

MARY KAY O'CONNOR PROCESS SAFETY CENTER TEXAS A&M ENGINEERING EXPERIMENT STATION

# 19<sup>th</sup> Annual International Symposium October 25-27, 2016 • College Station, Texas

# Thermal Decomposition Mechanisms of 1H-1,2,4-Triazole Derivatives : Theoretical Study

Wasana Kowhakul \*, Daisuke Inoue, Yuki Nakagawa, Hiroshi Masamoto, Mikiji Shigematsu Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka 814-0180, JAPAN

†Presenter E-mail: kowhakulw@fukuoka-u.ac.jp

# Abstract

In the present work,  $T_{\text{DSC}}$  of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were determined by using SC-DSC and Molecular orbital calculations (MO) was used to clarify thermal decomposition mechanism and stability criteria of pathway of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were d.

 $T_{\text{DSC}}$  of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were determined from the lower  $\Delta Ea$  of thermal decomposition pathway model as proton transfer combine with cleavage bond. The determined  $T_{\text{DSC}}$  were 297 °C of 1Htri, 114 °C of 1Hti-CH<sub>3</sub> and 289 °C of 1Htri-NH<sub>2</sub>. There results were corresponded with the measured  $T_{\text{DSC}}$  as were 338 °C of 1Htri, 172 °C of 1Hti-CH<sub>3</sub> and 293 °C of 1Htri-NH<sub>2</sub>, respectively.

The results reveal that our approach thermal decomposition pathway model as combination of proton transfer and cleavage bonds of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> cab be possible to expand and control the application of these compounds.

Keywords: 1H-1,2,4-triazole, 3-amino-1,2,4-triazole, 3-methyl-1H-1,2,4-triazole, thermal decomposition, molecular orbital calculation

#### 1. Introduction

Triazoles and their derivatives have the high nitrogen content and density, good thermal stability, low impact sensitivity and high explosive volume, low molecular weight, and because of these they can be used both for civil and military application such as explosives, propellants and pyrotechnics. Several groups have focused on theoretical and experimental studies to understand the thermal decomposition mechanism and stability criteria of different types of 1,2,4-triazols.

However, the characteristic energy generation has not understand clearly. If these effects were understood, it would be possible to expand and control the application of these energy-providing materials [1-6].

Rao et al. examined the thermal decomposition and energetic 1,2,4-triazole derivatives using a photoacoustic (PA) and TG-DTA techniques, the study investigated during 30-350°C rang , the thermal energy is released in multiple step and high density of compounds leads to higher strength of photoacoustic. The released quantity of gaseous products was measured interms of the strength of PA signal which depends on the density of compounds. However, thermal decomposition mechanism and stability criteria are not approach [7].

In the present study, the influence of the (-CH<sub>3</sub>) and (-NH<sub>2</sub>) substituents on the thermal decomposition ( $T_{\text{DSC}}$ ) of 1H-1,2,4-triazole (1Htri) were determined by using SC-DSC. Molecular orbital calculations (MO) were used to clarify thermal decomposition mechanism and stability criteria of pathway of 1Htri, 3-methyl-1H-1,2,4-triazole (1Htri-CH<sub>3</sub>) and 3-amino-1H,2,4-triazole (1Htri-NH<sub>2</sub>) were calculated.  $T_{\text{DSC}}$  of each compound was determined from lower  $\Delta Ea$  of thermal decomposition pathway model selection. The determined  $T_{\text{DSC}}$  of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were compared with the measured  $T_{\text{DSC}}$ .

Molecular structure of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were shown in fig.1.



Fig. 1. Molecular structure of (i) 1H-1,2,4-triazole, (ii) 3-methyl-1H-1,2,4-triazole (iii) 3-amino-1H,2,4-triazole

The layout of the paper is as follow. In section 2 the experimental set-up and the experiment procedure are described. In section 3 the experimental results and analytical predictions are given. Section 4 include the conclusions.

#### 2. Experiment

# 2.1 Materials

#### 2.1 Materials

1Htri, 1Htri-NH<sub>2</sub> (all 98.0%, Tokyo Chemical Industry) and 1Htri-CH<sub>3</sub> (95%, Wako Pure Chemical Industries, Japan) were used in the test work.

#### 2.2 Thermal analysis

To investigate the thermal decomposition, SC-DSC (6220 SII nanotechnology) was carried out in a stainless steel cell at a heating rate of 10 K min-1 from 30 to 500°C under a steady state flow of air using a 1.0 mg sample.

