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The development of multi-stage hydraulic fracturing technique in horizontal wells

enables us to produce oil and gas at economic rate from shale formations, leading to

the shale revolution in the United States. Field observations including production

history, microseismic mapping, and coring in fractured zones have revealed that the

heterogeneity of shale rocks such as natural fractures is likely to have a large impact

on oil and gas production from shale reservoirs.

In this dissertation, a new hydraulic fracturing model based on the displacement

discontinuity method (DDM) was developed. The major achievements in this research

include the extension of DDM to multilayered media, the modeling of the interaction

with natural fractures in three dimensions, and the development of a DDM-based

hydraulic fracturing simulator.

The formulation of DDM was revisited, and the equivalence of DDM and BEM

was mathematically demonstrated. DDM was extended to multilayered media by

using the method of images. The new DDM was applied to a three-layered medium
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in plain strain containing vertical and horizontal cracks. A sensitivity study suggests

that bi-material solutions are su�cient for three-layered media under plain strain

conditions.

A DDM-based hydraulic fracturing model was developed. The discretized DDM

and �ow equations were solved in a segregated or fully coupled manner. A new

splitting scheme was proposed to improve the convergence speed of the segregated

method. The interaction between hydraulic and natural fractures was modeled for

both intersecting and remotely interacting cases in our simulator. Poroelastic ef-

fects were partially incorporated into DDM by assuming an undrained condition. It

was found that poroelastic e�ects under the undrained condition were limited to the

vicinity of hydraulic fractures.

Hydraulic fracturing simulations were performed in the presence of synthetic nat-

ural fracture networks. Synthetic microseismic events were generated, and inversion

analyses of the synthetic microseismic data were performed. It was suggested that

the density of microseismic events was a�ected by both the areal density and length

distribution of natural fractures.
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Chapter 1: Introduction

1.1 Background and Motivation

When hydraulic fracturing is applied to horizontal wells with many clusters of per-

forations, multiple, non-planar fractures may grow. The presence of natural fractures

and the stress interference between fractures will result in complex fracture patterns

that are di�cult to model with standard �nite element or �nite volume methods. If

such a domain discretization methods are applied, mesh modi�cation around growing

fractures is a non-trivial problem in general.

The displacement discontinuity method (DDM) was �rst proposed by Crouch

(1976) as a subset of the boundary element method (BEM) for crack problems. Crack

surfaces are decomposed into straight or �at elements, and the contribution of each

element to elastic �elds at a given point is computed by using in�uence functions.

DDM possesses several key advantages of BEM :

• Discretization is only over boundaries, making mesh generation easier and

reducing the number of unknowns.

• The in�nite boundary condition can be handled easily.

• The derivatives of �elds can be directly calculated inside the domain or on the

boundaries.

• The singular behavior of �elds can be readily incorporated.

Because of these merits, the DDM was recently applied to hydraulic fracture simula-

tion, and the impact of stress shadow on multiple hydraulic fracture growth and the

e�ect of natural fractures on hydraulic fracture propagation were investigated (Ol-

son, 2008; Sheibani, 2013; Wu and Olson, 2013; Wu, 2014; Wu and Olson, 2015a,b;
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Shrivastava et al., 2017). All these studies assume that the fracture propagates in a

homogeneous, elastic medium.

When considering the application of DDM to hydraulic fracture simulations, it is

natural to incorporate the e�ect of layers and natural fractures since the stress �eld

in a layered-medium with natural fractures can be signi�cantly di�erent from that in

a homogeneous medium. For layer properties, however, only horizontal stresses and

stress intensity factors are taken into account in the conventional DDM due to its

theoretical di�culty of incorporating heterogeneity, which comes from the require-

ment of the fundamental solution for the governing equation. For natural fractures,

induced fractures disconnected from hydraulic fractures are often neglected, and only

hydraulically-connected fractures are evaluated in hydraulic fracture simulations. Be-

cause the shear displacement of isolated fractures is categorized as a contact problem,

which is di�cult to solve for, the problem is simpli�ed by neglecting such sheared frac-

tures.

It is common to distribute the location, orientation, and extension of natural frac-

tures based on either statistical data obtained from cores and well logs or microseismic

data in hydraulic fracture simulations. Microseismic data are thought to represent ac-

tual locations of planes of failure in the rock. Hydraulic fracture simulations assisted

by microseismic data have been pursued (Weng et al., 2014). However, microseis-

mic data are not always reliable (Warpinski and Wolhart, 2016), and it has been

recognized that much of deformation due to hydraulic fracturing occurs aseismically

(Maxwell et al., 2008). This prevents a quantitative analysis of fracture networks

based on microseismic data.
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1.2 Research Objectives

The objective of this research is to evaluate the e�ect of layers and natural frac-

tures on hydraulic fracture propagation by using displacement discontinuity methods

and to more accurately incorporate microseismic data into hydraulic fracture simula-

tions.

1.3 Literature Review

1.3.1 Hydraulic Fracturing Models

The hydraulic fracturing problem is concerned with solving for the change in

fracture length, height, and width due to �uid injection. The earliest paper solving

such a problem was on the growth of a vertical fracture at constant injection rate with

negligible �uid loss into formations (Khristianovic and Zheltov, 1955). Their model

assumed the plain strain condition in the vertical direction, constant �uid viscosity,

and constant fracture height. Later, Geertsma and de Klerk (1969) incorporated

the contribution of the �uid loss into reservoir rocks by using Carter's leak-o� model

(Howard and Fast, 1957), and the extended model is refered to as the Khristianovitch-

Geertsma-de Klerk (KGD) model. Geertsma and de Klerk (1969) also developed a

model for a radially growing fracture from a well based on the analytical equation

proposed by Sneddon (1946).

Perkins and Kern (1961) proposed another model similar to Khristianovic's model.

Their model was also for the growth of a vertical fracture with a �xed height, constant

injection rate, and negligible leak-o�. The di�erence from the Khristianovic's model

was that Perkins' model assumed a plain strain condition in the lateral direction.

Perkins' model was extended by Nordgren (1972) to account for �uid loss, and this

model is referred to as the Perkins-Kern-Nordgren (PKN) model.
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Pseudo-3D (P3D) models are computational methods developed in 1980's to cap-

ture the height growth of a planar fracture. P3D models are primarily divided into

cell-based and lumped methods. The cell-based P3D models discretize a planar frac-

ture into cells to reduce a 3D hydraulic fracturing problem to a set of 2D elastic

deformation on each cell and 1D lateral �uid �ow between the cells. Settari and

Cleary (1986) �rst proposed a cell-based P3D model. Each cell were assumed to be a

Gri�th-type crack, and its vertical length and width pro�le were calculated by using

analytical equations. On the other hand, lumped models, which were �rst proposed

by Cleary et al. (1983), approximate the growth of a planar fracture with simple

equations multiplied by correction or lumped parameters. The deviation of fracture

geometry from ideal shapes such as a circular, KGD, and PKN types is lumped into

the correction factors. In general, P3D models are computationally quite e�cient and

fast due to the use of analytical equations or approximations.

In contrast to P3D models, planar 3D models fully discretize a planar fracture into

unstructured or cartesian grids, and thus much more accurate results for fracture ge-

ometry and �uid distribution can be obtained compared to P3D models. Advani

et al. (1990); Lee et al. (1990) proposed the �nite element formulation of a hydraulic

fracturing model. A planar fracture is discretized into triangular cells, and the elas-

ticity and �uid �ow equations are iteratively solved. Naceur et al. (1990) developed

a planar 3D model using an indirect BEM. They solved the system of elasticity and

�uid �ow equations in a fully-coupled manner.

The aforementioned models all assume a planar fracture geometry and solve for

the �uid pressure in the fracture and fracture width (not in the surrounding rock

matrix). However, the propagation of multiple fractures in parallel from clusters in a

stage causes elastic interference between fractures. This is known as the stress shadow

e�ect. Moreover, all shale formations have some geological heterogeneity such as lay-
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ers and natural fractures. Hence, fractures initiated from perforations may turn due

to the stress shadow e�ect, propagate along layer interfaces, or create branches when

intersecting natural fractures, resulting in complex, non-planar fractures. General

methods have been proposed to account for such complex fracture behavior. These

methods include the discrete element method (Nagel and Sanchez-nagel, 2011; Yan

et al., 2016), the �nite element method or the �nite volume method with cohesive

zone models (Carrier and Granet, 2012; Manchanda et al., 2017), the extended or

generalized FEM (Gupta and Duarte, 2014), the boundary element method (Rung-

amornrat et al., 2005; Rungamornrat, 2006), peridynamics models (Ouchi et al., 2015,

2017), and phase-�eld models (Mikeli¢ et al., 2015a,b,c).

In recent years, asymptotic solutions of hydraulic fractures based on fracture prop-

agation regimes has been presented. The asymptotic solutions are divided into four

solutions: K, M, K̃, and M̃-vertex solutions shown in Figure 2 of Bunger et al.

(2005). Each vertex represents the dominant mechanism in fracture propagation, i.e.

toughness, viscosity, and �uid leak-o�.

Savitski and Detournay (2002) developed asymptotic solutions of penny-shaped

hydraulic fractures in impermeable rocks. (Garagash and Detournay, 2005) found

that the e�ect of fracture toughness is localized in the vicinity of tips for plain-

strain fractures without leak-o�. Adachi and Detournay (2002) and Garagash (2006)

proposed an analytical solution of a plane-strain fracture driven by a power-law �uid.

Detournay (2004) summarized the propagation regimes which appear in hydraulic

fracturing in impermeable rocks for both plain-strain and radial fractures. Solutions

with leak-o� into formations were proposed by Bunger et al. (2005), Hu and Garagash

(2010), Garagash et al. (2011), and Dontsov (2016). A review of these asymptotic

solutions and their formulations can be found in Detournay (2016).
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1.3.2 Displacement Discontinuity Method

The displacement discontinuity method (DDM) is an indirect boundary element

method (BEM) for crack problems proposed by Crouch (1976). Fracture surfaces are

discretized into small-sized straight or planar elements, and the interaction between

these elements is computed by using analytical equations. The coe�cients represent-

ing the inter-element interaction are called in�uence coe�cients. Each element has

one or more collocation points where the discontinuity in displacement �elds is com-

puted. Elements with constant displacement discontinuity have only one collocation

point per element, while higher-order elements such as linear or quadratic elements

have multiple collocation points.

Several analytical equations for the in�uence coe�cients are available for di�er-

ent element types in homogeneous isotropic media. The �rst paper deriving such

an equation was by Rongved and Hill (1957), giving the solution for a rectangular

element with constant strength. Salamon (1964) independently obtained the same so-

lution. Crouch (1976) developed the analytical solution for two-dimensional constant

elements. Later, solutions for higher-order elements were obtained in both two and

three dimensions (Crawford and Curran, 1982; Shou, 1993; Shou and Crouch, 1995;

Shou et al., 1997). Analytical solutions for triangular elements were also derived by

Kuriyama and Mizuta (1993) and Cheng et al. (2015a), though they diverge when a

collocation point lies along the extension of triangle edges.

In addition, some attempts have been made to derive analytical solutions of the

in�uence coe�cients in half-space and bi-materials. Crouch (1976) obtained the so-

lution for constant elements in two-dimensional semi-in�nite plane. The analytical

solution for bi-materials in two dimensions was developed by Crouch and Star�eld

(1983). These solutions are, however, not often used due to their lengthy and com-
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plicated representations. Furthermore, the analytical solutions for three-dimensional

elements in half-space or bi-materials have not been found.

Some researchers applied the DDM to layered media. Selcuk and Crouch (1992)

combined the bi-material solution of Crouch and Star�eld (1983) with domain decom-

position to solve boundary value problems in a four layered medium in two dimensions.

Shou (1997) and Shou and Napier (1999) claimed that they derived the analytical so-

lution of the in�uence coe�cients for three-layered media using the method of images.

However, their solution was actually an approximation because it did not incorporate

multiple images (Siebrits and Crouch, 2000). Li et al. (2018) proposed a pseudo 3-

D DDM for layered media which only incorporates the vertical variation of far-�eld

stresses.

Other researchers have tried to solve crack problems in layered media from the

viewpoint of the BEM. In the BEM, solving crack problems in layered media is un-

derstood as �nding an appropriate fundamental solution. Wang and Clifton (1990)

proposed to multiply a correction factor to the fundamental solution of homogeneous

media. The correction factor is estimated by using the fundamental solution for

bi-materials. Zhang and Je�rey (2006) solved hydraulic fracturing problems in three-

layered media in two dimensions by deriving the fundamental solution based on the

Airy stress functions. The explicit form of the fundamental solution of multilayered

media in three dimensions was derived by Yue (1995). The solution was applied to

crack problems in a series of papers (Yue and Xiao, 2002; Yue et al., 2003; Xiao and

Yue, 2011; Xiao et al., 2012). Xu and Wong (2013) and Wong et al. (2013) claimed

that they incorporated layer heterogeneity in their model, though they did not pro-

vide any clear explanation about their formulation. Du et al. (1994, 1997) developed

a moduli perturbation method to analyze the surface deformation of inhomogeneous

media caused by dislocations. Du et al. (2000) used the moduli perturbation method

7



for downhole tilt meter analysis.

DDM has been widely applied to hydraulic fracturing problems due to its simplic-

ity and high accuracy. In particular, fracture turning can be easily implemented with

DDM because it does not require domain discretization. Thus, the e�ect of stress

shadow between multiple growing hydraulic fractures has been analyzed with the aid

of DDM (Olson, 2008; Wu and Olson, 2013; Wu, 2014; Wu and Olson, 2015a,b). Fur-

thermore, because the intersection behavior of hydraulic and natural fractures can

be simulated based on stress intensity factors (Gu and Weng, 2010) or energy release

rates (Dahi Taleghani and Olson, 2013), the DDM is frequently used to simulate

fracture propagation in the presence of natural fractures (Olson, 2008; Wu, 2014; Xie

et al., 2016; Zhang et al., 2017; Shrivastava et al., 2018; Shrivastava and Sharma,

2018a,b; Chang et al., 2018).

1.3.3 Natural Fractures

The spatial and geometrical distribution of natural fractures has been actively

investigated. Davy (1993) analyzed the San Andreas fault system to obtain a function

that can �t data over a wide range of fault lengths. Gale et al. (2007) characterized

natural fractures observed in cores taken in the Barnett Shale from the viewpoint

of orientation, size, and cementation. Hooker et al. (2013) obtained the aperture

size, frequency, orientation, and spatial distribution of natural fractures in Cambrian

Mesón Group in NW Argentina. Gale et al. (2014) reviewed the common types of

natural fractures, their spatial distribution, and mineralization in cores and outcrops

from di�erent shale plays. Davy et al. (2018) derived the relationships between elastic

properties of rocks and geometrical properties of fracture networks.

It is important to quantify the complexity of synthetically-generated fracture net-

works in hydraulic fracturing simulations with discrete fracture networks. Feng et al.
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(2017) proposed a fracture complexity indicator for quantifying such complexity. On

the other hand, Sui et al. (2019) used fractal methods to describe fracture networks.

Alghalandis et al. (2015) characterized the connectivity of fracture networks by using

a connectivity �eld.

1.3.4 Microseismic Monitoring

Microseismic monitoring is an e�ective tool to estimate the lateral length of hy-

draulic fractures, the e�ectiveness of hydraulic fracturing in each stage, and the ex-

tension of natural fracture networks. The location, orientation, and extension of

induced fractures can be obtained from microseismic monitoring. Typical methods

for computing the location of microseismic events are hodogram (Warpinski et al.,

2005), triangulation (Rutledge and Phillips, 2003), or semblance-based techniques

(Rentsch et al., 2007). The orientation and extension of fractures can be simulta-

neously obtained through moment tensor inversion (MTI) (Vavry£uk, 2007). The

moment magnitude and size of microseismic sources, which are called source param-

eters, are normally calculated based on Brune's equation (Warpinski et al., 2013).

These calculated event locations have some error associated with them due to the

low signal-to-noise ratio (S/N), uncertainty in a velocity model (Maxwell et al., 2010;

Usher et al., 2013) and geophone-array geometry (Maxwell et al., 2010), anisotropy

in elastic moduli (Grechka and Yaskevich, 2014), and observation well bias (Cipolla

et al., 2011; Warpinski and Wolhart, 2016). All of these factors can result in a

discrepancy between the locations of microseismic events and fractures observed in

cores (Warpinski and Wolhart, 2016).

The Gutenberg-Richter relation is a well-known empirical relationship between the

number of seismic events and their magnitudes (Ishimoto and Iida, 1939; Gutenberg

and Richter, 1944). The slope of the Gutenberg-Richter relation or b-value can be
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used to di�erentiate failures due to hydraulic fracturing and activated natural frac-

tures (Maxwell et al., 2009; Yousefzadeh et al., 2018). Dohmen et al. (2017) showed

microseismic events in depleted and non-depleted zones exhibit di�erent b-values.

Jiao et al. (2014) pointed out that the magnitudes estimated with Brune's equation

were inaccurate for tensile failures, and hence incorrect b-values can be obtained.

Several attempts have been made to integrate microseismic data with hydraulic

fracturing simulations. Boroumand and Eaton (2015) used microseismic event loca-

tions to calibrate the growth of a 3D planar elliptic fracture model. Maxwell et al.

(2015) classi�ed microseismic events into �dry� and �wet� events. The dry events

are caused purely by mechanical stress change, and the wet events are triggered by

�uid leak-o� into natural fractures. Maxwell et al. (2015) observed signi�cantly more

wet events than dry events in a hydraulic fracturing simulation in synthetic natural

fractures using the discrete element method. Fry et al. (2015) computed magnitudes

of microseismic events in fracturing simulations based on the synthetic rock mass

method.
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Chapter 2: Displacement Discontinuity Method

2.1 Introduction

This chapter describes the formulation of the displacement discontinuity method

(DDM), which was introduced by Crouch (1976) as an indirect boundary element

method (BEM) for crack problems in homogeneous isotropic elastic media. In the

DDM, crack surfaces are discretized into small planar elements, and displacement

and stress at an arbitrary point inside the domain are computed as a sum of the

contribution from all the elements, or using the principle of superposition.

We start from the governing equation and derive its boundary integral represen-

tation, which is known as the Somigliana identity. Then, the numerical discretization

of boundary integral equations and the assembly of the system of equations are ex-

plained. Finally, we show that DDM and BEM are essentially equivalent in a general

manner. Without loss of generality, we restrict our formulation to that for linear

isotropic elastic media. Although the media can be homogeneous, which is the case

for Crouch (1976), the formulation, in general, is valid for inhomogeneous media.

2.2 Governing Equations

2.2.1 Navier-Cauchy Equation

The equilibrium condition can be expressed as:

σji,j + fi = 0, (2.1)
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where σij is the stress tensor, and fi is the body force vector. Index notation and

tension positive sign convention are used throughout this dissertation.

The constitutive law of a linear elastic material is the generalized Hook's law:

σij = Cijklεkl, (2.2)

where Cijkl is the fourth-order sti�ness tensor with the symmetry of Cijkl = Cjikl,

Cijkl = Cijlk, and Cijkl = Cklij. εij is the in�nitesimal strain tensor de�ned by

εij :=
1

2
(uj,i + ui,j), (2.3)

where ui is the displacement vector. For isotropic materials, the sti�ness tensor can

be expressed in terms of two parameters:

Cijkl = λδijδkl +G(δikδjl + δilδjk), (2.4)

where λ is the �rst Lamé parameter, G is shear modulus, and δij is the Kronecker

delta. Substituting Eq. 2.3 and Eq. 2.4 into Eq. 2.2, we obtain

σij = λδijuk,k +G(ui,j + uj,i). (2.5)

Assuming a homogeneous medium, the equilibrium condition reduces to the well-

known Navier-Cauchy equation:

Gui,jj + (λ+G)uj,ji + fi = 0. (2.6)

Using the relationship λ = K − 2G/3, where K is the bulk modulus, an alternative
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expression is obtained.

Gui,jj +

(
K +

1

3
G

)
uj,ji + fi = 0. (2.7)

2.2.2 Somigliana Identity

For convenience, we de�ne the traction operator T :

ti = σijnj = Cijklnjuk,l =: T ui, (2.8)

where ti is the traction vector, and ni is the unit normal vector. The traction operator

for isotropic materials becomes

T ui = λniuk,k +Gnj(ui,j + uj,i). (2.9)

Suppose that ui is a displacement �eld due to body forces fi inside a region Ω

bounded by Γ. Let u∗i is another displacement �eld due to body forces f ∗i . Then,

according to the Betti's reciprocal work theorem, the following equation holds:

∫
Ω

(f ∗i ui − fiu∗i ) dΩ =

∫
Γ

(u∗i ti − uit∗i ) dΓ, (2.10)

where ti and t∗i are traction �elds corresponding to ui and u∗i , respectively.

We now assume that f ∗i is a concentrated force applied at a source point x ∈ Ω.

Then, the corresponding displacement and traction �elds at a �eld point y take the
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Uij(y;x)
f ∗i

u∗j

Figure 2.1: A schematic �gure of the displacement kernel

following form

u∗j(y) = Uij(y;x)f ∗i (x), (2.11)

t∗j(y) = Tij(y;x)f ∗i (x), (2.12)

where y is a �eld point. Uij and Tij are respectively the jth component of displacement

and traction at y due to the concentrated body force in the ith direction applied at

x. Uij and Tij are called displacement and traction kernels, respectively. A schematic

�gure of the displacement kernel is shown in Fig. 2.1. The traction and displacement

kernels have the following relationship:

Tij(y;x) = TyUij(y;x), (2.13)

where the subscript y denotes the traction operator is evaluated at y.

The fundamental solutions of the Navier-Cauchy equation are referred to as the

Kelvin solutions. They can be found in standard textbooks for BEM, e.g. Gao and

Davies (2002), and presented in Appendix A.

Substituting Eq. 2.11 and Eq. 2.12 into Eq. 2.10 and neglecting body forces, we
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obtain the Somigliana identity for displacements:

ui(x) =

∫
Γ

Uij(y;x)tj(y) dΓ(y)−
∫

Γ

Tij(y;x)uj(y) dΓ(y), x ∈ Ω \ Γ. (2.14)

Applying the traction operator to Eq. 2.14 in terms of the source point x, we obtain

the Somigliana identity for tractions:

ti(x) =

∫
Γ

Kij(y;x)tj(y) dΓ(y)−
∫

Γ

Hij(y;x)uj(y) dΓ(y), x ∈ Ω \ Γ. (2.15)

Kij and Hij are kernel functions de�ned by

Kij(y;x) := TxUij(y;x), (2.16)

Hij(y;x) := TxTij(y;x). (2.17)

It should be mentioned that, because the Betti's reciprocal theorem holds for any

elastic media, the Somigliana identity is valid not only for homogeneous media but

also for inhomogeneous media. That is, the elastic constants, λ and G, can be a

function of space.

