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Supervisor:  Kenneth E. Gray 

 

Wellbore stability is a key challenge for the exploration and production industry 

since it adds a great deal of additional cost. Traditional wellbore stability models such as 

elastic and poroelastic models are not sufficient in modeling the stability and produce 

erroneous results since they consider an isothermal condition. The industry also overlooks 

the potential impact of thermal effects on wellbore stability and utilizes a trivial approach 

in modeling the thermal stresses.  

During the drilling phase, the drilling fluid temperature is different from the 

formation temperature due to geothermal gradient and circulation of the mud inside the 

wellbore. Therefore, the assumption of an isothermal condition will not predict the correct 

wellbore stability condition, especially for high pressure and high temperature wells.  

The knowledge of in-situ stresses, breakout, and breakdown is vital to oil and gas 

industry, affecting wellbore stability, well location, production rate, completion and casing 

designs. Determination of breakout pressure helps avoid wellbore enlargement and shear 

failure, while, breakdown pressure aids in knowledge of the formation fracture gradient 

and the limits for the drilling mud weight window. Estimations of breakout and breakdown 

gradients can substantially be affected by the induced thermal stresses that occur during 

the drilling phase of a wellbore. 
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The fully coupled thermoporoelastic model developed in this dissertation reveals  

the importance of induced thermal stress in stress resolution and wellbore stability 

evaluation. It produces reasonable results compared to uncoupled models and models with 

isothermal assumption. 

Most existing thermoporoelastic models utilize the assumption of local thermal 

equilibrium. The local thermal equilibrium assumption ignores additional pore and thermal 

stresses in the porous medium caused by temperature variations of the fluid and solid 

phases. This dissertation investigates the effect of thermal stresses on stress resolution 

around a wellbore and wellbore stability in a fully coupled condition with consideration of 

local thermal non-equilibrium heat transfer. The model is applicable for any wellbore 

trajectories in low and high permeable formations with consideration of conductive and 

convective heat transfers.  
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Nomenclature  

a & rw :  wellbore radius 

f : fluid phase 

m :  rock matrix  

r : radial, radial distance  

s : solid phase e.g. rock matrix  

T :  temperature  

σz :  effective vertical stress 

σt :  effective tangential stress 

σr : effective radial stress  

TS :  tensile strength  

Shmax & SH :  maximum horizontal stress 

Shmin & Sh :  minimum horizontal stress 

Sr,m : total mechanical radial stress 

Sθ,m : total mechanical tangential stress 

Pw :  wellbore pressure 

P :  pore pressure 

θ :  angle around the wellbore 

θi :  temperature change of "i" phase  

σr,m :   effective mechanical radial stress 

σθ,m :  effective mechanical tangential stress  

σθ,p : change in hoop stress due to the pore pressure change 

σr,T :  radial stress due to the temperature change  

σθ,T : tangential stresses due to the temperature change  

αT : thermal expansion coefficient 

αT,p : volumetric thermal expansion of pore space  

α & αb  :  Biot’s coefficient 

B : Skempton's coefficient  
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ν : Poisson’s ratio 

νu : undrained Poisson's ratio 

E : Young's modulus  

G : shear modulus  

K : bulk modulus 

Pbd : breakdown pressure  

So : rock cohesion  

UCS :  unconfined cohesive strength 

β : friction angle 

μ : friction coefficient  

η : internal friction of a rock 

ω :  breakout failure arc angle  

γ : breakdown arc angle  

εijk : Levi-Civita symbol 

σij : stress matrix/components  

εij : strain components 

Skl : total stress component  

κ : permeability  

ϕ : porosity 

ρ : density  

c & C : specific heat capacity  

cf :  fluid diffusivity coefficient   

cT :  thermal diffusivity coefficient  

k :  thermal conductivity  

h : heat transfer coefficient  

v :  fluid velocity 

K0 : modified Bessel function of zeroth order 

K1 : modified Bessel function of first order 

K2 : modified Bessel function of second order 

TBHT : wellbore bottom hole temperature 
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CHAPTER 1: INTRODUCTION  

1.1 MOTIVATION AND OBJECTIVES  

The demand for oil and gas throughout the world is driving the exploration and 

production industry to look for new frontiers and resources. Over 50% of the proven oil 

and gas reserves in the US lie below 14,000 ft subsea according to the US Minerals 

Management Services. High pressure and high temperature (HPHT) wells are associated 

with these deep-water explorations. HPHT drilling has been ramped up in recent years 

around the globe as shown in Figure 1.1. Drilling into these deep-water fields has become 

possible with the advancement in drilling technology and tools. However, reaching to these 

reservoirs imposes their own challenges. One of the key challenges to manage in 

development of these fields is the wellbore stability. Traditional wellbore stability models 

such as poroelastic models with isothermal assumption are not sufficient in modeling the 

stability and produce erroneous results. 

 
Figure 1.1: High pressure high temperature drilling activities around the globe [4] 
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During the drilling phase, the drilling fluid temperature is different from the 

formation temperature. Usually, the drilling fluid is cooler than the formation that is being 

drilled due to geothermal gradient. As borehole deepens, the same section will be heated 

up by the drilling fluid that is heated up farther downhole. This temperature change will 

substantially change the stress and pore pressure near the wellbore. Therefore, the 

assumption of isothermal condition will not predict the correct wellbore stability condition, 

especially for high temperature wells.  

Wellbore stability is always a challenging subject to oil and gas industry. Wellbore 

stability issues add great deal of additional costs to the oil and gas industry. In fact, drilling 

instability has cost the industry over $6B in 2005 [1]. Wellbore instability can happen 

anytime during lifetime of a wellbore. In general, wellbore stability is associated with the 

stresses around the wellbore. If the stresses are not compatible with the local stresses and 

strength of the formation, a wellbore instability will occur. The costs highly depend on 

types of environment and formations. For instance, weak, friable, plastic formations, or 

tectonically active areas where formations are highly stressed and discontinuous are prone 

to wellbore instabilities [2]. High pressure and high temperature formations can also 

impose wellbore instability due to their narrow mud weight window. The knowledge of in-

situ stresses, breakout, and breakdown is vital to oil and gas industry, affecting wellbore 

stability, well location and design, and production rate. Determination of breakout pressure 

helps avoid wellbore enlargement and shear failure, while, breakdown pressure aids in 

knowledge of the formation fracture gradient and the limit for the drilling mud weight. 

Estimations of breakout and breakdown can substantially be affected by the induced 

thermal stresses.  

When a wellbore is drilled, the rock is replaced by a drilling fluid that has a different 

temperature gradient compared to that rock. Therefore, an induced thermal stress zone 
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occurs around the wellbore. Stresses in poroelastic media are defined not only by in-situ 

stresses and pore pressure, but also depends on thermal stresses. Any change in pore 

pressure will redefine the stress resolution in the media. In turn, it could lead into 

deformation of the media. This effect is stimulated with thermal loadings, either expansion 

or contraction. It is important to realize that a small change in temperature change can lead 

into a large pore pressure change due to small thermal expansion coefficient of the media. 

In fact, a temperature-pressure ratio of 1, meaning a 1˚C change induces a 1 MPa pore 

pressure change, has been measured in the field [3]. 

The industry has accepted that drilling is a non-isothermal process, however, it 

overlooks the potential impact of thermal effects on wellbore stability. Although, there are 

several reports and papers emphasizing thermal effect for time-delayed borehole failures. 

The industry utilizes a trivial approach in modeling thermal stress that is not coupled. For 

instance, thermal expansion and mechanical properties of formation, and temperature 

changes are only considered in induced thermal stress estimations, and ignoring the 

coupling among mechanical, thermal, and hydraulic stresses.    

The fully coupled thermoporoelastic model developed in this dissertation reveals 

the importance of thermal stresses in wellbore stability evaluation. It produces more 

significant results compared to uncoupled models and models with isothermal assumption. 

Most of the existing thermoporoelastic models utilize the assumption of local thermal 

equilibrium. In classical thermodynamics in porous media such as rock formations, a single 

temperature is defined for the medium regardless of phases presented in the medium. This 

is due to the assumption that the fluid temperature and solid temperature reach a local 

temperature equilibrium instantly, also known as local thermal equilibrium (LTE) theory. 

LTE ignores additional pore and thermal stresses in the porous medium caused by 

temperature variations of the fluid and solid phases. Therefore, a more realistic approach 
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is necessary to model both temperatures separately, known as local thermal non-

equilibrium (LTNE). The thermoporoelastic model in this dissertation uses LTNE and 

quantifies the impact of this approach.  

This dissertation investigates the effect of thermal stresses on wellbore stability in 

a fully coupled condition. The model is applicable for any orientation and azimuth of 

wellbore in shale or sandstone formations.  

1.2 DISSERTATION OUTLINE  

Chapter 1 is an overview of the research motivations and objectives. It briefly 

explains the importance of thermal stresses in wellbore stability modeling and evaluation.  

Chapter 2 is a review of wellbore stability, including the type of wellbore failure 

with the root causes and remedies. This chapter explains different types of shear and tensile 

failures. An overview of most commonly referred wellbore stability models is included in 

this chapter. Also, it touches on material nonlinearity and anisotropy effects briefly.  

Chapter 3 emphasizes on impact of thermal stresses in prediction of breakdown and 

breakout during drilling a borehole. The effect of rock elastic moduli on induced thermal 

stresses is investigated. The effect of stress anisotropy between far field in-situ stresses on 

shear and tensile failures are also studied.  

Chapter 4 explains the required knowledge of several areas of applied mathematics 

for the theories of elasticity, stress, and heat transfer. A set of necessary governing 

equations in formulating thermoporoelastic model is provided. Step by step analysis in 

deriving the thermoporoelastic model is discussed. The material dependency of rock 

parameters on temperature and pressure are investigated. This chapter also briefly invokes 

the assumption of LTE and measures the impact of it.                                                                         
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Chapter 5 covers a series of analytical and numerical solutions for the 

thermoporoelastic model with assumption of irrotational displacement for any wellbore  

orientations. All the required equations for stress resolutions are stated in this chapter. A 

comparison among different failure criteria is conducted and impact of each failure 

criterion on wellbore stability is quantified.  

Chapter 6 describes the results produced by the thermoporoelastic model using 

appropriate data. The developed thermoporoelastic model in this dissertation is compared 

against another thermoporoelastic model for its accuracy and predictions. Two scenarios 

are modeled, one in a shale formation and the other one in a sandstone formation.  

Chapter 7 formulates the effect of LTNE on the thermoporoelastic model. LTE and 

LTNE effects for fully saturated porous media (rock formation) are considered in this 

chapter. Using LTNE, transient temperature profiles for solid (rock matrix) and fluid 

phases are defined. Using the weighted average method, a temperature for the porous 

medium is established. LTNE effects are examined on the developed thermoporoelastic 

model for a borehole in an infinite rock medium undergoing convective and conductive 

heat transfers. 

Chapter 8 gives a summary of the research conducted in this dissertation. 

Recommendations are made for future development based on the current model.  
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CHAPTER 2:  WELLBORE STABILITY 

2.1 WELLBORE STABILITY ISSUES  

Wellbore stability issues, also known as instability, add great deal of additional 

costs to the oil and gas industry. Drilling instability has cost the industry billions of dollars 

[1]. The costs highly depend on types of environment and formations. For instance, weak, 

friable, plastic formations, or tectonically active areas where formations are highly stressed 

and discontinuous are prone to wellbore instability [2]. High pressure and high 

temperature, HPHT, formations can also impose wellbore instability due to their narrow 

mud weight windows. Mud weight window is a range of equivalent density or pressure 

gradient. As long as the drilling activity is within this range, drilling problems and wellbore 

instability may be avoided as shown in Figure 2.1.  

 
Figure 2. 1: Schematic mud weight window 

Wellbore instability is not exclusive to the drilling phase, but also, plays an infamous role 

in completion and production phases. In fact, it can happen anytime during lifetime of a 

well. In general, wellbore stability is associated with the stresses around the wellbore. If 
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the stresses are not compatible with the local stresses and strength of the formation, a 

wellbore failure and instability occur. Wellbore stresses are formed in a combination of 

mechanical, thermal, hydraulic (pore pressure), and chemical stresses.  

The wellbore instability can be classified into these categories: 

1. Wellbore collapse: wellbore wall caves into the wellbore because of ductile 

compressive shear failure. In this instance, the local stresses near the wellbore 

are higher than the wellbore pressure. Failure of this type is prone in weak and 

friable formations such as salt dome or shale formations. The chances of this 

kind of failure will increase by heating up the near wellbore region. This may 

occur if the circulating fluid temperature inside the wellbore is hotter than the 

formation temperature. Differential sticking and casing collapse are severe 

results of this instability.  

2. Chemical related stability (shale formations): wellbore instabilities are often 

experienced while drilling through shale formations. The instabilities usually 

occur due to reactions between water sensitive shale formation and the drilling 

fluid. Low permeability and free charged ions in shale make these problems 

very complex. There is a class of shale that is permeable known as Gumbo 

shale. The water flux and ions exchange are much larger in this type of medium, 

therefore, the failure is very different. In fact, Gumbo shale swells and softens 

during failure, sometimes flowing to the surface as shown in Figure 2.2. 

Instabilities in shale formations can be mitigated by controlling drilling fluid 

type, chemistry, and temperature.  
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Figure 2. 2: Extreme case of Gumbo shale instability- flow to the surface due to 

incompatible mud type with the formation [49] 

3. Wellbore enlargement (breakout): very similar to wellbore collapse with a 

difference of brittle compressive shear failure, as shown in an image log in 

Figure 2.3. Only some parts of the wellbore wall cave in, known as washout. In 

this type of failure, blocky cavings (‘rubbles’) will be seen on shale shaker, 

shown in Figure 2.4. Bad cement job and poor hole cleaning are the results of 

this type of failure. One remedy for this issue is to raise the mud weight. 
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Figure 2. 3: (a) Caving cuttings-sign of wellbore instability vs. (b) normal 

cuttings observed on shale shaker [50] 

 

 
Figure 2. 4: Image log of a wellbore with breakouts (dark area) on the wellbore wall due 

to excessive formation stress [51] 

a b 

Breakouts 
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4. Wellbore fracturing (breakdown): unintended fractures will form near the 

wellbore when the wellbore stress is higher than the tensile strength of the 

formation. Figure 2.5 shows image logs recorded in vertical and horizontal 

wellbores experiencing breakdown. In this type of failure, drilling mud is lost 

into the formation, leading to higher non-productive time (NPT). If this failure 

is not treated properly it may lead into a severe problem known as blowout, 

jeopardizing the whole drilling project. Wellbore fracturing can be avoided with 

a good knowledge of formation anisotropy and wellbore inclination. When 

wellbore temperature is cooler than the formation temperature, a cooling zone 

occurs, increasing the chance of wellbore fracturing failure. Lowering the mud 

weight and applying wellbore strengthening techniques (WBS), adding lost 

circulation material (LCM), are the solutions for this problem. Table 2.1 and 

2.2 list different lost circulation scenarios and methods for the WBS.  

 

Figure 2. 5: Image log showing typical drilling-induced tensile wall fractures 

in a vertical borehole and inclined tensile fractures in a deviated borehole [52] 

Break downs in 

vertical wellbore 

Break downs 

in deviated 

wellbore 
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5. Sanding: when drawdown or production rate is high from weak or lose 

formations, a large amount of particle, sands, can be produced into the surface 

or cause blocking of the pores near the wellbore. Sanding problems limit 

production and damage the downhole and surface equipment. Remedies are to 

lower the production rate and install sand screens.  

Table 2.3 categorizes and summarizes the different types of shear and tensile 

failures around a borehole.    

2.2 FACTORS INFLUENCING WELLBORE STABILITY  

Wellbore stability factors can be divided into two groups, uncontrollable and 

controllable.   

2.2.1 Uncontrollable 

In-situ stresses or geological stresses, formation pore pressure, formation 

temperature, rock properties are all uncontrollable factors that influence the mud weight 

window and wellbore stability. Accurately predicting each of these factors is an important 

task to successfully strike a balance between uncontrollable and controllable factors in the 

design of mud weight window.  

2.2.2 Controllable  

Mud properties, circulation rate, wellbore orientation, mud temperature and 

chemical compositions, and additives are important controllable factors. However, not 

much attention has been given to the effect of mud temperature, even though, there are 

several models that describe this phenomenon. Less attention to the temperature effect is 

due to the traditional thought that it is not a significant issue as well as time consuming 

process in formulizing solution for its effect.   
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2.3 EXISTING WELLBORE STABILITY MODELS 

Hubbert and Willis [5] are the pioneers in formulating stability model in the 50’s. 

They applied Kirsch’s solution [6] to predict wellbore instability for a vertical wellbore 

subjected to non-hydrostatic in-situ stresses with constant pore pressure. Considerable 

efforts and progress have been made in modeling wellbore instability ever since. Now 

models such as elastic/plastic, poroelastic, thermoporoelastic, and discontinuous 

mechanics are available.  

Elastic model, first developed by Hubbert and Willis, does not consider the effect 

of pore pressure change. In fact, the pore pressure is constant, and the effective stress is 

unchanged. Fairhurst [7] modified Hubbert and Willis solution to an inclined wellbore by 

adding induced anti-plane shear. Bradley [8] took Fairhurst model and analyzed the effect 

of in-situ stresses and inclination on wellbore stability. Hubbert and Willis, Fairhurst, and 

Bradley works provided most significant insights into effect of in-situ stresses and wellbore 

inclination on wellbore stability. Their works are the most referred in the wellbore stability 

studies.  

Poroelastic wellbore stability model was first developed by Haimson and Fairhurst 

[9], based on Biot’s [10] work. Detournay and Cheng derived the fully-coupled poroelastic 

semi-analytical model for a vertical wellbore subjected to non-hydrostatic in-situ stress 

field [11]. Their work was extended to inclined wellbore by Cui et al. [12]. There are 

different models accounting for poroplastic wellbore stability with steady state or transient 

pore pressure [13] [14]. However, they are not fully-coupled and they are limited to 

hydrostatic stress field and one-dimension conditions. The major setbacks are the 

mathematical difficulties in solving these problems analytically and understanding of fully 

coupled poroplastic constitutive behavior. Finite element modeling has shed some hope in 

dealing with these difficulties in recent years.   
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Discontinuous mechanics introduced by Goodman joint element [15], Goodman 

and Shi key block theory [16], and Cundall distinct elements [17] in the late 70’s. A popular 

approach for rock engineering problems such as tunneling and mining. With aid of finite 

element modeling and powerful computers, this type of modeling is becoming more 

popular specially in fracture network modeling or well logging technologies. It is very 

important to model the discontinuity for wellbore stability model when deformations of 

discontinuity dominate the rock response.   

All rock formations show some level of nonlinearity and anisotropy [18]. While the 

assumption of linear elasticity is commonly used to simplify analyses, non-linear behavior 

has been used by Morita and Gray [19] to illustrate more complex rock behavior. As show 

in Figure 2.6, a formation Young’s modulus exhibits a nonlinear trend with varying 

confining pressure. Therefore, it can change the stress resolution predicted by the classical 

models assuming linearly elastic media, e.g. Kirsch’s solution. The nonlinearly elastic 

model accounts for nonlinearity by allowing pressure dependency of elastic moduli such 

as Young’s modulus. 

 
Figure 2. 6: Values of Young’s modulus at 50% peak strength exhibiting a nonlinear 

trend with confining pressure [20] 
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The stresses at the wellbore wall either at shear or tensile failure cannot be measured 

directly in wellbore stability studies [20]. Two techniques have been developed: 1. 

comparing the stresses at the wellbore wall calculated using linearly elastic theory with 

peak strengths of the rock measured in compression test (e.g. triaxial test) [21], and 2. using 

elastic-plastic analyses to predict fracture propagation [22]. However, neither of the 

techniques can predict the extent of the fracture or excavation around the wellbore reliably 

[23].  

