is an implied geometric locality. If two segments (in two chains) are in a 

valid position, there is a high likelihood that the pair of the next segments (in the chains) are also 

concurrently printable. Thirdly, both of these properties also hold on the chain if iterated in 

reverse. And finally, a chain is itself composed of many sub-chains. A single segment is a chain, 

or the entire layer can be a chain. 

The recompute process consists of two phases of a greedy algorithm. The first phase 

seeks to construct chain-pairs such that all the segments are present in a single chain which is 

itself in a single chain pair. The chain pairs are constrained such that the chains are of equal 

length. Thus, when the chains finish, they are both ready to transition to new positions to begin 

the chain process again. It is phase two that manages the computation of these transitions. 

This process is repeated for each layer until the entire file has been printed. 

2.2 Phase One Recompute 

Phase one seeks to construct chain pairs, where each hotend prints one of the chains. The 

chains in each pair should be equal in length. The lengths of pairs should be maximized, in order 

to minimize the work in phase two. Unfortunately, not all chains can be considered; there are 

simply too many. Each segment can be a chain. As well as each pairing of two consecutive 

segments. As well as each tuple of three consecutive segments… Then each chain would need to 

be considered in the forward and reverse direction, and then against all other chains. This quickly 

grows to an untenable number. Rather only the chains as they are expressed in the GCode file are 

considered. That is, the chains of maximum length incident on each end with a non-print 

segment. These chains are considered in both the forward (as represented in GCode) and reverse 

directions. This does an excellent job in reducing the number of chains.  
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The chains are considered against the other chains in this layer. For each possible pairing 

the chains are traversed to determine the maximum number of segments that can be printed 

concurrently, terminating when the segments collide or one of the chains is exhausted. The 

longest chain-pairing is set aside for phase two. Either (or both) chain(s) may produce a 

remainder chain which must be considered, in the forward and reverse direction, against all other 

chains. This process repeats until all segments are in a chain pair. 

However, the number of chains is often still too large to compute the best pairing out of 

all the pairs possible. In this case, the number of concurrent chains under consideration can be 

limited to some value. For the experiments in this paper, the threshold was set to 100 chains in 

consideration. All the chains begin in a pending set ordered on chain length. The considered set 

is initialized by promoting chains from the pending set, up to the limit. The best pairing of chains 

in the set is found, the pairing set aside for phase two, and any remainder chains computed. The 

remainder chains are then reinserted directly into the considered set, bypassing the pending set. 

This was no motivation for this behavior versus returning the remainders to the pending set. If 

either (or both) chain(s) did not produce a remainder, the considered set can be backfilled from 

the pending set. The process repeats until the pending set and considered set are both empty. If 

this process reaches a deadlock wherein the considered set is unable to find any valid pairings, 

the considered set can be temporarily expanded by taking elements from the pending set and 

repeating the process. This appears like it could quickly expand the number of pairs in 

consideration and thus significantly increase runtime. However, in practice this is not an issue. 

For the experiments in this paper, when this deadlock condition was reached, the next five 

largest chains were moved from the pending set to the considered set. 
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It is of course possible, and likely, to encounter a scenario with a few short chains of one 

to two segments in length that are all mutually colliding. These remaining chains are then placed 

into pairs with special empty chains to ensure that all segments are present in a chain pair.  

Consider a chain that forms a loop where the start and end point of the chain are 

coincident. Since the chains are evaluated from the outside in, their start and end segments are 

colliding. Thus, the chain pair of the forward and backward iteration is considered invalid. 

However, it is possible to have chains in the middle that could be concurrently printed if the 

chain were split. These scenarios are missed by this approach and no attempt is made to 

recognize such configurations. 

2.3 Phase Two Recompute 

In comparison, the phase two recompute is much simpler. It takes the chain pairs 

generated in phase one and links them together in a logical manner. Each chain pairing specifies 

two states. Each state consists of a pair of (X, Y) positions, one for each hotend. Notice that by 

construction every state must be valid: it represents two endpoints of a valid chain pairing. 

Therefore, for two sates each in a valid configuration of the underlying printer, a transition 

between states should be possible. Further, notice each state is unique. If two states are the same, 

then the incident segments are valid and consecutive, and would have resulted in a longer chain 

pair in phase one. 