Before deriving the Somigliana identity for crack problems, the following integral

operators are introduced to simplify the formulation hereafter:

(Uijvj)Γ (x) :=

∫
Γ

Uij(y;x)vj(y) dΓ(y), (2.18)

(Tijvj)Γ (x) :=

∫
Γ

Tij(y;x)vj(y) dΓ(y), (2.19)

(Kijvj)Γ (x) :=

∫
Γ

Kij(y;x)vj(y) dΓ(y), (2.20)

(Hijvj)Γ (x) :=

∫
Γ

Hij(y;x)vj(y) dΓ(y). (2.21)
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Using the above operators, Eq. 2.14 and Eq. 2.15 are simpli�ed into

ui(x) = (Uijtj)Γ (x)− (Tijuj)Γ (x), x ∈ Ω \ Γ, (2.22)

ti(x) = (Kijtj)Γ (x)− (Hijuj)Γ (x), x ∈ Ω \ Γ. (2.23)

To derive the Somigliana identity for crack problems, a crack boundary Γ is split

into its positive and negative sides Γ±. Since two sides coincide, the kernels have

properties

Uij(y
−;x) = Uij(y

+;x), (2.24)

Tij(y
−;x) = −Tij(y+;x), (2.25)

Kij(y
−;x) = Kij(y

+;x), (2.26)

Hij(y
−;x) = −Hij(y

+;x), (2.27)

where the superscript ± denotes the corresponding boundary surfaces Γ±. Therefore,

the Somigliana identity for displacements can be rearranged as (Cruse, 1972, 1978,

1988)

ui(x) = (Uijtj)Γ (x)− (Tijuj)Γ (x)

=
[
(Uijtj)Γ− + (Uijtj)Γ+

]
(x)−

[
(Tijuj)Γ− + (Tijuj)Γ+

]
(x)

= (UijΣtj)Γ+ (x)− (Tij∆uj)Γ+ (x),

(2.28)

where Σti(y) := ti(y
+) + ti(y

−), and ∆ui(y) := ui(y
+) − ui(y−). A schematic �gure

of ∆ui is shown in Fig. 2.2.
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Γ+

Γ−∆ui
ni

Figure 2.2: The de�nition of displacement discontinuity

Similarly, the Somigliana identity for tractions reduces to

ti(x) = (UijΣtj)Γ+ (x)− (Tij∆uj)Γ+ (x). (2.29)

Assuming that the traction on the fracture surface is in equilibrium, we have

Σti(y) = ti(y
+) + ti(y

−) = 0. (2.30)

Therefore, we obtain the Somigliana identities for crack problems:

ui(x) = − (Tij∆uj)Γ+ (x), x ∈ Ω \ Γ, (2.31)

ti(x) = − (Hij∆uj)Γ+ (x), x ∈ Ω \ Γ. (2.32)

2.2.3 Boundary Integral Equations

The boundary integral equations (BIEs) can be derived from Eq. 2.14 and Eq.

2.15 by letting the source point x approach the boundary Γ. Assuming Γ is su�ciently

smooth, the BIEs take the following form (Liu, 2009)

1

2
ui(x) = (Uijtj)Γ (x)− (Tijuj)Γ (x), x ∈ Γ, (2.33)

1

2
ti(x) = (Kijtj)Γ (x)− (Hijuj)Γ (x), x ∈ Γ. (2.34)
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Tij and Kij should be interpreted in the Cauchy principal value sense, and Hij is

evaluated by using the Hadamard �nite part integral.

To apply the BIEs to fracture problems, the boundary Γ is split into two surfaces

Γ± with some positive distance h. Taking the limit of h → 0, Γ+ approaches and

�nally collapses on Γ−. This limiting process has to be performed carefully because

there exist jump terms in the integral operators due to their singularirty. The BIEs

for crack problems are given by (Cruse, 1972, 1988; Krishnasamy et al., 1994; Liu,

1998; Liu and Li, 2014)

1

2
Σui(x) = (UijΣtj)Γ+ (x)− (Tij∆uj)Γ+ (x), (2.35)

1

2
∆ti(x) = (KijΣtj)Γ+ (x)− (Hij∆uj)Γ+ (x), (2.36)

where ∆ti(x) := ti(x
+) − ti(x−), and Σui(x) := ui(x

+) + ui(x
−). Assuming that the

traction on the fracture surface is in equilibrium, we have Σti(x) = 0 and ∆ti(x) =

2ti(x
+) = −2ti(x

−). Therefore, Eq. 2.35 and Eq. 2.36 reduce to

1

2
Σui(x) = − (Tij∆uj)Γ+ (x), (2.37)

ti(x
+) = − (Hij∆uj)Γ+ (x). (2.38)

However, Eq. 2.37 is not applicable to fracture problems since neither Σui nor ∆ui is

known. In contrast, Eq. 2.38 can be used to solve for ∆ui when ti on Γ+ is speci�ed,

which is the case in hydraulic fracturing simulations. Eq. 2.38 is the BIE for crack

problems, and it can be seen as the boundary integral representation of the DDM.

It is found that the integral representations of the traction �eld in Eq. 2.32 and Eq.

2.38 do not change whether x is inside the domain or on the boundary. Therefore,

we can always use Eq. 2.32 for x ∈ Ω ∪ Γ.
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Assuming hydraulic pressure pf is applied to the crack surface, we have ti(x+) =

−pfni(x+) under tension positive sign convention. Thus, we obtain the following BIE

for hydraulically pressurized open fractures:

pfni(x
+) = (Hij∆uj)Γ+ (x). (2.39)

2.3 Discretization

2.3.1 Discretized Boundary Element Formulation

The variation of displacement discontinuities over an element can be expressed in

terms of the nodal values of the element by using shape functions:

∆ui(ξ) =
M∑
α=1

Nα(ξ)uαi (2.40)

where α denotes the αth node, M is the number of nodes in an element, Nα is the

shape function for the αth node, and ξ is the intrinsic or local coordinates of the

element. Shape functions have the following special properties (Gao and Davies,

2002):

Nα(ξβ) = δαβ, (2.41)
M∑
α=1

Nα(ξ) = 1, (2.42)

where ξβ is the βth nodal point in the local coordinates in an element. The Gauss-

Chebyshev points are commonly selected as the nodal points of elements (Crawford

and Curran, 1982) because of the stress singularity along element edges.

Having discretized the crack surface Γ+ into Ne elements, we can rewrite the BIEs
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xui, σij

node αelement β
∆uαβi

Aαβij , B
αβ
ij

Figure 2.3: A schematic �gure of the in�uence coe�cients

Eq. 2.31 and Eq. 2.32 into

ui(x) =
Ne∑
β=1

M∑
α=1

Aαβij (x)∆uαβj (2.43)

ti(x) =
Ne∑
β=1

M∑
α=1

Bαβ
ij (x)∆uαβj (2.44)

where the superscript β denotes the βth element. Aαβij and Bαβ
ij are in�uence coe�-

cients de�ned by

Aαβij (x) := −
∫

Γ+
β

Tij [y(ξ);x]Nα(ξ)J(ξ) dS(ξ) (2.45)

Bαβ
ij (x) := −

∫
Γ+
β

Hij [y(ξ);x]Nα(ξ)J(ξ) dS(ξ) (2.46)

where J(ξ) is the Jacobian of coordinate transformation (Gao and Davies, 2002). A

schematic �gure of the in�uence coe�cients is shown in Fig. 2.3.
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2.3.2 Assembly of System of Equations

If the collocation method is used, ti in Eq. 2.44 is evaluated at nodal points on

the boundary xc, c = 1, . . . , P , to give

tci =
Ne∑
β=1

M∑
α=1

Bαβc
ij ∆uαβj (2.47)

where Bαβc
ij = Bαβ

ij (xc). In matrix form, the equation is given by



t1

t2

...

tP


=



B111 B211 · · · BMNe1

B112 B212 · · · BMNe2

...
... . . . ...

B11P B21P · · · BMNeP





∆u11

∆u21

...

∆uMNe


(2.48)

This system of equations may be written as

Ax = b (2.49)

The vector x is composed of all unknown displacement discontinuities. The matrix

A is a coe�cient matrix. The vector b corresponds to the traction applied on the

fracture surface. Because the nodal points are uniquely determined in the DDM, we

have P = MNe, and hence A is a square matrix.

2.4 In�uence Coe�cients

2.4.1 Analytical Expression

Sih and Liebowitz (1968) showed that the solution of the Navier-Cauchy equation

for a plane of discontinuity in the x1x2 plane can be expressed in terms of a vector
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harmonic function fi(x),

ui(x) = 2(1− ν)fi,3 − (1− 2ν)f3,i + (1− 2ν)δi3fk,k − x3fk,ki (2.50)

where fi,j = ∂fi/∂xj. For two dimensional problems, any partial derivatives in the

x2 direction or in terms of x2 are neglected. The vector harmonic function fi takes

the following form (Shou and Crouch, 1995; Shou et al., 1997):

fi(x) = − 1

2(1− ν)

∫
∆ui(y)φp(y;x) dS(y) (2.51)

φp is the fundamental solution of the Laplace equation, ∇2φp(y;x) = −δ(y−x), which

is given by

φp(y;x) =


1

4πr
, x, y ∈ R3,

− 1

2π
ln r, x, y ∈ R2,

(2.52)

where r := ‖y − x‖.

Let us regard the boundary S of Eq. 2.51 as a boundary element Γβ. Substitution

of Eq. 2.40 into Eq. 2.51 gives

fβi (x) =
M∑
α=1

∆ũαβi gαβ(x) (2.53)

where

gαβ(x) := − 1

2(1− ν)

∫
Γβ

Nα(ξ)φp [y(ξ);x] dS(ξ) (2.54)

The tilde denotes that variables are evaluated in the local coordinate system. The

analytical integration of the above equation can be found in Crouch (1976), Shou and

Crouch (1995), and Shou et al. (1997). We provide the analytical integration for line
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and rectangular elements with constant strength in Appendix A for completeness.

Combining Eq. 2.53 with Eq. 2.50, we obtain

ũi = Ãij∆ũj, (2.55)

where

[
Ãij

]
=


2(1− ν)g,3 − x3g,11 −x3g,21 −(1− 2ν)g,1 − x3g,31

−x3g,12 2(1− ν)g,3 − x3g,22 −(1− 2ν)g,2 − x3g,32

(1− 2ν)g,1 − x3g,13 (1− 2ν)g,2 − x3g,23 2(1− ν)g,3 − x3g,33

 (2.56)

The superscripts αβ are omitted for brevity. Then, the coordinate transformation

from the local coordinate system of the βth element to the global coordinate system

is required. Let Lij be the rotation matrix from the local coordinate system of the βth

element to the global coordinate system. Noting that the in�uence coe�cients con-

stitute a second-order tensor, the coordinate transformation to the global coordinate

system is expressed by

Aij = LipLjqÃpq (2.57)

where Aij is the in�uence coe�cients in the global coordinate system.

Bαβ
ij can be easily obtained by applying the traction operator to the above equa-

tion. The �nal form of the in�uence coe�cients for traction is given by

B̃αβ
ik = S̃αβijkñ

αβ
j , (2.58)

where ñαβj is the normal vector of the αth node of the βth element in the local

coordinate system. S̃αβijk is the in�uence function for the ijth component of stress due

to the kth component of displacement discontinuity in the local coordinate system,

23



which is given by

[
S̃ij1

]
= 2G


2g,13 − x3g,111 (1− ν)g,23 − x3g,112 νg,22 + g,33 − x3g,113

2νg,13 − x3g,122 −νg,12 − x3g,123

−x3g,133


[
S̃ij2

]
= 2G


2νg,23 − x3g,112 (1− ν)g,13 − x3g,122 −νg,12 − x3g,123

2g,23 − x3g,222 νg,11 + g,33 − x3g,223

−x3g,233


[
S̃ij3

]
= 2G


g,33 + (1− 2ν)g,22 − x3g,113 −(1− 2ν)g,12 − x3g,123 −x3g,133

g,33 + (1− 2ν)g,11 − x3g,223 −x3g,233

g,33 − x3g,333


(2.59)

The lower triangular part is omitted due to its symmetry. The coordinate transfor-

mation of B̃αβ
ij is exactly the same with that of Ãαβij .

The analytical integration of Eq. 2.54 for line, rectangular, and triangular ele-

ments with constant strength (Nα = 1) are derived by Crouch (1976); Rongved and

Hill (1957); Kuriyama and Mizuta (1993), respectively. Those for higher order ele-

ments can be found in Crawford and Curran (1982); Shou (1993); Shou and Crouch

(1995); Shou et al. (1997); Cheng et al. (2015a).

2.4.2 The Equivalence of BEM and DDM

Although it is often mentioned that Eq. 2.50 is identical to the discretized form

of the Somigliana identity for displacements for crack problems, no derivation has

been made to the best of author's knowledge. Liu and Li (2014) and Liu (2016) have

shown that the Somigliana identity for tractions and Eq. 2.50 reduce to the same
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expression in the case of line and rectangular elements with constant strength. We

will show that Eq. 2.50 can be derived from the BIEs by using the Papkovich-Neuber

potentials.

It is well known that the solution of the Navier-Cauchy equation can be represented

in terms of the Papkovich-Neuber potentials Φi, φ (Fung, 1965; Slaughter, 2002):

Gui = Φi −
1

4(1− ν)
(xjΦj − φ),i . (2.60)

Φi and φ satisfy

Φi,jj = −fi, (2.61)

φ,ii = −xifi, (2.62)

where fi is the body force vector. The fundamental solutions to these Poisson equa-

tions, where a singular force is applied at y or fi = f ∗i δ(x−y), are (Phan-Thien, 1983;

Slaughter, 2002)

Φi = f ∗i φp(x; y), (2.63)

φ = yif
∗
i φp(x; y). (2.64)

Substituting Eq. 2.11, Eq. 2.63, Eq. 2.64 into Eq. 2.60 and exchanging the source

and �eld points, the displacement kernel can be rewritten as

Uij(y;x) =
1

4G(1− ν)
[(3− 4ν)δijφp − riφp,j] , (2.65)

where ri := yi−xi, φp = φp(y;x), and φp,i = ∂φp/∂yi. Applying the traction operator
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to Eq. 2.65 and noting that ni = −δi3, we obtain

Tij(y;x) = TyUij(y;x)

= λnjUik,k +Gnk(Uij,k + Uik,j)

= −2νδj3φ̂p,i − (1− 2ν)(δi3φ̂p,j + δijφ̂p,3) + riφ̂p,j3

(2.66)

where φ̂p := φp/{2(1− ν)}, and φp,kk = 0 is used in the above derivation.

The partial derivatives of the particular solution are given by

φp,i = − ri
2(D − 1)πr3

, (2.67)

φp,ij = − δij −Dr,ir,j
2(D − 1)πr3

(2.68)

where D is dimensions, 2 or 3. Then, the following expression holds

riφ̂p,j3 = φ̂p,iδj3 + r3φ̂p,ij − δijφ̂p,3. (2.69)

Substituting into Eq. 2.66, we obtain

Tij = 2(1− ν)δijφ̂p,3 − (1− 2ν)φ̂p,iδj3 + (1− 2ν)δi3φ̂p,j − r3φ̂p,ij (2.70)

Substitution into Eq. 2.31, we have

ui = −2(1− ν)

∫
∆uiφ̂p,3 dΓ + (1− 2ν)

∫
∆u3φ̂p,i dΓ

− (1− 2ν)δi3

∫
∆ukφ̂p,kΓ− x3

∫
∆ukφ̂p,ikΓ (2.71)
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Noting that

r,i =
∂r

∂yi
= − ∂r

∂xi
(2.72)

we have

φp,i =
∂φp
∂yi

= −∂φp
∂xi

(2.73)

φp,ij =
∂2φp
∂yi∂yj

=
∂2φp
∂xi∂xj

(2.74)

In addition, the order of integration and di�erentiation can be exchanged for x ∈ Ω\Γ.

Thus, we obtain

∫
∆uiφ̂p,j dΓ = − ∂

∂xj

[∫
∆uiφ̂p dΓ

]
= − ∂fi

∂xj
= −fi,j (2.75)∫

∆ukφ̂p,ik dΓ =
∂2

∂xi∂xk

[∫
∆ukφ̂p dΓ

]
=

∂2fk
∂xi∂xk

= fk,ik (2.76)

Therefore, Eq. 2.71 reduces to

ui = 2(1− ν)fi,3 − (1− 2ν)f3,i + (1− 2ν)δi3fk,k − x3fk,ik (2.77)

which is identical to Eq. 2.50.

The development of the DDM formalism presented in this Chapter clearly shows

the equivalence of the BEM and the DDM approaches. This general formalism will

be used in the next chapter to develop solutions for layered, inhomogeneous elastic

media.
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Chapter 3: Displacement Discontinuity Method for Layered

Media

3.1 Introduction

This chapter describes the development and veri�cation of a novel displacement

discontinuity method (DDM) for multilayered media. We extends the conventional

DDM for homogeneous media to piecewise laterally-homogeneous media, or multilay-

ered media∗.

In the previous chapter, we have proved the equivalence of BEM and DDM, in

a sense that the analytical integration of the fundamental solutions in BEM yields

in�uence coe�cients in DDM. Then, the development of a new DDM for multilayered

media is transformed into �nding the fundamental solution for multilayered media.

The fundamental solution for multilayered media has been commonly solved by

applying integral transforms. These methods include the sti�ness matrix, transfer

matrix, �exibility matrix, and propagator matrix methods (Singh, 1970; Bu�er, 1971;

Lin and Keer, 1989). The closed form solution for a multilayered isotropic elastic

medium in a half-space and an in�nite space by using the two-dimensional Fourier

transform and the backward-transfer matrix techniques (Yue, 1995, 1996). Although

these methods are successfully applied to layered media, they are numerically expen-

sive due to the need of numerical integration and di�erentiation, and, hence, are not

feasible for large scale problems.
∗Parts of this chapter have been reported in Hirose, S. and Sharma, M. M. (2018) Numerical

modelling of fractures in multilayered rock formations using a displacement discontinuity method.
In 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, 2018. ARMA-2018-495. The con-
tribution of the author is formulating a new DDM for layered media and performing numerical
simulations using the new DDM.
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Figure 3.1: A schematic �gure of an isotropic bi-material medium

3.2 The Method of Images

The basic idea of the method of images is to create a general solution which

will satisfy boundary conditions by superposing another solution. The method of

images is widely applied to problems with planar boundaries. An example of the

application of the image method to elasticity problems is deriving the fundamental

solution for a half-plane and half-space (Melan, 1932; Rongved, 1955). Telles and

Brebbia (1981) showed that Melan's solution can be expressed as a sum of the original

and image solutions. Another example is developing the fundamental solution for a

bonded bi-material shown in Fig. 3.1. The fundamental solution for bi-materials were

derived using Papkovich-Neuber potentials (Rongved, 1955; Dundurs and Hetényi,

1965; Huang and Wang, 1991; Chen and Tang, 1997) or nuclei of strains (Vijayakumar

and Cormack, 1987; Carvalho and Curran, 1992; Ma and Lin, 2002). It can be also

split into the original and complementary solutions.

If a planar boundary is located at x3 = 0, the fundamental solution of displacement

in bi-materials takes the following form

Uij(y;x) =


U o
ij(y;x) + U c

ij(y; x̄), y ∈ Ω1,

U c
ij(y;x), y /∈ Ω1,

(3.1)
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Figure 3.2: A schematic �gure of a multilayered isotropic medium

where Ω1 = {(x1, x2, x3 | x3 > 0)}, x ∈ Ω1, x̄ represents the image of x against

the boundary, and the superscripts o and c denotes the original and complementary

solutions, respectively. The image of x = (x1, x2, x3) is de�ned by

x̄ := (x1, x2, x3) = (x1, x2,−x3). (3.2)

When the method of images is applied to media having multiple planar boundaries

in parallel, the solution of the system is expressed as a sum of the original and an

in�nite series of image solutions:

Uij(y;x) =


U o
ij(y;x) +

∞∑
k=1

U ck
ij (y; x̄k), y ∈ Ω1,

∞∑
k=1

U ck
ij (y; x̄k), y 6∈ Ω1,

(3.3)

where x ∈ Ω1, and the superscript k denotes the kth image point or solution. For

instance, the solution of three-layered media can be expressed as an in�nite series of

Muskhelishvili potentials (Stagni and Lizzio, 1986, 1987) or Hansen potentials (Fares,

1987; Fares and Li, 1988).

Because the traction operator Eq. 2.9 is a linear di�erential operator, other kernels
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Tij, Kij, and Hij for multilayered media have the same form with Eq. 3.3:

Tij(y;x) =


T oij(y;x) +

∞∑
k=1

T ckij (y; x̄k), y ∈ Ω1,

∞∑
k=1

T ckij (y; x̄k), y 6∈ Ω1,

(3.4)

Kij(y;x) =


Ko
ij(y;x) +

∞∑
k=1

Kck
ij (y; x̄k), y ∈ Ω1,

∞∑
k=1

Kck
ij (y; x̄k), y 6∈ Ω1,

(3.5)

Hij(y;x) =


Ho
ij(y;x) +

∞∑
k=1

Hck
ij (y; x̄k), y ∈ Ω1,

∞∑
k=1

Hck
ij (y; x̄k), y 6∈ Ω1,

(3.6)

where
T oij := TyU o

ij, Ko
ij := TxU o

ij, Ho
ij := TxT oij,

T ckij := TyU ck
ij , Kck

ij := TxU ck
ij , Hck

ij := TxT ckij .
(3.7)

Substituting into Eq. 2.45 and Eq. 2.46, the in�uence functions of DDM for multi-

layered media can be expressed by

Aij(x) = Aoij(x) +
∞∑
k=1

Ackij (x̄k), (3.8)

Bij(x) = Bo
ij(x) +

∞∑
k=1

Bck
ij (x̄k), (3.9)
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where Aoij, B
o
ij, A

ck
ij , and B

ck
ij are de�ned by

Aoij(x) := −
∫

Γ+
β

T oij [y(ξ);x]Nα(ξ)J(ξ) dS(ξ), (3.10)

Bo
ij(x) := −

∫
Γ+
β

Ho
ij [y(ξ);x]Nα(ξ)J(ξ) dS(ξ), (3.11)

Ackij (x̄k) := −
∫

Γ+
β

T ckij
[
y(ξ); x̄k

]
Nα(ξ)J(ξ) dS(ξ), (3.12)

Bck
ij (x̄k) := −

∫
Γ+
β

Hck
ij

[
y(ξ); x̄k

]
Nα(ξ)J(ξ) dS(ξ), (3.13)

Aoij and B
o
ij correspond to the in�uence function for homogeneous media, which are

given in Chapter 2. It is found that T ckij and Hck
ij are regular because the image source

points x̄k do not coincide with y, and, consequently, Ackij and Bck
ij can be computed

numerically using Gaussian integration.

