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We begin this dissertation by studying noise correlations in superconducting heterostructures of var-

ious geometries. In recent years there has been a resurgence of interest in the nonlocal transport properties

of superconducting heterostructures due to the possibility of their serving as a source of electronic entan-

glement in solid state quantum information processors. Devices designed for this purpose are called Cooper

pair splitting devices. The utility of these devices as entanglement sources is known to have connections to

the positivity of noise cross correlations in spatially separated leads. In Chapter 1 we outline the theoretical

prerequisites for this work, outlining the scattering theory framework based on the Bogoliubov-de Gennes

equations we adopt. Within this framework we apply a methodology first introduced by Demers and by

Blonder, Tinkham and Klapwijk (BTK) in the early 1980s to find the scattering matrix for our supercon-

ducting structures. The current, local and nonlocal shot noise can all be expressed in terms of the underlying

scattering processes. This framework allows us to investigate the behavior of the current and noise corre-

lations in the structure as we change the geometry and other key system parameters such as the system

size, superconducting phase difference and temperature. We also introduce the Andreev approximation, a

commonly used approximation which simplifies the scattering theory for superconducting heterostructures.
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In Chapter 2, we study the local and nonlocal shot noise in a quasi-1D normal-superconducting-

normal (NSN) geometry using material parameters relevant to high-Tc superconductivity. The scattering

and shot noise distributions are studied in the short, intermediate and long system size limits, allowing us to

examine the qualitative differences in these three parameter regimes. This allows us to, for example, identify

the signatures of over-the-gap geometric resonances in the shot noise distributions that appear in the long

system size limit. We also break the nonlocal shot noise distributions down further and study the individual

contributions to the nonlocal shot due to particle-particle, hole-hole and particle-hole scattering processes.

In Chapter 3, we extend our investigation of superconducting heterostructures to the more compli-

cated NSNSN geometry. A novel feature introduced in the geometry is the presence of subgap quasibound

states, which show up as resonances in the scattering matrix. We show that these quasibound states dra-

matically impact the nonlocal shot noise distributions in the system. At energies near the quasibound states

the dominant transmission channel through the system is a process called particle-hole transmission, which

results in sharp positive peaks in the nonlocal shot noise distribution of the system. The behavior of the

nonlocal noise correlations as we change the size of the superconducting and normal regions is investigated

and it is found that there is a “sweet spot” with respect to the size of the superconducting regions that max-

imizes the positivity of the nonlocal noise distributions as well as a periodic-like behavior in the positivity

of the noise distributions with respect to the normal region size. The results of the full scattering theory

for the NSNSN geometry are compared to the results obtained using the Andreev approximation, where we

find that the Andreev approximation breaks down at energies close to the quasibound state energies.

In the second half of this dissertation we focus on work related to the development of a prototype

special-purpose quantum circuit simulation device based on commercial off-the-shelf high-speed analog signal

processing hardware. In Chapter 4 we introduce the embedding scheme used to represent quantum states

and quantum gates in the frequency domain of a classical analog voltage signal. Experimental results are
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presented from an early two-qubit prototype device for the fidelity of the state generation and gate application

circuits. In Chapter 5, a more in-depth investigation into the modeling of classical errors within our signal

processing based simulation method is performed in terms of the effects this noise has on the results of

the quantum computation being simulatied. It is shown, for example, that additive white gaussian noise

(AWGN) in our system has the same effect as applying a depolarizing channel to the qubits in the simulation.

We then perform a simulation of a simple quantum error correction (QEC) protocol using the device and

show that, even in the presence of classical noise in the simulation hardware, an overall enhancement in the

performance of gate operations as a result of applying QEC is observed.
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Superconducting Heterostructures
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Chapter 1

Introduction

1.1 Introduction

The potential for superconductors to serve as a source of entangled electron pairs in solid state

devices has led to a resurgence in interest in the study of superconducting heterostructures in recent

years [20, 46, 53, 100, 116]. The key observation is that the Cooper pairs underlying superconductivity nat-

urally form maximally entangled pairs of electrons, which if spatially separated (say in separate leads of a

superconducting heterostructure) would enable these electrons to be used for quantum information process-

ing tasks. Superconducting heterostructures designed with this purpose in mind are referred to as Cooper

pair splitters (CPS). With the rapid development of superconducting quantum information processors, there

is a need to revisit the dynamical properties of superconducting heterostructures in the context of their

applications to the development of these devices.

The usefulness of superconductors as an entanglement source is limited by the ability to spatially

separate the entangled electrons comprising the Cooper pairs and thus is determined by the spatially nonlocal

transport properties of the structure, which couple different normal metal leads in the system [28]. The

primary mechanism responsible for the creation of entangled electron pairs in NSN structures is the crossed

Andreev reflection (CAR) process, in which a particle or hole impinges on the superconducting region in one

lead and is transmitted as a hole or particle, respectively, in the other lead [18, 28]. An important measure

for entanglement generation in these structures, the Cooper pair splitting efficiency η, can be related to

the strength of this process in relation to the other non-entanglement generating processes such as specular
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reflection and normal transmission of particles or holes [20]. Because of this, much of the existing research

on CPS has focused on designing architectures that enhance the prevalence of CAR. Proposals include using

double quantum dots (QD) [20,26,51], spin filtering using ferromagnetic leads [38], anomolous scattering in

graphene [17,24,55] and energy filtering in semiconductors [116]. Experimentally, extensive progress has been

made with QD-based devices [44, 52]. Additionally, these proposals are not necessarily mutually exclusive,

and theoretical and experimental progress has been made with CPS devices that use a combination of double

QD and either ferromagnetic leads or external magnetic fields [21,45,111,112,119].

Alternatively, it is possible to relate the efficiency of formation of entangled pairs to the nonlocal

shot noise spectrum of the structure, which is one of the focuses in this paper [23, 46]. As a result of

the interest in Cooper pair splitter design, a large amount of work has been done theoretically (see for

example, [20,43,47,116,122]) and experimentally (see [51,52,100]) to characterize the nonlocal properties of

various NSN structures. Most of this work so far has focused on standard s-wave BCS superconductors, but

some theory has also been worked out for systems with anisotropic order parameters [46, 89], such as HTS,

and for structures which incorporate quantum Hall edge channels [54].

In this dissertation we adopt the scattering theory framework for quantum electronic transport, de-

veloped by Landauer [70] and Buttiker [22]. We make use of an adaptation of this scattering theory approach

using the Bogoliubov-de Gennes equations [35] in order to incorporate inelastic scattering processes due to

interactions with superconducting regions. Our methods are adapted from the techniques introduced by

Demers and Griffin, and Blonder, Tinkham and Klapwijk (BTK) [16, 35, 36]. We obtain exact expressions

both with and without the Andreev approximation [7] for the scattering matrix, current, and both local and

nonlocal shot noise. Using these expressions, we obtain numerical results for NSN and NSNSN heterostruc-

tures using parameters for based on the high-Tc superconductor (HTS) LSCO. The basis of the Andreev

approximation is dropping higher order terms in the ratio of the superconducting gap energy ∆0 and the
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Fermi energy EF from the Bogoliubov-de Gennes equations. Our use of the superconductor LSCO as our

model material in the numerics presented in this paper amplifies the differences observed between the full

scattering theory and the Andreev approximation in the cross-correlated shot noise distributions because it

has a relatively large value of ∆0/EF .

High temperature cuprate superconductors (HTS) were discovered in 1986 [12] and, in the decades

since, a substantial amount of experimental and theoretical development has occurred regarding the electronic

transport properties of these materials [58, 108, 109, 113]. These materials typically have order parameters

with d-wave symmetry. Extensive experimental work has been performed on studying mesoscopic d-wave

superconductor structures (a review of which can be found in [107]). Additional experimental studies have

probed current fluctuations and, in particular, the relation between shot noise and junction bias in mesoscopic

d-wave structures [29,30,91]. These shot noise studies find strong agreement with the theoretical predictions

derived in [6], which were based on the scattering matrix approach. Additional theoretical work on shot noise

in d-wave superconductors can be found in [33] and a general review of shot noise in mesoscopic systems can

be found in [15].

Building devices using HTS can be challenging, in part due to the difficulty of growing high quality

single crystals at the nanoscale. Additionally, dimension limited superconductivity presents its own challenges

in the form of dissipative finite-size effects [72,81], which require substantially lower temperatures to operate

at these scales. In recent years, advances in fabrication techniques and HTS material science have enabled the

manufacture of high quality single crystal nanowires. These nanowires allow for the study of dimensionality-

limited superconductivity with the smallest of the nanowires operating in the quasi 1-d limit. Applications

have been proposed for using superconducting nanowire devices in the field of quantum sensing, including

those based on superconducting qubit architectures. Typical superconducting qubit devices are constructed

using standard Josephson junctions formed from superconductor-insulator-superconductor (SIS) structures
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[117]. However, devices have also been constructed by instead using SNS junctions formed by semiconductor

nanowires [71, 74], due to their ability to operate at higher magnetic field strengths. Superconducting

cuprate nanowires have a number of potential advantages in application areas such as this due to their

very high critical magnetic field strengths. Moreover, superconducting nanowire-based devices have been

used in proposals to improve the quantum efficiency of single photon detectors [11] and for improving

the flux sensitivity of SQUIDs, again due to their high critical magnetic field strengths and small coherence

lengths [9,102]. Of all of the HTS, the most effort has been applied to the manufacturing and characterization

of nanoscale YBCO (YBa2Cu3O7−x). The state of the art for YBCO nanowire size is ∼ 10nm [121].

