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Spontaneous Raman scattering from nitrogen is studied in high pressure gases.

Collision frequency increases with increasing gas density, causing spectral lines to

broaden due to pressure broadening and mix when the lines are strongly overlapped.

Because spontaneous Raman thermometry is accomplished by �tting a simulated

spectrum to an experimental spectrum, spectral models that neglect these collision-

induced e�ects will lead to erroneous temperature inference. This work investigates

the in�uence of high density on ro-vibrational spontaneous Raman scattering, which

must be understood to obtain accurate thermometry in high pressure gases. The tem-

perature pro�le through a �ame front was measured at 1 atm, 3 atm, and 5 atm using

spontaneous Raman scattering from nitrogen. The pressure broadening was mea-

sured for the anisotropic tensor component of spontaneous Raman scattering from

room temperature nitrogen over the pressure range of 10 atm to 70 atm for three gas

compositions: pure nitrogen, air, and nitrogen in argon. The unmixed line model was

found to give good �ts to the O and S branches for all pressures, which indicates that

line mixing e�ects are not signi�cant in the O and S branches over this pressure range.
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Using indirect experimental evidence, line mixing e�ects in the anisotropic compo-

nent of the Q branch were inferred to be below the threshold set by the experimental

spectral resolution at pressures up to 70 atm at room temperature. Assuming that the

anisotropic Q branch lines mix like the isotropic lines was found to result in a small

systematic error in the inferred temperature at �ame temperatures, with the error

increasing slowly with pressure. The bias can be removed by modeling the anisotropic

spectrum separately from the isotropic spectrum. Line mixing e�ects should be in-

cluded in the modeling of the isotropic component of the Raman spectrum, but can

probably be neglected in the anisotropic component of the ro-vibrational spontaneous

Raman spectrum of nitrogen.
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Chapter 1

Introduction

Light propagating through a volume of space will be absorbed, scattered or

transmitted by the atoms or molecules present. Absorption may occur if the energy

of the incident photons matches the separation of two energy levels of the atoms

or molecules. Scattered light that has the same wavelength as the incident light

(elastic scattering) is called Rayleigh scattering (when the scattering particles are

much smaller than the wavelength of light), which is named after Lord Rayleigh

who �rst formulated a classical theory for this phenomenon in 1871 [1]. Scattered

light that is shifted in wavelength from the incident light (inelastic scattering) is

called Raman scattering, which is named after C. V. Raman who �rst experimentally

observed inelastic scattering (aided by his student K. S. Krishnan) and published

spectra showing this e�ect in 1928 [1]. The 1930 Nobel Prize in Physics was awarded

to C. V. Raman for "his work on the scattering of light and for the discovery of the

e�ect named after him."

The wavelength shift in Raman scattering is established by the rotational,

vibrational, and electronic properties of the scattering molecules, which o�ers pow-

erful diagnostic potential. However, Raman scattering is very weak. Generally Ra-

man scattering intensity is 1000 times weaker than Rayleigh scattering intensity, and

Rayleigh scattering is 1000 times weaker than the incident light intensity [2]. The

development of high power lasers and sensitive photodetectors has unlocked much of
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this diagnostic potential.

This chapter discusses the motivation for this research work, which investigates

the feasibility of spontaneous Raman thermometry in gas turbine engine applications

and the e�ects of high pressure on this diagnostic technique. A literature survey and

an overview of this dissertation are also included in this chapter.

1.1 Motivation

In gas turbine engines, the turbine inlet temperature is an important design

parameter. Combustion products must be diluted and cooled so that the product

mixture exiting the combustor and entering the turbine does not exceed the turbine

inlet temperature [3]. Increasing the turbine inlet temperature increases the thrust (or

power) output of a gas turbine engine [4, 5]. Currently, gas turbines operate with inlet

turbine temperatures that are signi�cantly higher than the melting point of turbine

blade materials [6]. This is accomplished through �lm cooling, in which relatively

cool air extracted from the compressor is injected from inside turbine blades to the

blade surfaces, forming a coolant �lm that protects the blades [6, 7, 8, 9]. Cooling

air may also be used to internally cool the turbine blades [6]. However, bleeding this

cooling air from the compressor results in a loss of power and a slight decrease in

e�ciency, though these losses are much smaller than the gains from the increased

turbine inlet temperature [3, 5]. Therefore, it is important to optimize the turbine

cooling to maximize the engine's performance.

The temperature distribution in the gas exiting the combustion chamber and

entering the turbine is not perfectly uniform, varying by up to ±10 % of the mean

value in aircraft gas turbine engines [5]. The �ow�eld in this region of the engine is
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turbulent and complex [10, 11]. Local hot spots present in the post-combustion �ow

reduce turbine blade lifetime and create risk for blade failure. If the predicted blade

metal temperature is o� by just 30 K, the blade lifetime may be reduced by half [6, 9].

Therefore, it is important to reliably characterize gas temperature in this region of

the engine. Measuring the turbine blade surface temperature is possible using optical

pyrometry [12] or pressure sensitive paint [13, 14]. Blade temperature measurements

do provide valuable insight into the e�ectiveness of the �lm cooling, but they do

not directly measure the gas temperature entering the turbine or detect hot spots in

the post-combustion �ow. The motivation to maximize turbine inlet temperatures

necessitates accurate measurements of the post-combustion, pre-turbine temperature

pro�le to prevent turbine blade degradation and failure.

The post-combustor, pre-turbine region of a gas turbine engine is a challenging

environment to accurately measure the gas temperature. Thin-�lament pyrometry has

been utilized for this temperature measurement in an atmospheric combustion rig sim-

ulating a model aero-engine combustor [15]. While thin-�lament pyrometry is simple

and cost-e�ective, this technique does have several sources of measurement error and

uncertainty, including the insertion of a probe into the �ow, the aging behavior of the

�bers, and the radiation correction needed to account for the temperature di�erence

between the gas temperature and �ber surface temperature [16]. In contrast, laser

diagnostics can provide nonintrusive, remote measurements of temperature with high

spatial resolution [17]. Reliable temperature measurements in harsh environments

are attainable using laser diagnostics, including laser absorption spectroscopy [18, 19,

20], laser induced �uorescence (LIF) or planar laser induced �uorescence (PLIF) [21,

22, 23], thermographic phosphors [24, 25, 26], Rayleigh scattering [27, 28, 29, 30],

spontaneous Raman scattering [31, 32], and coherent anti-Stokes Raman scattering
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(CARS) [33, 34, 35, 36, 37, 38, 39, 40].

Many of these techniques have been implemented in gas turbine model com-

bustors [41, 42, 43, 44, 45, 46, 47, 48]. However, those studies investigated the

gas turbine combustor and the accompanying combustion physics. To the best of our

knowledge very few of these laser diagnostic techniques have been used to measure the

post-combustor, pre-turbine temperature in a gas turbine engine test rig. Recently,

Scherman et al. [49] used spontaneous rotational Raman spectroscopy to measure

temperature in a test facility consisting of a combustor simulator attached to a high

pressure turbine, though the maximum pressure inside the test rig for these experi-

ments was 1.5 bar [49], far lower than pressures typically found in gas turbine engines

[3, 4, 5]. Nonetheless, this study demonstrates that laser diagnostics are capable of

probing the post-combustor, pre-turbine region of a gas turbine engine.

Each of these laser diagnostics has drawbacks that may limit its usefulness

and feasibility for pre-turbine gas thermometry. For example, absorption is a path

integrated method which is not ideal for detecting local hot-spots; PLIF requires

quenching calibrations that add uncertainties; thermographic phosphors have a lim-

ited range of temperature sensitivity; Rayleigh scattering requires knowledge of the

e�ective Rayleigh cross-section of the gas mixture; spontaneous Raman scattering

su�ers from weak signal strength; and CARS overlaps multiple laser beams, which

may be challenging with restricted optical access and signi�cant beam steering. Ad-

ditionally, the high pressure environment of gas turbine engines complicates all spec-

troscopic techniques because as the gas density increases, the collisional frequency

increases, and spectral lines broaden, shift, and mix [50]. Despite these challenges,

the importance of pre-turbine temperature measurements merits thorough investi-
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gations into the feasibility of laser-based thermometry in this region of gas turbine

engines.

Spontaneous Raman scattering is the inelastic scattering of light from molecules,

which enables one to make quantitative measurements of species concentration and

temperature in complex reacting �ow environments [17]. Raman scattering o�ers all

the advantages of laser diagnostic techniques: non-intrusive, in-situ, and high spatial

resolution in hostile conditions. Because the spontaneous Raman scattering signal is

linearly proportional to laser power it simpli�es data analysis. Additionally, it does

not need corrections for collisional quenching. Therefore, Raman scattering mea-

surements are direct measurements of temperature or species concentration, which

reduces the associated uncertainty. Nitrogen is a well-suited as a probe molecule for

this application because nitrogen is abundant in air-breathing gas turbine engines. It

is often present in combustion applications at high concentrations in both pre-�ame

and post-�ame gases. Therefore, nitrogen serves as a good indicator of gas tempera-

ture. Spontaneous Raman scattering from nitrogen is capable of reliably measuring

the pre-turbine temperature pro�le in gas turbine engines.

Two disadvantages of laser diagnostics are the need for optical access and

beam-steering e�ects due to the presence of large density gradients found in high-

temperature applications. Spontaneous Raman scattering reduces the in�uence of

these shortcomings by only requiring one beam and one optical port in principle.

Note that one optical port is possible only in the near-backscattering con�guration.

Forward and side scattering require two optical ports.

Unfortunately Raman scattering is very weak. This is the primary downside

of spontaneous Raman scattering, making high-speed thermometry challenging and
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often limiting this technique to point measurements. To maximize signal collection,

a large collection solid angle is always desirable with spontaneous Raman scattering,

but this can be prohibited by the window sizes found in high pressure combustion

chambers. However, because the spontaneous Raman scattering signal scales linearly

with number density, this technique is well-suited for high pressure environments.

Multiple-pass cells can be used to increase laser intensity in the measurement volume,

increasing the spontaneous Raman signal [51, 52]. High-speed spontaneous Raman

thermometry is achievable with pulse-burst lasers [53, 54]. High-speed 2D spon-

taneous Raman measurements of species concentration is also possible [55]. While

these methods to boost the spontaneous Raman signal require expensive equipment

and are not necessarily feasible in a gas turbine test rig, they demonstrate that the

challenge of weak Raman signal can be overcome.

Spontaneous Raman scattering from nitrogen and the anticipated challenges

of using this technique to measure temperature in a gas turbine engine are the subject

of this dissertation, focusing in particular on the high pressure environment of this

application which complicates the analysis of experimental spectra and may a�ect the

accuracy of spontaneous Raman thermometry. The next section provides a theoretical

overview of spontaneous Raman scattering that relates to the work presented in this

dissertation.

1.2 Literature Survey

Previous studies have investigated Raman scattering in high pressure gases,

including spontaneous Raman [56, 57], stimulated Raman [58, 59, 60], inverse Raman

[61], and coherent anti-Stokes Raman scattering (CARS) [62, 63, 64]. The Modi�ed
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Exponential Gap (MEG) line mixing model [61, 65], which relies on experimentally de-

termined parameters and line broadening coe�cients [66, 67, 68], has been developed

for high pressure applications. The non-Markovian energy corrected sudden model

has been developed for rotational Raman [69, 70] and compared to measurements in

the isotropic Raman Q branch [71]. Theoretical studies indicate that the relaxation

cross-sections for polarized isotropic Raman scattering are di�erent than those for de-

polarized anisotropic Raman scattering [72, 73, 74]. Although the anisotropic tensor

component of ro-vibrational spontaneous Raman scattering is much weaker than the

isotropic component, high-�delity simulations that include both components can be

utilized for accurate temperature measurements [51] and measurements of thermal

non-equilibrium [31, 75]. Spontaneous Raman has been used for temperature mea-

surements in �ames at elevated pressure [41] and high pressure [43]. Nitrogen Raman

linewidths have been measured using rotational CARS [76, 77], inverse Raman spec-

troscopy [66], and stimulated Raman spectroscopy [68, 58]. However, to the best of

our knowledge, no studies have recorded ro-vibrational spontaneous Raman spectra

at high enough densities and with su�cient spectral resolution to measure pressure-

broadened linewidths of the anisotropic tensor component or assess the signi�cance of

line mixing e�ects in the anisotropic component as it relates to spontaneous Raman

thermometry.

1.3 Dissertation Overview

This dissertation studies the e�ects of high pressure on ro-vibrational sponta-

neous Raman scattering and the impact on spontaneous Raman thermometry. Chap-

ter 2 is a summary of the theoretical background. Chapter 3 presents spontaneous

Raman experiments in an elevated pressure combustion facility. These experiments
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demonstrate spontaneous Raman thermometry in a combustion chamber by measur-

ing the temperature pro�le through a �ame front at pressures up to 5 atm. Chapter 3

also examines the accuracy and precision of this temperature measurement technique

at atmospheric pressure. Chapter 4 presents spontaneous Raman spectra measured

in room temperature gases up to pressures of 70 atm. These high pressure spectra are

used to measure the pressure broadening coe�cients of the anisotropic component of

the Raman spectrum by �tting the O and S branches. Chapter 5 investigates the

modeling of the spontaneous Raman Q branch at high pressure conditions, in partic-

ular focusing on whether line mixing e�ects should be included in the modeling of the

anisotropic component of the Q branch. This chapter also presents estimates of the

systematic error in the inferred temperature at �ame temperatures resulting from the

assumption that the anisotropic component of the Q branch mixes identically to the

isotropic component. Finally, Chapter 6 discusses the conclusions of this dissertation

and provides recommendations for future work.
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Chapter 2

Background Theory

This chapter presents theory relevant to the understanding of this disserta-

tion, but this chapter should not be taken as a comprehensive theoretical framework.

Linne's book [2] is a good resource for the fundamentals of spectroscopic measure-

ment techniques, including Raman scattering. Long's book [1] provides an in-depth

background on the theory of Raman scattering and the history of this technique. Eck-

breth's book [17] also discusses Raman scattering and its speci�c combustion related

applications. Hartmann, Boulet, and Robert's book [50] is an exceptional resource

for collisional e�ects in gas phase spectroscopy, detailing theoretical and experimental

knowledge on this subject.

The work in this dissertation uses rotational-vibrational Stokes spontaneous

Raman scattering. Scattered light that has a lower frequency than the incident light

is said to be Stokes shifted, while scattered light with a higher frequency than the in-

cident light is said to be anti-Stokes shifted. The vibrational state will be represented

by the vibrational quantum number, v, and the rotational state will be represented by

the total angular momentum quantum number, J . This work involves spontaneous

Raman scattering exclusively from nitrogen. Because nitrogen exists in a singlet

ground electronic state, the total angular momentum is equal to the nuclear angular

momentum, so no distinction needs to be made between the total angular momen-

tum quantum number (J) and the nuclear angular momentum quantum number (N).
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Therefore, J will be used to designate the rotational state, as is common practice in

the literature [52].

For spontaneous Raman scattering, only rotational transitions of ∆J = 0,±2

are allowed. Rotational lines with transitions of ∆J = −2 belong to the O branch,

and rotational lines with transitions of ∆J = +2 belong to the S branch. Lines

with transitions of ∆J = 0 belong to the Q branch, though for purely rotational

Raman scattering (∆v = 0) this is really just Rayleigh scattering. This notation is

summarized in Table 2.1. For completeness, the criteria for P and R branch transitions

(∆J ± 1) are also included in Table 2.1, but again, these transitions are forbidden in

spontaneous Raman scattering [1].

Table 2.1: Spectroscopic notation for rotational transitions.

Branch O P Q R S

∆J −2 −1 0 1 2

For the harmonic oscillator approximation, only ∆v = ±1 is allowed. For the

anharmonic oscillator, overtones, ∆v > ±1, are also allowed. However, overtones are

often much weaker than the fundamental transition (∆v = ±1) [1], and are neglected

in this work. The anharmonicity will also spectrally shift the "hot bands", which

are the spectral features (including associated rotational structure) resulting from

vibrational transitions of molecules with an initial vibrational state above the lowest

vibrational level, e.g. v′ ← v′′ : 2← 1. The "hot band" terminology comes from the

fact that higher vibrational levels are populated as the temperature increases [2].

In the classical description of the scattering process, the oscillating electric
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�eld of incident monochromatic light, ~E, induces a dipole moment, ~µ, according to

~µ = ~α · ~E (2.1)

where ~α is the polarizability tensor of the molecule. The polarizability tensor for a

particular normal vibrational mode can be written as a Taylor series expansion with

respect to the coordinate of motion, Q, truncating the series to neglect powers of Q

higher than 1:

αij = (αij)0 +

(
∂αij
∂Q

)
0

Q (2.2)

where (αij)0 is called the "equilibrium polarizability tensor" [2]. The "derived polar-

izability tensor" is the partial derivative in 2.2 de�ned as

α′ ≡
(
∂αij
∂Q

)
0

(2.3)

Assuming that the vibration can be described by simple harmonic motion, then the

coordinate of motion can be written as

Q = Q0 cosωvt (2.4)

where ωv is some natural frequency of the molecule. The incident electric �eld can

also be assumed to be harmonic:

~E = ~E0 cosω0t (2.5)

where ω0 is the frequency of the input light. Combining the previous equations, the

induced dipole moment is then given by

~µ = ~α0 · ~E0 cosω0t+
Q0

2
~α′ · ~E0 [cos (ω0 − ωv) t+ cos (ω0 + ωv) t] (2.6)

The �rst term on the right hand side of Equation 2.6 represents scattered light at

the incident frequency, ω0, which is Rayleigh scattering. The second term represents
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scattered light at frequencies shifted from the incident frequency by the molecular

frequency, ωv, which is Raman scattering. The scattered light that is Stokes shifted

has a lower frequency than the incident light (ω0 − ωv), and the scattered light with

a higher frequency (ω0 + ωv) is anti-Stokes shifted.

