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Topological nodal line in ZrTe2 demonstrated by nuclear magnetic resonance
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In this work, we report nuclear magnetic resonance (NMR) combined with density functional theory studies of
the transition metal dichalcogenide ZrTe2. The measured NMR shift anisotropy reveals a quasi-two-dimensional
behavior connected to a topological nodal line close to the Fermi level. With the magnetic field perpendicular
to the ZrTe2 layers, the measured shift can be well-fitted by a combination of enhanced diamagnetism and spin
shift due to high-mobility Dirac electrons. The spin-lattice relaxation rates with external field both parallel and
perpendicular to the layers at low temperatures match the expected behavior associated with extended orbital
hyperfine interaction due to quasi-two-dimensional Dirac carriers. In addition, calculated band structures also
show clear evidence for the existence of a nodal line in ZrTe2 between � and A. For intermediate temperatures,
there is a sharp reduction in spin-lattice relaxation rate that can be explained as due to a reduced lifetime for these
carriers, which matches the reported large change in mobility in the same temperature range. Above 200 K, the
local orbital contribution starts to dominate in an orbital relaxation mechanism revealing the mixture of atomic
functions.
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I. INTRODUCTION

In recent years, there has been great interest in layered
transition metal dichalcogenides (TMDCs), comprised of a
wide range of transition metal (Mo, W, Ta, Zr, Hf, etc.)
and chalcogen (S, Se, or Te) elements. The TMDC family
offers platforms for exploring striking physical phenomena
and exotic electronic device applications [1]. Among TMDCs,
ZrTe2 has been relatively little investigated; however, recent
work [2–4] has indicated interesting topological features in
this material both in the normal state and as a doped su-
perconductor. Also, other zirconium tellurides have been of
considerable interest. For instance, ZrTe5 shows interesting
topological properties and unique physical properties such
as the chiral magnetic effect [5] and the three-dimensional
quantum Hall effect [6]. ZrTe5 also exhibits a topological
phase transition separating the strong and weak topologi-
cal insulator states [7–9] with a temperature-driven valence-
and conduction-band inversion associated with this topolog-
ical phase transition [7]. The layered material ZrTe3 has
also been long studied due to interesting behavior such as a
charge density wave phase transition [10]. Recently, theoret-
ical calculations indicated distinctive topological behavior in
ZrTe, which possesses triple-point fermions coming from the
threefold-degenerate crossing points formed by the crossing
of a double-degeneracy band and a nondegeneracy band [11].

Regarding ZrTe2, theoretical predictions from several
groups give rather different results [2–4,12–14], including
several [2,12] predicting ZrTe2 to be a simple metal; how-
ever, recent experimental evidence appears to contradict
this result. In addition, recent angle-resolved photoemission
spectroscopy (ARPES) studies [4] have presented evidence
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of massless Dirac fermions observed in the ZrTe2 bulk
phase, while recent density functional theory (DFT) calcu-
lations [3,4] have also supported the topological semimetal
prediction, thus indicating that ZrTe2 may have promising
prospects for quantum device applications. Nuclear magnetic
resonance (NMR) spectroscopy is particularly sensitive to
electronic carriers near the Fermi level, based on the obser-
vation of spectral shifts and also nuclear relaxation times,
and thus it provides an effective means to characterize the
behavior of the Dirac carriers in this system.

In this work, we have studied ZrTe2 using NMR techniques
combined with DFT computations, and the results indicate a
strongly diamagnetic response of Dirac carriers circulating
within the ZrTe2 layers, but with a quasi-two-dimensional
(2D) behavior that becomes modified as the temperature in-
creases at low T . By observing the differences in NMR shifts
and spin-lattice relaxation rates for both the B ‖ c and B ⊥ c
orientations, we find that the low-temperature results corre-
spond to a nodal line extending in the direction perpendicular
to the layers.

II. EXPERIMENTAL AND COMPUTATIONAL METHODS

The ZrTe2 single crystals (crystal structure shown in Fig. 1)
were prepared using chemical vapor transport. The stoichio-
metric mixture of Zr and Te powder was sealed in a quartz
tube with iodine being used as transport agent (2 mg/cm3).
Platelike single crystals with metallic luster were obtained
via vapor transport growth with a temperature gradient from
950 to 850 ◦C. Cameca SXFive microprobe measurements
indicate a uniform phase Zr0.99Te2.