A major draw back of the method of images is that the derivation of complemen-

tary solutions requires both di�erentiation and integration if the Papkovich-Neuber

potential function is used. The general image method developed by Fares and Li

(1988) circumvents this di�culty by expressing elastic �elds in terms of the Hansen

potentials (Hansen, 1935; Ben-menahem and Singh, 1968). The complementary so-

lutions are derived by simply di�erentiating the Hansen potentials, which enables us

to derive image solutions systematically.

3.3 General Image Method

Some linear vector di�erential equations are separable into three vector functions

in some coordinate systems (Morse and Feshbach, 1953). For the Navier-Cauchy

equation, three independent sets of vector solutions can be found in the Cartesian

or cylindrical coordinates (Ben-menahem and Singh, 1968). Then, the displacement
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vector can be always decomposed into three vector functions (Fares, 1987; Fares and

Li, 1988):

ui = Li + Fi +Mi, (3.14)

where

Li := φ1,i, (3.15)

Fi := 2δi3φ2,3 − 2δx3φ2,i3 − φ2,i, (3.16)

Mi := εij3φ3,j, (3.17)

δ := 1/(3 − 4ν), εijk is the permutation symbol, φi are Handen potentials which are

harmonic functions. In vector notation, these vectors are expressed by

L = ∇φ1, (3.18)

F = 2ê3
∂φ2

∂x3

− 2δx3∇
∂φ2

∂x3

−∇φ2, (3.19)

M = ∇× (ê3φ3) , (3.20)

where ê3 is the unit vector in the x3 direction. It is easy to �nd that Mi is tangential

to x1x2 plane and perpendicular to Li. Moreover, Mi becomes orthogonal to Fi when

∇×M = ∇∂φ3
∂x3

holds (Morse and Feshbach, 1953). Hence, Mi is decoupled from the

directions spanned by Li and Fi and represents the antiplane direction.

Let us de�ne the kernel of the Hansen potentials Φij by

φ∗j(y) = Φij(y;x)f ∗i (x), (3.21)

where f ∗i (x) is the singular force applied at x, and φ∗j(y) is Hansen potential at y due

to the singular force. Substituting Eq. 3.21 into Eq. 3.14, the displacement kernel is

33



given by

Ui1 = Φi1,1 − Φi2,1 − 2δr3Φi2,13 + Φi3,2

Ui2 = Φi1,2 − Φi2,2 − 2δr3Φi2,23 + Φi3,1

Ui3 = Φi1,3 + Φi2,3 − 2δr3Φi2,33,

(3.22)

where Uij = Uij(y;x), ri := yi−xi, and the derivatives are taken in terms of y. Other

kernel functions can be derived by using Eq. 2.13, Eq. 2.16, and Eq. 2.17.

For 2D problems, the kernel of the Hansen potentials is given by

Φ11 = K2d {r3θ − r1 log r + (1 + δ)r1} , Φ12 = −Φ11,

Φ31 = K2d {−r1θ − r3 log r + r3} , Φ32 = Φ31,

(3.23)

where K2d := 1/{4πG(1 + δ)}, r := |y−x|, and θ := tan−1(r3/r1). Other components

of Φij are zero, resulting in φ3 = 0. In the general image method, the x2 direction is

taken as the antiplane direction. Any components or derivatives related with the x2

direction are neglected in 2D problems.

For 3D problems, the kernel is given by

Φ11 = K3d
r1r

r2
h

, Φ12 = −Φ11, Φ13 = 2(1 + δ)Φ21,

Φ21 = K3d
r2r

r2
h

, Φ22 = −Φ21, Φ23 = −2(1 + δ)Φ11,

Φ31 = K3d ln(r + r3), Φ32 = Φ31, Φ33 = 0,

(3.24)

where K3d := 1/{8πG(1 + δ)}, and rh :=
√
r2

1 + r2
2. It should be mentioned that the

kernel in 3D problems is given incorrectly in Fares (1987).

Utilizing the Hansen potentials, the complementary solution against a planar in-

terface is derived by simply di�erentiating the original potential in the x3 direction in
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contrast to the Papkovich-Neuber potentials. For bi-materials with a planar bound-

ary at x3 = 0 shown in Fig. 3.1, the complementary solution of the Hansen potential

is given by (Fares and Li, 1988)

Φc
ij(y;x) =


RjkΦo

ik(y;x), y ∈ Ω1

TjkΦ
o
ik(y;x), y /∈ Ω1

(3.25)

where x ∈ Ω1, Φo
ij is the kernel of the original Hansen potential. Rij and Tij are

re�ection and transmission operators de�ned by

[Rij] =


2δ1c1h

∂

∂y3

c2 − 4δ2
1c1h

2 ∂
2

∂y2
3

0

c1 −2δ1c1h
∂

∂y3

0

0 0 c3

 (3.26)

[Tij] =


c4 −2 (δ1c4 − δ2c5)h

∂

∂y3

0

0 c5 0

0 0 c6

 (3.27)

where h = x3 is the distance from the source point to the boundary, and

c1 :=
γ − 1

γ + δ1

, c2 :=
γδ2 − δ1

γδ2 + 1
, c3 :=

1− γ
1 + γ

,

c4 := 1− c1, c5 := 1− c2, c6 := 1 + c3,

γ := G2/G1.

(3.28)

Φo
j(y;x) is given by

Φo
j(y;x) = Φo

j(ȳ; x̄), (3.29)

where ȳ = (y1, y2, y3) = (y1, y2,−y3), and x̄ = (x1, x2, x3) = (x1, x2,−x3). If the
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G1, ν1

G2, ν2

G3, ν3

Upper layer Ω1

Middle layer Ω2

Lower layer Ω3

dupper

dlower

source point x

x1

x2

x3

Figure 3.3: A schematic �gure of the image method in a three-layered medium. A
point force is applied at x in the middle layer, and arrows represent re�ec-
tions and transmissions of the Hansen potentials. The shear modulus and
Poisson ratio of the ith layer are Gi and νi, respectively. Upper and lower
layer interfaces are located at x3 = dupper and x3 = dlower, respectively.

boundary is located at x3 = d, h and x̄ should be evaluated by h = x3 − d and

x̄ = (x1, x2, 2d− x3).

Eq. 3.25 is a general relationship between the original and complementary Hansen

potentials, which is equivalent to the continuity condition of the displacement and

traction along the boundary. For multilayered media, the application of Eq. 3.25 is

analogous to the re�ection and transmission of elastic waves against layer interfaces

as shown in Fig. 3.3. Applying Eq. 3.25 to each boundary and summing up all of

the complementary solutions for each layer, we end up with a general solution for the

multilayered media in the form of Eq. 3.3.

Since Eq. 3.26 and Eq. 3.27 only contain the di�erentiation in the x3 direction, and

kernel functions can be obtained from the Hansen potentials through di�erentiation

using Eq. 3.22, Eq. 2.13, Eq. 2.16, and Eq. 2.17, the complementary solutions can

be derived by using symbolic or automatic di�erentiation technique systematically.

For example, let us consider a three-layered medium shown in Fig. 3.3. Assuming a

point source x is located in the middle layer, the complementary Hansen potentials
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for the middle layer can be obtained by following the procedure shown in Fig. 3.4.

3.3.1 Special Treatment for 2D Problems

When the general image method is applied to in-plane 2D problems, a special

treatment is required. Since the original Hansen potential Eq. 3.23 contains a linear

term in terms of r1, re�ected and transmitted Hansen potentials contain a constant

displacement �eld, which must be subtracted from Uij. This fact was not pointed

out in Fares and Li (1988), and, indeed, their application is limited to anti-plane

problems.

First, let us consider the case in which a point force is applied to the x direction

in two dimensions. The corresponding Hansen potential Φ1i is given by

Φ11 = K2d [r3θ − r1 log r + (1 + δ1)r1] , (3.30)

Φ12 = −Φ11, (3.31)

Please note Φi3 is zero for 2D problems. Substitution into Eq. 3.25 gives

Φr11(y; x̄) = −c2Φ̄11 + H.O.T., (3.32)

Φr12(y; x̄) = c1Φ̄11 + H.O.T., (3.33)

where the subscript r denotes the re�ected potential. The terms with higher-order
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Figure 3.4: A �ow chart of the general image method to obtain the potential solution
for the middle layer in a three-layered medium. nmax is the maximum
number of re�ections, Rupper

ij and Rupper
ij are the re�ection operator for

the upper and lower interfaces, respectively.

38



derivatives are expressed as H.O.T. Substituting into Eq. 3.22, we obtain

Ur11(y; x̄) = Φr11,1 − Φr12,1 − 2δ1(y3 + x3)Φr12,13

= −c2Φ̄11,1 − c1Φ̄11,1 − 2δ1c1(y3 + x3)Φ̄11,13 + H.O.T.

= K2d

[
−(c1 + c2) (− ln r′ + δ1)− 2δ1c1

{
(y1 − x1)2

r′2
− 1

}]
+ H.O.T.

= K2dδ1 (c1 − c2) + non-linear terms,

(3.34)

where r′i = yi− x̄i, and r′ = |yi− x̄i|. It is found that other components do not contain

any constant displacement term. The constant displacement in the Hansen potential

for one re�ection and transmission is, hence, given by

[Uij] =

K2dδ1(c1 − c2) 0

0 0

 . (3.35)

For multiple re�ections and transmissions, the constant displacement can be de-

rived from the fact that it is only produced from the terms with Φo
11. Let us decompose

the re�ection and transmission operators as

Rij =

 0 c2

c1 0

+ H.O.T., (3.36)

Tij =

c4 0

0 c5

+ H.O.T.. (3.37)

Applying the re�ection and transmission operators to the original Hansen potential
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multiple times, the Hansen potentials have the following form:

Φ11 = AΦo
11 + H.O.T., Φ12 = BΦo

11 + H.O.T.,

Φ31 = CΦo
31 + H.O.T., Φ32 = DΦo

31 + H.O.T.,
(3.38)

where Φo
ij is given by Eq. 3.23, and A throught D are constants computed as a result

of re�ections and transmissions. Substituting into Eq. 3.22, we obtain the following

constant displacement:

[Uij] = K2d

δ1(A−B) + 2δnB 0

0 0

 , (3.39)

where δ1 is evaluated in the material where the original potential was computed, and

δn is evaluated in the material where the �nal re�ection was computed.
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Figure 3.5: Circular hole near the free surface of a half-plane.

3.4 Validation

3.4.1 Circular Hole near a Free Surface of a Half-Plane

The general image method is applied to a circular hole near the free surface of a

half-plane shown in Fig. 3.5. A constant hydraulic pressure p is applied to the inside

of the hole. The tensile stress along the contour of the hole is given by (Savin, 1961)

σθθ = p(1 + tan2 φ), (3.40)

where φ is de�ned in Fig. 3.5, and p is the hydraulic pressure applied to the inside of

the hole.

The problem is solved by using the conventional BEM in which kernel functions

are computed using the general image described in this chapter. Linear elements are

used, and the number of elements along the contour of the hole is 48. The Poisson

ratio is 0.2, and the pressure is p = 0.2G. The depth of the center of the hole is h = 2,

and the radius of the hole is R = 1. The number of gauss points for the numerical
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Figure 3.6: The tensile stress along the contour of the hole near the free surface under
constant hydraulic pressure. θ is the angle from the y-axis in the clockwise
direction. The tensile stress is normalized with the pressure.

integration of the image solution is 3. The tensile stress along the contour of the hole

is plotted in Fig. 3.6. The tensile stress is computed by using the indirect method

described in Aliabadi (2002). The numerical and analytical solutions of the tensile

stress match very well.

3.4.2 A Horizontal Crack in Bi-materials

A horizontal pressurized crack in bi-materials in plain strain is analyzed. A

schematic �gure of the problem is shown in Fig. 3.7. This problem was �rst solved

by Crouch and Star�eld (1983), who analytically derived the in�uence function of

a DDM element for bi-materials. The same parameters with Crouch and Star�eld

(1983) are used here: the number of elements is 40. The Poisson ratio of both ma-

terials is ν1 = ν2 = 0.1. The pressure applied to the horizontal crack is p = 10−3G1.
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Table 3.1: The properties used to analyze the pressurized crack in a bi-material.

γ W/W0

0.0 1.6930
0.25 1.2411
0.50 1.1070
0.75 1.0406
1.00 1.0000
2.50 0.9045
5.00 0.8598
7.50 0.8418
10.00 0.8320

x

y

h

h−h
G2,ν2 (material 2)

G1,ν1 (material 1)

Figure 3.7: A schematic �gure of a horizontal crack in a bi-material. The depth of
the crack is h, and the length of the crack is 2h.

The strain energy ratios computed by using the general image method are listed in

Table 3.1 and plotted in Fig. 3.8. W is the strain energy when γ = G2/G1 = 1. It is

clear that the new method can reproduce the result of Crouch and Star�eld (1983).

3.5 Application

3.5.1 Horizontal and Vertical Cracks in Three-Layered Media

The general image method is applied to vertical and horizontal pressurized cracks

in three-layered media assuming a plain strain condition. A schematic �gure of this

problem is shown in Fig. 3.9. The length of the cracks is equal to the height of the
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Figure 3.8: The strain energy ratio W/W0 of a horizontal crack in bi-materials in
which a hydraulic pressure p = 10−3G1 is applied. W0 is the strain energy
in the case of G1 = G2 = 1.
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Figure 3.9: A schematic of horizontal and vertical cracks in three-layered media. The
crack length is h, and the height of the middle layer is h. The shear
modulus and Poisson ratio of the ith material are Gi and νi.

Table 3.2: Properties used for horizontal and vertical pressurized cracks in three-
layered media.

Element type constant, linear, quadratic
Number of elements 10
Number of Gauss points 1, 2, 3
Number of images 1, 2, 3
Shear modulus contrast (γ = G1/G2 = G3/G2) 2, 5
Poisson ratio (ν1 = ν2) 0.2
Pressure p = 10−3G2

middle layer, and the center of the cracks is located at the origin. The properties

used to solve the problem are listed in Table 3.2. Fig. 3.10 through Fig. 3.17 show the

half-width of the pressurized cracks in dimensionless form. The analytical solution

for a homogeneous medium with the properties of the middle layer is also plotted

(Zehnder, 2012). The dimensionless width and coordinates are de�ned by wD := w/h,

xD := x/h, and zD := z/h, where w is the width of a crack and h is the height of the

middle layer. The shear modulus contrast γ is de�ned against the shear modulus of

the middle layer G2, and the same shear modulus is used for the upper and the lower

layers.
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Fig. 3.10 and Fig. 3.11 show the e�ect of element types. Constant elements are less

accurate than linear and quadratic elements in the three-layered medium as Crawford

and Curran (1982) pointed out for homogeneous media. Fig. 3.12 and Fig. 3.13 show

the contribution of the number of Gauss points for the numerical integration of image

solutions. Although more Gauss points improve the accuracy of solutions in general,

it is observed that the improvement of the accuracy of these cases is very limited.

Fig. 3.14 through Fig. 3.17 show the impact of the number of image solutions in the

case of γ = 2 and 5. The number of images required for accuracy depends on both the

orientation of the crack and the contrast of shear modulus. While multiple images

are required for a horizontal crack, one image is su�cient for a vertical crack. If the

contrast of shear modulus is increased, more images are required to obtain an accurate

width of the crack as shown in Fig. 3.16. From a practical viewpoint, however, one

image produces su�ciently accurate width for both cracks in the case of γ = 2 and

5. This means that bi-material solutions are su�cient for a three-layered medium up

to γ = 5 under plain strain conditions.
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Figure 3.10: The half-width of the horizontal crack in a three-layered medium for
di�erent element types in the case of three Gauss points, three images,
and γ = 2. wD := w/h and xD := x/h.

Figure 3.11: The half-width of the horizontal crack in a three-layered medium for
di�erent element types in the case of three Gauss points, three images,
and γ = 2. wD := w/h and zD := z/h.
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Figure 3.12: The half-width of the horizontal crack in a three-layered medium for
di�erent number of Gauss points in the case of quadratic elements, eight
images, and γ = 2. wD := w/h and xD := x/h.

Figure 3.13: The half-width of the horizontal crack in a three-layered medium for
di�erent number of Gauss points in the case of quadratic elements, eight
images, and γ = 2. wD := w/h and zD := z/h.
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Figure 3.14: The half-width of the horizontal crack in a three-layered medium for
di�erent number of image solutions in the case of quadratic elements,
three Gauss points, and γ = 2. wD := w/h and xD := x/h.

Figure 3.15: The half-width of the vertical crack in a three-layered medium for di�er-
ent number of image solutions in the case of quadratic elements, three
Gauss points, and γ = 2. wD := w/h and zD := z/h.
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Figure 3.16: The half-width of the horizontal crack in a three-layered medium for
di�erent number of image solutions in the case of quadratic elements,
three Gauss points, and γ = 5. wD := w/h and xD := x/h.

Figure 3.17: The half-width of the vertical crack in a three-layered medium for di�er-
ent number of image solutions in the case of quadratic elements, three
Gauss points, and γ = 5. wD := w/h and zD := z/h.
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3.6 Conclusion

A new DDM for layered media based on the direct boundary integral formulation

with the method of images is presented in this paper. Unlike previous researches

using bi-material solutions, the new method can evaluate the contribution of multiple

images. It is veri�ed both analytically and numerically by comparison with the Melan

solution and the bi-material problem solved by Crouch and Star�eld, 1983. Vertical

and horizontal cracks in a three-layered medium are investigated by using the new

method, and it is found that the critical parameter controlling the computed fracture

width is the element type. The number of Gaussian points and images has less impact

on crack width. Therefore, the use of bi-material solutions is su�cient for the width

calculation of a single crack in the three-layered media with under a plain strain

condition.
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Chapter 4: DDM-Based Hydraulic Fracturing Model

4.1 Introduction

In Chapter 2, the formulation of DDM was revisited to clarify the equivalence of

DDM and BEM. The fact that the DDM formulation is essentially equivalent with

BEM means that the numerical techniques used in BEM are also applicable to DDM.

In this chapter, a hydraulic fracturing model in which rock mechanics and �uid

dynamics are coupled is developed. DDM is used to simulated the elastic deformation

of fractures, while FVM is used to compute the �uid �ow inside the fractures with

the lubrication theory. Fracture surfaces are discretized into rectangular elements.

The elements are allowed to have di�erent sizes.

The �uid is assumed to be slightly compressible with a constant viscosity to sim-

plify the formulation of the �uid �ow inside the fracture. The coupling between rock

mechanics and �uid dynamics is implemented either in a segregated or fully-coupled

manner. Although the �uid and proppant distribution between fractures through the

wellbore is important for fracture propagation (Wu and Olson, 2015b; Wu et al., 2016;

Yi et al., 2017; Yi and Sharma, 2018), a constant injection rate into each fracture

from the wellbore is assumed for simpli�cation. The �uid and proppant distribution,

however, can be incorporated into our hydraulic fracturing model in the same way as

Shrivastava and Sharma (2018a).
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4.2 Fracture Mechanics

4.2.1 Solid Deformation

DDM is used to compute the elastic response of the fracture against the change

of �uid pressure. Based on the formulation described in Chapter 2, the displacement

discontinuity along the fracture surface and the �uid pressure have the following

relationship:

−pni = −Hij∆uj + σ0,ijnj, (4.1)

where σ0,ij is the far�eld stress �eld. Using the constant-strength elements, the above

equation can be discretized into

Aij∆uj + Bijpj = fi, (4.2)

Bij = δijni, (4.3)

fi = −σ0 · ni (4.4)

where Aij is the in�uence coe�cient matrix from the collocation point on the ith

element to the jth element, δij is the Kronecker delta, and ni is the normal vector of

the ith element.

4.2.2 Fracture Propagation Criteria

We assume small scale yielding (SSY). In other words, we assume that the stress

�eld around a crack tip can be described by linear elastic fracture mechanics (LEFM)

because the yielding zone near the crack tip is small enough compared to the crack

length (Rice, 1968; Zehnder, 2012). In SSY, the criteria of the initiation and growth

of fractures can be described in terms of either stress intensity factors (SIFs) or energy

release rate.
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4.2.2.1 Maximum-Stress Criteria

In the maximum-stress criteria, the condition of fracture propagation is expressed

in terms of SIFs, which represent the magnitude of stress singularity around a crack

tip. Since the stress around a crack tip has the singularity of
√
r in LEFM, SIFs are

de�ned by

KI := lim
r→0

σθθ|θ=0

√
2πr (4.5)

KII := lim
r→0

σrθ|θ=0

√
2πr (4.6)

KIII := lim
r→0

σ3θ|θ=0

√
2πr (4.7)

where r is the distance from the crack tip, and KI, KII, and KIII are the mode-I,

II, and III SIFs, respectively. The stress components are expressed in the cylindrical

coordinate system around the crack tip.

For a crack growing straight ahead, the maximum tensile stress occurs in the

direction of θ = 0. Thus, the maximum-stress criterion for pure mode-I fractures is

simply given by

KI ≥ KIc (4.8)

whereKIc is the mode-I critical SIF. For mixed-mode fractures, the maximum circum-

ferential stress criterion is used (Erdogan and Sih, 1963). It postulates that a crack

will propagate in the direction where the maximum circumferential stress occurs when

the mode-I SIF in that direction exceeds a critical value:

K̄I ≥ KIc (4.9)

where K̄I is the mode-I SIF in the maximum circumferential stress direction θ0. K̄I
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can be calculated by

K̄I =
1

2
cos

θ0

2
[KI(1 + cos θ0)− 3KII sin θ0] (4.10)

The maximum circumferential stress direction is calculated by (Erdogan and Sih,

1963; Duarte et al., 2001)

tan
θ0

2
=

1

4

KI

KII

− sgn (KII)

√(
KI

KII

)2

+ 8

 , −π ≤ θ ≤ π (4.11)

4.2.2.2 Maximum-Energy-Release-Rate Criteria

The energy release rate G is the energy dissipated to create new crack surfaces

de�ned by

G := −∂Π

∂s
(4.12)

where Π is the potential energy, and s is the surface area of the crack. In SSY, SIFs

and energy release rate for a crack growing straight ahead are related:

G =
K2

I

E ′
+
K2

II

E ′
+
K3

III

2G
(4.13)

where E ′ = E/(1 − ν2) is the plain strain Young's modulus, and G is the shear

modulus. If a crack grows in some other direction, the above equation is no longer

valid, and numerical computation is required in general. However, under SSY, if we

assume

1. The fracture will propagate in the direction of the maximum energy release

rate.

