
3D PRINTING PATH REALLOCATION FOR CONCURRENT IDEX

SYSTEMS

An Undergraduate Research Scholars Thesis

by

SPENCER GAUTREAUX

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dylan Shell

May 2021

Major: Computer Science

Copyright © 2021. Spencer Gautreaux.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Spencer Gautreaux, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

3

TABLE OF CONTENTS

Page

ABSTRACT .. 1

DEDICATION .. 3

ACKNOWLEDGEMENTS .. 4

NOMENCLATURE ... 5

1. INTRODUCTION .. 7

1.1 Fused Deposition Modeling Process Introduction.. 7
1.2 Independent Dual Extrusion Introduction .. 8
1.3 Prior Research... 9

2. METHODS ... 10

2.1 The Layer Recompute Process ... 10
2.2 Phase One Recompute .. 12
2.3 Phase Two Recompute ... 14
2.4 Layer Recompute Assumptions .. 16
2.5 IDEX Configurations Considered .. 17
2.6 Formalizing Constraints on the Theoretical Model .. 19
2.7 Formalizing Constraints on the CODEX Model .. 19
2.8 Formalizing Constraints on the Current Model .. 19
2.9 The GCode Dataset ... 20
2.10 Data Flow ... 21
2.11 Logistics of the Experiment .. 22
2.12 Hardware Utilized for Computations ... 22

3. RESULTS ... 23

3.1 Metadata on the Experiment ... 23
3.2 Specific Metrics on the Results .. 24
3.3 Secondary Metrics on the Results .. 28

4

4. CONCLUSION ... 30

4.1 Discussion of Results.. 30
4.2 Tightening Constraints on the Solutions .. 31
4.3 Expanding beyond Fused Deposition Modeling 3D printing 31
4.4 Physical Constraint Informed Performance Improvements .. 32
4.5 Improving the Recompute Time ... 32

REFERENCES ... 34

1

ABSTRACT

3D Printing Path Reallocation for Concurrent IDEX Systems

Spencer Gautreaux
Department of Computer Science

Texas A&M University

Research Faculty Advisor: Dr. Dylan Shell
Department of Computer Science

Texas A&M University

3D Printing is a growing field of interest, with research topics and commercial

advancements in materials, processes, and systems. One of these advancements is the

introduction of Independent Dual Extrusion (IDEX) Fused Deposition Modeling (FDM) printers

in both the enterprise and consumer space. The unique feature on these printers is their dual

extruders, which allows them to use multiple materials to create a printed part. These two

extruders, in collaboration with two hotends, are responsible for the controlled deposition of

material. In present systems, only one hotend can operate on the part at a time. However, as

implied by the name, the hotends can be positioned independently. Therefore, the ability to

utilize the two hotends concurrently could significantly reduce print time, a behavior not

presently available. In this document we develop an algorithm to enable Collaborative Dual

Extrusion (CODEX) printing, a model in which both hotends can be utilized simultaneously on

one part. To do so we outline a two-phase greedy algorithm for transforming an input GCode

file, intended for a traditional FDM printer, into one that could be utilized on IDEX printers. This

algorithm exploits the sequential nature of GCode to find large runs of concurrently printable

2

segments. These runs are then linked to produce output paths. Approximately 13,500 publicly

available GCode files are utilized to test and validate the algorithm across three different

conceptual models for IDEX printers. The first model provides a theoretical maximum upper

bound on efficiency. The second represents a mechanically feasible model. The final model

simulates those IDEX printers available today. We show an approximate 24% and 20%

improvement for the first two models, and a 9% deterioration on the final model. The document

concludes with a discussion of possible improvements and directions for future work.

3

DEDICATION

To our friends, families, instructors, and peers who supported us throughout the research

process.

4

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Shell, for his guidance and support

throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience, especially to the group that put

this idea in my head a year ago.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

We received no outside funding for this work.

5

NOMENCLATURE

Base Efficiency The ratio of raw base time to base time

Base Time The time, including the non-print movements in the

recomputed file

Chain A collection of consecutive, coplanar segments

Chain-Pair A pair of two chains, one for each hotend

Minimum Separation Distance The minimum distance between two hotends without

interference

FDM Fused Deposition Modeling, a standard form of 3D printing

GCode Standard file format for Computerized Numerical Control

(CNC) machines, used by most consumer 3D printers

G1 An instruction in GCode representing a movement of linear

interpolation from the current position to the position
specified by the instruction

Hotend The component of an FDM 3D printer responsible for

heating and depositing material to realize the printing
process

IDEX Independent Dual Extrusion, a form of 3D printing printer

Layer A collection of segments that are all coplanar

Position A (X, Y) coordinate point in a specific Z-Layer

Print Efficiency The ratio of raw print time to print time

Print Segment A segment which contains an instruction in the print

dimension, resulting in the deposition of new material

Print Time The time of all print segments in the recomputed file

Raw Base Time The base time of the original file

Raw Print Time The print time of the original file

6

Recompute The process of rearranging the file in order to utilize both
hotends concurrently.

Segment A single, linear move from one position to another position,

represented by G1 in GCode

State A pair of two positions, corresponding to the positions of

the two hotends

Z-Layer A layer where the plane shared by all segments is parallel

to the plane Z = 0

7

1. INTRODUCTION

1.1 Fused Deposition Modeling Process Introduction

Fused Deposition Modeling (FDM) is one of many forms of 3D printing [1] [8] [10]. In

this printing format, consecutive layers of material are deposited to construct a larger part. On

each layer, a hotend is utilized to control the deposition of material, traditionally a thermoplastic,

in a controlled pattern. By stacking several of these layers, a 3D printed part is constructed.