Stress vs. strain graphs of rock samples often show nonlinear trends amplifying the 

nonlinear behavior of the rocks. The Young’s modulus of a rock often depends on the 

confining pressure and will have different values at different confining pressures. Based 

on these observations, it is concluded that rocks behave nonlinearly. Therefore, Santerelli 

et al. revisited linearly elastic stress and strain equations to develop a series of equations to 

account for nonlinearities based on the pressure dependency of Young’s modulus [20]. The 

result of the nonlinearly elastic model is shown in Figure 2.7.  

 

Figure 2. 7: Distribution of tangential stresses around a wellbore based on linear and non-

linear dependency of Young’s Modulus. rw is the wellbore radius 
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It is important to note that the maximum tangential stress may not occur at the 

wellbore wall. This is in contradiction with linearly elastic theory stating that the maximum 

tangential stress is always at the wellbore wall. Also, the tangential stress is much lower 

near the wellbore compared with the linearly elastic model. Field and lab observations 

suggest that linear-elastic models give a higher stress concentration around a wellbore, 

therefore, requiring a higher mud weight to prevent shear failure [24] [25]. Linear models 

do not account for the large deformations before failure, which releases a certain amount 

of energy or stress.  

If the elastic response of a material depends on the material’s orientation for a 

given stress configuration, the material is said to be anisotropic [18]. Therefore, elastic 

moduli are different in each direction of the material. Anisotropy can be classified into two 

groups: 1. intrinsic, and 2. induced. Intrinsic anisotropy is formed during the deposition of 

the rock sample, so it depends on lithology of the rock. Induced is due to deviatoric stress 

that causes microcracks. Anisotropy and heterogeneity in rock samples can introduce 

difficulty in hydraulic fracturing design since fracture initiation and propagation is highly 

affected [26]. This complexity will ultimately alter the production rate. Heterogeneity can 

improve the total surface area and production rate; on the other hand, it can arrest the 

fracture propagation [27]. Stiffness of a formation defines the effect of anisotropy and 

heterogeneity. If the fracture faces a soft zone, the fracture will propagate comfortably. 

However, in hard formations, the fracture cannot propagate, and it will be arrested. 

Young’s modulus of the material highly influences the stiffness of a formation.  

The effect of anisotropy on hydraulic fracturing is investigated using ABAQUS. 

Due to symmetry, half of a 2D plain strain block was used. The half circular concentric 

opening represents the wellbore as shown in Figure 2.8. Parameters used for the study are 

listed in Table 2.4. Only Young’s modulus is changed since it plays a major role in 
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hydraulic fracturing compared to Poisson’s ratio. In the anisotropic case, the Young’s 

moduli are 3x106 and 2.5x106 psi in the x- and y- directions, respectively. In fact, this 

model is an orthotropic model since Young’s modulus is depended directionally, meaning 

Young’s modulus magnitude is constant in each plane (x- and y- directions). 

 
Figure 2. 8: Isotropic vs. Anisotropic fracture propagation in ABAQUS finite element 

analysis. Different fracture paths are observed  

The model was used in two different cases. The first case was conducted using a 

homogenous media. It was assumed that Young’s modulus is constant and independent of 

direction and location. The second case was done for the orthotropic case. In Figure 2.8 

(a), the fracture propagates in the direction of maximum horizontal stress and opens against 

the minimum horizontal stress as expected since fracture takes the path of least resistance. 

This result also follows the linear elastic fracture mechanics theory prediction, stating that 

a fracture extends in the direction of the maximum compressive stress. However, Figure 
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2.4 (b) displays a different trend. The fracture is not opening in the direction of the 

maximum stress. It opened and propagated in some other direction, not following the 

elastic theory’s prediction. It can be concluded that the propagation path depends on the 

local material stiffness more than stress anisotropy. Also, the homogenous case required a 

higher injection pressure compared to orthotropic case. This was also observed by Yang et 

al. in their work [28]. It can also be seen in Figure 2.8 (b), that the stress distribution around 

the wellbore as well as throughout the block is very different compared to the homogenous 

case. The fracture initiation and propagation have been estimated using ABAQUS XFEM 

module.   

2.4 THERMOPOROELASTIC MODEL 

The wellbore temperature is different from that of the rock formation due to 

geothermal gradient. Any changes in pore pressure will redefine the stress resolution in the 

media. In turn, this can lead to deformation of the media. This effect is stimulated with 

thermal loadings, either expansion or contraction. It is important to realize that a small 

change in temperature change can result in a large pore pressure change due to the small 

thermal expansion coefficient of the rock. This temperature difference (thermal stress) in 

any type of formation such as sandstone or shale may induce fluid flow and changes in 

pore pressure. Since temperature and pore pressure are coupled together, the fully coupled 

equation must be developed.  

Schiffman [29] introduced the first thermoporoelastic model by extending the 

Biot’s theory to non-isothermal systems. Substantial modeling and progress have been 

done after him in modeling fully coupled thermoporoelastic model. The need for a fully 

coupled thermoporoelastic model can be seen in different engineering applications such as 

nuclear waste disposal [30] [31] [32], geothermal energy production [33], water flooding, 
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thermal enhance oil recovery [34], gas well with high rate production, hydraulic fracturing 

[35], and wellbore stability during drilling phase [36]. Various techniques in solving 

thermoporoelastic model have been offered due to diverse forms of governing equations 

and boundary and initial conditions [37] [38]. A few have attempted to present a solution 

in two- or three-dimensional geometry [39]. In fact, most solutions are provided in one-

dimension geometry because of axisymmetric boundary condition assumption. The 

complexity increases with the level of coupling. Coupling is the effect of thermal stress on 

mechanical and pore pressure (hydraulic) stresses or vice versa, as shown in Figure 2.9. In 

the early development of thermoporoelastic model, researchers chose the coupling of 

induced thermal stress on mechanical stress and ignored mechanical effect on thermal 

stress based on the observation that the temperature variation caused by mechanical 

deformations is very small [40]. In field of rock mechanics, a few studies have considered 

the effect of mechanical stress on thermal stress [41]. They suggest that mechanical stress 

may change the thermal properties, therefore, a non-linear thermal behavior can be 

expected.  

 

Figure 2. 9: Coupling mechanisms for a thermoporoelastic system (modified after, Li [2]) 
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Fully coupled fluid flow and heat transfer models were developed in the 70’s in 

conjunction with geothermal energy research. Various models such as distributed 

parameters, one or two-way coupling mechanism, and multiphase were developed. Their 

solutions relied on numerical procedures such as finite difference or finite element. Some 

of the models are non-linear due to convective heat transfer or non-linear thermodynamics 

parameters. Implicit and Newton-Raphson methods were used in dealing with nonlinear 

problems [42].  

  Pore pressure-mechanical coupling mechanism is important in studies of 

subsidence and consolidation. Most of the developed linear and non-linear 

poroelastic/plastic models assume one-way coupling, which is the effect of pore pressure 

on mechanical stress [43] [44]. Although, several studies have taken two-way coupling and 

investigate the effect of mechanical stress on pore pressure [45]. 
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  Table 2. 1: Lost circulation guidelines [46]  

 
   Table 2. 2: Wellbore strengthening (WBS) methods with field applications [47]  
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Table 2. 3: Shear and tensile failure types around a borehole with geometry and 

orientation [48] 

Failure Type Geometry and 

Orientation 

Figure 

 

Shear Failure, shallow 

knockout 

σz > σt > σr 

Failure is in radial/axial 

plane because the max 

(σz) and min (σr) stresses 

are oriented in this plane 

(a vertical plane) 

 

 

Shear Failure, wide 

breakout 

σt > σz > σr 

Failure is in 

radial/tangential plane 

because the max (σt) and 

min (σr) stresses are 

oriented in this plane (a 

horizontal plane) 
 

 

Shear Failure, wide 

breakout 

σz > σr > σt 

Failure is in 

axial/tangential plane 

because the max (σz) and 

min (σt) stresses are 

oriented in this arc (the 

borehole arc) 
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Table 2. 3, cont. 

Failure Type Geometry and 

Orientation 

Figure 

 

 

Shear Failure, narrow 

breakout 

σr > σz > σt 

Failure is in 

radial/tangential plane 

because the max (σr) and 

min (σt) stresses are 

oriented in this plane (the 

horizontal plane) 

 

 

 

Shear Failure, deep 

knockout 

σr > σt > σz 

Failure is in radial/axial 

plane because the max 

(σr) and min (σz) stresses 

are oriented in this plane 

(the vertical plane) 

 

 

 

Shear Failure, low angle 

echelon 

σt > σr > σz 

Failure is in 

tangential/axial plane 

because the max (σt) and 

min (σz) stresses are 

oriented in this arc (the 

borehole arc)  
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Table 2. 3, cont. 

Failure Type Geometry and 

Orientation 

Figure 

 

 

 

Tensile Failure 

cylindrical 

σr ≤ -TS 

This failure is concentric 

with the borehole. A low 

mud weight creates the 

failure since magnitude 

of σr is lower than 

tensile strength of the 

rock 

 

 

 

 

 

Tensile Failure 

horizontal 

σz ≤ -TS 

This failure creates 

horizontal fractures 

since σz is the lowest 

stress 

 
 

 

 

 

 

Tensile Failure vertical 

σt ≤ -TS 

This failure creates 

vertical fractures parallel 

with the maximum 

horizontal in-situ stress 

direction since σt must 

overcome the smallest 

formation tensile 

strength 
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Table 2. 4: Homogenous parameters used in ABAQUS isotropic and anisotropic study  

Young’s modulus 3,000,000 psi 

Poisson’s ratio 0.3   

SHmax 1,500 psi 

Shmin 1,200 psi 

Pore pressure 800 psi 

Well radius 3 in 

Length and width block 30 in 
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CHAPTER 3:  INDUCED THERMAL STRESSES EFFECT ON 

BREAKDOWN AND BREAKOUT 

 The knowledge of in-situ stresses, breakout, and breakdown is vital to oil and gas 

industry, affecting wellbore stability, well location and design, and production rate. 

Determination of breakout pressure helps avoid wellbore enlargement and shear failure, 

while, breakdown pressure aids in knowledge of the formation fracture gradient and the 

limit for the drilling mud weight. The purpose of this section is to formulate a 

theoretical/indirect method to predict breakout and breakdown pressures and their failure 

sizes on the wellbore wall. Stresses in porous media are defined not only by mechanical 

stresses such as in-situ stresses, but also depends on pore pressure and thermal stresses. 

The wellbore temperature is different from that of the rock formation due to geothermal 

gradient and circulation of mud inside the wellbore. This temperature differential causes 

induced thermal stresses that substantially changes the stress resolution around the 

wellbore.  

Most stress resolution models include the effect of pore pressure, known as 

poroelasticity, defined by Biot [10]. However, the effect of induced thermal stresses is 

often ignored. The pore and temperature differentials always affect borehole stability by 

altering the stress concentration near the wellbore through induced poroelastic and 

thermoelastic stresses. This chapter modifies Kirsch’s solution to include the induced 

thermal stresses using the Detournay and Cheng method [11]. The comparisons among 

elastic, poroelastic and thermoporoelastic models are investigated. Models ignoring 

thermal stresses predict unreliable breakdown pressures and higher mud weights to 

overcome shear failure. A parametric analysis was done to explore the effect of rock 

parameters on the induced thermal stresses. Formations with large Young’s modulus will 

exhibit large induced thermal stresses. Failure size/arc around a wellbore is also computed 
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for shear and tensile failures along the principal in-situ stresses, minimum and maximum 

horizontal stresses. Stress anisotropy is also studied in this chapter. Higher stress 

anisotropy between geological stresses increases the chance of shear and tensile failures.  

3.1 WELLBORE STABILITY: BREAKOUT AND BREAKDOWN  

Wellbore stability is always a challenging subject to drilling engineers. Establishing 

a systematic knowledge in breakout and breakdown gradients is an important task in 

wellbore stability and design, in-situ stress estimation and direction. Breakout is often 

identified directly from caliper, image, and petrophysical logs [53]. When pressure in a 

wellbore is lower than the effective stress of a formation, shear failure (breakout) will 

occur. This leads into many problems such as borehole enlargement, poor borehole 

cleaning, stuck pipe, and poor cement job. On the other hand, when the pressure is higher 

than the rock strength, tensile failure (breakdown) occurs. This scenario is the basis for lost 

circulation. Lost circulation is considered the biggest problem in the drilling industry, 

significantly increasing the non-productive time and costing the industry nearly a billion 

dollars each year [54] [55] [56]. Estimation of breakdown pressure is important in leak-off 

test, fracture gradient, casing design, and hydraulic fracturing [57]. Most drilling stability 

models incorporate mechanical and poroelastic effects, while ignoring the effect of 

temperature. Temperature change around the wellbore changes the stresses and creates 

thermally induced breakout and breakdown [58]. The main purpose of this chapter is to 

establish analytical solutions in prediction of wellbore breakout and breakdown pressures 

and their failure magnitudes for hard (consolidated) formations. The magnitude is the 

affected arc/location around the wellbore as shown in Figure 3.2. Soft and 

unconsolidated/shallow formations require an elasto-plastic model which is beyond the 

scope of this dissertation [59] [60]. 
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When a wellbore is drilled, the rock is replaced by a drilling mud that has a different 

temperature gradient compared to that rock. This difference creates an induced thermal 

stress near the wellbore. The stresses around the wellbore can be described by a linearly 

elastic, homogenous, and isotropic model known as Kirsch’s solution. However, 

nonlinearity has been described fully by Morita and Gray to illustrate more complex rock 

behavior [19]. Changes in pore pressure and temperature alter the stress resolution which 

modifies breakout and breakdown predictions compared to a purely elastic model. The 

purpose of this chapter is to illustrate the effect of pore pressure and temperature changes 

in the stress resolution model, breakout, and breakdown. First, Detournay and Cheng 

method was followed to add the induced stresses caused by pore pressure and temperature 

changes around a wellbore to Kirsch’s solution [11]. Second, necessary equations for 

breakdown and breakout pressures and their sizes have been derived. Third, a parametric 

study on the rock properties that influence the induced thermal stress was provided. Finally, 

the comparison and error analyses have been done for elastic, poroelastic, thermoelastic, 

and thermoporoelastic models. This chapter shows how important it is to include induced 

thermal stresses in stress estimation around a wellbore since other models ignoring this 

effect produce unreliable results. 

3.2 BREAKOUT AND BREAKDOWN MODELS 

The assumptions in all the models are: 

-Linearly elastic, isotropic, and homogenous media 

-Rock properties do not vary with temperature or pressure  

-Maximum horizontal stress is along x-axis and minimum horizontal is along y-

axis as shown in Figure 3.1   

-Tensile failure happens at 0° and shear failure happens at 90° 
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- Intact, vertical, and prefect circular wellbore   

-Wellbore pressure is greater than the pore pressure 

 
Figure 3. 1: Coordinate reference for the breakout and breakdown models. Maximum 

horizontal stress acts in the x-axis direction, Minimum horizontal stress in y-

direction, and vertical load in the z-axis direction 

  Following Detournay and Cheng [11], stresses can be solved by dividing the load 

into three loading modes, and superimposing the results from the three loading modes onto 

the virgin formation condition. The first mode is due to the in-situ stresses, mechanical 

stresses. Zoback presents the total radial and tangential stresses for a wellbore based on 

Kirsch’s solution with modification to include shear stress as [61]:  
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where SH and Sh are the total maximum horizontal in-situ stresses. τ is the shear stress. Sr,m 

and Sθ,m are the total radial and tangential (hoop) stresses based on mechanical stresses 

respectively. θ is the wellbore angle measured around the wellbore wall from the x-axis 

(maximum horizontal stress) as shown in Figure 3.2. a is the wellbore radius and r is the 

distance away from the wellbore wall into the formation. Pw is the wellbore pressure.  

 
Figure 3. 2: Top view of wellbore breakout angle or failure arc. ω is the failure angle 

Equations (3.1) and (3.2) only consider the mechanical stresses, not pore pressure 

nor thermal effects. For a vertical wellbore, when geological stresses align with principal 

axes, the stress resolution on the wellbore wall in terms of effective stress is reduced to: 

 r,m wP P + =      (3.3) 

 ,m H h H h wP (S S ) 2(S S )cos(2 ) P + = + − −  −    (3.4) 

where σr,m and σθ,m are the effective radial and tangential (hoop) stresses respectively. P is 

the pore pressure. The stresses shown here are analyzed on the wellbore wall since, in this 

chapter, it is assumed that the onset of the failure and highest stress concentration are  
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located there [9] [61] [62]. 

If the maximum horizontal stress is in direction of x-axis, tangential stress is 

minimum, for instance, at θ = 0°, and fractures are assumed to initiate at these points. 

Therefore, hoop (tangential) stress at these points becomes: 

,m h H w3S S P P = − − −                                 (3.5) 

In equation (3.5), the effect of poroelasticity, mode 2, defined by Biot, must be added to 

account for pore pressure changes. It is defined as: 

 b
,p

(1 2 )
(Pw P)

1


 − 
 = −

−
              (3.6) 

where αb is the Biot’s coefficient of the rock. σθ,p is the change in hoop stress due to the 

pore pressure change. Another important component missing in the equations is the 

induced thermal stresses, mode 3.  

The wellbore temperature is different from that of the rock formation due to 

geothermal gradient and circulation of mud inside the wellbore. This temperature 

difference in any type of formation such as sandstone or shale may induce fluid flow and 

change in pore pressure. The Nowacki analytical solution, derived based on fundamental 

principles of thermodynamics, may be used to capture induced radial and tangential 

thermal stresses [63]. The solution is applicable to heat transfer by conduction in an infinite 

hollow cylinder with constant wellbore temperature.  
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where σr,T and σθ,T are the radial and tangential stresses due to the temperature change and 

function of radial distance and time. αT is the linear thermal expansion coefficient, ν is the 
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Poisson’s ratio, and E is the Young’s modulus of the rock. rw is the wellbore radius. The 

solution only accounts for thermal conduction and not convection. It is important to couple 

thermal stress and pore pressure with time through the diffusivity equation for model 

improvement [2] [64] [65], and this is done in the following chapter.   

Stephens and Voight [62] have presented solutions to equations (3.7) and (3.8) 

using Ritchie and Sakakura [66] series expansion method as follow: 

 lT
,T 0

E T a 1 r 1 a
ln( ) I

(1 ) 2r 2 a 2 2r

−



      
 = − − − +    

−     
   (3.9) 

 lT
r,T 0

E T a 1 r 1 a
ln( ) I

(1 ) 2r 2 a 2 2r

−      
 = − + − − −    

−     
   (3.10) 

The solutions are valid for times of approximately one day. It may seem that these 

equations cannot be applied in drilling operations since the minimum required time is large. 

However, the equations can still be used since the investigation is focused on the wellbore 

wall since equations (3.9) and (3.10) are reduced to: 

  T
,T

E T

(1 )


 
 =

−
       (3.11) 

r,T 0 =            (3.12) 

l

0I
−  is an integral function that can be approximated by series function. The solutions are 

tabulated in papers of Ritchie and Sakakura and Jaeger [67]. 