NMR experiments utilized a custom-built spectrometer at
a fixed field B ≈ 9 T. Many individual crystals were stacked
with the c axes aligned, and the sample was measured with
the field parallel to c (B ‖ c) and in the basal plane (B ⊥ c).
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FIG. 1. Crystal structure of 1T -ZrTe2 with P-3m1 space group,
showing van der Waals–bonded layered structure.

The a-axis orientation was not identified for these crystals.
125Te (nuclear spin I = 1/2 and gyromagnetic ratio γ =
−8.51×107 rad s−1 T−1) shifts were calibrated by aqueous
Te(OH)6 and adjusted for its δ = 707 ppm paramagnetic shift
to the dimethyltelluride standard [15].

The band structure and density of states calculations were
carried out in the framework of the DFT by employing the
augmented plane wave (APW) plus local orbital (APW + lo)
method [16] with the Perdew-Burke-Ernzerhof (PBE) poten-
tial [17] as implemented in the WIEN2K code [18]. A mesh of
1000 k-points was employed in the irreducible wedge of the
hexagonal Brillouin zone [see Fig. 4(d)] corresponding to the
grids of 10×10×10 in the Monkhorst-Pack [19] scheme. The
cutoff parameter of kmax = 7/RMT inside the interstitial region
was used for the expansions of the wave functions in terms of
the plane waves.

III. EXPERIMENTAL AND COMPUTATIONAL RESULTS

A. Shift

Consistent with the single local environment for Te in the
1T -ZrTe2 structure, there is only one peak observed in the

125Te spectra, as shown in Fig. 2(a). The angular dependence
of the NMR shift (with θ defined between the ab layer and the
magnetic field B) is shown in Fig. 2(b). The room-temperature
shift was fitted [red curve in Fig. 2(b)] to

K = Kiso + 3 cos2 θ − 1

2
�K, (1)

where Kiso = 2767 ± 3 ppm is the isotropic shift and �K =
−530 ± 4 ppm. By symmetry, the shift will not depend on
orientation in the basal plane, which is confirmed by the
absence of additional inhomogeneous line broadening for this
orientation [Fig. 2(a)]. Reference [20] gives δiso = 1825 ppm
with Te(OH)6 as a reference, which corresponds to 2532 ppm,
a similar shift to that reported here, considering the large
width measured in Ref. [20].

Figures 2(c) and 2(d) show the temperature dependence of
the 125Te shift for B ‖ c and B ⊥ c (K‖c and K⊥c), respec-
tively. The shifts were obtained by identifying the highest
intensity position of the measured single-peak 125Te spectra.
Both K‖c and K⊥c decrease monotonically versus T , with
Kiso corresponding to the linear fits [shown in Figs. 2(c)
and 2(d)] changing by 0.34 ppm/K. At low T , K‖c shows a
sharp decrease as T approaches zero, while for K⊥c there is
a clear change in the opposite direction close to 50 K, where
the shift is nearly temperature-independent. These results are
indicative of quasi-2D Dirac-node behavior as is discussed in
Sec. IV A.

The carrier concentration shown in Ref. [4] is on the order
of 1019 cm−3, which indicates that the large measured shifts
are mostly chemical shifts due to electronic states away from
the Fermi energy (εF ); however, the temperature dependence
is dominated by Knight shifts due to carriers at εF , and for
convenience we label the observed shift, which is the sum of
these shift terms, as K .

B. Spin-lattice relaxation

Spin-lattice relaxation results, measured by inversion re-
covery, could be well fitted to a single exponential M(t ) =
(1 − Ce−t/T1 )M(∞), giving 1/T1T values shown in Figs. 3(a)

FIG. 2. (a) 125Te line shapes of ZrTe2 at room temperature. (b) Angular dependence of shift at room temperature. The red solid curve is a
fit to Eq. (1). Shift vs temperature for (c) B ‖ c (magnetic field perpendicular to the layers) with linear and ln(T ) curves as guides to the eye
and (d) B ⊥ c (magnetic field parallel to the layers).
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FIG. 3. 1/T1T vs T for both orientations B ‖ c (perpendicular to
the layers) and B ⊥ c (parallel to the layers). Inset: 1/T1T vs T in log
scale.