GCode is a semi-standardized file format for Computerized Numerical Control (CNC)

machines. The GCode is generated by a program known as a slicer which translates a 3D model

into GCode [8] [10]. This process involves many parameters for controlling the FDM machine.

Selection of these parameters are non-trivial as the parameters greatly influences the output part

[1] [8]. However, by operating at the GCode layer, much of this complexity can be ignored as it

is encoded into the path within the GCode file.

Each line of the GCode file contains a command for the machine. The most prevalent

command in the 3D printing space is G1: linear interpolation. The G1 command specifies an end

point to which the machine must move. This forms a segment, with the start point being the

machine’s position prior to the instruction being ran. Any axis not specified, is simply left

unchanged. Examples of additional axis are ‘E’ for extrusion and ‘F’ for feed rate. A more

through discussion of the GCode file format can be found on the RepRap glossary [12]. Figure

1.1 shows example GCode and figure 1.2 shows the path corresponding to the GCode in Figure

1.1.

8

Figure 1.1: Sample GCode as viewed in Visual Studio Code with the “nc-gcode” syntax highlighter [6] [7].

Figure 1.2: Path represented by the GCode in Figure 1.1. Note, the print segment from (0,0) to (30,0) on line 1 is
occluded by the latter movement segment from (0,0) to (60,0) on line 10. Figure generated using Python3

matplotlib [5].

1.2 Independent Dual Extrusion Introduction

Independent Dual Extrusion (IDEX) is an evolution of the FDM process. Rather than a

single hotend, and IDEX printer contains two hotends. These two hotends can be employed in a

variety of ways. In one scenario, the two hotends are used collaboratively on the same part. In

this scenario, the two hotends contain different materials, allowing the resulting printed part to

selectively employ the differing material properties to its benefit. In the simplest case, this is

utilizing two colors to create a final part with some artistic design. Another scenario for IDEX

printers involves the use the two hotends to print two copies (or mirrored copies) of the same

part. These features are already available in commercial IDEX 3D printers [3] [11].

However, one key feature is missing from all IDEX printers: the ability for the two

hotends to work together on a single part. In theory (and as shown later in practice) these two

9

IDEX heads can be employed collaboratively to reduce the print time of a single part, allowing

an increase in the production speed of the part. This collaboration is subject to some physical

limitations of the printer. In the most common IDEX format, the two hotends are linked along a

single gantry. While the hotends are independent in one axis, for example the X axis, they are

fixed relative to each other in the Y and Z dimensions. This is a tightly constrained system and

thus will offer less opportunity to optimize. Therefore, a more relaxed format can be envisioned

where each hotend is on its own gantry [14]. Thus, the hotends would be independent in X and

Y. While this is not a commercially available system today, it represents what IDEX printers

may look like in the future.

1.3 Prior Research

FDM is an active area of research [1] [8] [10]. As such, the path planning aspects and

GCode generation can be considered to also be active. Unfortunately, there is less research

within the IDEX space. However, some benefits from FDM research will impact IDEX printers.

For example, the two hotends in an IDEX system can be argued to each be functionally

equivalent to a standard FDM printer. Thus, any general improvement to FDM printers should

also improve IDEX printers.

The path planning problem addressed in this research is one of significant complexity,

complexity stemming from the need to coordinate multiple agents while respecting their

geometric constraints. Fundamentally, this is an offline planning problem, one that could be

solved in any number of ways [13]. However, this planning problem differs in that a solution is

already provided. The input files, GCode files for traditional FDM printers, already contain a

pathed solution for a single agent. Therefore, this problem becomes one of converting a single-

agent solution into a multi-agent one.

10

2. METHODS

2.1 The Layer Recompute Process

The entire recompute process operates on a layer-by-layer basis. Within each layer, a

two-phase greedy algorithm is applied [15]. The first round focuses on finding portions of the

layer which can be concurrently printed by the two hotends. The second round focuses on linking

the outputs of the first round into a continuous path. Three unique recompute models are

considered, representing three types of physical constraints which are introduced by the

underlying construction of the machine. These constraints and their motivation are discussed in

the IDEX Configurations Considered section. The recompute process also makes use of a

constant, the minimum separation distance, to determine which segments can be printed without

collision.

Within the recompute process, the fundamental unit is the segment. Segments are

considered in pairs, looking for pairings which satisfy the question: “Can hotend H1 print

segment S1 while hotend H2 prints segment S2, without colliding in any configuration?” That is,

there exists no positions P1 on S1 and P2 on S2 where P1 and P2 are colliding. Here “colliding”

is taken to mean either the hotends being within the minimum separation distance, representing a

physical collision, or the hotends being in a position inconsistent with the underlying physical

system, an impossible configuration. Where the segments can be printed concurrently, it implies

that the two hotends can print their segments without collision or synchronization. If both

hotends follow a continuous path of segments throughout the file and synchronize at each end

point, then the recomputed paths can be assumed to be collision free in the three-dimensional X-

11

Y-Time space [9]. In this model, the Z dimension can be ignored as all print segments exist in a

Z plane and planes are printed in strictly increasing order.