Nanowires of this size are on the order of the coherence length for YBCO, ξ = 3.4 nm [118], and smaller than

the magnetic penetration depth of λ = 26nm [118]. In addition to YBCO, nanowires with widths as small

as 80nm have been constructed from LSCO (La2−xSrxCuO4) [77] as well as nanowires with widths between

400-600nm for BSCCO (Bi2(Sr,La)2CuOy) [41]. These dimensions are still at least an order of magnitude

larger than the coherence length, but it is conceivable that it will be possible within the next few years to

reliably construct nanowires with sizes on the order of the coherence length for a number of cuprate HTS.

In Chapter 2 we study the NSN geometry. The full scattering matrix is calculated (the corresponding

scattering coefficients are given in Appendix A) without the Andreev approximation and these are used to

generate energy distributions for the thermally averaged current. We generate contour plots of the local

and nonlocal shot noise and find evidence of electron bunching in both the local and nonlocal noise. The

dependence of the total nonlocal shot noise and the individual contributions due to hole-hole, particle-particle

and particle-hole interactions is plotted as a function of the system size and as a function of applied bias.

In Chapter 3 we study the NSNSN geometry and find that there is a one-to-one correspondence

between the energies of the quasibound states in this system and the regions of positivity in the cross-

correlated shot noise energy distribution. We also find that this connection is robust and persists in the
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presence of multiple quasibound states and for a wide range of system sizes. Moreover, we analyze the

noise cross-correlations for the NSN geometry and find that, in contrast to the NSNSN geometry, the total

cross-correlated shot noise distribution remains negative over the entire sub-gap energy range of the system.

The results for the NSNSN geometry using the full scattering theory are compared to those obtained using

the Andreev approximation, and we find that there is a large deviation between the behavior of the cross-

correlations at the quasibound state energies.

The remainder of this chapter is organized as follows. In Section 1.2.1, we review the Bogoliubov-de

Gennes theory of the superconductor as it applies to superconducting heterostructures. In Section 1.2.2, we

describe the scattering theory used to obtain exact expressions for the scattering amplitudes for the NSN

and NSNSN systems. In Section 1.2.3.1, we derive the field operators for excitations in the normal regions

of the system and include the effect of scattering from the superconducting regions and use this to obtain

the expression for the current through the normal regions. In Section 1.2.3.2, we give exact expressions for

the local and nonlocal shot noise. Finally, in Section 1.3, we discuss the model material parameters used for

the numerics in this work.

1.2 Theoretical Methods

1.2.1 The Bogoliubov-de Gennes Equations

Within the superconductor, the energy eigenstates in real-space are given by solutions to the

Bogoliubov-de Gennes equations,

(
−~2∇2

2m − EF ∆(~r)

∆∗(~r) ~2∇2

2m + EF

)(
u(~r)
v(~r)

)
= e

(
u(~r)
v(~r)

)
, (1.1)

Consider a system with a spatially varying gap potential, for example the heterostructure described in Figure

1.1. One commonly used model for the spatial variation of the gap function is a step function potential,
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Figure 1.1: The NS junction geometry is among the simplest possible superconducting heterostructures, and
we will use it an a guiding example in developing the formalism of the Bogoliubov-de Gennes equations
and BTK scattering theory. In Chapters 2 and 3 we will introduce the more complicated NSN and NSNSN
geometries studied in this dissertation. The left and right leads are are connected to thermal reservoirs with
Fermi energy εf . We will allow for an additional bias of vl to be applied to the left lead. More details on
the system parameters can be found in Section 1.3 and Table 1.1.

as shown in Equation 1.2. While the step function model in general does not satisfy the self-consistency

requirements imposed by BCS theory, it is a common first approximation that works well in many systems.

The validity of this step function approximation is addressed in detail in [76] and [61].

∆(~r) =

{
∆(z) z < 0

0 z > 0
(1.2)

While we will restrict ourselves to the step function model above, previous theoretical work has

been done in order to understand the effect self-consistently solving for the superconducting gap function

has on the predicted behavior of superconducting heterostructures. Some of the earliest work on this was

performed by McMillan, who used Green’s function methods to calculate the first-order corrections to the

step-function approximation and proposed an experiment using a SNIS structure to experimentally probe the

spatial structure of the self-consistent gap function [82]. In [115], van Son, van Kempen and Wyder utilized

a qualitative model for the gap function at an NS interface and found that the softening of the discontinuity

in the gap function resulted in a dampening of geometrical oscillations in the transmission through an NINS

tunnel junction. Martin and Lambert self-consistently calculated the gap function for the NSN structure
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and used this result along with a transfer matrix based approach to calculate corrections to the differential

conductance of the system [80]. The authors found substantial corrections to the differential conductance of

the self-consistent NSN system for bias voltages comparable to, and larger than, the maximum gap energy

∆0, with additional structure at supergap biases directly associated with a gradient in the superconducting

phase of the central S region introduced by the self-consistency requirement. Comparable findings to those

of Martin and Lambert were found in a series of works by Sánchez-Cañizares and Sols [97–99].

The general strategy for tackling the step function scattering problem is to first solve the bulk BdG

equations in each of the layers separately and to then apply the appropriate boundary conditions to stitch

together a complete solution. For materials with s-wave symmetry order parameters, the gap function ∆(~r)

reduces to ∆0e
iφ (with ∆0 real-valued) inside of the superconductor, where eiφ is the complex phase of the

superconductor. The Bogoliubov-de Gennes equations, assuming no magnetic fields or external potential are

present, and with an s-wave superconductor, are given by

εu(~r) =

[
− ~2

2m
~∇2 − εf

]
u(~r) + ∆0e

iφv(~r), (1.3)

εv(~r) =

[
~2

2m
~∇2 + εf

]
v(~r) + ∆0e

−iφu(~r), (1.4)

where ε is the excitation energy and u and v are the spatially varying coherence factors. We then try the

trial solution

(
u(~r)
v(~r)

)
=

(
u
veiϕ

)
ei
~ks·~r (1.5)

Plugging this into the BdG equations we get
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εuei
~ks·~r =

[
− ~2

2m
~∇2(uei

~ks·~r)− εfei
~ks·~r
]

+ ∆0e
2iϕvei

~ks·~r, (1.6)

εveiϕei
~ks·~r =

[
~2

2m
~∇2(vei

~ks·~r) + εfve
i~ks·~r

]
+ ∆0e

−iϕuei
~ks·~r, (1.7)

Next we evaluate the derivatives in Equations 1.6 and 1.7.

εuei
~ks·~r =

~2

2m
|~ks|2uei

~ks·~r − εfuei
~ks·~r + ∆0e

2iϕvei
~ks·~r (1.8)

εveiϕei
~ks·~r =

~2

2m
|~ks|2vei

~ks·~r + εfve
i~ks·~r + ∆0e

−iϕuei
~ks·~r (1.9)

We can now divide through by ei
~ks·~r.

εu =
~2

2m
|~ks|2u− εfu+ ∆0e

2iϕv (1.10)

εveiϕ =
~2

2m
|~ks|2v(θ) + εfv + ∆0e

−iϕu (1.11)

Rearranging the above equations we get a linear system to solve, which in matrix form is

(
~2|~ks|2

2m − εf − ε ∆0e
2iϕ

∆0e
2iϕ −~2|~ks|2

2m + εf − ε

)(
u

v

)
= 0 (1.12)

First, in order to solve for the energy spectrum of the quasiparticle excitation, ε, we use the solvability

criterion that the determinant of the matrix in Equation 1.12 is zero. This yields the secular equation in

Equation 1.13,

(ξ − ε)(ξ + ε) + ∆2
0 = 0, (1.13)
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where ξ = ~2|~ks|2
2m − εf . Solving this for ε yields the quasiparticle energy spectrum

ε =
√
ξ2 + ∆2

0, (1.14)

where by convention we have taken the quasiparticle energies to be positive. Next we solve for the coherence

factors u and v. To do so, we first impose a normalization condition on the coherence factors u2 + v2 = 1.

Taking the first equation of 1.12 and using the normalization condition to eliminate v yields

(ξ − ε)u+ ∆0e
2iϕ
√

1− u2 = 0. (1.15)

Solving this equation for u we obtain

u =

√
1

2

(
1 +

ξ

ε

)
. (1.16)

Likewise, following the same procedure but starting with the second equation in Equation 1.12, we obtain

v =

√
1

2

(
1− ξ

ε

)
. (1.17)

Finally, in order to complete our description of the bulk s-wave order parameter solution we would like

to solve for the dispersion relation relating the wavevectors of the plane-wave solutions to the quasiparticle

excitation energy. This is done by rearranging the quasiparticle excitation spectrum in Equation 1.14 in

terms of ξ,

ε2 = ξ2 + ∆2
0 → ξ = ±

√
ε2 −∆2

0. (1.18)
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Next the definition ξ = ~2|~ks|2
2m − εf is substituted in and we solve for ~ks,

~ks = ±
√
k2
f ±

2m

~2

√
ε2 −∆2

0. (1.19)

We associate with particle-like excitations the solution with the “+” sign inside of the square root in Equation

1.19 and the “−” sign with hole-like quasiparticles. We will later adopt the notation of labeling magnitude of

~ks as kαp for particle-like excitations and kαh for hole-like excitations, where α is used to label various regions

within the heterostructures.