and 3(b). The results decrease rapidly at low temperatures
as T increases, especially (1/T1T )‖c, which changes rather
quickly at temperatures near 15 K. Near 50 K, which is also
the temperature at which K⊥c exhibits a change in behavior,
the relaxation results also exhibit a characteristic change, with
1/T1T leveling off, and 1/T1T exhibiting a minimum near
40 K and then steadily increasing. In metals 1/T1T is often
dominated by s-electron Fermi contact and proportional to
g2(εF ). However, similarly to ZrTe5 [21], we find that the
Dirac states in ZrTe2 are dominated by Te p-orbitals, along
with Zr d-states, as confirmed by the DFT results, which
are described in the next section. These produce a dominant
orbital contribution to 1/T1T , and we will further demonstrate
that the largest term is due to the high-mobility Dirac carriers.

C. DFT computations

From reports by several groups [2–4,12–14], there have
been some conflicting opinions about the topological nature
of ZrTe2 as detected in DFT results. Reference [14] suggests
a semimetallic state of ZrTe2 without any topological nature.
Reference [4] suggests that ZrTe2 is a topological semimetal,
consistent with its ARPES results. References [3,4] indicate
a Dirac point at � with the Dirac node close to the chemi-
cal potential and an electron pocket at M in the conduction
band. The lattice parameters used in Ref. [4] are about 1–2 %
expanded from experimental values. However, these param-
eters were obtained from a DFT energy optimization, and
they provided an approximate match for the reported ARPES
results, with the calculated Dirac node roughly 0.5 eV higher
in energy than what is actually observed by ARPES, and with
larger calculated overlaps of the pockets at L and M than what
is observed. Reference [14] included a correction for the van
der Waals interaction, leading to a much smaller overlap at the
L and M points; however, a large gap opened throughout the
Brillouin zone, in seeming contradiction with magnetotrans-
port results [22] as well as APRES results [4]. It is likely that
the well-known difficulty in predicting band energies near the
gap in standard GGA functionals such as PBE is responsible
for the discrepancies between the calculated results and the

observation. In TMDCs specifically DFT is well-known to
underestimate the band gaps [23,24]. For further investigation,
we used the lattice parameters of Ref. [4] (a = 3.909 Å and
c = 6.749 Å) for DFT calculations, with the understanding
that the εF position is much closer to the Dirac node than
predicted.

Results of the DFT calculations, with spin-orbit coupling
included, are shown in Figs. 4(a)–4(c). The nearly dispersion-
less band from � to A connects to Dirac-like features at �

(as previously identified [3,4]) and also at A, and this band
is doubly degenerate except for a gap of about 20 meV very
close to �, identified [4] as associated with a band inversion.
The mapping in reciprocal space, and a schematic of the nodal
line between � and A, are demonstrated in Figs. 4(d) and 4(e).
Also note that the partial DOS results show that Te p-orbitals
are mostly located at these Dirac bands away from the node,
while Zr d-orbitals dominate at the node itself, and the Zr
orbitals dominate the electron pockets at L and M. There is
also a separate high-dispersion band crossing � just below the
node energy.

As an estimate of the Fermi velocity for the Dirac nodal
line, we analyzed the linear slope in the �-M and A-L di-
rections leading up to the nodal line according to ε = h̄vF k,
and we obtained 6.9 and 6.5×105 m/s. Based on these val-
ues, which are typical for Dirac semimetals [25], we will
use the mean value, 6.7×105 m/s, for further analysis of the
Dirac-carrier behavior. A similar value was estimated for the
monolayer case [3]. The extra pockets at L and M contain
ordinary electrons, and the existence of both Dirac and or-
dinary electrons at εF leads to additional complexity in this
case, although experimental indications [3,4] point to a much
smaller overlap between the M pocket and the Dirac valence
band than what is calculated. With the

√
ε-type density of

states near εF dominated by the M pocket, we fitted to g(ε) =√
[2ε(m∗)3]/(π2h̄3) and obtained an estimate of m∗ = 1.7me

for this pocket. In the model discussed in Sec. IV A, the
position of the Fermi level is near the edge of this pocket,
and very close to the nodal line.

IV. DISCUSSION AND ANALYSIS

A. Knight shift

As shown in Figs. 2(c) and 2(d), there is an obvious
difference between the measured shifts of B ‖ c and B ⊥ c
orientations, especially at low temperatures. The observed
low-T divergence for K‖c follows approximately a ln(T )
curve, characteristic of the divergent orbital susceptibility
for Dirac semimetals [26,27], although the absence of the
corresponding behavior for K⊥c points to a quasi-2D Dirac
semimetal rather than 3D point-node behavior.