The segments originate from prepared GCode files. The G1 (liner interpolation)

commands are extracted and converted to a corresponding segment. Only the segments that

correspond to a print are kept for the recompute process, the non-print segments are discarded. If

the segment exceeds the minimum separation distance, it is split into several sub segments each

at most one minimum separation distance in length. This is done to increase the resolution of the

collision checking. For example, two long segments which share an endpoint may be considered

colliding by the prior definition. However, when split into smaller segments, many of these

segments are non-colliding and may be concurrently printed. Secondly, this splitting guarantees

that all the segments are relatively equal in length. This allows for some simplifications such as

treating the time to print a segment as a constant. More importantly, this prevents the need for

one hotend to idle while the other prints a long segment.

The GCode file implies a temporal ordering of segments. This is maintained through the

splitting phase. If a segment is split, it is split starting at the start point and every minimum

separation distance until the entirety of the original segment is covered by these new segments.

The final segment may be shorter than a minimum separation distance. This splitting process is

applied only to print segments and the new segments are inserted in temporal ordering.

The problem then becomes efficiently finding groups of segments that can be printed

concurrently. To do this a structure called a chain is employed. A chain is a collection of

segments that are printed consecutively in the GCode file. These chains have several unique

properties that make them extremely interesting. First, the chain definition ensures that end point

of segment Sn is also the start point of segment Sn+1; these two segments can be printed without a

12

traversal in-between them. Secondly a chain implies locality. Since these segments are connected

via their endpoints there is an implied geometric locality. If two segments (in two chains) are in a

valid position, there is a high likelihood that the pair of the next segments (in the chains) are also

concurrently printable. Thirdly, both of these properties also hold on the chain if iterated in

reverse. And finally, a chain is itself composed of many sub-chains. A single segment is a chain,

or the entire layer can be a chain.

The recompute process consists of two phases of a greedy algorithm. The first phase

seeks to construct chain-pairs such that all the segments are present in a single chain which is

itself in a single chain pair. The chain pairs are constrained such that the chains are of equal

length. Thus, when the chains finish, they are both ready to transition to new positions to begin

the chain process again. It is phase two that manages the computation of these transitions.

This process is repeated for each layer until the entire file has been printed.

2.2 Phase One Recompute

Phase one seeks to construct chain pairs, where each hotend prints one of the chains. The

chains in each pair should be equal in length. The lengths of pairs should be maximized, in order

to minimize the work in phase two. Unfortunately, not all chains can be considered; there are

simply too many. Each segment can be a chain. As well as each pairing of two consecutive

segments. As well as each tuple of three consecutive segments… Then each chain would need to

be considered in the forward and reverse direction, and then against all other chains. This quickly

grows to an untenable number. Rather only the chains as they are expressed in the GCode file are

considered. That is, the chains of maximum length incident on each end with a non-print

segment. These chains are considered in both the forward (as represented in GCode) and reverse

directions. This does an excellent job in reducing the number of chains.

13

The chains are considered against the other chains in this layer. For each possible pairing

the chains are traversed to determine the maximum number of segments that can be printed

concurrently, terminating when the segments collide or one of the chains is exhausted. The

longest chain-pairing is set aside for phase two. Either (or both) chain(s) may produce a

remainder chain which must be considered, in the forward and reverse direction, against all other

chains. This process repeats until all segments are in a chain pair.

However, the number of chains is often still too large to compute the best pairing out of

all the pairs possible. In this case, the number of concurrent chains under consideration can be

limited to some value. For the experiments in this paper, the threshold was set to 100 chains in

consideration. All the chains begin in a pending set ordered on chain length. The considered set

is initialized by promoting chains from the pending set, up to the limit. The best pairing of chains

in the set is found, the pairing set aside for phase two, and any remainder chains computed. The

remainder chains are then reinserted directly into the considered set, bypassing the pending set.

This was no motivation for this behavior versus returning the remainders to the pending set. If

either (or both) chain(s) did not produce a remainder, the considered set can be backfilled from

the pending set. The process repeats until the pending set and considered set are both empty. If

this process reaches a deadlock wherein the considered set is unable to find any valid pairings,

the considered set can be temporarily expanded by taking elements from the pending set and

repeating the process. This appears like it could quickly expand the number of pairs in

consideration and thus significantly increase runtime. However, in practice this is not an issue.

For the experiments in this paper, when this deadlock condition was reached, the next five

largest chains were moved from the pending set to the considered set.

14

It is of course possible, and likely, to encounter a scenario with a few short chains of one

to two segments in length that are all mutually colliding. These remaining chains are then placed

into pairs with special empty chains to ensure that all segments are present in a chain pair.

Consider a chain that forms a loop where the start and end point of the chain are

coincident. Since the chains are evaluated from the outside in, their start and end segments are

colliding. Thus, the chain pair of the forward and backward iteration is considered invalid.

However, it is possible to have chains in the middle that could be concurrently printed if the

chain were split. These scenarios are missed by this approach and no attempt is made to

recognize such configurations.

2.3 Phase Two Recompute

In comparison, the phase two recompute is much simpler. It takes the chain pairs

generated in phase one and links them together in a logical manner. Each chain pairing specifies

two states. Each state consists of a pair of (X, Y) positions, one for each hotend. Notice that by

construction every state must be valid: it represents two endpoints of a valid chain pairing.

Therefore, for two sates each in a valid configuration of the underlying printer, a transition

between states should be possible. Further, notice each state is unique. If two states are the same,

then the incident segments are valid and consecutive, and would have resulted in a longer chain

pair in phase one.