Long [1] states that the polarizability tensor may be represented by a pair of

invariant values: the mean polarizability, a, and the anisotropy, γ, which are written

in terms of the polarizability tensor components as:

a ≡ 1

3
(αxx + αyy + αzz) (2.7)

γ2 ≡ 1

2

[
(αxx − αyy)2 + (αyy − αzz)2 + (αzz − αxx)2 + 6

(
α2
xy + α2

yz + α2
zx

)]
(2.8)

Because gas phase molecules are randomly oriented, the polarizabilities must be aver-

aged over all orientations. The radiant intensity of an oscillating dipole is a function

of the square of the induced dipole moment [1], so the space-averages of the squared

polarizability components must be calculated. Long [1] gives the space averages of

the squared polarizabilities for diatomic molecules written in terms of the invariants:〈
αii

2
〉

=
45a2 + 4γ2

45
(2.9)〈

αij
2
〉

=
γ2

15
(2.10)

Note that the polarizability tensor is symmetric (αij = αji), so the space-averaged

squared polarizability tensor is also symmetric [1]:〈
αxx

2
〉

=
〈
αyy

2
〉

=
〈
αzz

2
〉

=
〈
αii

2
〉

(2.11)〈
αyx

2
〉

=
〈
αyz

2
〉

=
〈
αzx

2
〉

=
〈
αij

2
〉

=
〈
αji

2
〉

(2.12)

The polarizability tensor invariants, a and γ, can each be written as a Taylor

series expansion similar to Equation 2.2. Doing so gives polarizability equilibrium in-
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variant values, a0 and γ0, and polarizability invariant derivatives, a
′ and γ′. The polar-

izability equilibrium values lead to Rayleigh scattering and rotational Raman scatter-

ing, while the polarizability derivatives lead to vibrational and rotational-vibrational

Raman scattering. Table 2.2 lists the expressions for the space-averaged polarizability

components for ro-vibrational Stokes Raman scattering [1]. The Placzek-Teller co-

e�cients, bJ ′,J ′′ , are algebraic functions of rotational level, and the functions for the

Placzek-Teller coe�cients are provided by Long [1]. Note that for high-�delity spon-

taneous Raman simulations, higher order corrections are needed to include rotation-

vibration interaction [78]. The Herman-Wallis factors are used to account for this

e�ect [79].

Table 2.2: Space-averages of polarizability components for ro-vibrational Stokes scat-
tering from diatomic molecules [1].

Branch Upper state v′J ′ Lower state
v′′J ′′

〈(
α′ii

2
)
v′,J ′:v′′,J ′′

〉 〈(
α′ij

2
)
v′,J ′:v′′,J ′′

〉
O v + 1, J − 2 v, J 4

45
bJ−2,J(γ′)2 1

15
bJ−2,J(γ′)2

Q v + 1, J v, J (a′)2 + 4
45
bJ,J(γ′)2 1

15
bJ,J(γ′)2

S v + 1, J + 2 v, J 4
45
bJ+2,J(γ′)2 1

15
bJ+2,J(γ′)2

The ro-vibrational spontaneous Raman spectrum consists of an isotropic com-

ponent and an anisotropic component. The isotropic component arises from the mean

of the derived polarizability tensor, a′, while the anisotropic component arises from

the anisotropy of the polarizability derivative, γ′. The expressions listed in Table 2.2

show that the O and S branches are purely anisotropic; they are only dependent on

γ′. However, the Q branch is dependent on both a′ and γ′, so the Q branch has an

isotropic contribution and an anisotropic contribution. Because a′ and γ′ have similar

magnitudes for nitrogen [79], this indicates that for nitrogen, the Raman signal of the
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Q branch is much stronger than the ro-vibrational O and S branches. Theoretically,

the isotropic component of the spectrum and the anisotropic component do not in-

terfere or interact, and thus they can be considered separately [73]. Isotropic Raman

scattering is strongly polarized, while anisotropic scattering is strongly depolarized.

For a vanishingly small collection solid angle in the 90° side scattering con�guration,

the depolarization ratios of the isotropic component and the anisotropic component

are 0 and 0.75 respectively [1].

(a) (b)

Figure 2.1: Sketch of the coordinate system for (a) side scattering and (b) forward
scattering. The ŝ vector indicates the scattering direction.

Let us de�ne a space-�xed Cartesian coordinate system with axes of êx, êy, and

êz and the scattering volume at the origin. For a 90° side scattering experiment with

the incident laser propagating along the êz axis in the +êz direction, the collection

optics will be aligned along the +êx axis, as shown in Figure 2.1a. For this geometry

with small collection solid angle, the laser beam must be linearly polarized with

the electric �eld aligned in the êy direction to get a signal. The scattering plane is

de�ned as the plane containing the incident radiation and the scattered radiation, so
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in this con�guration the scattering plane is the x-z plane. The square of the induced

dipole moment for scattered light that is polarized parallel and perpendicular to the

scattering plane are given by [78] as〈
µ‖

2
〉

=
[〈
α′ij

2
〉 (

cos2 φ cos2 θ + sin2 θ
)

+
〈
α′ii

2
〉

sin2 φ cos2 θ
]
Ey

2 (2.13)〈
µ⊥

2
〉

=
[〈
α′ij

2
〉

sin2 φ+
〈
α′ii

2
〉

cos2 φ
]
Ey

2 (2.14)

where the angles θ and φ de�ne the scattering direction in polar coordinates, with θ

measured from the êz axis and φ measured from the êx axis as shown in Figure 2.1.

Equations 2.13 and 2.14 will be identical for a forward scattering experiment, assum-

ing the incident laser now propagates along the êx axis in the +êx direction with the

laser again linearly polarized with the electric �eld aligned in the êy direction, keeping

the collection optics aligned along the +êx axis. A sketch of this forward scattering

con�guration is shown in Figure 2.1b. However, high-�delity ro-vibrational sponta-

neous Raman simulations require accounting for the �nite solid angle of the collection

lens and the polarization sensitivity of the collection optics. If the laser is not purely

linearly polarized, scattering due to both components of the laser electric �eld should

also be included. In a multiple-pass cell setup, the polarization direction changes

slightly with each pass, and this should be included when the collection solid angle

is large [52]. When these factors are included and integrated over a �nite collection

angle, the squares of the induced dipole moment will not be identical for the side and

forward scattering con�gurations.

The intensity of the spontaneous Raman signal of a particular ro-vibrational

Stokes transition for a single molecular species is given by [1]:

I(v, J,∆v,∆J) =

G

T
[ν̃0 − ν̃k (∆v,∆J)]4 gs (J)

(2J + 1) e−
hcEv(v)

kT e−
hcEr(v,J)

kT

Q (T )
Φ (∆v,∆J)

(2.15)
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assuming the molecules are in thermal equilibrium at temperature T with state pop-

ulations represented by a Boltzmann distribution. In Equation 2.15, G is a scaling

constant that accounts for incident laser intensity and number density, ν̃0 is the fre-

quency of the laser, ν̃k is the frequency of the molecular transition, gs is the nuclear

spin statistical weight, Q is the internal partition function, and Φ is the space-averaged

polarizability tensor, including the angular dependence for a �nite collection solid an-

gle [1, 51, 78, 52]. The values for the polarizability tensor components are extracted

from experimental measurements of transition cross-sections and depolarization ra-

tios [80]. The expressions for polarizability tensor components for N2 used in this

work are given in Buldakov et al. [79]. The nuclear spin statistical weight for 14N2

in the electronic ground state is gs = 3 for odd J and gs = 6 for even J [1]. Thus

the odd J lines are half as strong as the even J lines for 14N2. For the rare nitrogen

isotopologue 15N14N, which constitutes 0.725 % of naturally occurring N2, the nuclear

spin statistical weight is gs = 6 for every J value because it is a heteronuclear di-

atomic molecule. The frequency of the molecular transition, ν̃k, corresponds to the

energy di�erence between the initial and �nal state of the molecule. For this work, the

diatomic molecule will be modeled as an anharmonic oscillator and non-rigid rotor

with the energy of a particular vibrational and rotational state calculated as

E(v, J) = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+ ωeye

(
v +

1

2

)3

+ ωeze

(
v +

1

2

)4

+

[
Be − αe

(
v +

1

2

)
+ γe

(
v +

1

2

)2
]
J (J + 1)−DeJ

2 (J + 1)2
(2.16)

where the molecular constants are listed in Table 2.3 [81, 82]. As described in [78], the

vibrational constants for 15N14N were calculated by scaling the vibrational constants

of 14N2. The scaling factor is ρ
n where ρ is the square root of the ratio of the reduced
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mass of 14N2 to the reduced mass of 15N14N and n is the order of the term associated

with the molecular constant [83].

Table 2.3: Molecular constants for nitrogen in cm−1 [81, 82].

14N2
15N14N

ωe 2358.57 2318.93

ωexe 14.324 13.847

ωeye −2.26× 10−3 −2.15× 10−3

ωeze −2.4× 10−4 −2.24× 10−4

Be 1.99824 1.93185

αe 1.7318× 10−2 1.6466× 10−2

γe −3.3× 10−3 −2.22× 10−5

De −5.71× 10−6 −5.35× 10−6

Equation 2.15 speci�es the integrated intensity of each ro-vibrational spon-

taneous Raman line, i.e. the area under the spectrally broadened lineshape. For

the experimental conditions in this work, Doppler broadening is negligible relative to

collision broadening, which is also referred to as pressure broadening. The experi-

mentally recorded lineshape function was taken to be a convolution of a Lorentzian

function and a trapezoidal function. The trapezoidal function represents one contri-

bution to line broadening due to the instrument. The Lorentzian lineshape function

represents the other instrument line broadening contribution, as well as the molecular

line broadening, which changes with gas density. This choice of lineshape function

was found to minimize systematic error between simulated and experimental spectra

[51, 78]. Because the convolution of two Lorentzian functions is another Lorentzian

whose halfwidths is the sum of the individual Lorentzian halfwidths, the Lorentzian
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function can be described by a single halfwidth parameter. The trapezoidal func-

tion is described by two parameters: the halfwidths of the trapezoid base and tip

respectively. Thus three parameters are required to de�ne the trapezoid-Lorentzian

lineshape function.

Using Equation 2.15, a high-�delity spontaneous Raman scattering simulation

code was developed at The University of Texas at Austin for ro-vibrational Stokes

scattering from nitrogen [51, 78]. This model can be �t to an experimental spectrum

using a Levenberg-Marquandt algorithm to minimize the square error, to obtain a

point measurement of the gas temperature. If thermal non-equilibrium is present,

this �tting technique can be used to extract independent rotational and vibrational

temperatures from a single spontaneous Raman measurement recorded at high dis-

persion [84, 75].

Implementing this technique in high pressure combustion chambers such as

optically accessible gas turbine engine test rigs could provide accurate nonintrusive,

temperature measurements with high spatial resolution in realistic gas turbine oper-

ating conditions. However, the high pressure environment complicates spontaneous

Raman thermometry because as the gas density increases, the collision frequency in-

creases, causing spectral lines to broaden and mix [50]. Line mixing can change the

observed relative peak intensity of individual rotation or vibration-rotation transi-

tions. Because thermometry is accomplished by relating relative intensities to rel-

ative state populations through a Boltzmann factor, spectral models that neglect

line mixing could lead to erroneous temperature inference when line mixing e�ects

are signi�cant. The accuracy of spontaneous Raman thermometry depends on the

�delity of Raman simulations. Therefore, it is imperative that these density e�ects
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be carefully characterized before utilizing spontaneous Raman thermometry in high

pressure gases. The next section provides some general background theory on line

mixing and the Modi�ed Exponential Gap (MEG) line mixing model. Hartmann,

Boulet, and Robert's book [50] is an excellent reference for in-depth discussions of

line mixing theory. The literature cited within that book and in this dissertation

provides additional information.

2.1 Line Mixing

At low enough pressures, the spectral lines are isolated and the pressure broad-

ening of individual spectral lines does not a�ect their integrated intensities even if

they are partially overlapped in the wings of the lines. Line mixing at high pressures

invariably occurs when the lines are strongly overlapped, but the mixing e�ect is

not merely the e�ect of overlap, but is a transfer of integrated intensity between the

spectral features that are associated with individual rotation or vibration-rotation

transitions at low pressure. As described by Gordon [73] the spectrum can no longer

be interpreted as the sum of individual contributions from lines associated with dis-

tinct vibration-rotation transitions and must be computed by diagonalizing a matrix

whose elements re�ect the collisional coupling of the ro-vibrational states.

As mentioned above, the isotropic component of ro-vibrational spontaneous

Raman scattering can be treated separately from the anisotropic component. For

ro-vibrational scattering, the Q branch lines for a particular vibrational transition

are closely spaced and only slightly o�set from one another due to rotation-vibration

interaction. Therefore, the Q branch lines are strongly overlapped and line mixing

e�ects are signi�cant within the isotropic component of the Q branch. The primary
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contribution to line mixing e�ects in the Q branch arises from vibrationally elastic

and rotationally inelastic collisions; vibrational dephasing e�ects are assumed to be

small [61].

The impact approximation assumes that all times of interest are much greater

than the collision duration [50], which implicitly assumes that velocities in successive

collisions are treated as uncorrelated [73]. Gordon [73] provides criteria to assess the

validity of the impact approximation. It is valid for the conditions studied in this

work. When the impact approximation holds, the spectral intensity as a function of

frequency, I (ω), can be related to collisions through a general expression [73, 61, 85,

86] as

I (ω) = Im
[
cd · (−ωI+ ω0 + iΠ)−1 ·P · d

]
(2.17)

where d is a vector of transition dipole amplitudes, P is a diagonal matrix of popula-

tions, Π is a matrix of collisional transfer rates, ω0 is a diagonal matrix of transition

frequencies, I is the identity matrix, and c is a constant. Equation 2.17 has the same

general form for many types of molecular spectra [85] including absorption [73, 86],

inverse Raman [61], and CARS [65, 67], and Equation 2.17 is also applicable to spon-

taneous Raman. The matrix Π describes the transfer of intensity between spectral

lines due to collisions. The elements of this matrix are determined by the rate of

collisions, i.e. the gas density, and the cross section for a change of rotational state

[86], so matrix Π can be expressed as

Π = ρ 〈v · σ〉 (2.18)

where v in this equation is the relative speed in the collision, ρ is the gas density, σ is

a matrix of cross sections, and the brackets in this equation represent averaging over
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a relative speed distribution function [86, 61]. The matrix of cross sections for the

isotropic component of the Q branch of Raman scattering is given by [73] as

〈v · σ〉 =

∫ ∞
0

2πb db 〈v [δfi − Pfi exp (−iηvib) ]〉 (2.19)

where v in this equation is the relative speed in the collision, b is the impact parameter,

Pfi is the probability that a collision transfers the rotation frequency from line i to

line f , ηvib is the vibrational phase shift in the collision, and the brackets represent

averaging over a relative speed distribution function. Equation 2.19 simpli�es when

vibrational dephasing is negligible (ηvib → 0).

A Raman spectrum with line mixing can be calculated by following the ap-

proach described by Koszykowski et al. [65] for CARS spectra. The G matrix can be

de�ned as

G (ω) = −ωI+ ω0 + iρ 〈v · σ〉 (2.20)

which can be used to rewrite Equation 2.17 as

I (ω) = Im
[
cd ·G (ω)−1 ·P · d

]
. (2.21)

The imaginary part of the diagonal elements of the G matrix represents the half-

widths of isolated lines, i.e. without line mixing. The o�-diagonal elements represent

the collisional coupling of ro-vibrational states. At low pressures, only the diagonal

elements of the G matrix contribute, and I (ω) reduces to a sum of isolated Lorentzian

lines [65]. Equation 2.17 requires an inversion of the G matrix for every frequency

included in the simulation. This costly computation can be avoided using a diago-

nalization approach which requires only one matrix inversion, as �rst described by

Gordon and McGinnis [85] and detailed by Koszykowski et al. [65]. First, a matrix
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K is de�ned to be a subset of the G matrix as

K = G (ω) + ωI = ω0 + iρ 〈v · σ〉 (2.22)

so that the matrix K is constant for all simulation frequencies. Let λn be the nth

eigenvalue of matrixK andA be the matrix of the eigenvectors ofK. The eigenvector

matrix A can be used to diagonalize K. Through substitution and rearrangement of

terms, this diagonalization can be used to rewrite Equation 2.21 as

I (ω) = c
∑
n

Im

[[
(dA) ·

(
A−1Pd

)]
n

−ω + λn

]
(2.23)

which calculates the mixed ro-vibrational Raman spectrum for a single vibrational

transition. To include multiple vibrational transitions in a simulated ro-vibrational

spectrum, Equation 2.23 can be recalculated and summed for each vibrational level.

Note that because the matrix K is a function of the transition frequencies, ω0, the

eigenvector matrix, A, and the eigenvalues, λn, must be recalculated for every vibra-

tional level. Appendix A contains a detailed derivation of Equation 2.23.