1.2.2 Scattering Theory Approach to Superconducting Heterostructures

To demonstrate the scattering theory approach to superconducting transport we begin here with

the simple case of a normal-superconductor (NS) interface with a single transverse mode, with each region

connected to their own respective thermal reservoirs, as shown in Figure 1.1. Let us assume that both

particles and holes are incident from the left and particle-like and hole-like excitations from the right. The

state in the left normal region, ψL(z), and the right superconductor region, ψS(z), are respectively

ψN (z) =
ApN√
qNp

[
1
0

]
eiq

N
p z +

BhN√
qNh

[
0
1

]
e−iq

N
h z

+
CpN√
qNp

[
1
0

]
e−iq

N
p z +

Dh
N√
qNh

[
0
1

]
e+iqLh z,

ψS(z) =
ApS√
kp

[
u
v

]
eikpz +

BhS√
kh

[
v
u

]
e−ikhz

+
CpS√
kp

[
u
v

]
e−ikpz +

Dh
S√
kh

[
v
u

]
e+ikhz,

(1.20)

where (in atomic units, where ~, the electron mass me and the electron charge ec all equal 1) qNβ =√
2m∗N

(
e± εNF

)
with β = p, h, and where we use the upper sign for particles and the lower sign for holes.
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The choice of normalization in Equation 1.20 ensures that our system carries unit current [13]. Next we

need to apply the appropriate boundary conditions in order to connect the wavefunctions for the normal and

superconducting regions. We are working in the high transparency limit and so we require continuity of the

wavefunctions and the derivatives at z = 0,

ψN (0) = ψS(0), ψ′N (0) = ψ′S(0). (1.21)

The above boundary conditions give a system of four equations which can be used in order to solve for the

coefficients of outgoing excitations in terms of the coefficients of the incoming excitations. That is, we solve

for the coefficients CpN , D
h
N , A

p
S , B

h
S as functions of the coefficients ApN , B

h
N , C

p
S , D

h
S . This gives the

matrix equation 
CpN
Dh
N

ApS
BhS

 =


rLLpp rLLph tLRpp tLRph
rLLhp rLLhh tLRhp tLRhh
tRLpp tRLph rRRpp rRRph
tRLhp tRLhh rRRhp rRRhh




ApN
BhN
CpS
Dh
S

 . (1.22)

The subscripts and superscripts in the scattering elements above are read from right to left and denote

the incoming and outgoing excitation types and leads respectively. In Appendix A we give expressions for

the scattering matrix elements for the NSN geometry studied in Chapter 2. Unfortunately, the analytical

expressions for the full scattering coefficients for the NSNSN system without the Andreev approximation are

far too long to likewise include in print. In any case, we will be focusing mainly on numerical results for the

NSN and NSNSN geometries in the following chapters.

A common approximation made when studying scattering through superconducting heterostructures

is the Andreev approximation [7]. By including the boundary conditions on the derivatives of the wavefunc-

tions, we are working outside of the Andreev approximation. A more detailed discussion of this point can

be found in Section 1.2.4.
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1.2.3 Local and Nonlocal Shot Noise

1.2.3.1 Field Operators and Current

Let us now consider the derivation of the local and nonlocal shot noise through a superconducting

heterostructure in terms of the underlying scattering processes. To begin, we will need the electron field

operator for excitations in the normal system. The left normal lead depicted in Figure 1.1 has a length of

LL and is connected to a reservoir with Fermi energy εf . For simplicity, we assume that the left normal lead

has a rectangular cross-section with infinitely hard walls. The field operator for excitations in the left lead

can be written as a two-component spinor

ψ̂NL(x, y, z, t) =

(
ψ̂pNL
ψ̂hNL

)
, (1.23)

where

ψ̂pNL =

∫
dEe−iEt/~

∑
ν

φLν (x, y)

√
m

2π~2qNpν(E)

[
âLνp(E)eiq

N
pν(E)z + b̂Lνp(E)e−iq

N
pν(E)z

]
(1.24)

and

ψ̂hNL =

∫
dEeiEt/~

∑
ν

φLν (x, y)

√
m

2π~2qNhν(E)

[
âLνh(E)e−iq

N
hν(E)z + b̂Lνh(E)eiq

N
hν(E)z

]
. (1.25)

Here ν = {nx, ny} denotes the transverse modes, and

φν(x, y) =
2√

LxLy
sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
(1.26)

is the normalized wave function for the transverse modes [6]. We assume that LL � Lx > Ly. The

annihilation operators, âα,ν,β(E), annihilate an excitation of type β ∈ {p, h} in the αth normal lead (α ∈
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{L,R}), in the νth transverse channel and with energy E, with the same convention used for the creation

operators. The operator b̂ανβ(E) is short hand for the set of annihilation operators associated with excitations

in the αth lead that travel towards the reservoir, either due to reflection or because they are transmitted

from the other reservoir. For holes our convention for the energy label denotes how far below the Fermi

energy the excitation is, and thus is a positive value. We assume that no impurities are present that can

couple different transverse channels. Below we will include all of the different scattering channels that give

rise to excitations moving in the −z direction.

Rewriting the operator b̂Lνp(E) in terms of scattering processes giving rise to left-moving particles

yields

b̂Lνp(E) = rLLpp (E, ν)âLνp(E) + rLLph (E, ν)âLνh(E) + tLRpp (E, ν)âRνp(E) + tLRph (E, ν)âRνh(E). (1.27)

More generally we can write

b̂iνβ(E) = riiββ(E, ν)âiνβ(E) + riiββ′(E, ν)âiνβ′(E) + tijββ(E, ν)âjνβ(E) + tijββ′(E, ν)âjνβ′(E), (1.28)

where j = R when i = L and vice-versa, and where β′ = h when β = p and vice-versa. In anticipation of the

later restriction to a single transverse mode, and given our assumption about the lack of impurities coupling

different transverse modes, we will drop the mode label ν wherever it does not lead to confusion. With this

we can rewrite the field operators in Equations 1.24 and 1.25 in terms of the individual scattering processes

as shown below.
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ψ̂pNL =

∫
dEe−iEt/~

√
mL

2π~2qNp (E)

[
âLp(E)eiq

N
p (E)z + rLLpp (E)âLp(E)e−iq

N
p (E)z + rLLph (E)âLh(E)e−iq

N
p (E)z

+tLRpp (E)âRp(E)e−iq
N
p (E)z + tLRph (E)âRh(E)e−iq

N
p (E)z

]
(1.29)

ψ̂hNL =

∫
dEeiEt/~

√
mL

2π~2qNh (E)

[
âLh(E)e−iq

N
h (E)z + rLLhh (E)âLh(E)eiq

N
h (E)z + rLLhp (E)âLp(E)eiq

N
h (E)z

+tLRhh (E)âRh(E)eiq
N
h (E)z + tLRhp (E)âRp(E)eiq

N
h (E)z

]
(1.30)

Given the field operator ψ̂NL(z, t) for the left lead, we can write the corresponding current operator

for the left lead using the relation

ĴL(z, t) =
~ec

2imL

(
ψ̂†NL(z, t)

dψ̂NL(z, t)

dz
−
dψ̂†NL(z, t)

dz
ψ̂NL(z, t)

)
, (1.31)

where ec is the electron charge and mL is the effective mass of electrons in the left lead. In order to obtain

the local and nonlocal shot noise we will also need the thermal average of the current operator. Plugging the

expressions for the particle and hole field operators from Equations 1.29 and 1.30 into Equation 1.31 and

taking the thermal averages yields

〈JL〉 =
e

h

∫
de

(
NL
p (1− |rLLpp |2)−NL

h (1− |rLLhh |2) +NR
h |tLRhh |2 +NL

p |rLLhp |2

+NR
p |tLRhp |2 −NL

h |rLLph |2 −NR
h |tLRph |2 −NR

p |tLRpp |2
)
.

(1.32)

The symbol 〈·〉 denotes the thermal averaging operation, 〈A〉 = Tr(Aρ), where A is some Hermitian operator

and ρ is the finite-temperature density matrix for the system. In the above expressions Nα
γ = 〈âα†e,γ âαe,γ〉 =

(1 + eβ(e+sgn(γ)vα))−1, is the Fermi distribution for the thermal reservoir of excitations of type γ connected

to lead α, where γ ∈ {p, h}. β is the standard inverse temperature parameter, β = 1
kBT

, with kB being the
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Boltzmann constant and T the temperature of the system. We define sgn(γ) = +1 for γ = p, sgn(γ) = −1

for γ = h and Fαγ = 1−Nα
γ . We use here the convention of assigning holes positive energy (measured with

respect to the Fermi energy), so at zero-bias both electrons and holes have the same thermal distributions,

but are shifted in opposite directions in the presence of an applied bias [89]. The average current is zero if

the Fermi energies in the left and right reservoirs are equal. However, if the chemical potentials are different

in the two reservoirs, there will be a net current flow.