2. The fracture grows when the energy release rate reaches a critical value.
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Then, the maximum-energy-release-rate criterion for plain-strain fractures can be

expressed in the following form (Nuismer, 1975):

G ≥ Gc (4.14)

where Gc is the critical energy release rate. G can be calculated by

G =
K̄2

I

E ′
(4.15)

4.2.2.3 Calculation of Stress Intensity Factors

SIFs can be computed from stresses or displacement discontinuities near crack

tips. Using special crack tip elements which account for the square-root singularity of

displacement discontinuities to crack tips, SIFs can be computed accurately (Crouch

and Star�eld, 1983; Shou, 1993; Shou and Crouch, 1995; Shou et al., 1997). On the

other hand, Schultz (1988) proposed the following simple equations based on the

semi-in�nite crack solution to estimate SIFs:

KI =
G

4(1− ν)

(
2π

a

) 1
2

∆u2 (4.16)

KII =
G

4(1− ν)

(
2π

a

) 1
2

∆u1 (4.17)

where a is the distance between the center of an element and the crack tip. Displace-

ment discontinuity is evaluated in the local coordinate system in the above equation.

The above equations are used in Shou and Crouch (1995), Dong and De Pater (2001),

and Yamamoto et al. (2004).
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Olson (1991) proposed an empirical equation based on the analytical solution of

a �nite length crack to compute SIFs from displacement discontinuity

KI =
CcorE

4(1− ν2)

( π
2a

) 1
2

∆u2 (4.18)

KII =
CcorE

4(1− ν2)

( π
2a

) 1
2

∆u1 (4.19)

where Ccor = 0.806 is a correction factor, and a is element half-length. Sheibani and

Olson (2013) compared the SIFs computed using the Olson's equation with those com-

puted using analytical solutions and showed that Olson's equation has a reasonable

accuracy. We use Olson's equation because of its simplicity.

4.3 Fluid Mechanics

4.3.1 Fluid Flow Inside Fractures

Neglecting the gravitational force, the Darcy velocity vd per unit fracture depth

perpendicular to the �ow direction in fractures for a Newtonian �uid is given by

(Girault et al., 2016)

vd = − k

µf
∇p, (4.20)

where k denotes the permeability integrated over the width of the fracture, ∇ is the

surface gradient operator, p is the �uid pressure, and µf is the �uid viscosity. Mass

conservation in fracture can be written by

∂(ρw)

∂t
+∇ · (ρfvd) + ṁl = ṁw, (4.21)

where ṁl is a leak-o� mass rate per unit area from the fracture domain to the reservoir

domain, and ṁw is a mass rate per unit area from the wellbore to the fracture domain.
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We assume the linear dependence of the �uid density on pressure:

ρf = ρf0{1 + cf (p− p0)}, (4.22)

where ρf0 is the reference density, cf is the compressibility, and p0 is the reference

pressure. Because of the small compressibility of liquids (cf � 1), the time derivative

in Eq. 4.21 can be approximated by

∂(ρw)

∂t
= w

∂ρf
∂p

∂p

∂t
+ ρf

∂w

∂t

= wcfρf0
∂p

∂t
+ ρf

∂w

∂t

≈ ρf0

(
wcf

∂p

∂t
+
∂w

∂t

)
.

(4.23)

Assuming the �uid viscosity is constant and the fracture permeability obeys the

cubic law k = w3/12 (Witherspoon et al., 1980; Zimmerman and Yeo, 2000), the

divergence term in Eq. 4.21 can be approximated by

∇ · (ρfvd) = ∇ ·
(
−ρfw

3

12µf
∇p
)

≈ −ρf0

µ′f
∇ · (w3∇p),

(4.24)

where µ′f = 12µf .

Carter's leak-o� model (Howard and Fast, 1957) is selected to compute the leak-o�

rate. The leak-o� term in Eq. 4.21 can be expressed by

ml =
clρf (p− pr)√

t− τ
, (4.25)

where cl is the leak-o� coe�cient, pr is the pore pressure in the reservoir domain, t is

the current time, and τ is the exposure time at which the fracture surface is created.
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The leak-o� coe�cient is given by

√
krφcf
πµf

, (4.26)

where kr is the rock permeability, and φ is the rock porosity.

Substituting Eq. 4.23, Eq. 4.24, and Eq. 4.25 into Eq. 4.21 and dividing by ρf0,

we obtain

cfw
∂p

∂t
+
∂w

∂t
− 1

µ′f
∇ · (w3∇p) +

cl(p− pr)√
t− τ

= qw, (4.27)

where qw = ṁw/ρf0 is the volumetric rate per unit area at the reference pressure from

the wellbore to the fracture domain.

The discretization of Eq. 4.27 using the �nite volume method will be described

hereafter. Our discretization is similar to that of Settgast et al. (2017). The integral

form of Eq. 4.27 over the ith element is given by

∫
Sfi

cfw
∂p

∂t
dS+

∫
Sfi

∂w

∂t
dS− 1

µ′f

∫
Sfi

∇· (w3∇p) dS+

∫
Sfi

cl(p− pr)√
t′ − τ

dS =

∫
Sfi

qw dS

(4.28)

The temporal derivatives are evaluated using the backward Euler method:

∂ψ

∂t
=
ψn+1 − ψn

∆t
, (4.29)

where ψ is any scalar or vector �eld, ψn+1 = ψ(t + ∆t), ψn = ψ(t), ∆t is the time

step length, and n is the time step count. This is �rst-order accurate in time.

The volume integrals are calculated using the mid-point rule

∫
Sfi

ψ dS = ψiSfi (4.30)
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where ψi = ψ(xi), and xi is the center of the surface Sfi. Applying the divergence

theorem to the third integral term in Eq. 4.28, we have

∫
Sfi

∇ · (w3∇p) dS =

∮
∂Sfi

w3 ∂p

∂n
dl, (4.31)

The line integral in the above equation can be split into the sum of integrals over the

cell edges. Using the mid-point rule, each line integral can be evaluated by

∮
∂Sfi

w3 ∂p

∂n
dl =

∑
e

w3
e le

(
∂p

∂n

)
e

, (4.32)

where l is the edge length. The directional gradient of pressure at the mid-point of

edges is evaluated implicitly (
∂p

∂n

)
e

=
pj − pi
de

, (4.33)

where j is the neighbor point of i, and de is the distance between xi and xj along the

surface.

For simpli�cation, we neglect pressure drop through perforations and inside well-

bores. In addition, each wellbore is assumed to be connected to only one fracture

element. Then, the mass balance in the ith wellbore can be expressed by

cf

∫
Vwi

∂pi
∂t

dV +

∫
Sfi

qw dS = qwi (4.34)

where Vwi is the ith wellbore volume, and qwi is the volumetric injection rate into the

ith wellbore. Assuming uniform pressure inside the wellbore, we have

cfVwi
pn+1
i − pni

t
+

∫
Sfi

qw dS = qwi (4.35)
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Applying these discretization, we obtain the following equation:

cf
(
Sfiw

n+1
i + Vwi

) pn+1
i − pni

∆t
+ Sfi

wn+1
i − wni

∆t
+ SfiΛi(p

n+1
i − pr)

−
∑
e

Kn+1
e (pn+1

j − pn+1
i ) = qwi (4.36)

where Λi = cl/
√
t− τi, and Ke = lew

3
e/µ

′
fde. The �rst and fourth non-linear terms

in the above equation can be linearized by evaluating width explicitly. Therefore,

noting that wi = −ni ·∆ui, we have

Cij∆un+1,k+1
j +Dijp

n+1,k+1
j = gi, (4.37)

where

Cij =


−Sfi

∆t
n>i , for i = j,

0 for i 6= j,

(4.38)

Dij =


(
Sfiw

n+1,k
i + Vwi

) cf
∆t

+ SfiΛi +
∑
e

Kn+1,k
e , for i = j,

−Kn+1,k
e , for i 6= j,

(4.39)

gi = qwi +
(
Sfiw

n+1,k
i + Vwi

) cfpni
∆t

+
Sfiw

n
i

∆t
+ SfiΛipr. (4.40)

The superscripts k + 1 and k denote the iteration count.
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4.4 Solution Strategy

The DDM and �ow equations are combined to form a coupled system of equations:

A B

C D


∆u

p


k+1

=

f
g

 (4.41)

or

Axk+1 = b, (4.42)

A =

A B

C D

 , x =

∆u

p

 , b =

f
g


where time step n + 1 is omitted for brevity. There are two common approaches to

solve this coupled system of equations: the segregated method and the fully coupled

method. The segregated method iteratively solves the DDM and �ow equations based

on matrix splitting techniques, while the fully coupled method directly solves the

coupled system.

Solving the coupled system of equations is continued until convergence. The

convergence criterion of the solution is given by

maxi |pk+1
i − pki |

maxi |pki |
< εp (4.43)

maxi,j |∆uk+1
j,i −∆ukj,i|

maxi,j |∆ukj,i|
< εu (4.44)

where ∆uj,i is the jth component of the displacement discontinuity of ith element,

and εp and εu are tolerances for pressure and displacement discontinuity, respectively.

εp = εu = 1.0× 10−6 is used in this dissertation.

When the iterations have converged, the fracture propagation criterion is checked
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along the edges of the fracture. New elements are added in front of the tip edges which

satisfy the propagation criterion. The size of new elements is the same with that of

the owner element of the crack tip edges unless otherwise stated. The propagation

direction is determined using the maximum circumferential stress criterion. A �ow

chart of the fracture propagation algorithm is shown in Fig. 4.1.

4.4.1 Segregated Method

4.4.1.1 Fixed-Width Split

A common matrix splitting technique used in the DDM-�ow coupling is the �xed-

width split. That is, solving the �ow equation while freezing the fracture width,

and then solving the DDM equation to obtain the displacement discontinuity, or vice

versa. The �xed-width split can be expressed by

A B

C D


∆u

p


k+1

=

A B

O D


∆u

p


k+1

+

O O

C O


∆u

p


k

(4.45)

This is analogous to the drained or �xed-strain split in geomechanics-�ow coupling

problems (Kim et al., 2011a). Substituting into the original equation, we obtain the

expression for the �xed-width split:

A B

O D


∆u

p


k+1

=

 O O

−C O


∆u

p


k

+

f
g

 (4.46)

This equation can be solved iteratively in the following manner:

1. Solve the �ow equation using pk+1 = D−1(g −C∆uk).

2. Solve the DDM equation using ∆uk+1 = A−1(f −Bpk+1).
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Increment time step n

Increment failure count

Increment iteration count k
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Converged? k ≥ kmax?

Decrease relaxation factor
α = fα, f ∈ (0, 1)
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no
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yes
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Figure 4.1: A �ow chart of the fracture propagation algorithm.
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This is a preconditioned Richardson iteration with a block triangular preconditioner

(Castelletto et al., 2015). New predicted values are relaxed at each step using a

relaxation factor α ∈ (0, 1]:

ψk+1 ← αψk+1 + (1− α)ψk (4.47)

The same relaxation factors are used in this dissertation for pressure and displacement

discontinuity, though di�erent values can be applied.

The segregated method has the advantages of easy implementation and less mem-

ory requirement due to its smaller matrix size compared to the fully coupled method.

Thus, it has been used by many researchers, e.g. Yamamoto et al. (2004), Wu and

Olson (2013), Wu (2014), Wu and Olson (2015a), and Shrivastava et al. (2017).

However, it is observed that the �xed-width split requires a small relaxation factor,

typically around 0.1, resulting in slow convergence. Moreover, iterations sometimes

do not converge at all even if a very small relaxation factor is used. The slow conver-

gence and instability problems have been also reported in the case of the �xed-strain

and drained split in geomechanics-�ow coupling problems (Kim et al., 2011a,b,c).

4.4.1.2 Fracture Compliance Split

A new splitting scheme, which is called fracture compliance split in this disserta-

tion, is proposed to obtain higher convergence speed and better numerical stability.

The key idea is to incorporate the pressure dependence of fracture width into the

�ow equation. We assume that the pressure dependence of fracture width in the �ow

equation can be approximated by

wk+1
i − wki = ci(p

k+1
i − pki ), (4.48)
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where ci is the fracture compliance. The fracture compliance is estimated from the

self-in�uence coe�cients of DDM:

ci =


π(1− ν)ai

G
, for 2D line elements,

π(1− ν)

G
· aibi√

a2
i + b2

i

, for 3D rectangular elements,
(4.49)

where G is shear modulus, ν is Poisson ratio, ai and bi are the half-lengths of DDM

elements in the local x and y directions, respectively. Substituting into the �ow

equation, we obtain the following matrix splitting:

A B

C D


∆u

p


k+1

=

A B

O D + ωC′


∆u

p


k+1

+

O O

C −ωC′


∆u

p


k

, (4.50)

where ω ∈ [0, 1] is a relaxation factor. ω = 0 corresponds to the �xed-width splitting

scheme. C′ is a diagonal matrix de�ned by

C′ :=
1

∆t
diag {Sf1c1, · · · , SfNcN} , (4.51)

where N is the number of cells. Eq. 4.50 can be solved iteratively in the following

manner:

1. Solve the �ow equation using pk+1 = (D + ωC′)−1(g −C∆uk + ωC′pk).

2. Solve the DDM equation using ∆uk+1 = A−1(f −Bpk+1).

This splitting scheme takes the fracture compliance term C′ as a source correction

term in the �ow equation. The contribution of the correction term tends to disappear

as the solution converges. The new splitting scheme is analogous to the �xed-stress

split in Kim et al. (2011a).
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4.4.2 Fully Coupled Method

The fully coupled method solves Eq. 4.41 directly and determines ∆u and p

simultaneously. That is, the solution vector at the new iteration count is computed

by ∆u

p


k+1

=

A B

C D


−1 f

g

 . (4.52)

Iterations are continued until convergence. Assuming that the number of cells is

N and the dimensions is D, the fully coupled approach requires to solve (D + 1)N

equations with the same number of unknowns, i.e. displacement discontinuity and

fracture pressure.

Since the coupled system of equations involves two quantities with di�erent units,

the coe�cients in the equation have signi�cantly di�erent scales. Thus, they must

be scaled to have the same order of magnitude. For example, Settgast et al. (2017)

scaled the coupled system of equations using the maximum force and mass of each

cell. The scaling process in this dissertation is combined with the preconditioning

process to give

M−1
1 A′y =M−1

1 b (4.53)

A′ := AM2, (4.54)

y :=M−1
2 x, (4.55)

whereM1 andM2 are block-diagonal left and right preconditioning matrices, respec-
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tively. The preconditioning matrices are de�ned by

M1 :=

Mu O

O Mp

 , (4.56)

M2 :=

suI O

O spI

 , (4.57)

Mu := sudiag {A11, . . . ,ANN} , (4.58)

Mp := spdiag {D11, . . . , DNN} , (4.59)

su := max
i,j
{|∆uj,i|} , (4.60)

sp := max
i
{|pi|} . (4.61)

su and sp are scaling factors for displacement discontinuity and pressure, respectively.

Using the fully-coupled method, faster convergence and better numerical stability

can be obtained in general. Therefore, the method is used for highly non-linear

systems such as hydraulic fracturing using non-Newtonian �uids, e.g. Olson and Wu

(2012) and Wu (2014).

4.5 Validation

4.5.1 A Radial Fracture

Our hydraulic fracturing model is compared with the analytical solutions of radial

fractures developed by Dontsov (2016). The input data for each model are presented

in Table 4.1.

The radius, maximum width, and net-pressure ofM-vertex or viscosity-dominated
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Table 4.1: Input data used in the comparison of the new and old splitting schemes
for a 2D fracture propagation problem.

Parameters Unit M-vertex K-vertex
Initial fracture size m 0.3×0.3
Element size m 0.1
Time step length sec 1.0
Shmin MPa 8.0
Shear modulus GPa 24.0
Poisson ratio 0.25
KIc MPa m1/2 1.0 5.0
Reference density kg/m3 1000
Reference pressure MPa 3.2
Viscosity cP 1.0
Compressibility 1 /MPa 4.4× 10−4

Leak-o� coe�cient m s−1/2 Pa−1 0
Injection rate m3/s 0.01
Wellbore volume m3 0.005
Initial well pressure MPa 10.0
Initial fracture width mm 4.0× 10−3 1.0× 10−2

solution are given by

R = 0.6944

(
Q3
wE
′t4

µ′f

) 1
9

(4.62)

wmax = 1.1901

(
µ′2fQ

3
wt

E ′2

) 1
9

(4.63)

pnet = 2.4019

(
µ′fE

′2

t

) 1
3

F(0, 0.397,
5

8
) (4.64)

where R is the radius of the fracture, Qw is injection rate, t is elapsed time, and µ′f =

12µf . F is an integral function de�ned in Dontsov (2016). The radius, maximum
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width, and net-pressure of K-vertex or toughness-dominated solution are given by

R = 0.8546

(
QwE

′t

K ′

) 2
5

(4.65)

wmax = 0.6537

(
K ′4Qwt

E ′4

) 1
5

(4.66)

pnet = 0.3004

(
K ′6

E ′Qwt

) 1
5

(4.67)

where

K ′ = 4

(
2

π

) 1
2

KIc (4.68)

The simulation and analytical results of the maximum width and the radius of the

radial hydraulic fracture ofM-vertex solution are plotted in Fig. 4.2 and Fig. 4.3. The

width and pressure distribution of the fracture in the end of the simulation are shown

in Fig. 4.4 and Fig. 4.5. The fracture radius in the simulation results is calculated by

R =

√
Af
π

(4.69)

where Af is total fracture area.

It is found that the numerical results at early time do not agree with the analytical

solution as shown in Fig. 4.2 and Fig. 4.3. This is because the initial size of mesh

elements is too large compared to the size of the fracture. As the fracture grows,

the size of mesh elements becomes small compared to the fracture size, and thus

the numerical solution approaches the analytical solution. Moreover, The simulated

fracture radius is larger than the analytical one though the growing speed of the

fracture of the numerical and analytical results agrees. This can be explained by

the discretization using square elements. Because of the use of square elements, the

geometry of the radial fracture is not well approximated in the simulation.
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Figure 4.2: The maximum width of a radial hydraulic fracture in the viscosity-
dominated regime without leak-o�

Figure 4.3: The radius of a radial hydraulic fracture in the viscosity-dominated regime
without leak-o�
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Figure 4.4: The width distribution of a radial hydraulic fracture in the viscosity-
dominated regime without leak-o� at the time step t = 50 sec

Figure 4.5: The pressure distribution of a radial hydraulic fracture in the viscosity-
dominated regime without leak-o� at the time step t = 50 sec
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Figure 4.6: The maximum width of a radial hydraulic fracture in the toughness-
dominated regime without leak-o�

The maximum width and the radius of the radial fracture of the K-vertex solution

are shown in Fig. 4.6 and Fig. 4.7. The width and pressure distribution of the fracture

in the end of the simulation are also shown in Fig. 4.8 and Fig. 4.9.

Similar to the M-vertex solution, the early-time numerical results deviate from

the analytical solution due to the large element size compared to the fracture size.

The non-smoothness of the simulation results originates from how new elements are

created in the mesh. Since new elements are added in a predetermined size, the

increase of the fracture area is not smooth when the fracture grows. Thus, every time

the fracture expands, the fracture pressure drops abruptly to satisfy the material

balance in the fracture domain. This can be avoided if an adaptive mesh is used

though it complicates the simulation algorithm.
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Figure 4.7: The radius of a radial hydraulic fracture in the toughness-dominated
regime without leak-o�

Figure 4.8: The width distribution of a radial hydraulic fracture in the toughness-
dominated regime without leak-o� at the time step t = 50 sec
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Figure 4.9: The pressure distribution of a radial hydraulic fracture in the toughness-
dominated regime without leak-o� at the time step t = 50 sec
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Figure 4.10: The relaxation factor and the number of iterations for a plain-strain
fracture propagation solved with the �xed-width split.

4.6 Results

4.6.1 Comparison of Matrix Splitting Techniques

A 2D fracture propagation problem is solved by using the �xed-width split with

parameters listed in Table 4.2. The �ow equation is solved using the BiCGSTAB

method with the incomplete LU factorization preconditioner, while the DDM equation

is solved using the BiCGSTAB method with the block-diagonal preconditioner.

The relaxation factor and the number of iterations for the problem is shown in

Fig. 4.10. The relaxation factor decreases from 1 to 0.0625 as the fracture grows, while

the number of iterations increases from around 20 to 150-200. Because of the fully-

populated nature of the DDM in�uence matrix, the cost of solving the DDM equation

is signi�cantly more expensive than that of solving the �ow equation. Thus, this large

number of iterations negates the aforementioned advantages of the �xed-width split,

especially in large scale problems, resulting in slow convergence.
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Table 4.2: Simulation parameters used in a 2D fracture propagation problem.

Parameters
Initial fracture length [m] 3.0
Element length [m] 1.0
Fracture height [m] 1.0
Time step length [sec] 1.0
Shmin [MPa] 0.50
Shear modulus [GPa] 10.0
Poisson ratio 0.25
Reference density [kg/m3] 1000
Reference pressure [MPa] 1.0
Viscosity [cP] 1.0
Compressibility [1/MPa] 4.5× 10−4

Leak-o� coe�cient [m/
√

sec· Pa] 0
Injection rate [m3/s] 5.0× 10−4

Wellbore volume [m3] 0.50
Initial well pressure [MPa] 1.0
Initial fracture width [mm] 0.10

The �xed-width and fracture-compliance splitting schemes are compared by using

the same problem. The relaxation factor and the number of iterations are plotted in

Fig. 4.11 and Fig. 4.12 for various ω. ω = 0 corresponds to the �xed-width split. It

is clearly shown that the correction term in the fracture compliance split improves

the convergence rate of the coupled system since the relaxation factor increases from

0.0625 to 0.25 as ω increases from zero to one. As a result, the number of iterations

reduces from 150-200 to 60.

4.6.2 Comparison of Segregated and Fully Coupled Methods

Before comparing the segregated and fully coupled methods, the e�ect of pre-

conditioning in the fully-coupled method is tested by using the problem used in the

previous section. The coupled matrix A of a 2D planar fracture at the initial state

is calculated using the parameters listed in Table 4.2. Scaling factors su and sp are
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Figure 4.11: The relaxation factor for di�erent ω of the fracture compliance split in
a 2D planar fracture propagation.

Figure 4.12: The number of iterations for di�erent ω of the fracture compliance split
in a 2D planar fracture propagation.
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Figure 4.13: The e�ect of preconditioning to the coupled matrix of a planar 2D frac-
ture.

selected as 103 and 106, respectively.

The condition numbers of A, AM−1
2 , and M−1

1 AM−1
2 are plotted in Fig. 4.13.

The original coupled matrix A has a signi�cantly large condition number, meaning

that iterative solvers will take a large number of iterations to converge or may fail

to solve the equations. Applying the left and right preconditioning matrices to the

coupled matrix, the condition number decreased drastically from 5.5 × 1019 to 87.