To analyze this situation, first we note that the shifts will be
largely due to the dominant p-electrons for Te in ZrTe2, con-
tributing a combination of core polarization and spin-dipolar
shifts, which are due to electron spin mechanisms, as well
as orbital shifts, with the latter likely dominated by the large
bulk orbital response of the Dirac electrons rather than due
to local orbitals. The core polarization mechanism normally
contributes an isotropic shift (the same sign for both orienta-
tions), and the spin-dipolar, an anisotropic shift [second term
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FIG. 4. Band structures of ZrTe2 with spin-orbit coupling, with superposed circles showing weights for (a) px + py and (b) pz Te orbitals.
The dashed lines represent the Fermi level. The circle size represents the partial state density of Te. (c) Density of states for ZrTe2. (d) 3D view
of the hexagonal Brillouin zone with high-symmetry points. (e) Sketch of discrete nodal line between � and A.

in Eq. (1)]. However, the absence of divergent behavior for
B ⊥ c points to a different physical mechanism for the two
orientations rather than shift anisotropy, and thus we analyze
the B ‖ c divergence in terms of the spin response of quasi-2D
Dirac electrons due to the separation of Landau levels with
B ‖ c, plus an orbital shift dominated by quasi-2D orbital
currents confined to the basal plane.

For a quantitative comparison, first we consider the case of
a 3D point node. The Knight shift due to the orbital interaction
in a 3D massless Dirac electron case can be expressed as [27]

K = K0 −
[
μ0vF e2

6π2h̄
ln

(
W

max{kBT, |μ|}
)]

(1 − ND), (2)

where K0 is a T -independent term, μ is the chemical potential
measured from the Dirac node, W is a bandwidth cutoff, and
ND is a demagnetizing factor. ND can be significant for the
orbital hyperfine contribution of extended Dirac carriers, and
in fact in the pure 2D limit the shift due to this mechanism
will vanish [28]. Note that this is the low-field case. For vF ,
we used vF = 6.7×105 m/s from the DFT results (Sec. III C).
Considering the demagnetizing effect, the overall sample size
(around 2×2×0.5 mm3) implies a demagnetizing factor of
approximately ND = 0.8 for such a bulk-susceptibility con-
tribution for the B ‖ c orientation. Using these values, and
assuming that kBT dominates in the logarithm of Eq. (2), we
obtain a difference in shift of less than 1 ppm between the
temperatures 10 and 100 K, much less than what is observed.
Or, if changes in μ are on the order of kBT , the results will be
similarly small.

B. Quasi-2D model for the Knight shift

As an alternative we consider the shift due to the dia-
magnetic currents of a Dirac nodal line oriented along the c
direction. In this quasi-2D case, currents are confined to the
basal plane, and the diamagnetic response is equivalent to that
of a 2D Dirac gas, for which we follow the treatment used
for graphene [29]. Also note that the effect vanishes for B ⊥ c
due to the absence of high-mobility circulating currents per-
pendicular to the plane. For ZrTe2 we modeled this system as

including a quasi-2D Dirac line, with the addition of a normal
electron pocket crossing the node energy (εnode), as indicated
by DFT calculations and by ARPES measurements [4].

First, we calculate the chemical potential (μ). For the nor-
mal electron pocket we assumed an effective mass m∗/me =
1, close to the estimate for the pocket at M in DFT calcula-
tions (Sec. III C). Also for the perpendicular Fermi velocity
we used the result obtained from DFT, v⊥ = 6.7×105 m/s,
which in the 9 T NMR field perpendicular to the layers

gives Landau-level energies εLL(N ) = ±
√

(2eh̄v2
⊥B|N |) =

±73
√

(|N |) meV, and a volume density of carriers per
spin level nLL = B/(	0c) = 3.3×1018 cm−3, where 	0 =
4.14×10−15 T m2 is the magnetic flux quantum. The gyro-
magnetic ratio is not known for these carriers, so we assumed
g = 2. Also we assumed that a fixed density of carriers ntotal =
1019 cm−3 estimated from ARPES results [4] is divided be-
tween these band features. To solve for the chemical potential,
we specified

ntotal =
∫ ∞

0
f (ε, μ)gCB(ε)dε +

1/2∑
s=−1/2

∞∑
N=−∞

nLL f (εN , μ)