1.2.3.2 Local and Nonlocal Shot Noise Expressions

The shot noise in the left lead is given by the correlation function of fluctuations about the average

current in the left lead at different times,

SLL(z, y; t, s) = 〈(JL(z, t)− 〈JL(z, t)〉)(JL(y, s)− 〈JL(y, s)〉)〉. (1.33)

We call this the “local” shot noise because it only involves current fluctuations in the left lead. If

only the zero frequency limit of this correlation function is kept, we obtain the zero frequency component of

the local shot noise

SLLtot (ω = 0) =

∫
dE dSLL(E) = SLLpp + SLLhh + SLLph . (1.34)

In Equation 1.34 we have separated the shot noise into three components, the first two of which,

SLLpp and SLLhh , give the contribution to the local shot noise due to correlations between particles and holes,

respectively. The third term, SLLph , gives the contribution to the local shot noise due to correlations between

particles and holes in the left lead. These three types of contributions to the local shot noise can be computed

explicitly and are given by the following:
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SLLpp =
m2
L

π2

∫
dE

[
FLp NL

p (1 + 2|rLLhp |2 − 2|rLLpp |2 − 2|rLLpp |2|rLLhp |2 + |rLLpp |4 + |rLLhp |4) + FRp NR
p (|tLRpp |2 − |tLRhp |2)2

+ (FRp NL
p + FLp N

R
p ) (|rLLpp |2|tLRpp |2 + |rLLhp |2|tLRhp |2 − 2Re[tLR∗hp rLLhp r

LL∗
pp tLRpp ])

]
,

(1.35)

SLLhh =
m2
L

π2

∫
dE

[
FLh NL

h (1− 2|rLLhh |2 + 2|rLLph |2 − 2|rLLhh |2|rLLph |2 + |rLLhh |4 + |rLLph |4) + FRh NR
h (|tLRph |2 − |tLRhh |2)2

+ (FRh NL
h + FLh N

R
h ) (|tLRph |2|rLLph |2 + |tLRhh |2|rLLhh |2 − 2Re[tLR∗ph rLLph r

LL∗
hh tLRhh ])

]
,

(1.36)

SLLph =
m2
L

π2

∫
dE

[
(FLp NL

h + FLh NL
p ) (|rLLph |2|rLLpp |2 + |rLLhp |2|rLLhh |2 − 2Re[rLL∗pp rLLph r

LL∗
hh rLLhp ])

+ (FRp NR
h + FRh NR

p ) (|tLRph |2|tLRpp |2 + |tLRhh |2|tLRhp |2 − 2Re[tLR∗ph tLRpp t
LR∗
hp tLRhh ])

+ (FRp NL
h + FLh N

R
p ) (|rLLph |2|tLRpp |2 + |rLLhh |2|tLRhp |2 − 2Re[rLL∗ph tLRpp t

LR∗
hp rLLhh ])

+ (FLp NR
h + FRh N

L
p ) (|tLRph |2|rLLpp |2 + |tLRhh |2|rLLhp |2 − 2Re[tLR∗ph rLLpp r

LL∗
hp tLRhh ])

]
.

(1.37)

The cross correlated shot noise is the symmetrized correlation function for fluctuations about the

average current at different times and between the left and right leads,

SLR(z, y; t, s) =
1

2

〈
(ĴL(z, t)− 〈ĴL〉)(ĴR(y, s)− 〈ĴR〉)

+ (ĴR(y, s)− 〈ĴR〉)(ĴL(z, t)− 〈ĴL〉)
〉
.

(1.38)

Due to its connection to entanglement generation, the main quantity of interest we will explore in this

dissertation is the zero frequency limit of the Fourier transformed cross-correlated shot noise [28], which we

write as

SLRtot ≡
∫
dE dSLR(E) = SLRpp + SLRhh + SLRph . (1.39)

As with the local shot noise, SLRtot naturally decomposes into three components, SLRpp , SLRhh and SLRph , which

are respectively the contributions due to correlations between particles in the left and right leads, holes in
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the left and right leads, and between particles in the left lead and holes in the right lead (and vice-versa),

respectively. The expressions for SLRpp , SLRhh and SLRph in terms of the scattering matrix elements can be written

SLRpp =
mLmR

π2

∫
dE

[
FLp N

L
p

(
(−|rLLhp |2 + |rLLpp |2 − 1) (−|tRLhp |2 + |tRLpp |2)

)
+ FRp N

R
p

(
(−|rRRhp |2 + |rRRpp |2 − 1)(−|tLRhp |2 + |tLRpp |2)

)
+ (FLp N

R
p + FRp N

L
p )
(
Re
[
rLLhp r

RR
hp t

LR∗
hp tRL∗hp

]
− Re

[
rLL∗hp rRR∗pp tRLpp t

LR
hp

]
+ Re

[
rLLpp r

RR
pp t

LR∗
pp tRL∗pp

]
− Re

[
rLL∗pp rRR∗hp tRLhp t

LR
pp

] )]
(1.40)

SLRhh =
mLmR

π2

∫
dE

[
FLh N

L
h

(
(|rLLhh |2 − |rLLph |2 − 1)(|tRLhh |2 − |tRLph |2)

)
+ FRh N

R
h

(
(|rRRhh |2 − |rRRph |2 − 1)(|tLRhh |2 − |tLRph |2)

)
+ (FLh N

R
h + FRh N

L
h )
(
Re
[
rLLhh r

RR
hh t

LR∗
hh tRL∗hh

]
− Re

[
rLL∗hh rRR∗ph tRLph t

LR
hh

]
+ Re

[
rLLph r

RR
ph t

LR∗
ph tRL∗ph

]
− Re

[
rLL∗ph rRR∗hh tRLhh t

LR
ph

] ) ]
(1.41)

SLRph =
mLmR

π2

∫
dE

[
(FLh N

L
p + FLp N

L
h )
(
Re
[
rLLhh r

LL∗
hp tRLhp t

RL∗
hh

]
− Re

[
rLLhh r

LL∗
hp tRL∗ph tRLpp

]
− Re

[
rLLph r

LL∗
pp tRL∗hh tRLhp

]
+ Re

[
rLLph r

LL∗
pp tRLpp t

RL∗
ph

] )
+ (FRh N

R
p + FRp N

R
h )

(
Re
[
rRRhh r

RR∗
hp tLRhp t

LR∗
hh

]
− Re

[
rRRhh r

RR∗
hp tLR∗ph tLRpp

]
− Re

[
rRRph r

RR∗
pp tLR∗hh tLRhp

]
+ Re

[
rRRph r

RR∗
pp tLRpp t

LR∗
ph

] )
+ (FLh N

R
p + FRp N

L
h )
(
Re
[
rLLhh r

RR
hp t

LR∗
hp tRL∗hh

]
− Re

[
rLL∗hh rRR∗pp tRLph t

LR
hp

]
+ Re

[
rLLph r

RR
pp t

LR∗
pp tRL∗ph

]
− Re

[
rLL∗ph rRR∗hp tRLhh t

LR
pp

] )
+ (FLp N

R
h + FRh N

L
p )
(
Re
[
rLLhp r

RR
hh t

LR∗
hh tRL∗hp

]
− Re

[
rLL∗hp rRR∗ph tRLpp t

LR
hh

]
+ Re

[
rLLpp r

RR
ph t

LR∗
ph tRL∗pp

]
− Re

[
rLL∗pp rRR∗hh tRLhp t

LR
ph

] ) ]

(1.42)

The quantities dSLRα give the energy distributions of these terms.
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1.2.4 The Andreev Approximation

We have so far discussed only the full scattering theory and thus far have not looked at the effect of

applying the Andreev approximation [7]. The Andreev approximation can be used if the ratio between the

gap energy ∆0 and the Fermi energy EF , ∆0

EF
, is sufficiently small. Then, to good approximation, we can

drop higher order terms in the ratio ∆0

EF
from the BdG equations. Doing so reduces the pair of coupled second

order differential equations in Equation 1.1 to a pair of coupled first-order differential equations known as

the Andreev equations,

(
−i~vF · ∇ ∆(r)

∆∗(r) i~vF · ∇

)(
u(r)
v(r)

)
= e

(
u(r)
v(r)

)
, (1.43)

where vf is the Fermi velocity.

Under the Andreev approximation the quasiparticle dynamics of the system are governed by a pair

of coupled first order differential equations, and the boundary conditions connecting the different regions

reduce to just the continuity of the wavefunctions at the boundary. In the high-transparency limit we

consider here, this gives rLLpp = rLLhh = rRRpp = rRRhh = 0 as well as tLRhp = tLRph = tRLhp = tRLhp = 0 in the

scattering matrix (with the remaining scattering elements modified accordingly). The simplest way to solve

for the scattering coefficients under the Andreev approximation is to treat each of the different processes for

injecting excitations into the system from each of the thermal reservoirs independently.

As an example of how the calculation of the scattering coefficients with the Andreev approximation

proceeds, let us demonstrate by looking at the scattering process in the NSN geometry (see Figure 2.1) in

which we have a particle emitted from the left thermal reservoir impinging upon the NS interface in the

left-lead and calculate rLLhp and tRLpp . For this process the wavefunction in the left lead is
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ψNL(z) =

[
1
0

]
eiq

N
p z + rLLhp

[
0
1

]
e+iqLh z. (1.44)

Next we write the wavefunction in the superconducting region for this process,

ψS(z) = ApS

[
u
v

]
eikpz +Dh

S

[
v
u

]
e+ikhz. (1.45)

In the superconducting region transmitted electrons from the left normal lead can only couple to electron-like

excitations. Backward propagating hole-like excitations in the superconducting region arise due to Andreev

reflection at the second NS interface with the right normal lead. Finally, the wavefunction in the right normal

lead for this process is given by

ψNR(z) = tRLpp

[
1
0

]
eiq

N
p z. (1.46)

We next apply the continuity conditions at each of the interfaces,

ψL(0) = ψS(0), ψS(h) = ψR(h), (1.47)

which gives is a system of four equations,

1 = ApSu+Dh
Sv, rLLhp = ApSv +Dh

Su,

tRLpp e
iqNp h = ApSue

ikph +Dh
Sve

+ikhh, 0 = ApSve
ikph +Dh

Sue
+ikhh.

