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Abstract

Purpose Agricultural intensification to meet the food needs of
the rapidly growing population in developing countries affects
water quality. In regions such as the Lake Tana basin, knowl-
edge is lacking on measures to reduce non-point source pol-
lutants in humid tropical monsoon climates. The aim of this
paper was, therefore, to develop a non-point model that can
predict the placement of practices to reduce the transport of
sediment and phosphorus (P) in a (sub) humid watershed.
Materials and methods In order to achieve the objective, hy-
drometeorological, sediment, and P data were collected in the
watershed since 2014. The parameter efficient semi-
distributed watershed model (PED-WM) was calibrated and
validated in the Ethiopian highlands to simulate runoff and
associated sediments generated through saturation excess.
The P module added to PED-WM was used to predict dis-
solved (DP) and particulate P (PP) loads aside from discharge
and sediment loads of the 700 ha of the Awramba watershed
of Lake Tana basin. The PED-WM modules were evaluated
using the statistical model performance measuring techniques.
The model parameter based prediction of source areas for the
non-point source sediment and P was also evaluated spatially
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and compared with the Topographic Wetness Index (TWI) of
the watershed.

Results and discussion The water balance component of the
non-point source model performed well in predicting dis-
charge, sediment, DP, and PP with NSE of 0.7, 0.65, 0.65,
and 0.63, respectively. In addition, the predicted discharge
followed the hydrograph with insignificant deviation from
its pattern due to seasonality. The model predicted a sediment
yield of 28.2 t ha™' year ' and P yield of 9.2 kg ha™' year '
from Awrmaba. Furthermore, non-point source areas contrib-
uted to 2.7 kg ha ' year ' (29%) of DP at the outlet. The main
runoff and sediment source areas identified using PED-WM
were the periodically saturated runoff areas. These saturated
areas were also the main source for DP and PP transport in the
catchment.

Conclusions Using the PED-WM with the P module enables
the identification of the source areas as well as the prediction
of P and sediment loading which yields valuable information
for watershed management and placement of best manage-
ment practices.

Keywords Lake Tana basin - Non-point source - PED-WM -
Saturation excess

1 Introduction

Increases in the flux of non-point sediment and phosphorus
(P) into rivers, streams, lakes, and reservoirs result in turbid
water and eutrophication given that P is often the limiting
nutrient (Johnes 1996; Ginting et al. 1998; Klatt et al. 2003;
Haygarth et al. 2005). Understanding the non-point sources of
sediment and phosphorus fluxes in the landscape, its effect on
water bodies and identifying suitable control mechanisms re-
quires an evaluation of non-point source pollutants sources,
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transport pathways (i.e., mobilization), delivery mechanisms,
and prediction (Haygarth et al. 2005). Evaluation of non-point
source P intrinsically covers dissolved and available P as well
as its spatio-temporal scale. Throughout the year, the magni-
tude of natural (e.g. atmospheric deposition, soil-P) and an-
thropogenic (e.g., inorganic and organic fertilizer) P sources
changes, results in different loads of dissolved P (DP), and
particulate P (PP) forms (Nziguheba et al. 2016). These forms
are transported (e.g., erosion, runoff, leaching), from fields,
along hill slopes, within the watershed, further increasing the
complexity of understanding the effect of dissolved and par-
ticulate P fluxes in a mosaic landscape (Chapman et al. 1997;
Carpenter et al. 1998; Borah and Bera 2003; Girmay et al.
2009; Verheyen et al. 2015).

In developing and emerging countries, agricultural intensifi-
cation has increased both sediment-associated as well as DP
fluxes mainly in surface water and to a lesser extent in ground-
water (Sharply 1995; Chapman et al. 1997; Sims et al. 1998;
Maguire et al. 2005). For instance, in Ethiopia, decreasing water
quality is caused by the rapid population increase and associat-
ed land-use change mainly from forest to agriculture resulting
in soil degradation and increased direct runoff and soil erosion
(Nyssen et al. 2005; Tebebu et al. 2010). This has become the
path for non-point source sediment and P transport from the
agricultural lands causing onsite effects, e.g., reduction of soil
fertility (Morgan 2009; Haileslassie et al. 2005) and offsite
effects, e.g., siltation and eutrophication of surface waters
(Awulachew and Tenaw 2008; Girmay et al. 2009).

Despite the country’s erosion reduction strategy, the
ongoing degradation of agricultural land and increased
fertilizer usages continues, resulting in reservoir siltation
and water quality issues in lakes like Lake Tana
(Awulachew and Tenaw 2008). Best management prac-
tices to mediate the effects of increased non-point source
P and sediment concentrations has resulted in reduction of
pollutants and inflow of the surface by targeting hydro-
logical sensitive arecas (HSA’s) (Bishop et al. 2005). This
could be illustrated by an instance in the USA in one of
the water supply watersheds of New York City where
saturation excess runoff dominates (alike in the
Ethiopian highlands). Water quality of the city was im-
proved by installing management practices which targeted
the HSA (bottom slope part of the watershed which is
regularly saturated) for reducing the nutrient input such
as P loads (Rao et al. 2009). Similarly, Moges et al.
(2016a) has indicated that the P concentration was signif-
icantly higher in the saturated bottom part of the water-
shed and was understood as the hydrological sensitive
area for dissolved phosphorus (HSA for DP).
Hydrologically sensitive areas in the sub-humid water-
sheds are the degraded hill slopes and the saturated valley
bottoms. Best management practices of placing furrows
with 50-cm-deep increase infiltration thereby reduce
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runoff and sediment from degraded areas (Dagnew et al.
2015). Effective best management practice in the valley
bottoms are however not studied well for sub-humid, and
the creation of buffer zones by planting grass could be
one solution.