# 2.3 Molecular orbital calculations

To obtain an understanding of the thermal and chemical properties of 1Htri when coordinated with a substituent as CH<sub>3</sub> and NH<sub>2</sub>, MO were conducted using the Spartan'10. Geometric optimization of the structures and vibration analyses were achieved using unrestricted B3LYP/6-31+G\* density functional theory (DFT). The influence of substituent on (1) bond distance, (2)  $\Delta Ea$  and G-G<sup>0</sup> ( $\Delta G$ )

First, the molecular structure was built on the screen, and the optimal structure at ground state was obtained. Next, to obtain the transition state of cleavage of 5 members ring, the energy change depend on the distances of two single bonds which were specified from 3 single bonds was calculated. Saddle point was found out from the energy map and optimized the transition state (TS). Then, the  $\Delta Ea$  and  $\Delta G$  was obtained as the difference of the energies between TS and ground state (GS).

#### 3. Results and Discussions

# 3.1. Search of transition state of 1Htri, 1Htri-CH3 and 1Htri-NH2 derivatives

Table 1 shows the bond distance in ring of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub>. From these values, it can be considered that even though 1Htri coordinated with derivatives, the longer distance bonds position as N1-N2, C3-N4 and C5-N1 are not change.

| Dond  |       | Distance [Å]          |                       |
|-------|-------|-----------------------|-----------------------|
| Dolla | 1Htri | 1Htri-NH <sub>2</sub> | 1Htri-CH <sub>3</sub> |
| N1-N2 | 1.357 | 1.369                 | 1.358                 |
| N2=C3 | 1.326 | 1.331                 | 1.330                 |
| C3-N4 | 1.365 | 1.369                 | 1.371                 |
| N4=C5 | 1.323 | 1.323                 | 1.322                 |
| C5-N1 | 1.352 | 1.346                 | 1.350                 |

Table 1. Bond distance and the bond order in ring of  $1Htri, 1Htri-CH_3$  and  $1Htri-NH_2$  at ground state



Fig.2 Combinations of three ways are (a) N1-N2 and C5-N1, (c) N1-N2 and N3-N4, (f) N3-N4 and C5-N1of initial decomposition should start.



Fig.3 Energy map at TS of (a) C5-N1 and C3-N4 cleavage of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub>

| Substance                           | Cleavage bonds | ⊿Ea      | ⊿G <sub>25°C</sub> | $\Delta G_{T_{dsc}}$ |
|-------------------------------------|----------------|----------|--------------------|----------------------|
|                                     |                | [kJ/mol] | [kJ/mol]           | [kJ/mol]             |
| 1Htri                               | а              | 379      | 350                | 338                  |
|                                     | с              | 439      | 398                | 378                  |
|                                     | f              | over 540 |                    |                      |
| $1 \mathrm{Htri}$ - $\mathrm{NH}_2$ | а              | 419      | 390                | 387                  |
|                                     | с              | 434      | 403                | 398                  |
|                                     | f              | over 650 |                    |                      |
| $1 \mathrm{Htri}$ - $\mathrm{CH}_3$ | а              | 365      | 416                | 405                  |
|                                     | с              | 420      | 381                | 373                  |
|                                     | f              | over 600 |                    |                      |

Table 2  $\Delta Ea$ ,  $\Delta G_{25^{\circ}C}$  and  $\Delta G_{Tdsc}$  at TS of 1Htri, 1Htri-NH<sub>2</sub> and 1Htri-CH<sub>3</sub>

Fig.2 and Fig. 3 show the combination initial decomposition should start and each energy map of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> at TS.

For example, the cleavage by the combination in case of (c) N1-N2 and C3-N4. The energy increased with increase of two distances of N1-N2 and C3-N4, however, decreased with excessive distances. The saddle point appeared around 2.323 Å of N1-C5 and 2.090 Å of C3-N4 in case of 1Htri, around 2.221 Å of N1-C5 and 2.169 Å of C3-N4 in case of 1Htri-NH<sub>2</sub> and around 2.220 Å of N1-C5 and 2.178 Å of C3-N4 in case of 1Htri-CH<sub>3</sub>.

From this saddle point, the TS was determined by further optimization. Table 2 shows the bond distance at TS of each cleavage (a), (c) and (f) of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub>, respectively.

# **3.2** Activation energy determination of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> under no translation of proton condition

Table 3 shows the  $\Delta Ea$  of three ways decompositions of all 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were calculated under limited condition as no translation of proton.