(1.48)

With a bit of algebra, these four equations can be used to eliminate the coefficients in the superconducting

region ApS and Dh
S , and to solve for rLLhp and tRLpp . The resulting scattering coefficients are
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rLLhp =
(eikhh − eikph)uv

eikhhu2 − eikphv2

tRLpp =
eih(kh+kp−qNp )

eikhhu2 − eikphv2

(1.49)

Note that this approach, starting from the Andreev equations and then solving for the scattering

matrix using just the continuity of the wavefunctions at the interface, appears to be different than the

approach described in the original BTK paper [16], which starts from the full scattering matrix of the

system and takes the limit qαp = qαh = kαp = kαh = kF , where α is a placeholder for the various region labels.

We have found, by direct calculation, that using the BTK approach gives results exactly identical to those

found using the Andreev equations directly as we did above. Perhaps the key advantage of applying the

Andreev approximation is that it vastly simplifies the resulting expressions for the scattering coefficients

and noise. For example, when using the full set of boundary conditions for the NSNSN system described in

Chapter 3, we can obtain exact expressions for the scattering matrix elements, but these expressions turn

out to be so large as to make printing them impractical. With the Andreev approximation applied it is

possible to write down the explicit expressions for the scattering elements, and they are given in Appendix

B along with the simplified cross-correlated shot noise.

1.3 Model System Material Parameters

In this work we restrict ourselves to the quasi-1D limit and as such only consider the first propagating

channel of the waveguide [43, 46]. Our choice of model system parameters is guided by two aims, the first

of which is to select a set of realistic material parameters which allow for transport in the quasi-1D limit.

This will allow us to avoid the additional complications of dealing with multiple transverse modes and any

potential coupling between different modes. Additionally, later on in Chapter 3 one of our goals will be to

compare the results for the NSNSN geometry using the full scattering theory to those obtained using the
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Andreev approximation in the presence of quasibound states. The basis of the Andreev approximation is

dropping higher order terms in the ratio of the superconducting gap energy ∆0 and the Fermi energy εf from

the Bogoliubov-de Gennes equations. As such, it is desirable to select model materials that have a relatively

large value of ∆0/εf . One family of materials with many members satisfying both of these properties are

high-Tc cuprate superconductors, and this is the family of materials we will base our model system on for

our numerics. We express all quantities in atomic units, where ~, the electron mass me and the electron

charge ec all equal 1. With these choices, energy is measured in Hartrees, EH , with EH ≈ 27.2eV and length

is measured in Bohr radii, aB ≈ 0.53Å.

Let us consider some typical high-Tc materials. The gap in cuprates is anisotropic and can vary

greatly depending on orientation [79, 105]. As an approximation we use estimates for the maximum gap

value (for θ = 0) based on BCS theory. The BCS estimate of the superconducting gap is ∆0 = 1.77kBTc,

where kB is Boltzmann’s constant. In atomic units this is

∆0 =

(
5.572×10−6 Eh

K

)
Tc, (1.50)

where Tc is measured in Kelvins. The Fermi velocity is

vf = ξπ∆0 =

(
1.75×10−5 Eh

K

)
ξTc, (1.51)

where the coherence length, ξ, is measured in atomic units. The Fermi energy is

εf =
1

2
m∗v2

f =

(
1.532×10−10 Eh

K2

)
m∗ξ2T 2

c , (1.52)

where m∗ is the effective mass. We will fix the Fermi energy such that it lies at the center of the energy

interval defined by the first propagating channel in the waveguide. We will also assume that Lx = 1.2Ly,
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so the second transverse channel opens along the x-direction. The value of Ly can be determined from the

condition that

εf =
1

2
(E1,1 + E2,1) =

1

4m∗

(
5

(
π

1.2Ly

)2

+ 2

(
π

Ly

)2
)
. (1.53)

If we use Equation 1.52, we obtain

Ly =
2.97×105

m∗ξTc
aB ·K. (1.54)

We can now evaluate these quantities for several known high Tc superconducting materials, where

for simplicity we will take the effective mass m∗ = 1 in all three materials. As mentioned above, we also

want to set our parameters such that the transport is restricted to just the first transverse mode of the

system. We achieve this by setting a cutoff energy, εmax, which is simply the energy at which the second

transverse mode opens measured with respect to the Fermi energy, Etr2,1. The transverse energy for the

mode (nx, ny) is given by Etrnx,ny = ~2

2m∗

(
n2
xπ

2

L2
x

+
n2
yπ

2

L2
y

)
. The Fermi distribution for particles and holes is

Np(E) = Nh(E) = (1 + eE/kBT )−1. To ensure confinement to the first transverse mode, let us require that

(1 + eδ0εmax/(kBT0))−1 = 0.001, so the distribution of particles and holes has decayed to approximately zero

at the cutoff energy, and then solve for the corresponding temperature T0. Values for all these parameters

for a variety of high-Tc materials are given in Table 1.1.

The system size is small enough and temperature low enough that electron transport in the quasi-1D

wire is assumed to be ballistic. We also assume that a phase difference of φ can be induced between the

superconducting segments, although this is not essential for our main results.

For the results presented in Chapters 2 and 3 we will use the the superconductor La2−xSrxCuO4

(LSCO) as our model material. For LSCO the temperature of the system, T0, is 16.3K and the maximum
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Material YBa2Cu3O7−x(a) La1.45Nd0.4Sr0.15CuO4+δ(a) Nd1.85Ce0.15CuO4−δ(a)
Tc (K) 88.8 24 26.2
ξ (aB) 64.3 91 101

∆ (EH) 0.000495 0.000134 0.000146
εf (EH) 0.00499 0.000726 0.00107
εmax (EH) 0.00190 0.000276 0.000406
Ly (aB) 52 136.4 113
T0 (K) 43.4 6.32 9.28

Material La2−xSrxCuO4 (b) Bi2(Sr,La)2CuOy (a) Y0.9Ca0.1Ba2Cu3Oy (a)
Tc (K) 38 28.3 80.6
ξ (aB) 65 76 64

∆ (EH) 0.000212 0.000158 0.00045
εf (EH) 0.000935 0.000701 0.00411
εmax (EH) 0.000356 0.000267 0.00156
Ly (aB) 120 139 57
T0 (K) 16.3 6.1 35.8

Table 1.1: Cuprate materials with coherence length of order of the width of the nanowire. The temperature
T0 allows the Fermi distribution to spread over the entire energy range up to εmax. Based on data for Tc
and ξ from (a) [118], Table 9.1 and (b) [34], Table 7.4.
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energy εmax is .000356EH . The Fermi distribution of the thermal reservoirs at this temperature is shown in

Figure 1.2.

Figure 1.2: Plot of the Fermi distribution, NL, with zero bias and T0 = 16.3K. Energy is measured in units
of the gap energy of LSCO.
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Chapter 2

Local and Nonlocal Noise in the NSN High-Tc Nanowire Regime

In this chapter1 we calculate the exact scattering matrix (without the Andreev approximation) for

the NSN structure based on the BTK scattering theory described in Section 1.2.2 and use these expressions

to get numerical results for current and both local and nonlocal shot noise using parameters based on LSCO.

In Section 2.1, we describe the specifics of the application of BTK scattering theory to obtain the scattering

amplitudes for the NSN geometry. (The expressions for the exact scattering amplitudes for the NSN junction

are given in Appendix A). In this section we also give numerical results for some of the scattering coefficients.

In Section 2.2, we utilize the expressions for the average current in the wire, and for the local shot noise

from Sections 1.2.3.1 and 1.2.3.2 and present numerical results. In Section 2.3 we repeat this analysis for

the nonlocal noise. Finally, in Section 2.4, we make some concluding remarks.

2.1 The Scattering System

In Figure 2.1 we sketch the geometry of the NSN junction discussed in this chapter. We will model

the gap function for the system sketched in Figure 2.1 using a step function potential,

∆(θ) =

{
∆(θ) 0 < z < h

0 x < 0 x > h
(2.1)

1The results presented here are based on the research article: C. Ostrove and L. E. Reichl, Local and nonlocal shot noise
in high-TC superconducting nanowires, Physica B: Condensed Matter 561, 79-89 (2019). L. E. Reichl suggested, supervised,
performed many of the theoretical calculations for the project and shared in the writing for this paper. C. Ostrove performed
most of the numerical calculations, generated most of the figures and shared in the writing.
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Figure 2.1: Sketch of the NSN geometry studied in this chapter. The normal leads are connected to thermal
reservoirs with the same Fermi energy εf , but with potentially different applied biases, vl and vr. The central
superconducting region has a length of LS , the same Fermi energy as the normal metal leads and is assumed
to be grounded with respect to the Fermi energy.

Note that in the equation for the gap above we have included an explicit spatial dependence. For the most

common HTS materials, such as the cuprates, the order parameter is actually anisotropic, with the most

common form for the anisotropy having what is known as d-wave pairing symmetry. The functional form

of the d-wave order parameter is given by ∆(θ) = ∆0 cos (2θ), where ∆0 is the maximum value of the gap

and θ is the direction of travel through the superconductor as measured with respect to the a-crystal axis

(which we will fix to lie along the z axis). In this dissertation we will often refer to θ as the “orientation” of

the order parameter and the angular dependence of the quantities which depend on ∆ is implied.