The transition time from one state to another can be calculated according to the following 

method. For each hotend consider the time to transition linearly from one position to the other, 

this defines a transition segment for the hotend. The transitions time is the length of this segment 

divided by minimum separation distance and rounded up to ensure an overestimate is used. If 

both hotends can move their segments concurrently the transition time is the longer of the two 
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segments. If this check fails, check if the hotends can be moved one segment then the other. In 

this case the transition time is the sum of the two movement segments.   

If the transitions cannot be printed concurrently or consecutively, the transition time is 

taken to be the sum of the two segments, rounded up, plus some delta. For this thesis, the delta 

was four times the minimum separation distance. This is designed to represent the scenario in 

which one hotend will move one minimum separation distance off its position, the other hotend 

will traverse its segment, and then the hotend will return to its original position. This process is 

then repeated for the other hotend. Of course, this is a significant overestimate: it can be 

improved by not returning to the original position and rather traversing to the ending position 

directly. However, using the delta above represents an absolute worst-case scenario.  

If one of the chains in the chain pair is an empty chain, the transition time for that hotend 

is zero. 

It is in phase two that the reversibility of chains is paramount. Recall, that a chain can be 

reversed to allow for traversal in the opposite direction. Thus, a chain pair, being two chains of 

the same length, can also be reversed without needing to recompute the collisions. Therefore, the 

end position of a chain pair can link to the end position of another chain pair though an implied 

reversal of one of the chains. This new chain pair-transition-chain pair structure itself maintains 

the property of reversibility. 

Therefore, linking chain pairs is as simple as linking states. This process is similar to 

Kruskal’s algorithm for minimum spanning trees [15]. A series of groups, one per chain pair, is 

constructed, containing the two states incident on the chain pair. Simply find the two closest 

states that belong to different groups, add this transition, join the groups, and repeat until only 
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one group remains. Phase two concludes once all the chain pairs are linked. At this point, a valid 

path has been constructed for the layer, and the recompute process can begin on the next layer. 

2.4 Layer Recompute Assumptions 

Some fundamental assumptions are made on the input files to aid in the recompute. In 

aggregate, these assumptions relax the constraints on the printing system, allowing for a solution 

to be found more easily. These are not inherently necessary to the algorithm, and, as is covered 

in the section Tightening Constraints on the Solutions, are largely arbitrary at this point. The 

assumptions are that segments within a single layer are freely reorderable, reversable, and 

distributable. Reorderable means that any two segments, A and B, in a layer can be printed A 

before B, B before A, or A concurrent with B, without concern for the order these segments 

appear in the original file. Reversable means that the segment can be printed from the start point 

to end point as expressed in the GCode file or from the end point to the start point. Finally, the 

segments are assumed to be freely distributable, that either hotend can be responsible for printing 

the segment. 

At all times, the endpoints of segments, and thus the segments themselves, remain 

unchanged. However, the assumption is made that some segment A can be split into two or more 

subsegments for which all of the earlier properties hold.  

Another key assumption made is that the printer mechanically is sufficiently large to print 

the file: that in some configuration of the mechanical components, either hotend can print all the 

segments in the file. 
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2.5 IDEX Configurations Considered 

Three models of IDEX printer are considered: a Theoretical Model focused on absolute 

efficiency, a CODEX Model based on a mechanically feasible printer, and a Current Model 

which is focused on currently available IDEX machines.  

All three models require some supporting functions, which are defined in the following 

sections. These functions answer three fundamental questions: 

1. Can hotend H1 hold some position P1 while hotend H2 holds some other position P2? 

2. Can hotend H1/H2 move some segment S1/S2 while hotend H2/H1 holds some 

position P2/P1? 

3. Can hotend H1 move segment S1 while hotend H2 moves segment S2? 

The answers to these questions are employed in the recompute process and represent the 

only change between the various models. Note the condition 2 is not necessarily symmetric, for 

the same segment-position pair, it may be valid for hotend H1 to hold the position while hotend 

H2 traverses the segment, while the reverse may not be true.  