In areas where there is insufficient data of non-point
source pollutants, the pollution and/or eutrophication
levels in surface waters cannot be easily understood.
Furthermore, the cost of monitoring sediment and the as-
sociated nutrient inflow to water bodies which causes wa-
ter quality impairment is high. Hence, quantification of
sediment and nutrient loads from the watersheds becomes
difficult. To alleviate this problem and support monitoring
systems, watershed models which are capable to predict
sediment and nutrient outflow (e.g., P) is vital (Chu et al.
2004). In this case, locally adapted nonpoint source pol-
lution models can help to estimate the pollution levels
based on the amount of inflow to predict non-point source
sediment and P loads into the water bodies and source
areas in the watersheds. However, the sediment and nutri-
ent models to simulate DP and PP are limited in most
parts of the world by lack of datasets for calibrating and
validating these models. Similarly, in Ethiopia, there is a
lack of sufficient data to model DP and PP, to evaluate the
extent of nonpoint source areas contributing to P loads
and assess the on-site and off-site effects at watershed
scale. Furthermore, there is a lack of hydrological models
allowing for DP and PP simulations in areas where runoff
generation is dominated by saturation access. The use of
suitable hydrological models with associated nutrient
modules can help in elucidating the spatio-temporal char-
acter of these P fluxes and identifying suitable remedia-
tion mechanisms.

Therefore, the main objective of this study was to improve
the capacity to evaluate non-point P transport in the landscape
by (i) incorporating the P module into the parameter efficient
semi- distributed watershed model (PED-WM) (Steenhuis
et al. 2009; Tessema et al. 2010; Tilahun et al. 2013a, b,
2014) using field observations, (ii) evaluating non-point PP
and DP sources as well as quantifying P loads from the 7-km?
Awramba watersheds, and (iii) developing recommendations
to reduce the non-point sediment and DP sources using the
simulation results in combination with the relevant literature.

2 Materials and methods

2.1 Description of the study area

This study was carried out at the Awramba watershed (Fig. 1)
(11.886-11.9253 N and 37.781-37.806 E and 1887 to 2291 m

a.m.s.l.) located south east of Lake Tana, 75 km to the north-
west of Bahir Dar city. The watershed is ideal as the
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Fig. 1 Map of the Awramba
watershed in the Lake Tana basin,
Ethiopia
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topography represents the complexity of the Ethiopian
highlands that is characterized by elevated uplands, de-
pressions, and flat surfaces. The climate in the water-
shed is sub-humid monsoonal. The average temperature
is 22 °C in January and 19 °C in July. The annual
average rainfall during the main rainy season (June to
September) is 1098 mm. The soils are volcanic in origin
and range from mainly clay texture throughout in the
mid- and downslope positions and clay to sandy clay
soils on the top slopes. Over 90% of the watershed
based on classification from Food and Agriculture
Organization (FAO 2003) consists of Hapilic Luvisols.
The bottom part of the watershed is mainly covered by
grassland, with few agricultural patches and evergreen
trees on the river banks whereas the mid- and upper
slope areas have intensive agriculture.

2.2 Data collection and availability
2.2.1 Hydro-meteorological data

The daily precipitation and temperature for the Awramba wa-
tershed was collected from 2013 to 2015 using the meteoro-
logical station established at the center of the watershed.
Potential evaporation (PET) was estimated using the temper-
ature method developed by Enku and Melese (2014).
Effective precipitation was calculated by subtracting the po-
tential evapotranspiration from precipitation. Cumulative ef-
fective precipitation was calculated during the rainy phase of
the monsoon from June till September. It was estimated by
summing the daily effective rainfall, which is equal to the
daily precipitation minus the daily potential evapotranspira-
tion (Moges et al. 2016b).

The water levels were recorded at the outlet of the
Awramba watershed in the rainy seasons of 2013-2015.
Levels were converted to discharge data by using a location
specific stage-discharge curve. The stage-discharge relation-
ship was established by measuring the cross-section area at the
outlet of the watershed, flow velocity using a current meter,
and corresponding water level readings.

2.2.2 Sediment and phosphorus data

Baseflow and rainfall event-based samples were collected at
the outlet of the catchment and analyzed for sediment concen-
tration in the rainy seasons of 2014 and 2015. The measured
concentrations from 2014 were used to calibrate and refine the
sediment module in PED-WM whereas 2015 was used for
validation. The P module was only calibrated using the data
collected in 2015.