Fig. 4-6 shows the  $\Delta Ea$  at TS of each (a) C3-N4 and C5-N1 and (c) N1-N2 and C3-N4 cleavage of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub>.

Due to  $\Delta Ea$ , it can be consider that the combination of cleavage bonds were maintained to the combination of (a) C3-N4 and C5-N4 cleavage of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub>.

| Cleavage bonds                                             |       |       | Distance [ | Å]    |       | $\Delta Ea$ [kJ/mol] | $\Delta G_{25^{\circ}C} [kJ/mol]$ | $\Delta G_{Tdsc} = 338^{\circ}C$<br>[kJ/mol] |
|------------------------------------------------------------|-------|-------|------------|-------|-------|----------------------|-----------------------------------|----------------------------------------------|
|                                                            | N1-N2 | N2-C3 | C3-N4      | N4-C5 | C5-N1 |                      |                                   |                                              |
| Ba                                                         | 1.281 | 1.203 | 2.090      | 1.174 | 2.323 | 379                  | 350                               | 338                                          |
| Bc                                                         | 2.852 | 1.175 | 1.985      | 1.277 | 1.274 | 439                  | 398                               | 378                                          |
|                                                            |       |       |            |       |       |                      |                                   |                                              |
| AlBe                                                       | 1.281 | 2.323 | 1.174      | 2.090 | 1.203 | 379                  | 350                               | 338                                          |
| AlBd                                                       | 2.852 | 1.274 | 1.277      | 1.985 | 1.175 | 439                  | 398                               | 378                                          |
| A2Bc                                                       |       |       |            |       | Not   | ntimized             |                                   |                                              |
| $A1A)C5 \rightarrow N/d$                                   |       |       |            |       | Not   | optimized            |                                   |                                              |
| AIA)C5-M4u                                                 |       |       |            |       | NOU   | punnzed              |                                   |                                              |
| A2Bd                                                       |       |       |            |       | Not o | optimized            |                                   |                                              |
| A1A)C5→N4c                                                 |       |       |            |       | Not o | optimized            |                                   |                                              |
| ,                                                          |       |       |            |       |       | 1                    |                                   |                                              |
| A2Be                                                       |       |       |            |       | Not o | optimized            |                                   |                                              |
| A1A)C5→N4a                                                 |       |       |            |       | Not o | optimized            |                                   |                                              |
|                                                            |       |       |            |       |       |                      |                                   |                                              |
| A3Ba                                                       |       |       | Not optimi | zed   |       | over500              |                                   |                                              |
| AIA)C5→NIe                                                 |       |       | Not optimi | zed   |       | over600              |                                   |                                              |
| A3Bh                                                       |       |       |            |       | Not   | ontimized            |                                   |                                              |
| A1A)C5→N1b                                                 |       |       |            |       | Not   | optimized            |                                   |                                              |
|                                                            |       |       |            |       | 11011 | punnzea              |                                   |                                              |
| A3Bc                                                       |       |       |            |       | Not o | optimized            |                                   |                                              |
| A1A)C5→N1d                                                 |       |       |            |       | Not o | optimized            |                                   |                                              |
|                                                            |       |       |            |       |       |                      |                                   |                                              |
| A4Ba                                                       | 1.264 | 1.190 | 2.537      | 1.219 | 2.089 | 475                  | 440                               | 430                                          |
| A1A)C3→N4e                                                 | 1.264 | 2.089 | 1.219      | 2.537 | 1.190 | 475                  | 440                               | 430                                          |
| A 4Da                                                      | 2 201 | 1 205 | 1 750      | 1 202 | 1 226 | 200                  | 262                               | 252                                          |
| A4DC<br>A1A)C2 NIAd                                        | 2.301 | 1.203 | 1.730      | 1.262 | 1.220 | 289                  | 203                               | 255                                          |
| ATA)C5→N4u                                                 | 2.301 | 1.220 | 1.202      | 1.750 | 1.205 | 209                  | 203                               | 233                                          |
| A4Bd                                                       | 2.161 | 1.268 | 1.277      | 2.594 | 1.199 | 497                  | 455                               | 433                                          |
| A1A)C3→N4c                                                 | 2.161 | 1.199 | 2.594      | 1.277 | 1.268 | 497                  | 455                               | 433                                          |
| ,                                                          |       |       |            |       |       |                      |                                   |                                              |
| A2A)N1→N2a                                                 |       |       |            |       | Not o | optimized            |                                   |                                              |
| A2A)N1→N2c                                                 |       |       |            |       | Not o | optimized            |                                   |                                              |
| A2A)N1→N2d                                                 |       |       |            |       | Not o | optimized            |                                   |                                              |
| 121005 111                                                 |       |       |            |       |       |                      |                                   |                                              |
| $A3A)C5 \rightarrow N4c$                                   |       |       |            |       | Not o | optimized            |                                   |                                              |
| $A4AJC3 \rightarrow N2C$                                   |       |       |            |       |       | -                    |                                   |                                              |
| $A_3A_3C_3 \rightarrow N40$<br>$A_4A_3C_3 \rightarrow N24$ |       |       |            |       | Not o | optimized            |                                   |                                              |
| MARICO MZU                                                 |       |       |            |       |       |                      |                                   |                                              |
| A4A)N1→C5c                                                 | 2.137 | 1.165 | 2.594      | 1.283 | 1.268 | 412                  | 374                               | 356                                          |
| A4A)N1→C5d                                                 | 2.138 | 1.268 | 1.283      | 2.596 | 1.164 | 412                  | 374                               | 356                                          |