In the Theoretical Model, the hotends are assumed to be freely positioned in 3D space 

with little regard to the physical components required to realize that position. While this 

configuration does not represent the physical behaviors of current IDEX printers, it provides an 

upper bound on the approximate efficiency achievable in IDEX printing. Both of the following 

models represent a more constrained system. Therefore, any solution for those models must be, 

in theory, no better than for this model. Of course, due to the greedy nature of the recompute 

algorithm this behavior is not always realized.  

The next model, the CODEX Model, proposed by Reddit user u/m47812 [14]. In this 

model the hotends are fixed on gantries, limiting their range of motion by preventing crossing in 
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the X axis. This model is not presently commercially available; it requires a certain mechanical 

complication that is pointless without the path planning ability to utilize the print heads 

concurrently. Therefore, while this model is not truly real-world, it represents a model of a 

printer that could be developed. 

Finally, the Current Model explores how current commercially available models are able 

to implement the collaborative behavior without physical hardware changes. In essence, this is 

the “today metric”, what could be achieved right now with a simple over-the-air update. It is the 

most constrained, with the two hotends sitting on a single gantry. This means that the hotends are 

linked in the X axis and must not cross (or interfere) in the Y axis.  

The following figure, Figure 2.1, shows a top-down representation of the printing models. 

The hotends are represented by circles. In the theoretical model, these hotends move freely 

throughout the X-Y space. In the other two models, the motion of the hotends is limited by 

mechanical gantries, represented by the gray bars. These gantries are responsible for the 

additional constraints placed on the CODEX Model and Current Model. 

 

Figure 2.1: Image of the three models considered. The circles indicate the hotends while the gray bar indicates the 
gantries to which the hotends are attached and cannot pass. Gantries can move only in the X dimensions and extend 

infinitely in the Y dimension. 
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2.6 Formalizing Constraints on the Theoretical Model 

In the Theoretical Model, the hotends must maintain at least a 25 mm separation between 

points. This should hold true for the distance from a position to any position on segment or 

between any two positions on two distinct segments. 

The 25-millimeter distance is taken from the model of E3D V6 hotend; 25 millimeters is 

roughly how close together two of these hotends can get without colliding [4]. Additionally, the 

E3D V6 was chosen as it is a round hotend, making the collision calculations easier. 

2.7 Formalizing Constraints on the CODEX Model 

In the Codex Model, the hotends must maintain at least 25 mm separation, the same as in 

the Theoretical Model. Additionally, for all possible position pairings, hotend H1’s X coordinate 

must be less than or equal to that of hotend H2. That is, hotend H1 cannot cross the X coordinate 

of hotend H2. 

2.8 Formalizing Constraints on the Current Model 

The Current Model is somewhat more complex. A trivial solution is to take the 

constraints exactly as they appear in the real world: that X coordinates must be equal and that 

hotend H1 must be at least one separation distance (again 25 millimeters) greater in the Y 

dimension than that of the hotend H2. Unsurprisingly, this will result in almost no segments 

being able to print concurrently. Therefore, the constraints must be somewhat relaxed. This is 

accomplished by allowing positions/segments to have some amount of X deviation. There are 

two interpretations of this behavior.  

First, consider the gantry as moving in X as a function of time T. Then, the segments can 

be shifted in time so that their start and end points line up in X but not in T. Since the segment 

chains are continuous, this is a valid transformation. However, it potentially violates non-
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collision property with other segments. In essence, this would require checking the segment S1 

(printed by hotend H1) with both of the overlapping segments printed by the other hotend (H2), 

and ensuring the non-collision is maintained. This is ideal as it would not increase the print time 

(aside from some lead in/out at either end of the chain pairs where only one hotend can be 

printed). 

In the other interpretation, once one of the hotends finishes printing its segment, it can 

simply remain in place in the Y axis until the other hotend prints its segment. Then the machine 

can back-track to the end point of the segment assigned to the first hotend, allowing it to begin 

printing the next segments, enabling the second hotend when the proper X coordinate is reached. 

This is not ideal as it increases the print time by up to twice the ratio of X deviation to segment 

length. 

The physical and temporal behaviors of these scenarios are not accounted for in the 

model. That is, it is assumed that phase shifting is always a valid solution to this problem and the 

lead in/out time is ignored. The maximum allowable X deviation was set to 5 millimeters. 