Let us assume that both a particle and a hole are incident from the thermal reservoirs on the left

and on the right. The solutions to the Bogoliubov-de Gennes equations in the left normal region, ψL(z), the

middle superconductor region, ψS(z), and the right normal region, ψR(z), are respectively
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ψL(z) =
ApL√
qLp

[
1
0

]
eiq

L
p z +

BhL√
qLh

[
0
1

]
e−iq

L
h z

+
CpL√
qLp

[
1
0

]
e−iq

L
p z +

Dh
L√
qLh

[
0
1

]
e+iqLh z,

ψS(z) =
ApS√
kp

[
uo
vo

]
eikpz +

BhS√
kh

[
vo
uo

]
e−ikhz

+
CpS√
kp

[
uo
vo

]
e−ikpz +

Dh
S√
kh

[
vo
uo

]
e+ikhz,

ψR(z) =
ApR√
qRp

[
1
0

]
eiq

R
p z +

BhR√
qRh

[
0
1

]
e−iq

R
h z

+
CpR√
qRp

[
1
0

]
e−iq

R
p z +

Dh
R√
qRh

[
0
1

]
e+iqRh z,

(2.2)

where qαβ =

√
2m∗α

(
e± εαf

)
with α = L,R and β = p, h and where we use the upper sign for particles

and the lower sign for holes. Using Equation 2.2, we can determine the scattering amplitudes for electrons

to transmit through, and be reflected from, the superconducting region. The boundary conditions for the

wavefunctions in the high-transparency limit are continuity at z = 0 and z = Ls, and continuity of the

derivatives at those points. Thus

ψL(0) = ψS(0), ψ′L(0) = ψ′S(0), ψS(LS) = ψR(LS), ψ′S(LS) = ψ′R(LS) (2.3)

Using these equations, we can eliminate the coefficients ApS , B
h
S , C

p
S , D

h
S and write CpL, D

h
L, A

p
R, B

h
R as

functions of ApL, B
h
L, C

p
R, D

h
R. This gives the matrix equation
CpL
Dh
L

ApR
BhR

 =


rLLpp rLLph tLRpp tLRph
rLLhp rLLhh tLRhp tLRhh
tRLpp tRLph rRRpp rRRph
tRLhp tRLhh rRRhp rRRhh

 ·


ApL
BhL
CpR
Dh
R

 (2.4)

Explicit expressions for these transmission and reflection amplitudes are given in Appendix A.

In Figure 2.2, we plot the magnitude of the transmission and reflection amplitudes for LSCO using

parameters from Table 1.1, with a superconducting segment of lengths LS = 1.9ξ, LS = 7.7ξ and LS = 77ξ.
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Figure 2.2: Scattering amplitudes (a) rLLhh , (b) rLLph , (c) tRLhh , (d) tRLph . Because we take the effective mass to

be the same in all three parts of the wire, |rLLpp | ≈ |rLLhh |, |tRLpp | ≈ |tRLhh |, |rLLhp | ≈ |rLLph |, and |tRLhp | ≈ |tRLph |.
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Figure 2.2(a) shows the amplitude for a particle (hole) to leave the left reservoir and reflect back into the left

lead as a particle (hole). Figure 2.2(c) shows the amplitude for a particle (hole) to leave the left reservoir

and reflect back into the left lead as a hole (particle). Figure 2.2(c) shows the amplitude for a particle (hole)

to leave the right reservoir and transmit through the superconductor and enter the left lead as a particle

(hole). Figure 2.2(d) shows the amplitude for a particle (hole) to leave the right reservoir and transmit into

the left lead as a hole (particle). When the energy is less than the gap energy, the probability of Andreev

reflection and of particle or hole transmission through the superconductor is nearly unity. For the largest

system size we can see that at energies above the gap we have a large number of resonances appear in the

scattering coefficients, which we will see signatures of in the energy distributions of the current and both

local and nonlocal noise energy distributions in the next sections.

2.2 Current and Local Shot Noise in the Left Lead

We now consider the current and local shot noise for the case when the chemical potentials in

the left and right reservoirs differ by .1∆0. We consider three lengths of the superconducting segment,

LS = 1.9ξ, 7.7ξ and 77ξ, and we assume that the temperature of the system is T = 16.3 K. We start with

the energy distributions for the thermally averaged current through the left lead in Figure 2.3. For all three

system sizes we have a peak in the current through the left lead at zero energy with the magnitude falling

off at higher energies, as one would expect due to the decrease in electron and hole populations at higher

energy values. For LS = 77ξ we can see additional signatures in the current energy distribution at energies

above the gap due to the over-the-gap transmission resonances we saw in Figure 2.2.

In Figure 2.4, we show contour plots of the energy distribution of the local shot noise in the left lead,

which we will denote dSLL, as a function of gap angle θ and energy. Figure 2.4(a) is for a superconducting

segment of length LS = 1.9ξ, Figure 2.4(b) for LS = 7.7ξ and Figure 2.4(c) for LS = 77ξ. Figures 2.5(a)-(c)
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Figure 2.3: Plots of the energy distribution of the thermally averaged current in the left lead, dJ , for θ = 0
and vl = .1∆0, vr = vs = 0.

show slices through the contour plots in Figure 2.4 at angles θ = 0 and θ = π/5 for each of the lengths. In

all cases the local shot noise is positive, which is a signature of electron bunching due to their interaction

with the superconducting region [50,88].

For energies below the gap energy, the local shot noise is non-zero and decreases in magnitude with

increasing energy. This contribution to the shot noise is due to particles and holes in the left lead that are

involved with Andreev reflection from the superconductor. The decreasing magnitude of the noise is due

to the decrease in the particle and hole Fermi distributions with increasing energy. With increasing energy,

there are fewer particles and holes available to contribute to the shot noise. For energies above the gap for

LS = 77ξ, there are numerous peaks in the magnitude of the noise. These are due to scattering resonances

inside the superconductor for energies above the gap, which allows selective transmission of particles and

holes into and out of the superconductor.
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Figure 2.4: Contour plots of the total local differential shot noise dSLL as a function of energy and the
orientation of the order parameter, θ. (a) LS = 1.9ξ, (b) LS = 7.7ξ and (c)LS = 77ξ.
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Figure 2.5: Plots of the total local differential shot noise dSLL as a function of energy for θ = 0 and θ = π
5

with both asymmetric and symmetric biasing applied. (a) LS = 1.9ξ, (b) LS = 7.7ξ and (c) LS = 77ξ.
(These slices are marked in Fig. 2.4).
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2.3 Cross Correlated Shot Noise

We start our investigation of the behavior of the nonlocal shot noise energy distribution, denoted

dSLR≡dSLR/de, by generating contour plots of dSLR as a function of the orientation of the order parameter

θ and the energy. In Figure 2.6 we show contour plots for dSLR over the range of angles θ ∈ [−π/4, π/4]

and for energies up to the edge of the first transverse mode. This is done for three different lengths for the

superconducting region, LS , with Figure 2.6(a) corresponding to LS = 1.9ξ, Figure 2.6(b) to LS = 7.7ξ

and Figure 2.6(c) to LS = 77ξ. In addition, we evaluated two different schemes for biasing the junction:

asymmetrically, by setting the potential in the left lead vl = .1∆0 and by grounding the superconductor and

right lead (vs = vr = 0), and symmetrically by setting vl = vr = .1∆0 and grounding the superconductor.

In Figure 2.7 we give the plots of dSLR corresponding to cross-sectional slices through the contour plots in

Figure 2.6 for θ = 0 and θ = π/5. Figure 2.7(a) contains the θ = 0 and θ = π/5 slice for LS = 1.9ξ, Figure

2.7(b) for LS = 7.7ξ and Figure 2.7(c) for LS = 77ξ.

The nonlocal shot noise can be partitioned into the three components Spp, Shh and Sph. In Figure 2.8

plots of dSLRhh , dSLRpp and dSLRph are given for θ = 0 and θ = π/5 and with asymmetric biasing applied. (While

the two different biasing schemes differ somewhat quantitatively, they share the same qualitative behavior).

Superconducting region lengths of LS = 1.9ξ, 7.7ξ and 77ξ are plotted in Figures 2.8(a)-(c) respectively. One

key feature we immediately notice is that while the SLRhh and SLRpp terms are always negative for all energies,

the SLRph term is strictly positive for the full energy range. Positive values of the nonlocal noise indicate

electron bunching and are often associated with the generation of entanglement in CPS devices.

Also of interest is how the nonlocal noise changes as a function of the length of the superconducting

region. In Figure 2.9 we plot the total nonlocal noise as well as the SLRhh and SLRph contributions versus the

length of the superconducting region with respect to a fixed value of vl = .1∆0, vr = vs = 0. What we

find for the total nonlocal shot noise is that it monotonically increases, approaching zero from below as the
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Figure 2.6: Contour plot of the total differential nonlocal shot noise dSLR as a function of energy and the
orientation of the order parameter, θ. (a) LS = 1.9ξ, (b) LS = 7.7ξ, (c) LS = 77ξ.
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Figure 2.7: Plots of the total non-local differential shot noise dSLR as a function of energy corresponding
to the cross-sectional slices θ = 0 and θ = π/5 through the contour plots shown in Figure 2.6 with (a)
LS = 1.9ξ, (b) LS = 7.7ξ and (c) LS = 77ξ. For each case we show the non-local shot noise for both
symmetric and asymmetric biasing.
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Figure 2.8: Plots of the nonlocal differential shot noise components dSLRhh , dSLRpp and dSLRph as a function of
energy for θ = 0 and for θ = π/5. (a) LS = 1.9ξ. (b) LS = 7.7ξ and (c) LS = 77ξ.
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Figure 2.9: Plot of the total nonlocal shot noise SLR as well as the components SLRhh and SLRph as a function
of the length of the superconducting region LS measured in units of the superconducting coherence length
ξ.

system size increases; likewise for the SLRhh and SLRpp contributions. The SLRph contribution, however, displays

a non-monotonic behavior, with a maximum at LS ≈ 3ξ before again approaching zero.

Finally, we plot in Figures 2.10(a)-(c) the total cross-correlated shot noise as a function of the applied

bias in the left lead for all three superconducting region lengths, LS = 1.9ξ, 7.7ξ and 77ξ.