Table 3. Structure of 1Htri at the initial step of the thermal decomposition



Fig.4  $\Delta$ Ea map at (Ba) C5-N1 and C3-N4 cleavage and (Bc) N1-N2 and C3-N4 cleavage of 1Htri



Fig.5  $\Delta$ Ea map at (Ba) C5-N1 and C3-N4 cleavage and (Bc) N1-N2 and C3-N4 cleavage of 1Htri-CH<sub>3</sub>



Fig.6  $\Delta Ea$  map at (Ba) C5-N1 and C3-N4 cleavage and (Bc) N1-N2 and C3-N4 cleavage of 1Htri-NH<sub>2</sub>

## 3.3 Activation energy Determination of 1Htri under translation of proton condition

As shows in section 3.2 the calculated under no proton translation pathway.

M.Tabatabee et al examined thermal behavior of 4Htri changed to 3Htri form then reaction occur (see fig.7). However, the present case, the mechanisms have not clarify. Therefore, in this study, thermal decomposition pathway of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were also considered under translation of proton condition.



Ea=-781369.98 [kJ/mol] Ea=-781411.27 [kJ/mol] 3-amino-1H-1,2,4-triazole 3-amino-4H-1,2,4-triazole

Fig.7 1,3-sigmatropic hydrogen shift in 3-amino-1Htri and formation of 3-amino-4Htri



Fig.8 Thermal decomposition pathway at (A) proton transfer and (B) cleavage of 1Htri.

Fig. 8 shows there are two possible thermal decomposition pathways assumption of 1Htri as (A) proton transfer at first state and (B) bond cleavage at first state.

In case of (B) bond cleavage occur at the first state, the decomposition should start at two single bonds of the single bonds as section 3.2 we consider that there is a relationship between bond distance and decomposition and assume that long bonds tend to become disconnected.

 $\Delta Ea$  of cleavage bounds of each (a) N1-C5 and C3-N4, (c) N1-N2 and C3-N4, (f) N1-N2 and N1-C5 of 1Htri is shown in Table 2. With these  $\Delta Ea$  values, it can be considered that the combination of (a) N1-C5 and C3-N4 shows lower  $\Delta Ea$  comparing other (c) and (f) cleavage pattern then the decomposition of 1Htri will start preferentially at (a) N1-C5 and C3-N4.

As shows in fig.8, if proton transfer at first state, there are four possible combinations as (A1) proton transfer from N1 $\rightarrow$ N2, (A2) proton transfer from C3 $\rightarrow$ N4, (A3) proton transfer from C3 $\rightarrow$ N4 and (A4) proton transfer from C5 $\rightarrow$ N4.

However, only A1 as shows in fig.9 and A4 as shows in fig.12 were possible to find the T.S. but cannot observe T.S. as A2 as shows in fig.10 and A3 as shows in fig.11.

Fig. 13 and fig.14 show energy flow chart of A1 and A4 with this energy chart, it can be considered that pathway A1A)C3 $\rightarrow$ N4d.



Fig.9 Thermal decomposition pathway at (A1A) proton transfer and (A1B) cleavage of 1Htri.



Fig.10 Thermal decomposition pathway at (A2A) proton transfer and (A2B) cleavage of 1Htri.



Fig.11 Thermal decomposition pathway at (A3A) proton transfer and (A3B) cleavage of 1Htri.