The transition time from one state to another can be calculated according to the following

method. For each hotend consider the time to transition linearly from one position to the other,

this defines a transition segment for the hotend. The transitions time is the length of this segment

divided by minimum separation distance and rounded up to ensure an overestimate is used. If

both hotends can move their segments concurrently the transition time is the longer of the two

15

segments. If this check fails, check if the hotends can be moved one segment then the other. In

this case the transition time is the sum of the two movement segments.

If the transitions cannot be printed concurrently or consecutively, the transition time is

taken to be the sum of the two segments, rounded up, plus some delta. For this thesis, the delta

was four times the minimum separation distance. This is designed to represent the scenario in

which one hotend will move one minimum separation distance off its position, the other hotend

will traverse its segment, and then the hotend will return to its original position. This process is

then repeated for the other hotend. Of course, this is a significant overestimate: it can be

improved by not returning to the original position and rather traversing to the ending position

directly. However, using the delta above represents an absolute worst-case scenario.

If one of the chains in the chain pair is an empty chain, the transition time for that hotend

is zero.

It is in phase two that the reversibility of chains is paramount. Recall, that a chain can be

reversed to allow for traversal in the opposite direction. Thus, a chain pair, being two chains of

the same length, can also be reversed without needing to recompute the collisions. Therefore, the

end position of a chain pair can link to the end position of another chain pair though an implied

reversal of one of the chains. This new chain pair-transition-chain pair structure itself maintains

the property of reversibility.

Therefore, linking chain pairs is as simple as linking states. This process is similar to

Kruskal’s algorithm for minimum spanning trees [15]. A series of groups, one per chain pair, is

constructed, containing the two states incident on the chain pair. Simply find the two closest

states that belong to different groups, add this transition, join the groups, and repeat until only

16

one group remains. Phase two concludes once all the chain pairs are linked. At this point, a valid

path has been constructed for the layer, and the recompute process can begin on the next layer.

2.4 Layer Recompute Assumptions

Some fundamental assumptions are made on the input files to aid in the recompute. In

aggregate, these assumptions relax the constraints on the printing system, allowing for a solution

to be found more easily. These are not inherently necessary to the algorithm, and, as is covered

in the section Tightening Constraints on the Solutions, are largely arbitrary at this point. The

assumptions are that segments within a single layer are freely reorderable, reversable, and

distributable. Reorderable means that any two segments, A and B, in a layer can be printed A

before B, B before A, or A concurrent with B, without concern for the order these segments

appear in the original file. Reversable means that the segment can be printed from the start point

to end point as expressed in the GCode file or from the end point to the start point. Finally, the

segments are assumed to be freely distributable, that either hotend can be responsible for printing

the segment.

At all times, the endpoints of segments, and thus the segments themselves, remain

unchanged. However, the assumption is made that some segment A can be split into two or more

subsegments for which all of the earlier properties hold.

Another key assumption made is that the printer mechanically is sufficiently large to print

the file: that in some configuration of the mechanical components, either hotend can print all the

segments in the file.

17

2.5 IDEX Configurations Considered

Three models of IDEX printer are considered: a Theoretical Model focused on absolute

efficiency, a CODEX Model based on a mechanically feasible printer, and a Current Model

which is focused on currently available IDEX machines.

All three models require some supporting functions, which are defined in the following

sections. These functions answer three fundamental questions:

1. Can hotend H1 hold some position P1 while hotend H2 holds some other position P2?

2. Can hotend H1/H2 move some segment S1/S2 while hotend H2/H1 holds some

position P2/P1?

3. Can hotend H1 move segment S1 while hotend H2 moves segment S2?

The answers to these questions are employed in the recompute process and represent the

only change between the various models. Note the condition 2 is not necessarily symmetric, for

the same segment-position pair, it may be valid for hotend H1 to hold the position while hotend

H2 traverses the segment, while the reverse may not be true.

In the Theoretical Model, the hotends are assumed to be freely positioned in 3D space

with little regard to the physical components required to realize that position. While this

configuration does not represent the physical behaviors of current IDEX printers, it provides an

upper bound on the approximate efficiency achievable in IDEX printing. Both of the following

models represent a more constrained system. Therefore, any solution for those models must be,

in theory, no better than for this model. Of course, due to the greedy nature of the recompute

algorithm this behavior is not always realized.

The next model, the CODEX Model, proposed by Reddit user u/m47812 [14]. In this

model the hotends are fixed on gantries, limiting their range of motion by preventing crossing in

18

the X axis. This model is not presently commercially available; it requires a certain mechanical

complication that is pointless without the path planning ability to utilize the print heads

concurrently. Therefore, while this model is not truly real-world, it represents a model of a

printer that could be developed.

Finally, the Current Model explores how current commercially available models are able

to implement the collaborative behavior without physical hardware changes. In essence, this is

the “today metric”, what could be achieved right now with a simple over-the-air update. It is the

most constrained, with the two hotends sitting on a single gantry. This means that the hotends are

linked in the X axis and must not cross (or interfere) in the Y axis.

The following figure, Figure 2.1, shows a top-down representation of the printing models.

The hotends are represented by circles. In the theoretical model, these hotends move freely

throughout the X-Y space. In the other two models, the motion of the hotends is limited by

mechanical gantries, represented by the gray bars. These gantries are responsible for the

additional constraints placed on the CODEX Model and Current Model.