For all three system sizes we see that the contribution due to SLRhh decreases with increased applied bias and

the contribution from SLRph increases with increased applied bias. When looking at the total cross-correlated

shot noise SLR, however, we see that there is a difference in behavior between the smallest system size,

LS = 1.9ξ shown in Figure 2.10(a), and the larger system sizes in Figures 2.10(b) and (c). For LS = 1.9ξ

the total nonlocal shot noise increases overall with increased applied bias, whereas for LS = 7.7ξ and 77ξ it

decreases overall with increased applied bias.

38



Figure 2.10: Plots of the total nonlocal differential shot noise SLR and the components SLRhh and SLRph as a
function of energy for θ = 0 and for θ = π/5. (a) LS = 1.9ξ. (b) LS = 7.7ξ and (c) LS = 77ξ.
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2.4 Conclusions

Exact expressions for the scattering matrix of a quasi-1D NSN junction have been found using

scattering theory. These expressions correspond to the high transparency limit and are done without the

Andreev approximation. Using realistic parameters for LSCO, we have investigated the local and nonlocal

shot noise properties of the NSN structure. We have found that the local shot noise is always positive, as

is expected because of bunching due to interactions between the electrons and the superconducting region.

The total nonlocal shot noise is negative over the full energy range of the system; However, if we look

at the various contributions separately we find the presence of scattering processes indicative of electron

bunching (regions with positive shot noise contributions) due to the correlations between electrons and holes

at opposite ends of the superconducting segment.
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Chapter 3

Cross-correlated Noise and Quasibound States in the NSNSN
Geometry

This chapter1 is organized as follows. In Section 1.2.2, we derive the scattering matrix for the

NSNSN system. In Section 3.2 we list the properties of LSCO, the high-Tc superconductor that is used

in our analysis. In Section 3.3 we present results for the cross-correlated shot noise energy distributions,

and in Section 3.4 we describe the behavior of the scattering amplitudes. In Section 3.5 we focus on the

resonances in the scattering coefficients and the connection between the quasibound states and the positive

peaks in the cross-correlated shot noise energy distribution. In Section 3.6, we break down the dominant

contributions to the positive cross-correlated shot noise at the resonances in our system. In Section 3.7, we

compare the results for the NSNSN system to those of the NSN geometry and we also look at the system

size dependence of the NSNSN geometry. In Section 3.8 we look at how the behavior of the cross-correlated

shot noise changes as we decrease the system temperature. In Section 3.9, we compare the results of the full

scattering theory used throughout this paper to those obtained using the Andreev approximation. Finally,

in Section 3.10 we will summarize our results.

1The results presented here are based on a research article: C. Ostrove and L. E. Reichl, Positive Cross-Correlated Shot
Noise and Quasibound States in an NSNSN Geometry [90]. L.E. Reichl suggested and advised the project, wrote an initial
draft, and provided feedback and revisions on later versions of the paper. C. Ostrove performed the theoretical and numerical
calculations for the project, generated the figures and contributed writing for additional sections and later revisions.
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3.1 Scattering Theory

In Section 1.2.2 we introduced the general BTK approach to scattering theory in superconducting

hetrostructures. In this section we provide a brief overview of the specific application to the NSNSN system

as displayed in Figure 3.1.

Figure 3.1: NSNSN geometry studied in this work. The left and right leads are much longer than the central
SNS region and are connected to thermal reservoirs with Fermi energy εf with an additional bias of vl applied
to the left lead. More details on the system parameters used can be found in Section 1.3 and Table 3.1.

With reference to the points labeled in Figure 3.1, the gap function for this system (utilizing the

standard step-function potential) is given by:

∆(r) =


0 z < 0, h1 < z < h2, h3 < z

∆0 0 ≤ z ≤ h1

∆0e
iφ h2 ≤ z ≤ h3.

(3.1)

With this gap function, the wavefunctions in each of the 5 regions are given by:
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with α ∈ {L,C,R} for the normal regions and α ∈ {L,R} for the superconductors. The coherence factors

u0 and v0, and the wavevectors kp and kh are given by

u0 =

√√√√1

2

(
1 +

√
e2 −∆2

0

e

)
v0 = eiϕ

√√√√1

2

(
1−

√
e2 −∆2

0

e

)

kp = kf

√√√√1 +

√
e2 −∆2

0

ε2f
kh = kf

√√√√1−

√
e2 −∆2

0

(εf )2
.

(3.3)

In the normal regions where the gap function is zero the wavevectors qp and qh are now

qp = kF

√
1 +

e

εf
and qh = kf

√
1− e

εf
. (3.4)

.

We are working in the high-transparency limit, so we require that the wavefunctions in Equation

3.2 and their derivatives are continuous at the interfaces between the normal regions and superconductors.

The explicit boundary conditions are:

ψNL(0) = ψSL(0), ψSL(h1) = ψNC (h1), ψNC (h2) = ψSR(h2), ψSR(h3) = ψNR(h3),

ψ̇NL(0) = ψ̇SL(0), ψ̇SL(h1) = ψ̇NC (h1), ψ̇NC (h2) = ψ̇SR(h2), ψ̇SR(h3) = ψ̇NR(h3).

(3.5)

These boundary conditions give us a system of 16 equations, which we can use to eliminate the coefficients for

the SL, NC and SR regions. Once we have eliminated the three central regions we can write the coefficients

corresponding to outgoing particles and holes in terms of the coefficients of incoming particles and holes.

Doing so we obtain the scattering matrix of the system,


CpNL
Dh
NL

ApNR
BhNR

 =


rLLpp rLLph tLRpp tLRph
rLLhp rLLhh tLRhp tLRhh
tRLpp tRLph rRRpp rRRph
tRLhp tRLhh rRRhp rRRhh



ApNL
BhNL
CpNR
Dh
NR

 . (3.6)
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The scattering matrix elements are all functions of the energy of the particles and holes and the phase

difference between the superconducting regions, φ. The subscripts on the scattering elements denote the

outgoing and incoming excitation types, respectively, and the superscripts denote the outgoing and incoming

leads, respectively.

3.2 System Parameters

For our model system we use parameters based on the high-Tc superconductor LSCO. The system

parameters for LSCO are given in Table 1.1 and are reproduced in Table 3.1 for convenience. The temperature

of the system, T0, is 16.3K and the maximum energy εmax is .000356EH . The Fermi distribution of the

thermal reservoirs at this temperature is reproduced in Figure 3.2. The choice of temperature is such that

one propagating mode exists in the device. We will generally bias the leftmost normal lead and we will be

setting vl = .1∆0 for all of our numerical results. Unless explicitly stated otherwise, the numerical results

will be for LS = 6ξ and LCN = 2.75ξ, where ξ is the superconducting coherence length. We also assume that

a phase difference of φ can be induced between the superconducting segments, although this is not essential

for our main results.

Tc (K) 38
ξ (aB) 65

∆ (EH) 0.000212
εf (EH) 0.000935
εmax (EH) 0.000356
T0 (K) 16.3
Ly 1.85ξ
Lx 1.2Ly

Table 3.1: System parameters for LSCO, taken from [34], Table 7.4
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Figure 3.2: Plot of the Fermi distribution, NL, with zero bias and T0 = 16.3K.

3.3 Cross-Correlated Shot Noise for NSNSN

Figure 3.3 shows plots of the shot noise distribution dSLR(e) and average current dJ(e) as a function

of energy for LS = 6ξ and LCN = 2.75ξ. We can see that there is a subgap energy interval where the cross-

correlated shot noise is positive. In Figure 3.3(b) we plot the energy distribution of the current. Vertical

lines have been drawn in to highlight the overlap between these distributions in the region of positive cross-

correlated shot noise. We can see that a nontrivial fraction of the current is indeed carried by electrons in

this energy interval.

The size of the superconducting regions affects the behavior of the cross-correlated shot noise. In

Figures 3.4(a) and 3.4(b) we plot the cross-correlated noise energy distributions for superconducting regions

ranging in length from LS = 1ξ to LS = 9ξ with LCN fixed at 2.75ξ. For small values of LS (1ξ≤LS≤4ξ)

shown in Figure 3.4(a)) we see no energy intervals of positive cross-correlated shot noise. For larger values of

LS , (4ξ≤LS≤9ξ) shown in Figure 3.4(b), we do see energy intervals with positive cross-correlated shot noise.

The maximum values of the positive peak decreases as we increase LS beyond LS = 6ξ. At intermediate

values of LS (4ξ≤LS≤6ξ), we find large positive peaks in the positive cross-correlated shot noise with finite
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Figure 3.3: Energy distribution for the (a) cross correlated shot noise and (b) current with LS = 6ξ,
LCN = 2.75ξ and φ = 0. Lines have been drawn on the current plot to highlight the overlap between the
current distribution and the positive region of the cross correlated shot noise.
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energy width. In Section 3.7 we will evaluate the relationship between the positive cross-correlated noise

and the size of LS and LCN in more detail.

Figure 3.4: Differential cross-correlated shot noise for a number of different superconducting region sizes. In
(a) we plot LS = 1− 4ξ and in (b) we plot LS = 5− 9ξ. For both (a) and (b) the size of the central normal
region is 2.75ξ.

3.4 Scattering Amplitudes for NSNSN

In Figure 3.5 we give plots of |tLRpp |, |tLRhh | and |tLRph | for a few different values of LS and φ. For

Figures 3.5(a)-(c) LS = 6ξ and LCN = 2.75ξ. The phase differences between the two superconducting regions

in Figures 3.5(a)-3.5(c) are 0, π6 and −π6 respectively. In Figure 3.5(d), LS = 8ξ, LCN = 2.75ξ and φ = π
6 .