Fig.12 Thermal decomposition pathway map at (A4A) proton transfer and (A4B) cleavage of 1Htri.



Fig. 13 Thermal decomposition pathway map at A1A)C3  $\rightarrow$  N4c,d,e, A1Be and A1Bd of 1Htri.



Fig. 14 Thermal decomposition pathway map at A4A) $N1 \rightarrow C5c$ , d, A4Ba, c, d

Table 4 The produced gases after each decomposition pathway of 1Htri

| Cleavage bonds                                                                                         | Gas           |
|--------------------------------------------------------------------------------------------------------|---------------|
| Ba, A1Be                                                                                               | N-CH, NH-N-CH |
| Bc, A1Bd, A4A)N1 $\rightarrow$ C5c, A4A)N1 $\rightarrow$ C5d                                           | CH-N, NH-CH-N |
| A2Bc, A1A)C5 $\rightarrow$ N4d                                                                         | N-C, NH-CH-NH |
| A2Bd, A1A)C5 $\rightarrow$ N4c                                                                         | NH-CH, NH-C-N |
| A2Be, A1A)C5→N4a                                                                                       | NH-C, CH-NH-N |
| A3Ba, A1A)C5 $\rightarrow$ N1e                                                                         | N-CH, NH-NH-C |
| A3Bb, A1A)C5→N1b                                                                                       | NH-NH, C-N-CH |
| A3Bc, A1A)C5 $\rightarrow$ N1d, A1A)C3 $\rightarrow$ N4c, A4Bd, A2A)N1 $\rightarrow$ N2c               | C-NH, NH-CH-N |
| A4Ba, A1A)C3 $\rightarrow$ N4e                                                                         | NH-C, NH-N-CH |
| A2A)N1→N2a                                                                                             | NH-CH, N-NH-C |
| A4Bc, A1A)C3 $\rightarrow$ N4d, A2A)N1 $\rightarrow$ N2d                                               | N-CH, NH-C-NH |
| A3A)C5 $\rightarrow$ N4c, A4A)C3 $\rightarrow$ N2c, A3A)C5 $\rightarrow$ N4d, A4A)C3 $\rightarrow$ N2d | NH-C, NH-C-NH |

## 3.4 Determination of activation energy of 1Htri-CH3 under translation of proton condition

Table 2 shows the bond distances of 1Htri-CH<sub>3</sub> is revealed in table 2 and fig.15 reveals the combinations of two ways of cleavage bounds of thermal decomposition of 1Htri-CH<sub>3</sub> are at (a) N1-C5 and C3-N4 and (c) N1-N2 and C3-N4.

Table 5 shows it can be considered that with these  $\Delta Ea$  values at TS of 1Htri-CH<sub>3</sub>. The combination of (c) N1-N2 and C3-N4 shows the lowest  $\Delta Ea$  comparing with (c) cleavage pattern then the decomposition of 1Htri will start preferentially at (c) N1-N2 and C3-N4.

| Cleavage bonds | Distance [Å]  |               |       |       | $\Delta Ea$ [kJ/mol] | $\Delta G_{\text{Tdsc=310°C}}$ [kJ/mol] |     |
|----------------|---------------|---------------|-------|-------|----------------------|-----------------------------------------|-----|
|                | N1-N2         | N2-C3         | C3-N4 | N4-C5 | C5-N1                |                                         |     |
| Ba             | 1.29          | 1.201         | 2.178 | 1.179 | 2.169                | 365                                     | 382 |
| Bc             | 2.941         | 1.180         | 1.967 | 1.286 | 1.281                | 420                                     | 475 |
| A1Ba           | 1.276         | 1.179         | 2.795 | 1.227 | 2.034                | 458                                     | 417 |
| A1Bc           | 2.208         | 1.208         | 1.793 | 1.280 | 1.230                | 291                                     | 403 |
| A1Bd           |               | Not optimized |       |       |                      | Over500                                 |     |
| A2Ba           |               | Not optimized |       |       |                      | Over600                                 |     |
| A2Bc           |               | Not optimized |       |       |                      | Over500                                 |     |
| A2Bd           |               | Not optimized |       |       |                      | Over500                                 |     |
| A1A)N1→N2a     | Not optimized |               |       |       | Over500              |                                         |     |
| A1A)N1→N2c     |               | Not optimized |       |       |                      |                                         |     |
| A1A)N1→N2d     |               |               | N     |       |                      |                                         |     |