Figure 2.1: Image of the three models considered. The circles indicate the hotends while the gray bar indicates the
gantries to which the hotends are attached and cannot pass. Gantries can move only in the X dimensions and extend

infinitely in the Y dimension.

19

2.6 Formalizing Constraints on the Theoretical Model

In the Theoretical Model, the hotends must maintain at least a 25 mm separation between

points. This should hold true for the distance from a position to any position on segment or

between any two positions on two distinct segments.

The 25-millimeter distance is taken from the model of E3D V6 hotend; 25 millimeters is

roughly how close together two of these hotends can get without colliding [4]. Additionally, the

E3D V6 was chosen as it is a round hotend, making the collision calculations easier.

2.7 Formalizing Constraints on the CODEX Model

In the Codex Model, the hotends must maintain at least 25 mm separation, the same as in

the Theoretical Model. Additionally, for all possible position pairings, hotend H1’s X coordinate

must be less than or equal to that of hotend H2. That is, hotend H1 cannot cross the X coordinate

of hotend H2.

2.8 Formalizing Constraints on the Current Model

The Current Model is somewhat more complex. A trivial solution is to take the

constraints exactly as they appear in the real world: that X coordinates must be equal and that

hotend H1 must be at least one separation distance (again 25 millimeters) greater in the Y

dimension than that of the hotend H2. Unsurprisingly, this will result in almost no segments

being able to print concurrently. Therefore, the constraints must be somewhat relaxed. This is

accomplished by allowing positions/segments to have some amount of X deviation. There are

two interpretations of this behavior.

First, consider the gantry as moving in X as a function of time T. Then, the segments can

be shifted in time so that their start and end points line up in X but not in T. Since the segment

chains are continuous, this is a valid transformation. However, it potentially violates non-

20

collision property with other segments. In essence, this would require checking the segment S1

(printed by hotend H1) with both of the overlapping segments printed by the other hotend (H2),

and ensuring the non-collision is maintained. This is ideal as it would not increase the print time

(aside from some lead in/out at either end of the chain pairs where only one hotend can be

printed).

In the other interpretation, once one of the hotends finishes printing its segment, it can

simply remain in place in the Y axis until the other hotend prints its segment. Then the machine

can back-track to the end point of the segment assigned to the first hotend, allowing it to begin

printing the next segments, enabling the second hotend when the proper X coordinate is reached.

This is not ideal as it increases the print time by up to twice the ratio of X deviation to segment

length.

The physical and temporal behaviors of these scenarios are not accounted for in the

model. That is, it is assumed that phase shifting is always a valid solution to this problem and the

lead in/out time is ignored. The maximum allowable X deviation was set to 5 millimeters.

2.9 The GCode Dataset

The GCode dataset prepared by Baumann provides an excellent starting point for this

research [2]. It provides a series of real-world models, publicly available, and intended for 3D

Printing. Furthermore, this dataset contains several pre-generated the GCode for these models,

providing a significant collection of real-world models to validate these algorithms. The files are

labeled numerically and distributed in shards based on the first number. The dataset files for 2*-

9* were downloaded. However, the 1*-set of files repeatedly failed to download. Next, the

downloaded files were limited to only those that were less than 32 MB in size to facilitate the

21

multi-processing of the data files without overloading the available computing resources. This

results in a total of 13,591 GCode files from the dataset.

All of the selected files are in the Z up configuration, meaning layers run in a single Z

plane. Additionally, all the files are monotonically increasing in Z. All the files are processed

without error, indicating that they are validly constructed GCode files. The files contain only G1

(linear interpolation), G28 (axis home), and M (non-move control) codes. For all the files, all the

print segments are in a singular Z-Layer. In summary, all 13,591 files of the reduced dataset are

valid GCode files.

2.10 Data Flow

The GCode files are parsed to extract the segments, as specified by the G1 commands.

The segments are then pre-processed; if the segment exceeds the minimum collision distance, the

segment is split. After the segments are read in, a series of secondary check are run on the file.

The file is checked for monotonic increasing segments and other error conditions.

Next, some metadata is collected on the base file: the Raw Print Time, the total time

spent printing in the original file, and the Raw Base Time, the total time spent printing and

moving in the original file. The Raw Base Time includes intra-layer non-print segments but does

not include the inter-layer non-print segments.

Next, the layer-by-layer recompute process is performed. Each layer reports its Print

Time and Base Time. This is collected into an overall metric for the entire file. Then the program

computes the two-primary metrics. First, the program computes the Base Efficiency, the ratio of

Raw Base Time to Base Time. This gives a ratio of overall performance improvement and is

optimally slightly greater than 2.0. This occurs where two hotends can work at 100% efficiency

and with no transition segments in the recomputed path. With intentionally designed input files,

22

the Base Efficiency could be pushed to positive infinity. This is done by providing an input with

two print segments connected by an infinite number of non-segments. However, this is not

representative of the real-world inputs used in these experiments. The second metric is the Print

Efficiency, the ratio of Raw Print Time to Print Time. This ratio is locked in the range 1.0 to 2.0;

values outside this range would represent the loss or addition of segments in the new output file.

Together these metrics form the basis for analyzing the algorithm’s performance.

2.11 Logistics of the Experiment

A Python3 script was developed that managed the recompute process detailed above. For

each input GCode file, the script launched a new process via the built in SubProcess module to

recompute the file. The script spawned up to sixteen concurrent subprocesses. Sixteen was

chosen as this was the hardware thread count supported by the CPU, allowing for one file to be

processed per CPU core. Each subprocess logged its output to a file reporting per-layer and per-

file output metrics. The output of the script logged the files for which processing exited

abnormally, as well as the overall wall time of the batch process. The script was run three times,

once per recompute model.