In addition, groundwater samples were collected from
installed piezometers in the watershed for various topographic
land uses (Moges et al. 2016a). The filtered surface and

@ Springer

groundwater samples were analyzed for DP using a molecular
absorption dye indicator method that was quantified by a UV-
VIS spectrophotometer (Wagtech model 7100) at a wave-
length of 550 nm with the detection limit of 0.01 mg 17",

Soil-bound P (or PP) was measured in soil samples taken
from the top 15 cm at different locations within the watershed
covering various land use types and topographic positions.
More information on the methodology and location of the
sampling can be found in Moges et al. (2016a). The data were
used to develop and calibrate (for 2015) the P module within
the PED-WM.

2.3 Parameter efficient (semi)-distributed watershed
model

From the various available watershed models, the PED-
WM model was selected. The selection was based on the
earlier study by Moges et al. (2016¢) which showed the
suitability of PED-WM given that saturation excess flow
was the principal runoff generating mechanism. The dis-
charge prediction by the water balance module in PED-
WM was validated for other micro-watersheds in Lake
Tana basin (e.g., DebreMawi, 0.91 km? by Tilahun et al.
2013a) and larger watersheds (e.g., the Blue Nile basin,
180,000 km? by Steenhuis et al. 2009). In addition, the
PED-WM, besides the water balance module, incorporates
an erosion/sediment module, developed by Tilahun et al.
(2013b). The sediment module, developed and tested for
Debre Mawi watershed (0.91 km?), uses discharge simu-
lated by the PED-WM water balance module. The module
was modified based on the sediment concentration rating
curve developed by Moges et al. (2016b). Subsequently,
the P module was developed and integrated into PED-
WM which uses both the discharge obtained from the
water balance and the sediment load predicted by the
sediment/erosion module.

2.3.1 PED-WM water balance module

The water balance module in PED-WM is a semi-
distributed module, capable of predicting discharge at a
daily time step by considering saturation excess runoff
(Steenhuis et al. 2009; Tessema et al. 2010). Within the
module the watershed is divided into three zones: two
surface runoff zones: the valley bottoms which become
saturated during the main rainy season and the degraded
hillsides with a slowly permeable sub-horizon within 10—
20 cm from the soil surface. The remaining part of the
watershed is the hillsides where the rainwater infiltrates
and either contributes to interflow (zero order reservoirs)
or base flow (first order reservoir). The model computes
the water balance (Eq. 1) using Thornthwaite Mather
(Steenhuis and Van Der Molen 1986) for defining the
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actual evapotranspiration. The water balance for each of
the three zones can be written as

St = Si-ar + [P-AET-Q —Perc| At (1)

where S; is the moisture storage (mm/day), S is previ-
ous time step storage (mm/day), P is precipitation (mm/
day), AET is actual evapotranspiration (mm/day), Qs is
runoff from excess of saturation in zones 1 (periodically
saturated bottom lands) and 2 (degraded hill sides), and At
is the time step which is 1 day in our application. Finally,
Perc is percolation to the sub soil (mm/day) in permeable
hillside (zone 3) and equals the sum of the interflow Q;r
and the base flow Qur. The model has nine main parame-
ters including the area fraction (A) and the maximum
storage capacity (Syax) for the three zones and three sub-
surface parameters: the half-life (t;;) to describe the ex-
ponential decay in time and maximum storage capacity
(Bsmax) of the first-order reservoir and the drainage time
of the zero-order reservoirs (t*) describing a linear de-
crease in time for the interflow. Detailed description about

Cs =

[(Alle (asl + (an—as) H)) + 420, (ag + (at2_aSZ)H)) +A; (Qbf + er) dr3]

the model can be found from Steenhuis et al. (2009) and
Tilahun et al. (2013a).

2.3.2 PED-WM sediment module

The sediment module was developed by Tilahun et al. (2013b)
and assumes that there are predominantly two runoff produc-
ing areas: (i) the saturated bottom slope and (ii) the degraded
areas of watershed. The sediment concentrations from these
two areas are transport limited during the beginning of the
rainy period and source limited towards the end of the rainy
period (Tilahun et al. 2013b). The module considers that sed-
iment concentrations are decreasing for the same discharge
throughout the rainy season (Guzman et al. 2013; Tilahun
et al. 2013b). The sediment concentration in the runoff water
C, is found by using the calculated flow components from the
water balance module (Eq. 1) and assuming that only the
surface runoff from degraded areas and the valley bottoms
contain sediment. Sediment concentrations are transport lim-
ited after the fields are plowed and source limited at the end of
the rain phase. The module can be written as (Tilahun et al.
2013b)

A0 +A20, + A3 (Qbf + Qif)

where A is the dimensionless fraction of watershed area; Q is
the amount of runoff for each of the three zones as indicated
by the subscripts where subscript 1 relates to the periodically
saturated valley bottom lands, subscript 2 for the degraded
soils, and subscript 3 for the remaining permeable hillsides
inmmd';a,ing L' (mm day ') %% is the calibrated trans-
port limiting sediment factor for the three areas 1, 2, and 3 as
indicated by the subscripts; and a, is the source limiting sed-
iment factor. H is the ratio of the area in which rills are being
formed to the total area in each zone. It varies therefore be-
tween 1 in the beginning of the rain phase to 0 near the end of
the rains.