*Table 5. Structure of transition state of Htri-CH*<sub>3</sub> *at the initial step of the thermal decomposition* 



Fig.15 Thermal decomposition pathway map at (A) proton transfer and (B) cleavage of 1Htri-CH<sub>3</sub>

Fig.16 shows the next step after proton from (A1) C5 $\rightarrow$ N4. There are two proton transfer pathways as (A1A) N1 $\rightarrow$ N2 and (A1A)N1 $\rightarrow$ C5 and there are three cleavage bonds as (A1Ba) N1-C5 and C3-N4 (A1Bc) N1-N2 and C3-N4 and (A1Bd) N1-N2 and N4-C5cleavage pathway occur.

Fig.17 shows in case of (A2) proton transfer from N1 $\rightarrow$ N2 at first step of 1Htri-CH<sub>3</sub>, we could not observe T.S. of all pathways as (A2A) C5 $\rightarrow$ N4, (A2A) C5 $\rightarrow$ N1,bond cleavage of (A2Ba) N1-C5 and C3-N4, (A2Bc) N1-N2 and C3-N4 and (A2Bd) N1-N2 and N4-C5.

Fig. 18 shows energy flow chart of A1) C5 $\rightarrow$ N4Ba and A1) C5 $\rightarrow$ N4Bc. it can be considered with this energy chart that pathway should be A1) N1 $\rightarrow$ N2c.



Fig.16 Thermal decomposition pathway (A1A) proton transfer and (A1B) cleavage of 1Htri-CH3



Fig.17 Thermal decomposition pathway (A2A) proton transfer and (A2B) cleavage of 1Htri-CH<sub>3</sub>



Fig.18 Thermal decomposition pathway at A1)C5 $\rightarrow$ N4Ba, c of 1Htri-CH<sub>3</sub>



Fig.19 Thermal decomposition pathway at (A) proton transfer and (B) cleavage of 1Htri-NH<sub>2</sub>

| Cleavage bonds | Distance [Å]  |               |       |               | ΔEa [kJ/mol] | $\Delta G_{\text{TDSC}} = {}_{296^{\circ}\text{C}}$ [kJ/mol] |     |  |  |
|----------------|---------------|---------------|-------|---------------|--------------|--------------------------------------------------------------|-----|--|--|
|                | N1-N2         | N2-C3         | C3-N4 | N4-C5         | C5-N1        |                                                              |     |  |  |
| Ba             | 1.314         | 1.189         | 2.220 | 1.176         | 2.221        | 419                                                          | 167 |  |  |
| Bc             | 3.080         | 1.188         | 1.976 | 1.281         | 1.276        | 434                                                          | 401 |  |  |
| A1Bc           | 2.205         | 1.214         | 1.769 | 1.282         | 1.240        | 290                                                          | 44  |  |  |
| A1A)N1→C5c     | 2.112         | 1.172         | 2.779 | 1.286         | 1.270        | 406                                                          | 143 |  |  |
| A2A)C5→N4c     | 1.789         | 1.233         | 2.880 | 1.223         | 1.232        | 405                                                          | 253 |  |  |
| A2A)C5→N4e     | 1.290         | 2.392         | 1.185 | 2.485         | 1.187        | 478                                                          | 318 |  |  |
| A1Ba           |               | Not optimized |       |               |              | Over500                                                      |     |  |  |
| A1Bd           |               | Not optimized |       |               |              | Over500                                                      |     |  |  |
| A2Ba           |               | Not optimized |       |               |              | Over500                                                      |     |  |  |
| A2Bc           |               | Not optimized |       |               |              | Over500                                                      |     |  |  |
| A2Bd           |               | Not optimized |       |               |              | Over500                                                      |     |  |  |
| A1A)N1→C5a     | Not optimized |               |       |               | Over500      |                                                              |     |  |  |
| A1A)N1→C5d     | Not optimized |               |       |               |              | Over500                                                      |     |  |  |
| A2A)C5→N4d     |               |               | Ν     | Not optimized |              |                                                              |     |  |  |

*Table 6. Structure of TS of 1Htri-NH*<sub>2</sub>



Fig.20 Thermal decomposition pathway (A1A) proton transfer and (A1B) cleavage of 1Htri-NH<sub>2</sub>



Fig.21 Thermal decomposition pathway (A2A) proton transfer and (A2B) cleavage of 1Htri-NH2

In fig.19 shows there are also two possible thermal decomposition pathways assumption of 1Htri-NH<sub>2</sub> as (A) proton transfer at first state and (B) bond cleavage at first state. As same as in the case of 1Htri and 1Htri-NH<sub>2</sub>.