The general tangential stress solution including thermal and pore stresses now can 

be obtained by superposing modes 1 through 3, equations (3.5), (3.6), and (3.11). Due to 

seepage of mud into the permeable formation, the initial pore pressure is replaced by 

wellbore pressure (Pw) in equation (3.4) on the wellbore wall. Therefore, the final equation 

is: 

  ,m ,p ,T    =  + +         (3.13) 
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       b T
w h H w w

(1 2 ) E T
P 3S S P (P P)

1 (1 )


 −    
 + = − − + − + 

− − 
            (3.14)   

After combining the similar terms, (3.14) is rewritten as: 

  b bT
h H w

(1 2 ) (1 2 )E T
3S S P 2 P

(1 ) 1 1


 −   −      
 = − + − − −   

− − −   
    (3.15) 

When the hoop stress is equal or greater than the tensile strength of the rock, a fracture 

occurs. Therefore, the maximum wellbore pressure (breakdown pressure) can be defined 

as: 

 

bT
h H

w bd

b

(1 2 )E T
3S S P TS

(1 ) 1
P P

(1 2 )
2

1

 −    
− + − + 

− − 
= =

 −  
− 

−  

                    (3.16) 

where Pbd is the breakdown pressure and TS is the tensile strength of the rock. In case of 

an impermeable formation, (3.16) is reduced to: 

    T
bd h H

E T
P 3S S P TS

(1 )

 
= − − + +

−
                            (3.17) 

Schmitt and Zoback demonstrated experimentally that the poroelastic stress is 

negligible for low permeability formations under rapid loading conditions [68]. Therefore, 

equations (3.1) and (3.2) may be applicable for formations such as shale. However, 

temperature effect was not included in their study. Temperature change induces the pore 

pressure away from the wellbore wall, therefore, the poroelastic stress becomes important 

in the wellbore stability [69] [70] [71]. However, this is not within the scope of this chapter 

since the analysis is focused on the wellbore wall. In the following chapters, the coupling 

between the modes and stress profiles beyond the wellbore wall are investigated. Shear 

failure or breakout pressures can also be analyzed using Mohr-Coulomb as follows on the 

wellbore wall: 
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rn UCS =  +                        (3.18) 

It is assumed that the hoop stress is the biggest stress compared to other stresses acting on 

the wellbore wall (σθ > σz > σr). If the maximum horizontal stress is in direction of the x-

axis, compressive stress is maximum, for instance, at θ = 90° or 270°, and shear failure 

(breakout) is assumed to initiate at these locations. Therefore, by substituting equations 

(3.3) and (3.16) into (3.18), the final equation is: 

  

b T
H h

w bo

b

(1 2 ) E T
3S S n P UCS

1 (1 )
P P

(1 2 )
n 2

1

 −    
− + − + − 

− − 
= =

 −  
+ − 

− 

           (3.19) 

for permeable formations, and: 

      

T
H h

bo

E T
3S S (n 1)P UCS

(1 )
P

(n 1)

 
− + − + −

−
=

+
                  (3.20) 

for impermeable formations. 

   o

2 2

2S
UCS

( (1 ) )
=

+ −
              (3.21) 

    tan =        (3.22) 

    ( )
2

2n 1= + +       (3.23) 

where So, UCS, β, and μ are the cohesion, unconfined cohesive strength, friction angle, 

and friction coefficient of the rock respectively. Note that Mohr-Coulomb tends to over-

estimate the failure envelope by ignoring the intermediate stress [72].  

The failure arc shows the size of the damaged zone/arc around the wellbore wall. 

For instance, Figure 3.2 shows the breakout failure angle/arc, measured from the center of 

the wellbore. It is assumed that the breakout failure arc is axisymmetric along the maximum 

principal stress (SH), while breakdown failure arc is axisymmetric along the minimum 

principal stress (Sh). The breakout angle can be used in estimation of in-situ stresses 



 34 

magnitudes and their directions [73] [74]. The breakout failure arc angle (ω) can be 

analyzed as follow: 

( )

b b T
h H w

H h

(1 2 ) (1 2 ) E T
S S n P n 2 P UCS

1 1 (1 )
arccos

2 S S

  −   −      
+ + − − + − + −    

−  − −     = −
− 

 
 

 

(3.24) 

for permeable formation, and 

      

( ) ( )

( )

T
h H w

H h

E T
S S n 1 P n 1 P UCS

(1 )
arccos

2 S S

  
+ + − − + + − −

  = −
− 

 
 

    (3.25) 

for impermeable formation.  

The breakdown arc angle (γ) can be analyzed in the same manner for breakdown (tensile 

failure): 

( )

b b T
h H w

H h

(1 2 ) (1 2 ) E T
S S P 2 P TS

1 1 (1 )
arccos

2 S S

  −   −      
+ − − − + +    

−  − −     = −
− 

 
 

 (3.26) 

for permeable formations, and  

        
( )

T
h H w

H h

E T
S S P P TS

(1 )
arccos

2 S S

  
+ − − + + −

  = −
− 

 
 

    (3.27) 

For impermeable formations.  

3.3 RESULTS  

An analysis was done for thermal tangential stress, σθ,T to capture the effect of each 

parameter in equation (3.11). One parameter was changed while keeping the others 



 35 

constant. Table 3.1 lists the data used in the parametric study. The data for variables in this 

study are within reasonable ranges suggested by Jackson School of Geology at University 

of Texas [142].   

Figure 3.4 shows that Young’s modulus has the most notable effect on the 

tangential stress. Thermal expansion has an insignificant effect on thermal hoop stress 

change, as shown in Figure 3.3. Poisson’s ratio has a moderate effect on the thermal stress 

since most rocks have a Poisson’s ratio value ranging between 0.2 to 0.3 [75], shown in 

Figure 3.5. 

 
Figure 3. 3: Thermal expansion coefficient effect on tangential thermal stress at various 

temperature changes 
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Figure 3. 4: Young’s modulus vs. tangential thermal stress at different temperature 

changes 

 
Figure 3. 5: Poisson’s ratio vs. tangential thermal stress at various temperature changes 
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Next, the comparisons among different models, for instance, thermoporoelastic vs. 

poroelastic, using the breakdown and breakout equations are investigated. The data used 

in this study are shown in Table 3.2. 

The minimum horizontal stress was kept constant while changing the maximum 

horizontal stress. Since the wellbore is assumed to be intact, meaning that there are no pre-

existing fractures, the rock’s actual tensile strength is not zero and should be considered. 

The tensile strength is assumed constant and independent of temperature variation. Vishal 

demonstrated that the tensile strength of rocks can depend on the temperature change [76]. 

The temperature change is a negative value because it is assumed that the mud temperature 

inside the wellbore is cooler than the formation temperature.  

The breakout pressures were calculated using equations (3.19) and (3.20) for 

comparison study. The thermoelastic and elastic models may be suitable for very low 

permeable formations such as shale since there is no pore pressure change in these models 

[20]. When a wellbore is thermally cooled down, it will become more stable since the 

required breakout pressure is reduced.  

The elastic, thermoelastic, poroelastic, and thermoporoelastic contributions are 

shown in Figure 3.6. The error, shown in equation (3.28), is defined based on the 

thermoporoelastic model since it is the base/true solution that includes all the components 

affecting stresses around a wellbore. 

TPE X
Error x100

TPE

−
=     (3.28) 

where TPE is the thermoporoelastic model results and X is the result from another model.  

 The error magnitude when thermal or pore stresses are ignored is shown in Figure 

3.7. It can also be seen that the poroelastic and elastic models over-estimate breakout 

pressure, meaning it over-estimates required mud weight to overcome the shear failure. 
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Higher mud weight will increase the chance of formation breakdown (tensile failure) and 

lost circulation events. The thermoelastic model has a mixed trend. At low stress ratio, it 

tends to under-predict the breakdown pressure, while it over-predicts at higher stress ratio. 

Also, the poroelastic model decreases slightly as the stress ratio increases.  

 
Figure 3. 6: Normalized breakout pressure predictions by various models 

It can be concluded form Figure 3.6 that the induced pore pressure does not affect the 

breakout pressure as much as the induced thermal stress. The thermal stress substantially 

changes the stress and breakout pressure, when compared to elastic and poroelastic models.  

Figure 3.8 shows the results for breakout failure angle/arc calculated using 

equations (3.24) and (3.25). the poroelastic and elastic models produce results substantially 

different than the models that include thermal stresses. The reason that the thermal models 

predict a lower failure arc or angle is because the cooler mud has reduced stresses around 

the wellbore, causing the wellbore to become more stable, resulting in less collapse (shear 
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failure). As the magnitude of maximum horizontal stress increases, the failure angle 

increases.  

 
Figure 3. 7: Error analysis of all models compared against the thermoporoelastic model 

 
Figure 3. 8: Breakout (shear failure) arc/angle prediction along Min. horizontal stress for 

different models 
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Breakdown pressures calculated using equations (3.16) and (3.17) are shown in 

Figure 3.9. The results vary as the geological stresses values change. However, 

incorporating thermal stresses produces reasonable results since all models except 

thermoporoelastic model over-estimate the pressure required to breakdown the formation. 

As the formation is cooled down, its fracture gradient is reduced. Therefore, it is easier to 

break the formation down and cause fractures around the wellbore. This illustrates the 

importance of using the thermoporoelastic model for an accurate representation of stresses 

around a wellbore. Induced pore pressure also reduces the breakdown pressure. When mud 

penetrates into a formation, its local pore pressure elevates, therefore, the effective stresses 

around the wellbore decreases and the breakdown pressure will decrease too. This is 

consistent with Medlin and Masse [77], Yew and Weng [78], and Gao et al. [79] results 

showing a decrease in breakdown pressure with mud penetration.  

 
Figure 3. 9: Normalized breakdown pressure predictions by various models 

Figure 3.10 shows the error in breakdown pressure predicted by all models 

compared to the thermoporoelastic model. Figure 3.11 shows the analyses for  
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breakdown arc/angle based on equations (3.26) and (3.27). All models predict no failure 

since the current mud pressure, i.e. 23 MPa, is less than the critical pressure predicted by 

all models in Figure 3.9. 

 
Figure 3. 10: Error analysis for breakdown pressure versus the thermoporoelastic model 

 
Figure 3. 11: Breakdown (tensile failure) arc/angle along Max. horizontal stress for the 

developed models 
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3.4 CONCLUSIONS  

It can be concluded from the analyses that is crucial to include induced thermal 

stresses in calculation of stresses around the wellbore since models that do not include 

thermal stresses predict unreliable results. It may be safe to exclude pore pressure from 

stress estimation for formations with very low permeability values if the wellbore wall is 

the point of interest (failure initiates on the wellbore wall). Young’s modulus has a 

substantial effect on the induced thermal stresses. Formations with large Young’s modulus 

will exhibit large induced thermal stresses. High stress anisotropy between far field 

geological stresses, i.e. Sh and SH, will increase the chance of shear and tensile failures. 

When a formation is cooled down, it will become more stable in shear failure region while 

the chance for breakdown (tensile failure) increases. When a formation is cooled down, its 

fracture gradient is reduced. Therefore, it is easier to break the formation down and cause 

fractures around the wellbore. 
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Table 3. 1: Parameters data for the effect rock properties on thermal stress    

Parameters Data Unit 

Temperature change (∆T) 10-50 ˚C 

Young’s modulus (E) (0.5-5)x104 MPa 

Thermal expansion (αT) (1-10)x10-6 1/˚C 

Poisson’s ratio (v) 0.1-0.5 - 

 

Table 3. 2: Data for breakout and breakdown models 

Parameters Data Unit 

Max-Hor-Stress (SH) 25-40 MPa 

Min-Hor-Stress (Sh) 25-37 MPa 

Pore pressure (P) 21 MPa 

Wellbore pressure (Pw) 23 MPa 

Temperature change (∆T) -25 ˚C 

Tensile strength (TS) 10 MPa 

Biot’s coefficient (αb) 1 - 

Thermal expansion (αT) 2E-5 1/˚C 

UCS 15 MPa 

Friction angle (β) 30 deg 

Young’s modulus (E) 10,000 MPa 

Poisson’s ration (v) 0.25 - 
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CHAPTER 4: THERMOPOROELASTIC MODEL BACKGROUND 

4.1 MATHEMATICAL PRELIMINARIES 

The theories of elasticity, stress, and heat transfer require knowledge of several 

areas of applied mathematics. They are formulated in terms of many different types of 

variables such as scalar, vector, and tensor fields, and this requires tensor notation along 

with tensor algebra and calculus.  

4.1.1 Indicial notation  

Indicial notation is a shorthand scheme that a whole set of numbers is represented 

by a single symbol with subscripts [80]. For example, a1, a2, a3, are denoted by the symbol 

ai, where index (subscript) i will have the range 1, 2, 3. Similarly aij will have nine 

components, and can be written in a 3x3 matrix. The first index (i) represents the rows, and 

second index (j) indicates the columns of the matrix. If in a single term, the same index 

appears twice, summation over the index is implied, unless it is suspended by a “no-sum” 

phrase.  

iia a a a= + +11 22 33
        (4.1) 

iia (no sum) [a ,a ,a ]11 22 33− =      (4.2) 

Note that the same subscript cannot appear more than twice in the same term in an indicial 

equation, and free (unrepeated) indices in each term must agree. For instance, these are 

some non-sense cases of indicial notation use:  

ij j ka b c=       (4.3) 

 ijj j ia b d=         (4.4) 

The number of indices indicates the order of tensor. For example, ai is a first-order tensor, 

also known as a vector, while, aij is a second-order tensor, and it is a matrix.  
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4.1.2 Calculus of tensors  

Most variables in elasticity and heat transfer theories are field variables and, in 

some cases, temporal variables. Since these theories require differential and integral 

operations, it is necessary to understand the calculus in tensor fields [81] [82]. For partial 

differentiation, comma notation is used: 

  
,i

i

a
a

x


=


      (4.5) 

 i
i, j

j

a
a

x


=


      (4.6) 

 
ij

ij,k

k

a
a

x


=


       (4.7) 

ij

ij,kl

k l

a
a

x x

2
=
 

     (4.8) 

 
ij

ij,kk

k

a
a

x

2

2


=


      (4.9) 

Integration can be done in a similar manner with the use of integral operation:  

ijk....l,k
k
a dk             (4.10) 

4.1.3 Stress and strain analyses 

This section will explore the basic formulations for stresses and strains in a body.  

4.1.3.1 Analysis of stress 

Consider a body occupying some volume, V in space. Consider a volumetric 

element of that body, ΔV as shown in Figure 4.1. Two types of forces act on the element: 

1) Body forces: proportional to the mass contained in the element, e.g. gravity or 

centrifugal force 

2) Surface forces: acting on the surface (area) of the element, e.g. hydrostatic 

pressure exerted by a fluid.  
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Let f represent a body force per unit volume, the resultant of the body force acting 

throughout V are R, and it is expressed as: 

i i

V

R f dV=       (4.11) 

and resultant momentum due to the body force distribution is given by: 

i ijk j k

V

M x f dV=      (4.12) 

where εijk is the Levi-Civita symbol. 

 
Figure 4. 1: Arbitrary body occupying some volume V in space 

Consider an element ΔA of the surface of the body contained in V. Let n be the unit normal 

associated with ΔA. Consider a resultant force ΔF acting on ΔA shown in Figure 4.2. ΔF 

may not necessarily be parallel to n. Traction vector is defined to represent the intensity of 

the resultant force ΔF on ΔA. This becomes: 

i i i i

A

dF TdA F TdA= === =      (4.13) 

Consider a rectangular parallelepiped referred to X1, X2, and X3 is subjected to traction 

acting on each face, shown in Figure 4.3. Each traction can be represented by: 

i ij jT e=          (4.14) 
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σij is the stress components. First subscript, i, refers to the normal ei denoting the face on 

which the traction acts. j, refers to the direction ej in which the stress component acts.  

 
Figure 4. 2: Arbitrary body with arbitrary force acting on the surface 

 
Figure 4. 3: Parallelepiped with arbitrary tractions and stress components 

 Now consider an arbitrary plane, shown in Figure 4.4, with normal n, and define 

tractions in terms of stress components. The tractions acting on OBC, OCA, and OAB 

with dAi. Let dAn be the element of area ABC on which the traction acts, then:  

n

n i n i i n

n

OBC dA dA .

OCA dA dA . dA dA . n dA

OAB dA dA .

1 1

2 2

3 3

n e

n e n e

n e

== = 


== = == = =
== = 

       (4.15) 

since n.ei = ni = cos(n,ei). 
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Figure 4. 4: Tetrahedron under arbitrary tractions and body force 

The force equilibrium on the plane is: 

n 1 1 2 2 3 3 n

1
dA dA dA dA ( hdA )

3
T T T T f= + + −    (4.16) 

where h is the altitude of the tetrahedron.  

From equations (4.15) and (4.16), one obtains:  

n i i n i i n

1 h
dA dA ( hdA ) n dA

3 3
T T f T f

 
= − = − 

 
  (4.17) 

Let  

n i iT Te=   and h 0=  

From equation (4.14) 

i i ij i j ji j i i ji jn n nTe e e T=  =  == =     (4.18) 

but Ti are traction components acting on any arbitrary plane, therefore, if σij are known, the 

state of stress of a point is completely defined.  

 It is shown that σij defines the stress state at a point. In general, it is expected that 

stress components to vary from point to point. Distribution of stress components are 

defined by equilibrium equations, derived from principal of linear and angular momentum. 
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Consider Figure 4.5, a body of volume V with surface area A subjected to a body force f 

and surface traction T, and density ρ. 

 
Figure 4. 5: Arbitrary body under traction and body force 

The resultant of the body force and tractions is: 

i i i i

V A

F f dV dAT= +             (4.19) 

and linear momentum is: 
..

i i

V

L u dV=       (4.20) 

where
..

iu is the second derivative of velocity with respect to time. According to 

conservation of linear momentum Fi = Li 

..

i i i

V A V

f dV dA u dVT+ =        (4.21) 

and conservation angular momentum is 

..

ijk j k ijk j k ijk j k

V A V

( x f )dV ( x )dA ( x u )dVT +  =               (4.22) 

For quasi-static problem, inertia terms are small, hence, 
..

u 0= . 
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From equations (4.18) and (4.21), one gets: 

i ji j

V A

f dV n dA 0+  =          (4.23) 

and using equations (4.19) and (4.22) produce: 

ijk j k ijk j lk l

V A

( x f )dV ( x n )dA 0 +   =     (4.24) 

By applying the divergence theorem, equation (4.21) becomes: 

..

i ji, j i

V

(f u )dV 0+ − =     (4.25) 

since dV is arbitrary, then: 
..

i ji, j if u 0+ − =        (4.26) 

and for quasi-static problems: 

i ji, jf 0+ =      (4.27) 

Equation (4.27) is the equilibrium equation.  

Using angular momentum, it can be shown that stress components are symmetric as follow: 

..

ijk j k ijk j k ijk j k

V A V

( x f )dV ( x )dA ( x u )dVT +  =       (4.28) 

applying the divergence theorem gives: 

..

ijk j k ijk j lk j ijk j k

V

x f ( x ), x u dV 0
 
 +   −  = 
 
    (4.29) 

Expanding equation (4.29) and applying the equilibrium equation gives: 

ijk jk

V

dV 0  =      (4.30) 

dV is arbitrary, then: 

ijk jk 0  =      (4.31) 

If i and j varies from 1 to 3, then:  
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23 32

31 13 ij ji

12 21

i 1 0

i 2 0

i 3 0

         

         

         

=  − = 


=  − = ==  = 
=  − = 

   (4.32) 

Therefore, stress components are symmetric. From equations (4.18) and (4.32)  

i ji j ij jn nT =  =      (4.33) 

and equation (4.27) can be written as: 

i ij, jf 0+ =      (4.34) 

4.1.3.2 Analysis of strain 

Displacement of a body are made up of two parts: 

1) Rigid body motion which is uniform throughout the body 

2) Relative motions or distortion which translate into strain  

Consider reference points P, P’, Q, and Q’ on the undeformed and deformed position of 

the body in Figure 4.6. P and Q and P’ and Q’ are separated by distances dso and ds 

respectively. There are two coordinates, Eulerian and Lagrangian, that overlying on each 

other, capital letter represents Eulerian coordinates.  

 
Figure 4. 6: An object under arbitrary Lagrangian and Eulerian deformations 
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u represents the displacement vector going from P to P’ and u+du represents Q to Q’, 

shown in Figure 4.7.  