2.9 The GCode Dataset 

The GCode dataset prepared by Baumann provides an excellent starting point for this 

research [2]. It provides a series of real-world models, publicly available, and intended for 3D 

Printing. Furthermore, this dataset contains several pre-generated the GCode for these models, 

providing a significant collection of real-world models to validate these algorithms. The files are 

labeled numerically and distributed in shards based on the first number. The dataset files for 2*-

9* were downloaded. However, the 1*-set of files repeatedly failed to download. Next, the 

downloaded files were limited to only those that were less than 32 MB in size to facilitate the 
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multi-processing of the data files without overloading the available computing resources. This 

results in a total of 13,591 GCode files from the dataset.  

All of the selected files are in the Z up configuration, meaning layers run in a single Z 

plane. Additionally, all the files are monotonically increasing in Z. All the files are processed 

without error, indicating that they are validly constructed GCode files. The files contain only G1 

(linear interpolation), G28 (axis home), and M (non-move control) codes. For all the files, all the 

print segments are in a singular Z-Layer. In summary, all 13,591 files of the reduced dataset are 

valid GCode files. 

2.10 Data Flow 

The GCode files are parsed to extract the segments, as specified by the G1 commands. 

The segments are then pre-processed; if the segment exceeds the minimum collision distance, the 

segment is split. After the segments are read in, a series of secondary check are run on the file. 

The file is checked for monotonic increasing segments and other error conditions.  

Next, some metadata is collected on the base file: the Raw Print Time, the total time 

spent printing in the original file, and the Raw Base Time, the total time spent printing and 

moving in the original file. The Raw Base Time includes intra-layer non-print segments but does 

not include the inter-layer non-print segments. 

Next, the layer-by-layer recompute process is performed. Each layer reports its Print 

Time and Base Time. This is collected into an overall metric for the entire file. Then the program 

computes the two-primary metrics. First, the program computes the Base Efficiency, the ratio of 

Raw Base Time to Base Time. This gives a ratio of overall performance improvement and is 

optimally slightly greater than 2.0. This occurs where two hotends can work at 100% efficiency 

and with no transition segments in the recomputed path. With intentionally designed input files, 
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the Base Efficiency could be pushed to positive infinity. This is done by providing an input with 

two print segments connected by an infinite number of non-segments. However, this is not 

representative of the real-world inputs used in these experiments. The second metric is the Print 

Efficiency, the ratio of Raw Print Time to Print Time. This ratio is locked in the range 1.0 to 2.0; 

values outside this range would represent the loss or addition of segments in the new output file. 

Together these metrics form the basis for analyzing the algorithm’s performance. 

2.11 Logistics of the Experiment 

A Python3 script was developed that managed the recompute process detailed above. For 

each input GCode file, the script launched a new process via the built in SubProcess module to 

recompute the file. The script spawned up to sixteen concurrent subprocesses. Sixteen was 

chosen as this was the hardware thread count supported by the CPU, allowing for one file to be 

processed per CPU core. Each subprocess logged its output to a file reporting per-layer and per-

file output metrics. The output of the script logged the files for which processing exited 

abnormally, as well as the overall wall time of the batch process. The script was run three times, 

once per recompute model. 

Several secondary Python3 scripts were developed for post processing of the output. 

These scripts collected and correlated key output metrics from the per-file and overall output 

files, constructed CSV files, performed data analytics, and generated the charts and graphs in 

matplotlib.  

2.12 Hardware Utilized for Computations 

The code for this project was written in C++ 2017, compiled with g++ 8.4.0 and run with 

Windows Subsystem for Linux 2. The underlying hardware was an Intel i7-10700K CPU which 

was slightly overclocked. The Windows™ build utilized was 19042.906. 
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3. RESULTS 

3.1 Metadata on the Experiment 

Some key metrics are summarized in the table below. Each processing batch contains 

exactly 347 error files. These 347 files are the same across all three models. Additionally, the 

per-file outputs are consistent with these error counts. These files are the ones which exceed 32 

MB in size and were excluded for their large size. No other files reported errors. 

One interesting result is the processing time. The model utilized significantly impacts the 

overall runtime. The recompute runtime is greatest with the Theoretical Model. Because the 

solution is less constrained, more time is spent in phase one matching chain pairs. By contrast, in 

the Current Model, very few chain pairings are valid. Therefore, the recompute algorithm 

quickly exits phase one on each layer, saving significant time. Table 3.1 quantifies these metrics. 