For this study, the sediment module as expressed in Eq. 2
was modified by replacing the H, by M, which is the soil

Cs =

[(AIQIM(aS] + (an—aq) My)) + A0, (asz + (atz—asz)Ms)> + Az (Qbf + Qif) aﬁ}

moisture condition during the rainy monsoon phase. The mod-
ified parameter, M, was defined as the ratio of the cumulative
effective precipitation, P, (mm d ") to the maximum threshold
effective precipitation, P (mm dh (Moges et al. 2016a, b, c):

Mg = Pe for P, < Pr (3a)
Pr
Mg =1 for P,>Pr (3b)
M, varies with P, while Prremains constant and is calibrat-
ed. As a result, the modified sediment module of PED-W
model could be written as

A0, + 420, + 43 (0 + Oy)

where M; is the soil moisture condition during the rainy mon-
soon phase; the remaining variables are similar to Eq. 2.

As such, the modified equation (Eq. 5) has five parameters
that require calibration. This includes transport limiting and
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source limiting factors for both the saturated and degraded
areas and the maximum or threshold cumulative effective pre-
cipitation (P7). The sediment concentrations in both the
baseflow and the interflow can be assumed zero in small wa-
tersheds like the Awramba watershed.

2.3.3 PED-WM phosphorus module

The P module of PED-WM model was developed to predict
sediment-bound P (i.e., PP) and DP loads and to identify non-
point P source areas within the watershed. The total P load
(Ltp) per ha was predicted as the sum of PP (Lgp) and the DP
(Lpp) at the outlet of the watersheds as each of the components
estimated using Egs. 5-7

Lip = Lpp + Lpp (5)
Lyy=0Cs Csp (6)
Lpp=Q Cpp (7)

where Q (mm/day) is the discharge at the outlet, Cs (mg 1) is
the sediment concentration in the runoff water (Eq. 4), Csp
(mg kg_l) is the PP, and Cpp (mg 1" is the DP concentration
which originates partly from DP concentration in the subsur-
face flow (both interflow and base flow), Cppys and in the
overland flow, Cppos

Development of the P module was based on the findings by
Moges et al. (2016a) who investigated P concentrations in
Awramba watershed in 2013 and by Flores et al. (2010,
2011) observing the relationship of P concentration in ground-
water near the stream for the Catskill mountain watershed in
New York state, USA. Flores et al. (2010, 2011) found that
base and interflow emerging from the soil is in equilibrium
with DP concentration, Cppy; in the surface soil near the
stream, is independent of the discharge rate and varies with
temperature. Since in Ethiopia the temperatures vary less than
in New York, we expect that the DP concentration, Cppyys in
the subsurface flow (both interflow and base flow) remains
constant independent of temperature and flow rate.

Dissolved P concentration in surface runoff (Cpp /) is
greater than in the subsurface (Flores et al. 2010, 2011) and
increases with flow rate. Hence, the concentration in the sur-
face runoff can be simulated as a function of the discharge.
Since the Cpp concentration depends on how well water
mixes with the soil, we decided to use the same Q dependence
as for the sediment loss in Eq. 2 (i.e., Q%

Cppror = bpr Q2f4 (8)

where Cpp,is the DP concentration in the overland flow (mg
1Y, Qoy is discharge in mm dayf1 , and bpp (L
mg ' mm ** day %) is a constant that can be fitted.

Finally, for small surface runoff rates in the valley bottoms
(e.g., Awramba watershed), the water is assumed to be in
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continuous contact with the soil. Thus, before a critical dis-
charge O*,,is reached, the concentration in the surface runoff
was assumed the same as in the subsurface flow (Moges et al.
2016a). Based on these assumptions and observations, the
form of the DP concentration can be written as

Cpp = Copyy + bppa Qs for Qu < 1.1mm/day — (9)

Cpp = Cop.y + bop1 Oy + borQopsfor — Qupy > 1.1mm/day
(10)

where Cpp is the total DP at the outlet of the watershed; Cppyr
is the DP concentration in the subsurface flow (g1"); and Q1
and Q> in mm/day are the overland flow from the periodical-
ly saturated valley bottom (zone 1) and overland flow from the
degraded area (zone 2), respectively. The concentration in the
groundwater which was nearly equivalent to the concentra-
tions in the subsurface flow was measured in well samples
(Moges et al. 2016a), and the average from the wells was used
as DP concentrations of subsurface flow. The constants bpp;
and bpp, are found by calibration. Finally, Moges et al.
(2016a) also showed that the minimum dissolved concentra-
tion during a storm in August was greater than in July and
related to both the fertilizer application and the wetness of the
soil. To simulate this, we assumed that zone 2 contributed a
minimum of 0.4 mm/day in overland flow in August on days
that it rained.