 
Figure 4. 7: Displacements of arbitrary points in space 

Everything must be represented with respect to one coordinate system. 

o i i(ds ) dx dx dx dx dx2 2 2 2

1 2 3= + + =    (4.35) 

i i(ds) dX dX dX dX dX2 2 2 2

1 2 3= + + =    (4.36) 

then, 

od d du s s= −      (4.37) 

in component form: 

o i i i i(d ) (d ) dX dX dx dx2 2
s s− = −    (4.38) 

Let consider Lagrangian coordinate first. The final coordinates Xi are considered to be the 

same function of xi: 

i i iX X (x )=      (4.39) 

and 

i i, j jdX X dx=      (4.40) 

furthermore, the displacement u is given by: 

i i iu X x= −      (4.41) 
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From equations (4.38), (4.39), and (4.40): 

o i, j j i,k k i i

i, j i,k ij ik j k

i i , j i i ,k ik j k

ij i, j ik i,k j k

(d ) (d ) X dx X dx dx dx

X X )dx dx

(x u ) (x u ) dx dx

( u )( u ) dx dx

2 2
s s

                         (

                         

                         

      

− = −

− 

 + + − 

  +  + 

j,k k, j i, j j,k j ku u u u dx dx                    + + 

    (4.42) 

rearranging indices gives: 

o i, j j,i k,i k, j i j(d ) (d ) (u u u u )dx dx2 2
s s− = + +               (4.43) 

Let L

ij be the components of the Lagrangian strain tensor (Green’s strain tensor): 

L

ij i, j j,i k,i k, j

1
(u u u u )

2
 = + +              (4.44) 

then: 

2 2 L

o ij i j(d ) (d ) 2 dx dxs s− =               (4.45) 

Now consider referencing everything to the Xi coordinates, Eulerian description, then: 

i i ix x (X )=                 (4.46) 

and 

i i, j jdx x dX=                  (4.47) 

From equations (4.45), (4.46), and (4.47): 

o i i i, j j i,k k

ij ik i, j i,k j k

ik i i , j i i ,k j k

j,k k, j i, j j,k j k

(d ) (d ) dX dX x dX x dX

x x )dX dX

(X u ) (X u ) dX dX

u u u u dX dX

2 2s s

                         (

                         

                         

− = −

  −

  − − − 

 + − 

  (4.48) 

rearranging indices gives: 

o i, j j,i k,i k, j i j(d ) (d ) (u u u u )dX dX2 2
s s− = + −                  (4.49) 

and introduce the Eulerian strain tensor (Almansi’s strain tensor): 
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E

ij i, j j,i k,i k, j

1
(u u u u )

2
 = + −            (4.50) 

then: 

2 2 E

o ij i j(d ) (d ) 2 dX dXs s− =            (4.51) 

If the displacement gradients are small, for instance, <<1, then, the product terms in 

equation (4.50) can be neglected. Furthermore, the initial and final coordinate systems are 

the same, thus: 

i i

() ()

x X

 
=

 
           (4.52) 

and 

L E

ij ij ij i, j j,i

1
(u u )

2
 =  =  = +             (4.53) 

Equation (4.53) represents the relationship between strains and displacements. With the 

conservation of angular momentum, linear momentum, and force equilibrium, it can be 

shown that the strain components are symmetric.  

4.2 THERMOPOROELASTIC FORMULATION  

The development of thermoporoelastic model is based on Biot’s self-consistent 

theory for porous media saturated with fluid [10] [83] [84]. Infinitesimal strain theory has 

been used since the body geometry is assumed unchanged during the deformation process. 

Therefore, Eulerian strain tensor can be applicable, and Darcy’s law can be defined in terms 

of absolute velocity. The assumption is valid as long as grain displacements do not exceed 

5% of the thickness of the compacting unit [85]. It is assumed that the porous media are 

linearly elastic, isotropic, homogenous, and the saturating fluid is a single-phase liquid. 

Chemical, potential phase change, and creep effects are ignored. Inertia and body force 

have been ignored so that the deformations are quasi-static. Dufour and Soret effects are 

negligible and ignored. Finally, the displacements are assumed irrotational  
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It is assumed that the temperatures for both rock matrix and pore fluid are the same, 

which is based on local thermal equilibrium assumption. Local thermal equilibrium 

assumes that the heat exchange between the solid and pore fluid phases is rapid enough in 

comparison with global heat and fluid diffusion. Therefore, the solid and fluid will have 

the same temperature. Although this assumption has not been validified experimentally, 

Section 4.4 and Chapter 7 will discuss about the theory’s validity and updates the 

thermoporoelastic model with local thermal non-equilibrium assumption. 

The governing equations can be defined in terms of field equations governing 

matrix deformation, fluid and heat flows in pore spaces and porous matrix. The field 

governing equations can be derived based on the constitutive relations, the conservation 

laws of mass, momentum, and energy for the porous material with fluid and heat diffusion. 

The derivations in this chapter closely follow the works of Li [2], Kurashige [64], Coussy 

[65], and Rice and Cleary [86]. 

 By applying the thermodynamics principals for a fluid saturated thermoelastic 

porous media, [86] [87], constitutive equations are:  

 
T

ij ijkl kl ij ijC S B p T = + +       (4.54) 

  T,p

kl klB S Dp T = + +       (4.55) 

where εij, Skl, Δϕ, p, and ΔT are the average strain, total stress, change in porosity, pore 

pressure change, and temperature variation respectively. αT
ij and αT,p are the linear 

thermal expansion tensor and volumetric thermal expansion of pore space respectively.  

 The elastic moduli Cijkl, Bij, and D for isotropic materials have the following form:  

ijkl ik jl il kl ij kl

1 2
C ( )

4G 1
=   +   −  

+ 
    (4.56) 

  
u

ij iju

3( v)
B

2GB(1 )(1 )

 −
= 

+ +
     (4.57) 
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s f

1 1 1
D ( )

B K K K


= − −               (4.58) 

where B is the Skempton’s coefficient [88] and K is the bulk modulus: 

 
u

u

3( v)
B

(1 2 )(1 )

 −
=
 −  +

          (4.59) 

 
2G(1 )

K
3(1 2 )

+ 
=

− 
     (4.60) 

In the above equations, G is the shear modulus, ν is the Poisson’s ratio, ν
u is the undrained 

Poisson’s ratio, ϕ is the porosity, and α is the Biot’s coefficient. K
s
 and K

f 
are the bulk 

moduli of solid and pore fluid. Implicit in Biot's theory is the assumption that no volume 

deformation is produced by a deviatoric stress. However, Skempton [88] allowed for the 

possibility that deviatoric stresses also induce pore pressure changes for undrained 

conditions. Linear thermal expansion can also be expressed in term of the porous matrix 

thermal expansion coefficient, α
T,m : 

  
T T,m

ij ij =         (4.61) 

The elastic moduli Bkl is Bij, while indices i and j have been changed to k and l.  

Equation (4.54) can be expressed as follow: 

 
T,m

ij ij kk ij ij ij

1 (1 2 )
(S S ) p T

2G 1 2G(1 ) 3

  −  
 = −  +  +  

+ +
   (4.62) 

Or in terms of strain: 

 
T,m

ij ij kk ij ij ij

2G(1 )
S 2G( ) p T

1 2 3(1 2 )

 + 
=  +   −  −   

−  − 
   (4.63) 

T,m

kk kk

2G(1 ) 2G(1 )
S 3 p T

1 2 (1 2 )

+  + 
=  −  −  

−  − 
   (4.64) 

Fluid mass change per unit volume m can be expressed as:  

  f fm =  +        (4.65) 

Changes in fluid density is defined by changes in pore pressure and temperature as:  
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f f

f p T
p T

 
 =  + 

 
     (4.66) 

where ρf is the density of fluid. By definition:  

  
f f f

f T,f

f
,

p K T
            

  
= = − 

 
    (4.67) 

αT,f is the volumetric thermal expansion coefficient of the pore fluid. Equation (4.65) 

becomes:  

 f T,f

f

p
m ( T )

K
 =  + −       (4.68) 

By substituting equations (4.57) and (4.59) into (4.55), the following equation is:  

 
u

T,p

ij iju s f

3( v) p 1 1
S ( ) p T

2GB(1 )(1 ) B K K K

 − 
 =  + − − + 

+ +
  (4.69) 

Using equations (4.68) and (4.69), the fluid mass change equations becomes: 

 
u

f T,p T,f

ij iju s

3( v) p 1 1
m S ( ) ( ) T

2GB(1 )(1 ) B K K

  −
 =   + − +  −  

+  +  
     (4.70) 

Or per unit reference volume: 

u
T,p T,f

ij ijf u s

m ( v) p
S ( ) ( ) T

GB( )( ) B K K

3 1 1

2 1 1

  −
=  =  + − +  − 

 + +
     (4.71) 

By applying the following relationship: 

 
u

s 2 u

1 1 1 9( v)
( )

B K K 2GB (1 )(1 )

 −
− =

+ +
    (4.72) 

from equation (4.72), equation (4.71) becomes: 

 
T,p T,f

kk

(1 2v) 3p
(S ) ( ) T

2G(1 ) B

 −
 = + +  − 

+ 
                   (4.73) 

 Constitutive relations for the coupled mass and heat diffusion processes can be 

obtained by using positive entropy production assumption [64] [65]:  

 
f

i ij , j ij , jq p L T= −  +       (4.74) 
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'

i ij , j ij , jh k T L p= − +             (4.75)  

where q and h are the fluid mass and heat flux respectively. κ is the permeability of the 

matrix and k is the thermal conductivity coefficient. L and L’ are cross-effect coefficient. 

L represents the Soret’s diffusion, while, L’ is analogous to Dufour’s effect. For isotropic 

material, permeability and thermal conductivity coefficient take single values, meaning 

they are constant and the same everywhere in the rock medium. Cross-effect terms are 

much smaller compared to the first terms in the equations (4.74) and (4.75), therefore, they 

can be ignored [2] [64]. They can be simplified further into:  

 
f

i , jq p= −                  (4.76) 

 i , jh kT= −          (4.77) 

The conversation laws are used for the further steps in deriving thermoporoelastic model. 

The first one is the equilibrium equation, derived in section 4.2. Using equation (4.34) 

without any body force, and replacing σ with S, one obtains: 

ij, jS 0=                 (4.78) 

The second law is the local fluid mass conservation: 

 j, j

m
q 0

t


+ =


           (4.79) 

Substitution of (4.76) into (4.79), it becomes: 

f

, jj

m
p 0

t


−  =


                    (4.80) 

or, 

, jjp 0
t


−  =


                     (4.81) 

The third, and the final law is the conservation of energy. By ignoring the terms 

representing the interconvertibility of thermal and mechanical energy, the energy balance 

becomes: 
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 f

i,i i ,i

( CT)
h (C Tq ) 0

t

 
+ + =


    (4.82) 

where ρ and C are the density and specific heat for the material, and Cf is the specific heat 

of pore fluid. The second term in equation (4.82) represents conductive heat transfer, while, 

convective heat transfer through pore fluid flow is captured in the third term. 

 Equation (4.82) is established based on the concept of effective heat transfer also 

known as local thermal equilibrium (LTE) theory. Based on this theory, a uniform 

temperature gradient is imposed in a fluid-saturated, homogenous porous medium. In other 

words, the mean temperature of the matrix solid and fluid phases for an elementary volume 

are equal. However, occurrence of a temperature difference between the solid and fluid 

phases are possible at high fluid velocity. Therefore, energy balance must distinguish the 

mean temperature between the matrix solid and the pore fluid. A separate energy balance 

equation is required for each phase, and the heat flux transferred from one phase to the 

other is expressed by the means of a heat transfer coefficient [87] [35]. This modeling 

becomes very complex since more parameters are involved. The complete derivation of 

local thermal non-equilibrium (LTNE) is discussed further in Chapter 7.   

Strain equation for small (infinitesimal) deformations is given by equation (4.53): 

ij i, j j,i

1
(u u )

2
 = +             (4.83) 

kk k,ku =      (4.84) 

by substituting (4.83) and (4.84) into (4.63), one obtains the following modified Navier 

equation: 
T,m

i, jj j, ji ,i ,i

G 2G (1 )
Gu u p T 0

1 2 3(1 2 )

 +
+ − − =

−  − 
   (4.85) 

by differentiating equations (4.63) and (4.84) twice, it leads to:   
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 T,m

ii, jj kk, jj , jj , jj

1
S 2G ( T ) 3 p 0

1 2

+ 
=  − −  =

− 
   (4.86) 

 kk, jj i,ijju =       (4.87) 

Differentiating (4.85) with respect to i and solving ui,ijj, and substitute back into (4.87) then 

into (4.86), the following equation in terms of stress is obtained:  

T,m

ii, jj , jj , jj

2 (1 2 ) 4G(1 )
S p T 0

1 3(1 )

 −  + 
+ +  =

− −
    (4.88) 

differentiate (4.73) twice with respect to j, and substitute (4.88) into it, one obtains: 

 

T,m T,p T,f

, jj , jj , jj , jj

(1 2 ) 3 2 (1 2 ) 4G(1 )
p T ( )T

2G(1 ) B 1 3(1 )

  −   −  + 
 = − −  +  −   

+  − −  
  (4.89) 

Solving p,jj from (4.89) and substituting into (4.81), the fluid diffusivity equation is 

obtained:  
T,m

f T,p T,f

, jj , jj

2 (1 2 )
c ( ) T

t 1 3

    −  
=  + −  −   

 −  
  (4.90) 

where  
2 u 2

f

u u

2 GB (1 )(1 )
c

9(1 )( )

 − +
=

−  −
    (4.91) 

is the fluid diffusivity coefficient. Differentiation of (4.71) with respect to t, and 

substituting into (4.81) and rearrange, the fluid diffusion equation can be expressed in terms 

of pore pressure:  
2 u 2

T,p T,f kk
, jju

Sp 2GB (1 )(1 ) T B
p ( )

t 9( ) t 3 t

 + +  
=  −  −  −   −   

 (4.92) 

By applying relationship between Skk and ϵkk, equation (4.92) becomes:  

T,m T,p T,fkk
, jj

p T
M p ( )

t t t

  
=  − +  − +     

  (4.93) 

where, 
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u

2 u

2G( )
M

(1 2 )(1 2 )

 −
=
 −  − 

    (4.94) 

is the Biot’s modulus. 

By substituting (4.76) and (4.72) into (4.82), one obtains:  

f f
T

,ii ,i ,i

T C
c T (Tp )

t C

 
= +

 
    (4.95) 

where, 

T k
c

C
=


     (4.96) 

is the thermal diffusivity coefficient for bulk material.  

 The equations derived for displacement, pore pressure, thermal field are completely 

coupled with each other. The coupling between pore pressure and thermal fields includes 

non-linearity. If Sij replaces ui and pore pressure, p, replaces ξ, the above field equations 

can be written as:  

ij, jS 0=       (4.97) 

T,m T,p T,fkk
, jj

dp T
M p ( )

dt t t

  
=  − +  − +    

   (4.98) 

f f
T

,ii ,i ,i

dT C
c T (Tp )

dt C


= +


     (4.99) 

Solving the three equations above simultaneously, one can define the displacement, pore 

pressure, and thermal fields for a fluid-saturated, isotropic, thermoporoelastic medium.  

4.3 MATERIAL PROPERTIES DEPENDENCY ON TEMPERATURE AND PORE PRESSURE  

Not only the parameters in the thermoporoelastic model are spatial and temporal 

dependent, but also, may vary with thermal and stress variations.  
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4.3.1 Thermal conductivity 

Thermal conductivity of a porous media is inversely proportional to its pore spaces. 

The higher the pore space the lower the thermal conductivity will be since solid is a better 

conductor than fluid. In fact, conductivity of a rock will increase with increasing stress 

since the grains are compacted and more contacts between them are created (pore space is 

reduced). However, the increase in thermal conductivity with stress is generally small as 

shown in Figure 4.8.  

 
Figure 4. 8: Stress effect on thermal conductivity. Conductivity of a rock will increase 

with increasing stress. However, the increase in thermal conductivity with 

stress is generally small [41] 

Edmondson [89] reported from 10-13% increase for about 7 MPa stress increase at 

low environmental stress level (6-25 MPa). Woodside and Messmer [90] reported a 12% 

increase per 7 MPa at low stress range (0-7 MPa), and 2.5% increase per 7 MPa at high 



 63 

range stress (14-28MPa). Somerton [41] developed an empirical model for temperature 

dependent thermal conductivity of sandstone based on Tikhomirov’s work [91]: 

,20,20 3 ,20 ,20 3 0.25 ,20 0.6410 ( 293)( 1.38) (1.8 10 ) 1.28 ( )
TT T T T k Tk k T k k x T k− − − − = − − − +

 
(4.100) 

where kT,20 is the thermal conductivity at 20˚C in W/m/K, T is in Kelvin. Tikhomirov and 

Somerton have shown moderate negative gradients of thermal conductivity for high 

conductivity rocks, but small positive gradients for low conductivity rocks.  

 Thermal conductivities of rocks usually decrease with increasing temperature. This 

can be observed at very high temperature as shown in Figure 4.9. However, in drilling 

conditions, the temperature changes are small, e.g., 20-60 degrees. This temperature 

change is not large enough to change thermal conductivity of the formation greatly.  
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(a) 

Figure 4. 9 
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(b) 

Figure 4. 9: Temperature effect on thermal conductivity at 5 MPa. (a) dense limestone, 

marble, and dolostone, in directions parallel and perpendicular to bedding, 

with decimal solidity in parentheses (b) Temperature effect on thermal 

conductivity at 5MPa of sandstones, quartzites, and shales, with quartz 

shown for comparison; decimal solidity in parentheses. [109] 

 Abdulagatov et al. studied the effect of confining pressure and temperature on 

effective thermal conductivity (ETC) for several rock types [92]. They concluded that with 

increasing confining pressure, ETC will increase sharply from 0.1 MPa to 100 MPa. At 

higher pressure (>100 MPa) a weak linear relationship between ETC and confining 

pressure was observed. A decrease in ETC was observed with increasing temperature in 
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sedimentary rocks. The effect of temperature on ETC relies on the structure of the sample 

(crystalline vs. amorphous) as well as the conductivity of minerals associated with the  

sample [92].  

4.3.2 Thermal expansion coefficient  

Many papers have shown a nonlinear behavior of thermal expansion coefficient 

with temperature. However, below 400 ˚C, the trend can be treated as linear. Above the 

linear threshold, thermal expansion increases rapidly, and it stops at above a certain 

temperature (about 600 ˚C) as shown in Figure 4.10. 

 
Figure 4. 10: Temperature effect on linear thermal expansion coefficient [41] 
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If the cooling causes permanent damage or plastic deformation, the thermal expansion will 

obey a different trend during the cooling phase, the thermal expansion experiences 

hysteresis. Thermal expansion also depends on stress. Sweet estimated 25% decrease in 

volumetric thermal expansion coefficient of low permeability sandstone when atmospheric 

pressure rose to 100 MPa [93]. Wong and Brace have shown the same magnitude of 

decrease under larger pressure variations, 100-500 MPa [94].  

4.3.3 Fluid thermal expansion  

Sorey suggested the following equation for temperature-dependent fluid thermal 

expansion coefficient [95]:  

 
f ,ref f

T,f

ref refp (T T )

 −
 =

−
                    (4.101) 

where superscript “ref” represents the reference state. 

Perry’s [96] hand book can also be used to predict thermal expansion coefficient for 

liquids:   

 T,f T T T2 3 =  + +                      (4.102)    

where are α, β, γ and are constants and vary for different materials. The temperature 

range for the above equation is 0-160 ˚C.  

4.3.4 Porosity  

Dependency of porosity on effective stress and pore pressure have been studied by 

numerous authors experimentally and theoretically.  For instance, Geertsma [97] 

suggested:  

n
n c

s

1 1
( )(dp dp)
K K

−
 =  + − −    (4.103) 

where φn and Pc are porosity at the previous loading stage and confining pressure  

respectively. Ks and K are solid grain and total bulk moduli respectively. Since  
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permeability is a function of porosity, it can be calculated using Carman-Kozeny’s relation:  

ref

ref
( )3

 = 


    (4.104) 

where φref and κref are reference parameters of porosity and permeability.   