− nLL −
1/2∑

s=−1/2

−1∑
N=−∞

nLL, (3)

where gCB(ε) =
√

(2εm∗3)/(π2h̄3) is the density of states
in the normal-carrier pocket with its minimum set to ε =
0, εN = εnode + μBgBs + εLL(N ) represents the Landau level
energies, and f (ε, μ) = 1/[1 + e(ε−μ)/kBT ] is the Fermi func-
tion. The extra term nLL comes about because the lower
N = 0 level is derived from the hole states, and we apply
level quantization only to the Dirac states for which the large
vF pushes these states into the quantum limit. In the finite
sums, we chose a very large cutoff for which the sums are
numerically well-converged. In the B ⊥ c case for which the
Landau levels collapse, we replaced the sum over Landau
levels in Eq. (3) with an integral over the 2D Dirac density
of states gD(ε) = |ε − εnode ± μBgBs|/[πc(h̄v⊥)2] per spin,
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FIG. 5. (a) Sketch of Dirac band and electron pocket. (b) Simulated shifts for both orientations. Inset: chemical potential vs T . (c) W =
1/2T1 is the dipolar and orbital relaxation rates divided by 2π (γeγnh̄3/2)2g2(εF )kBT 〈r−3〉2. α is the mixture of orbitals (px + py) vs pz.

also normalized for hole states similarly to the last term in
Eq. (3). Solving for μ(T ), we obtained the results shown in
the inset of Fig. 5(b) for the case εnode = 12 meV. Because of
the significant carrier density nLL at each Landau level energy
including N = 0, the B ‖ c field tends to pull μ into εnode at
low temperature [30], as can be seen from the results shown in
the inset of Fig. 5(b). Recently anomalous magnetotransport
effects were also identified in a layered Dirac material due to
field-induced alignment of the chemical potential [31].

We next calculate the diamagnetic susceptibility, χ =
μ0∂M/∂B, and its contribution to the NMR shift, K = χ (1 −
ND). The magnetization for B ‖ c is M = −(1/V )∂/∂B [29]
with the grand potential volume density given by

/V = −kBT nLL

m∑
N=−m

ln[1 + e(εN −μ)/kBT ], (4)

with m a numerical cutoff for the sum. For numerical calcu-
lation of the B derivative, we adopted the method described
in Ref. [29] to normalize for the B-dependence caused by the
numerical cutoff m. Using the μ(T ) results shown in the inset
of Fig. 5(b), we thus arrived at an estimation of χ for the
B ‖ c case. For the B ⊥ c case, the diamagnetic contribution
is zero since there is no splitting into Landau levels. Using
the demagnetizing factor ND = 0.8 estimated for our sample
for B ‖ c, we arrived at the bulk-diamagnetic contribution to
K‖c shown by the dashed curve in the main plot of Fig. 5(b).
Note that in the B-derivative of /V we included changes in
nLL and εLL(N ), but not in the numerical solutions μ(T ). The
difference should be small, since for most of the temperature
range the CB pocket determines the position of μ, while at low
temperatures the results have the linear-T behavior equivalent
to the case when μ is fixed at εnode [29], due to the pulling
effect of the magnetic field.

To calculate the spin contribution to the shift, we first
calculated the Dirac-electron spin density as

nspin =
1/2∑

s=−1/2

2s
∞∑

N=−∞
nLL f (εN , μ), (5)

both for B ‖ c and B ⊥ c using the corresponding μ(T )
values shown in the inset of Fig. 5(b). Assuming the core-
polarization hyperfine contribution dominates for the Te

p-electrons participating in the Dirac node, we used the es-
timated [32] hyperfine field BHF

cp = −15 T in calculating the
spin shift as Kspin = nspin(BHF

cp /9 T)(Vcell/2), with 9 T the ap-
plied NMR field and the sample volume per Te atom given by
Vcell/2 = 50 Å3. The results were added to the calculated T -
dependent diamagnetic orbital shift, giving the spin+orbital
result plotted in Fig. 5(b) (lowest curve). The results are
comparable to the observed shift behavior and have the same
general temperature dependence. Since there is considerable
likelihood that g differs from 2 [33–36], we did not attempt
a quantitative fitting; however, it appears that this model cor-
rectly captures the low-T behavior, and that a combination
of spin susceptibility and orbital diamagnetism, both strongly
enhanced in the quantum limit for the B ‖ c orientation, is
responsible for the observations.