This shows the importance of preconditioning in the fully coupled method.

Next, the segregated and fully coupled methods are compared in the same problem.

BiCGSTAB is used to solve the coupled system of equations in the fully coupled

method. The relaxation factor and the number of iterations are plotted in Fig. 4.14

and Fig. 4.15, respectively. It is found that the fully coupled method enables us to

solve the equations without relaxation (α = 1). The number of iterations of the fully

coupled method, which is around 5 in this case, is signi�cantly smaller than that

of the segregated methods. This faster and stable convergence of the fully coupled
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Figure 4.14: The relaxation factor for the �xed-width split, fracture-compliance split,
and fully-coupled methods.

method result in the shortest simulation time among the three methods as shown

in Fig. 4.16. The �xed-width split is nearly six times slower than the fully coupled

method. Although the fracture-compliance split is more than two times faster than

the �xed-width split, it is still nearly 2.5 times slower than the fully-coupled method.

Therefore, the fully coupled method should be selected if possible in the cases where

DDM and �ow equations are coupled to solve hydraulic fracturing problems. The

fully coupled method can become computationally more expensive for large problems

(with a large number of elements) as the size of the matrix grows.

4.7 Conclusion

A hydraulic fracturing model is formulated as a coupled problem of fracture me-

chanics and �uid dynamics in the fracture in this chapter. The solid deformation

is described by using DDM, while the �uid �ow inside the fracture is solved us-

ing a FVM. The fracturing �uid is assumed to be slightly compressible and to have
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Figure 4.15: The number of iterations for the �xed-width split, fracture-compliance
split, and fully-coupled methods.

Figure 4.16: The ratio of simulation time for the �xed-width split, fracture-
compliance split, and fully-coupled methods. The simulation time of
the fully coupled method is taken as one.
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constant viscosity. Fracture conductivity is approximated by using the classical lu-

brication theory. The fracturing model is veri�ed through the comparison with the

analytical solutions of a radial fracture growth. In addition, three solution strategies

to solve the coupled system of equations are developed and tested. Those includes

�xed-width split, fracture-compliance split, and fully coupled method. The �xed-

width and fracture-compliance splitting schemes are categorized as segregated meth-

ods since they iteratively solve the coupled system of equations. It is shown that the

fully coupled method is the best in terms of convergence speed, numerical stability,

and simulation time.
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Chapter 5: Interaction Between Hydraulic and Natural

Fractures

5.1 Introduction

The previous chapter focuses on modeling the hydraulic fracture propagation with-

out intersection with other fractures. However, since natural fractures are major

factors in oil and gas production from shale formations, modeling the interaction

between hydraulic and natural fractures is essential for hydraulic fracturing simu-

lations in shale reservoirs. This chapter describes the crossing criteria of hydraulic

fractures against natural fractures and the remote failure of natural fractures caused

by hydraulic fracture propagation.

A large number of experimental studies on the interaction between hydraulic and

natural fractures have been reported (Blanton, 1982; Zhou et al., 2008; Gu et al., 2012;

Cheng et al., 2015b; Guo et al., 2014; Lee et al., 2014; Fatahi et al., 2017), and several

criteria for hydraulic and natural fracture intersection have been proposed to assess

whether a hydraulic fracture cross a natural fracture (Blanton, 1982, 1986; Warpinski

and Teufel, 1987; Renshaw and Pollard, 1995; Gu and Siebrits, 2008; Dahi-Taleghani

and Olson, 2011). These criteria are formulated based on

• The Mohr-Coulomb failure criterion evaluated on natural fractures.

• Energy release rates at the intersection point of hydraulic and natural frac-

tures.

The criteria are explained and compared with experimental results in this chapter.

Natural fractures not connected to hydraulic fractures can fail in shear mode due

to an increase in stress and pore pressure induced by hydraulic fractures. While the
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induced stress can be computed easily by using DDM, the evaluation of pore pressure

using DDM requires the fundamental solution of the poroelastic equation (Carvalho

and Curran, 1998; Zhou and Ghassemi, 2009), which is signi�cantly more complicated

than the Navier-Cauchy equation. We will show that the pore pressure increase can

be easily evaluated in DDM by assuming an undrained condition.

5.2 Crossing Criteria

5.2.1 Crossing Criteria Based on the Mohr-Coulomb Failure Criterion

When a hydraulic fracture intersects a natural fracture, the hydraulic fracture

will either cross or be de�ected. This conditions under which the hydraulic fracture

crosses the natural fracture can be expressed by the Mohr-Coulomb failure criterion.

Namely, the hydraulic fracture is de�ected into the natural fracture if the normal or

tangential stresses acting on the natural fracture exceeds its critical value

σn ≥ T0, (5.1)

|σt| ≥ σtc := S0 − C(σn + p), (5.2)

where T0 is tensile strength, S0 is shear strength, C is the frictional coe�cient, p is

pore pressure, and σt and σn are shear and normal stresses on the natural fracture,

respectively. Tension-positive sign convention is used here. If either of the above

equations does not hold, the hydraulic fracture turns into the direction of the natural

fracture.

Consider a hydraulic fracture intersecting a natural fracture as shown in Fig. 5.1.

The normal and tangential stresses on the natural fracture can be calculated by
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y

r

θ
φ

Natural fracturen

t

Figure 5.1: A hydraulic fracture intersecting a natural fracture at an angle φ. Cylin-
drical coordinates are shown as r and θ. n and t are the unit normal and
tangential vectors of the natural fracture, respectively.

(Jaeger et al., 2007)

σn =
1

2
(σxx + σyy)−

1

2
(σxx − σyy) cos 2φ− σxy sin 2φ, (5.3)

σt =
1

2
(σxx − σyy) sin 2φ− σxy cos 2φ, (5.4)

where σij is the stress tensor on the natural fracture. The normal and tangential

directions are de�ned in Fig. 5.1.

Blanton (1982, 1986) and Warpinski and Teufel (1987) evaluated the normal and

shear stresses from far�eld stress

σij(r, θ) = σ0ij, (5.5)

where σ0ij is the far�eld stress tensor. On the other hand, Renshaw and Pollard

(1995) incorporated the stress induced by the hydraulic fracture in the case of or-

thogonal intersections. Gu and Weng (2010) extended Renshaw and Pollard's model
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to non-orthogonal cases, and the validity of their criterion is checked with laboratory

experiments in Gu et al. (2012). In the model, the stress tensor on the natural frac-

ture is evaluated from the asymptotic stress solution around the tip of a semi-in�nite

crack (Zehnder, 2012)

σij(r, θ) = σ0ij +
KI√
2πr

fij(θ) +
KII√
2πr

gij(θ), (5.6)

where KI and KII are mode I and II stress intensity factors (SIFs), respectively. r

and θ are the cylindrical coordinates around the crack tip shown in Fig. 5.1. fij and

gij are given by


fxx

fyy

fxy

 =


cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
sin

θ

2
cos

θ

2
cos

3θ

2

 , (5.7)


gxx

gyy

gxy

 =


sin

θ

2

(
−2− cos

θ

2
cos

3θ

2

)
sin

θ

2
cos

θ

2
cos

3θ

2

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)

 . (5.8)

The stress tensor is evaluated at (r, θ) = (rc, φ), where rc is a critical radius, and φ is

the orientation of the natural fracture. rc represents the fracture process zone around

the crack tip.

Renshaw and Pollard (1995) assume discontinuous propagation across natural

fractures. That is, a hydraulic fracture crosses a natural fracture through reinitiation

of a small fracture in the opposite side of the natural fracture. Then, the critical
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radius is estimated from

σyy (rc, φ) = T0,rock, (5.9)

where the subscript rock denotes the parameter of the rock. Gu and Weng (2010)

computed the radius from

σ1(rc, φ) = T0,rock, (5.10)

where σ1 is the maximum principle stress. Rearranging the above equation, a quadratic

function of rc is obtained.

In this dissertation, we assume continuous propagation across natural fractures,

and the critical radius is treated as an input parameter speci�c to each material to

avoid the complicated computation of the critical radius in Eq. 5.10. If failure on

natural fracture faces is detected, we let the hydraulic fracture turn along the natural

fracture. Fig. 5.2 shows a �owchart of the fracture propagation algorithm using the

MC crossing criterion combined with the maximum-stress criterion.

5.2.2 Crossing Criteria Based on Energy Release Rates

Dahi Taleghani (2009) and Dahi-Taleghani and Olson (2011) proposed a crossing

criterion based on energy release rates to incorporate the e�ect of mechanical prop-

erties of cemented natural fractures. The criterion states that the hydraulic fracture

propagates in the direction where the ratio of the energy release rate G to its critical

value Gc is at the maximum. Because of the presence of the natural fracture, not only

G but also Gc is a function of the direction θ.

Let us assume that the inclusion of the natural fracture does not a�ect the stress

�eld around the hydraulic fracture because of the small width of the natural fracture.

Under the assumption of small scale yielding, the energy release rate of the hydraulic
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Compute SIFs

Compute the MCS direction
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Figure 5.2: A �owchart of the fracture propagation algorithm based on the Mohr-
Coulomb crossing criterion.
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fracture shown in Fig. 5.1 can be expressed as

G (θ) =
K̄I(θ)

E ′(θ)
+
K̄II(θ)

E ′(θ)
, (5.11)

where E ′ is the plain strain Young's modulus, and K̄I and K̄II are mode I and II

stress intensity factors in the direction of θ. E ′ is given by

E ′(θ) =


E ′rock, θ 6= φ,

E ′NF, θ = φ.

(5.12)

K̄I and K̄II can be expressed as (Nuismer, 1975)

K̄I(θ) =
1

2
cos

θ

2
[KI(1 + cos θ)− 3KII sin θ] , (5.13)

K̄II(θ) =
1

2
cos

θ

2
[KI sin θ +KII(3 cos θ − 1)] . (5.14)

The critical energy release rate can be calculated by

Gc(θ) =
KIc(θ)

E ′(θ)
+
KIIc(θ)

E ′(θ)
, (5.15)

where

Kic(θ) =


Kic,rock, θ 6= φ,

Kic,NF, θ = φ,

(5.16)

where i = I or II, and Kic is the mode-i critical SIF.

If there is no natural fracture, we assume that the hydraulic fracture will propagate

in the maximum circumferential stress direction θ0, which can be computed from
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Eq. 4.11. Consequently, the hydraulic fracture will cross the natural fracture when

G (θ0)/Gc,rock > G (φ)/Gc,NF and will be de�ected otherwise.

5.2.3 Crossing Criteria Based on Stress Intensity Factors

Similar to the criteria based on energy release rates, the crossing criteria based

on SIFs can be developed. The hydraulic fracture propagates in the direction where

the ratio of K̄I to KIc is at the maximum. K̄I and KIc are the function of θ as shown

in the previous section. The hydraulic fracture will cross the natural fracture when

K̄I(θ0)/KIc,rock > K̄I(φ)/KIc,NF and will be de�ected otherwise.

5.2.4 Comparison of Crossing Criteria

The crossing criteria based on the Mohr-Coulomb, energy release rates, and SIFs

are compared with experimental data presented in Zhou et al. (2008). We denote the

crossing criteria based on the Mohr-Coulomb, energy release rates, and SIFs as MC,

ERR, and SIF crossing criteria, respectively. 3D DDM is used for fracture mechanics.

We assume fracture surface is always parallel to the z direction due to a large vertical

stress. Table 5.1 shows the parameters used for the comparison.

Fig. 5.3 shows an example of the initial mesh. The hydraulic fracture is expressed

as a notch whose length and height are respectively 15 cm and 25 cm, and the natural

fracture is expressed as a plane of weakness whose length and height are respectively

30 cm and 25 cm. The hydraulic fracture is assumed to be con�ned in the height

direction and grow only in the horizontal direction. The natural fracture is oriented

from the maximum horizontal stress direction by 30◦, 60◦, or 90◦. A �uid with the

viscosity of 135 cP is injected into the hydraulic fracture from the origin at 1 cm3/s.

The hydraulic fracture will either cross or turn along the natural fracture according to

the crossing criteria when it intersects the natural fracture, and it keeps propagating
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Table 5.1: Parameters used to compare crossing criteria with experiments of Zhou
et al. (2008).

Parameters Unit Value
Element size cm 5
Orientation 30◦, 60◦, 90◦

Max. horizontal stress MPa 6, 8, 10, 13
Min. horizontal stress MPa 3

Vertical stress MPa 20

Rock

Shear modulus GPa 3.415
Poisson's ratio 0.23

KIc MPa m1/2 2.0
Cohesion MPa 0.5

Pore pressure MPa 0.0
Leako� coe�cient 0.0

Natural Fracture

Shear modulus GPa 3.415
Poisson's ratio 0.23

Friction coe�cient 0.38
KIc MPa m1/2 0.5

Tensile strength MPa 0.5
Cohesion MPa 3.2

Critical radius cm 1.0

Fluid

Compressibility MPa−1 4.545× 10−4

Viscosity cP 135
Reference pressure MPa 10
Reference density kg /m3 1000

Injection rate cm3 / s 1.0
Injection time s 50

Wellbore volume cm3 10
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Figure 5.3: An example of the initial mesh of hydraulic fracturing simulations with
an inclined natural fracture. The notch for the hydraulic fracture is 15 cm
in length and 25 cm in height, and the natural fracture is 30 cm in length
and 25 cm in height. The unit of the axes is m.

in the maximum horizontal stress direction after reaching the edge of the natural

fracture.

Fig. 5.4 through Fig. 5.6 show the crossing behavior in the case of the SIF crossing

criterion for di�erent natural fracture orientations and horizontal stress contrasts.

Since the SIF crossing criterion does not include the far�eld stress in its formula-

tion, the crossing behavior is not a�ected by the horizontal stress contrasts. After

the hydraulic fracture is de�ected along the natural fracture, it feels the maximum

horizontal stress, resulting in the smaller width and length of the hydraulic fracture

as the stress contrast increases.

Fig. 5.7 through Fig. 5.9 show the crossing behavior of the ERR crossing criterion

for di�erent natural fracture orientations and horizontal stress contrasts. Because the

ERR crossing criterion does not take the far�eld stress into account as well as the

SIF crossing criterion, the stress contrast has no e�ect on the crossing behavior. The

natural fracture is found to break more easily compared to the SIF crossing criterion
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Figure 5.4: Fracture meshes after 60 s of �uid injection. The natural fracture is in-
clined by 30◦ from the x axis. The SIF-based criterion is used. The stress
contrast between the maximum and minimum horizontal stresses are 3,
5, and 7 MPa from the top to bottom, respectively.
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Figure 5.5: Fracture meshes after 60 s of �uid injection. The natural fracture is in-
clined by 60◦ from the x axis. The SIF-based criterion is used. The stress
contrast between the maximum and minimum horizontal stresses are 3,
5, and 7 MPa from the top to bottom, respectively.
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Figure 5.6: Fracture meshes after 60 s of �uid injection. The natural fracture is in-
clined by 90◦ from the x axis. The SIF-based criterion is used. The stress
contrast between the maximum and minimum horizontal stresses are 3,
5, and 7 MPa from the top to bottom, respectively.
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due to the contribution of the mode-II SIF, which comes from the large shear slip on

the natural fracture faces as shown in Fig. 5.10.

Fig. 5.11 through Fig. 5.13 show the crossing behavior of the MC crossing criterion

for di�erent natural fracture orientations and horizontal stress contrasts. Tensile

strength is 5 MPa, cohesion is 3.2 MPa, friction coe�cient is 0.38, and critical radius

is 5mm. Since the far�eld stress is taken into account in the MC crossing criterion,

the crossing behavior depends on the horizontal stress contrast. The cases with low

horizontal stress contrasts show the de�ected fracture propagation, while those with

high stress contrasts show the hydraulic fracture crosses the natural fracture. These

results agree with the experimental results of Zhou et al. (2008). It is found that the

fracture propagation along the natural fracture after de�ection is slower compared to

the SIF and ERR crossing criteria.

The crossing behavior of the hydraulic fracture is summarized in Fig. 5.14 in

terms of the orientation of the natural fracture and the stress di�erence between

the maximum and minimum horizontal stresses. Among these three criteria, only the

Mohr-Coulomb-based criterion exhibits the dependency on the far�eld stress, which

is consistent with experimental results.
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Figure 5.7: Fracture meshes after 60 s of �uid injection. The natural fracture is in-
clined by 30◦ from the x axis. The ERR-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses
are 3, 5, and 7 MPa from the top to bottom, respectively.
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Figure 5.8: Fracture meshes after 60 s of �uid injection. The natural fracture is in-
clined by 60◦ from the x axis. The ERR-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses
are 3, 5, and 7 MPa from the top to bottom, respectively.
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Figure 5.9: Fracture meshes after 60 s of �uid injection. The natural fracture is in-
clined by 90◦ from the x axis. The ERR-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses
are 3, 5, and 7 MPa from the top to bottom, respectively.

99



Figure 5.10: Fracture meshes after 60 s of �uid injection. The natural fracture is
inclined by 60◦ from the x axis. The ERR-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses is
5 MPa. The fracture width is presented as face colors, and the magnitude
of shear slippage and its direction is described as cones with colors.
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Figure 5.11: Fracture meshes after 60 s of �uid injection. The natural fracture is
inclined by 30◦ from the x axis. The MC-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses
are 3, 5, and 7 MPa from the top to bottom, respectively.
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Figure 5.12: Fracture meshes after 60 s of �uid injection. The natural fracture is
inclined by 60◦ from the x axis. The MC-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses
are 3, 5, and 7 MPa from the top to bottom, respectively.
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Figure 5.13: Fracture meshes after 60 s of �uid injection. The natural fracture is
inclined by 90◦ from the x axis. The MC-based criterion is used. The
stress contrast between the maximum and minimum horizontal stresses
are 3, 5, and 7 MPa from the top to bottom, respectively.
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(a) SIF-based criterion (b) ERR-based criterion

(c) MC-based criterion

(d) Zhou et al. (2008)

Figure 5.14: The crossing behavior of the hydraulic fracture. The experimental re-
sults of Zhou et al. (2008) are presented as well.
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5.3 Remote Failure Criteria

5.3.1 Incorporating Poroelastic E�ects into DDM

Natural fractures not connected with hydraulic fractures will not fail in opening

mode because shale formations are under compression due to the overburden stress.

Instead, they can fail in shear mode due to induced stresses and pore pressure increase

caused by hydraulic fractures. The Mohr-Coulomb criterion is used in this dissertation

to check whether shear failure occurs on remote natural fractures. While the shear

and normal stresses acting on natural fractures can be computed by using DDM, the

change of pore pressure in natural fractures due to the �uid leak-o� from hydraulic

fractures cannot be calculated unless the fundamental solutions for poroelasticity is

used (Ghassemi and Roegiers, 1996; Zhou and Ghassemi, 2009, 2011). However, we

will show that the poroelasticity can be partially incorporated into the DDM by

assuming an undrained condition.

Since shale has very low permeability, we can assume an undrained condition

during hydraulic fracturing operations. In the undrained condition, the stress and

pore pressure in rocks can be expressed by (Wang, 2000)

σij − σ0ij = 2Gεij +

(
Ku −

2

3
G

)
εkkδij, (5.17)

p− p0 = −B(σm − σm0), (5.18)

where G is the shear modulus, Ku is the undrained bulk modulus, εij is the strain ten-

sor, B is the Skempton's coe�cient, σm is mean stress, σm0 is the mean far�eld stress,

and p0 is the initial pore pressure. The undrained bulk modulus can be expressed by

Ku = K +
α2KsKf

φKs + (α− φ)Kf

, (5.19)
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where φ is porosity, α is the Biot coe�cient, and Ks and Kf are the bulk modulus

of solid and �uid, respectively. The Biot coe�cient relates the bulk modulus of solid

and rock:

α = 1− K

Ks

, (5.20)

where K is the bulk modulus of rock. Then, the Skempton's coe�cient reads

B =
Ku −K
αKu

. (5.21)

On the other hand, the stress in linear elasticity can be expressed as,

σij − σ0ij = 2Gεij +

(
K − 2

3
G

)
εkkδij. (5.22)

Comparing Eq. 5.17 and Eq. 5.22, it is found that the constitutive equation does not

alter its expression under the undrained condition except that the undrained elastic

constants are used. It means that pore pressure change can be partially incorporated

into DDM by using the undrained elastic constants.

Hereafter, we derive the in�uence coe�cients for the mean stress. Using DDM,

the stress at an internal point can be expressed as,

σij(x) = σ0ij +
Nc∑
β=1

M∑
α=1

Sαβijk(x)∆uαβk , (5.23)

where Sijk is the in�uence coe�cients for stress in the global coordinate system, M

is the number of nodes per element, and Nc is the number of elements. The mean

stress σm is thus given by

σm(x) = σm0 +
Nc∑
β=1

M∑
α=1

Sαβmk(x)∆uαβk , (5.24)
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where Smk is the in�uence coe�cients for mean stress given by

Smk =


S11k + S33k

2
, for 2D,

S11k + S22k + S33k

3
, for 3D.

(5.25)

In the local coordinate system, the in�uence coe�cients can be expressed by

S̃mk =


S̃11k + S̃33k

2
, for 2D,

S̃11k + S̃22k + S̃33k

3
, for 3D,

(5.26)

where the tilde denotes the local coordinate system, and S̃ijk is given by Eq. 2.59.

Noting g,kk = 0 in Eq. 2.59, the in�uence coe�cients for mean stress in two dimensions

become

[
S̃mk

]
= 2G

[
g,13 g,33

]
, (5.27)

and, in three dimensions,

[
S̃mk

]
=

4G(1 + ν)

3

[
g,13 g,23 g,33

]
. (5.28)

Noting that the in�uence coe�cients for the mean stress constitutes a vector, the

coordinate transformation to the global coordinates is given by

Smi = LijS̃mj, (5.29)

where Lij is the rotation matrix from the local to global coordinate system.
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5.3.2 Validation

The mean stress �eld around a radial crack for non-poroelastic materials (B = 0)

can be computed from the analytical solution developed by Sneddon (1946). The

stress along the axis of symmetry, r = 0, in the cylindrical coordinates is given by

(Sneddon, 1946; Manchanda, 2015)

σr = σθ =
p

π

[
(1 + 2ν)

(
ζ

1 + ζ2
− tan−1 1

ζ

)
+

2ζ

(1 + ζ2)2

]
, (5.30)

σz =
2p

π

[
ζ(ζ2 − 1)

(1 + ζ2)2
− tan−1 1

ζ

]
, (5.31)

σrθ = 0, (5.32)

where ζ := z/c, c is the radius of the crack, and p is the internal pressure applied to

the crack surface.

Fig. 5.15 shows the mean stress along the axis of symmetry, r = 0, of a radial crack.