The Modi�ed Exponential Gap (MEG) model can be used to calculate the o�-

diagonal elements of the G matrix, and this model was found to show good agreement

with experimental inverse Raman spectra [61]. The expression for the o�-diagonal

elements of the collisional matrix for the J-increasing transitions (i < j) is given by

Koszykowski et al. [61] as

ρ 〈v · σ〉ji = γji = αP

(
1 + 1.5Ei/kTδ

1 + 1.5Ei/kT

)
exp

(
−β∆Eij
kT

)
(2.24)

where α, β, and δ in Equation 2.24 are parameters, P is the pressure, Ei is the

initial state rotational energy, ∆Eij is the di�erence in energy between the initial

and �nal states, and k is the Boltzmann constant. To extend the MEG model to
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high temperatures, a preexponential factor for the o�-diagonal G matrix elements

was proposed �rst by Rahn and Palmer [66] and then improved to be more suitable

for temperatures above 1500 K by Farrow et al. [67]. This preexponential factor is

given by [67] as

f (T ) =
1− exp (−m)

1− exp (−mT/T0)

(
T0
T

)0.5

(2.25)

where m is a parameter and T0 is a reference temperature of T0 = 295 K [67]. Equa-

tion 2.24 is multiplied by the preexponential factor given by Equation 2.25 to obtain

the o�-diagonal elements for the J-increasing transitions. The o�-diagonal G matrix

elements for the J-decreasing transitions are calculated from detailed balance, given

by [61] as

γij =
2Ji + 1

2Jj + 1
γji exp

(
∆Eij
kT

)
(2.26)

where Ji is the rotational quantum number of state i and γji is given by Equation 2.24

multiplied by the the preexponential factor given by Equation 2.25. Because 14N2

is a homonuclear diatomic, spin symmetry restrictions prohibit transitions between

even and odd rotational states. Therefore, the o�-diagonal elements of the G matrix

corresponding to transitions between even and odd rotational states must be set to

zero for 14N2. The nitrogen isotopologue 15N14N does not have these spin symmetry

restrictions because it is a heteronuclear diatomic.

With the matrix K de�ned by Equation 2.22, the diagonal elements of K are

given by [65] as

Kjj = (ω0)jj − i
Γj
2

(2.27)

where Γj is the collision broadening portion of the linewidth (FWHM). When vi-

brational dephasing is negligible, the collision broadening portion of the linewidth is
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determined by the total rate of perturbing collisions [66, 61], so

Γj
2

=
∑
i 6=j

γij . (2.28)

The high-temperature MEG model parameters used for all MEG model calculations

in this dissertation are them-MEG parameters found in Lavorel et al. [68]. The values

for these parameters are listed in Table 2.4. With these parameters, the above MEG

model equations, and the calculation method given by Equation 2.23, the isotropic

component of the ro-vibrational spontaneous Raman spectrum can be simulated with

line mixing.

Table 2.4: MEG model parameters from Lavorel et al. [68].

α (cm−1 atm−1) β δ m

26.46× 10−3 1.850 1.199 0.1381

The relaxation cross sections for isotropic Raman scattering, given by Equa-

tion 2.19, are not the same as the cross sections for anisotropic Raman scattering

[72, 73]. Line mixing causes anisotropic lines to exchange intensity among all three

branches of the ro-vibrational anisotropic Raman spectrum (O, Q, and S). There-

fore, equations analogous to Equation 2.19 are required to calculate the cross sections

for anisotropic scattering, including cross sections for mixing within each branch of

the anisotropic spectrum and mixing between the branches. The integrands of these

equations for cross sections for the anisotropic spectrum are provided by Gordon [73]

and listed in Table 2.5. Each column in Table 2.5 lists the integrands for the cross

sections describing the mixing for that column's branch with the three anisotropic

branches (the rows of Table 2.5).
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Table 2.5: Integrands for matrix cross sections for anisotropic Raman scattering [73].

O Q S
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α
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)
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6
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α
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)
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Q −
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6
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S −Pfi sin4
(
α
2

)
e2iη −

√
6
4
Pfi sin

2 (α) e2iη δfi − Pfi cos4
(
α
2

)
e2iη

In Table 2.5, α represents the rotational reorientation induced by collisions and

η represents rotational dephasing. Neither of these e�ects can be reasonably neglected

and they are both dependent on the individual rotational states. Therefore, modeling

line mixing in the anisotropic spectrum is substantially more challenging than for the

isotropic spectrum. Table 2.5 shows that line mixing e�ects in the anisotropic compo-

nent are not identical to line mixing e�ects in the isotropic component, even in the Q

branch. However, it is common to make this simplifying assumption when simulating

Raman spectra with line mixing. Ultimately, this assumption is highly unlikely to

impact CARS thermometry because the anisotropic contribution to CARS spectra is

signi�cantly weaker than the anisotropic contribution to spontaneous Raman spectra.

This is because the CARS matrix elements scale as the square of the susceptibility,

so if the anisotropic contribution to the spontaneous Raman signal is 1 %, then the

anisotropic contribution to the CARS signal is 0.01 %.

The signi�cance of line mixing e�ects in the anisotropic component of ro-

vibrational spontaneous Raman scattering is not well understood. Ignoring or mis-

representing mixing e�ects in the anisotropic spectrum could lead to erroneous tem-

perature measurements from spontaneous Raman thermometry in high pressure gases.

We believe that �tting high-�delity spontaneous Raman simulations to the entire ro-

vibrational spectrum improves the accuracy of the measurement. However, this will
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not be true for measurements in high pressure gases if the Raman simulations do not

capture the collision-induced e�ects of the entire ro-vibrational spectrum. Therefore,

this work studies the in�uence of high pressure on ro-vibrational spontaneous Raman

scattering, focusing in particular on the anisotropic component and the impact on

the accuracy of spontaneous Raman thermometry in high pressure gases.
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Chapter 3

Elevated Pressure Thermometry

This chapter presents experimental measurements of temperature in elevated

pressure using spontaneous Raman scattering from nitrogen. Accurate temperature

measurements of temperature pro�les, particularly in near-wall regions, provide valu-

able insights for the gas turbine engine design process. Two advantages of spontaneous

Raman thermometry relevant to this application are good spatial resolution and ac-

curacy at high temperatures [17]. In these experiments, these advantages are demon-

strated by making time-averaged measurements of a temperature pro�le through the

�ame front of a partially premixed �ame using spontaneous Raman scattering. These

temperature measurements were achieved despite interference from stray laser re-

�ections in an elevated pressure combustion chamber. This achievement shows that

spontaneous Raman thermometry is possible in a near-wall region, where interference

from laser re�ections is expected to be signi�cant. Additionally, the accuracy of these

temperature measurements was assessed by using spontaneous Raman scattering to

measure the temperature above a burner with reference temperatures established by

coherent anti-Stokes Raman scattering (CARS). Lastly, the experiments presented

Portions of this chapter previously appeared in the following publication:

Haller, T. W., Reising, H. H., Clemens, N. T., and Varghese, P. L., �High-pressure sponta-

neous Raman scattering based temperature measurements,� 33rd AIAA Aerodynamic Mea-

surement Technology and Ground Testing Conference, ser. 2017-3898, 2017. doi: 10.2514/

6.2017-3898.

The dissertator contributed to this publication through design and conduct of the research, data

analysis and interpretation, and writing of the manuscript.
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in this chapter also provide a preliminary investigation into a primary complication

that arises when considering the implementation of spontaneous Raman thermometry

in a gas turbine engine: the high pressure environment. The ro-vibrational sponta-

neous Raman spectrum of nitrogen was recorded at pressures up to 5 atm. While

this elevated pressure does not cover the full range of pressures found in gas turbine

engines, these experiments provide an initial assessment of the feasibility of using

spontaneous Raman scattering to measure temperature pro�les in gas turbine engine

environments. The results in this chapter were presented in [87].

3.1 Experimental Setup

These experiments were conducted in the elevated pressure combustion facility

on the Pickle Research Campus at The University of Texas at Austin [88]. This

facility was designed to operate at pressures up to 10 atm, but at the time of these

experiments, this facility had not yet been hydrostatically tested over the full pressure

range. Hence, the maximum pressure available for these experiments was limited to

5 atm. Figure 3.1 shows a photograph of the combustion facility and the Raman

scattering experimental setup. The test section has three rectangular windows for

optical access. The two large windows (15.2 cm × 6.1 cm) are both oriented at an

angle of 70° with respect to the smaller window (10.1 cm × 3.8 cm). The windows

are made of fused silica glass. The interior diameter of the test section is 20.3 cm. A

continuous �ow of cooling air is supplied by a large external, medium pressure gas tank

with a maximum pressure of 10 atm. The cooling air co-�ow enters the cylindrical

combustion chamber through the bottom of the chamber, �owing upward and around

any burner apparatus placed in the center of the combustion chamber, protecting

the windows from hot combustion products. This elevated combustion chamber is
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designed for a maximum thermal heating power of 300 kW [88]. For safety purposes,

all experiments conducted in this facility were operated remotely and monitored with

security cameras.

Figure 3.1: Photograph of the elevated pressure combustion facility and the Raman
scattering experimental setup.

The laser source for the spontaneous Raman scattering measurements was a

frequency doubled Nd:YLF laser (527 nm) with a pulse-energy of 12 mJ and a rep-

etition rate of 5 kHz. A high-repetition rate laser is well-suited for time-averaged

measurements because it maximizes the average power output. The low pulse-energy

also signi�cantly reduces the risk of window damage. For these experiments, the
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laser was passed into and out of the test section through the two larger windows,

and the Raman signal was collected in a side-scattering con�guration through the

small window. These windows do not have anti-re�ection coatings. Because these

windows are not parallel to each other, the re�ections of the laser from the interior

surfaces of the windows did not exit the combustion chamber through the opposite

window. Instead, these laser re�ections were directed into the stainless steel walls of

the combustion chamber, resulting in specular and di�use re�ections that illuminated

the entire chamber with laser light. The re�ections from the laser can be partially

seen in Figure 3.2, which shows a photograph of the laser in the combustion chamber.

Figure 3.2: Photograph of the laser in the elevated pressure combustion chamber.

This re�ected laser light had to be removed with a �lter. A background sub-

traction approach can also be utilized to remove the re�ected laser light from the

Raman spectra, but this approach requires removing the nitrogen from the chamber

to obtain a background image of the re�ected laser light without the Raman signal.

Removing the nitrogen for a background image was not possible in this combustion

chamber because it was designed to be �lled and pressurized with air from an in-house
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compressor. Regardless, a similar challenge would likely be present in a realistic gas

turbine engine test rig, where interference from laser re�ections may be unavoidable

due to limited optical access. So performing spontaneous Raman thermometry exper-

iments in this combustion chamber presented similar challenges to those that might

be found in a gas turbine engine application.

The laser was focused into the combustion chamber with a plano-convex lens

with a focal length of 50 cm. The focusing lens was positioned so that the horizontal

location of the laser focus approximately aligned with the vertical centerline of the

small window. The Raman signal was collected through the small window with a

62 mm diameter Nikon lens, as seen in Figure 3.1. The collection lens was positioned

so that the collection volume was centered on the focus of the laser. Using the small

window to collect the spontaneous Raman signal had the disadvantage of reducing

the maximum available collection solid angle. However, collecting the Raman signal

perpendicular to the laser beam maximizes the strength of the side-scattered Raman

signal [52]. This con�guration also improves the spatial resolution by minimizing the

collection volume, which is crucial for measuring a steep temperature gradient.

The collection lens focused the Raman signal into an f/1.8 imaging spectro-

graph from Kaiser Optical Systems, equipped with a PI-MAX 3 ICCD camera from

Princeton Instruments that has 26µm pixels. Figure 3.3 shows a detailed schematic

of the imaging spectrograph operating in the side-scattering con�guration. This spec-

trograph contains a �lter section which uses two lenses and a holographic notch �lter

to remove light at the incident laser wavelength, which is re�ected back out of the

spectrograph. For all of the experiments presented in this chapter, the notch �lter

alone was su�cient to prevent the stray laser light from overwhelming the Raman
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Figure 3.3: Diagram of the f/1.8 imaging spectrograph from Kaiser Optical Systems
collecting spontaneous Raman signal in a side-scattering con�guration.

signal; no additional �lers were needed. The spectrograph was equipped with a high

dispersion holographic transmission grating (HDG-607). For all of the experiments

presented in this chapter, the slit size was 100µm.

The burner for these experiments consisted of a 13 mm diameter stainless steel

tube. This simple burner design was chosen to produce a �ame with a strong radial

temperature gradient. The experimental objective was to measure this temperature

gradient. A supply of methane, hydrogen, and air was fed into the burner with the

�owrates of each gas controlled by individual mass �ow controllers. The �ow from

this burner exhausted into an air co�ow, resulting in a partially premixed �ame upon

ignition. Figure 3.4 shows a photograph of the �ame in the combustion chamber at

a pressure of 1 atm. The laser was located 2 cm above the burner tube exit.

The burner was mounted on a translation stage which allowed for translation
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Figure 3.4: Photograph of the �ame in the combustion chamber at 1 atm.

of the burner along the axis of the laser beam. This translation stage was controlled

remotely with software. A �ashback arrestor was placed in the gas supply line just

upstream of the burner, and an electric surface igniter was installed to ignite the

�ame. Figure 3.5a shows a schematic illustrating the translation of the burner and

the measurement region. Figure 3.5b shows a photograph of the burner, translation

stage, and surface igniter. The entire assembly was mounted to an aluminum sled

that was slid into the combustion chamber.

3.2 Elevated Pressure Results

To examine the e�ects of elevated pressure ro-vibrational Stokes spontaneous

Raman scattering from nitrogen, spectra were recorded in the combustion chamber at

1 atm and 5 atm, at room temperature and �ame temperature. The fuel mixture for

the �ame temperature spectra was 70 % CH4 and 30 % H2 by volume. The equivalence

ratio was 1.8 relative to the compressed air �ow rate. The collection time for the

room temperature spectra was 2 min. The collection time for the �ame temperature

spectrum at 1 atm was 6 min, and it was 2 min at 5 atm. The longer collection time for

33



(a) (b)

Figure 3.5: (a) Schematic showing the burner translation direction and measurement
region, and (b) photographs of the burner assembly

the 1 atm, �ame temperature spectrum was necessary due to the lower number density

of nitrogen at this condition. These collection times were chosen so that resulting

spectra are nearly noise-free and illustrate the details of the weaker rotational lines

that make up the O and S branches.

Figure 3.6 shows a comparison for spectra recorded at 1 atm and 5 atm at room

temperature. The Q branch is very similar at 1 atm and 5 atm, as seen in Figure 3.6a.

The vertical scale is magni�ed by a factor of 100 in Figure 3.6b to show the rotational

structure of the O and S branches. There are slight di�erences between the O and

S branches of the 1 atm and 5 atm spectra in Figure 3.6b. The peaks of the rota-

tional lines of the 1 atm spectrum have a slightly higher intensity than the rotational

peaks of the 5 atm spectrum. This small discrepancy can be attributed to pressure

broadening in the O and S branches. As the spectral lines broaden with increasing
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pressure, the peak intensity of the lines will drop. Although the di�erences in the

spectra in Figure 3.6b are slight, this signature of pressure broadening is visible for

every rotational line. From Figure 3.6b, we can conclude that pressure broadening

is detectable in the O and S branches at 5 atm and room temperature despite sub-

stantial instrument broadening. This conclusion is important because the broadening

is expected to linearly increase with increasing pressure [50]. Gas turbine engines

operate at pressures higher than 5 atm, and because thrust speci�c fuel consumption

decreases with increasing compressor pressure ratio [3], there is always motivation to

design gas turbine engines to run at increased pressure. Therefore, pressure broad-

ening is likely to have a signi�cant e�ect on the O and S branches at gas turbine

operating conditions.

Figure 3.7 shows a comparison for spectra recorded at 1 atm and 5 atm at �ame

temperature. The higher vibrational states are populated at �ame temperature, which

is evident in Figure 3.7a by the multiple hot band peaks present in the Q branch.

Additionally, the Raman signal from CO can be seen in Figure 3.7a. In Figure 3.7b,

the S branch lines of the 5 atm spectrum are very similar to the S branch lines of

the 1 atm spectrum. Because pressure broadening scales with density, the broadening

at �ame temperature will be less than at room temperature for a given pressure.

This explains why Figure 3.7b shows no discernable evidence of pressure broadening

e�ects between the 1 atm and 5 atm spectra. Over this range of densities and with

this spectral resolution, the linewidths of the anisotropic O and S branch lines are

dominated by the instrument lineshape function, which of course does not depend

on density. So any pressure broadening e�ects are not detectable at 5 atm and �ame

temperature with this spectral resolution.
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(a)

(b)

Figure 3.6: Comparison between nitrogen Stokes Raman spectra at 1 atm and 5 atm
at room temperature. (a) Recorded spectra in the region of the Q branch scaled to
unit maximum intensity. (b) Spectra over an extended frequency range with vertical
scale magni�ed to show the rotational structure from O and S branches of the 14N2

isotopologue and the Q branch of the 15N14N isotopologue.

In contrast, Figure 3.7a does show discernable di�erences in the Q branch

between the 1 atm and 5 atm spectra. The peaks of the higher vibrational modes

appear lower relative to the fundamental vibrational peak (vi = 0) for the 1 atm

spectrum compared to the 5 atm. Note that the spectra in Figure 3.7 are both scaled

to unit maximum intensity. The di�erences in the Q branch are not due to density

e�ects; they are due to temperature di�erences. The gas temperature was not the

same for these two spectra, which means that the higher vibrational modes were
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(a)

(b)

Figure 3.7: Comparison between nitrogen Stokes Raman spectra at 1 atm and 5 atm at
�ame temperature. (a) Recorded spectra scaled to unit maximum intensity showing
the multiple vibrational modes populated in the Q branch at �ame temperature as
well as the Raman signal from CO. (b) Spectra in the region of the S branch with
vertical scale magni�ed to show the rotational structure of 14N2.

less populated for the lower temperature 1 atm spectrum, and therefore the peaks of

the Q branch are lower relative to the fundamental vibrational peak for the 1 atm

spectrum. This temperature di�erence can be con�rmed by �tting these spectra for

temperature. The Raman simulation does not include the contribution of CO to the

spectrum, so the data points in the region of the CO Raman signal were removed

from the experimental spectra before �tting for temperature. Figures 3.8 and 3.9

show temperature �ts to the 1 atm and 5 atm spectrum respectively. The inferred

temperature for the 1 atm spectrum was 1850 K, and the inferred temperature for the
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Figure 3.8: Temperature �t to nitrogen Raman spectrum recorded at 1 atm, resulting
in an inferred temperature of 1850 K. The right panel shows a magni�ed vertical scale
to show the rotational structure of 14N2.