Temperature dependency of porosity and permeability can be captured using [98], [98], 

[100]:  

ref ',m ',m T,p T,m ref

s

3
exp ( ) ( )(T T )

4G

 
 =   − +  − − 

 
  (4.105) 

 

ref ',m ',m T,p T,m ref

s

3
exp b ( ) ( )(T T )

4G

  
 =   − +  − −  

  
  (4.106) 

where Gs and σ’,m are the shear modulus and stress of the rock matrix. σ’,nm is the stress 

acting on the non-matrix part. b is the power of porosity [101].  

4.3.5 Tensile strength  

Rock formation tensile strength also is temperature dependent parameter. 

Experimental results have shown that the tensile strength of the rock increases gradually 

with temperature initially, but after a certain high temperature tends to decrease, as shown 

in Figure 4.11. The decrease is due to plastic deformation or permanent damage caused by 

molecular debonding [76].  
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Figure 4. 11: Tensile strength vs. temperature [76] 

4.3.6 Elastic parameters  

Elastic properties demonstrate non-linear trend with variations of pressure and 

temperature. the following equations have been suggested for them:  

 

( )n

s n

1 1 1
1 a exp(c)

K K 1 exp(c)
= + 

−
   (4.107) 

 s n15(1 )
G G 1 exp(c)

7 5

− 
= −  

−  
    (4.108) 

 
n

n

(1 a) exp(c)

1 a exp(c)

+ 
 =

+ 
      (4.109) 

 
( )n s f n

1 a
B

a 1 exp(c) K / K exp(c)

+
=

+ − + 
    (4.110) 

where  
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1
a

2(1 2 )

+ 
=

− 
      (4.111) 

  ',m ',m T,p T,m n

s

3
c ( ) ( )(T T )

4G
= −  − +  − −    (4.112) 

Biot’s coefficient and Skempton coefficients are two key parameters that will 

influence poroelastic coupling greatly. Hassanzadegan et al. have studied the effect of 

temperature and pressure on these coefficients [102]. They suggested that the temperature 

variation has a very little effect on Biot’s and Skempton’s coefficients, while pressure 

substantially influences the effects of the two coefficient and coupling of the poroelastic 

model as shown in Figures 4.12 and 4.13. The values of the parameters decreased with 

increasing effective pressure, indicating that the strength of poroelastic coupling decays as 

effective pressure increases. Experimental results have shown that mechanical properties 

such as grain bulk modulus Ks, can be taken as constant in the range of the stress change 

induced by drilling or production, even for hard rocks [103].   

 
Figure 4. 12: Biot’s coefficient as a function of effective pressure at two different 

temperatures [102] 
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Figure 4. 13: Skempton’s coefficient as a function of effective pressure [102] 

4.4 LOCAL HEAT EXCHANGE THEORY 

Local heat exchange also known as instantaneous local thermal equilibrium (LTE) 

has always been employed for fluid flow and heat transfer inside the porous media for 

simplification. However, this theory has not been validated experimentally. LTE ignores 

additional pore and thermal stresses in the porous medium caused by temperature 

variations of the fluid and solid phases. Therefore, a more realistic approach is necessary 

to model both temperatures separately, known as local thermal non-equilibrium (LTNE). 

Lu and Xiang have done theoretical analyses on validity of the theory [104]. Based on their 

analyses, the discrepancies caused by using the LTE theory for heat exchange between rock 

matrix and fluid can be significant at locations close to the heat source and at early times 

of the process but reduce rather quickly to negligible levels as the distance to the heat 

source and the time increase. It is concluded that formations with fractures where flow 
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velocity is large, assumption of the LTE theory may produce erroneous results, whereas, 

in intact wellbore or low permeability formations the assumption may hold valid.  

 Combarnous and Bories [105], Vafai and Sozen [106], and Hojka et al. [35] 

analyses can be used to establish different temperature profile for rock matrix and the fluid 

where LTE theory is not applicable, as shown in Figure 4.14.  

 
Figure 4. 14: Temperature profile for porous media. (a) LTE temperature profile 

prediction (b) LTNE temperature profile 

Combarnous and Bories [105] and Nield and Bejan [107] formulated mathematical models 

by applying an energy balance approach on both the fluid phase and the solid phase:  

     f f f f f f s f.( k T ) . ( c) vT ( c) T h(T T )
t


   −  =   − −


             (4.115) 

 s s s s s f.((1 ) k T ) (1 )( c) T h(T T )
t


 −  = −  + −


        (4.116) 
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where, kf and ks are the thermal conductivity of fluid and rock matrix, v is the fluid velocity, 

h is the heat transfer coefficient, Tf and Ts are the fluid and solid temperatures. ρ is the 

density of the material and ϕ is the porosity of the rock.  

 Hojka et al. presented an analytical solution for the effect of LTNE for a long period 

of time suitable for thermal oil recovery scenario [35]. However, our interest is short time 

which is suitable for drilling scenarios. Figure 4.15 shows the temperature profiles 

calculated using equations (4.115) and (4.116) using explicit finite difference method for 

solid matrix and fluid. The data for this analysis is shown in Table 1.  The fluid temperature 

is ahead of the solid matrix invalidating LTE theory, claiming that the rock and fluid 

temperatures are instantaneously at equilibrium.  

 
Figure 4. 15: Temperature profile for different phases under LTNE condition 
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According to Eckert, the heat transfer coefficient (h) inversely proportional to the 

porous media grain size [108]. Therefore, the heat transfer coefficient is small for coarse 

size grain samples. Low heat transfer coefficient causes the temperature discrepancy to 

increase and invalidating the LTE theory.     

Chapter 7 will explore validity of LTE and effect of local thermal non-equilibrium 

in further details. The LTNE effects on temperature profile and the thermoporoelastic 

model will be provided through analyses. A series of analytical and numerical models are 

discussed in this chapter. 

 

 

 

 

 

 

Table 4. 1: Parameters for LTE validation  

Parameter value 

Initial temperature (˚C) 70 

ΔT (˚C) -20 

Time (sec) 0.5 

h (w/m2/ Kelvin) 2000 

Porosity  0.3 

v (m/s) 1.6 

Well radius (m) 0.1 

r (m) 1 

(ρc)f (J/m3/ Kelvin) 4.19e6 

(ρc)s (J/m3/ Kelvin) 1.54e6 

ks (w/m/ Kelvin) 1.4 

kf (w/m/ Kelvin) 0.61 
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CHAPTER 5: THERMOPOROELASTIC MODELS 

5.1 INTRODUCTION  

This section covers a series of analytical and numerical solutions for the 

thermoporoelastic model with assumption of irrotational displacement for any wellbore 

orientations. The borehole can be subjected to non-hydrostatic pressures.   

5.2 IRROTATIONAL DISPLACEMENT  

Irrotational displacement allows the decoupling of the displacement field from 

temperature and pore pressure fields. The irrational displacement is allowed under the 

condition of axisymmetric loading. This decoupling simplifies the equations, therefore, 

finding the solutions becomes straightforward. 

5.2.1 Displacement decoupling from temperature and pore pressure fields 

For the irrotational displacement field, the displacement can be expresses as a 

gradient of a scalar function Ψ [64], that is: 

i ,iu =       (5.1) 

i,i ,ii iiu =  =       (5.2) 

Insert (5.2) into the Navier equation (4.85), one has: 

 
T,m

,ijj ,ijj ,i ,i

G 2G (1 )
G p T 0

1 2 3(1 2 )

 +
 +  − − =

−  − 
  (5.3) 

Equation (5.3) can be rearranged to:  

T,m

,ijj ,i ,i

2G(1 ) 2G (1 )
p T

1 2 3(1 2 )

−  + 
 =  + 

−  −  
    (5.4) 

Integrating equation (5.4) with respect to i, gives: 

T,m

, jj

2G(1 ) 2G (1 )
p T g(t)

1 2 3(1 2 )

−  + 
 =  + + 

−  −  
     (5.5) 
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Using (5.2), (5.5) becomes: 

T,m

jj

2G(1 ) 2G (1 )
p T g(t)

1 2 3(1 2 )

−  + 
 =  + + 

−  −  
         (5.6) 

where g(t) is an arbitrary function of time. Substitute equation (5.6) into (4.64) and 

rearrange to obtain:   

T,m

kk

2(1 2 ) 4G(1 ) 1
S p T g(t)

1 1 1

−  +  + 
= −  −  +

− − −
      (5.7) 

Pore pressure and temperature field equations can be formulated as follow: 

Substituting (5.6) into (4.73) and rearranging: 

 

T,m T,p T,f

, jj , jj , jj

(1 2 ) 3 2 (1 2 ) 2 (1 2 ) (1 2 )
p ( ) T g(t)

2G(1 ) B 1 3(1 ) 2G(1 )

  −   −   −   −  
 = − −  −  −  +  +  − − −   

 

(5.8) 

Suspending indicial notation, and differentiation with respect to time while keeping 

coefficients constant, one has: 

 

T,m T,p T,f(1 2 ) 3 2 (1 2 ) 2 (1 2 ) (1 2 )
p ( ) T g(t)

t 2G(1 ) B 1 t 3(1 ) t 2G(1 ) t

   −   −    −    −   
 = − −  −  −  +   +  −  −  −    

 

(5.9) 

Substituting equation (5.9) into (4.81): 

 

T,m T,p T,f

, jj

(1 2 ) 3 2 (1 2 ) 2 (1 2 ) (1 2 )
p p ( ) T g(t)

2G(1 ) B 1 t 3(1 ) t 2G(1 ) t

  −   −    −    −   
− =  +  −  −  −  +  −  −  −    

(5.10) 

Rearranging equation (5.10) gives: 
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f T,p g

, jj

p T g(t)
c p c c

t t t

  
= + −

  
       (5.11) 

where, 
2 u 2

f

u u

2 GB (1 ) (1 )
c

9( )(1 )

 + −
=

 − −
               (5.12) 

 
f

T,p T,m T,p T,fc 2 (1 2 )
c ( )

3(1 )

  − 
=  −  −  
 − 

                (5.13) 

  
u

g

u

B(1 )
c

3(1 )

+
=

−
           (5.14) 

For infinite or semi-infinite domains, the function g(t) approaches zero, since strains, pore 

pressure, and temperature fields are unchanged. Therefore, equation (5.11) reduced to: 

  
f T,p

, jj

p T
c p c

t t

 
= +

 
                          (5.15) 

It is obvious that the displacement field is decoupled from the pore pressure and the 

temperature fields. However, pore pressure and temperature fields are still coupled with 

each other temporally through convective heat transfer.  

5.3 SIMPLIFIED CASES 

Thermoporoelastic equations (4.99) and (5.15) are coupled with each other, with 

non-linearity in the temperature field, so they are very challenging to solve analytically. 

But in some specific cases, these equations can be decoupled and linearized. The 

simplification can be done by minimizing the effect of the coefficients in thermoporoelastic 

equations.  

5.3.1 Case 1: analytical solution for low permeability formation  

Since the medium of interest is a low permeable formation, convective mechanism 

caused by fluid flow can be ignored. By ignoring the convective heat transfer in the thermal 

diffusivity equation (4.99), thermal diffusivity equation is decoupled, and pore pressure 
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diffusivity equation becomes linear. With this simplification, it can be concluded that the 

conductive heat transfer dominates the heat transfer mechanism inside the porous medium. 

Therefore, the simplified equations will be: 

T

,ii

T
c T

t


=


     (5.16) 

f T,p

, jj

p T
c p c

t t

 
= +

 
     (5.17) 

The analytical solution can easily be obtained under initial and boundary conditions. This 

case is suitable for low permeability formations such as shale where fluid flow is negligible.  

Assuming the wellbore is aligned along one of the in-situ principal stress directions, 

the in-situ stresses are non-hydrostatic. The problem can be solved by dividing it into three 

loading modes using Detournay and Cheng technique [11]. The boundary conditions for 

the three loading modes are as follow: 

Mode 1: 

( )

rr o mH(t)(p p )1 = −      (5.17) 

(1)

r 0 =      (5.18) 

(1)p 0=      (5.19) 

(1)T 0=      (5.20) 

Mode 2: 

(2)

rr 0 =      (5.20) 

(2)

r 0 =      (5.21) 

( )

o mp H(t)(p p )2 = −      (5.22) 

( )

o mT H(t)(T T )2 = −      (5.23) 

Mode 3: 

(3)

rr oS H(t)cos 2 = −       (5.24) 
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(3)

r oS H(t)sin 2 =       (5.25) 

(3)p 0=      (5.26) 

(3)T 0=      (5.27) 

where are defined as: 

x y

o

S S
p

2

+
=       (5.28) 

2

x y 2

o xy

S S
S S

2

− 
= − 

 
    (5.29) 

xy1

x y

2S1
tan

2 S S

−
 

 =  
 − 

     (5.30) 

as shown in Figure 5.1. pm and Tm are the mud pressure and temperature during drilling. 

H(t) is the Heaviside unite step function.  

H(t) 0       for t 0=       (5.31) 

H(t) 1       for t > 0=      (5.32) 

 
Figure 5. 1: Schematic wellbore subjected to non-hydrostatic stress field, wellbore 

pressure and temperature 
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5.3.1.1 Solutions for modes 1 through 3 

Solutions for mode 1 and 3 can be found in Detournay and Cheng [11]. They are as 

follow: 

Mode 1: 

( )

rr o m

r
H(t)(p p )

a
 = −

2
1

2
    (5.33) 

( )

o m

r
H(t)(p p )

a

2
1

2 = − −     (5.34) 

Mode 3:  

(3) u 2 4

rr 2
1 1 2 3u 2 u 2 4

o

s CB(1 ) 1 6 a a
C K ( r) K ( r) 3C

S cos 2 3(1 ) r ( r) 1 r r

  + 
=  +  − − 

 −   − 
 (5.35) 

(3) u 4

1 1 2 3u 2 4

o

s B(1 ) 1 6 a
C K ( r) 1 K ( r) 3C

S cos 2 3(1 ) r ( r) r


   + 

=  + +  +  
 −    

 (5.36) 

(3) u 2 4

r 2
1 1 2 3u 2 u 2 4

o

s C2B(1 ) 1 3 a a
C K ( r) K ( r) 3C

S sin 2 3(1 ) r ( r) 2(1 ) r r


  + 

=  +  − − 
 −   − 

 (5.37) 
(3) 2 u 2 u 2

1 2 2u u u 2

o

sp B (1 ) (1 ) B(1 ) a
C K ( r) C

S cos 2 9(1 )( ) 3(1 ) r

+ − +
=  +

 −  − −
  (5.38) 

where, 
u u

1 u

2 1

12 a(1 )( )
C

B(1 )(D D )

 −  −
=

+ −
    (5.39) 

u

2
2

2 1

4(1 )D
C

D D

−
=

−
     (5.40) 

u

2 1 2
3

2 1

a(D D ) 8( ) K ( a)
C

(D D )

 + +  − 
=

 −
    (5.41) 

f

s

c
 =       (5.42) 

u

1 1D 2( )K ( a)=  −       (5.43) 

2 2D a(1 )K ( a)=  −      (5.44) 
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 Carslaw and Jaeger techniques are used in finding solutions for mode 2 [110]. The 

final solutions are:   

T,f T,f
(2) o m o m1 1 1 1
rr o m f f2 2

0 0 0 0
T T

T,m

1
o m

0

c (T T ) c (T T )K ( r) aK ( a) K (q r) aK (q a)(1 2 )
s (p p )

c c1 r K ( a) r K ( a) rqK (q a) r qK (q a)
1 1

c c

K (q r)2G (1 )
(T T )

3(1 ) rqK (q a)

  
      − − −    

 = − − − + −     
−           − −

    

 + 
+ −

−

1

2

0

aK (q a)

r qK (q a)

 
− 

 

(5.45) 

T,f T,f
(2) o m 0 o m 01 1 1 1

o m f f2 2

0 0 0 0 0 0
T T

T,m

c (T T ) K ( r) c (T T ) K (q r)K ( r) aK ( a) K (q r) aK (q a)(1 2 )
s (p p )

c c1 r K ( a) r K ( a) K ( a) rqK (q a) r qK (q a) K (q a)
1 1

c c

2G (1 )



  
      −  − −    

 = − − − − + + − +     
−            − −

    

 + 
− 01 1

o m 2

0 0 0

K (q r)K (q r) aK (q a)
(T T )

3(1 ) rqK (q a) r qK (q a) K (q a)

 
− − + 

−   

(5.46) 

K0, K1, and K2 are the modified Bessel functions of zeroth, first, and second kinds. a is the 

wellbore radius. Solutions of modes 2 and 3 are in the Laplace domain, they can be 

converted into real domain using Stehfest algorithm method [111].  

The final solution is the superposition of modes 1, 2, and 3 solutions: 

(1) (2) (3)

rr o o rr rr rrp S cos 2 = − + + + +    (5.47) 

(1) (2) (3)

o op S cos 2    = − − + + +    (5.48) 

(1) (2) (3) (1) (2) (3) (2) (3)

zz z rr rr rr( ) (1 2 )(p p )   =  +  + + + + + − −  +  (5.49) 

(3)

r o rS sin 2  = − +      (5.50) 

(2) (3)

op p p p= + +      (5.51) 

( )

oT T T 2= +       (5.52) 
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5.3.2 Case 2: numerical solution for high permeable formation   

Opposite to case 1, if the fluid diffusion is much faster than the thermal diffusion, 

it can be assumed that the fluid diffusion becomes steady before the temperature begins to 

change. This case is suitable for high permeability formation such as sandstone or high- 

pressure injection. As permeability becomes larger, the effect of thermal diffusion becomes 

smaller, shown in Figure 5.2.  

 
Figure 5. 2: Permeability effect on thermal and hydraulic diffusivities 

Hojka et al. also concluded that heat transfer is dominated by hydraulic diffusion 

when permeability is above 10-15 m2 and is dominated by thermal diffusion when 

permeability is below 10-18 m2. Both mechanisms, thermal and hydraulic diffusions, 

become important when permeability is between 10-18 and 10-15 m2 [35].  

The thermoporoelastic equations reduced to: 
f f

T

,ii ,i ,i

T C
c T (Tp )

t C

 
= +

 
    (5.53) 

, jjp 0=       (5.54) 
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  The non-linear PDE thermal diffusion equation can be solved numerically in 

equation (5.53). However, 
𝜕𝑃

𝜕𝑟
 is known from equation (5.54), therefore, it can be linearized 

and solved using implicit finite difference method as follow:  

n 1 n n 1 n 1 n 1 n 1 n 1
Ti i i 1 i i 1 i i 1

2

w

n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1f f
n 1i i 1 i i 1 i 1 i i 1 i i 1

i 2

w

T T T 2T T T T1
c

t r r i r r

T T P P P 2P P P PC 1
T

C r r r r i r r
                  

+ + + + + +

+ − −

+ + + + + + + + +
+− − + − −

 + + − −
= + + 

  +   

 − − + − −
+ + + 

    +   

 (5.55) 

with boundary conditions: 

w BHT

L f

T(r , t) T

T(r ,T) T

=

=
     (5.56) 

and initial condition: 

fT(r,0) T=      (5.57) 

where TBHT is the temperature of the wellbore and Tf is temperature of the formation. rL is 

the distance away from the wellbore into the formation. Subscript “i” represents the radial 

location and its value depends on the discretization number (grid size). Before drilling the 

formation, the temperature of the formation is constant at Tf which satisfies the initial 

condition.  

The solution to (5.54) is: 

P(r) C C ln(r)1 2= +      (5.58) 

where C1 and C2 can be solved with two boundary conditions. The pressure at the wellbore 

wall is equal to wellbore pressure (Pw), and it is equal to the formation pore pressure at a 

distance away from the wellbore. These can be written as: 

 

w w

L

P(r ) P

P(r ) P

=

=
     (5.59) 

where P is the pore pressure. After substituting (5.59) into (5.58) and discretizing the 

equation, it becomes: 
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w w
i w w w

L w L w

P P P P
P Ln(r i r) P ln(r )

Ln(r / r ) Ln(r / r )

− −
= +  + +   (5.60) 

Equation (5.60) is updated into equation (5.55) at each time step to estimate the temperature 

profile.  