Tension positive sign convention is used. Analytical solution of Sneddon (1946) and

numerical results of 3D DDM are plotted against ζ. Poisson's ratio is 0.25. It clearly

shows the validity of the mean stress calculated by using 3D DDM.

5.3.3 Poroelastic E�ects on Remote Failure of Natural Fractures

Hydraulic fracturing simulations are performed to analyze poroelastic e�ects on

the remote failure of natural fractures under an undrained condition. A planar hy-

draulic fracture grows from the origin, and it is constrained in a formation of 22 m in

height. The element size is 2 m. The rock and �uid properties used in the simulations

are listed in Table 5.2.

Natural fractures are randomly distributed in a region of 50 m in x-axis and 100 m

in y-axis at a �xed angle of 45◦ from the maximum horizontal stress direction (y-axis)
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Figure 5.15: The mean stress along the z-axis of a radial crack. ζ := z/c, c is the
radius of the crack, and p is the internal pressure applied to the crack
surface. Poisson's ratio is 0.25. Tension positive sign convention is used.

on the xy plane. The distance between hydraulic and natural fractures is 25 m at a

maximum. The natural fractures are placed only on the z = 0 plane because the

region of induced stresses created by the hydraulic fracture becomes the largest on

that plane. In addition, the mechanical properties of natural fractures are set such

that the natural fractures are close to a critical state (Zoback, 2007).

Fig. 5.16 through 5.18 show the distribution of failed natural fractures around

the hydraulic fracture. Intact natural fractures are shown as wire frames. Fig. 5.16

does not include poroelastic e�ects, while Fig. 5.17 and 5.18 include poroelastic ef-

fects. Fig. 5.17 and 5.18 assume the reservoir �uids are oil and gas, respectively. The

undrained bulk modulus and the Skempton's coe�cient are calculated from the Biot

coe�cient, shear modulus, and the bulk modulus.

It is observed that the distance between failed natural fractures and the hydraulic
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Table 5.2: The rock and �uid properties used in the simulation.

Parameters Case 1 Case 2 Case 3
Poroelasticity O� On On
Shear modulus 6.62 GPa
Bulk modulus 11.03 GPa
Biot coe�cient � 0.8 0.8

Reservoir �uid type � Oil Gas
Fluid bulk modulus � 2.2 GPa 30.0 MPa

Undrained bulk modulus � 19.03 GPa 11.16 GPa
Undrained Poisson's ratio � 0.3441 0.2524
Skempton's coe�cient 0 0.5255 0.01456
Initial pore pressure 30.20 MPa

Fracturing �uid viscosity 1 cp
Fracturing �uid compressibility 4.545× 10−4 1/MPa

Reservoir permeability 0 mD
Reservoir porosity 0.15

Maximum horizontal stress 39.44 MPa
Minimum horizontal stress 35.85 MPa

Vertical stress 45.00 MPa
KIc 1.5 MPa m0.5

Friction coe�cient for NFs 0.25
Cohesion of NFs 0 MPa

Orientation of NFs from y-axis 45◦

Injection rate 0.01 m3/s
Wellbore volume 5 m3

Injection time 25 s

fracture is not large for all of the three cases. These results indicate that the induced

stresses created by the hydraulic fracture a�ect only a small distance from the hy-

draulic fracture, and poroelastic e�ects in the undrained condition are small. It is also

found that reservoir �uids a�ect the magnitude of induced stresses caused by poroe-

lastic e�ects. More natural fractures fail in the oil reservoir than in the gas reservoir

as shown in Fig. 5.17 and Fig. 5.18. This can be explained by the larger Skempton's

coe�cient in the oil reservoir, which is the result of the larger bulk modulus of oil

than that of gas.
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Figure 5.16: The simulation result of Case 1 (no poroelastic e�ect).

Figure 5.17: The simulation result of Case 2 (poroelastic e�ects for an oil reservoir).
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Figure 5.18: The simulation result of Case 3 (poroelastic e�ects for a gas reservoir).

5.4 Conclusion

The interaction of hydraulic and natural fractures is modeled. When a hydraulic

fracture intersects a natural fracture, the crossing condition of the hydraulic frac-

ture is described by using either stress intensity factors, energy release rates or the

Mohr-Coulomb failure criterion. These intersection criteria are compared with the

experimental results of Zhou et al. (2008), and it is shown that the crossing criterion

based on the Mohr-Coulomb failure criterion can incorporate the e�ect of far�eld

stress and agrees with the experimental results.

The remote failure of natural fractures is modeled by using the Mohr-Coulomb fail-

ure criterion, and poroelasticity is incorporated into DDM by assuming an undrained

condition to simulate the increase of pore pressure due to the propagation of hydraulic

fractures. The pore pressure is related to the mean stress through the Skempton's

112



coe�cient. The in�uence coe�cients for mean stresses in DDM are derived and vali-

dated by comparing with the analytical solution of Sneddon (1946). It is found that

poroelastic e�ects under the undrained condition on the remote failure of natural

fractures are small. In addition, oil reservoirs exhibit larger poroelastic e�ects than

the gas reservoirs in our simulations. The remote failure of natural fractures is lim-

ited to the vicinity of a growing hydraulic fracture even when poroelastic e�ects are

partially incorporated.
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Chapter 6: Hydraulic Fracturing Simulations in Naturally

Fractured Rocks

6.1 Introduction

In Chapter 5, crossing criteria for intersections between hydraulic and natural

fractures are described, and simulation results are compared with the experimental

results of Zhou et al. (2008). In addition, poroelasticity is incorporated into DDM by

assuming an undrained condition to evaluate remote failure of natural fractures.

Since natural fractures are one of the primary factors that control the �uid pro-

duction rate from shale formations, it is essential to incorporate natural fractures as

discrete fracture networks (DFNs) into hydraulic fracturing simulations. Although

natural fractures are statistically distributed in many cases, they can sometimes be

better described by using microseismic data. Our ultimate goal is to perform hy-

draulic fracturing simulations assisted by microseismic data as shown in Fig. 6.1.

This chapter describes hydraulic fracturing simulations with rocks that contain

natural fracture networks. Natural fractures are distributed by using the power-law

distribution for fracture length and the von Mises distribution for fracture orientation.

Not only single mode distributions but also bimodal distributions are evaluated for

fracture orientation. Fracture intersections in natural fracture networks are handled

by simply correcting in�uence coe�cients in the DDM matrix. Hydraulic fracturing

simulations are performed, and the contribution of di�erent properties of the natural

fracture network are statistically evaluated.
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Figure 6.1: A �ow chart of geomechanical simulations assisted by microseismic data.
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6.2 Generation of Synthetic Natural Fractures

6.2.1 Natural Fracture Length Distribution

The statistical distribution of the length of natural fractures can be described by

the power-law distribution (Davy, 1993)

f(l) = Al−a, a > 1, (6.1)

where l is the length of the natural fractures, and A and a are constants. The

cumulative distribution is given by

F (l) =

∫ l

l0

f(l′) dl′

=
A(l−b0 − l−b)

b
,

(6.2)

where l0 is the lower limit of the distribution, and b := a− 1. Given the upper limit

of the distribution l1, from the condition of F (l1) = 1, we have

A =
b

l−b0 − l−b1

. (6.3)

Thus, we obtain the following density and cumulative distribution functions for the

power-law distribution

f(l) =
bl−a

l−b0 − l−b1

, (6.4)

F (l) =
l−b0 − l−b

l−b0 − l−b1

. (6.5)
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If the upper limit is taken to be in�nity l1 →∞, we have

f(l) =
bl−a

l−b0

, (6.6)

F (l) =
l−b0 − l−b

l−b0

. (6.7)

Using the cumulative function, the power-law distribution of the fracture length can

be generated.

Davy (1993) estimated the parameter a from the length distribution of the San

Andreas fault, resulting in a = 2.1 for the density function and a = 2.8 for the

cumulative function. Wu (2014) uses a = 1 to 3 for hydraulic fracturing simulations

using a simpli�ed DDM approach. Shrivastava et al. (2017) selected a = 3 to analyze

the hydraulic fractures in the Hydraulic-Fracturing Test Site (HFTS) (Courtier et al.,

2017; Ciezobka et al., 2018; Kumar et al., 2018; Maity and Ciezobka, 2019). Fig. 6.2

shows an example of fracture lengths obeying the power-law distribution with l0 = 1 m

and l1 = 30 m. The number of fractures is 100. In the case of a = 3, most of the

fracture lengths are biased near the lower limit, l0.

6.2.2 Orientation distribution

Since fracture orientation is represented as a function of azimuth (θ), a distribution

function suitable for a azimuthally varying quantity must be used. The von Mises

distribution, which corresponds to the normal distribution for such data, has the

following density function (Fisher, 1993)

f(θ | µ, κ) =
1

2πI0(κ)
exp [κ cos(θ − µ)] , 0 ≤ θ < 2π, 0 ≤ κ <∞, (6.8)
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(a) a = 1.5 (b) a = 2

(c) a = 2.5 (d) a = 3

Figure 6.2: Fracture length distribution generated by using the power-law distribu-
tion. l0 = 1 m and l1 = 30 m. The number of samples is 1000.
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where θ is the orientation, µ is the mean direction, and κ is the concentration pa-

rameter. I0 is the modi�ed Bessel function of the �rst kind of zero-th order de�ned

by

I0(κ) :=
1

2π

∫ 2π

0

exp [κ cos(θ − µ)] . (6.9)

The von Mises distribution is produced by using the algorithm due to Best and Fisher

(1979), which can be also found in Fisher (1993).

Given fracture orientation data, the angle doubling procedure is required to esti-

mate µ and κ since fracture orientation has diametrically bimodal circular distribu-

tions. The angle doubling procedure is

1. Let θ′ = 2θ.

2. If θ′ ≥ 2π, let θ′ = θ′ − 2π.

The mean direction and the concentration parameter of θ′ is then estimated as µ′ and

κ′. Conversely, the von Mises distribution can be generated from the above µ′ and κ′

in the following manner:

1. Generate θ′ from µ′ and κ′.

2. Use θ = θ′/2 to generate natural fractures. Add θ = θ′/2 and θ = θ′/2 + π to

create a rose diagram.

Fig. 6.3 show the examples of the von Mises distribution for di�erent concentration

parameters. µ′ = π/2 is used. The actual mean directions are 45◦ and 225◦.

Natural fractures often have two distinct principal directions (Li, 2014; Shrivastava

et al., 2018). The density function of bimodal distributions can be expressed by

f(θ) = wf(θ | µ1, κ1) + (1− w)f(θ | µ2, κ2), (6.10)

where w is a mixing factor of the two modes (0 ≤ w ≤ 1), and the subscript denotes
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(a) κ′ = 2 (b) κ′ = 5

Figure 6.3: Rose diagrams of the von Mises distribution for µ′ = π/2. The number
of samples is 1000.

the �rst and second mode distributions. Then, the following procedures create a

bimodal distribution:

1. Generate a random value x obeying a uniform distribution between 0 and 1.

2. If x < w, generate θ′ using the �rst mode distribution, and generate θ′ using

the second mode distribution otherwise.

Fig. 6.4 shows an example of the bimodal von Mises distribution. The �rst mode is

µ′1 = π/2 and κ′1 = 5, and the second mode is θ′2 = 4π/3 and κ′2 = 3. The mixing

parameter is w = 0.7. The actual mean directions are 45◦ and 225◦ for the �rst mode

and 120◦ and 300◦ for the second mode.

6.2.3 Fracture Intersection in Mesh

Fracture networks are generated by using the length and orientation distribution

functions. The generated fracture lengths are rounded because of the discretization

which uses �xed-size elements. Although the end-to-end connection of elements is re-

quired to avoid singularities in DDM (Farmahini-Farahani and Ghassemi, 2016), the

implementation of generating such a mesh is di�cult. Instead, we generate a frac-
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Figure 6.4: An example of bimodal von Mises distribution. The �rst mode is µ′1 =
π/2 and κ′1 = 5, and the second mode is θ′2 = 4π/3 and κ′2 = 3. The
mixing parameter is w = 0.7.

ture mesh without the end-to-end connection for simpli�cation, and the singularity

problem is circumvented by correcting the in�uence coe�cients of DDM.

The correction procedure for the in�uence coe�cients has two steps. First, any

in�uence coe�cients computed as NaN due to the singularity of the Green's function

of DDM are recalculated by averaging the in�uence coe�cients at two neighboring

points. Second, any in�uence coe�cients larger than the self in�uence coe�cients are

scaled using the following procedure. For each block column i,

1. Calculate the maximum self-in�uence coe�cients, max |Aii|.

2. If max |Aij| > αmax |Aii|, where α ≥ 1 is a scaling factor, scale the block

matrix Aij by

Aij = αAij ·
max |Aii|
max |Aij|

. (6.11)

The scaling procedures are tested by using a simple problem shown in Fig. 6.5. Two

hydraulic fractures grow straight and eventually intersect at 45◦. At the intersection
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point, one of the edges of an element lies on the center of another element, causing

the singularity problem. The element size is 1 m. The problems is solved by using

the segregated or fully coupled method.

Fig. 6.6 shows the results of simulations without scaling. Only NaN correction is

applied to the DDM in�uence matrix. The simulation using the segregated method

did not converge when two fractures intersected, while that using the fully coupled

method converged. The fracture width of one of the intersected elements in the case of

the fully coupled method becomes signi�cantly larger than that of the other elements,

indicating the computation is inaccurate due to the large in�uence coe�cients of the

intersected elements.

Fig. 6.7 represents the simulation result with scaling. α = 1 is used, and NaN

correction is also applied. In this case, the segregated method converged when two

fractures intersected, and both segregated and fully coupled methods produce the

same width pro�le at the end of the simulations.
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(a) Initial mesh. One fracture grows from the origin, and the other fracture grows from

(x, y) = (0.7322, 1.7678).

(b) Mesh when two hydraulic fractures intersect at (x, y) = (2.5, 0.0).

Figure 6.5: Mesh con�guration for testing the proposed correction method. Two hy-
draulic fractures propagate in straight line and eventually intersect. Frac-
ture turning option is disabled.
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(a) Mesh at t = 7 s using the segregated method.

(b) Mesh at t = 10 s using the fully coupled method.

Figure 6.6: Meshes at the end of fracturing simulations without scaling of in�uence
coe�cients. Only NaN correction is applied. The simulation using the
segregated method did not converge at t = 7 s.
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(a) Mesh at t = 10 s using the segregated method.

(b) Mesh at t = 10 s using the fully coupled method.

Figure 6.7: Meshes at the end of fracturing simulations with scaling of in�uence co-
e�cients. NaN correction is also applied.

125



Table 6.1: Parameters used to generate natural fracture networks.

µ 45◦

κ 5
l0 1 m
l1 30 m
a 2, 3

Fracture areal density, ρNF 0.05, 0.1 m−2

Element size 1 m

6.3 Hydraulic Fracturing Simulations With Natural Fractures

Natural fracture networks are generated by using the power-law distribution for

fracture lengths and the von Mises distribution for fracture orientation. We assume

vertical natural fractures with the same height. We simulate hydraulic fracture prop-

agation from three perforation clusters in a stage. We assume a constant injection

rate for each cluster and neglect �uid distribution caused by �ow resistance inside

hydraulic fractures for simpli�cation (Wu, 2014; Manchanda, 2015). Elements are

square, and their edge length is 1 m. Parameters used to generate natural fractures

are listed in Table 6.1. The number of natural fractures to generate NNF is determined

as

NNF = ρNFA, (6.12)

where ρNF is an areal density of natural fractures, and A is the area of simulations.

Fig. 6.8 shows natural fractures generated by using the power-law and von Mises

distributions. Domain size is 100 m×100 m. Smaller a leads to longer natural frac-

tures, and natural fractures tend to intersect more frequently. To quantitatively

analyze the frequency of intersections, we generated 10 realizations for each set of

a = 2, 3 and ρNF = 0.05, 0.1 m−2 and calculated the frequency of intersections along

the y-axis per length. The result is shown in Fig. 6.9. It clearly shows that larger
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ρNF and smaller a increase the possibility of intersections. It was found that the

e�ect of ρNF to the intersection frequency became smaller for larger a when µ = π/4

and κ = 5 were used for the von Mises distribution. For a = 2, the frequency of

intersections is almost a linear function of the areal density of natural fractures.

Hydraulic fracturing simulations are performed using parameters listed in Table

6.2. The parameters are chosen from Shrivastava et al. (2018). Natural fractures

are distributed in a 100 m×200 m region by using parameters listed in Table 6.1.

3D DDM is used for fracture mechanics. We use the fully coupled method to avoid

non-convergence issues frequently observed in hydraulic fracturing simulations with

natural fractures. Because of simulation time and implementation di�culty, fractures

have only one element height at the same depth.

Fig. 6.10 shows hydraulic fracture propagation in natural fracture networks with

a = 2, 3 for the power-law distribution. Black and red lines represent natural and

hydraulic fractures, respectively. Perforations are located at x = −10, 0, 10 m along

the x axis. Natural fractures not connected to hydraulic fractures are allowed to fail

according to the Mohr-Coulomb failure criterion. The maximum horizontal stress is

36.44 MPa in the y direction. Hydraulic fractures tend to intersect natural fractures

more frequently and create more branches to extend in the x direction in the case of

a = 2 than a = 3.

Fig. 6.11 shows hydraulic fracture propagation in the same natural fracture net-

works with Fig. 6.10 but natural fractures not connected to hydraulic fractures are

not allowed to fail. Blue circles represent di�erences with Fig. 6.10. It is found that

the number of branches decreases by neglecting remote failure of natural fractures in

the case of a = 2.

Fig. 6.12 shows hydraulic fracture propagation in the same natural fracture net-

work with Fig. 6.10 but uses a larger horizontal stress contrast, Shmax = 39.44 MPa.

127



(a) a = 2, ρNF = 0.05 m−2
(b) a = 3, ρNF = 0.05 m−2

(c) a = 2, ρNF = 0.1 m−2 (d) a = 3, ρNF = 0.1 m−2

Figure 6.8: Natural fractures generated by using the power-law and von Mises dis-
tributions. µ = π/4 and κ = 5. Domain size is 100 m in the x and y
directions.
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Figure 6.9: The frequency of intersections along the y-axis for di�erent distribution
parameters of the power-law distribution. µ = π/4 and κ = 5 are used for
the von Mises distribution. The domain size of realizations is 100×100 m
in the x and y directions. Error bars represent the maximum and mini-
mum values found in the realizations.
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Although hydraulic fractures are de�ected when they intersect natural fractures, they

immediately turn in the maximum horizontal stress direction after they reach an

edge of natural fractures. In the case of a = 3, hydraulic fractures propagate almost

straight from the perforations since there is smaller number of intersections with

natural fractures compared to a = 2.

Fig. 6.13 shows hydraulic fracture propagation in dense natural fracture networks.

ρNF = 0.1 m−2 is used. Hydraulic fractures intersect natural fractures more frequently

and preferentially propagate in the mean direction of the natural fracture distribution.

Fig. 6.14 shows hydraulic fracture propagation in a bimodal natural fracture dis-

tribution. Mean directions are selected as 45◦ and 135◦ from the x axis, and con-

centration parameters are 5 for both modes. Mixing parameter of two modes is 0.5.

Comparing Fig. 6.10 and Fig. 6.12, more branches and intersections are observed in

the case of Shmax = 36.44 MPa. Since natural fractures are oriented in two distinct

principal directions, hydraulic fractures do not have one preferred propagation direc-

tion as observed in Fig. 6.10 through Fig. 6.12 and Wu (2014).
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Table 6.2: Simulation parameters.

Time step length 1 s
Simulation time 70 s

Shmax 36.44 MPa
Shmin 35.85 MPa
Sv 45.00 MPa

Shear modulus 6.62 GPa
Poisson's ratio 0.25

Leak-o� coe�cient 0.0
Pore pressure 27.01 MPa

KIc 3 MPa m0.5

Characteristic length 0.005 m
NF cohesion 0 MPa

NF friction coe�cient 0.25
Skempton's coe�cient 1

NF KIc 0.5 MPa m0.5

Fluid viscosity 1 cP
Fluid compressibility 4.4× 10−4 MPa−1

Reference density 1000 kg m−3

Wellbore volume 5.0 m3

Injection rate 2.0× 10−3 m3 s−1
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(a) a = 2 (b) a = 3

Figure 6.10: Hydraulic fracture propagation in natural fracture networks with remote
failure of natural fractures. ρNF = 0.05 m−2, and Shmax = 36.44 MPa.
Black and red lines represent natural and hydraulic fractures, respec-
tively.

132



(a) a = 2 (b) a = 3

Figure 6.11: Hydraulic fracture propagation in natural fracture networks without re-
mote failure of natural fractures. The same natural fracture networks
with Fig. 6.10 are used. Blue circles represent di�erences from Fig. 6.10.

133



(a) a = 2 (b) a = 3

Figure 6.12: Hydraulic fracture propagation in natural fracture networks with remote
failure of natural fractures. ρNF = 0.05 m−2, and Shmax = 39.44 MPa.
Black and red lines represent natural and hydraulic fractures, respec-
tively.
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(a) a = 2 (b) a = 3

Figure 6.13: Hydraulic fracture propagation in natural fracture networks with remote
failure of natural fractures. ρNF = 0.1 m−2. Black and red lines represent
natural and hydraulic fractures, respectively.
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(a) Shmax = 36.44 MPa (b) Shmax = 39.44 MPa

Figure 6.14: Hydraulic fracture propagation in natural fracture networks with remote
failure of natural fractures. Bimodal distribution is used. Mean direc-
tions are 45◦ and 135◦ from the x axis, and concentration parameter is
5 for both modes. Mixing parameter is 0.5. ρNF = 0.05 m−2. Black and
red lines represent natural and hydraulic fractures, respectively.
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6.4 Discussion

Hydraulic fracturing simulations are performed in the previous section using vari-

ous parameters. Comparing Fig. 6.10 and Fig. 6.11, we observe that more branches are

created by incorporating remote failure of natural fractures. Since stress change and

pore pressure increase are limited in the vicinity of hydraulic fractures as discussed in

Chapter 5, the remote failure condition is likely to be satis�ed at intersection points

to create branches. This means that the remote failure can be an important factor

to generate complex fracture networks, especially when natural fractures have a low

friction coe�cient.

While a large horizontal stress contrast forces hydraulic fractures to propagate

in the maximum horizontal stress direction, the distribution of natural fractures also

a�ects the propagation direction of hydraulic fractures as shown in Fig. 6.12. If a natu-

ral fracture distribution is denser, hydraulic fractures intersect natural fractures more

frequently and propagate in the mean direction of the natural fractures (Fig. 6.13).