5 atm spectrum was 2008 K. While the adiabatic �ame temperature does vary with

pressure, this alone does not fully explain this temperature discrepancy because the

adiabatic �ame temperature at 1 atm and 5 atm is 2142 K and 2156 K respectively.

This temperature discrepancy is likely caused by changes to the �ame shape with the

increased pressure, resulting in a measurement at a di�erent location relative to the

�ame front for measurements at a �xed spatial location.

Figures 3.8 and 3.9 show good temperature �ts to the 1 atm and 5 atm spectra.

In both cases, there are no systematic deviations in the residuals, which indicates that

the model simulates the details of the spontaneous Raman spectrum well for these

conditions. The model used for these temperature �ts uses a trapezoid-Lorentzian

lineshape function, as described in [51]. The Lorentzian width is the same for ev-

ery line. This assumption is acceptable for these experiments because the lineshape

function is dominated by the instrument broadening to such an extent that the pres-
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Figure 3.9: Temperature �t to nitrogen Raman spectrum recorded at 5 atm, resulting
in an inferred temperature of 2008 K. The right panel shows a magni�ed vertical scale
to show the rotational structure of 14N2.

sure broadening, which does have a rotational-number dependence, is not detectable.

Figure 3.6b does indicate that pressure broadening is barely detectable at 5 atm and

room temperature, but the broadening e�ects appear to be minimal, and hence are

not likely to signi�cantly a�ect temperature �ts at these conditions. At 5 atm and

�ame temperatures, the density is low enough that the instrument linewidth domi-

nates the measured lineshape. Because the collision-induced e�ects, such as pressure

broadening and line mixing, do not have a signi�cant in�uence on the linewidths over

the pressure range of 1 atm to 5 atm, the trapezoidal-Lorentzian lineshape model can

be used for temperature �ts to spontaneous Raman spectra recorded in this range of

pressures.
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3.3 Flame Front Temperature Pro�le

To demonstrate the feasibility of using spontaneous Raman scattering to probe

a temperature gradient, the burner was translated along the beam path while keeping

the Raman collection optics �xed. Figure 3.5 shows a schematic and photograph il-

lustrating the burner setup, translation behavior, and the scanned region of the �ame.

Spontaneous Raman spectra were recorded every 0.5 mm through the �ame front. For

these measurements, the spatial resolution along the beam path was 0.2 mm. Spectra

were recorded through the �ame front at three chamber pressures: 1 atm, 3 atm, and

5 atm. At each measurement location, the Raman signal was integrated for a total

of 600 000, 400 000, and 200 000 laser pulses for the 1 atm, 3 atm, and 5 atm experi-

ments respectively. With a laser repetition rate of 5 kHz, this equates to collection

times of 120 s, 80 s, and 40 s (total laser �uence of 7.2 kJ, 4.8 kJ, and 2.5 kJ) for the

1 atm, 3 atm, and 5 atm experiments respectively. The longer collection times were

necessary at the lower pressures due to the reduced number density of nitrogen in the

probe volume. At each measurement location, the Raman signal was integrated on

chip until the intensity count approached the maximum value that can be stored on

the chip, and then the signal was read o� the chip and integrated in software. There

were 60 readouts per measurement location for the 1 atm experiment and 80 readouts

per measurement location for both the 3 atm and 5 atm experiments. Three runs of

the experiment were conducted at 5 atm and 1 run each was conducted for the 1 atm

and 3 atm conditions.

The recorded spontaneous Raman spectra were all �t for temperature. Fig-

ure 3.10 plots the �tted temperatures versus position for every experiment. Error

bars of ±15 K are included in Figure 3.10, which is the estimated uncertainty for
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these temperature measurements. The determination of this uncertainty is discussed

in detail in the next section. Due to time constraints and the di�culty accessing

the interior of the elevated pressure combustion chamber, the position values in Fig-

ure 3.10 do not represent a distance relative to a speci�c burner axis. However, the

objective of these experiments was not to study this speci�c �ame and burner. In-

stead, the objective was to demonstrate that spontaneous Raman scattering can be

used to measure a steep temperature gradient. The temperature pro�les shown in

Figure 3.10 illustrate that this objective was accomplished.

Figure 3.10: Scanned temperature pro�les at three pressures: 1 atm, 3 atm, and 5 atm

The steepest temperature gradients occurred for the 5 atm experiments, with

a measured gradient of approximately 800 K mm−1 through the �ame front. For all

three pressures the peak temperature was below the adiabatic �ame temperature,

which has a slight pressure dependence. The temperatures from the three runs with

a chamber pressure of 5 atm show good agreement with each other, which is expected

because the experimental conditions were identical for these three runs. The mea-
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sured temperatures on both sides of the �ame front for the 3 atm and 5 atm chamber

pressures were approximately ambient room temperature. However, for the 1 atm

case the temperature was about 200 K higher. This may be because the shape and

size of the �ame was not identical for the three chamber pressures, but the position

of the laser relative to the burner was the same for all of these experiments. Hence

the position of the temperature measurements relative to the reaction zone was not

the same for the three chamber pressures.

These experiments have demonstrated that spontaneous Raman thermometry

can measure the steep temperature gradient of a �ame front in an enclosed, ele-

vated pressure combustion chamber with signi�cant laser re�ections. Resolving steep

temperature gradients would likely be an important measurement objective of spon-

taneous Raman thermometry in a gas turbine engine application. These experiments

have shown that using spontaneous Raman scattering to measure temperature in a

gas turbine engine test rig is at least possible. However, there are several challenges

associated with a gas turbine engine application for spontaneous Raman thermome-

try that have not been investigated by the experiments in this chapter. First, these

are time-averaged measurements. Time-resolved measurements would likely be more

useful for the design processes of a gas turbine engine. A laser with high energy per

pulse can be implemented to achieve single-shot spontaneous Raman temperature

measurements [53, 54]. A high energy laser increases the risk of laser damage to

the windows, but this risk could be mitigated with a temporal pulse-stretcher [52].

Second, although these experiments were conducted in the presence of strong inter-

ference from re�ected laser light, this is not the same as measuring temperature in a

near-wall region. Also, if optical access was limited to just one window, then there

would be signi�cantly more laser interference because the laser would not be able to
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exit the chamber. If laser interference overwhelmed the spontaneous Raman signal,

additional �lters could be used to isolate the Raman signal from the laser light.

Lastly, these experiments were conducted over only a modest range of pressures

where the single Lorentzian lineshape model can still represent the experimental spec-

tra well. At 5 atm and room temperature, pressure broadening was barely detectable

at the experimental spectral resolution. Because gas turbine engines run at much

higher pressures, the in�uence of collision-induced e�ects including pressure broaden-

ing and line mixing on the spontaneous Raman spectrum is expected to be signi�cant

[50]. Additionally, if the instrument linewidth was narrower than for these experi-

ments, the single Lorentzian lineshape model may no longer be su�cient. Therefore,

further experiments are required to investigate the collision-induced e�ects on the

ro-vibrational spontaneous Raman scattering from nitrogen over the entire range of

pressures expected to be encountered in a gas turbine engine. This is the motivation

for the experiments presented in the next chapter.

3.4 Temperature Measurement Veri�cation

Before proceeding to high pressure experiments, investigating the accuracy and

precision of spontaneous Raman thermometry at lower pressures will be bene�cial for

assessing the strengths and weaknesses of this technique. The approach to verify these

temperature measurements was to use spontaneous Raman scattering to measure

temperature on a well-characterized burner. By comparing the spontaneous Raman

temperature measurements to reference temperatures for this burner, we can gain

insight into the accuracy and precision of this technique.
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3.4.1 Experimental Setup

The well-characterized burner consisted of an inner region through which a

mixture of CH4 and air �owed, surrounded by an outer co�ow region through which N2

�owed. Each gas was controlled by an individual mass �ow controller. The laser and

optics used for these spontaneous Raman scattering measurements were the same as

in the experiments discussed above. A detailed description of the laser, spectrograph,

and side-scattering con�guration can be found in Section 3.1. Figure 3.11 shows a

photograph of the veri�cation burner with a lean �ame and the Raman scattering

experiment in place.

Temperature measurements were recorded on the burner centerline, 30 mm

from the burner surface at 9 di�erent equivalence ratios. Table 3.1 shows the methane

and air �owrates of the 9 conditions along with the corresponding equivalence ratios.

Each gas was supplied from a gas cylinder at room temperature. The �owrates were

controlled using 100 slpm mass �ow controllers. The mass �ow controllers have an

uncertainty of 0.8 % of the reading plus 0.2 % of the full scale. The uncertainties in the

�owrates are included in Table 3.1. The corresponding uncertainties in the equivalence

ratio due to the uncertainties in the �owrates are also included in Table 3.1. Perfectly

premixed conditions were assumed for the equivalence ratio calculations.

Because the methane �owrate was small compared to the full scale of the mass

�ow controllers, the resulting uncertainty in the equivalence ratio was signi�cant. We

believe this uncertainty in setting the equivalence ratio of the �ame dominates the

overall uncertainty in the temperature measurement.
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Figure 3.11: Photograph of the veri�cation burner with a lean �ame and the setup
of the spontaneous Raman scattering experiment.
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Table 3.1: Summary of experimental conditions and calculated equivalence ratios.

Condition Air Flowrate
(slpm)

CH4 Flowrate
(slpm)

Equivalence
Ratio

1 45.0± 0.6 3.89± 0.23 0.820± 0.059

2 45.0± 0.6 4.12± 0.23 0.868± 0.061

3 45.0± 0.6 4.34± 0.23 0.914± 0.062

4 45.0± 0.6 4.57± 0.24 0.963± 0.062

5 45.0± 0.6 4.79± 0.24 1.009± 0.064

6 45.0± 0.6 5.12± 0.24 1.079± 0.065

7 45.0± 0.6 5.46± 0.24 1.150± 0.067

8 40.9± 0.5 5.16± 0.24 1.196± 0.072

9 28.5± 0.4 3.83± 0.23 1.274± 0.098

3.4.2 Temperature Measurement Results

Five spontaneous Raman spectra were recorded for every �ame condition, each

with a collection time of 60 s. The spontaneous Raman spectra were then �t for tem-

perature. Table 3.2 shows the mean temperature for each condition. The uncertainty

in the measured temperatures in Table 3.2 represents the precision uncertainty (95 %

con�dence) based on the 5 repeated runs for each �ame condition. Also included

in Table 3.2 is the reference temperature for each condition. The reference temper-

ature was established by N2 coherent anti-Stokes Raman scattering (CARS), using

methods described in Driscoll et al. [89]. From these CARS measurements, the tem-

perature was found to be 35 K below the adiabatic �ame temperature with an overall

uncertainty of ±30 K [16].

To further visualize the comparison between the spontaneous Raman scattering

measurements and the reference temperatures, the results in Table 3.2 are plotted in
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Table 3.2: Summary of temperature veri�cation experimental results.

Condition Equivalence
Ratio

Measured
Temperature

(K)

Reference
Temperature
(K) [16]

1 0.820± 0.059 2005± 11 1995± 30

2 0.868± 0.061 2058± 9 2062± 30

3 0.914± 0.062 2113± 7 2120± 30

4 0.963± 0.062 2161± 22 2169± 30

5 1.009± 0.064 2192± 13 2198± 30

6 1.079± 0.065 2177± 18 2192± 30

7 1.150± 0.067 2120± 13 2144± 30

8 1.196± 0.072 2081± 15 2109± 30

9 1.274± 0.098 2005± 16 2047± 30

Figure 3.12. The uncertainty in the temperature is plotted as vertical error bars

while the horizontal error bars represent the uncertainty in the equivalence ratios.

Cantera was used for the adiabatic �ame temperature calculations. All the data

presented in Table 3.2 and Figure 3.12 were recorded on the same day, minimizing

�uctuations in room temperature and humidity. The measured temperatures agree

with the reference temperatures to within the uncertainty for every equivalence ratio.

For the lean experimental conditions, the measured temperatures are closer to the

adiabatic temperature curve as compared to the rich experimental conditions, which

suggests that the true equivalence ratios for the spontaneous Raman measurements

were slightly higher than the intended run conditions.

From these results, we conclude that the spontaneous Raman scattering tem-

perature measurements technique has a precision of approximately ±15 K, which
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Figure 3.12: Temperature versus equivalence ratio for the veri�cation burner
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corresponds to ±0.7 % at 2100 K. We also conclude that the accuracy of this spon-

taneous Raman thermometry is at least as good as the accuracy of the N2 CARS

temperature measurement technique used to establish the reference temperatures on

this burner. The precision of the spontaneous Raman thermometry is most likely

dominated by the signal-to-noise ratio in the Raman spectra, which can be improved

by higher laser power, longer integration times, a multiple-pass cell, or higher number

density. Therefore the precision uncertainty of ±15 K could be improved if necessary,

but it may also worsen if the Raman signal was weaker in a particular application.

The accuracy of spontaneous Raman thermometry relies on the accuracy of the spon-

taneous Raman simulations because it is based on a direct �t of the model to the

experimental ro-vibrational Raman spectrum. We believe this technique is very ac-

curate because of the ability of the high-�delity Raman simulations to represent the

experimental spectra, at least at atmospheric pressure. However, as the collision-

induced e�ects of rotational-number dependent pressure broadening and line mixing

become more important with increasing gas density, the accuracy of this spontaneous

Raman thermometry could be questioned because these atmospheric pressure Raman

simulations do not include account for these collision-induced e�ects. Therefore, de-

tailed experiments studying the in�uence of these collision-induced e�ects on the N2

ro-vibrational spontaneous Raman spectrum are necessary to maintain the accuracy

of spontaneous Raman thermometry in high pressure gases.
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Chapter 4

Measurements of Pressure Broadening in the

Anisotropic Tensor Component

This chapter presents an investigation of high density e�ects on ro-vibrational

spontaneous Raman scattering, which must be understood to obtain accurate ther-

mometry in high pressure gases using high-�delity Raman simulations. Spontaneous

Raman spectra from room temperature nitrogen were recorded over the pressure

range of 10 atm to 70 atm for three gas compositions: pure nitrogen, air, and nitrogen

in argon. The analysis of these spectra focused on the anisotropic tensor compo-

nent of ro-vibrational spontaneous Raman scattering. The O and S branches consist

entirely of the anisotropic component, while the Q branch has an isotropic contribu-

tion and an anisotropic contribution [1]. High pressure models have been developed

for the isotropic component of Raman scattering, such as the Modi�ed Exponen-

tial Gap (MEG) line mixing model [61, 65]. This model uses parameters and line

broadening coe�cients that have been measured by experiments [66, 67, 68]. How-

ever, theory indicates that broadening coe�cients and relaxation cross-sections for

isotropic Raman scattering are di�erent than those for anisotropic Raman scattering

Portions of this chapter previously appeared in the following publication:

Haller, T. W. and Varghese, P. L., �Measurements of pressure broadening of N2 in the

anisotropic tensor component of spontaneous Raman spectra,� Combustion and Flame,

vol. 224, pp. 166�176, 2021. doi: 10.1016/j.combustflame.2020.11.045.

The dissertator contributed to this publication through design and conduct of the research, data

analysis and interpretation, and writing of the manuscript.
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[72, 73, 74]. Therefore, accurate spontaneous Raman thermometry in high pressure

gases requires experiments to record ro-vibrational spontaneous Raman spectra at

high enough densities and with su�cient spectral resolution to measure the pressure-

broadened linewidths of the anisotropic tensor component. Sections 4.2 and 4.3 pre-

viously appeared in [90].

4.1 Experimental Setup

A pressure chamber was constructed using a commercially available 2 inch

(approximately 51 mm) NPT pipe cross, with 3 sight windows each fused into an

NPT housing, and 1 NPT plug with 3 access ports drilled into it. The commercially

available sight windows were made of soda lime glass and had a clear aperture of

36 mm. The 3 sight windows provided good optical access into the chamber, allowing

for spontaneous Raman experiments in the forward, side, or back scattering con�g-

urations. The maximum operating pressure of the chamber was set to about 70 atm

(1 atm = 0.101 MPa), and the chamber was hydrostatically tested up to a pressure of

105 atm. The 3 access ports in the NPT plug were used for a gas �ll line, a gas exit

line, and a thermocouple port to measure the temperature of the gas at the center of

the pressure chamber. Figure 4.1 shows an isometric view of the pressure chamber.

For safety purposes, the pressure chamber needed to be operated remotely. To

do this, a gas transfer system was constructed that could �ll the chamber with gas

from two separate gas cylinders and empty the chamber without the user entering

the room. The two gas cylinders were necessary to create a gas mixture with known

mixture fractions in the pressure chamber. Figure 4.2 shows a diagram of this gas

transfer system.
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Figure 4.1: Isometric view of the pressure chamber.

Pneumatically activated valves were located immediately upstream and down-

stream of the pressure chamber. These control valves, operated by air supplied from

a gas cylinder, sealed the supply and exit lines of the pressure chamber. There was

no gas �ow through the chamber while collecting a spontaneous Raman spectrum,

which ensured there were no temperature gradients within the chamber. The pneu-

matic valve upstream of the pressure chamber was a normally-closed valve, and the

pneumatic valve downstream of the chamber was a normally-open valve. This con�g-

uration guaranteed that the pressure chamber would be safely emptied if there was

power failure in the system.