Several secondary Python3 scripts were developed for post processing of the output.

These scripts collected and correlated key output metrics from the per-file and overall output

files, constructed CSV files, performed data analytics, and generated the charts and graphs in

matplotlib.

2.12 Hardware Utilized for Computations

The code for this project was written in C++ 2017, compiled with g++ 8.4.0 and run with

Windows Subsystem for Linux 2. The underlying hardware was an Intel i7-10700K CPU which

was slightly overclocked. The Windows™ build utilized was 19042.906.

23

3. RESULTS

3.1 Metadata on the Experiment

Some key metrics are summarized in the table below. Each processing batch contains

exactly 347 error files. These 347 files are the same across all three models. Additionally, the

per-file outputs are consistent with these error counts. These files are the ones which exceed 32

MB in size and were excluded for their large size. No other files reported errors.

One interesting result is the processing time. The model utilized significantly impacts the

overall runtime. The recompute runtime is greatest with the Theoretical Model. Because the

solution is less constrained, more time is spent in phase one matching chain pairs. By contrast, in

the Current Model, very few chain pairings are valid. Therefore, the recompute algorithm

quickly exits phase one on each layer, saving significant time. Table 3.1 quantifies these metrics.

Since the recompute likely occurs before printing occurs, the runtime of the recompute is

unimportant. However, it is interesting to note that the Current Model runs, in aggregate across

all files, almost five times faster than the Theoretical Model.

Table 3.1: Comparisons of basic output information for the three models considered.

 Theoretical Model CODEX Model Current Model

Wall Time Taken (s) 13,756 9,574 6,045

CPU Time Taken (s) 163,405 95,345 30,215

Qty Error Files 347 347 347

Longest Recompute
Time (s)

523 296 207

24

3.2 Specific Metrics on the Results

For each of the three recompute models, several statistics are shown, in the following

table, Table 3.2. There are two principal metrics under consideration for each file. First, is Print

Efficiency. This is the ratio of time spent printing in the original file as compared to the time

spent printing in the recomputed file. The second metric is Base Efficiency, the ratio of total

time, including non-print time, in the original file, as compared to the total time in the

recomputed file. In essence, the first is a measure of the ability to locate and match segments for

concurrent printing while the latter measures the overall efficiency of the process. Additionally,

the standard deviation for each model and each statistic is shown.

Table 3.2: Comparisons of key output metrics for each model. All numbers are over the entire dataset.

 Theoretical Model CODEX Model Current Model

Average Print
Efficiency

1.55498 1.54646 1.13257

Average Base
Efficiency

1.24340 1.20960 0.91698

Standard Deviation
Print Efficiency

0.39201 0.38945 0.19160

Standard Deviation
Base Efficiency

0.31105 0.28907 0.11001

Unsurprisingly, the Theoretical Model has the highest efficiency. This is expected as it is

less constrained than either of the other two models; any solution for those models would also be

valid for the Theoretical Model. Surprisingly, the CODEX Model is nearly as performant as the

Theoretical Model. Both exhibit print efficiencies of nearly 1.55, a roughly 55% improvement in

time spent printing. While there is significant improvement in the print time, the recomputed

25

path also comes with significant traversal overhead. This results in an increase in total time and a

reduction in Base Efficiency. This is most noticeable in the Current Model, wherein the amount

of non-print traversal time causes the Base Efficiency to go below 1.0. When the Base Efficiency

is below 1.0, the files now take longer to print. This is vexing, but this statistic is somewhat

deceptive. There are many files with very low Raw Print Times that optimize poorly. For

example, the following figures show comparisons of Print Efficiency to Raw Print Time and

Base Efficiency to base print time.

The following two figures help to further contextualize these results. Figure 3.1 shows

three scatter plots, one per recompute model. Each plot shows Print Efficiency in relation to Raw

Print Time. Each point is one file from the dataset. Therefore, Figure 3.1 effectively shows the

improvement for each file with respect to its original print size. Following Figure 3.1, Figure 3.2

shows a histogram of Print Efficiency for all files for each of the models.

Figure 3.1: Scatter plots comparing Print Efficiency to Raw Print Time.

26

Figure 3.2: Histogram of Print Efficiency per model. Notice the Y-Axis scale differs between models.

The results for Print Efficiency are extremely encouraging. For both the Theoretical

Model and the CODEX Model, a majority of files can experience significant reduction in overall

print time. This is an excellent outcome. It can be seen in the scatter plot and the histogram that

the Print Efficiency is bounded between 1.0 and 2.0. This follows the expected behavior; a value

less than 1.0 would indicate segments being added in the recomputed file while a value over 2.0

would indicate segments being lost. Figure 3.1 shows a weak correlation between original file

size and Print Efficiency in the Theoretical Model and the CODEX Model. This makes sense as

a larger file can recomputed more easily. Unfortunately, this relationship does not exist in the

Current Model. The histograms for the Theoretical Model and the CODEX Model both have

large grouping at the end of the 2.0 spectrum, which indicates many files can have significant

reductions in time spent printing. However, in the Current Model, much of the sample data is

grouped to the 1.0 end of the spectrum. This is an undesirable result indicating that often little

improvement is possible. However, for those files at the 1.0 end, approximately half of them

27

cannot be improved by the Theoretical Model. If the Theoretical Model cannot improve the file,

the Current Model will of course do no better. Nevertheless, the Current Model is certainly less

performant than its counterparts.