The PP depends on similar conditions with very low con-
centration during base flow and greater concentration when
the P-rich sediment from the agricultural areas is mixed with a
relatively greater portion of organic matter than that in the
original soil. This is known as the enrichment ratio
(Sharpley 1980). Therefore, the form is like DP concentration

Csp = Cspysf + bSP2ng"42 Qofl > 1.1 mm/day (11)
Csp = Cspgr + bspi ngﬁ + bSPZQS;zQQfl < L1 mm/day (12)

where Cgp is the PP concentration in the stream flow (mg
kg_l), Cyp, ¢ is the concentration of PP from the runoff-
transported sediment, Q,; is the total surface (overland) flow
from zone 1, and bgp; and bgp, are dimensionless constants to
be fitted by regression that are intended to simulate the
enrichment.

2.3.4 Model calibration, validation, and performance

Discharge data from 2013 to 2014 was used for calibration
whereas stream flow data of 2015 was used for validation of
the water balance module. For the sediment and P module,
calibration was carried out using sediment concentrations ob-
tained during 2014 and 2015. However, validation was not
carried out due to limited data availability.
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During calibration of the PED-WM modules, initial/default
parameter values were used from past water balance module
calibrations by Steenhuis et al. (2009), Tessema et al. (2010),
and Collick et al. (2009) and sediment module calibration by
Tilahun et al. (2013a). For the P module, the initial model
parameters were used from field observations as reported by
Moges et al. (2016a) for Awramba watershed. The three PED-
WM modules were calibrated systematically by changing sen-
sitive parameters stepwise to maximize the “goodness of fit”
measured by Nash-Sutcliffe efficiency, NSE (Nash and
Sutcliffe 1970). The rate of goodness of fit was evaluated
utilizing similar methods as Moriasi et al. (2007).

2.4 Identification of non-point sediment and DP sources

To locate and evaluate the spatial distribution of the non-point
sediment and DP sources, a combination of field observations,
model results, and GIS was used. The knowledge regarding
the spatial distribution was important to recommend best man-
agement practices. As such, from field observation, the bot-
tom valleys of the watershed which are regularly saturated
were demarcated using a GPS tracking in Awramba watershed
in 2014 (Moges et al. 2016a). The topographic Wetness Index
(TWI) which is the ratio of upslope contributing area to slope
of'the watershed (Beven and Kirkby 1979) was used. This will
help for mapping the source area (bottom slope) and partially
upper slope part of the watershed.

The principal source areas of non-point sediment and P
sources were identified using field observation, the pro-
duced maps using the TWI index, and the sensitivity of
model parameters. Non-point sediment source areas were
based on the transport-limiting (a,) and source-limiting
(a,) model parameter sensitivity. Relatively sensitivity pa-
rameters (specifically source limiting in both saturated
bottom land portion and degraded areas) resulted in the
assumption of high sediment contributing areas. In addi-
tion, potential gully formation areas were considered as
the main source of non-point sediment source in the wa-
tersheds aside from areas with high parameter sensitivity.

The P source areas were determined through comparison of
the measured DP concentration and PP from field observa-
tions (Moges et al. 2016a) together with the calibrated PED
model parameters and derived TWI maps. Subsequently, the
PED-WM model results were combined with the identifica-
tion of the various runoff contributing areas using the topo-
graphic wetness index to identify the non-point P sources in
Awramba watershed.

3 Results and discussion

Presentation of the results and discussion is categorized in
three main sections: (i) evaluation of three modules of PED-

WM was presented separately for Awramba watersheds, (ii)
the non-point sediment and DP sources, based on the model
results and field observations, were identified and quantified
in Awramba watershed; and (iii) recommendations to reduce
non-point sediment and DP sources using techniques from
available studies. The model performance for the three mod-
ules in the PED-WM model showed satisfactory results for
predicting discharge (Fig. 3), sediment (Fig. 4), and P (both
dissolved (Fig. 5a) and soil-bound (Fig. 5b)) in the watershed
as summarized in Table 4.

3.1 PED-WM model results
3.1.1 The water balance module

The calibrated parameters for Awramba (Table 1) indicated
that the dominating runoff source area contained nearly 16%
of the watershed from which 7% was situated in the saturated
valley bottom and 10% was degraded area. More than 72% of
the watershed area was identified as mid-slope with minor
runoff contribution compared to the other two areas. A frac-
tion of the mid-slope area constituted a source of subsurface
flow resulting into base flow at the watershed outlet. The total
stream flow response in Awramba watershed was contributed
by 88.9% watershed area. The remaining portion of the wa-
tershed considered as confined depression or the water perco-
lates deep without flowing at the outlet.

Model performance for stream flow at the outlet of Awramba
has indicated an R* = 0.68 and NSE = 0.65 during calibration
(2013-2014) and an R? = 0.65 and NSE = 0.65 during the
validation (2015) periods (Fig. 2). The model was good at cap-
turing the rising and recession limb of the hydrograph, while
slightly under-predicting the peak flows in the watershed (Fig.
2). The under-prediction of peak flows might be due to that a
majority but not the entire watershed was contributing to the
stream flow at the outlet of the watershed.