Since the recompute likely occurs before printing occurs, the runtime of the recompute is 

unimportant. However, it is interesting to note that the Current Model runs, in aggregate across 

all files, almost five times faster than the Theoretical Model.  

Table 3.1: Comparisons of basic output information for the three models considered. 

 Theoretical Model CODEX Model Current Model 

Wall Time Taken (s) 13,756 9,574 6,045 

CPU Time Taken (s) 163,405 95,345 30,215 

Qty Error Files 347 347 347 

Longest Recompute 
Time (s) 

523 296 207 
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3.2 Specific Metrics on the Results 

For each of the three recompute models, several statistics are shown, in the following 

table, Table 3.2. There are two principal metrics under consideration for each file. First, is Print 

Efficiency. This is the ratio of time spent printing in the original file as compared to the time 

spent printing in the recomputed file. The second metric is Base Efficiency, the ratio of total 

time, including non-print time, in the original file, as compared to the total time in the 

recomputed file. In essence, the first is a measure of the ability to locate and match segments for 

concurrent printing while the latter measures the overall efficiency of the process. Additionally, 

the standard deviation for each model and each statistic is shown. 

Table 3.2: Comparisons of key output metrics for each model. All numbers are over the entire dataset. 

 Theoretical Model CODEX Model Current Model 

Average Print 
Efficiency 

1.55498 1.54646 1.13257 

Average Base 
Efficiency 

1.24340 1.20960 0.91698 

Standard Deviation 
Print Efficiency 

0.39201 0.38945 0.19160 

Standard Deviation 
Base Efficiency 

0.31105 0.28907 0.11001 

 

Unsurprisingly, the Theoretical Model has the highest efficiency. This is expected as it is 

less constrained than either of the other two models; any solution for those models would also be 

valid for the Theoretical Model. Surprisingly, the CODEX Model is nearly as performant as the 

Theoretical Model. Both exhibit print efficiencies of nearly 1.55, a roughly 55% improvement in 

time spent printing. While there is significant improvement in the print time, the recomputed 
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path also comes with significant traversal overhead. This results in an increase in total time and a 

reduction in Base Efficiency. This is most noticeable in the Current Model, wherein the amount 

of non-print traversal time causes the Base Efficiency to go below 1.0. When the Base Efficiency 

is below 1.0, the files now take longer to print. This is vexing, but this statistic is somewhat 

deceptive. There are many files with very low Raw Print Times that optimize poorly. For 

example, the following figures show comparisons of Print Efficiency to Raw Print Time and 

Base Efficiency to base print time.  

The following two figures help to further contextualize these results. Figure 3.1 shows 

three scatter plots, one per recompute model. Each plot shows Print Efficiency in relation to Raw 

Print Time. Each point is one file from the dataset. Therefore, Figure 3.1 effectively shows the 

improvement for each file with respect to its original print size. Following Figure 3.1, Figure 3.2 

shows a histogram of Print Efficiency for all files for each of the models. 

 

 

Figure 3.1: Scatter plots comparing Print Efficiency to Raw Print Time. 
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Figure 3.2: Histogram of Print Efficiency per model. Notice the Y-Axis scale differs between models. 

The results for Print Efficiency are extremely encouraging. For both the Theoretical 

Model and the CODEX Model, a majority of files can experience significant reduction in overall 

print time. This is an excellent outcome. It can be seen in the scatter plot and the histogram that 

the Print Efficiency is bounded between 1.0 and 2.0. This follows the expected behavior; a value 

less than 1.0 would indicate segments being added in the recomputed file while a value over 2.0 

would indicate segments being lost. Figure 3.1 shows a weak correlation between original file 

size and Print Efficiency in the Theoretical Model and the CODEX Model. This makes sense as 

a larger file can recomputed more easily. Unfortunately, this relationship does not exist in the 

Current Model. The histograms for the Theoretical Model and the CODEX Model both have 

large grouping at the end of the 2.0 spectrum, which indicates many files can have significant 

reductions in time spent printing. However, in the Current Model, much of the sample data is 

grouped to the 1.0 end of the spectrum. This is an undesirable result indicating that often little 

improvement is possible. However, for those files at the 1.0 end, approximately half of them 
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cannot be improved by the Theoretical Model. If the Theoretical Model cannot improve the file, 

the Current Model will of course do no better. Nevertheless, the Current Model is certainly less 

performant than its counterparts. 