 5.3.2.1 Stress solution 

After computing the temperature profile around the wellbore, the stress resolution 

is calculated using Kirsch equations. The equations were reproduced from Aadnoy and 

Chenevert for any wellbore inclination and azimuth which was originally developed by 

Hiramatsu and Oka [112] [113].    

 
' 2 2 2 2

x x y vS (S cos S sin )cos S sin= +   +     (5.61) 

' 2 2

y x yS (S sin S cos )= +      (5.62) 

' 2 2 2 2

v x y vS (S cos S sin )sin S cos= +   +     (5.63) 

2

xy y x(S S )sin( )cos =  −      (5.64) 

2 2

xz x y v(S cos S sin S )sin( ) =  + −     (5.65) 

yz y x(S S )sin( )sin =  −            (5.66) 

2 4 2
' ' ' '

r x y x y2 4 2

4 2 2
TP

xy w r4 2 2

a a a
0.5(S S )(1 ) 0.5(S S )(1 3 4 )cos(2 )

r r r

a a a
(1 3 4 )sin(2 ) P P S

r r r
       

 = + − + − + − 

+  + −  + − +

 (5.67) 

2 4
' ' ' '

t x y x y2 4

4 2
TP

xy w t4 2

a a
0.5(S S )(1 ) 0.5(S S )(1 3 )cos(2 )

r r

a a
(1 3 )sin(2 ) P P S

r r
       

 = + + − − + 

+  +  − − +

  (5.68) 

2 2
' ' ' TP

z v x y xy z2 2
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where Sx, Sy, and Sv are geological principal stresses as shown in Figure 5.3. Sx′, Sy′, and 

Sv′ are transformed principal stresses. τ' is the shear stress due to transformation. σr, σt, and 

σz are the effective radial, tangential (hoop), and vertical stresses respectively. They are 

effective stresses because pore pressure (P) is subtracted from them.  

 
Figure 5. 3: Stress transformation around a borehole [112] 

Pw and P are the wellbore pressure and pore pressure respectively. φ is the azimuth of the 

wellbore, γ is the wellbore inclination angle, and θ is the wellbore angle measured around 

the wellbore wall from x-axis (maximum horizontal stress). r is the radial distance away 

from the wellbore wall, while a presents the wellbore radius. STP’s are the stress induced 

by pore pressure and temperature changes. αb is the Biot’s coefficient and E is the Young’s 

modulus of the rock. At the wellbore wall equations (5.70) and (5.71) reduce to: 
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5.3.3 Remarks 

Although an analytical solution has been derived for case 1, a numerical scheme 

similar to case 2 (finite difference) has also been applied to case 1 too. This way, the results 

of the analytical and the numerical method can be compared. This will be shown in the 

following chapter.  

In low permeability formations, induced stresses cause an immediate pore pressure 

change due to undrained loading effect which is captured by the Mode 3. The Mode 3 effect 

is significant for shale formation and lasts for a longer period compared to high 

permeability formation [11] [12]. The undrained and drained conditions will impact the 

mechanical moduli of a formation since they will have different value at each condition. 

Therefore, the stress estimations around a wellbore will depend on the imposed condition. 

The undrained effect for high permeability formations (non-shale formations) can be 

ignored according to Chen and Ewy and Cui. et al. [12] [99] [127]. 

5.4 FAILURE CRITERIA 

Failure envelops are applied to the results to quantify breakdown and breakout 

events. Shear failure criteria for this study is based on Mohr-Coulomb and modified Lade 

criteria.  

5.4.1 Mohr-Coulomb 

Jaeger and Cook [114] defines Mohr-Coulomb criterion as follow: 

2 2

1 3F ( (1 ) ) UCS=  − + +  −    (5.75) 

and tensile failure is defined by Zoback [61] as:  
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t T  − S     (5.76) 

where σ1 and σ3 are maximum and minimum principal component stresses on Mohr-

Coulomb diagram as shown in Figure 5.4. 
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So, UCS, and TS are the cohesion, unconfined cohesive strength, and tensile strengths of 

the rock respectively, where τrt is the shear stress in radial coordinates, and μ is the friction 

coefficient of the rock. If F is a positive value, the rock will exhibit shear (compressive) 

failure. On the other hand, if equation (5.76) holds true, tensile failure occurs.  

 
Figure 5. 4: Schematic Mohr-Coulomb diagram with friction angle and initial cohesion 
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5.4.2 Modified Lade 

This failure envelope is the modification of the Lade failure criterion developed by 

Ewy [72]. The major difference between modified Lade and Mohr-Coulomb is the addition 

of intermediate stress into the failure envelope. Ewy defines the failure criterion on a 

wellbore wall as follow:   

''

1 r 1 1 z 1I ( S ) ( S ) ( S )=  + +  + +  +    (5.81) 

''

3 r 1 1 z 1 r 1 zI ( S )( S )( S ) ( S ) =  +  +  + −  +    (5.82) 

'' 3

1

''

3

(I )
(27 )

I
 +     (5.83) 

where the parameter S1 is related to the cohesion and friction angle of the rock as follow: 

oS
S

tan
1 =


     (5.84) 

and parameter η is the internal friction of the rock.  

24 tan (9 7sin )

1 sin

 − 
 =

− 
    (5.85) 

β is the friction angle of the rock and is related to μ, friction coefficient, by  

tan =       (5.86) 

If equation (5.83) holds true, the rock will exhibit shear failure.  

5.4.3 Failure criteria comparisons 

There are different criteria that are used in the field of geomechanics to quantify 

failure in a wellbore. Five commonly used failure criteria are:  

1. Mohr-Coulomb: the simplest and commonly used criteria. This criterion is 

expressed in terms of the shear and normal stress or maximum and minimum 

principal stresses. This criterion does not consider the effect of intermediate 

principal stress as shown in Figure 5.5. 
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Figure 5. 5: Mohr-Coulomb criteria plot with effective stresses [13] 

2. Drucker-Prager: this criterion considers all three principal stresses, and its 

material constants can be related to the Mohr-Coulomb parameters if the 

Drucker-Prager surface circumscribes the Mohr-Coulomb pyramid [115]. This 

criterion overestimated the effect of intermediate principal stress, as shown in 

Figure 5.6.  

 
Figure 5. 6: Drucker-Prager criteria plot with effective stresses [13] 

3. Modified Lade: this failure criterion is the modification of the Lade and Duncan 

failure criterion developed by Ewy [72]. The modified Lade criterion, unlike 
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the Drucker–Prager criterion, predicts a strengthening effect of the intermediate 

principal stress as shown in Figure 5.7. 

 
Figure 5. 7: Modified Lade criteria plot with effective stresses [13] 

4. Mogi-Coulomb: Al-Ajmi and Zimmerman developed this criterion [116]. 

Similar to the modified Lade criterion, it accounts for the intermediate principal 

stress and predicts a strengthening effect of the intermediate principal stress as 

shown in Figure 5.8. 

 
Figure 5. 8: Mogi-Coulomb criteria plot with effective stresses [13] 
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5. 3D Hoek-Brown: it has been used widely in rock mechanics since it was 

developed for rock materials and masses. Its parameters are determined from 

routine unconfined compression tests, and it has been applied successfully to a 

wide range of intact and fractured rock types [117]. Zhang and Zhu introduced 

the intermediate stress to the Hoek-Brown criterion to make a 3D envelope. 

Like modified Lade and Mogi-Coulomb criteria, it produces comparable results 

as shown in Figure 5.9.  

 
Figure 5. 9: 3D Hoek-Brown criteria plot with effective stresses [13] 

Zhang et al. compared these five criteria in prediction of minimum mud weight 

required for ensuring wellbore stability of a vertical borehole in Dunam dolomite [118]. 

As shown in Figure 5.10, that the Mohr-Coulomb criterion predicts the highest minimum 

mud pressure while Drucker-Prager predicts the lowest mud pressure. The modified Lade, 

Mogi-Coulomb, and 3D Hoek-Brown criteria predict the minimum mud pressure that are 

close to each other, and in between the Mohr-Coulomb and Drucker-Prager criteria 

predictions. The Mohr-Coulomb underestimates the strength of the rock since it does not 

consider the effect of the intermediate principal stress, while, Drucker-Prager 



 92 

overestimates the strength of the rock due to a great emphasis was put on intermediate 

principal stress. The minimum mud pressures predicted by the Mohr–Coulomb criterion 

will be too conservative while those from the Drucker–Prager criterion will be unsafe.  

 
Figure 5. 10: Minimum overbalance pressure in Dunham dolomite based on different 

rock criteria [13] 

 A liner elastic model is coupled with a rock strength criterion to establish the 

minimum mud weight required to encounter wellbore shear failure. Both field observations 

and lab experiments have shown that linear elastic models tend to overestimate the stress 

concentration around a borehole, predicting a much higher minimum mud weight [24] [25]. 

This is because the linear elastic models do not consider the large plastic deformation of 

rock before failure, which reduces stresses or energy around a wellbore by a certain 

amount. The elastic models are coupled with the peak-strength failure criteria assuming 

that the wellbore failure is synonymous to one point at the borehole wall reaching the peak-

strength [2]. However, the peak-strength point is a point in the material reaching its yield 

limit, therefore, a plastic deformation zone starts around that point on the wellbore. That 

point will exhibit a low stress and large deformation. If the deformations are within the 
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tolerance of the drilling activity, the wellbore can be considered stable. In fact, building a 

criterion based on deformation/strain instead of stresses is more suitable in wellbore failure 

prediction when plasticity comes into play.    

 There are frequent cases that predicted minimum mud weight to combat shear 

failure crosses fracture gradient. This will produce a negative safe mud window meaning 

either fracturing (lost circulation) or wellbore collapse or differential pipe sticking will 

occur no matter what the mud weight is chosen. Ideal mud weight design chooses the 

lowest mud weight to maximize the possible mud weight window. However, this cannot 

be done with linear elastic models. Therefore, the development of a plastic model is 

necessary since it predicts a lower mud weight and expanding the drilling mud weight 

window. In the past decades, substantial work has been focused toward investigation of the 

elastoplastic rock behavior and development of elastic plastic predictive model. Of course, 

the models presented in this dissertation are based on linear elastic rock behavior. The 

readers are encouraged to study recent publications on elastoplastic models. The very first 

work on elastoplastic stress analysis around a wellbore was pioneered by Fenner in 1938 

[119]. Over the years, numerous models to predict the failure zone and plastic deformation 

have been developed [120] [121] [122] [123] [124]. Although, substantial work has been 

dedicated toward plastic modeling, a fully coupled thermoporoplastic model has not been 

yet developed.  
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CHAPTER 6: THERMOPOROELATSIC SOLUTIONS  

Wellbore instability has been a troublesome problem for decades. The instability 

happens in two forms: shear (compressive) or tensile (breakdown) failures. When pressure 

in a wellbore is lower than the effective stress of a formation, shear failure (breakout) will 

happen. On the other hand, when pressure is higher than the rock strength, breakdown 

(tensile failure) occurs. The latter scenario is the basis for lost circulation events. Thermal 

stresses can substantially change the magnitude of the fracture gradient of a formation 

(stress required to initiate a fracture). The formation temperature usually is warmer than 

the wellbore temperature due to geothermal gradient and continuous circulation of mud in 

the wellbore. This temperature difference causes a thermally induced stress around the 

wellbore. A small variation in temperature results in a large stress concentration since 

thermal expansion coefficient of a rock is very small. Pickens observed that a 1˚C change 

induces a 1 MPa pressure in the field [3]. While there are many available models exploring 

thermoporoelastic effect, thermal analyses are ignored during drilling practices, 

discrediting the significance of thermal stress. This chapter investigates the transient 

thermal equations developed in Chapter 5 with numerical examples and emphasizes the 

importance of induce thermal stresses. Finally, various failure criteria have been applied to 

the results to classify tensile (breakdown) and shear (breakout) failures around the wellbore 

wall. 

6.1 INDUCED THERMAL STRESSES   

When a wellbore is drilled, the rock is replaced by a drilling fluid that has a different 

temperature gradient compared to that rock. Usually, the wellbore temperature is cooler 

than the rock temperature being drilled; this is true as the wellbore gets deeper. Therefore, 

a cooling zone occurs around the wellbore. Pepin et al. [125] investigated mud temperature 
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effect on fracture gradient for several ChevronTexaco wells. They have suggested that the 

reduction of the fracture gradient due to cooling around the wellbore may be a major 

contributor to lost circulation events. Three different leak-off tests (LOT) at different 

bottom hole temperatures (BHT) were performed. In the first test, the BHT was cooled 

down to 33˚C. Then BHT was heated to 56˚C and 67˚C in the following tests respectively. 

They observed a rising fracture gradient (FG) as the BHT increased. In fact, the FG 

increased by more than 1.5 ppg (pound per gallon) from the first test to the last test as 

shown in Figure 6.1. This finding motivates anyone to believe the importance of thermal 

effect on fracture gradient as well as wellbore stability.  

 
Figure 6. 1: Leak-off pressure tests at various bottom-hole temperatures [125] 

Stresses in poroelastic media are defined not only by mechanical stresses and pore  
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pressure, but also depends on thermal stresses. Any change in pore pressure will redefine 

the stress resolution in the media. In turn, it could lead into deformation of the media. This 

effect is stimulated with thermal loadings, either expansion or contraction. It is important 

to realize that a small change in temperature change can lead into a large pore pressure 

change due to small thermal expansion coefficient of the media. In fact, a temperature-

pressure ratio of 1, meaning a 1˚C change induces a 1 MPa pore pressure change, has been 

measured in the field [3]. The pressure-temperature correlation was suggested by 

Zemansky et al. [126] as follow: 

m

f

T
P

c

 
 =      (6.1) 

where αm and cf are thermal expansion coefficient of rock and fluid compressibility 

respectively.  

The wellbore temperature is different from that of the rock formation due to 

geothermal gradient and circulation of mud inside the wellbore. This temperature 

difference (thermal stress) in any type of formations such as sandstone or shale may induce 

fluid flow and change in pore pressure. For low permeability formations such as shale, 

temperature variation will result in direct thermally induced stress and transient pore 

pressure change since thermal diffusion (conduction) dominates hydraulic diffusion 

(convection) [127].  

6.2 CASE 1: ANALYTICAL SOLUTION FOR LOW PERMEABILITY FORMATION 

As discussed previously in Chapter 5, Case 1 is suitable for low permeability 

formations where conductive heat transfer dominates hydraulic diffusivity. As shown in 

Table 6.1, some of the data from Wang and Papamichos paper [128] are used to evaluate 
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the validity of the models developed in the previous chapter. Also, poroelastic model is 

applied for comparison, an indication for the thermal stress importance. 

In this case, horizontal stresses are equal and the wellbore pressure is the same as 

the pore pressure. This minimizies the effect of tectonic stresses and pore pressure in the 

study, and pure effect of thermal stresses can be evaluated. Figures 6.2 and 6.3 show the 

results for stress solutions for tangential (hoop stress) and radial stresses along the radial 

direction at different times. In this example, the wellbore temperature is greater than the 

formation temperature, so the temperature front is from the wellbore into the formation. 

This means that the near wellbore region is heating up, elevating pore pressure and 

compressive strength of the rock. This trend can also be seen in tangential graphs in the 

figure. A sharp drop in the stress profile can be seen near the wellbore since the pore 

pressure has risen, reducing the effective stress. Since in this example, the permeability is 

low the fluid diffusivity is negligible. Therefore, the fluid can not travel quickly and it is 

trapped inside the pores. As temperature rises, the fluid inside the pores is heated up and 

its temperature increases, so the induced pore stress increases. When pore pressure 

increases, the effective stress decreases. This is why a sharp stress drop is estimated near 

the wellbore. Farther away from the wellbore, the temperature disturbance diminishes, and 

the poroelastic solution matches thermoporoelastic results. These abnormalities are not 

observed in radial stress profile since the induced thermal stresses are more pronounced in 

the tangential stress.  

 The numerical thermoporoelastic solution is in a good agreement with the analytical 

solution developed by Wang and Papamichos using Detournay and Cheng approach [36] 

[128]. However, the agreement decays with time. This is because the development of the 

analytical solution has a time limitation for its accuracy. It is suggested that the model is 

suitable for short non-dimensional time of 0.1. The non-dimensional time described as:  
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2

w

t

r


 =       (6.2) 

where t is time, rw is wellbore radius, and α if thermal diffusivity coefficient. On the other 

hand, the numerical model does not have any time constraint, therefore, it is suitable for 

longer times, producing more reliable results compared to the analytical model. Also, the 

radial stress constructed by the analytical model seems to feel the temperature disturbance 

at a longer distance away from the wellbore wall compared to the numerical model. The 

predicted onset where thermoporoelastic equals the poroelastic model is consistent for the 

numerical model when comparing the tangential and radial stress profiles.  

 By comparing the poroelastic and thermoporoelastic models, it can be concluded 

how important it is to model induced thermal stresses around a wellbore since the results 

greatly change near the wellbore when there is a temperature disturbance. This discrepancy 

impacts the mud weight window for drilling operations which could aid in forecasting the 

formation breakouts or breakdowns, and casing programs.  

 In low permeable formations, the thermoporoelastic model suggests that the 

maximum or minimum hoop stress may not occur at the wellbore walls which is contrary 

to the classical models such as elastic and poroelastic models, suggesting that the maximum 

or minimum stresses to occur at the wellbore walls. Therefore, the failure may initiate away 

from the wall and travel to the walls.  
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Figure 6. 2 

 

 

 

 

 

 

1 min 



 100 

 

                 (b) 

Figure 6. 2 
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                      (c) 

Figure 6. 2: Effective tangential stress along radial distance for various periods - low 

permeability formation with conductive heat transfer domination. Blue 

dashed line is the thermoporoelastic model developed in this dissertation, 

and green curve is for the analytical solution developed by Wang and 

Papamichos. The analytical solution in transformed from the Laplace 

domain into time domain using Stehfest method  

20 min 
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         (a) 

Figure 6. 3 
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    (b) 

Figure 6. 3 
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    (c) 

Figure 6. 3: Effective radial stress along radial distance (a) 1 min, (b) 10 min, and (c) 20 

min - low permeability formation with conductive heat transfer domination 

6.3 CASE 2: NUMERICAL SOLUTION FOR HIGH PERMEABLE FORMATION   

Results for a high permeable formation such as sandstone are presented. Table 6.2 

lists the data for the case. The tensile strength of the rock is assumed to be zero since it is 

assumed that a fracture initiates in a joint or existing fracture during drilling operations 

[112]. But in many cases, as when there are no pre-existing fractures, the rock’s actual 

tensile strength is not zero and should be taken into account, additional complexities in 

20 min 
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analyses notwithstanding [19]. However, for simplicity, the rock tensile strength is 

assumed to be zero in this analysis.  

Two different scenarios were modeled. The first scenario assumes that there is no 

thermally induced stress, while the second scenario includes a thermally induced stress. 

Figures 6.4, 6.5, 6.6, and 6.7 are the results for the first case. As shown in Figure 6.4, the 

hoop stress around the wellbore is always positive, meaning that the stress is compressive. 

This is because thermal stress has not been considered. Since there is no thermal stress in 

this case, it is expected that there would be no tensile failure, as shown in Figure 6.5, blue 

area in this figure represents no failure region. The tensile failure criterion in this analysis 

is based in the Zoback tensile failure, equation (5.76). Figures 6.6 and 6.7 show shear 

failure results based on Mohr-Coulomb and modified Lade. Red color represents failure 

area. Shear failure increases with increasing azimuth angle.  