At high pressure di�erentials, such as those encountered in this gas transfer

system, solenoid valves leak gas a small amount of gas through them. Therefore, the

pneumatically activated valves were used to de�nitively seal the entry and exit of

the chamber during experiments. However, as seen in Figure 4.2, a solenoid valve

was included on the �ll line from the two gas cylinders used to �ll the chamber. If
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Figure 4.2: Piping and Instrumentation Diagram. 1, Gas Cylinder; 2, Needle Valve; 3,
Solenoid Control Valve; 4, Check Valve; 5, Pressure Chamber; 6, Pressure Transducer;
7, Pneumatic Control Valve; 8, Ball Valve; 9, Pressure Relief Valve.

the chamber was �lled with gas from just one cylinder, such as pure nitrogen or air,

then the solenoid valve remained open. If the chamber was �lled with a gas mixture,

the solenoid valves controlled which cylinder was �lling the chamber. A speci�c gas

mixture in the chamber was achieved by setting each gas bottle regulator to the

desired partial pressure for each gas component of the mixture. Then the chamber

was �lled by opening the solenoid valves one at a time. Once the chamber reached

the maximum pressure for the experiment, the upstream pneumatic valve was closed

which sealed the chamber and �xed the gas mixture fractions for the duration of the

experiment. To account for the small leak rate through the solenoids, a directional

check valve was installed close to the exit of each solenoid valve. This check valve

prevented gas in one �ll line from moving upstream through a solenoid valve and

contaminating the �ll line of the other gas. There would still be a small leak rate
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downstream through a solenoid valve if the partial pressures set by the gas bottle

regulators di�ered signi�cantly. However, this leak rate had little to no e�ect on the

overall mixture fraction in the chamber because pneumatic valve did not allow any

leaking downstream into the chamber.

Needle valves were installed upstream and downstream of the pressure chamber

to reduce the �owrate as the chamber was �lled and emptied. A pressure relief

valve was included in the system and set to a relief pressure of 86 atm, which is

above the maximum experiment pressure but below the hydrostatic test pressure.

Remote operation of the gas transfer system in Figure 4.2 was made possible by the

solenoid valves, which were controlled by electric current supplied by a switch box

in the adjacent control room. Solenoid valves controlled the �ll lines from the gas

cylinders, as discussed above, as well as the pilot lines to the pneumatically activated

valves. So the solenoids give the user complete control over the operation of the

pressure chamber. The Standard Operating Procedure for this High Pressure Raman

Spectroscopy Experiment is included in Appendix B.

The gas pressure in the pressure chamber was measured with an Omega PX309-

1KGV pressure transducer with an accuracy of ±0.25 % of the measurement value

(combined linearity, hysteresis, and repeatability). The temperature in the chamber

was measured with a Type-K thermocouple located near the center of the chamber.

Security cameras were used to visually monitor the experiment remotely.

The laser source for the spontaneous Raman scattering measurements was a

frequency doubled Nd:YAG laser (532 nm) with a pulse-energy of 6 mJ and a repe-

tition rate of 100 Hz. The spontaneous Raman signal was collected in the forward

scattering con�guration, as shown in Figure 4.3. Forward scattering is advantageous
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for this experiment because this con�guration maximizes the collection volume along

the beam path within the pressure chamber, which is at constant conditions. The

laser was focused into the pressure chamber using an AR coated, plano-convex lens

with a focal length of 300 mm. Two dichroic mirrors with a re�ectivity of 99.9 %

at 532 nm were used to �lter the laser beam after it passed through the chamber

while allowing the forward scattering Raman signal to be transmitted. The Raman

signal was collected using a 62 mm diameter Nikon lens, located downstream of the

dichroic mirrors. The collected light was focused into an f/1.8 imaging spectrograph

from Kaiser Optical Systems, equipped with an additional holographic notch �lter

to remove any remaining laser light, and a high dispersion holographic transmission

grating (HDG-607). The system has an average linear dispersion of 0.94 cm−1/pixel

when used in conjunction with a PI-MAX 3 ICCD camera from Princeton Instruments

that has 26µm pixels. The spectrometer entrance slit size for all experiments was

25µm to give the best spectral resolution (approximately 2.5 cm−1) of the recorded

Raman spectra.

4.2 Procedure

4.2.1 Experimental

The nitrogen ro-vibrational Stokes spontaneous Raman spectrum was recorded

over a range of pressures up to a maximum pressure of 70 atm for three gas mixtures:

100 % nitrogen, 100 % dry air, and 20 % nitrogen + 80 % argon. The gases, supplied

by Praxair, had a guaranteed purity of at least 99.998 % and a maximum water

concentration of 3 ppm by volume. The nitrogen-argon gas mixture was made by

combining nitrogen and argon in the pressure chamber at the appropriate partial

pressures. The spontaneous Raman spectra were all recorded in the same mixture
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Figure 4.3: Schematic diagram of the forward scattering experiment.

beginning with the highest pressure to ensure that the gas composition was identical

for all spectra. The gas temperature in the pressure chamber was 300± 1 K for all

experiments as recorded by a type K thermocouple inserted via a feed through with

the thermocouple junction located above the laser beam near the center of the cell.

For the pure nitrogen mixture, the Raman signal was collected from 36,000 laser

pulses (216 J total laser �uence), and for the other two mixtures, the Raman signal

was collected from 54,000 (324 J total laser �uence) laser pulses. The intensi�ed

camera was gated around each laser pulse, and the CCD was exposed to several

laser pulses, collecting the Raman signal on chip, before periodically reading out

the signal to integrate it in software. The number of laser pulses integrated on the

CCD before read out varied from 90 to 2700 pulses, depending on the signal-to-noise

ratio, which scales linearly with the partial pressure of nitrogen. Figure 4.4 shows
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a comparison between nitrogen Raman spectra collected in pure nitrogen at 10 atm

and 70 atm. Figure 4.4a shows that at 70 atm, the Q branch has narrowed slightly

due to line mixing (so-called pressure narrowing) e�ects [50, 58, 61, 68, 73] while

Figure 4.4b shows that the O and S branch lines show signi�cant pressure broadening.

The Q branch of the rare nitrogen isotopologue 15N14N, which constitutes 0.725 % of

naturally occurring N2, becomes more pronounced in the 70 atm spectrum because it

also narrows with increasing density while the nearby O branch lines broaden. Note

that line mixing or pressure narrowing e�ects are expected to be more signi�cant in

the spectrum of 15N14N because it is a heteronuclear diatomic and hence transitions

between even and odd rotational states are not prohibited by nuclear spin symmetry

restrictions. Figure 4.4 demonstrates that the isotropic component of the spectrum,

which dominates the Q branch, behaves di�erently than the anisotropic O and S

branches with increasing density.

4.2.2 Data Analysis

To analyze the line broadening of the anisotropic component of the spectrum

the O and S branches were �t for linewidths using a high-�delity spontaneous Ra-

man scattering simulation code developed at The University of Texas at Austin for

ro-vibrational Stokes scattering from nitrogen [51] and also brie�y described in Chap-

ter 2. The model does not include line mixing and systematic departures of the

observed spectra from the model are interpreted as indications of line mixing e�ects.

The lineshape function(Feff ) used when simulating and �tting observed spec-

tra was taken to be a convolution of an instrument lineshape function (Finst) and

a molecular line shape function (Fmol). The instrument lineshape was assumed to

be a convolution of a trapezoid function T (λ; b, t) and a Lorentzian L(λ; ∆λinst), so
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(a)

(b)

Figure 4.4: Comparison between nitrogen Raman spectra recorded in pure nitrogen
at 10 atm and 70.1 atm. (a) Recorded spectra in the Q branch region scaled to
unit maximum intensity. (b) Spectra over an extended frequency range with vertical
scale magni�ed 100 times to show rotational structure from O and S branches of the
dominant 14N2 isotopologue and the Q branch of the 15N14N isotopologue.
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Finst(λ; b, t,∆λinst) = T (λ; b, t) ∗ L(λ; ∆λinst). Here b, t correspond to the trapezoid

base and tip halfwidths respectively, and ∆λinst is the instrument Lorentz halfwidth

(half width at half maximum). Fits to a neon lamp spectrum were used to determine

the instrument lineshape parameters, assuming that the linewidths of the atomic

lines were negligible. The molecular lineshape was assumed to be a Lorentzian

because Doppler broadening at room temperature is negligible relative to collision

broadening for the pressure ranges studied experimentally (10 atm to 70 atm), i.e.

Fmol = L(λ; ∆λmol). Because the convolution process is associative, and the convo-

lution of two Lorentzians is another Lorentzian whose halfwidth is the sum of the

individual halfwidths, the e�ective recorded lineshape is simulated as

Feff (λ; b, t,∆λeff ) = Finst(λ; b, t,∆λinst)

= T (λ; b, t) ∗ L(λ; ∆λinst) ∗ L(λ; ∆λmol)

= T (λ; b, t) ∗ L(λ; ∆λinst + ∆λmol)

= T (λ; b, t) ∗ L(λ; ∆λeff )

(4.1)

Therefore, the recorded O and S branch lines were �t for the e�ective Lorentzian

halfwidth using a Levenberg-Marquardt algorithm to minimize the square error, using

the experimentally determined trapezoid parameters, and the known experimental

temperature. As noted above, this simulated spontaneous Raman spectral model does

not include the e�ects of line-mixing, which is certainly signi�cant for the isotropic

scattering component in the Q branch, and for which we see evidence in the recorded

spectra, even though the Q branch is not well resolved (Figure 4.4a). Therefore, the

experimental data was cropped to mask the Q branch and the �t was only conducted

on the portion of the spectrum where the purely anisotropic contribution dominates.

Thus only the O and S branches were �t for linewidths. We know on theoretical

grounds that the anisotropic lines are decoupled from the isotropic lines [73, 51].
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The mixing of the anisotropic spectrum simultaneously couples lines in the O, Q,

and S branches, but mixing in the anisotropic component was not included in the

model. Thus this model assumes that the anisotropic contribution to the Q branch

is also unmixed, i.e. it is computed as a superposition of unmixed lines. The validity

of this approximation is not directly tested because the portion of the spectrum in

the Q branch region is excluded during the �t. If this assumption is invalid we

might expect to �nd small systematic distortions in the �t residual which should

be the purely isotropic portion of the scattering signal. The distortion would be

small because the isotropic tensor scattering component is much stronger than the

anisotropic scattering.

Because the line broadening is dependent on rotational quantum number, each

line has a unique Lorentzian width. However, the linewidths of the branches can be

related to each other by assigning M values to the lines as follows [73]:

M = J − 1 (O branch),

M = J (Q branch),

M = J + 1 (S branch),

(4.2)

for all positive integer M values. So a unique Lorentzian width can be assigned for

every M value according to the formulation of Equation (4.2). For example, in our

�ts the width of the O(11) line is constrained to be the same at that of the S(9) line

(M = 10 for both).

4.3 Pressure Broadening in the Anisotropic Component

Figure 4.5 shows representative �ts to the O and S branches for Lorentzian

widths over the pressure range studied experimentally. Solid circles are the experi-
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mental data and the line is the corresponding �tted spectrum. The residual error in

the �t is plotted at the bottom of each �gure. Note that each spectrum is scaled as

in Figure 4.4, so that the peak of the strong isotropic Q branch is at unity. Thus

the peak intensity of the O and S branch transitions is less than 1 % of the peak

Raman signal intensity. The simulation model for the �ts in Figure 4.5 only contains

contributions from the anisotropic scattering.

Figure 4.6a shows the rms of the residual errors for the �ts to all pressures

and gas mixtures on the left axis. The right axis of Figure 4.6a shows the mean

signal-to-noise ratio for every pressure, calculated as the mean intensity of the O and

S branch data points used in the �t divided by the rms of the residual error. In

Figure 4.6b the same data are plotted as a function of nitrogen partial pressure. The

�ts match the experimental data well over the entire pressure range. If line mixing

e�ects were signi�cant at high pressures we would expect to see increasing residual

error at high pressure because of systematic departures of the experimental spectra

from the model spectrum that neglects line mixing. However Figure 4.6 shows that

the rms of the residual errors decreases continuously with increasing pressure for all

three mixtures indicating that the model neglecting line mixing e�ects is satisfactory

for the O and S branches for the entire pressure range investigated. The rms of the

residual errors in the �ts is less than 5 % of the mean O and S branch intensity for

the spectrum recorded in pure nitrogen at 22 atm and less than 3 % at 49 atm.

The mean signal-to-noise ratio is also plotted in Figure 4.6 for 3 mixtures. The

mean signal-to-noise (SNR) ratio is calculated as the mean intensity of the O and S

branch data points used in the �t divided by the rms of the residual errors. The rms

error decreases and the SNR increases with pressure because of the increased density of
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(a) 22.0 atm (b) 49.0 atm

(c) 70.1 atm

Figure 4.5: Fits to anisotropic component of nitrogen Raman spectra recorded in
100 % nitrogen.
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(a) (b)

Figure 4.6: (a) The root mean square of the residual errors for the �ts to anisotropic
Raman spectra of nitrogen (left axis) and the mean signal-to-noise ratio (right axis)
plotted as a function of the total pressure. (b) Same data plotted as a function of
nitrogen partial pressure. The symbols shown in the legend also apply to (a)

N2 in the probe volume for �xed mixture composition. The rms of the residual errors

in �ts to the nitrogen Raman spectra recorded in the 20-80 nitrogen-argon mixture

is larger than the other gas mixtures, which can be explained by a poorer signal-

to-noise ratio due to the reduced density of nitrogen in the measurement volume.

Figure 4.6b compares the rms of the residual errors and SNR of the measurements

for the di�erent gas compositions at the same nitrogen partial pressure. Two factors

a�ect the observed di�erence in the rms error at the same partial pressure: (1) the

total laser �uence, i.e. the number of laser pulses, for the recorded spectrum, and (2)

the line broadening. Comparing the Ar-N2 measurements with the air measurements

that were made with the same total laser �uence (54,000 laser pulses), we see that

the measurements measurements in Ar-N2 data have lower rms and higher SNR than

air at the same nitrogen partial pressure. This is because the pressure broadening of

N2 in Ar mixtures is smaller than the pressure broadening of N2 in air (see Table 4.1

63



below) so the recorded lines are more clearly de�ned and lifted above the readout

and shot noise resulting in lower rms and higher SNR. Comparing the pure N2 and

N2 in air results, we see two competing e�ects. The air broadening is higher than

in pure N2 (see Table 4.1 below), which would tend to increase the rms error and

reduce SNR, but the higher total laser �uence used in the air experiments (54,000

laser pulses vs 36,000 laser pulses) raises the signal above the noise and reduces rms

residual error and increases SNR. The net results of these two competing e�ects is a

slight reduction of rms error and increased SNR for the N2 in air data.

In summary, Figure 4.6 shows that the unmixed line model for the anisotropic

spectrum successfully matches the experimental data at the highest pressures, indi-

cating that there are no signi�cant line mixing e�ects in the O and S branches up

to 70 atm to within the precision and spectral resolution of our measurements and

�tting procedure.

For M values less than 7 (O(8), S(6)), �tted Lorentzian widths could not

be obtained with a model that contains only anisotropic lines because the isotropic

scattering contribution is signi�cant at these Raman shifts. Figure 4.7 shows the

�tted Lorentzian widths plotted versus pressure for the available M values.

If there are no line mixing e�ects, then the Lorentzian widths should increase

linearly with pressure and when this linear trend is extrapolated to zero pressure, then

the Lorentzian linewidths should be identical for everyM and equal to the instrument

contribution to the Lorentzian linewidth. Figure 4.7 shows linear regression �ts to the

Lorentzian widths for everyM at pressures of 22 atm and above for the pure nitrogen

and air mixtures and at pressures of 34 atm and above for the 20-80 nitrogen-argon

mixture. These limits are shown by the dashed vertical lines in Figure 4.7. We
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Lorentzian widths obtained from �ts to anisotropic nitrogen Raman spec-
tra recorded in (a) 100 % N2, (b) 100 % air, and (c) 20 % N2 + 80 % Ar. A linear
regression is applied to the results for every M , with a common intercept at 0 atm.
A vertical dashed line bounds the minimum experiment pressure used for the linear
regression. The intercept represents the instrument contribution to the Lorentzian
width, and it is compared to the Lorentzian width obtained from �ts to neon lamp
spectral lines.
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restricted the �ts to data in this range because the residual error in the �ts was

small (SNR > 20) for recorded spectra in both pure nitrogen and air. For the 20-80

nitrogen-argon mixture, a higher rms of residual errors had to be tolerated; the �ts

included in the linear regressions for the nitrogen-argon mixture had SNR > 14. Each

linear regression has a unique slope parameter but they were all constrained to have

a common intercept at zero pressure. This is consistent with our model for inferred

Lorentzian halfwidth,

lim
p→0

∆λeff = ∆λinst , (4.3)

since the contribution of pressure broadening vanishes as the pressure drops to zero.

As can be seen from Figure 4.7 the measurements agree quite well with this model. For

every gas mixture, the zero pressure limit of the Lorentzian fullwidths (1.1± 0.2 cm−1,

1.1± 0.2 cm−1, 1.2± 0.6 cm−1 for 100 % nitrogen, 100 % air, and 20 % nitrogen + 80 %

argon respectively) is in reasonably good agreement with the instrument Lorentzian

fullwidth (1.0± 0.2 cm−1) obtained from �ts to 6 neon spectral lines recorded us-

ing a neon lamp. Doppler broadening is neglected from this analysis because the

Doppler half width at half maximum for forward scattering at room temperature is

5.5× 10−2 cm−1, which is negligible compared to either the instrument or the collision

broadened linewidth. Figure 4.8 shows �ts to neon spectral lines which were used to

determine the instrument parameters. The residual error in these �ts is also plotted

in Figure 4.8.

For the anisotropic data recorded at pressures below 22 atm, the �tted Lorentzian

widths diverge from the linear regressions shown in Figure 4.7. The poorer �t at lower

pressures can be explained by the reduced signal-to-noise ratio due to lower sponta-

neous Raman signal which, in our experiments, scales linearly with pressure. For
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Figure 4.8: Fits to 6 neon spectral lines recorded using a neon lamp. These �ts were
used to determine the instrument lineshape parameters.

experiments at pressures lower than 22 atm, the data are more noisy and just a small

amount of noise in the spectrum corrupts the measurements of linewidths of the weak

anisotropic lines that are typically only 1 % of the peak Raman signal intensity.