Comparing to the 3D case discussed earlier [Eq. (2)], we
can thus understand the enhanced effect for the quasi-2D
case as due to two effects. First, the lack of Landau level
dispersion in two dimensions means that the density of states
is changed considerably by the field, which allows for a large
spin polarization since a large number of states is concentrated
at discrete energies. Secondly, this concentration of states
in energy also enhances the diamagnetic response obtained
from Eq. (4). Also note that the estimated μ(T ) obtained
from Eq. (3) [inset of Fig. 5(b)] should be little changed in
the 3D case because of the large role of gCB(E ), and indeed
these changes in μ(T ) are on the order of kBT , confirming
the estimate in Sec. IV A of the small expected shift in that
case.

Note that in the DFT results (Fig. 4), a small dispersion
appears in the nodal line, with the changes covering a range
of approximately 20 meV between � and A. To model the
effect of this behavior, we added a simple linear dispersion
to the εnode position. This was done by modifying the sum
over Landau level numbers N in Eqs. (3)–(5), replacing the
summands having fixed εnode by an integrated square distri-
bution covering a range εnode ± 10 meV, and repeating the
numerical calculations described above with otherwise iden-
tical parameters. This yielded the spin+orbital shift result
shown in the dotted curve in Fig. 5(b): the main effect is
a softening of the spin contribution as T approaches zero;
however, the calculated magnitude is similar to that of the
completely dispersionless case.
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C. Relaxation mechanisms

The low-T 1/T1 results exhibit an anisotropy and tem-
perature dependence that does not match the corresponding
behavior of the measured shifts. Thus, we expect that the
T1 behavior is not a result of a Korringa-type spin contribu-
tion [37], which would be expected in that case. However,
in contrast to the spin contribution, the orbital shift and T1

are not governed by a Korringa relation [26], and the behav-
ior in the low-T limit matches what is predicted [27,38] for
the quasi-2D orbital case due to a mechanism governed by
high-mobility carriers, which we denote here as the extended
orbital mechanism, since carriers far from the nucleus dom-
inate this process. For the quasi-2D free-electron gas (i.e.,
metallic layers where the electrons behave as a 2D free-
electron gas), Lee and Nagaosa obtained the relaxation rates
due to this mechanism when the magnetic field is applied
parallel and perpendicular to the layers [38], which corre-
sponds to a ratio between (1/T1T )‖c and (1/T1T )⊥c of 2 : 3.
As shown in Fig. 3, excluding a T -independent background,
the low-T (1/T1T )‖c and (1/T1T )⊥c reaches a ratio close to
2 : 3. Thus, the low-T behavior can be modeled using the
extended orbital scenario.

For a quasi-2D Dirac system, the extended orbital contri-
bution can be expressed as [27](

1

T1T

)
⊥c

= 3

2

(
1

T1T

)
‖c

= μ2
0γ

2
n e2kB

(4π )2

∫
|E |>�

dE

×
[

− ∂ f (ε)

∂ε

]√
ε2 − �2

h̄2cvF
ln

2(ε2 − �2)

h̄ω0|ε| , (6)

with ε = ±
√

vF
2k2 + �2, and c is the distance between

nearest-neighbor layers. In addition, f (ε) is the Fermi func-
tion and Eg = 2� is the gap. In the low-T limit assuming �

is small, this readily evaluates to (μ0γne)2

(4π )2
kBμ

h̄2cvF
ln( 2μ

h̄ω0
). Com-

paring to the result [27] for a 3D point node in the same
limits, 8π

3
(μ0γne)2

(4π )2
kBμ2

h̄3v2
F

ln( 2μ

h̄ω0
), 1/T1T for the quasi-2D case is

the same as the 3D case multiplied by a factor 3
8π

h̄vF
μc . Taking

μ = 10 meV, vF = 0.67×106 m/s, and c = 6.7 Å for ZrTe2,
this is a factor of 7, with the quasi-2D situation enhanced
essentially because of the increased phase space for the scat-
tering phenomena leading to Eq. (6), which can include events
with �k covering the entire Brillouin zone in the direction
perpendicular to the layers. With the low-T (1/T1T )⊥c larger
by a factor of about 10 as compared to that of the comparable
point-node material ZrTe5 [9], this indeed makes it plausible
that the extended-orbital mechanism for high-mobility Dirac
electrons is the dominant mechanism at low temperatures.
In the low-T limit, the ratio (1/T1T )⊥c/(1/T1T )‖c is smaller
than the expected 3/2 given by this model; however, note that
Eq. (6) was derived in the low-field limit, and it seems possible
that such effects might renormalize the (1/T1T )‖c results. In
addition, while the normal-electron pocket at M is strongly
dominated by Zr d-orbitals, a nonzero contribution due to
Te states might also lead to a slowly varying background
contribution to 1/T1T .