The comparison between Mohr-Coulomb and modified Lade can be seen from 

Figures 6.6 and 6.7. Mohr-Coulomb is over-estimating the shear failure around the 

wellbore wall, while, modified Lade presents a more realistic situation since it accounts for 

the intermediate stress in the model. In general, Mohr-Coulomb under-estimates the 

strength of the rock since it does not include intermediate stress in its criterion [72]. 

Another reason for this discrepancy between Mohr-Coulomb and modified Lade is due to 

the formulation of their failure criteria. Mohr-Coulomb uses a linear relationship, however, 

modified Lade defines failure based on ratios as discussed in Chapter 5. 

Figures 6.8, 6.9, 6.10, and 6.11 show the results for scenario 2, thermally induced 

stress analysis. In this case, the wellbore is cooled down by 30˚C. The effective hoop stress 

can either be compressive or tensile as shown in Figure 6.8. Positive stress means 

compression, while negative is for tensile stress, following the geomechanics sign 

convention. The magnitude of compressive stress in Figure 6.8Figure 6. 8 is lower than 
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Figure 6.4Figure 6. 4 due to thermal cooling of the wellbore. Since the wellbore is cooled 

down, the compressive stress is reduced.  

Figure 6.9 shows the tensile failure of the wellbore. Since the tangential stress 

reduced, the chance for breakdown (tensile failure) is increased. The opportunity of shear 

failure according to Mohr-Coulomb has reduced as shown in Figure 6.10Figure 6. 10. It 

can be seen in the figure that the red area (failure area) has decreased, while, the blue area 

(safe area) has increased. This means that the thermal cooling helped the wellbore become 

safer and less likely to collapse. Also, modified Lade predicts the same trend as shown in 

Figure 6.11. Shear failure decreases as rock experiences thermal cooling. However, Mohr-

Coulomb still over-estimates the shear failure around the wellbore wall compared to 

modified Lade.  

Reduction in shear failures and increase in tensile failures by cooling down the 

wellbore have also been observed by Li, Cheng, and Ewy in their works [2] [127]. In 

general, tensile and shear failure figures can be used for prediction of failure at different 

wellbore azimuth and inclination angles. Figure 6.12 shows shear and tensile failures at 

different times. The shear failure analysis in these figures is based on modified Lade. As 

time increase, the shear failure decreases and approaches a steady state (equilibrium) 

condition after 100 sec. Tensile failure increases with time too, but becomes stable earlier 

than shear failure, for example before 100 sec.   
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Figure 6. 4: Effective hoop stress without thermal stress (isothermal condition) - high 

permeability formation with convective heat transfer domination  
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Figure 6. 5: Tensile failure for case 2, without thermal stress. Blue color represents no 

failure 
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Figure 6. 6: Shear failure based on Mohr-Coulomb criteria for case 2 at 10 min. Red area 

represents the failure region 
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Figure 6. 7: Compressive (shear) failure based on modified Lade criteria for case 2 at 10 

min 
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Figure 6. 8: Effective hoop stress including thermally induced stress - high permeability 

formation with convective heat transfer domination 
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Figure 6. 9: Tensile failure prediction for high permeability formation with convective 

heat transfer domination (case 2) at 10 min 
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Figure 6. 10: Compressive (shear) failure based on Mohr-Coulomb for case 2, thermally 

induced stress at 10 min 
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Figure 6. 11: Compressive (shear) failure based on modified Lade for case 2, thermally 

induced stress, at 10 min 
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(a) 

 

(b) 

Figure 6. 12 



 116 

 

(c) 

Figure 6. 12: Shear and tensile failures evolution - at different times. (a) 10 sec, (b) 300 

sec, and (c) 600 sec 

6.4 CONCLUSIONS  

The effect of temperature coupled with fluid flow (pore pressure) into a porous 

formation was investigated in transient analyses. Mohr-Coulomb and modified Lade 

failure envelopes, and Zoback tensile failure [61] criteria are applied to the results to study 

the breakout and breakdown failures on the wellbore wall. For low permeable formations, 

where conduction dominated the heat transfer, convective coupling may be ignored. In 

these formations, the hoop stress minimum and maximum may occur away from the 

wellbore walls, and not at the walls. The developed numerical model was in a good 

agreement with the analytical solution as long as the time constraint for analytical solution 

permitted.  

For large permeability, it may be assumed that the fluid diffusion becomes steady 

state before the temperature begins to change, and the effect of thermal diffusion becomes 
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small. Therefore, that heat transfer is dominated by hydraulic diffusion. In this study, it 

was concluded that the effect of temperature on stress around the wellbore is very important 

to consider. Thermally induced stress can change stress concentration around the wellbore 

and affect the likelihood of shear and tensile failures.  

When a wellbore is cooled down, hoop stress will be lowered. Therefore, the 

stability with respect to shear failure increases, while, tensile failure increases. It was 

shown in this chapter that tensile failure approaches equilibrium earlier than shear failure 

does. Mohr-Coulomb under-estimates the strength of the rock, therefore, over-estimates 

the chance of shear failure based on the analysis. Modified Lade produces a more realistic 

estimation by including the intermediate stress and using a more accurate failure criteria 

formulation. Furthermore, these analyses can be used to predict troublesome conditions 

(tensile and shear failures) during drilling operations.  
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Table 6. 1: Parameters for case 1-low permeability formation with conductive heat 

transfer domination  

Variables Value Unit 

Minimum Horizontal Stress (Sh) 16.7 MPa 

Maximum Horizontal Stress (SH) 16.7 MPa 

Overburden Stress (SV) 21.5 MPa 

Pore Pressure (P) 10 MPa 

Wellbore Pressure (Pw) 10 MPa 

Temperature Difference (ΔT) 20 ˚C 

Well Inclination (ϒ) 0 degree 

Wellbore Angle (θ) and Azimuth(φ) 0 degree 

Wellbore Radius (r) 0.1 m 

Biot’s Coefficient (αb) 1 - 

Young’s Modulus (E) 3336 MPa 

Undrained Poisson’s Ratio (νu) 0.46 - 

Poisson’s Ratio (ν) 0.3 - 

Thermal Volumetric Expansion of Rock (αm) 9E-05 1/˚C 

Thermal Volumetric Expansion of Fluid (αf) 5E-04 1/˚C 

Coupling Coefficient 0.31 - 

Hydraulic Diffusivity 7.15E-09 m2/s 

Thermal Diffusivity 7.15e-7 m2/s 
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Table 6. 2: Parameters for case 1-high permeability formation with convective heat 

transfer domination 

Variables Value Unit 

Minimum Horizontal Stress (Sh) 23 MPa 

Maximum Horizontal Stress (SH) 1.3 Sh MPa 

Overburden Stress (SV) 1.3 SH MPa 

Pore Pressure (P) 18 MPa 

Wellbore Pressure (Pw) 19 MPa 

Temperature Difference (ΔT) -30 ˚C 

Well Inclination (ϒ) 30 degree 

Wellbore Angle (θ) and Azimuth(φ) 0-90 degree 

Wellbore Radius (r) 0.15 m 

Investigation Zone (rL) 1 m 

Formation Tensile Strength (TS) 0 MPa 

Thermal Conductivity of Rock (k) 2.61 J/s/m/Kelvin 

Density of Rock (ρb) 2.65 g/cc 

Heat Capacity of Rock (Cb) 1000 J/kg/Kelvin 

Permeability of Rock (k) 0.1 Darcy 

Porosity of Rock (ϕ) 0.15 - 

Fluid Viscosity (μ) 1 cp 

Skempton Coefficient (B) 0.73 - 

Biot’s Coefficient (αb) 1 - 

Young’s Modulus (E) 5000 MPa 

Undrained Poisson’s Ratio (νu) 0.4 - 

Poisson’s Ratio (ν) 0.3 - 

Thermal Volumetric Expansion of Rock (αm) 4.0E-5 1/˚C 

Thermal Volumetric Expansion of Fluid (αf) 5.00E-04 1/˚C 

Friction Coefficient (μ) 0.6 - 

Friction Coefficient Angle (β) 30 degree 

Cohesion of Rock (So) 7 MPa 
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CHAPTER 7:  LOCAL THERMAL NON-EQUILIBRIUM 

This chapter discusses the application and effect of local thermal non-equilibrium 

(LTNE) in porous media. Physical insights into how LTNE affect the temperature profiles 

and thermal stresses will be provided through analyses. Analytical and numerical solution 

approaches are discussed in this section. Conductive and convective heat transfers are 

considered. Finally, effects of LTNE on the current thermoporoelastic model will be 

discussed.    

7.1 INTRODUCTION TO LOCAL THERMAL NON-EQUILIBRIUM  

In classical thermodynamics in porous media such as rock formations, a single 

temperature is defined for the medium regardless of phases presented in the medium. This 

is due to the assumption that the fluid temperature and solid temperature reach a local 

equilibrium temperature instantly, also known as local thermal equilibrium (LTE) theory. 

However, this theory has not been widely investigated experimentally in rock formations. 

LTE ignores additional pore and thermal stresses in the porous medium caused by 

temperature variations of the fluid and solid phases. Therefore, a more realistic approach 

is necessary to model both temperatures separately, known as local thermal non-

equilibrium (LTNE). This approach is based on applying energy balance on both phases, 

fluid and rock matrix. LTNE effects have been investigated by many researchers in 

different media. Alazmi and Vafai investigated the effects of LTNE and thermal dispersion 

on free surface flow through porous media [129]. Wang et al. examined LTNE effects in 

biological organs related to hyperthermia treatments [130]. He and Jin developed a 

transient LTNE model for pure heat conduction transfer in porous media [131]. Others such 

as Nield and Bejan [107], Nield [132], Kuznetsov [133], and Rees and Pop [134] reviewed 

both theories and applications of the LTNE effects in convection heat transfer in porous 

Some of the work of this chapter is based on:   

*Gandomkar, A and **Gray, K.E. Local Thermal non-Equilibrium in Porous Media with Heat Conduction. 

Intl. J. of Heat and Mass Trans. 124, pp. 1212-1216, 2018   

* Corresponding author, conducted research and modeling  

**Coauthor and research supervisor  
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media. He et al. studied convective cooling or heating induced thermal stresses in a fluid 

saturated porous medium undergoing local thermal non-equilibrium [135]. However, their 

model assumes a convective heat boundary and ignores the convective heat transfer 

mechanism. Yang et al. considered the effects of LTNE with forced convective flow in an 

annulus filled with a porous medium, but their model assumes a steady state condition in 

Cartesian coordinates [136]. Xu et al. examined non-equilibrium heat transfer in a metal-

foam solar collector with no-slip boundary condition for steady state condition in Cartesian 

coordinates [137]. However, the objective of this chapter is to present transient models in 

radial coordinates considering conductive and convective heat transfers. The necessary 

equations for fluid saturated porous media undergoing local thermal nonequilibrium 

(LTNE) with conductive and convective heat transfers are presented, and the effects of 

LTNE on a circular hole in an infinite medium such as rock formations are investigated. 

First, a series of equations necessary to solve temperature profiles for the fluid and solid 

matrix with pure heat conduction are presented. The Laplace and Stehfest methods were 

employed in formulating the solutions. Next, conductive and convective heat transfers are 

modeled. MATLAB numerical method is employed in solving this condition. The models 

are then validated against He and Jin model for a circular wellbore subjected to uniform 

temperature at the wellbore boundary. Later, the thermoporoelastic models developed in 

the previous chapters are updated with the effect of LTNE. The effects of LTNE in porous 

media with conductive and convective heat transfers, heat transfer coefficient, and fluid 

flow are investigated.    

7.2 CONDUCTIVE HEAT TRANSFER 

In this section, LTNE model with pure conductive heat transfer mechanism has 

been considered.  
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7.2.1 LTNE conductive model 

Under LTNE conditions, the temperatures for solid phase and fluid phase in an  

isotropic and homogenous porous medium are given by the following heat equations [107]:  

   f f f f f f s f.( k T ) . ( c) vT ( c) T h(T T )
t


   −  =   − −


                 (7.1) 

 s s s s s f.((1 ) k T ) (1 )( c) T h(T T )
t


 −  = −  + −


      (7.2) 

where, kf and ks are the thermal conductivities of fluid and solid phases respectively. v is 

the fluid velocity, h is the heat transfer coefficient, and Tf and Ts are the fluid and solid 

temperatures. ρ is the density of each phase and ϕ is the porosity of the medium. The second 

term in (7.1) represents the convective heat flow. This section considers conductive heat 

transfer in radial direction only and ignores convective heat transfer.  

 New parameters are introduced to make equations (6.1) and (6.2) dimensionless as 

follow:  

    sf f

s s s s

k( c) k h
 A= ,      B= ,      C= ,      D      

(1 )( c) (1 )k (1 )( c) ( c)

  
=

−  − −  
(7.3a, b, c, d) 

and temperatures become dimensionless using: 

f formation s formation
f s

ref ref

T T T T
,

T T
    

− −
 =  =                    (7.4a, b) 

Tref is the reference temperature, and wellbore temperature is chosen to be the reference  

temperature as shown in Figure 7.1. Tformation is the initial formation temperature. If 

properties such as porosity, thermal conductivities, and heat capacities are constants, 

equations (7.1) and (7.2) become:  

2f
f s fA BD C( ) 0

t


−   +  − =


                   (7.5) 

2s
s s fD C( ) 0

t


−   −  − =


       (7.6) 
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Equations (7.5) and (7.6) are PDE’s in radial coordinates and can be solved 

simultaneously for the temperature profiles of fluid and solid phases. The initial and 

boundary conditions are: 

f s t 00  @ (r,t) = =  =     (7.7) 

wf s w r r  @ (r,t) = =  =      (7.8) 

f s r0  @ (r,t) = =  =     (7.9) 

ϴw is the change between wellbore temperature and formation temperature, and it is 

defined as:  

wellbore formation
w

ref

T T

T

−
 =      (7.10) 

 

Figure 7. 1: A borehole in an infinite rock formation subjected to a constant temperature 

at the borehole 
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Equations (7.5) and (7.6) are solved using the Laplace transform subjected to initial 

condition in (7.7) and boundary conditions (7.8) and (7.9): 

2

f f s fAs BD C( ) 0 −   +  − =              (7.11) 

 
2

s s s fs D C( ) 0 −   −  − =           (7.12) 

Rewrite (7.12) in terms of the fluid phase and substitute into (7.11) and solve for the solid 

phase. The result will be: 

4 2

s s sM N 0  −   +  =           (7.13) 

where: 

C D D
M As Bs BD D

B C C

 
= + + + 

 
   (7.14) 

2C As
N As s

B C

 
= + + 

 
     (7.15) 

The roots to Eq. (13) are given by: 
2

1,2

M M 4N
q

2

−  −
=     (7.16) 

using Carslaw and Jaeger analyses [110], the solution to equations (7.11) and (7.12) are as 

follow: 

 
0 1 0 2w

f 2 1

1 2 0 1 0 2

K (r q ) K (r q )A A
( s Dq ) ( s Dq )

sD(q q ) B BK (a q ) K (a q )

 
 = − − − 

−   

 (7.17) 

0 1 0 2w
s 2 1

1 2 0 1 0 2

K (r q ) K (r q )
(s Dq ) (s Dq )

sD(q q ) K (a q ) K (a q )

 
 = − − − 

−   

     (7.18) 

Further details on Carslaw and Jaeger solution are shown in the Appendix.  

Stehfest Laplace inversion algorithm has been used to convert the solutions of 

(7.17) and (7.18) from Laplace domain into real time domain [111]. Stehfest method has 

been chosen for its stability and accuracy. Finally, the mean temperature of the medium is 

calculated using: 
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LTNE s f(1 ) = −  +      (7.19) 

The classical LTE temperature profile for short time is given by Wang and 

Papamichos [128]: 

 a
LTE

s
K (r )

D

s s
K (a )

D


 =

0

0

        (7.20) 

The solution to (7.20) is also transformed from Laplace domain to time domain using 

Stehfest algorithm. The unit of time given into Stehfest algorithm is in seconds and 

calculated as follow: 

 
2a

t
D


=              (7.21) 

where τ is the nondimensional time and a is the wellbore radius.  

7.2.2 Results for conductive case  

The model is validated against He and Jin model [135] as shown in Figures 7.2, 

7.3, and 7.3. Table 7.1 lists the fluid and rock matrix data used for the conductive LTNE 

model. As shown in Figure 7.2, the model is in a good agreement with He and Jin model. 

However, diversion occurs between the two models as non-dimensional time increases, as 

shown in Figures 7.3 and 7.4. This is because He and Jin have used an approximation 

method to solve equations (7.11) and (7.12) for short periods, while, the present model 

produces exact solutions for any time. Therefore, the new model is more accurate for longer 

times compared to He and Jin LTNE model as shown in Figure 7.4. 

Figures 7.2 (a) and 7.2 (b) show the normalized temperatures for the rock matrix, 

fluid, weighted average, and classical theory (LTE) for non-dimensional times of 0.01 and 

0.1 against radial distance. It can be seen from the graphs that the weighted average 

temperature (LTNE) is always higher than the classical theory temperature (LTE). Also, 
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rock matrix (solid phase) temperature is the highest temperature due to its higher thermal 

conductivity. Figure 7.2 (b) shows that the temperature gap between the lines increases, 

indicating that the LTNE effect is more pronounced as time increases. It can also be 

concluded from the results that the temperatures never equilibrate at any time which is 

contrary to the classical theory assumption that the two phases of solid and fluid reach 

equilibrium instantly. This trend was also observed by Lu and Xiang in their analyses 

[104].  

 

(a) 

Figure 7. 2  

 



 127 

 

(b) 

Figure 7. 2: Normalized temperature profiles along radial distance for pure conductive 

heat transfer at short periods (a) τ = 0.01and (b) τ = 0.1 [143] 
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(a) 

Figure 7. 3 
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(b) 

Figure 7. 3: Normalized temperature profiles along radial distance for conductive heat 

transfer for moderate times (a) τ = 0.5 and (b) τ = 1.0 [143] 
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(a) 

Figure 7. 4 
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(b) 

Figure 7. 4: Normalized temperature profiles along radial distance for conductive heat 

transfer for longer periods (a) τ = 1.5 and (b) τ = 2.0 [143] 

In the present section, the LTNE effects in an isotropic and homogenous porous 

media with heat conduction transfer only in radial direction are analyzed. In the subsequent 

section, convective heat transfer is added to the present model to examine the LTNE effects 

with both heat transfer mechanisms.  

7.3 CONDUCTIVE AND CONVECTIVE HEAT TRANSFERS 

Convective heat transfer is added to the conductive heat transfer modeled in section 

7.2. Hence, two heat mechanisms are considered simultaneously.  
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7.3.1 LTNE conductive and convective model 

The second term in equation (7.1) represents the convective heat flow. In this 

section, both convective and conductive heat transfers are considered in the radial direction 

only. If properties such as porosity, thermal conductivities, heat capacities are constants, 

and fluid velocity (v) has a linear profile and does not change with each location (
𝜕𝑣

𝜕𝑟
= 0), 

equations (7.1) and (7.2) become:  

2f
f s f fA BD C( ) D 0

t


−   +  − −  =


            (7.22) 

 2s
s s fD C( ) 0

t


−   −  − =


      (7.23) 

equations (7.22) and (7.23) are PDE’s in radial coordinates and can be solved 

simultaneously for temperature profiles of fluid and rock matrix. The initial and boundary 

conditions are still unchanged, and equations (7.7), (7.8), and (7.9) are applicable. 

Equations (7.22) and (7.23) are solved using MATLAB partial differential 

numerical solver, pdepe. MATLAB pdepe solves initial-boundary value problems for 

systems of parabolic and elliptic PDE’s in the one space variable. The time given into the 

program come from equation (7.21).  