Next follows two additional figures. Figure 3.3 is another scatterplot, similar in

construction to that of Figure 3.1. The primary difference is that Figure 3.3 plots Base Efficiency

as a function of Raw Base Time. Additionally, all items of less than 1.0 Base Efficiency are

colored in red and demarked with a plus symbol. These are the items for which the recompute

produced an overall worse result as compared to the raw file. Figure 3.4 is a histogram of Base

Efficiency. Again, the regions of less than 1.0 Base Efficiency are colored in red.

Figure 3.3: Scatter plots comparing Base Efficiency to Raw Base Time. Files in red, marked with ‘+’ are below 1.0
efficiency. Notice the Y-Axis scale differs between models.

28

Figure 3.4: Histogram of Base Efficiency per model. Regions in red indicate files below 1.0 efficiency. Notice the X-
Axis and Y-Axis scale differs between models.

The performance of the algorithm gets worse when looking at the Base Efficiency. Many

files have below 1.0 Base Efficiency. This means that the recomputed file takes longer than the

original file. Specifically, only 67.9%, 66.4%, and 15.6% of the files show any improvement for

the Theoretical Model, the CODEX Model, and the Current Model, respectively. This is irksome.

3.3 Secondary Metrics on the Results

As seen in the scatter plot Figure 3.1 and Figure 3.3, there is a bias towards smaller files

in the dataset, and smaller files tend to be less optimizable. Therefore, it is natural to consider the

weighted average of the Print Efficiency, weighted on the Raw Print Time, and of Base

Efficiency, weighted on Raw Base Time. The results of this calculation are shown in Table 3.3.

To some extent, this paints a better picture. Both efficiency metrics improve significantly.

However, the Current Model is still beneath 1.0 Base Efficiency on average.

29

Table 3.3: Comparisons of additional output metrics for each model.

 Theoretical Model CODEX Model Current Model

Weighted Average
Print Efficiency

1.77317 1.76789 1.23150

Weighted Average
Base Efficiency

1.46642 1.42262 0.97980

Max Print Efficiency 2.0 2.0 1.98258

Max Base Efficiency 1.90786 1.88841 1.68580

Another interesting statistic appears in considering the most performant files. Both the

Theoretical Model and the CODEX Model have recomputed files with Print Efficiency at the

absolute maximum 2.0. Even the current model comes close at a 1.98. The maximum Base

Efficiency is equally as impressive, suggesting a 90% and 88% improvement in the best case for

the Theoretical Model and the CODEX Model respectively. They do not achieve the theoretical

maximum Base Efficiency, which is greater than 2.0, however these results are quite promising.

Even the Current Model performs well, producing a 69% improvement in the best case. In

summary, all three models can produce incredibly performant results, given the right input file.

30

4. CONCLUSION

4.1 Discussion of Results

Overall, the results are quite encouraging. With respect to Print Efficiency, the results are

excellent. The algorithm presented can successfully reallocate the segments to significantly

reduce time printing. However, in doing so too much non-print transition time is introduced,

frequently making the solution worse. This is likely an artifact of the recompute process: it

maximizes concurrent printing first with little regard for the transition behavior. Despite this

behavior, the recompute process can create significant improvements in all three models which is

promising for future work. Furthermore, the entire second phase has room for improvement.

Principally, this is in the estimation of transition time, which is currently overestimated in most

cases. However, a larger problem arises in the fact that the printer is clearly underutilized. Right

now, the printer is either printing two segments concurrently or moving to do so. A key omitted

behavior is in printing while another hotend repositions. This could allow for better solutions, in

terms of less transition time, to be developed. However, doing so would likely require a

significant rework of the entire recompute process.

However, the most significant problem is that the worst performing model is the one

representing the current IDEX physical construction. Therefore, without an alteration to the

construction of IDEX printers, this algorithm is a non-ideal solution. However, changing the

construction of IDEX printers is not far-fetched. Even with this algorithm as presented, a feasible

printer could be constructed today with 20% improvement in print time. This is not

revolutionary, especially given the added mechanical complexity, but represents an excellent

starting point. If such a printer were to exist, the algorithms would certainly improve. Thus,

31

while the results may not be encouraging on current printers, it is encouraging for the future of

IDEX printing.

4.2 Tightening Constraints on the Solutions

There exist several interesting means by which to tighten the constraints of the various

models. For example, the current prevailing model for IDEX printers has one hotend printing a

support material, which is ultimately removed from the finished part, and the other hotend

actually printing the part. There is no reason that this process cannot be parallelized. However,

two minor issues arise in doing so. First, the data for segments to hotend must be encoded in the

GCode file. This is trivial: since printers exist today with this behavior, there must be some

encoding of this information out there presently. The second constraint arises in the algorithm

itself, in preventing segments from being assigned to the wrong agent. It seems like this behavior

should be relatively easy to integrate into the chain matching function. In doing so, it would

enable the time performance improvements seen herein to be applied in a more traditional IDEX

use case. In general, this would enable many interesting features, such as allowing two hotends

to print concurrently with different colored materials on one part.