We �nd that bimodal distribution of natural fractures creates more complex hydraulic

fractures since natural fractures have more intersections than single mode distribu-

tion. Field observations of natural fracture distribution suggest natural fractures have

more than one principal direction (Li, 2014; Shrivastava et al., 2018), incorporating

multiple modes for natural fracture orientations is essential to simulation complex

hydraulic fracture propagation.

6.5 Conclusion

Hydraulic fracturing simulations with natural fracture networks are performed.

Natural fractures are distributed by using the power-law distribution for fracture

length and the von Mises distribution for fracture orientation. End-to-end connection
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of elements when natural fractures are distributed is neglected for simpli�cation. The

singularity problem caused by neglecting the end-to-end connection is circumvented

by correcting in�uence coe�cients of DDM.

Sensitivity analysis of hydraulic fracture propagation in natural fracture networks

revealed the following results:

• When a = 2 is used in the power-law distribution with the von Mises distri-

bution of µ = π/4 and κ = 5, the frequency of intersections of hydraulic and

natural fractures is almost a linear function of the areal density of natural

fractures.

• More branches are created by considering remote failure of natural fractures.

• A larger horizontal stress contrast forces hydraulic fractures to propagate in

the maximum horizontal stress direction.

• Denser natural fractures create more intersections between hydraulic and nat-

ural fractures.

• Bimodal distribution for natural fracture orientations leads to more complex

hydraulic fracture networks.
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Chapter 7: Modeling of Microseismic Events

7.1 Introduction

The distribution of natural fractures (NFs) in hydraulic fracturing simulations is

commonly determined based on statistical parameters observed in cores and well logs.

The synthetic NF networks, however, can be di�erent from the actual ones because of

the error associated with the statistical parameters and mechanical properties of NFs.

Thus, the geometry of hydraulic fractures given from the simulations can also di�ers

from reality. To improve the accuracy of hydraulic fracturing simulations with NFs, it

is natural to incorporate microseismic data into the simulations as shown in Fig. 7.1.

The location, extension, and orientation of fractures can be obtained through the

inversion analysis of microseismic data. They can be compared with those produced

from hydraulic fracturing simulations, and the input data of the simulations can be

updated based on the di�erence between the observed and simulated data.

In the previous chapter, we performed hydraulic fracturing simulations in the

presence of synthetic natural fractures. This chapter describes modeling of micro-

seismicity triggered by hydraulic fracturing. First, we brie�y describe the forward

modeling of synthetic microseismic events, which is the modeling of microseismic

sources and wave propagation from a source to receivers. To analyze microseismic

sources, seismic moment and moment magnitude are explained. The moment mag-

nitudes of synthetic microseismic events are computed from the simulation results

presented in Chapter 6, and the areal distribution of the events are discussed. Sec-

ond, simple inversion analyses of synthetic microseismic data are performed. We use

the low frequency amplitude and the radiation pattern correction factor as matching
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Figure 7.1: A �ow chart of geomechanical simulations assisted by microseismic data
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parameters for inversion the analysis to simplify the problem.

7.2 Forward Modeling of Synthetic Microseismic Events

This section describes the forward modeling of synthetic microseismic events. In

other words, if a fracture slips, what is the observed wave form at receivers? The

forward modeling of microseismic events in geophysics normally requires a source

model which describes the slip of a fracture surface as a function of time, typically

in milliseconds, and a velocity model of the reservoir. However, normal hydraulic

fracturing simulations including our model are not capable of computing fracture

failure in such a small time scale due to the assumption of quasi-static conditions.

Moreover, the computation of full waveform at receivers using a detailed geophysical

model is beyond the scope of this dissertation. We circumvent the full waveform

analysis by assuming the low frequency limit of displacements.

7.2.1 Seismic Moment, Moment Magnitude, and Seismic Moment Tensor

The magnitude of microseismic events is expressed by the seismic moment by

assuming shear failure along a fault surface. The seismic moment M0 is de�ned as

(Aki and Richard, 2002)

M0 := GAd, (7.1)

where G is shear modulus, A is the area of the fracture, and d is the average distance

of slip over the fault. If the elastic properties, area, and slip distance of a seismic

source are known, we can directly compute the seismic moment by using Eq. 7.1. It

should be mentioned that the seismic moment is a scale to measure the magnitude of

seismic sources and independent of observation points.

Because of the broad range of seismic moment, it is common to use moment
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magnitude Mw instead of seismic moment. Moment magnitude is a logarithmic scale

of the seismic moment de�ned as (Kanamori, 1977)

Mw :=
2

3
log10M0 − 6.0, (7.2)

where M0 is in N m. The moment magnitude of microseismic events observed dur-

ing hydraulic fracturing operations is typically much lower than zero. For instance,

Warpinski et al. (2012) reported moment magnitude of microseismicity measured in

the Barnett, Marcellus, Eagle Ford, and Woodford shales ranging between −4 and

−1.

While the magnitude of microseismic events is expressed with seismic moment or

moment magnitude, which assumes shear failure of the events, hydraulic fractures

contain non-zero tensile component in their slip vector in general. For earthquakes

with tensile components, the seismic moment tensorMij is de�ned (Aki and Richard,

2002):

Mij :=

∫∫
Σ

Cijkl∆uknl dΣ, (7.3)

where Cijkl is a fourth-order elastic tensor, ∆ui is the slip vector, ni is the normal of

the fault, and Σ is the fault surface. The moment tensor (MT) can be computed from

seismic waveforms generated by seismic events. This is referred to as MT inversion.

MT is conventionally decomposed into the isotropic (ISO), double couple (DC),

and compensated linear vector dipole (CLVD) components in MT inversion analysis

(Knopo� and Randall, 1970; Vavry£uk, 2001).

Mij = M ISO
ij +MDC

ij +MCLVD
ij . (7.4)

ISO component represents dilatation, and DC component corresponds to shear fail-
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ure. The CLVD component describes the simultaneous change in the axial strain

and shear modulus. Although it is often mentioned that DC component is dominant

in microseismic events observed in hydraulic fracturing (Nolen-Hoeksema and Ru�,

2001; Yu et al., 2015), �ílený et al. (2009) pointed out the dominant DC component

is the result of a single observation well and showed that non-DC components can be

retrieved by using multiple observation wells. Vavry£uk (2007) showed the relation-

ship between recoverable components in MT inversion and the number of observation

wells. Pesicek et al. (2016) found microseismic events induced during hydraulic frac-

turing of the Montney Shale in Canada contain signi�cant non-DC components by

analyzing seismic data recorded by using surface arrays.

7.2.2 Seismic Wave Propagation from a Source to Receivers

The seismic moment tensor and the displacement are related by the Green's func-

tion of a medium (Aki and Richard, 2002):

ui(x, t) = Mkl ∗Gik,l, (7.5)

where ui(x, t) is the displacement vector measured at a point x and time t, and Gik,l

is the spatial derivative of the Green's function. The symbol ∗ denotes the time

convolution.

Assuming a homogeneous isotropic medium, the Green's function can be analyti-

cally derived. If the receiver is located far from the source, the far-�eld displacements

of the P- and S-waves, uFPi and uFSi , are given by (Aki and Richard, 2002; Chapman,
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2004)

uFPi (x, t) =
RP
ijγk

4πρv3
P r
Ṁjk

(
t− r

vP

)
, (7.6)

uFSi (x, t) =
RS
ijγk

4πρv3
Sr
Ṁjk

(
t− r

vS

)
, (7.7)

where ρ is the density, vP and vS are the P- and S-wave velocities, r is the distance

between the source and the receiver, and γi is the directional cosine from the source

to the receiver. RP
ij and RS

ij give the radiation pattern factors for P- and S-waves.

They are given by

RP
ij := γiγj, (7.8)

RS
ij := δij − γiγj. (7.9)

Let us de�ne a source model Ω(x, t) as (Aki and Richard, 2002)

Ω(x, t) :=

∫∫
Σ

∆u̇
(
ξ, t− r

c

)
dΣ(ξ), (7.10)

where ∆u is the magnitude of the slip, c is the wave velocity. The dot denotes the

time derivative. The time derivative of the moment tensor can be expressed by using

the source model as

Ṁij(x, t) = M̂ijΩ(x, t), (7.11)

where M̂ij := Cijklνknl, and νk is the slip direction. Then, Eq. 7.6 and Eq. 7.7 can
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be rewritten as

uFPi (x, t) =
RP
ijγk

4πρv3
P r
M̂jkΩ

(
t− r

vP

)
, (7.12)

uFSi (x, t) =
RS
ijγk

4πρv3
Sr
M̂jkΩ

(
t− r

vS

)
. (7.13)

Let us denote the Fourier transform of Ω(x, t) with respect to t as Ω(x, ω). The

low frequency limit of Ω(x, ω) approaches a constant value given by (Aki and Richard,

2002):

Ω(x, ω → 0) =

∫∫
Σ

∆u(ξ, t→∞) dΣ = dA, (7.14)

where d is the �nal slip over the fault, and A is the area of the fault. Taking the

Fourier transform of Eq. 7.12 and Eq. 7.13 and substituting the above equation, we

have

ΩFP
0 = |uFPi (x, ω → 0)| = dA

4πρv3
P r

∣∣∣RP
ijγkM̂jk

∣∣∣ , (7.15)

ΩFS
0 = |uFSi (x, ω → 0)| = dA

4πρv3
Sr

∣∣∣RS
ijγkM̂jk

∣∣∣ . (7.16)

Substituting Eq. 7.1 into Eq. 7.15 and 7.16, we obtain

ΩFP
0 =

M0FP
4πρv3

P r
, (7.17)

ΩFS
0 =

M0FS
4πρv3

Sr
, (7.18)

where FP and FS are the radiation pattern correction factors for P- and S-waves,
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Figure 7.2: A �owchart of the forward modeling of microseismic events.

respectively. They are de�ned by

FP :=

∣∣∣RP
ijγkM̂jk

∣∣∣
G

, (7.19)

FS :=

∣∣∣RS
ijγkM̂jk

∣∣∣
G

, (7.20)

Since hydraulic fracturing simulations assume quasi-static condition, slip vectors

computed from the simulations can be interpreted as the �nal slip in Eq. 7.14. Hence,

the low frequency limit of the far-�eld displacements ΩFP
0 and ΩFS

0 correspond to the

displacements at receivers computed from the simulations. Fig. 7.2 shows a �owchart

of the forward modeling of microseismic events.
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7.3 Inversion Analysis of Microseismic Data

7.3.1 Microseismic Event Location

The location of microseismic events is commonly estimated based on the arrival

time analysis of P- and S-waves and the hodogram analysis of P-wave. While the

former analysis yields the distance between a microseismic source and receivers, the

latter analysis provides the direction from which wave propagated at receivers. Com-

bining both results, the location of microseismic events can be obtained. The mag-

nitude of microseismic events can be estimated from the polarity of P-wave and the

low frequency limit of displacements. A schematic �gure of the inversion analysis of

microseismic data is shown in Fig. 7.3.

Let us assume a microseismic event occurs at time t0. A receiver at an observation

well detects the microseismic event at arrival times of P- and S- waves, tP and tS:

tP = t0 + ∆tP , (7.21)

tS = t0 + ∆tS, (7.22)

where ∆tP = r/vP and ∆tS = r/vS are travel times of P- and S-waves, respectively.

Then, the distance from the receiver to the microseismic source can be computed

from a di�erential arrival time of P- and S-waves (Eisner, et al., 2009):

r =
vPvS
vP − vS

∆t, (7.23)

where ∆t = tS − tP = ∆tS − ∆tP is the di�erential arrival time between P- and

S-waves.

The wave propagation direction of microseismic events is frequently estimated by
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Figure 7.3: A schematic �gure of the inversion analysis of microseismic data.
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using hodogram analysis, which requires the full P waveform. The hodogram analysis

is based on the fact that the polarization (the geometrical orientation of oscillation)

and the propagation direction of P-wave are the same in homogeneous isotropic media.

The hodogram analysis cannot be performed since the full waveform is not available

in this dissertation. Instead, the wave propagation direction is given as the directional

cosine γi in the forward modeling. The location of microseismic events are computed

by

xsi = xri − rγi, (7.24)

where xri and xri represents the location of source and receiver, respectively.

Ideally, the location of microseismic events can be exactly computed from Eq. 7.24

with only one receiver. In reality, however, multiple receivers installed in multiple

observation wells are necessary to obtain an accurate location of microseismic events

due to, for example, noise in observed data and errors associated with the location of

receivers and arrival time picking. If the polarization measured at receivers contains

an error, the di�erent location of the microseismic event can be estimated for each

receiver. In that cases, we simply average the estimated locations to obtain the

location of the microseismic source:

xsi =
1

Nr

Nr∑
j=1

xsi =
1

Nr

Nr∑
j=1

(
xjri − rjγ

j
i

)
, (7.25)

whereNr is the number of receivers, and the superscript j denotes the value at receiver

j. A �owchart of the inversion analysis for the source location is presented in Fig. 7.4.
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Figure 7.4: A �owchart of the inversion analysis for the location of microseismic
events.

7.3.2 Seismic Moment

To estimate the seismic moment of microseismic events from seismic waves ob-

served at observation wells, Eq. 7.1 cannot be used because A and d are unknown.

Instead, Brune's equation is commonly used to evaluate seismic moment from mea-

surements made at a receiver array (Brune, 1970; Gibowicz and Kijko, 1994; Warpin-

ski et al., 2012):

M0 =
4πρc3rΩ0

Fc
, (7.26)

where ρ is rock density, c is the P- or S-wave velocity, Ω0 is the low frequency am-

plitude of the displacement spectrum at a receiver, r is the distance from a receiver

to an event, Fc is a correction factor for a radiation pattern. The root-mean-square

(RMS) averages of radiation factor over the whole focal sphere FP = 0.52 for the

P-wave and FS = 0.63 for the S-wave are generally used. Ω0 is obtained by using

the Fourier transform of the received signal. A �owchart of the inversion analysis of
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Figure 7.5: A �owchart of the inversion analysis for seismic moment.

seismic moment is shown in Fig. 7.5.

It should be mentioned that Eq. 7.26 and 7.17-7.18 are essentially equivalent. The

di�erence is that the RMS of the radiation pattern correction factor is used in Eq.

7.26 since the direction of slip νk and the normal of fractures nk in the moment tensor

are not readily available. Obtaining νk and nk, or equivalently Mij, from observed

waveforms is referred to as moment tensor inversion (MTI).

7.4 Application

7.4.1 Procedures

The forward modeling of microseismic events by using the result of hydraulic

fracturing simulations in Chapter 6 and the inversion analysis of the synthetic mi-

croseismic events are performed in this section. First, synthetic receivers are placed

along observation wells. Next, polarization, travel times, and the low frequency limit

of far-�eld displacements at the receivers are generated for each microseismic event

through the forward modeling. Finally, the location and seismic moment of the syn-

thetic events are estimated through the inversion analysis.

The elastic moduli used in this chapter are not static moduli but dynamic ones.

They are di�erent from the static elastic moduli used in Chapter 6. The dynamic
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Table 7.1: The P- and S-wave velocities, rock density, and dynamic elastic moduli.
The wave velocities are estimated from Figure B-1 in Stegent and Candler
(2018).

P-wave velocity 4000 m/s
S-wave velocity 2350 m/s
Rock density 3000 kg/m3

Young's modulus 40.97 GPa
Poisson's ratio 0.2365
Shear modulus 16.57 GPa

elastic moduli can be computed from the P- and S-wave velocities:

E =
ρv2

S(3v2
P − 4v2

S)

v2
P − v2

S

, (7.27)

ν =
v2
P − 2v2

S

2(v2
P − v2

S)
, (7.28)

where ρ is rock density, E is Young's modulus, and ν is Poisson ratio. The P- and

S-wave velocities are estimated from Figure B-1 in Stegent and Candler (2018). These

properties are summarized in Table 7.1.

Only the failure containing shear components are used in the forward modeling

because the �eld observations show that shear failures are dominant in microseis-

mic events in hydraulic fracturing (Nolen-Hoeksema and Ru�, 2001). The following

criterion is used to �lter shear failures:

∆t

∆n

≥ 2, (7.29)

where ∆ut and ∆un are the magnitude of the tangential and normal components of

displacement discontinuity, respectively.
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7.4.2 The Locations and Moment Magnitudes of Microseismic Events

Case 1: One Observation Well without Noise

In Case 1, the simulation result of Fig. 6.10a is used for the forward modeling

and the inversion analysis. A synthetic observation well (Well No. 1) is placed at

(x, y) = (50, 50), and receivers are installed at every 5 m from z = −20 to 20 along

the wellbore. Noise is not introduced in the forward modeling step in this case.

Fig. 7.6 shows the moment magnitude and the location of synthetic microseismic

events generated from the simulation result of Fig. 6.10a. Most of the moment mag-

nitudes lie between -3 to -1, which agrees with the moment magnitudes observed in

�eld experiments (Warpinski et al., 2012). It is found that all of the event locations

lie exactly on the paths of hydraulic fractures. This is because noise is not added

to the observed data, and thus we can recover the exact locations. We found that

all of the event locations shown in Fig. 7.6 occur along natural fractures which are

hydraulically connected and become a part of hydraulic fractures. The orientation of

natural fractures can be estimated from some consecutive event locations.

Fig. 7.7 shows the moment magnitudes estimated using Brune's equation against

those computed by using Eq. 7.1 for P- and S-waves. The moment magnitude

produced from Eq. 7.1, which is the de�nition of the seismic moment, are correct.

It is found that the correct moment magnitudes cannot be recovered even in this

idealized case without noise and attenuation. This is because the average of the

radiation pattern correction factor is used in Brune's equation.

To verify that using the average of the radiation pattern correction factor causes

the deviation, the moment magnitudes are estimate by using Brune's equation with

the correct radiation pattern correction factor computed by using Eq. 7.19 and 7.20.

The result is shown in Fig. 7.8. The fact that the estimated and correct moment
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Figure 7.6: The moment magnitude and the location of the synthetic microseismic
events estimated from the simulation result of Fig. 6.10a. The observation
well is shown as a black cross. The color map represents the moment
magnitude.
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(a) P-wave (b) S-wave

Figure 7.7: The moment magnitudes estimated by using the Brune's equation against
the moment magnitudes computed by using Eq. 7.1.

magnitudes matches exactly in Fig. 7.8 clearly indicates that the error in the estimated

moment magnitudes using Brune's equation in Fig. 7.7 is caused by the usage of the

average radiation pattern correction factor. We must cover the focal sphere of seismic

sources as much as possible to estimate the radiation pattern correction factor, which

is equivalent to placing many observation wells at di�erent angles relative to the

sources.

Case 2: One Observation Well with Noise

In Case 2, noise is added to the directional cosine γi and the di�erential travel

time ∆t generated in Case 1. The inversion analysis is then performed against the

noisy data. The noise to the directional cosine is created as a normal distribution of

rotation angles around the z-axis. The directional cosine is horizontally rotated by

using the angle. The standard deviations of the normal distributions for noise are
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(a) P-wave (b) S-wave

Figure 7.8: The moment magnitudes estimated by using the Brune's equation with
the correct radiation pattern correction factor against the moment mag-
nitudes computed by using Eq. 7.1.

Table 7.2: The standard deviation of the normal distributions for noise.

Case name Small noise Large noise
Horizontal rotation angle for γi 45◦ 10◦

Travel Time 2 ms 5 ms

shown in Table 7.2.

Fig. 7.9 shows the moment magnitude and the location of microseismic events es-

timated from the synthetic data containing noise. In contrast to Fig. 7.7, which does

not contain noise, it is di�cult to estimate the orientation of natural fractures from

Fig. 7.9. The microseismic events are distributed around natural fractures, creating

microseismic clouds. As the noise level becomes larger, the location of microseismic

event becomes more dispersed. While it can be analyzed based on the event loca-

tions that two hydraulic fractures are growing in Fig. 7.9a, no clear fracture path
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(a) Small noise (b) Large noise

Figure 7.9: The moment magnitude and the location of the synthetic microseismic
events estimated from the simulation result of Fig. 6.10a. The observation
well is shown as a black cross. The color map represents the moment
magnitude.

can be found in Fig. 7.9b. We can only state that hydraulic fractures are growing in

the direction NNW-SSE. Therefore, it is critical to use microseismic data containing

less noise to analyze the location and orientation of natural fractures and hydraulic

fracture paths accurately.

Two Observation Wells with Noise

In Case 3, an additional synthetic observation well (Well No. 2) is placed at

(x, y) = (50,−50) with the same con�guration of receivers with Well No. 1 to evaluate

the e�ect of the focal coverage. The simulations of Case 1 and 2 are used to generate

synthetic microseismic events. The small and large noise cases are analyzed as well
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as Case 2.

Fig. 7.10 shows the moment magnitude and the location of microseismic events

estimated from the synthetic data with noise measured at two observation wells.

Comparing Fig. 7.10 with Fig. ??, the microseismic events are mapped more closely

to hydraulic fracture paths in Fig. 7.10. Let us de�ne the error of microseismic event

locations:

ε :=

√√√√ 1

Ns

Ns∑
j=1

‖xsi − x∗si‖2, (7.30)

where Ns is the number of event locations, and the superscript ∗ denotes the correct

value.

Fig. 7.11 shows the error of the event locations for di�erent noise levels and the

number of observation wells. It clearly shows that the error is reduced by using

two observation wells compared to by using single observation well. Since the mi-

croseismic waves measured at observation wells always contain some noise, multiple

observation wells are preferable to reduce the e�ect of noise and increase the accuracy

of microseismic event locations.

7.4.3 The Slip, Orientation and Area of Fractures

In Case 1, we found that an accurate radiation pattern correction factor is re-

quired to obtain accurate seismic moments. In this section, we analyze whether the

radiation pattern correction factor can be recovered through inversion analysis. Since

the radiation pattern correction factor is composed of the direction of slip, the ori-

entation of the fracture surface, and the wave propagation direction, it is equivalent

with the inversion analysis of the slip and orientation of fractures from microseismic
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(a) Small noise (b) Large noise

Figure 7.10: The moment magnitude and the location of the synthetic microseismic
events estimated from the simulation result of Fig. 6.10a. The obser-
vation wells are shown as black crosses. The color map represents the
moment magnitude.
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Figure 7.11: The error in the microseismic event locations.

data. The objective function to perform the inversion analysis is de�ned by

f :=
Nr∑
i=1

[(
ΩFP

0i − ΩFP∗
0i

)2
+
(
ΩFS

0i − ΩFS∗
0i

)2
]

(7.31)

where the subscript i denotes the receiver ID, and the superscript ∗ denotes the

measured values. The low frequency limit of displacements in Eq. 7.31 is computed

by using Equation Eq. 7.17 and 7.18. The matching parameters of the objective

function are:

1. Fracture orientation, θf and φf in spherical coordinates.

2. Slip direction, θs and φs in spherical coordinates.

3. The magnitude of slips, d

4. The area of fractures, A.
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The objective function is the function of the above parameters, f = f(θf , φf , θs, φs, d, A).