The slopes of the linear regressions in Figure 4.7 represent the line broadening

coe�cient for the given M value. The Lorentzian widths measured in nm are con-

verted to equivalent broadening coe�cients in wavenumbers using |∆ω|/ω = ∆λ/λ

and noting that ω[cm−1]= 107/λ[nm]. Figure 4.9a shows a comparison of these nitro-

gen self-broadening line broadening coe�cients to those used to generate the modi-

�ed exponential gap (MEG) model [61] commonly used to simulate CARS spectra.

It should be noted that the anisotropic contribution to CARS spectra is very weak

because the CARS matrix elements go as the square of the susceptibility. Thus a 1 %

anisotropic contribution to the spontaneous Raman signal is a 0.01 % contribution to
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the CARS signal.

The N2-Ar broadening coe�cients were computed from the mixture broadening

coe�cients using our self-broadening data and inverting the standard mixture rule,

ΓN2-mix(M) = χArΓN2-Ar(M) + χN2ΓN2-N2(M), (4.4)

where χj is the mole fraction of species j. The uncertainty in ΓN2-Ar was estimated

from the uncertainties of ΓN2-mix and ΓN2-N2 assuming that the errors in the two

measurements were uncorrelated and the uncertainty in mixture composition was

negligible relative to those uncertainties. The MEG model line broadening coe�cients

in Figure 4.9a were calculated at 300 K using the m-MEG parameters found in [68].

The error bars in Figure 4.9 represent the 95 % con�dence interval, calculated from

the two-tailed Student's t-distribution, for the estimate of the slope of the linear

regression for each M value [91]. This error estimate is largest for the 20 % nitrogen

+ 80 % argon case. This is expected because of the lower SNR and poorer quality �ts

of these recorded spectra as re�ected in Figure 4.6.

The black line in Figure 4.9a represents the estimated anisotropic line broad-

ening coe�cient at every M value. These estimates were computed by calculating

the mean ratio between the MEG model line broadening coe�cients determined from

these experiments. Figure 4.9a shows that the line broadening coe�cients for the

anisotropic component of spontaneous Raman scattering from nitrogen is larger than

the isotropic MEG model broadening coe�cients by 14± 5 % in pure nitrogen. Air

broadening coe�cients are very similar to the self-broadening coe�cients but were

found to be about 2.5 % smaller on average with a standard deviation of 1.1 % with no

detectable systematic variation inM for this ratio. The N2-Ar broadening coe�cients

are 25 % lower than the corresponding self-broadening coe�cients atM = 7, and drop
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(a)

(b)

Figure 4.9: (a) Comparison between experimental nitrogen self-broadening line broad-
ening coe�cients from anisotropic linewidth �ts and theoretical MEG model calcu-
lations and (b) a comparison of experimental anisotropic line broadening coe�cients
for nitrogen in nitrogen, nitrogen in air, and nitrogen in argon. The black line in
(a) represents the estimated nitrogen self-broadening anisotropic line broadening co-
e�cients at every M value, which is the mean ratio between the experimental line
broadening coe�cients and the MEG model coe�cients, applied to every M value.
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to about 50 % atM = 21. The relative magnitude of Ar vs N2 (self)-broadening coe�-

cients for these anisotropic Raman lines is similar to the relative broadening e�ciency

of Ar and N2 for CO infrared P and R branch transitions where the ratio is 0.78 at

M = 7 and decays more slowly to 0.74 at M = 21 [92, 93]. Similarly, the relative

e�ciency of Ar and N2 for broadening transitions in the ν1 fundamental band of HCN

at 3 µm is approximately 0.54± 0.02 in the range M = 7− 18 [93].

Table 4.1: Experimental nitrogen anisotropic line broadening coe�cients, FWHM
(cm−1/atm)

M N2

self-broadening
N2 in air N2 in argon

7 0.110± 0.003 0.107± 0.003 0.083± 0.009

8 0.102± 0.003 0.100± 0.004 0.075± 0.006

9 0.101± 0.003 0.099± 0.002 0.073± 0.008

10 0.093± 0.003 0.090± 0.003 0.067± 0.006

11 0.097± 0.002 0.094± 0.002 0.067± 0.008

12 0.092± 0.003 0.091± 0.004 0.062± 0.008

13 0.092± 0.002 0.089± 0.003 0.061± 0.012

14 0.085± 0.004 0.085± 0.003 0.052± 0.012

15 0.084± 0.003 0.083± 0.003 0.052± 0.007

16 0.080± 0.004 0.078± 0.004 0.051± 0.018

17 0.078± 0.003 0.075± 0.003 0.045± 0.010

18 0.074± 0.007 0.071± 0.004 0.049± 0.018

19 0.070± 0.003 0.068± 0.004 0.041± 0.021

20 0.063± 0.009 0.063± 0.007 0.032± 0.026

21 0.059± 0.003 0.057± 0.003 0.029± 0.016

The broadening of the anisotropic lines may also be inferred from purely ro-
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tational CARS measurements. Miller et al. [77] and Kliewer et al. [94] have inferred

linewidths using the CARS signal decay rate in hybrid fs/ps RCARS. The linewidths

reported in [77] vary somewhat irregularly with pressure, and an attempt to �t their

inferred linewidths to a linear pressure dependence gave what appeared to be an

unreasonably high estimate of the error in the broadening coe�cient Γ. Hence we

compute an inferred self-broadening coe�cient by simply dividing their measured

linewidths at 20 atm by the corresponding pressures, and comparing these results

with our measurements in Figure 4.10. The uncertainties for the Miller et al. data

shown in Figure 4.10 correspond to the uncertainties in linewidth that they report.

On Figure 4.10 we also plot the broadening coe�cients reported by Kliewer et al.

[94]. The error bars shown on Figure 4.10 correspond to the 5 % uncertainty they

quote. While the uncertainty in the measurements in [77] are large, it is clear that the

linewidths reported in [94] are signi�cantly lower than our measured linewidths and

appear to agree better with the MEG model calculations of the isotropic Q branch

linewidths. While the anisotropic ro-vibrational O and S branch lines we measure

also have a vibrational dephasing contribution that is not present in the pure rota-

tional CARS spectra, one would not expect this contribution to be signi�cant. We

are presently unable to explain the discrepancy.

In conclusion, this chapter has presented high-resolution room temperature

measurements of the anisotropic component of spontaneous Raman scattering from

nitrogen for pressures up to 70.1 atm of 100 % nitrogen, 100 % dry air, and 20 % +

80 % argon. The recorded O and S branch lines were �t for Lorentzian widths, which

were used for linear regressions to determine line broadening coe�cients. For all

three gas mixtures, the zero pressure limit of the linear regressions were found to be

in good agreement with the Lorentzian width determined from a neon lamp, which
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Figure 4.10: Comparison of anisotropic ro-vibrational self-broadening coe�cients for
N2 measured in this work with S branch linewidths inferred from time domain mea-
surements using hybrid fs/ps of purely rotational transition using RCARS from Miller
et al. and Kliewer et al. [77, 94].
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is consistent with our understanding of the e�ective lineshape. The anisotropic line

broadening coe�cients were found to be larger than the MEG model line broadening

coe�cients for pure nitrogen and air respectively, but smaller for nitrogen broadened

by argon. The unmixed line model matched the experimental anisotropic spectra for

all pressures, indicating that line mixing e�ects are not signi�cant in the O and S

branches of spontaneous Raman scattering at pressures up to 70 atm at room tem-

perature.
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Chapter 5

High Pressure Modeling of the Q Branch

This chapter examines line mixing in the Q branch, focusing in particular on

the anisotropic tensor component of the spontaneous Raman Q branch. The ex-

perimental results presented in Chapter 4 focused on the O and S branches, which

are purely anisotropic. These experiments did show evidence of line mixing e�ects

in the Q branch, which exhibited no detectable broadening with increasing pressure

and instead narrowed slightly at the highest experimental pressures, as seen in Fig-

ure 4.4a. However, because the Q branch is dominated by isotropic scattering, these

experiments did not clearly establish whether there is line mixing in the anisotropic

component of the Q branch at pressures relevant to gas turbine engines. This is an

important question when considering the achievable accuracy of spontaneous Raman

thermometry in high pressure gases. The line mixing e�ect is a transfer of integrated

intensity between spectral features; the spectrum can no longer be considered as the

sum of individual contributions from lines with distinct vibration-rotation transitions

[73]. Because thermometry is accomplished by relating relative intensities to rela-

tive state populations through a Boltzmann factor, Raman scattering models must

Portions of this chapter previously appeared in the following publication:

Haller, T. W. and Varghese, P. L., �Measurements of pressure broadening of N2 in the

anisotropic tensor component of spontaneous Raman spectra,� Combustion and Flame,

vol. 224, pp. 166�176, 2021. doi: 10.1016/j.combustflame.2020.11.045.

The dissertator contributed to this publication through design and conduct of the research, data

analysis and interpretation, and writing of the manuscript.
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include line mixing e�ects to achieve accurate temperature measurements when these

mixing e�ects are signi�cant. While these mixing e�ects are clearly signi�cant in

the isotropic component of the Q branch [61, 56, 68, 59], the signi�cance of these

line mixing e�ects in the anisotropic component is less understood. Assuming the

anisotropic Q branch mixes like the isotropic Q branch may be a modeling error that

results in erroneous temperature measurements when implementing spontaneous Ra-

man thermometry in high pressure gases. This chapter investigates the in�uence of

line mixing in the anisotropic Q branch and the impact of this assumption on the

accuracy of spontaneous Raman thermometry. Most of the results and discussion in

this chapter previously appeared in [90].

5.1 Line Mixing in the Q Branch

The results presented in Chapter 4 demonstrate that line mixing e�ects can be

neglected in the modeling of the O and S branches up to pressures of 70.1 atm at room

temperature. The O and S branches consist entirely of anisotropic scattering, but the

Q branch has both an isotropic and anisotropic component. It is well established that

line mixing e�ects must be included in the modeling of the isotropic component of the

Q branch at pressures well below 70 atm [61, 65, 56, 57, 68, 59]. However, it is much

less clear as to whether line mixing e�ects should also be included in the modeling of

the anisotropic component of the Q branch. The theory indicates that the relaxation

cross-sections that describe the transfer of integrated intensity between spectral lines

are di�erent for isotropic Raman scattering and anisotropic Raman scattering [72, 73,

74]. Because of the contributions of rotational reorientation and rotational dephasing

collisions [73], mixing of the anisotropic lines couples transitions in all three branches

(O, Q, and S). Therefore, theoretically we would not expect the line mixing e�ects
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in the anisotropic Q branch to be identical to the mixing in the isotropic Q branch.

While we do expect the unmixed line approximation to break down in the Q branch

at lower density than the O and S branches because the Q branch lines are much

more closely spaced, it is not clear that it can be assumed that the anisotropic Q

branch lines mix like the isotropic Q branch lines.

5.1.1 Isotropic Simulations

Because the unmixed anisotropic Q branch line positions are identical to the

unmixed isotropic Q branch line positions [1], the isotropic component must be sim-

ulated to study the anisotropic Q branch component (unless the isotropic component

can be removed from the spectrum experimentally). As discussed in Chapter 4, no

broadening of the Q branch was detected in the high pressure experimental spectra.

This is de�nitive evidence of line mixing e�ects, speci�cally pressure narrowing, which

can be demonstrated by comparing simulated spectra with and without the inclusion

of line mixing. Because the Q branch is dominated by the isotropic contribution,

these simulations will only display the isotropic component of spontaneous Raman

scattering.

Figure 5.1a shows simulated isotropic spectra without line mixing e�ects, only

pressure broadening, and Figure 5.1b shows these spectra with the vertical scale

expanded by a factor of 100. These simulated spectra were generated using the MEG

model line broadening coe�cients shown in Figure 4.9a. The temperature for these

simulations was 300 K. An instrument lineshape function consisting of a convolution

of a trapezoid function and a Lorentzian function was applied to these simulated

spectra, with the lineshape parameters set to match the values corresponding to the

high pressure experiments described in Chapter 4. Figure 5.1 shows that without line
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mixing, as the pressure increases, the isotropic Q branch broadens signi�cantly, which

is clearly not what we observe in the experimental spectra shown in Figure 4.4a. Note

that all of the simulated spectra shown in Figure 5.1 are normalized so that the area

under each spectrum is unity. Therefore, the peak heights decrease with increasing

pressure due to the pressure broadening. The simulated isotropic spectra shown in

Figure 5.1 do not at all resemble the observed experimental spectra. The complete

lack of this broadening behavior in the Q branch of the high pressure experimental

spectra indicates that the simulations of the isotropic component which do not line

mixing are inadequate over this range of pressures at room temperature.

(a) (b)

Figure 5.1: Simulations of the isotropic component of spontaneous Raman scattering
from nitrogen at 300 K without line mixing.

Line mixing e�ects can be included in these simulations of the isotropic com-

ponent through a matrix whose elements re�ect the collisional coupling of the ro-

vibrational states [73, 65, 61]. The MEG model was used for the calculation of these

matrix elements using the m-MEG parameters found in [68]. Figure 5.2a shows simu-
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lated isotropic spectra with line mixing included, and Figure 5.2b shows these spectra

with the vertical scale expanded by a factor of 100. The temperature for these sim-

ulations was again 300 K. The same instrument lineshape function was applied to

these spectra. These simulated isotropic spectra with line mixing shown in Figure 5.2

were generated over an extended pressure range to further illustrate the in�uence of

line mixing e�ects at high pressures.

(a) (b)

Figure 5.2: Simulations of the isotropic component of spontaneous Raman scattering
from nitrogen at 300 K with line mixing.

Figure 5.2 shows that with line mixing included in the simulation, the isotropic

Q branch does not broaden with increasing pressure. Instead, the isotropic Q branch

narrows slightly. Note that all of the simulated spectra shown in Figure 5.2 are nor-

malized so that the area under each spectrum is unity. Therefore, the peak heights of

the simulated spectra increase with increasing pressure due to the pressure narrowing

associated with line mixing. Line shifting can also be observed in Figure 5.2a, as

the peaks of the simulated isotropic spectra shift to slightly lower Raman shifts with

78



increasing pressure. The Q branch of the high pressure experimental spectra shown

in Figure 4.4a more closely resemble the simulated spectra shown in Figure 5.2 as

compared to the simulated spectra that do not include line mixing e�ects shown in

Figure 5.1. Therefore, the high pressure experimental spectra do clearly show evi-

dence of line mixing e�ects in the Q branch even though the spectral resolution of

the high pressure experiments was not su�cient to fully resolve the narrowing and

shifting of the Q branch.

While the changes to the simulated isotropic spectra with increasing pressure

in Figure 5.2 may appear subtle, the in�uence of line mixing on the isotropic sponta-

neous Raman spectrum is profound. This is illustrated in Figure 5.3a, which compares

simulated isotropic spectra with and without line mixing at 300 K and 70 atm. Fig-

ure 5.3b shows these spectra with the vertical scale expanded by a factor of 100. Both

spectra shown in Figure 5.3 are normalized so that the area under each spectrum is

unity. The signi�cant di�erences between these simulated spectra demonstrate why it

is important to determine whether line mixing e�ects should be included in modeling

of the anisotropic component of the Q branch of spontaneous Raman scattering.

5.1.2 Anisotropic Q branch

We cannot directly assess the signi�cance of line mixing e�ects in the anisotropic

component of the Q branch from experimental data because the strong isotropic con-

tribution to the Q branch overlaps the anisotropic contribution. An indirect assess-

ment can be made by subtracting a model anisotropic contribution that neglects line

mixing e�ects from experimental data and comparing the di�erence to a simulated

isotropic contribution with line mixing e�ects. If the two agree then we can infer

that the anisotropic component was modeled satisfactorily. This is illustrated in Fig-
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(a) (b)

Figure 5.3: Simulations of the isotropic component of spontaneous Raman scattering
from nitrogen at 300 K and 70 atm with and without line mixing.

ures 5.4 a-d which shows data at 37.1 atm (Figure 5.4 a,b) and 70.1 atm (Figure 5.4

c,d). A complete anisotropic simulation requires line broadening coe�cients for all

M . The estimated nitrogen self-broadening anisotropic line broadening coe�cients

shown in Figure 4.9a were used to calculate anisotropic linewidths for M ≤ 6. The

anisotropic contribution to the Q branch lines were broadened with the J-dependent

anisotropic linewidths shown in Figure 5.4a and using M = J for the Q branch ac-

cording to Equation 4.2. Combining these estimated anisotropic linewidths with the

�tted anisotropic linewidths allows us to simulate the entire anisotropic spectrum in

the unmixed line approximation shown as blue lines in Figures 5.4 a-d. This sim-

ulated anisotropic spectrum was subtracted from the experimental data to estimate

the residual purely isotropic spectrum. These are shown as the solid symbols in Fig-

ures 5.4 a-d. The red lines in these �gures are the mixed isotropic simulation at the

corresponding pressures (37.1 atm and 70.1 atm respectively). The isotropic simula-
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tion included line mixing e�ects and was generated using the MEG model [61, 65]

with the m-MEG parameters found in [68].

(a) (b)

(c) (d)

Figure 5.4: Comparison between experimental isotropic spectra and a mixed
isotropic simulation generated using the MEG model at (a,b) 37.1 atm and (c,d)
70.1 atmosphere. The vertical scale is expanded by 100 in (b,d).