As shown in Fig. 5(b), we determined that Dirac spins can
give a considerable contribution to the Knight shift due to core
polarization combined with Landau level splitting for B ‖ c.

However, we expect the core polarization mechanism to give
a rather negligible contribution to 1/T1T . This can be seen
from the Korringa relation [32], which can provide an approx-
imate upper limit for the spin 1/T1T . For 125Te, the Korringa
relation will be (1/T1T )spin = K2

spin/[2.6×10−6 (s K)−1], and
with |Kspin| at low temperatures determined to be somewhat
less than 100 ppm, choosing 100 ppm yields a limiting value
(1/T1T )spin = 4×10−3 (s K)−1. This is considerably smaller
than what is observed. Note also that in the low-T limit
where the Dirac spins are heavily polarized, the probability
of spin-flip scattering can be reduced, further limiting 1/T1T .
However, the extended orbital 1/T1T due to high-mobility
electrons is not connected to the shift via a Korringa relation,
and from these considerations we determine that the spin-
lattice relaxation rate of ZrTe2 is dominated by this orbital
contribution. These results will extend across the whole tem-
perature range.

As the temperature increases past 10 K, (1/T1T )‖c drops
rather suddenly, reaching a minimum at about 40 K. This also
coincides with a reported drop in the Dirac-carrier mobility,
before the high-T regime sets in with different behavior [22].
We believe that the change in (1/T1T )‖c can be understood
in terms of carrier scattering effectively reducing the dimen-
sionality of the relaxation mechanism. Reference [39] shows
that the orbital 1/T1T process due to high-mobility electrons,
which relies upon a logarithmic divergence in the hyperfine
coupling mechanism at large distances, will begin to cut off
at a distance corresponding to the mean free path (�) as the
scattering rate increases, so that 1/T1T becomes proportional
to ln(�). With little or no dispersion for the nodal-line carriers
in the direction perpendicular to the layers, the mean free path
will certainly be highly anisotropic. Once this length becomes
considerably reduced, 1/T1T will go over to the 2D case,
for which the extended orbital (1/T1T )⊥c is unchanged but
(1/T1T )‖c in this mechanism vanishes [27,28]. This is not
to say that the layers become completely decoupled; a large
reduction in mean free path is sufficient for this change to
occur.

Above the minimum, (1/T1T )‖c again starts to increase.
As seen in the inset of Fig. 5(b), the increase versus T is
also accompanied by a drop in chemical potential to maintain
charge balance given the large gCB(ε) contribution. As shown
in Figs. 4(a) and 4(b), there is a split-off band at � just below
the Dirac node, which is more strongly dominated by Te p-
electrons. As μ decreases, holes will begin to appear in these
states, with a significant effect on the 125Te NMR because of
their orbital weight. Aside from the 1/T1T changes, there is
also a change of character for the T -dependence of K , with
a small increase in shift appearing for B ⊥ c. This behavior
matches the observed change in magnetotransport behavior at
these temperatures [22], which we believe is a Lifshitz tran-
sition corresponding to the chemical potential meeting this
split-off band edge. To understand the increase in (1/T1T )‖c at
high temperatures, we show in the Appendix that in addition
to the extended orbital contribution, there is a local orbital
contribution [39] to 1/T1T that does not rely on logarithmic
divergence at extended distances, which will be larger for
the B ‖ c orientation as long as the Te pz contribution exceeds
the Te px and py contributions [Fig. 5(c)], which seems to be
the case here. Therefore, the high-temperature behavior can
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be understood in terms of an enhanced local-orbital contribu-
tion of 1/T1T , dominated by the split-off band, which comes
into play at higher temperatures, while the extended orbital
contribution decreases as a consequence of the large decrease
in carrier mobility.