7.3.2 Results for conductive and convective heat transfers 

Initially, the conductive and convective model is compared to the conductive 

model. As shown in Figure 7.5, the conductive and convective model presented here is in 

a good agreement with the analytical model developed in section 7.2. Figure 7.5 shows the 

normalized temperatures for the rock matrix, fluid, weighted average, and classical theory 

(LTE) for a non-dimensional time of 0.01 against radial distance. Again, the weighted 

average temperature (LTNE) is always higher than the classical theory temperature (LTE) 

and, the rock matrix temperature is the highest.  
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Figure 7. 5: Comparison among normalized temperature profiles produced by the exact 

and numerical models along radial distance for τ = 0.01 

Figures 7.6, 7.7, and 7.8 show the effect of heat convection due to fluid flow inside 

the porous medium at different non-dimensional times. In this analysis, the fluid velocity 

is chosen to be 0.005 m/s at the wellbore wall (r = rw). It can be seen from the graphs that 

the heat convection has a pronounced effect on the LTNE, therefore, on the temperature 

profiles with increasing time. At the early time, convective heat transfer affects the 

temperature profiles very close to the vicinity of the wellbore wall. However, as time 

increases the fluid temperature profile are substantially disturbed. In fact, the temperature 

change for the fluid profile is far greater in each time and reaches the boundary condition 

temperature faster. In pure conductive heat transfer, the porous media and rock matrix 
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(solid phase) temperature are always greater than fluid temperature as shown in Figure 7.5. 

However, when the convective heat transfer is added to the system, the fluid temperature 

is higher than the other two temperatures due to convective flow. This could be agitated by 

increasing the fluid velocity.  

There is an intersection point, called thermal equilibrium point, shown in Figures 

7.6, 7.7, and 7.10. To the left of this point, convective heat transfer dominates conduction 

heat transfer. While, conduction heat transfer is dominant to the right of this point. This 

point is an indication that shows where a dominant heat transfer mechanism exists, and it 

changes location with time. If the fluid temperature is higher than the solid and medium 

temperatures, it indicates a convective dominated heat transfer region. 

The challenge in MATLAB numerical code was stability. It requires small time 

steps and mesh grids to reach stability, which in turn increases computational time. High 

fluid velocity also caused the program some instability issues since the MATLAB pdepe 

is suitable for a low to moderate Péclet number (the rate of convention over the rate of 

conduction).  

Figures 7.9 and 7.10 show effects of fluid velocity and heat transfer coefficient on 

the LTNE. As fluid velocity increases, the change in fluid temperature increases and overall 

porous medium temperature increases. The fluid velocity values shown in Figure 7.9 are 

the velocities at the wellbore wall. Figure 7.10 shows the results of heat transfer coefficient 

effect on LTNE. As the heat transfer coefficient increases, the gap between the temperature 

profiles decreases, meaning that the effect of local thermal non-equilibrium is minimized. 

At higher heat transfer coefficient values, the rock matrix (solid phase) as well as the 

overall medium temperatures increase. The fluid velocity, v, used in equations (7.1) and 

(7.22) are calculated based on Darcy’s equation:  
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v p


= 


     (7.24) 

dp
p

dr
 =      (7.25) 

where κ (kappa) is the permeability of the rock, μ is the viscosity of the fluid, and p  is 

the pressure gradient in radial coordinates. Since the fluid is assumed to be water, the 

viscosity is 1 cp. The value for the permeability is assumed to be 50 mD. The remaining 

data are used from Table 7.1.    

One of the challenges with the LTNE model is the estimation of heat transfer 

coefficient, h. The heat transfer coefficient has a wide range of values, 10–1000 (W/m2/K) 

[107], however, a value of 3000 W/m2/K has been reported in the literature [35]. With this 

wide range, the temperature profiles can be substantially influenced. Unfortunately, there 

are limited data and correlations available, therefore, more research and lab experiments 

are required in this field for better estimation of heat transfer coefficients in rocks. Lab 

experimental values of heat transfer coefficients can be calculated in an indirect manner 

[137] [138]. Different correlations have also been developed that relies on the size and 

surface area of the solid particles and estimations of Nusselt, Reynolds, and Prandtl 

numbers [139].  
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Figure 7. 6: Normalized temperature profiles with LTNE effects along radial distance for 

conductive and convective heat transfers at τ = 0.01 
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Figure 7. 7: Normalized temperature profiles with LTNE effects under conductive and 

convective heat transfers for τ = 0.05 
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Figure 7. 8: Normalized temperature profiles with LTNE effects along radial distance for 

τ = 0.1 - conductive and convective heat transfers 
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Figure 7. 9: Fluid velocity effect on porous media temperature along radial distance for τ 

= 0.04 under conductive and convective heat transfers 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 1.5 2 2.5 3

N
o

m
a

li
ze

d
 T

em
p

er
a

tu
re

r/rw

Porous Medium Temperature vs. Fluid Velocity

0.0001 m/s

0.001 m/s

0.01 m/s



 140 

 

(a) 

 

(b) 

Figure 7. 10 
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(c) 

Figure 7. 10: Normalized temperature profiles along radial distance with conductive and 

convective heat transfers for τ = 0.04, κ=50 mD, and μ=1 cp with various 

heat transfer coefficients at (a) 50 W/m2/K, (b) 500 W/m2/K, and (c) 800 

W/m2/K 

7.3.3 Finite element modeling 

Aside from the existing models discussed in the previous sections, a finite element 

modeling (FEM) has been done for comparison and validation. The only known finite 

element software considering heat transfer with local thermal non-equilibrium is 

COMSOL. COMSOL heat transfer module has been selected with LTNE which is a special 

multiphysics in COMCOL for this purpose. The first approach was to model a pure 

conductive heat transfer discussed in section 7.2. For modeling, an axisymmetric plane in 

2D space has been selected as shown in Figure 7.11(a). The analysis was run in a transient 
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condition with extremely fine mesh. The required data used in COMSOL can be found in 

Table 7.1.  

The finite element results produced by COMSOL does not agree well with the 

existing model developed in section 7.1 as shown in Figure 7.11(b). For instance, the 

difference between fluid temperature profiles for both models is large. Only solid and 

LTNE (porous media) are slightly in agreement. This bring the questions that which model 

is more accurate. Since the model developed in section 7.2 is in a good agreement with the 

analytical model, it can be concluded that the developed model is more accurate than the 

FEM model developed by COMSOL. In fact, COMSOL LTNE module is fairly a new 

feature, and requires more update in the future. Another disadvantage of COMSOL model 

is the lack of convective heat transfer option. There is no option in COMSOL to input data 

for convective heat transfer mechanism. Therefore, the comparison between the two 

models for convective heat transfer was not possible.  

                           
Figure 7. 11                    (a) 

Axis-symmetric  

rw=0.1m 

1 m 

1 m 
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(b) 

Figure 7. 11: LTNE conductive model verses COMSOL finite element model in (a) 

schematic diagram of COMSOL model (b) results produced by the models 

7.4 THERMOPOROELASTICITY UNDER LTNE  

In this section, the thermoporoelastic model examples that have been done in 

Chapter 6 will be updated with the LTNE models and compared with the previous results.  

7.4.1 Case 1: analytical solution for low permeability formation 

 Case 1 suggests that the conductive heat transfer dominates the convective heat 

transfer since the pore fluid flow is negligible. Using the conductive LTNE model, a new 

temperature profile for the media is defined and used in the thermoporoelastic model. 

Figures 7.12 and 7.13 illustrate the tangential and radial stresses profiles of LTNE and LTE 

thermoporoelastic models along with poroelastic model. From the figures, the results vary 
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when the LTNE approach is used. Within the vicinity of the wellbore where the 

temperature disturbance is greater, the discrepancy is notable between the models. This 

discrepancy elevates with time too. However, this trend dies out away from the wellbore. 

An important remark from the results is that the LTE and LTNE model do not produce the 

same results as time passes, suggesting that the local equilibrium never reaches between 

fluid and solid matrix, contrary to classical theory assumption. The LTNE effects are more 

pronounced on tangential stress compared to radial stress as shown in Figures 7.12 and 

7.13. This proves that using LTNE is suggested in modeling wellbore stability since 

estimation of tangential stress is a key factor in formation breakdown and breakout.  

 
 

(a) 

Figure 7. 12  
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 (b) 

Figure 7. 12 
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(c) 

Figure 7. 12: Effective tangential stress along radial distance produced by different stress 

models under pure conductive heat transfer for (a) 1 min, (b) 10 min, and (c) 

20 min. Red solid line: poroelastic model, blue dashed line: 

thermoporoelastic model, and black dotted line: thermoporoelastic model 

under LTNE condition 
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(a) 

Figure 7. 13 
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(b) 

Figure 7. 13 
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(c) 

Figure 7. 13: Effective radial stress along radial distance under pure conductive heat 

transfer (a) 1 min, (b) 10 min, and (c) 20 min 

7.4.2 Case 2: numerical solution for high permeable formation   

This case is suitable for high permeability formation such as sandstone or high-

pressure injection. The conductive and convective LTNE model is used in this example to 

update the thermoporoelastic model. As permeability becomes larger, the effect of thermal 

diffusion becomes smaller. The effects of LTNE are even more pronounced in high 

permeability formations as shown in Figures 7.14 and 7.15. Since the fluid inside the rock 

matrix can freely move, convective heat transfer dominates the heat transfer process, and 
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it changes the temperature profile greatly. This temperature change effect can be seen on 

the stress profiles. These disturbances change the mud weight window and wellbore 

stability analyses substantially. The LTNE model presents a more realistic physical 

implication of the system. The LTNE effect on radial stress is noticeable in a high 

permeable formation where convection is dominant compared to a low permeable 

formation where conduction heat transfer dominates. 

 
(a)  

Figure 7. 14 
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(b)  

Figure 7.14 
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(c) 

Figure 7. 14: Effective tangential stress along radial distance under both conductive and 

convective heat transfer mechanisms (a) 1 min, (b) 10 min, and (c) 20 min 
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(a) 

Figure 7. 15 
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(b) 

Figure 7. 15 
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(c) 

Figure 7. 15: Effective radial stress along radial distance under both conductive and 

convective heat transfer mechanisms (a) 1 min, (b) 10 min, and (c) 20 min 

7.4.3 Remarks on numerical solution approach  

Since some of the solutions are produced under a numerical approach, it is 

important to check if the solution converges. Since the numerical model for the convective 

heat transfer is an explicit simulation, divergence is expected using a large time step. An 

optimal grid size and time step must be found for the numerical scheme. The time for 

convective heat transfer simulation is calculated using the number of grids. For instance, if 

the grid length is 100, then the time will be equally spaced from the initial time to the last 

time in 100 segments. This way, the grid size needs to be optimized for simulation stability 

and convergence. Different grid sizes have been run to find the optimal value of the grid 
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size for the simulation stability using result comparisons and norm analyses as shown in 

Figures 7.16 and 7.17. At large grid sizes, the solution is not stable as shown in Figure 

7.16(a), but, as the grid size decreases solution is stable and reliable. The optimal grid size 

value is 0.001 for this simulation since any smaller grid size produces the same results as 

show in Figure 7.16(b). In these figures, the normalized temperature is the weighted 

average temperature given by equation (7.19). From the norm plot, it can be concluded that 

small grid sizes guarantee numerical convergence and stability. Grid size is the increment 

or step size that the simulation takes at each iteration from the wellbore wall (initial  

location) to reach the final boundary (last destination). Of course, smaller grid size may 

guarantee stability, but computational time increases substantially. Therefore, optimal 

value could be found through comparison or norm error analyses.    
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Figure 7. 16 
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(b) 

Figure 7. 16: Effect of grid sizes on simulation results and convergence. (a) large grid 

sizes (b) small grid size 
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Figure 7. 17: Grid size effect on norm and simulation stability 

7.5 CONCLUSIONS 

It is believed that the LTNE effects are only important in formations where fluid 

flow is high enough that convective heat transfer dominates inside the medium, such as 

fractured formations or high permeability formations [104] [140] [141]. However, from the 

analyses shown in this chapter, it can be concluded that the effects of LTNE are important 

in any rock formations.  

The LTE and LTNE effects for fully saturated porous media (rock formation) are 

considered in this chapter. Using LTNE approach, transient temperature profiles for solid 

(rock matrix) and fluid phases are defined. Using the weighted average method, a 

temperature for the porous medium is defined. The LTNE effects are examined around a 

circular hole in an infinite rock medium undergoing convective and conductive heat 
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transfers. The borehole boundary conditions such as temperature and fluid velocity were 

uniform throughout the investigations.  

The Laplace transform method was employed, along with Stehfest algorithm for 

the LTNE solution to develop an exact solution. MATLAB numerical partial differential 

equation solver, pdepe, was utilized for the LTNE solution in permeable formation where 

convective heat transfer dominates. Under conductive and convective heat transfers two 

dominant heat transfer regions are developed inside porous media. These regions are 

separated by an intersection point, called thermal equilibrium point. Convective heat 

transfer dominates when temperature of fluid phase is greater than solid phase temperature. 

It is concluded that LTNE effects can influence temperature profiles. This means 

that the pore pressure and stress profile around a wellbore can also be influenced due to 

induced temperature and fluid flow caused by LTNE effects. It was noted that properties 

of a porous medium significantly influence the effects of LTNE. For instance, heat transfer 

coefficient of a media can maximize or minimize the effects of LTNE.  

 

 

 

 

Table 7. 1: Properties for the LTNE model 

 

 

 

 

 

 

Parameter Rock Matrix Fluid 

Thermal Conductivity, k (w/m/ Kelvin) 2.4 0.6 

Density, ρ (kg/m3) 2600 1000 

Specific Heat Capacity, c (J/kg/ Kelvin) 920 4200 

Heat Transfer Coefficient, h (w/m2/ Kelvin)         50 

Porosity, ϕ          0.4 

wellbore radius, a (m)         0.1 

ϴw          1 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

8.1 CONCLUSIONS 

Prediction of thermoporoelastic behavior is important for wellbore stability during 

drilling, completion, and production of oil and gas wells. Coupled thermoporoelastic 

behavior is one of the complex phenomena in rock mechanics. This dissertation aimed at 

development of fully coupled thermoporoelastic models with local thermal non-

equilibrium suitable for shale and sandstone formations. The developed models along with 

failure criteria qualitatively investigated the impact of induced thermal stresses on wellbore 

stability.  

The coupled thermoporoelastic models in this dissertation were developed for 

wellbores with any orientations experiencing non-isothermal drilling conditions. The role 

of thermal stress on wellbore failures such as breakout and breakdown were investigated 

through several examples. The model also considers the effect of local thermal non-

equilibrium condition (LTNE). The LTNE effects on the thermoporoelastic models were 

also investigated with examples. 

 It is concluded that for low permeable formations, where conduction dominated 

the heat transfer, the hoop stress minimum and maximum may occur away from the 

wellbore walls. For permeable formation, it may be assumed that the fluid diffusion reaches 

steady state before the temperature begins to change, and the effect of thermal diffusion 

becomes small. Therefore, that heat transfer is dominated by hydraulic diffusion. In this 

dissertation, it is concluded that the effect of temperature on stress around the wellbore is 

very important to consider. Thermally induced stress can change stress concentration 

around the wellbore and affect the likelihood of shear and tensile failures. When a wellbore 

is cooled down, hoop stress will be lowered, therefore, the stability with respect to shear 

failure increases, while tensile failure increases. 
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LTE and LTNE effects for fully saturated porous media (rock formation) are 

considered in this dissertation. Using LTNE, transient temperature profiles for solid (rock 

matrix) and fluid phases are defined. Using the weighted average method, a temperature 

for the porous medium is defined. LTNE effects are examined around a borehole in an 

infinite rock medium undergoing convective and conductive heat transfers. It is believed 

that that the LTNE effects are only important in formations where fluid flow is high enough 

that convective heat transfer dominates inside the medium, such as fractured formations or 

high permeability formations. However, from the analyses shown in this dissertation, it can 

be concluded that the effects of LTNE may be important in any rock formations. 

The LTNE effects can influence temperature profiles. This means that the pore 

pressure and stress profiles around a wellbore can also be influenced due to induced 

temperature by the LTNE effects. It is noted that properties of a porous medium 

significantly affect the LTNE effects. For instance, heat transfer coefficient of a media can 

maximize or minimize the effects of LTNE.  

8.2 RECOMMENDATIONS  

The following recommendations are made for future development based on the 

current models: 

• Pore volume expansion behavior in non-isothermal condition is not fully 

understood in sandstone and shale formations. This parameter is very 

critical in accuracy of thermoporoelastic model. further lab experiments are 

required in investigation of pore volume expansion behavior. 

• The significance of local thermal non-equilibrium effect depends on the 

value of heat transfer coefficient. This parameter has a wide range of values 

in rock samples. There are several empirical correlations predicting the 
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value of heat transfer coefficient. However, further lab investigations are 

needed to establish the values of this parameter in different rock formations. 

This parameter also has a dependency on fluid flow. The current LTNE 

model developed in this dissertation assumes a constant value. A dynamic 

LTNE model where heat transfer coefficient is coupled with fluid flow may 

be necessary.  

• The models in this dissertation are based on linearly elastic, homogenous, 

and isotropic materials behaviors, but rarely a rock will behave perfectly in 

such manners. For improvements, rock non-linearity, plasticity, and 

anisotropy should be coupled with the current models.  

• The assumption of one dominant heat transfer was invoked in the modeling 

to relax the coupling, so finding the solution became straightforward. The 

next model should utilize finite element modeling without relaxing the 

coupling conditions.  

• The fully coupled diffusivity equations in this dissertation are modeled in 

radial direction only. Investigation of dependency and results of these 

equations in axial and tangential directions would be important in 

development of future thermoporoelastic model.   

• A uniform temperature distribution was assumed along the borehole. In 

reality, due to circulation of mud, the temperature inside the borehole 

changes with time. The development of a transient borehole temperature 

distribution and incorporation of such a model into the thermoporoelastic 

models would be an important improvement to the current work.  

• Results are based on theoretical modeling in this dissertation. Validation of 

the results and model via laboratory experiments are vital and necessary.  
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• Mechanical in-situ stress, pore pressure, and induced thermal stress are 

considered in the development of the thermoporoelastic models presented 

in this dissertation. However, chemical effect has a major role in stress 

alteration around a wellbore and wellbore stability, especially in water 

sensitive shale formations. Coupling the current thermoporoelastic models 

with the chemical effect would be a great deal of enhancement.     

• Mud cake buildup on the wellbore wall will reduce the permeability near 

the wellbore region and fluid flow into the formation. In turn, it dictates heat 

transfer mechanism. It is important to incorporate mud cake evolution in the 

future modeling.  
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APPENDIX 

This section contains a brief overview of Carslaw and Jaeger [110], the Laplace 

transformation: on problems of a cylinder.  

The temperature profile for a circular hole in an infinite medium with zero initial 

temperature and constant temperature, V, on the surface of the hole is given by: 

2

2

d V 1 dV s
V 0, r a

dr r dr K
       + − =     (A.1) 

where 𝑉̅ is the temperature in Laplace domain and a is the radius of the hole. Equation 

(A.1) is a modified Bessel function of zeroth order, and its solution is: 

s s
V C I ( r) C K ( r)

K K
1 0 2 0= +    (A.2) 

where I0 and K0 are the modified Bessel functions of first kind and second kind of zeroth 

order, respectively. C1 and C2 are constants and can be found using the boundary 

conditions. As r increases in equation (A.2), the solution approaches infinity which is not 

possible physically since the temperature is finite as r→ꝏ. Therefore, the constant (C1) in 

the first term of equation (A.2) must be zero, and (A.2) will become:  

2 0

s
V C K ( r)

K
=     (A.3) 

Only one boundary condition is required to solve the second constant. This would be the 

boundary temperature at the hole. V is the temperature at the hole boundary. After 

applying this boundary condition, the solution is: 

s
VK ( r)

K
V

s
sK ( a)

K

0

0

=     (A.4) 

The solution is for an isotropic and homogeneous medium made of one material. If the 

medium has more than one material or phases, superposition can be employed. For 
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example, in this study, there is a medium of two phases, rock matrix and fluid. Therefore, 

equations (7.17) and (7.18) are the results of this technique. 
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