Figures 5.4a and 5.4c show good overall agreement between the inferred isotropic

spectrum and the simulation. Figures 5.4b and 5.4d, show the same data with the
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vertical scale expanded by a factor of 100. Although both Figures 5.4b and 5.4d show

small systematic di�erences between experimental data with the anisotropic contri-

bution subtracted and the computed isotropic contribution near the base of the Q

branch feature, the di�erences are less than 0.1 % and do not increase with pressure

as they would if they were a manifestation of line mixing. From this we conclude that

line mixing e�ects seem to be nearly negligible even in the Q branch of the anisotropic

spectrum up to pressures of 70 atm at room temperature.

5.2 E�ect on High Pressure Thermometry

Most simulations of line mixing e�ects at high pressures or densities assume

that the anisotropic Q branch lines mix like the isotropic lines at high pressure. As

shown in Section 5.1, there is evidence that this assumption is invalid. The signif-

icance of this assumption must be evaluated in the context of spontaneous Raman

thermometry in high pressure gases. Given that the strength of the anisotropic Q

branch lines are only about 1 % the strength of the isotropic Q branch lines, any

systematic error in spontaneous Raman thermometry temperature measurements re-

sulting from this assumption may be negligible compared to the overall uncertainty in

a particular application. However, if this systematic error is not negligible, then simu-

lations of high pressure spontaneous Raman spectra should not include the anisotropic

Q branch lines in line mixing calculations and instead treat them like the O and S

branch lines. Therefore, it is necessary to investigate the in�uence of this modeling

error on temperatures inferred from �tting experimental Raman spectra to a model

that is slightly inaccurate.

The ideal approach to quantitatively investigate the signi�cance of this mod-

82



eling error is to use the di�erent models to compare inferred temperatures from ex-

perimental spontaneous Raman spectra recorded in high temperature, high pressure

gases. Due to limitations of the experimental setup described in Chapter 4, we do

not have high temperature high pressure experimental spontaneous Raman spectra

available. The 5 atm �ame temperature spectra discussed in Chapter 3 were recorded

in gases at sub-atmospheric density and hence are not likely to test line mixing ef-

fects. However, we can generate a simulated spontaneous Raman spectrum at high

temperature and high pressure, and then infer a temperature from this simulated

spectrum using a slightly inaccurate model that assumes the Q branch anisotropic

lines mix like the isotropic lines. This approach will give a quantitative estimate of

this modeling error.

A spontaneous Raman spectrum was simulated at 1800 K and 70 atm. For

this simulated spectrum, the data points were generated at an average spectral den-

sity of 0.94 cm−1/pixel, which matches the experimental spectra in Chapter 4. An

instrument lineshape function consisting of a convolution of a trapezoid function and

a Lorentzian function was applied to this simulated spectrum. The values of the pa-

rameters used for this instrument lineshape function were set to match the values for

the experimental spectra. Line mixing e�ects were included only in the isotropic part;

the anisotropic component was broadened but not mixed for all three branches (O,

Q, and S). The collisional broadening coe�cients at high temperature were computed

using the temperature scaling given by the MEG model linewidths [67, 68]. The same

temperature scaling was applied to the anisotropic linewidths in Figure 4.9 So this

simulated Raman spectrum was generated to represent what we expect from a high

temperature, high pressure experimental Raman spectrum. This simulated spectrum

is shown as the black circles in Figure 5.5a. The spectrum is shown on an expanded
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vertical scale in Figure 5.5b. In Figures 5.5c and 5.5d, a small amount of shot noise

and random readout noise has been added to the simulated spectrum to make it more

representative of an experimental spectrum.

Hot band contributions (Raman scattering from v = 1, 2, ...) are signi�cant at

�ame temperatures and can be seen in Figure 5.5. For these calculations, we assume

that the linewidths of the hot band transitions are the same as the corresponding

transitions from the ground state. The relative intensity of the Q branches can be

used for thermometry even if the weak O and S branches are obscured by noise, as

shown in Figures 5.5c and 5.5d.

Temperatures were inferred from the simulated spectrum using a model that

assumes that the O and S branch transitions (purely anisotropic) are broadened and

have no line mixing, but both the isotropic and anisotropic contributions to the Q

branch transitions are broadened and mixed identically. A library of model spectra

was generated as a function of temperature. Computing the sum of the squares

of the residual error, a temperature was inferred from the simulated spectrum by

determining which model spectrum gives the smallest residual. The sum of the squares

was computed over the spectral interval from 2150 cm to 2400 cm−1 (indicated by the

dashed vertical lines on Figure 5.5). These results are insensitive to the previse

spectral interval chosen provided it contains the region containing the Q branch of

the fundamental and the hot bands.

The sum of the squared residual error is plotted versus model temperature in

Figure 5.6a for the noise-free simulated spectrum and in Figure 5.6b for the simulated

spectrum with added noise. The "best �t" spectrum using the slightly incorrect model

was found to infer a temperature of 1810 K, which is an error of about 0.6 %. This
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(a) (b)

(c) (d)

Figure 5.5: Simulated high temperature and pressure (1800 K, 70 atm) Raman spec-
trum of nitrogen with anisotropic contribution unmixed and the isotropic Q branch
mixed. In (c,d) a small amount of shot noise and random readout noise has been
added to the simulated experimental spectrum. The simulated spectrum is compared
to a model spectrum which assumes that the anisotropic Q branch lines are mixed
exactly like the isotropic lines. The dashed vertical lines indicate the frequency range
over which the sum of the squared residual is used to infer the best match between
simulated data and a model spectrum.
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(a) (b)

Figure 5.6: Variation of the sum of the squared residual error with temperature when
using a library of model spectra that assume the anisotropic Q branch lines broaden
and mix like the isotropic Q branch lines. (a) Without noise added to the simulated
spectrum, corresponding to Figures 5.5a and 5.5b. (b) With noise added to the
simulated spectrum, corresponding to Figures 5.5c and 5.5d.

was the inferred temperature for both the noise-free spectrum and the spectrum

with added noise. Figure 5.6 shows that the minimum of the sum of the squared

residual error occurred for the 1810 K model temperature in both cases. If this same

procedure is repeated at a pressure of 300 atm at 1800 K, the resulting best �t model

temperature is 1820 K, which is an error of about 1.1 %. Again, the addition of noise

to the simulated spectrum did not change this result.

While this inferred systematic error due to model error is probably negligible in

most applications, a couple of caveats should be noted. First, these calculations were

done using nitrogen broadening data. For measurements in �ames or post-combustion

gases where there is signi�cant broadening by water vapor and carbon dioxide, the

e�ects of the model error may be a little more signi�cant. For example, the line

broadening coe�cients of N2 by water vapor are larger than the self-broadening co-
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e�cients and do not drop signi�cantly with increasing rotational quantum number

[95] (compare with Figure 4.9). However, the broadening coe�cients do not di�er

by orders of magnitude so the above calculations indicate that model error could in-

troduce a systematic bias of at most a few percent in temperature measurements in

�ames. Second, if another species is used for �ame thermometry that has a stronger

anisotropic contributions to the spontaneous Raman spectrum than nitrogen, then

the error will also be increased.

The bias can be removed by using spectral models that broaden and mix

the anisotropic Q branch lines independently of the isotropic component. The high

pressure experiments show that line mixing does not occur in the O and S branches

at pressures as high as 70 atm at room temperature. Additionally, there is evidence

that line mixing is also not signi�cant in the anisotropic Q branch over this range

of pressure. So the anisotropic spectrum can be modeled to reasonable precision as

the sum of independently broadened overlapping spectral lines. Since density, not

pressure is the key parameter driving line mixing, at �ame temperatures line mixing

of the anisotropic component of the nitrogen spontaneous Raman spectrum is only

likely to be signi�cant at pressures above 400 atm. We conclude that line mixing

e�ects do not have to be included in the modeling of the anisotropic component for

accurate spontaneous Raman thermometry in gas turbine engines.

5.2.1 Consequences for Elevated Pressure Thermometry

The results of the high pressure spontaneous Raman scattering experiments

merit reexamination of the elevated pressure experiments discussed in Chapter 3. The

model used to �t these elevated pressure spectra for temperature applied the same

lineshape function to every spectral line in the simulated spectrum. Every isotropic
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and anisotropic line was assumed to have the same Lorentzian halfwidth. This model

neglects two density driven e�ects: the dependence of molecular linewidths on ro-

tational quantum number and line mixing. The high pressure experimental results

demonstrate that these e�ects can have a signi�cant impact on the spontaneous Ra-

man spectrum. Therefore, the consequences of using this simpli�ed model for ther-

mometry need to be considered.

Applying the same lineshape function to the entire spectrum will a�ect the ac-

curacy of the temperature measurement only if the experimental spectral resolution

is su�cient to detect the dependence of molecular linewidths on rotational quantum

number and line mixing at the experimental conditions. The elevated pressure ex-

periments presented in Chapter 3 were recorded with a spectrograph equipped with

a 100µm slit, whereas the high pressure experiments were recorded with a 25µm

slit. Because of this, the contribution of the instrument to the lineshape function was

signi�cantly larger for the elevated pressure experiments, which reduces the spectral

resolution.

The elevated pressure experiments presented in Chapter 3 did not have suf-

�cient spectral resolution to detect the dependence of molecular linewidths on rota-

tional quantum number or line mixing e�ects. Consider the experimental spectrum

recorded in a partially premixed �ame at 5 atm, which is shown in Figure 3.9, along

with the �t and corresponding residual error. The inferred temperature was 2008 K.

The model used for this �t applied the same lineshape function across the entire

spectrum and did not include line mixing. However, this model appears to represent

the experimental spectrum quite well; the maximum residual error is 1 % of the peak

value. In the O and S branches, the residual error is small and relatively uniform;
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the residual does not vary with rotational quantum number. This indicates that ne-

glecting the dependence of molecular linewidths on rotational quantum number did

not a�ect this temperature �t. The quality of the �t in the Q branch also looks to

be quite good, but line mixing of the isotropic Q branch lines could potentially cause

a signi�cant error in the temperature measurement.

To investigate the sensitivity of the elevated pressure experiments to line mix-

ing, we can compare two simulations of the isotropic Q branch at the experimental

pressure and temperature, with and without line mixing. By convolving these simu-

lated spectra with an instrument lineshape function that is identical to the instrument

function of the elevated pressure experiments, the di�erence between these simulated

spectra will illustrate the sensitivity of these experiments to line mixing. Anisotropic

lines do not need to be included in these simulations because as discussed above, line

mixing e�ects should not to be included in the modeling of the anisotropic component

of the spontaneous Raman spectrum.

Figure 5.7 shows a comparison of two simulations of the isotropic Q branch,

with and without line mixing, at 2008 K and 5 atm. Both of these simulated spectra

have been convolved with the instrument lineshape function of the elevated pressure

experiments. The spectrum without line mixing was modeled with the same molec-

ular Lorentzian width as the �t to the experimental spectrum recorded in a �ame at

5 atm, applied to every isotropic Q branch line. So, the simulated spectrum with-

out line mixing in Figure 5.7 represents the isotropic component of the �t shown in

Figure 3.9. The MEG model was used to simulate the spectrum with line mixing

in Figure 5.7. Because the 5 atm experimental spectrum was recorded close to the

�ame front, perturbing species such as CO2 and H2O were present in the measure-
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Figure 5.7: Simulations of the isotropic component of the nitrogen spontaneous Ra-
man spectrum at 5 atm and 2008 K, with and without line mixing. The instrument
lineshape function from the experimental Raman spectrum recorded in a 5 atm �ame
has been applied to these simulations. Because of this relatively broad instrument
function, di�erences between these simulations are nearly undetectable.

ment volume. To account for the presence these species, three sets of MEG model

parameters were used in the line mixing calculations, one each for N2−N2, N2−CO2,

and N2−H2O. The m-MEG parameters found in [68] were used for N2−N2, and the

parameters for N2−CO2 and N2−H2O were taken from [96]. These MEG model cal-

culations were combined based on the equilibrium mole fractions of N2, CO2, and

H2O (0.708, 0.085, and 0.207 respectively). These mole fractions were calculated for
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Figure 5.8: Temperature �t to nitrogen Raman spectrum recorded in a partially
premixed �ame at 5 atm, resulting in an inferred temperature of 2008 K. The model
used for this �t did not include line mixing and applied the same lineshape function
to every spectral line.

a �ame with a stoichiometric fuel-air mixture and a fuel consisting of 70 % CH4 and

30 % H2 by volume, which was the fuel mixture for the partially premixed �ame in

these elevated pressure experiments. Therefore, the simulated spectrum with line

mixing in Figure 5.7 represents the isotropic component of the nitrogen spontaneous

Raman spectrum in a 5 atm �ame, convolved with the instrument lineshape function

of the elevated pressure experiments. Recall the excellent �t of the model to the data

shown in Figure 3.9 and repeated in Figure 5.8 for convienent comparison.
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The two simulations with and without line mixing shown in Figure 5.7 are

virtually indistinguishable, and the di�erences between these simulated spectra are

very small. The maximum di�erence is 0.9 % of the peak value. These spectra

are noise free simulations, and with just a tiny amount of shot and read-out noise

these spectra would become indistinguishable. I conclude that experiments with

this instrument resolution were not sensitive to line mixing e�ects, and excluding

line mixing calculations from the spectral model did not reduce the accuracy of the

temperature measurement for these experiments.
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Chapter 6

Conclusions

The work presented in this dissertation has investigated spontaneous Raman

thermometry in high pressure gases. The motivation for this work was the applica-

tion to gas turbine engines, which are susceptible to turbine blade failure if hot-spots

are present in the post-combustion �ow. Accurate temperature measurements of the

pre-turbine temperature pro�le are crucial to the design process. Spontaneous Ra-

man thermometry can provide nonintrusive, remote measurements of temperature

with high spatial resolution. However, the high pressure environment found in gas

turbine engines complicates this spectroscopic technique. As gas density increases,

the collision frequency increases, which increases the pressure broadening and causes

strongly overlapped spectral lines to mix. The overall objective of this work was to

examine the in�uence of these collision-induced e�ects on the ro-vibrational sponta-

neous Raman spectrum and determine the impact on the accuracy of this temperature

measurement technique, with the goal of extending spontaneous Raman thermometry

to high pressure environments.

Spontaneous Raman spectra were �rst recorded in an elevated pressure com-

bustion chamber. This work demonstrated the ability to measure a steep temperature

gradient in a closed, combustion chamber at pressures up to 5 atm using ro-vibrational

spontaneous Raman scattering. For the relatively broad entrance slit on the spec-

trometer (and corresponding lower spectral resolution), subtle evidence of pressure
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broadening was detectable at 5 atm and room temperature, but at �ame tempera-

ture, no pressure broadening was detected. The elevated pressure environment did

not adversely a�ect our ability to simulate and �t the spontaneous Raman spectrum

from nitrogen. The uncertainty for spontaneous Raman thermometry at atmospheric

pressure was estimated to be ±15 K by performing temperature measurements on a

reference burner.

To signi�cantly increase the maximum pressure in which we could record spon-

taneous Raman spectra, a high pressure chamber with good optical access was con-

structed. This pressure chamber has a maximum operating pressure of about 70 atm,

3 windows, and can be remotely �lled with a speci�ed gas mixture, but this chamber

was only designed for measurements at room temperature. High-resolution, room

temperature spontaneous Raman spectra of nitrogen were recorded in this pressure

chamber at pressures up to 70.1 atm for three gas mixtures: 100 % nitrogen, 100 %

dry air, and 20 % nitrogen + 80 % argon. The recorded O and S branch lines were

�t for Lorentzian widths, which were used for linear regressions to determine line

broadening coe�cients for the anisotropic tensor component of ro-vibrational spon-

taneous Raman scattering. For all three gas mixtures, the zero pressure limit of the

linear regressions were found to be in good agreement with the instrument Lorentzian

width determined from a neon lamp, which is consistent with our understanding of

the e�ective lineshape. The anisotropic line broadening coe�cients were found to

be larger than the MEG model line broadening coe�cients for pure nitrogen and air

respectively, but smaller for nitrogen broadened by argon.

The experimental high pressure spectra were also used to investigate line mix-

ing in ro-vibrational spontaneous Raman scattering. The isotropic component of the
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spectrum showed de�nitive evidence of line mixing, so the MEG model was used to

simulate the isotropic component with line mixing. The unmixed line model matched

the experimental anisotropic spectra for all pressures, indicating that line mixing ef-

fects are not signi�cant in the O and S branches of spontaneous Raman scattering

at pressures up to 70 atm at room temperature. However, it was less clear if the

anisotropic Q branch lines exhibited line mixing because the strong isotropic contri-

bution to the Q branch overlaps the anisotropic contribution. It is expected that the

isolated line approximation will break down in the Q branch at lower pressures than

for the O and S branches because the lines are much more closely spaced. There-

fore, an indirect assessment of line mixing in the anisotropic Q branch was made by

subtracting a model anisotropic contribution that neglects line mixing e�ects from

experimental data and comparing the di�erence to a simulated isotropic contribution

with line mixing e�ects. The results indicate that, within the spectral resolution of

these measurements, line mixing e�ects were not perceptible for the anisotropic Q

branch lines for pressures up to 70 atm at room temperature. Assuming that the

anisotropic contribution to the Q-branch is mixed like the isotropic part will result

in small systematic overestimation of the order of a few percent in the temperature

inferred by spontaneous Raman thermometry in high pressure �ames, and the er-

ror increases with pressure. The bias can be removed by modeling the anisotropic

spectrum independently of the isotropic part as the sum of individual spectral lines.

In conclusion, this work has demonstrated that the high pressure environment

of gas turbine engines does not prohibit spontaneous Raman thermometry. Rotational

quantum number dependent pressure broadening needs to be incorporated into simu-

lations of the anisotropic component of ro-vibrational spontaneous Raman scattering

for high pressure gases. Anisotropic line broadening coe�cients have been measured
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for nitrogen and presented in this dissertation. The lineshape of the isotropic com-

ponent of spontaneous Raman scattering has been shown to be well represented by

the MEG model over the range of pressures studied. Therefore, spontaneous Raman

thermometry is in fact capable of providing accurate measurements of temperature

in high pressure gases.