3.1.2 PED-WM sediment module

Sediment concentration prediction called for the calibration of
the soil moisture condition (M,) which is a function of the
cumulative effective precipitation (P.) and the maximum
threshold precipitation (Py) with the latter being watershed
specific. The initial value of 600 mm was taken as Py based
on Moges et al. (2016b) for both watersheds and was calibrat-
ed as it is unique to watersheds. The remaining PED-WM
sediment module parameters were derived from Tilahun
et al. (2013a). Degraded and saturated areas were the main
contributing runoff areas and hence were found to be contrib-
uting non-point sources for sediment concentration and re-
spective loads. The calibrated transport-limiting and source-
limiting factors for Awramba were 13 and 8.5 g 1" (mm
d 1% for the saturated 16 and 12 g 1! (mm d 7% for
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Table 1. Calibrated parameters

of water balance module of the Parameter notation ~ Description of the parameter Unit  Calibrated parameter value
PED-W model for predicting Awramba
discharge at the Awramba
watershed A Portion of saturated area % 6.9
Ay Portion of hillside area % 72
A4 Portion of degraded area % 10.0
Saxs Maximum soil water storage in Ag mm 70
Synaxn Maximum soil water storage in Ay, mm 150
Saxd Maximum soil water storage in Ay mm 15
BSs,x Maximum storage for base flow linear reservoir ~ mm 100
tin Base flow half-life time days 12
T* Interflow days 8

degraded areas, respectively (Table 2). The cumulative maxi-
mum threshold, Pz was 595 mm which was similar to the
other watersheds (with an area ranging from 0.9 to
1656 km2) as estimated in Moges et al. (2016b). The calibrat-
ed PED sediment module with R? = 0.7 and NSE = 0.63
(Fig. 4) resulted in an annual sediment load estimation of
28.6 t ha ' year ' from Awramba watershed. Model results
showed that the degraded areas were a larger sediment source
compared to the saturated area.

3.1.3 PED-WM phosphorus module

The limited daily P data collected in 2015 at the outlet of
the watershed was used for calibration. Since the data was
limited, we could simply curve fit the observed DP con-
centration vs predicted value using Eqs. 8—10 by system-
atically varying the bgp; and bgp; parameters using linear
regression to find the best fit. Based on measurements, we
set Cpppr = 0.5. Hence, Egs. 8 and 9 could be rewritten
according to

Cpp=05+0.70%5 Qu < 1.1 mm day ' (13)

Cpp=05+05004 +0.7004 Q=11 mm day '

0,

(14)
Rainfall —— Observed —Predicted
discharge discharge
70 1 . 10
Z60% 3 20
o k. I k. e
c 50%F ' T40 L
£ ' ] 8
) 40 - Calibration, R2=0.68 E Validation, R*=0.65 _ 60 é
2 30%F ! 180 =
2 3 ! =
8201 : 3 100 »E
103} ! 3 120
01 : ]
N N> N> X N> & o
o o nd nd o o nd
\g\'f"\ 5\\6\ \’L\q’\ 6\’19\ NG ,\\’f’\ ,L\\Q\
Time (days)

Fig. 2 Predicted and observed discharge hydrographs for the calibration
(2013-2014) and validation (2015) for the Awramba watershed
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where Cpp is dissolved P in mg L Qo surface flow from
saturated area (zone 1) in mm day_l, and Q. is the surface
flow from degraded area (zone 2) in mm day .

The calibrated parameters are summarized in Table 3. We
found that if the sediment concentrations were more than
15 mg "', the P concentration was at base levels, likely be-
cause sediment from the banks that have little P were mixed
within the streams. Therefore, we set the minimum Q> at 0 on
early July and increased it linearly to 0.4 mm day ' to early
August and kept it constant. When the observed value for
runoff was in almost all cases greater than the minimum value,
we used the predicted values by the PED-WM model.

Since the subsurface flow is sediment free, a linear relation-
ship was obtained between Cpp and Cgp when using the DP
concentration found in the baseflow (Cpp, 5 as intercept. The
equation was obtained through omission of one outlier P con-
centration in August (that could only be explained by fertilizer
addition on the day of rainfall). The following linear equation
was obtained and calibrated to yield and R? of 0.65:

Cpp = CDP,bf + 0.0894Cgp (15)

and hence, we found the relationships for the PP as
(16)
(17)

Csp = 7.80% Qy < 1.1 mm/day

Csp = 5.60% +7.80% Qy > L1 mm/day

Table 2. PED-WM sediment module calibrated parameters used for
predicting sediment concertation in the Awramba watershed

Contributing A factors Rainfall factor

arca

landscape Transport Source limiting Maximum effective
limiting (a;) [g I (a) g 1" (mm/  cumulative rainfall
(mm/day) **]  day) ] Pr(mm)
Saturated 13 8.5 595
area
Degraded 16 12 595

arca
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Table3. Calibrated parameters of phosphorus module in PED-WM for
Awramba watershed

Parameter description Parameter Calibrated parameter
notations values
Dissolved P coefficients bppi 0.5
bDPZ 0.7
Sediment bound P bspi 5.6
coefticients bspa 78

where the Cgp is expressed in mg kg ' of sediment. This
equation is not valid when there is no surface runoff and only
base flow is occurring. In that case, there is no sediment in the
stream and therefore we could not determine the sediment P
concentration.