Next follows two additional figures. Figure 3.3 is another scatterplot, similar in 

construction to that of Figure 3.1. The primary difference is that Figure 3.3 plots Base Efficiency 

as a function of Raw Base Time. Additionally, all items of less than 1.0 Base Efficiency are 

colored in red and demarked with a plus symbol. These are the items for which the recompute 

produced an overall worse result as compared to the raw file. Figure 3.4 is a histogram of Base 

Efficiency. Again, the regions of less than 1.0 Base Efficiency are colored in red. 

 

Figure 3.3: Scatter plots comparing Base Efficiency to Raw Base Time. Files in red, marked with ‘+’ are below 1.0 
efficiency. Notice the Y-Axis scale differs between models. 
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Figure 3.4: Histogram of Base Efficiency per model. Regions in red indicate files below 1.0 efficiency. Notice the X-
Axis and Y-Axis scale differs between models. 

The performance of the algorithm gets worse when looking at the Base Efficiency. Many 

files have below 1.0 Base Efficiency. This means that the recomputed file takes longer than the 

original file. Specifically, only 67.9%, 66.4%, and 15.6% of the files show any improvement for 

the Theoretical Model, the CODEX Model, and the Current Model, respectively. This is irksome. 

3.3 Secondary Metrics on the Results 

As seen in the scatter plot Figure 3.1 and Figure 3.3, there is a bias towards smaller files 

in the dataset, and smaller files tend to be less optimizable. Therefore, it is natural to consider the 

weighted average of the Print Efficiency, weighted on the Raw Print Time, and of Base 

Efficiency, weighted on Raw Base Time. The results of this calculation are shown in Table 3.3. 

To some extent, this paints a better picture. Both efficiency metrics improve significantly. 

However, the Current Model is still beneath 1.0 Base Efficiency on average.  
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Table 3.3: Comparisons of additional output metrics for each model. 

 Theoretical Model CODEX Model Current Model 

Weighted Average 
Print Efficiency 

1.77317 1.76789 1.23150 

Weighted Average 
Base Efficiency 

1.46642 1.42262 0.97980 

Max Print Efficiency 2.0 2.0 1.98258 

Max Base Efficiency 1.90786 1.88841 1.68580 

 

Another interesting statistic appears in considering the most performant files. Both the 

Theoretical Model and the CODEX Model have recomputed files with Print Efficiency at the 

absolute maximum 2.0. Even the current model comes close at a 1.98. The maximum Base 

Efficiency is equally as impressive, suggesting a 90% and 88% improvement in the best case for 

the Theoretical Model and the CODEX Model respectively. They do not achieve the theoretical 

maximum Base Efficiency, which is greater than 2.0, however these results are quite promising. 

Even the Current Model performs well, producing a 69% improvement in the best case. In 

summary, all three models can produce incredibly performant results, given the right input file. 
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4. CONCLUSION 

4.1 Discussion of Results 

Overall, the results are quite encouraging. With respect to Print Efficiency, the results are 

excellent. The algorithm presented can successfully reallocate the segments to significantly 

reduce time printing. However, in doing so too much non-print transition time is introduced, 

frequently making the solution worse. This is likely an artifact of the recompute process: it 

maximizes concurrent printing first with little regard for the transition behavior. Despite this 

behavior, the recompute process can create significant improvements in all three models which is 

promising for future work. Furthermore, the entire second phase has room for improvement. 

Principally, this is in the estimation of transition time, which is currently overestimated in most 

cases. However, a larger problem arises in the fact that the printer is clearly underutilized. Right 

now, the printer is either printing two segments concurrently or moving to do so. A key omitted 

behavior is in printing while another hotend repositions. This could allow for better solutions, in 

terms of less transition time, to be developed. However, doing so would likely require a 

significant rework of the entire recompute process. 