Table 2 shows the bond distances of 1Htri-NH<sub>2</sub> is revealed in table 2 and fig.19 reveals the combinations of two ways of cleavage bounds of thermal decomposition of 1Htri-NH<sub>2</sub> are at (Ba) N1-C5 and C3-N4 and (Bc) N1-N2 and C3-N4 are shown in table 6.

Fig.20 shows the next step after proton from (A1) C5 $\rightarrow$ N4. There are two proton transfer pathways as (A1A) N1 $\rightarrow$ N2 and (A1A)N1 $\rightarrow$ C5 and there are three cleavage bonds as (A1Ba) N1-C5 and C3-N4 (A1Bc) N1-N2 and C3-N4 and (A1Bd) N1-N2 and N4-C5cleavage pathway occur.

Fig.21 shows in case of (A2) proton transfer from N1 $\rightarrow$ N2 at first step of 1Htri-CH3, we could not observe T.S. of all pathways as (A2A) C5 $\rightarrow$ N1,bond cleavage of (A2Ba) N1-C5 and C3-N4, (A2Bc) N1-N2 and C3-N4 and (A2Bd) N1-N2 and N4-C5.

Fig. 22 shows energy flow chart of A1) N1 $\rightarrow$ C5c and A1Bc and fig.23 A2A C5 $\rightarrow$ N4Bc and e. it can be considered with this energy chart of 1Htri-NH2 that pathway should be A1) N1 $\rightarrow$ C4c.



Fig.22 Thermal decomposition pathway map at A2 of 1Htri-NH<sub>2</sub>



Fig.23 Thermal decomposition pathway map at A2 of 1Htri-NH<sub>2</sub>

Table 7 The produced gases after each decomposition pathway of 1Htri-CH<sub>3</sub>

| Cleavage bonds | Gas                           |
|----------------|-------------------------------|
| Ba             | N-CH, NH-N-C-CH <sub>3</sub>  |
| Bc             | N-C-CH <sub>3</sub> , NH-CH-N |
| AlBa           | NH-C, NH-N-C-CH <sub>3</sub>  |
| A1Bc           | N-C-CH <sub>3</sub> , NH-C-NH |

Table 8. The produced gases after each decomposition pathway of 1Htri-NH<sub>2</sub>

| Cleavage bonds | Gas                           |
|----------------|-------------------------------|
| Ba             | N-CH, NH-N-C-NH <sub>2</sub>  |
| Bc             | N-C-NH <sub>2</sub> , N-CH-NH |
| A1Bc           | N-C-NH <sub>2</sub> , NH-C-NH |
| A1A)N1→C5c     | N-C-NH <sub>2</sub> , N-CH-NH |
| A2A)C5→N4c     | NH-C-NH <sub>2</sub> , N-C-NH |
| A2A)C5→N4e     | NH-C-NH <sub>2</sub> , NH-N-C |



Fig.24 Summary of the selected thermal decomposition pathways of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub>

# 3.5 Thermal decomposition of 1Htri, 1Htri-CH3 and 1Htri-NH2

As result from section 3.3 the appropriate thermal decomposition pathway of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were outcome by lower  $\triangle Ea$  selection. Then using *G*=*H*-*TS* equation, the original structure of each 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> and its final product from selected pathway from section 3.3 were calculated during 25- 300 °C as show in fig.24 – 28. Then at cross section point, the predicted T<sub>DSC</sub> was received. In this study, fig. 26 shows the determined *T*<sub>DSC</sub> was 297 °C of 1Htri, fig.27 shows T<sub>DSC</sub> was 114 °C of 1Htri-CH<sub>3</sub> and fig.28 shows T<sub>DSC</sub> was 289 °C of 1Htri-NH<sub>2</sub>.

Fig. 29 summarize the measured and calculated  $T_{DSC}$ . Almost the calculated  $T_{DSC}$  were match with the measured  $T_{DSC}$ .