The model performance for the three modules in the PED-
WM model has indicated satisfactory results for predicting
both discharge (Figs. 2 and 3), sediment (Fig. 4), and P (both
dissolved (Fig. 5a) and soil bound (Fig. 5b)) in the watershed
as summarized in Table 4 The water balance component pre-
dicted discharge, sediment, DP, and PP with NSE of 0.7, 0.65,
0.65, and 0.63, respectively. The model predicted a sediment
yieldof28.2tha ' year ' and associated P of9.2 kgha ' year '
from Awramba. Furthermore, non-point source areas contrib-
uted to 2.7 kg ha ' year ' (29%) of DP at the outlet. Main
runoff and sediment source areas identified using PED-WM
were the periodically saturated runoff areas.

3.2 Non-point sediment and phosphorus sources
3.2.1 Sediment source areas

As indicated in the PED-WM sediment module, the transport
(ay)- and source (ay)-limiting parameters control the sediment
yield from the watershed. As a result, both the valley bottom
and degraded part of the watershed resulted in sediment

40 ¢

A Calibration
@ Validation

Predicted stream flow (mm.day-")

Observed stream flow (mm.day!)

Fig. 3 Predicted and observed discharge scatter plots during calibration
and validation periods for the Awramba watershed

source areas following their sensitivity as runoff contributing
areas in the water balance module. Therefore, 16.4% of the
Awramba watershed (degraded portion and saturated bottom
part of the watershed) areas were identified as the dominant
sediment source area. Out of the two high source areas, the
degraded area contributed relatively more runoff (36%) and
sediment compared to the saturated valley bottoms.

Gullies in most of the watersheds of the Ethiopian high-
lands were created at the bottom slope of the watershed and
expanded through saturation excess. Gullies in the watershed
were mainly located in the saturated valley bottoms. The high
sediment contribution of gullies was attributed to the ground-
water table rise in the bottom slope part of the watershed
resulting in gully head migration and slumping of banks lead-
ing to the rapid gulley expansion (Zegeye et al. 2016). Hence,
Gully formation was the main contributing factor for the sed-
iment loads simulated through the valley bottoms. Zegeye
et al. (2016) showed that the gullies contributed up to 90%
of the sediment load in Debra Mawi, a watershed located less
than 90 km from Awramba watershed having similar water-
shed physiography.

3.2.2 Sources of dissolved phosphorus

The non-point P source in Awramba was based on the mea-
sured DP concertation from the piezometers and surface water
samples as well as from the measured PP in the topsoil in the
watershed. As reported by Moges et al. (2016a, b, c), the
measurements of DP concentrations from the piezometer
wells showed that the concentrations were greatest from pie-
zometers located at the bottom part of the watershed than
those obtained from the mid- and upper slopes. In general,
the main source of sediment and DP were from regularly
saturated areas. The measured soil available P was higher in
the mid-slope topographic position (Table 2), where agricul-
tural land is mainly located. Spatially over the watershed, the

[\
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[ee]
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0 5 10 15 20 25
Observed sediemnt concetration (g. I'Y)
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Fig. 4 Predicted versus observed sediment concentration for the
Awramba watershed
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Fig. 5 Predicted versus observed phosphorus concentration (above,
dissolved P) and (below sediment-bound P) for the Awramba watersheds

greater amount of PP at the mid-slope position can therefore
be related to application of inorganic fertilizers to increase
productivity. Hence, greater DP and PP concentrations were
directly linked to topographic positions and their respective
specific land uses, i.c., grassland in the wet bottom valleys,
agricultural land in the moderately sloping mid-slope posi-
tions, and bush land on the steep upslope areas.

As indicated from the model results and the DP measure-
ments, the saturated valley bottoms are the main source for DP
transport whereas the degrading mid-slope areas produce the
largest concentrations of PP (Fig. 6). Mapping the source

Table 4.  Performance of PED-W model for predicting discharge, sed-
iment, and phosphorus sediment for Awramba watershed

Time scale PED-WM module Performance criteria
R? NSE
Daily Water balance 0.66 0.63
Sediment 0.72 0.60

Phosphorus 0.65 0.6

@ Springer

areas in the Awramba watershed indicated that sediment and
dissolved P sources were found to be nearly 17.8% of the total
watershed area, which is relatively similar to the PED-WM
results of the runoff generating area estimates (6.9% of the
watershed as saturated area and 7.2% of watershed as degrad-
ed portion with total dominate runoff generating area equal to
16.1% from total watershed areca). Therefore, the runoff-
generating areas calibrated from the PED-WM can predict
the source of sediment and P sources in the watershed.