However, the most significant problem is that the worst performing model is the one 

representing the current IDEX physical construction. Therefore, without an alteration to the 

construction of IDEX printers, this algorithm is a non-ideal solution. However, changing the 

construction of IDEX printers is not far-fetched. Even with this algorithm as presented, a feasible 

printer could be constructed today with 20% improvement in print time. This is not 

revolutionary, especially given the added mechanical complexity, but represents an excellent 

starting point. If such a printer were to exist, the algorithms would certainly improve. Thus, 
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while the results may not be encouraging on current printers, it is encouraging for the future of 

IDEX printing. 

4.2 Tightening Constraints on the Solutions 

There exist several interesting means by which to tighten the constraints of the various 

models. For example, the current prevailing model for IDEX printers has one hotend printing a 

support material, which is ultimately removed from the finished part, and the other hotend 

actually printing the part. There is no reason that this process cannot be parallelized. However, 

two minor issues arise in doing so. First, the data for segments to hotend must be encoded in the 

GCode file. This is trivial: since printers exist today with this behavior, there must be some 

encoding of this information out there presently. The second constraint arises in the algorithm 

itself, in preventing segments from being assigned to the wrong agent. It seems like this behavior 

should be relatively easy to integrate into the chain matching function. In doing so, it would 

enable the time performance improvements seen herein to be applied in a more traditional IDEX 

use case. In general, this would enable many interesting features, such as allowing two hotends 

to print concurrently with different colored materials on one part. 

There are of course several other possible ways to alter the constraints. For example, if 

the outer surface of a part must be printed with one material by one hotend while the internals 

should use a cheaper material. Perhaps more interestingly is the same constraint but relaxed such 

that the first hotend can print the inside in order to minimize total print time. Of course, in this 

scenario the time the first hotend spends printing the internals should be minimized.  

4.3 Expanding beyond Fused Deposition Modeling 3D printing 

The solutions presented herein should be largely extensible. With GCode being a 

relatively common intermediary file for Computerized Numerical Control (CNC) machines, the 
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applications of this algorithm are quite broad. Beyond even the 3D printing space, consider for a 

moment CNC Routers. These machines are largely the same as 3D printers, differing only in that 

they subtract material rather than add it. Thus, they too should be able to benefit from the 

IDEX/CODEX improvements shown in this research, or any future work. Since this code 

represents a GCode-to-GCode transformation, it should be a relatively trivial extension of these 

ideas.  

4.4 Physical Constraint Informed Performance Improvements 

Both the CODEX model and Current model are directionally biased. They are bound by 

physical constraints in the X and Y dimensions. Therefore, it is only natural to ask how the 

preparation of the GCode file influences the output. For example, could rotating the input GCode 

file improve the solution found? Could a heuristic be utilized to determine the optimal rotation 

efficiently? A challenge arises in that all Z-Layers would need to be transformed in the same 

manner; any heuristic would need to operate on the layers in aggregate. One such example could 

be determining axis of symmetry and aligning this axis with the Y-axis for the CODEX model or 

the X-axis for the Current model.  

4.5 Improving the Recompute Time 

There are two primary ways to improve the per-file recompute performance. The first 

solution involves multi-threading the recompute of a single file. Since each Z-Layer is 

recomputed independently, it should be possible to multi-thread each layer, thereby reducing the 

total wall time taken. Ultimately this was not helpful for this experiment as the CPU was already 

saturated by the quantity of files present in the dataset and the multi-processing of these files. 

However, in a more realistic scenario, in which a single file is to be processes, this could bring 

about significant performance improvement. 
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The second method of improving recompute time can be accomplished via hardware 

acceleration. Through profiling of the code, it was determined that roughly half of the processing 

time is spent deciding if two segments can be printed concurrently, a decision that is often 

repeated for the same pairs of segments. Therefore, if the printability of the segments were 

determined before chain matching and stored in a lookup table, the recompute time could be 

significantly reduced. Experimentally, this was verified by providing a collisions table computed 

a priori. However, the time to construct this table almost always exceeds the time saved by 

utilizing it. Thus, this new recompute process was untenable. One area of interest is then to 

improve the collision table generation. It is believed that this could be done via GPU based 

hardware acceleration. Initial experiments were performed using CUDA 11 on an NVIDIA RTX 

3070 with promising results. However, the process suffered from numerous logical errors and 

could not be accurately implemented as of writing. 
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