The normal vector of fractures ni and the slip direction νi which appear in the radi-

ation pattern correction factor are computed from the spherical coordinates:

ni =

[
sin θf cosφf sin θf sinφf cos θf

]T
, (7.32)

νi =

[
sin θs cosφs sin θs sinφs cos θs

]T
. (7.33)

To simplify the problem, we use a synthetic seismic source placed at the origin.

The source is a vertical fracture whose normal vector is (−1/
√

2, 1/
√

2, 0) and a pure

shear failure whose slip direction is (1/
√

2, 1/
√

2, 0). The magnitude of the slip is

1 mm, and the fracture area is 4 m2.

Two cases of observation well con�gurations are tested. Case 1 places receivers in

a single vertical observation well at (x, y) = (50, 0) from z = −20 to 20 m for every

5 m. Case 2 places receivers in two vertical observation wells at (x, y) = (50, 0) and

(50,−20) at the same depths. Fig. 7.12 shows the location of the receivers and the

fracture orientation and slip directions.

Since Eq. 7.31 is a nonlinear equation, a nonlinear optimization technique is

required to perform the inversion analysis. After testing several methods provided

by Matlab, he particle swarm function is selected as the optimization method used

in the inversion analysis.

Case 1: One Observation Well

First, we start with Case 1. Table 7.3 shows the estimated parameters through

the inversion analysis. Fig. 7.13 shows the correct and estimated low frequency ampli-

tude for the P- and S-waves, and Fig. 7.14 shows the correct and estimated radiation
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(a) Case 1 (b) Case 2

Figure 7.12: The location and orientation of a synthetic seismic source and receiver
arrays. The arrow represents the slip direction. Lines represents obser-
vation wells, and circles represent receivers. Upper �gures are a 3D view,
and the lower �gures are a plan view.
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Table 7.3: The estimated parameters through the inversion analysis of Case 1.

θf 80.1548◦

φf 138.5321◦

θs 80.1549◦

φs 41.4678◦

d 0.0018 m
A 1.9276 m2

Figure 7.13: The measured and estimated low frequency amplitude at each receiver
for Case 1.

pattern correction factor. As shown in Fig. 7.13, the low frequency amplitude esti-

mated from the matching parameters by using Eq. 7.17 and 7.17 exactly matched

the measured values. However, we could not match the radiation pattern correction

factor as shown in Fig. 7.14. This is due to the multiple local minima existing in Eq.

7.31. Moreover, we could not obtain the correct slip magnitude and fracture area.
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Figure 7.14: The computed and estimated radiation pattern correction factor at each
receiver for Case 1.

Case 2: Two Observation Wells

Next, the same inversion analysis was performed for Case 2 to analyze the e�ect of

the number of observation wells. Table 7.4 shows the estimated parameters through

the inversion analysis. Fig. 7.15 shows the measured and estimated low frequency

amplitude for the P- and S-waves, and Fig. 7.16 shows the measured and estimated

radiation pattern correction factor for the P- and S-waves. In this case, we could

recover both the low frequency amplitude and the radiation pattern correction factor

for the P- and S-waves. Moreover, the slip magnitude and the fracture area are more

accurately estimated compared to Case 1.

This result indicates the importance of using multiple observation wells. Measur-

ing microseismic events at multiple observation wells is equivalent with covering the

focal sphere of the seismic sources to understand the radiation pattern. Then, we can

estimate the normal and slip directions of fractures more accurately since the radia-

tion pattern originates from the normal and slip directions of fractures as described
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Table 7.4: The estimated parameters through the inversion analysis of Case 2.

θf 90.0000◦

φf 135.0000◦

θs 90.0000◦

φs 45.0000◦

d 0.0013 m
A 3.1536 m2

Figure 7.15: The measured and estimated low frequency amplitude at each receiver
for Case 2.

in Eq. 7.19 and 7.20.

Case 3: Two Observation Wells with Noise

Finally, the e�ect of noise to the inversion analysis is analyzed. The noise gen-

erated from normal distributions is added to the low frequency amplitude measured

at receivers. Two noise levels are considered: small and large noise. The standard

deviations of the normal distribution for noise are listed i Table 7.5. The same seismic

source and well con�guration with Case 2 are used for Case 3.
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Figure 7.16: The computed and estimated radiation pattern correction factor at each
receiver for Case 2.

Table 7.5: The standard deviation of the normal distributions for noise.

Case Standard deviation
Small noise 5% of the maximum ΩFP

0 and ΩFS
0

Large noise 20% of the maximum ΩFP
0 and ΩFS

0
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Figure 7.17: The measured and estimated low frequency amplitude at each receiver
for Case 3 with small noise.

Fig. 7.17 and 7.18 shows the radiation pattern correction factor and the low fre-

quency amplitude for P- and S-waves in the case of small noise. Fig. 7.19 and Eq.

7.20 shows the radiation pattern correction factor and the low frequency amplitude

for P- and S-waves in the case of large noise. It is found the deviation between the

estimated and measured low frequency amplitude is much smaller in the case of small

noise compared to in the case of large noise. In contrast, the radiation pattern cor-

rection factors are estimated in a reasonable accuracy in both cases. This can be

explained by the fact that the radiation pattern depends on the direction from the

sources while the amplitude is primarily a function of the distance from the sources.

Since two wells placed at di�erent angles at similar distances from the source to cover

the focal sphere of the synthetic seismic source, the radiation pattern correction factor

is easier to �t through the inversion analysis.
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Figure 7.18: The computed and estimated radiation pattern correction factor at each
receiver for Case 3 with small noise.

Figure 7.19: The measured and estimated low frequency amplitude at each receiver
for Case 3 with large noise.
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Figure 7.20: The computed and estimated radiation pattern correction factor at each
receiver for Case 3 with large noise.
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7.5 Conclusion

Synthetic microseismic events were generated from hydraulic fracturing simula-

tions by assuming a homogeneous isotropic medium. The forward modeling of mi-

croseismic events by using the result of hydraulic fracturing simulations is proposed

based on the seismology. The inversion analysis of synthetic microseismic data is for-

mulated in a simple way by using Brune's equation and the di�erential arrival time

analysis.

The moment magnitude of the microseismic events were mapped on hydraulic

fracture paths. We found that the moment magnitudes of the microseismic sources

estimated by using Brune's equation contain an error even without noise. The error

originated from using the average radiation pattern correction factor. When noise

is added to the measured synthetic data, the location of the microseismic events

became dispersed, and microseismic clouds are generated similar to the microseismic

monitoring in real �elds. As noise became larger, the extension of the microseismic

clouds became larger. We demonstrated the e�ect of the error can be mitigated by

using multiple observation wells.

We also performed the inversion analysis of synthetic microseismic data to estimate

the source parameters of microseismic events, i.e. the orientation and area of fractures,

and the magnitude direction of slip. It is found that one observation well is not enough

for the accurate estimation of the source parameters even in the case of noise-free.

Using two observation wells, the source parameters are estimated more accurately. In

addition, it became more resilient against noise.
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Chapter 8: Conclusion and Future Work

The displacement discontinuity method (DDM) was extended and applied to hy-

draulic fracture modeling in heterogeneous rocks which contain layers and natural

fractures. In this chapter, we summarize the conclusions and the future work.

8.1 Conclusion

8.1.1 Displacement Discontinuity Method for Layered Media

A new displacement discontinuity method (DDM) for layered media was devel-

oped based on the method of images. The in�uence coe�cients of the new DDM

were computed by numerically integrating the image solutions of kernel functions.

Application to three-layered media in a plain strain condition showed the following

conclusions:

1. Higher-order elements are more accurate than constant elements.

2. The number of Gauss points for numerical integration does not have a large

impact on the accuracy of fracture width in the three-layered media.

3. The e�ect of the number of image solutions depends on the orientation of the

fractures in the three-layered media. For vertical cracks, one image solution is

enough to compute fracture width in reasonable accuracy.

4. Larger contrast of shear modulus between layers requires more image solutions.

For vertical cracks, one image solution is enough to compute fracture width in

reasonable accuracy up to the shear modulus contrast of 5.
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8.1.2 DDM-Based Hydraulic Fracturing Model

A DDM-based hydraulic fracturing model was developed. The elastic response

of fractures was described by using DDM, and the �uid �ow inside fractures was

modeled by using the �nite volume method. A coupled system of the DDM and �ow

equations were solved with segregated and fully coupled methods. A new splitting

scheme, fracture compliance splitting scheme, was proposed to improve the conver-

gence speed of segregated methods. The hydraulic fracturing model was validated

with the analytical solutions for radially growing fractures.

1. Fixed-width splitting scheme requires a large number of iterations due to its

small relaxation factor. This large number of iterations negates the advantages

of segregated methods: less memory requirement and easy implementation.

2. Fracture compliance splitting scheme enables us to use relaxation factors much

larger than the �xed-width splitting scheme. This improves the convergence

speed of segregated methods.

3. The importance of scaling and preconditioning procedures in the fully coupled

method was shown.

4. The comparison of the fully-coupled and segregated methods revealed that the

fully coupled method is e�ective to improve convergence speed. We found the

fully coupled method did not require any relaxation.

5. The fully coupled method was faster than segregated methods for a fracture

propagation problem of a 2D single planar fracture. Therefore, the fully cou-

pled method should be used for small problems. For large problems, the seg-

regated methods can be suitable since the fully coupled method can become

computationally more expensive.
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8.1.3 Interaction Between Hydraulic and Natural Fractures

The interaction between hydraulic and natural fractures were modeled. Crossing

criteria for hydraulic and natural fractures were reviewed. The crossing criteria based

on the Mohr-Coulomb criterion, energy release rate, and stress intensity factors (SIFs)

were explained in detail. Comparison with experimental results led to the following

conclusions:

1. Crossing criteria based on energy release rates and SIFs do not change the

crossing behavior of hydraulic fractures. Natural fractures break after a hy-

draulic fracture is de�ected more easily in the case of the energy-based criterion

than the SIF-based criterion due to the contribution of the mode II SIF.

2. The crossing behavior of hydraulic fractures depends on horizontal stress con-

trasts if the Mohr-Coulomb-based criterion is used.

The remote failure of natural fractures which are not connected to hydraulic fractures

was modeled by using the Mohr-Coulomb criterion. The increase of pore pressure due

to poroelastic e�ects was taken into account by assuming an undrained condition in

DDM. From sensitivity analysis, the following conclusions were derived:

1. The pore pressure increase due to poroelastic e�ect under the undrained con-

dition has little e�ect on the remote failure of natural fractures.

2. Elastic stress change caused by hydraulic fracture propagation can trigger

shear failure of natural fractures not connected to hydraulic fractures only in

the vicinity of hydraulic fractures.

8.1.4 Hydraulic Fracturing Simulations in Naturally Fractured Rocks

Hydraulic fracturing simulations in synthetic natural fracture networks were per-

formed. Natural fractures were statistically distributed by using the power-law dis-
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tribution for fracture length and the von Mises distribution for fracture azimuth. We

ignored the end-to-end connections of elements for simpli�cation and corrected the

in�uence coe�cients of DDM to avoid singularity problems.

1. Hydraulic fractures intersect natural fractures more in the case of a=2 for the

power-law distribution than a=3.

2. Remote failure of natural fractures creates more branches. Thus it creates

more complex fracture networks.

3. Large horizontal stress contrasts force hydraulic fractures to propagate in the

maximum horizontal stress direction. We observed hydraulic fractures which

are de�ected in natural fractures immediately turn in the maximum horizontal

stress direction after they reach at an edge of natural fractures in the case of

large stress contrasts.

4. Comparing two natural fractures with di�erent areal densities, hydraulic frac-

tures intersected natural fractures more frequently in denser natural fracture

networks, and consequently more branches and merges were observed.

5. Bimodal distributions for fracture orientation generated more branches and

merges compared to unimodal distributions. Field observation indicates multi-

modal distribution for natural fracture orientation. Thus, it is essential to

incorporate multiple mode in fracture orientations.

8.1.5 Modeling of Microseismic Events

Synthetic microseismic events were generated from the hydraulic fracturing simu-

lation results in Chapter 6. The areal map of moment magnitudes of the microseismic

events was presented. In addition, inversion analysis of microseismic events was per-

formed in terms of the low frequency amplitudes of synthetic seismic events and the

radiation pattern correction factor. These analyses led to the following conclusions:
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1. The moment magnitudes estimated by using Brune's equation contain the

error which originates from the average radiation pattern correction factor.

2. The noise in the measured microseismic data made the location of the mi-

croseismic events less accurate, and microseismic clouds were generated. It

is important to reduce the noise to analyze the growth of hydraulic fractures

from microseismic monitoring.

3. One observation well is not enough for the inversion analysis of microseismic

data to estimate the source parameters due to the inadequate coverage of focal

sphere of microseismic sources.

4. Multiple observation wells are essential not only to estimate the source param-

eters but also to be resilient against noise in the microseismic data.

8.2 Future Work

The hydraulic fracturing model developed in this dissertation utilized rectangular

elements for 3D DDM and a slightly compressible �uid without proppant transport for

�uid �ow inside fractures to simplify its formulation. Thus, the following extensions

can be made to our model:

1. The geometry of fractures can be approximated better with triangular elements

proposed by Kuriyama and Mizuta (1993) than with rectangular elements.

Although their analytical solution becomes singular along the extension of

any edge of triangular elements, this singularity problem can be avoided by

using the BEM solution developed by Davey and Hinduja (1989).

2. Proppant transport equations can be added to the coupled system of equations

in our model. The proppant distribution in hydraulic fractures is important to

evaluate fracture conductivity in production period. One way is to iteratively

couple the DDM-�ow equations and proppant transport equation as described
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in Shrivastava and Sharma (2018a).

3. Our model can be extended to non Newtonian �uids such as power-law �uids.

Since non Newtonian �uids increase the nonlinearity of the �ow equation, a

nonlinear solver might be required instead of the current linear solver.

4. Current bottleneck of the performance of our fracturing model lies in solving

the dense linear system of equations. The computation speed of this part can

be much improved by using fast solvers such as the adaptive cross approxi-

mation method, adaptive integral method, and fast multipole method. These

fast solvers have been developed for solving dense linear system of equations

which arises in the boundary element method (BEM). Since we demonstrated

the equivalence of BEM and DDM, the fast solvers can be directly applicable

to our model.

5. The poroelastic e�ect was incorporated into our model by assuming an undrained

condition. This assumptions is valid only for reservoirs with very low perme-

ability and during fracturing operations. The undrained condition can be

violated for reservoirs with non-negligible permeability or during production

period. In these cases, we have two options: (1) use DDM for poroelastic

media, (2) couple our model with reservoir simulator. DDM for poroelastic

media is computationally more expensive than the conventional DDM because

of its complicated Green's function and time integration. On the other hand,

coupling our model with reservoir simulators requires some theoretical work

to incorporate depletion of formations into our model.

6. In this dissertation, microseismic events were modeled without considering

a source model, which is stress and the velocity of slip as a function of time.

Combining a source model with our model is the next step to analyze dynamic

behavior of natural fracture failure.
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Appendices

Appendix A: Kernel Functions

A.1 Kernel Functions of BEM

The explicit form of the kernel functions is available for homogeneous isotropic

linear elastic media. For 2D problems, it is given by (Gao and Davies, 2002; Liu,

2009)

Uij(y;x) = − 1

8πG(1− ν)
{(3− 4ν)δij ln r − r,ir,j} , (1)

Tij(y;x) = − 1

4πG(1− ν)r2
{(1− 2ν)(nir,j − njr,i)

+ (2 r,ir,j + (1− 2ν)δij)nkr,k} , (2)

Kij(y;x) =
1

4π(1− ν)r

{
(1− 2ν)(r,kn

′
kδij + r,in

′
j − n′ir,j) + 2 r,kn

′
kr,ir,j

}
, (3)

Hij(y;x) =
G

2π(1− ν)r2

{
2 r,knk

[
(1− 2ν)n′ir,j + ν(r,kn

′
kδij + r,in

′
j)− 4 r,kn

′
kr,ir,j

]
+ 2ν(r,kn

′
knir,j + nkn

′
kr,ir,j)− (1− 4ν)n′inj

+(1− 2ν)(2 r,kn
′
kr,inj + nkn

′
kδij + nin

′
j)
}
, (4)

where ri := yi − xi, r := ‖y − x‖, and n′i and ni denote the normal vectors at x and

y, respectively.
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For 3D problems, it reads

Uij(y;x) =
1

16πG(1− ν)r
[(3− 4ν)δij + r,ir,j] , (5)

Tij(y;x) = − 1

8πG(1− ν)r2
{nkr,k [(1− 2ν)δij + 3r,ir,j]

−(1− 2ν)(r,inj − nir,j)} , (6)

Kij(y;x) =
1

8π(1− ν)r2
[(1− 2ν)(δijr,k + δjkr,i − δikr,j) + 3r,ir,jr,k]n

′
k, (7)

Hij(y;x) =
G

4π(1− ν)r3
{2r,pnp [(1− 2ν)δikr,j + ν(δijr,k + δjkr,i)− 5r,ir,jr,k]

+ 3ν(nir,jr,k + nkr,ir,j)− (1− 4ν)δiknj

+(1− 2ν)(3njr,ir,k + δijnk + δjkni)}n′k. (8)

A.2 Kernel Functions of DDM

The kernel functions of DDM take the form of Eq. 2.51 or Eq. 2.53. The analytical

expressions of the kernel functions for line and rectangular elements with constant

strength are described here. It should be mentioned that the sign of the function

g(xi) is �ipped from original papers (Crouch, 1976; Shou et al., 1997) because of the

di�erence of the de�nition of displacement discontinuity.

The kernel function of DDM for line elements with constant strength takes the

following form in the intrinsic coordinate system:

fi(x1, x2) = ∆uig(x1, x2), (9)

g(x1, x2) =
1

4π(1− ν)

∫ a

−a
ln r dξ1, (10)

where a is the half-length of an element, r =
√
x̄2

1 + x2
2, and x̄i := xi − ξi. β in Eq.

2.53 is omitted for brevity. The analytical integration of g(x1, x2) is given by (Crouch,
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1976)

g(x1, x2) =
1

4π(1− ν)
[I(x1, x2, a)− I(x1, x2,−a)] , (11)

I(x1, x2, ξ1) := −x2 tan−1 x̄1

x2

− x̄1 ln r. (12)

The partial derivatives of I(x1, x2, ξ1) in terms of xi are given by

I,1 = − ln r, (13)

I,2 = − tan−1 x̄

y
, (14)

I,11 = − x̄1

r2
, (15)

I,12 = −x2

r2
, (16)

I,22 = −I,11, (17)

I,122 = − x̄
2
1 − x2

2

r2
, (18)

I,222 = −2x̄1x2

r2
. (19)

The kernel function of DDM for rectangular elements with constant strength is

given by

fi(x1, x2, x3) = ∆uig(x1, x2, x3), (20)

g(x1, x2, x3) = − 1

8π(1− ν)

∫ a

−a

∫ b

−b

1

r
dξ2 dξ1, (21)

where a and b are respectively the half-length of an element in the local x1 and x2

directions, and r =
√
x̄2

1 + x̄2
2 + x2

3. The analytical integration of g(x1, x2, x3) is given
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by (Shou et al., 1997; Wu and Olson, 2015a)

g(x1, x2, x3) = − 1

8π(1− ν)
[I(x1, x2, x3, a, b)− I(x1, x2, x3,−a, b)

−I(x1, x2, x3, a,−b) + I(x1, x2, x3,−a,−b)] , (22)

I(x1, x2, x3, ξ1, ξ2) := x̄1 ln(r + x̄2) + x̄2 ln(r + x̄1)− x3 tan−1 x̄1x̄2

rx3

. (23)

The partial derivatives of I(x1, x2, x3, ξ1, ξ2) in terms of xi are given by

I,1 = ln(r + x̄2), (24)

I,2 = ln(r + x̄1), (25)

I,3 = − tan−1 x̄1x̄2

rx3

, (26)

I,11 =
x̄1

r(r + x̄2)
, (27)

I,22 =
x̄2

r(r + x̄1)
, (28)

I,33 =
x̄1x̄2(x2

3 + r2)

r(x2
3 + x̄2

1)(x2
3 + x̄2

2)
, (29)

I,12 =
1

r
, (30)

I,13 =
x3

r(r + x̄2)
, (31)

I,23 =
x3

r(r + x̄1)
, (32)

I,111 = −(r + x̄2)(x̄2
1 − r2) + x̄2

1r

r3(r + x̄2)2
, (33)

I,112 = − x̄1

r3
, (34)

I,113 = − x̄1x3(2r + x̄2)

r3(r + x̄2)2
, (35)

I,122 = − x̄2

r3
, (36)

I,123 = −x3

r3
, (37)
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I,133 = −(r + x̄2)(x2
3 − r2) + x2

3r

r3(r + x̄2)2
, (38)

I,222 = −(r + x̄1)(x̄2
2 − r2) + x̄2

2r

r3(r + x̄1)2
, (39)

I,223 = − x̄2x3(2r + x̄1)

r3(r + x̄2)2
, (40)

I,233 = −(r + x̄1)(x2
3 − r2) + x2

3r

r3(r + x̄1)2
, (41)

I,333 = −x3x̄1x̄2
(x̄2

1 + x2
3)2(x̄2

2 + x2
3 + 2r2) + (x̄2

2 + x2
3)2(x̄2

1 + x2
3 + 2r2)

r3(x2
3 + x̄2

2)2(x2
3 + x̄2

1)2
. (42)

Appendix B: Shape Functions

We assume the intrinsic coordinate ξ varies from −1 to 1. For 2D problems, the

shape function for constant displacement discontinuity (DD) elements is given by

N1(ξ) = 1, (43)

and the corresponding nodal point is ξ1 = 0, which is the element center. For linear

DD elements, the shape function becomes

N1(ξ) =
1

2
− 1√

2
ξ, (44)

N2(ξ) =
1

2
+

1√
2
ξ, (45)
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and the corresponding nodal points are ξ1 = −1/
√

2 and ξ2 = −1/
√

2. For quadratic

DD elements

N1(ξ) = − 1√
3
ξ +

2

3
ξ2, (46)

N2(ξ) = 1− 4

3
ξ2, (47)

N3(ξ) =
1√
3
ξ +

2

3
ξ2, (48)

and the corresponding nodal points are given by ξ1 = −
√

3/2, ξ2 = 0, and ξ3 =
√

3/2.

For 3D problems, shape functions can be de�ned as described in Shou et al.

(1997). Higher-order DD elements are, however, seldom used for 3D problems since

(1) constant DD elements can produce su�cient accuracy, and (2) the function become

too complicated.
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