V. CONCLUSIONS

In conclusion, the topological nature of transition metal
dichalcogenide ZrTe2 is revealed here as a quasi-2D Dirac
semimetal with a nodal line between � and A. For magnetic
fields perpendicular to the ZrTe2 layers, the measured shift
can be well-modeled by a combination of orbital shift and spin
shift due to high-mobility Dirac carriers. We also show that the
low-temperature behavior of the spin-lattice relaxation rate
can be explained through a quasi-2D Dirac electron model. In
the intermediate temperature range, an increase in scattering
of the Dirac carriers is applied to interpret the observed fast
drop of the spin-lattice relaxation rate for the B ‖ c orien-
tation. With temperature increasing further, the local orbital
contribution starts to dominate the spin-lattice relaxation rate
with the significant contribution of a split-off band.
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APPENDIX: SPIN-LATTICE RELAXATION DUE
TO ORBITAL AND DIPOLAR INTERACTIONS

The local orbital contribution to 1/T1T is the mecha-
nism typically associated with orbital hyperfine coupling in
normal metals. As opposed to the extended-orbital mecha-
nism [38,39], the local contribution is expected to be limited
to orbitals belonging to the atom containing the nucleus being
measured. Following the treatment of Obata [40], here we ex-
tend the calculation of 1/T1T to p-electrons in the tetragonal
symmetry corresponding to the threefold uniaxial symmetry
for Te sites in ZrTe2.

In the tight-binding approximation, the Bloch eigenfunc-
tions are built up from localized atomic functions. For
p-electrons, there are three independent orbital functions px,
py, and pz. With magnetic field B along a certain direction,
in our case x and z, here are the mixed wave functions for
uniaxial symmetry (omitting the product spin states):

� =
{

α1/2 pz + (1 − α)1/2 1√
2
(px + py), B ‖ c,

α1/2 py + (1 − α)1/2 1√
2
(pz + px ), B ⊥ c,

(A1)

where α is a parameter specifying the relative amount of E
symmetry (px and py) versus A1 symmetry (pz) for a magnetic
field along z (similarly for B ⊥ c with � rotating correspond-
ingly). For B ‖ c, when α = 0, the wave function contains
only px and py. With α = 1, only pz remains. For both dipolar
interaction and orbital interaction contributions, we can thus
determine the expressions of the corresponding spin-lattice
relaxation rates, starting with a golden-rule relation, for which
1/T1 = 2W = 4π/h̄kBT 〈|�|H|�〉|2g2(εF ), where H is the
orbital or dipolar hyperfine interaction Hamiltonian [40], both
of which are proportional to 1/r3 allowing the relative mag-
nitudes to be readily compared. Also g(εF ) denotes the partial
density of states at εF for the Te p-orbitals, which are assumed
to appear in the relevant band according to the amplitudes
given in Eq. (A1). We obtain the following for the case of
dipolar interaction:

Wdip = 4π

5
C

(∣∣∣∣
∫ 2π

0

∫ π

0
��∗ 1

2
Y 0

2 sin θ dθ dφ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0

∫ π

0
��∗

√
3

2
Y −1

2 sin θ dθ dφ

∣∣∣∣
2

+
∣∣∣∣
∫ 2π

0

∫ π

0
��∗

√
3

2
Y −2

2 sin θ dθ dφ

∣∣∣∣
2)

=
{

C
50 (9α2 − 12α + 5) (B ‖ c),

C
200 (9α2 + 6α + 5) (B ⊥ c),

(A2)

where � is the wave function from Eq. (A1). Here C =
2π (γeγnh̄3/2)2g2(εF )kBT 〈r−3〉2, where 〈r−3〉 comes from the
radial parts of the integrations that are not displayed in
Eq. (A2). The integrals can be analytically evaluated giving
the results also shown in Eq. (A2). For the case of the orbital
interaction, the corresponding relations are

Worb =C

2
|〈�|l−1|�〉|2 =

{
2Cα(1 − α) (B ‖ c),

C
2 (1 − α2) (B ⊥ c).

(A3)

These results are shown in Fig. 5(c) in the main text. As
anticipated [40], the orbital term dominates in almost all cases.
Also there is a crossing of terms at α = 1/3 that represents
an equal mixture of orbitals, as expected since such a mixture
becomes isotropic. When α is larger than 1/3, the local orbital
contribution for B ‖ c exceeds that for B ⊥ c.
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