There are of course several other possible ways to alter the constraints. For example, if

the outer surface of a part must be printed with one material by one hotend while the internals

should use a cheaper material. Perhaps more interestingly is the same constraint but relaxed such

that the first hotend can print the inside in order to minimize total print time. Of course, in this

scenario the time the first hotend spends printing the internals should be minimized.

4.3 Expanding beyond Fused Deposition Modeling 3D printing

The solutions presented herein should be largely extensible. With GCode being a

relatively common intermediary file for Computerized Numerical Control (CNC) machines, the

32

applications of this algorithm are quite broad. Beyond even the 3D printing space, consider for a

moment CNC Routers. These machines are largely the same as 3D printers, differing only in that

they subtract material rather than add it. Thus, they too should be able to benefit from the

IDEX/CODEX improvements shown in this research, or any future work. Since this code

represents a GCode-to-GCode transformation, it should be a relatively trivial extension of these

ideas.

4.4 Physical Constraint Informed Performance Improvements

Both the CODEX model and Current model are directionally biased. They are bound by

physical constraints in the X and Y dimensions. Therefore, it is only natural to ask how the

preparation of the GCode file influences the output. For example, could rotating the input GCode

file improve the solution found? Could a heuristic be utilized to determine the optimal rotation

efficiently? A challenge arises in that all Z-Layers would need to be transformed in the same

manner; any heuristic would need to operate on the layers in aggregate. One such example could

be determining axis of symmetry and aligning this axis with the Y-axis for the CODEX model or

the X-axis for the Current model.

4.5 Improving the Recompute Time

There are two primary ways to improve the per-file recompute performance. The first

solution involves multi-threading the recompute of a single file. Since each Z-Layer is

recomputed independently, it should be possible to multi-thread each layer, thereby reducing the

total wall time taken. Ultimately this was not helpful for this experiment as the CPU was already

saturated by the quantity of files present in the dataset and the multi-processing of these files.

However, in a more realistic scenario, in which a single file is to be processes, this could bring

about significant performance improvement.

33

The second method of improving recompute time can be accomplished via hardware

acceleration. Through profiling of the code, it was determined that roughly half of the processing

time is spent deciding if two segments can be printed concurrently, a decision that is often

repeated for the same pairs of segments. Therefore, if the printability of the segments were

determined before chain matching and stored in a lookup table, the recompute time could be

significantly reduced. Experimentally, this was verified by providing a collisions table computed

a priori. However, the time to construct this table almost always exceeds the time saved by

utilizing it. Thus, this new recompute process was untenable. One area of interest is then to

improve the collision table generation. It is believed that this could be done via GPU based

hardware acceleration. Initial experiments were performed using CUDA 11 on an NVIDIA RTX

3070 with promising results. However, the process suffered from numerous logical errors and

could not be accurately implemented as of writing.

34

REFERENCES

[1] Ali, Md Hazrat, Shaheidula Batai and Dastan Sarbassov. "3D printing: A critical review
of current development and future prospects." Rapid Prototyping Journal (2019).

[2] Baumann, Felix W. "Thirty Thousand 3D Models from Thingiverse." MDPI Data 18
January 2018. Web.

[3] BCN3D. IDEX Technology. 2021. Web. 3 April 2021.
<https://www.bcn3d.com/technology/>.

[4] E3D-Online. "V6 Drawings." 24 June 2016. E3D Online. Document. 5 March 2021.
<https://e3d-online.dozuki.com/c/V6_Drawings>.

[5] Hunter, J. D. "Matplotlib: A 2D graphics environment." Computing in Science &
Engineering 9.3 (2007): 90-95. web. <https://matplotlib.org/>.

[6] Microsoft. Visual Studio Code. n.d. Web. 19 March 2021.
<https://code.visualstudio.com/>.

[7] mietek. nc-gocde. 10 October 2018. 19 March 2021.
<https://marketplace.visualstudio.com/items?itemName=ML.nc-gcode>.

[8] Mwema, Fredrick Madaraka and Esther Titilayo Akinlabi. "Basics of Fused Deposition
Modelling (FDM)." Fused Deposition Modeling. Springer, 2020. 1-15. Web.

[9] O'Donnell, Patrick A and Toms Lozano-Perez. "Deadlock-free and collision-free
coordination of two robot manipulators." Proceedings, 1989 International Conference on
Robotics and Automation. Scottsdale, AZ, USA: IEEE, 1989. 484-489. Web.

[10] Pereira, Guilherme, Fernando Gasi and Sérgio Ricardo Lourenço. "Review, Analysis, and
Classification of 3D Printing Literature: Types of Research and Technology Benefits."
International Journal of Advanced Engineering Research and Science (IJAERS) (2019):
167-187.

35

[11] Raise3D. IDEX 3D Printer. 2021. Web. 3 April 2021. <https://www.raise3d.com/e2/>.

[12] RepRap. Main Page. 24 September 2020. Web. 19 March 2021. <https://reprap.org>.

[13] Russell, Stuart and Peter Norvig. Artifical Intelligence A Moder Approach. Third Edition.
Upper Saddle River: Pearson, 2010. Print.

[14] u/m47812. Developing a new type of 3D printer, the CODEX (Collaborative Dual
Extruder) printer. 20 September 2020. Reddit. 5 March 2021.
<https://www.reddit.com/r/3Dprinting/comments/iwdnin/developing_a_new_type_of_3d
_printer_the_codex/>.

[15] Weiss, Mark Allen. Data Structures and Algorithm Analysis in C++. Fourth Edition.
Upper Saddle River: Pearson, 2014. Print.