Fig.25 DSC curves of 1Htri, 1Htri-CH3 and 1Htri-NH2

|                       | T <sub>DSC(measured)</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta G_{25^{\circ}\mathrm{C}}  [\mathrm{kJ/mol}]$ | $\Delta G_{\mathrm{TDSC}} [\mathrm{kJ/mol}]$ | T <sub>DSC(calc.)</sub><br>[°C] |
|-----------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------------|
| 1Htri                 |                            | H = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                    | 94                                           |                                 |
|                       | 338                        | $\begin{array}{c} 1 \\ 1 \\ 5 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -49                                                  | 101                                          | 297                             |
| 1Htri-NH <sub>2</sub> |                            | H = 1 $H = 1$ $H =$ | 0                                                    | 91                                           |                                 |
|                       | 293                        | 293 H<br>$5 \xrightarrow{N} 1$<br>$4_N \xrightarrow{1} 3$<br>H NH <sub>2</sub> -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -50                                                  | 92                                           | 289                             |
| 1Htri-CH <sub>3</sub> | 172                        | H 5 N N 2<br>4 N / 3 C H 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                    | 46                                           |                                 |
|                       |                            | $\begin{array}{c} H \\ 5 \\ N \\ M \\ N \\ M \\ 3 \\ CH_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18                                                  | 57                                           | 114                             |

Table 9 summary of the calculated  $T_{DSC}$  of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> comparing with the measured  $T_{DSC}$ 



Fig.26 Calculated T<sub>DSC</sub> of 1Htri from proton pathway (red color) and cleavage pathway (blue color)



*Fig.27 Calculated T<sub>DSC</sub> of 1Htri-CH*<sub>3</sub> from proton pathway (red color) and cleavage pathway (blue color)



Fig.28 Calculated T<sub>DSC</sub> of 1Htri-NH<sub>2</sub> from proton pathway (red color) and cleavage pathway (blue color)



Fig.29 comparing the calculated  $T_{DSC}$  from this study with the measured  $T_{DSC}$  by DSC

# 4. Conclusion

In the present work,  $T_{\text{DSC}}$  of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were determined by using SC-DSC and MO was used to clarify thermal decomposition mechanism and stability criteria of pathway of 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> were calculated.

 $T_{\text{DSC}}$  of each compound was determined from the lower  $\Delta Ea$  of thermal decomposition pathway model as proton transfer combine with cleavage bond. The determined  $T_{\text{DSC}}$  was compared with the measured  $T_{\text{DSC}}$ .

The results shows that the determined  $T_{\text{DSC}}$  from of decomposition pathway model 1Htri, 1Htri-CH<sub>3</sub> and 1Htri-NH<sub>2</sub> corresponding with the measured  $T_{\text{DSC}}$ .

# References

- S. Tagomori, Y. Kuwahara, H. Masamoto, M. Shigematsu, W. Kowhakul. Influence of substituent to the thermal decomposition of 1H-1,2,4-triazole. 4th International Conference on Biology, Environment and Chemistry (ICBEC), 66-70, 2013.
- 2. H. Kiuchi, W. Kowhakul, M. Arai, M. Tamura, Y. Wada, M. Kumasaki. A study on thermal behavior of triazoles. 62nd Japan Explosives Society Conference. Tokyo: 2003, pp.35-38.
- W. Kowhakul, M. Kumasaki, M. Arai. Study on thermal behavior of 1H-1,2,4 triazolecopper complex with substituents. Science and Technology of Energetic Materials. 2005, 66 (6): 425-430.
- 4. W. Kowhakul, R. Miyazaki, M. Kumasaki, Y. Wada, M. Arai, M, Tamura. A study on the characteristics of azole-metal complexes. Kayaku Gakkaishi. 2002, 63 (6): 362-366.
- T. Masoumeh, S. Mahboubeh A., G. Mitra, S. Mahmoud. 1,3-Sigmatropic hydrogen shift in 3-amino-1H-1,2,4-triazole during the complexation of this ligand with cobalt (II) ion, single crystal structure of a new trinuclear Co(II) 1,2,4-triazole complex. Journal of Chemical Crystallography. 2011, 41 (2): 127-131.
- M. Tamura, M. Arai, and Y. Akutsu. Energy material and safety. Asakura Publishing, 1999, pp.
- K.S.Rao and A.K.Chaudhary, Investigation of the thermal decomposition and stability of energetic 1,2,4-triazole derivatives using a UV laser based pulsed photoacoustic technique RSC Adv., 2016,6,47646-47654
- M M.Tabatabee et.al., 1,3-sigmatropic Hydrogen Shift in 3-Amino-1H-1,2,4-Triazole During the Complexation of this Ligand with Cobalt(II) Ion, Single Crystal Structure of a New Trinuclear Co(II) 1,2,4-Triazole Complex, J Chem Crystallogr (2011) 41:127-131