6.1 Future Work

Given the conclusions discussed above, it is reasonable to recommend spon-

taneous Raman thermometry for temperature measurements in a high pressure gas

turbine test rig. However, challenges associated with this application may require

further studies of spontaneous Raman scattering. The high pressure Raman spec-

tra presented in this dissertation were restricted to room temperature due to the

limitations of the high pressure chamber. Experimental spontaneous Raman spec-

tra recorded in high pressure, high temperature gases would be a valuable resource

to further study and adapt spontaneous Raman simulations for high pressure gases.

Pressure chambers with good optical access that are capable of withstanding high

temperatures are challenging to design and expensive to construct. Often two sets of

custom windows are needed to meet these criteria, one window for the pressure stress

and one actively cooled window for the thermal stress. Unfortunately, a pressure

chamber of this design was beyond the time and �nancial constraints of this work.

The work presented in this dissertation was also limited to spontaneous Ra-

man scattering from nitrogen. Depending on the application, Raman scattering from

other molecular species, such as oxygen or carbon dioxide, may be more bene�cial. If

a species used for thermometry has a stronger anisotropic contribution to the spon-
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taneous Raman spectrum than nitrogen, then characterizing the pressure broadening

and line mixing of the anisotropic component becomes more important for accurate

temperature measurements. Additionally, the presence of other molecular species is

likely to impact the line broadening coe�cients of nitrogen. For example, water va-

por and carbon dioxide could have a signi�cant e�ect in a combustion experiment.

Even with linewidth measurements of nitrogen broadened by carbon dioxide and ni-

trogen broadened by water vapor, this could pose a challenge if the gas composition

is unknown or unsteady. However, this challenge could potentially be overcome with

simultaneous measurements of gas composition and temperature, for example by si-

multaneously recording low-dispersion and high-dispersion Raman spectra.

A recommended avenue for future work that closely relates to the work in this

dissertation concerns the inclusion of line mixing in simulations of the anisotropic

component of spontaneous Raman scattering. For the isotropic component, the ma-

trix of cross sections for a change in rotational state due to collisions simpli�es when

vibrational dephasing is neglected. However, for the anisotropic component, the ma-

trix of cross sections for a change in rotational state due to collisions is much more

complicated because it is a function of rotational reorientation and rotational dephas-

ing, both of which are expected to be dependent on rotational state. Thus the existing

scaling laws, such as the MEG model, that are speci�c to the isotropic component

are not directly applicable to the anisotropic component. Expressions for the func-

tional dependence of rotational reorientation and rotational dephasing on rotational

state are not currently available. Quasiclassical trajectory calculations could provide

answers for the open questions concerning rotational reorientation and rotational de-

phasing, which would subsequently enable the development of line mixing models for

the anisotropic component of ro-vibrational spontaneous Raman scattering.
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Appendix A

Calculation of Line Mixed Raman Spectra

This appendix derives the equation necessary to calculate a ro-vibrational

spontaneous Raman spectrum with line mixing e�ciently, following the general proce-

dure described by Koszykowski et al. [65] for CARS. When the impact approximation

holds, the spectral intensity as a function of frequency, I (ω), can be related to colli-

sions through a general expression [73, 61, 85, 86] as

I (ω) = Im
[
cd ·G (ω)−1 ·P · d

]
(A.1)

where c is a scaler constant, d is a vector containing the square root of the polariz-

ability matrix elements for every rotational level that is signi�cantly populated in a

given vibrational level, P is a diagonal matrix of the population distribution, and G

is the G matrix, which is de�ned as

G (ω) = −ωI+ ω0 + iρ 〈v · σ〉 (A.2)

where I is the identity matrix, ω0 is a diagonal matrix of transition frequencies, ρ is

the gas density, and the term ρ 〈v · σ〉 is the velocity-averaged cross section matrix.

By de�ning a matrix K as

K = G (ω) + ωI , (A.3)

then K can be expressed as

K = ω0 + iρ 〈v · σ〉 . (A.4)
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The matrix K will be constant for all spectral frequencies in a given vibrational level

in a single ro-vibrational Raman spectrum. Let λn be the nth eigenvalue of matrix

K and Λ be a diagonal matrix with elements λn. Take A to be the matrix of the

eigenvectors of K, which can be used to diagonalize the inverse of matrix K by the

following operation:

A−1K−1A = Λ−1 . (A.5)

Substituting for K using Equation A.3 and rearranging the terms gives the following

result:

A−1 (G (ω) + ωI)−1A = Λ−1 (A.6)

A−1G (ω)−1A+A−1ω−1IA = Λ−1 (A.7)

A−1G (ω)−1A+ ω−1 = Λ−1 (A.8)

A−1G (ω)−1A = −ω−1 + Λ−1 (A.9)

Equation A.9 can be utilized to calculate a Raman spectrum without performing an

inversion of the Gmatrix for every spectral frequency of interest. First write Equation

A.1 as

I (ω) = Im
[
cdAA−1G (ω)−1AA−1Pd

]
, (A.10)

then apply Equation A.9 to get:

I (ω) = Im
[
cdA (−ω + Λ)−1A−1Pd

]
. (A.11)

Equation A.11 can then be rearranged to match the form in Koszykowski et al. [65]:

I (ω) = Im

[
c
∑
n

[
(dA) ·

(
A−1Pd

)]
n

−ω + λn

]
(A.12)
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where the index n in the numerator refers to the nth element of the vector resulting

from the dot product between vectors (dA) and
(
A−1Pd

)
. For completeness, to

generate the ro-vibrational Raman spectrum, Equation A.12 must be summed over

all vibrational levels as shown here:

I (ω) = c
∑
v

∑
n

Im

[[
(dA) ·

(
A−1Pd

)]
n

−ω + λn

]
. (A.13)

Equation A.13 is the �nal result. This equation was used to calculate the line mixed

ro-vibrational spontaneous Raman spectra presented in this dissertation. Because

the matrix K is a function of the transition frequencies, ω0, the matrix K will be

di�erent for every vibrational level. Therefore, the eigenvector matrix, A, and the

eigenvalues, λn, must be recalculated for every vibrational level. The diagonal matrix

of the population distribution, P, also changes with vibrational level.

It should be noted that in Equation A.13, λn, which represents the nth eigen-

value of matrix K, is complex. Therefore, it may be preferred to rearrange Equa-

tion A.13 so that the imaginary component is the numerator, making it easier to

isolate the real and imaginary terms. The following steps are merely algebraic manip-

ulations of Equation A.13 to more easily visualize the real and imaginary components

of Equation A.13. The eigenvalue, λn, has a real and imaginary component:

λn = λn< + iλn= (A.14)

where λn< and λn= are the real and imaginary components of λn respectively. Sub-

stituting, Equation A.13 becomes

I (ω) = c
∑
v

∑
n

Im

[[
(dA) ·

(
A−1Pd

)]
n

−ω + (λn< + iλn=)

]
(A.15)
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which can then be multiplied by the complex conjugate of the denominator, as shown

here:

I (ω) = c
∑
v

∑
n

Im

[ [
(dA) ·

(
A−1Pd

)]
n

[(−ω + λn<)− iλn=]

[(−ω + λn<) + iλn=] [(−ω + λn<)− iλn=]

]
, (A.16)

which simpli�es to

I (ω) = c
∑
v

∑
n

Im

[[
(dA) ·

(
A−1Pd

)]
n

[(−ω + λn<)− iλn=]

(ω − λn<)2 + λ2n=

]
. (A.17)

Equation A.17 is algebraically equivalent to Equation A.13. Note that A and A−1 are

complex so that the imaginary part cannot be obtained by inspection. However, it

can be shown that in the low pressure limit one gets the sum of Lorentzian lineshapes

centered at λn< with halfwidths of λn= .
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Appendix B

Standard Operating Procedure

Plasma & Combustion Diagnostics Laboratory - ASE 5.118

High Pressure Raman Spectroscopy Experiment

5.31.2020

B.1 Purpose

This Standard Operating Procedure (SOP) outlines requirements to be considered

by an authorized user of the High Pressure Raman Spectroscopy Experiment and

describes the normal operation of the experiment and speci�c considerations for pan-

demic response.

B.2 Personnel

Authorized Personnel: The High Pressure Raman Spectroscopy Experiment may

be operated only by authorized personnel who are fully cognizant of all safety

issues involved in the operation of all required devices. These personnel are to

ensure that the laser is only operated in the manner laid out in this document.

To become an authorized user, one must:

1. Complete online OH304 Laser Safety Training.

2. Read and fully understand the SOP.
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3. Receive hands-on training on the High Pressure Raman Spectroscopy Ex-

periment by an authorized user.

Unauthorized Personnel: No unauthorized personnel may enter ASE 5.118 during

laser operation unless accompanied by an authorized user. All visitors must be

briefed on proper safety protocol and must wear appropriate laser protective

eyewear located on the premises.

Pandemic Considerations: Due to pandemic response, all personnel entering the

lab must follow latest guidelines from The University of Texas at Austin for

safely conducting research on campus. Personnel must read and fully under-

stand the Research Restart Plan outlined by the O�ce of the Vice President

for Research and monitor for updates. As an added safety measure, ASE 5.118

will be designated single occupancy when running the high pressure experiment

because one cannot maintain adequate social distance in the control room when

the chamber is pressurized.

B.3 Hazards

B.3.1 Laser

The Nd:YAG laser is a Class 4 laser. Severe eye damage (including blindness) and

skin damage can result from direct beam and specular re�ections. Eye damage can

also result from di�use re�ections.

B.3.2 Electrical

Electrical shock or electrocution could result from direct contact with high voltage.
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B.3.3 Pressure

Several hazards are associated with pressure with the common primary hazard being

high pressure contained in the cylinder. Caution is needed to ensure that systems and

apparatus used with compressed gas cylinders are not over-pressurized, which could

lead to forceful rupture and �ying fragments.

B.4 Hazard Controls

B.4.1 Laser

1. Only authorized personnel will operate lasers.

2. The laboratory doors will be closed, locked, and "Laser In Use" warning light

will be illuminated.

3. Unauthorized personnel will be only allowed entry to the laboratory during laser

operation with the supervision of an authorized user under the terms speci�ed

in Section B.2.

4. Laser eye protection (LEP) for su�cient protection against 532 nm is available

and is located on the optical table nearest the lab entrance. Laser eye protection

is required to be worn for all beam alignments/beam manipulations or anytime

there is an open beam that exceeds the maximum permissible value. NOTE:

LEP is wavelength speci�c and proper selection is critical.

5. Specular and di�use re�ections will be controlled using beam stops, beam barri-

ers, beam housings and enclosures. All these control methods must be in place

during normal operation.
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6. No jewelry or other re�ective materials are to be worn while working with the

laser, especially on the hands and neck.

7. Personnel in the laser lab should avoid bending over, sitting, or otherwise

putting their eyes at the level of the beam path while the laser is in opera-

tion.

8. Perform physical surveys to determine if there are stray beams specular or

di�use emanating from each laser and its optics, and then document the beam

surveys noting the location of stray beams and the measures taken to control

them.

9. If the beam path must be changed signi�cantly by relocating the laser or optics,

all users must be noti�ed of the change.

10. The same precautions that are taken for safe operation of the laser must also

be followed when adjusting any of the optics in use with the apparatus.

11. When a new principal researcher/experimenter takes over use of the laser sys-

tem, the new user must conduct a survey for unwanted stray or di�use beams.

Appropriate tools such as IR sensitive cards or IR viewer shall be used for

locating the possibility of IR light.

12. Experimental end stations should be treated the same as the laser system with

regards to the preceding safety procedures.

B.4.2 Electrical

1. Enclosures for protection against the high voltages of the laser power supply or

laser head should never be removed unless by an authorized service technician
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or strictly following the safety procedures outlined in the safety and operations

manual provided by the manufacturer.

2. Only quali�ed personnel may perform all internal maintenance to the laser.

3. Every portion of the electrical system, including the printed circuit cards, should

be assumed to be at dangerous voltage level.

B.4.3 Pressure

1. Understand the dangers or pressurized systems; physical and health hazards

of the particular gas in use, and proper installation, speci�cations, and use of

�ttings, valves, regulators, and other ancillary equipment. Use only equipment

and apparatus that are designed for use in pressurized conditions and that are

rated for the approximate maximum pressure, and designed for the speci�c gas

in use.

2. Do not use a compressed gas cylinder unless the cylinder is clearly marked or

labeled with the cylinder's content. Never rely on the color of the cylinder to

identify its contents.

3. Do not remove the cylinder valve cap until the cylinder has been secured at the

point of use. Securing means to use a rack, cage, strap or chain securely a�xed

to an immovable object. If a strap or chain is used it should be positioned above

the midpoint but below the shoulder of the cylinder.

4. Replace valve caps when cylinders are not in use or before moving.

5. All compressed gas cylinders must be used with a regulator that is designed for
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the gas and pressures involved. Two stage regulators are generally recommended

for laboratory operations.

6. Always close the cylinder valve of an apparently empty cylinder before discon-

necting the regulator; and when the cylinder is not in use. Do not leave pressure

on the regulator when the cylinder is not in use.

7. Safely vent compressed gases to a dedicated fume exhaust or snorkel.

8. Perform hydrostatic pressure test of pressure chamber at 1.5x the maximum

operating pressure of the experiment.

(a) Maximum Operating Pressure: 1000 psi

(b) Hydrostatic Test Pressure: 1500 psi

9. Pressure relief valve (PRV) place in the system set below the lowest rated pres-

sure of all system components including pressure chamber, sight windows, tub-

ing, valves, etc.

(a) PRV Set Pressure: 1250 psi

B.5 Normal Operation

1. Turn on exterior "Laser In Use" warning light and ensure laboratory doors are

closed.

2. Close laser shield curtains.

3. Plug in the pressure transducer and thermocouple. Verify that both are working

properly and reading room conditions.
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4. Plug in the lab security cameras, internal lab router, and network switch.

5. Connect to the video feed from the lab security cameras from within the interior

control room and verify that the video feed is working properly. Reset the

cameras if the feed is lagging.

6. Plug in the solenoid valves.

7. Plug in the valve control panels in the interior control room.

8. Open the pilot line air cylinder that provides compressed gas to the pneumat-

ically actuated valves and set the regulator to a pressure of approximately 75

psi. Do not exceed a pressure of 125 psi on this regulator.

9. Cycle all control valves from the interior control room. Energizing solenoid

valves on �ll lines should produce an audible "click" and de-energizing the

solenoid control valve on the pneumatic pilot line should produce an audible

"whoosh" of the air being released from the pneumatically actuated valve exit

line. This veri�es that valve control is working properly.

10. Verify that the exhaust snorkel is centered above the termination of the pressure

chamber exit line. Also verify that the exhaust snorkel is fully open.

11. Fully close needle valves on pressure chamber �ll lines (qty 2) and exit line (qty

1). Do not overtighten or the valve seat will be damaged. Then re-open each

valve by 1/8 turn. All needle valves should be minimally open.

12. Uncover all the optics and check that all optics appear to be in the proper

position and dust-free. Also verify that laser shields are in place.
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13. Ensure overhead room lights are turned o�; turn on and connect to intensi�ed

camera. From this step utilize �ashlight to maneuver around experiment.

14. Turn on the laser power control unit. This starts the laser cooling water pump.

15. Check that the chamber pressure exit valve is set to the open position (solenoid

power o�).

16. Open the test gas cylinders. Set the test gas cylinder regulators to the desired

experiment chamber pressure. This will pressurize the �ll line up to the solenoid

valves but will not pressurize the chamber.

17. Turn on the laser �ash lamp, Q switch, and open the laser shutter.

18. Enter the interior control room and fully close the door. Do not leave this room

if there is any pressurized gas in the pressure chamber.

19. Open a phone line to a designated individual, not present in the lab, who can

be alert to an emergency or incapacitation of the authorized user present in

the lab during the �lling of the chamber. The designated individual will be Dr.

Varghese.

20. Open (Energize) the solenoid control valve on the pilot line of the pressure

chamber exit line normally-open, pneumatically actuated control valve. Result-

ing pilot line pressure will close the exit line valve.

21. Fill the pressure chamber by opening (energizing) one or both solenoid control

valves on the required �ll lines. After conditions in the pressure chamber have

equilibrated, close (de-energize) the �ll line valves.
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22. Close the phone line when the chamber has been safely �lled.

23. Collect the experimental data.

24. Empty the pressure chamber of all pressurized gas before leaving the interior

control room.

25. Close the test gas cylinders.

26. Re-Enter the interior control room and fully close the door. Vent the gas in

the pressure chamber �ll lines by keeping the chamber exit line valve in the

open position (solenoid control valve on pilot line de-energized) and opening

the �ll line solenoid control valves. Wait until �ll lines are fully vented and

the pressure chamber returns to room conditions. Close (de-energize) �ll line

solenoid control valves.

27. Close the laser shutter and turn o� the laser Q switch and �ash lamps.

28. Turn o� the intensi�ed camera and turn on the room lights.

29. Close the pilot line air cylinder. Empty the remaining compressed air in the

pilot line by opening the ball valve release. Close the ball valve release when

line has been vented.

30. Close all gas bottle regulators.

31. Turn o� the laser power control unit, which turns o� the laser cooling water

pump. It is important to not do this immediately after the laser Q switch and

�ash lamps have been turned o�, so that the laser head has had time to cool

with the cooling water still running. Generally advisable to wait approximately

111



15 minutes to allow the laser to cool before turning o� the laser power control

unit.

32. Cover all the optics.

33. Unplug the solenoid valves.

34. Unplug the valve control panels in the interior control room.

35. Unplug the lab security cameras, internal lab router, and network switch.

36. Unplug the pressure transducer and thermocouple.

37. Open the laser shield curtains and turn o� the exterior "Laser In Use" warning

light.
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