3.3 Reduction of non-point sediment and phosphorus

Reducing the non-point source sediment and P from the agri-
cultural watershed likely would take years of watershed man-
agement, planning, and development. This is especially true
for reducing the P load from P that attaches itself to erodible,
fine particles in the soil matrix due to enrichment via inorganic
fertilizers, as opposed to being P which is chemically available
from the parent soil material (Alberts and Orlandini 1981). To
minimize the extent of non-point sediment and P load from the
watershed, the future watershed management planning and
implementation should focus on two major tasks. Firstly, one
needs to identify the source area (hot spots). Secondly, one
needs to design efficient best management practices (BMPs)
by targeting these source areas. Application of the BMPs in the
source areas has been shown to reduce non-point sediment and
nutrient load from agricultural watersheds (Wenger 1999).
This is mainly dependent on the landscape and other physical
catchment characteristics (Borin et al. 2005). In this study, some
successful intervention mechanisms from literature were
assessed according to similarities in agro-ecology compared to
the Awramba watershed. Overall, the amount of sediment-
associated P, originating from the cultivated slope of the water-
shed, can be reduced using an optimum amount of fertilizer with
the implementation of conservation agriculture and an under-
standing of the local soil chemistry (Tayyab and McLean 2015).
Grass buffer strips are one of the intervention mechanisms
to reduce sediment and P loading within watersheds (Burt
et al. 1996; Dorioze et al. 2006). Research based on experi-
mental runoff plots with integrated grass/tree filter strips indi-
cated a reduction of 40% runoff, 87% TSS, and 64% DP
(Duchemen and Hogue 2009). Large grass strips can be
installed at the saturated valley bottoms. Thus, enclosures that
are being implemented in valley bottoms currently to prevent
gully erosion will decrease the non-point source of P as well.
This type of intervention has the capability of reducing runoff
energy, therefore reducing the transportation capacity of sed-
iment and nutrients (Rose et al. 2002). In addition, vegetative
strips filter out the sediment and consequently the associated
nutrients (i.e., P). However, given that grasslands are frequent-
ly communal grazing lands, changing these grazing lands into
exclosures could be a viable way improving soil fertility
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Fig. 6 Estimation of non-point source sediment and phosphorus source areas in the Awarmaba watershed (bottom) from upper right (slope) and upper

left (TWI) calibrated by the saturated part of the watershed

(Mekuria and Aynekulu 2013) by reducing the nutrient out-
flow from the bottom part of the watersheds.

Another potential sediment and DP source are the sensitive
gulley-forming areas and expansion of existing gullies. A re-
view of available studies shows that physical intervention
mechanisms such as check dams do not stop already existing
gullies from expanding or reduce gully formation in Lake
Tana basin (Langendoen et al. 2014). In drier parts of northern

Ethiopia where physical infrastructure such as check dams are
used, a resulting reduction of sediment loading has occurred
(Zegeye et al. 2016). Another technique suggested by Zegeye
et al. (2016) is to lower the level of the local water table by
vegetating those areas with appropriate plants like vetiver
grasses. In addition, vetiver grasses on the side of the gulley
could aid in physically stabilizing the soil matrix and decrease
gulley head cuts when the water table rises. The approach

@ Springer



320

J Soils Sediments (2018) 18:309-322

suggested by Langendoen et al. (2014) on bank stabilization
using location identification models and the rehabilitation of
active gullies (Ayele et al. 2014) could be potential solutions
for Awramba and other watershed, given their success rate in
other Ethiopian highlands.

Implementing appropriate interventions to reduce runoff by
targeting the high runoff source generating area, controlling the
potential gulley-forming areas, and rehabilitating existing
gullies are likely to be crucial tools to reduce non-point source
sediment and P in the Lake Tana basin. Ultimately, it will help
to safeguard future possible eutrophication of Lake Tana. In
addition, after implementing the interventions based on the
source areas identified so far, there are mainly two tasks that
need to be executed to achieve the desired reduction: (1) inter-
vention mechanisms with regular monitoring and evaluation
and (2) nutrient management strategies to assess the sustain-
ability of this management practice must be in place very soon.

4 Conclusions

The three modules of the PED-W (water balance, sediment,
and P) model simulated the stream flow, sediment, PP, and DP
reasonable well resulting in an acceptable model performance.
The sediment model which has been modified from the
existing erosion model accounts for moisture condition of
the soil rather than utilizing soil-related complex parameters.
This would likely simplify the sediment model since the mois-
ture of soil can be derived from rainfall and evapotranspiration
data. The study has also indicated the possibility of prediction
dissolved and particulate P loads separately for specific ad-
dress of the sources of eutrophication. Unlike the traditional
way of putting the watershed alterations in the uphill section
of the watershed, this study has devised or provided method-
ology to look at other source areas based on observations and
PED-WM. Therefore, incorporating BMPs for installing in
these source areas would reduce the non-point source loads
from the watershed and could minimize the future surface
water pollution in the region.
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