In Figure 3.5(a), there is a pair of resonances in the transmission amplitudes with peaks in tRLpp ,

tRLhh and tRLhp below the gap energy. There is a small shift in the peaks of the particle-particle and hole-hole

resonances due to the small momentum difference between particles and holes with the same energy. There

is also a resonance in tRLhp . As we change the phase difference φ, the offset in the positions of the tRLpp and

tRLhh resonances increases, with the positions of the peaks for tRLpp and tRLhh dependent on the sign of the

phase difference. At the same time, as we increase φ the magnitude of the second resonance in tRLpp and tRLhh

markedly decreases.

In Figure 3.5(d) we see that increasing the size of the superconducting regions results in sharper
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Figure 3.5: Plots of the magnitudes of the particle-particle, hole-hole and particle-hole transmission coeffi-
cients for a variety of system parameters. (a) LS = 6ξ and φ = 0, (b) LS = 6ξ and φ = π

6 , (c)LS = 6ξ and
φ = −π6 , (d) LS = 8ξ and φ = π

6 .

resonances. Whereas it appears in Figures 3.5(a)-(c) that tRLph has a centrally located resonance in-between

the tRLpp and tRLhh resonances, tRLph actually has a pair of resonances at the same energies as the tRLpp and tRLhh

resonances. A key feature we see in the scattering plots is that for LS = 6ξ at small values of φ there is a small

energy interval in-between the resonances in tRLpp and tRLhh where tRLph becomes the dominant transmission

term. This energy interval corresponds nearly exactly to the energy interval in which we observed a positive

peak for dSLR(e) in Figure 3.3(a).
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3.5 Quasibound States and Pole Structure

We saw in Figure 3.5 clear evidence for the existence of resonances in the plots of tRLpp , tRLhh and

tRLhp . Below the gap, excitations in the central normal region are confined by repeated Andreev reflections

at each of the interfaces. In the NSNSN geometry, this produces quasibound states, as the finite size of the

superconducting regions allow particles and holes to tunnel out at a nonzero rate.

In Figure 3.6(a) we plot |tRLpp | for complex energy values and for the same parameters used in Figure

3.5(a). The contour plot in Figure 3.6 shows that the resonances in tRLpp in Figure 3.5(a) are due to a pair of

closely spaced poles in the complex energy plane.

Figure 3.6: (a) Plot of |tLRpp | in the complex energy plane for LS = 6ξ and LNC = 2.75ξ. The poles correspond

to the quasibound state resonances in Figure 3.5(a). (b) Corresponding plot of dSLR(e).

In Figure 3.6(b) we have the corresponding plot of dSLR(e). Away from the quasibound states

dSLR(e) is entirely negative. At the quasibound state energy, however, there is a large positive peak in the

value of dSLR(e). This connection between the positivity of dSLR(e) and the positions of the quasibound

states is fairly general as well. In Figure 3.7 we plot the complex poles and the cross-correlated noise for

a longer central normal region, LS = 6ξ and LCN = 5ξ. Increasing LCN has the effect of decreasing the real
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and imaginary parts of the quasibound state energies. In Figure 3.7(b) the energy interval with positive

cross-correlated shot noise has shifted to the left in accordance with the movement of the quasibound states.

For sufficiently large values of LCN we can start to have additional quasibound states emerge which

results in additional scattering resonances and additional positive peaks in the plots of dSLR(e). This can

be seen in Figure 3.8, where we plot dSLR(e) and the transmission coefficients for LS = 6ξ and LCN = 13ξ.

Figure 3.7: (a) Magnitude of |tLRpp | in the complex energy plane for LS = 6ξ and LNC = 5ξ. (b) Corresponding

plot of dSLR(e).

In addition to modifying the quasibound state energies by changing LCN , we can also change φ. In

Figure 3.9 we plot the poles of tLRpp with (a) φ = π
12 and (b) φ = − π

12 . Increasing the phase difference in

the positive direction shifts the real energy of the pole on the left and shrinks the size of the pole on the

right. With a negative phase difference it is now the pole on the left that shifts its real energy and shrinks.

However, while it is possible to shift the positions of the quasibound states by adjusting the value of φ,

this can have the effect of reducing the positivity of the noise correlations. This is seen in Fig 3.10, where

dSLR(e) is plotted as a function of both the energy, e, and the phase difference φ. Positive values of dSLR(e)

are localized about a small range of φ values near zero. This suggests that for the goal of maximizing the
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Figure 3.8: (a) Plot of dSLR(e) for LS = 6ξ and LNC = 13ξ. Note the existence of multiple positive
peaks in the energy distribution. (b) Corresponding plots of |tLRpp |, |tRLhh | and |tRLhp |. There is a one-to-one
correspondence between the resonances and the positive noise correlations.

positivity of dSLR(e) it is best to set φ = 0.

3.6 Origin of Positive Noise Cross-Correlation

In the previous section, we observed a connection between the location of the quasibound state poles

and the energy intervals of positive cross-correlated shot noise. In this section, we show the origin of the

positive contributions to the cross-correlated shot noise at the resonance energies.

In Fig. 3.11, we plot the three terms, dSLRpp , dSLRhh and dSLRph separately. Away from the resonances

the only term which goes positive is dSLRph . However, at the resonance we see that dSLRpp , dSLRhh and dSLRph

switch behaviors and now there is an overall negative contribution due to dSLRph and an overall positive

contribution due to dSLRpp and dSLRhh . Since dSLRpp and dSLRhh have similar qualitative behavior we will focus

on just the positive contributions arising from dSLRpp .

The contribution to the shot noise from dSLRpp is given in Eq. 1.40. It can be split into three terms,

each with a different dependence on the thermal reservoirs. They are as follows:
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Figure 3.9: Poles of |tLRpp | for (a) φ = π
12 and (b) φ = − π

12 , with the corresponding plots of dSLR(e) given
in (c) and (d) respectively. As we change the phase difference the second resonance we saw in Figure 3.6
becomes smaller and eventually disappears entirely.
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Figure 3.10: Phase dependence of the cross-correlated shot noise. We can see that the region of positive shot
noise is localized around the value φ = 0, and is maximized at that point in general.
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dSLRpp (1) =
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In Figures 3.12(a)-(c) we plot each of these 3 terms separately.

Figure 3.11: Contributions to the differential cross-correlated shot noise dSLRpp , dSLRhh and dSLRph (plotted

separately), for LS = 6ξ and LCN = 2.75ξ. Away from the resonance dSLRpp and dSLRhh are negative and dSLRph
is positive. At the resonance dSLRpp and dSLRhh are positive and dSLRph is negative.

We now focus on dSLRpp (1). Expanded out fully, dSLRpp (1) has six separate components, three of which

give rise to positive correlations at the resonance. These three terms are (neglecting the Fermi distribution

prefactors) Σ1 = |tRLpp |2|rLLpp |2, Σ2 = |tRLhp |2 and Σ3 = |tRLhp |2|rLLhp |2. In Figure 3.12(d)-(f) we give their

respective plots. The largest of the three contributions is due to the Σ1 term, which corresponds to the CAR
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Figure 3.12: Plots of components of dSLRpp for LS = 6ξ and LCN = 2.75ξ. (a) dSLRpp (1). (b) dSLRpp (2).

(c) dSLRpp (3). All three components are negative away from the resonance but contribute positively at the

resonance energies. Additionally, plots of the 3 components of dSLRpp (1) which give rise to positive correlations,

(d) Σ1 = |tRLpp |2|rLLpp |2, (e) Σ2 = |tRLhp |2, (f) Σ3 = |tRLhp |2|rLLhp |2.
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process [28]. The remaining two terms are characterized using a scheme based on [43] and [42]. Each of the

higher-order products of scattering coefficients consists of two reflection coefficients, either normal reflection

(NR) (rpp or rhh) or Andreev reflection (AR) (rph and rhp), and two transmission coefficients, either elastic

cotunneling (EC) (tpp or thh) or crossed Andreev reflection (CAR) (tph or thp). Using this scheme, Σ1 is

called an EC-NR term, as it consists of two normal transmission and two normal reflection coefficients, and

Σ3 is called a CAR-AR term, as it consists of two Andreev reflection and two crossed Andreev reflection

coefficents.

In contrast to [43] and [42], which found that at T = 0 EC-NR and CAR-AR terms always result

in negative correlations, at finite temperatures in the NSNSN system these terms can indeed give positive

contributions, as seen in Figures 3.12(d) and (f). The EC-NR term arises microscopically due to correlations

induced by the elastic cotunneling scattering processes [43]. The CAR-AR term arises microscopically from

a process referred to as synchronized Andreev reflection (AR-AR), a higher-order process in which a pair of

Andreev reflections (from particle to hole or vice versa) at the leftmost and rightmost interfaces occur in a

coherent fashion [106].

3.7 System Size Dependence and Comparison to NSN Geometry

It is important to compare results for the NSNSN system with those of the simpler NSN geometry.

In particular, we are interested in comparing results in the case where the size of the central superconducting

region S in the NSN geometry is the same size as the central SNS structure in the NSNSN geometry. In

Figure 3.13(a) we plot the cross-correlated noise distributions for an NSNSN system with LS = 6ξ and

LCN = 2.75ξ and an NSN system with LS = 14.75ξ. Unlike the NSNSN system, for the NSN system we

no longer see any energy intervals in which dSLR goes positive. This is not just the case for this choice of

system size either. In Figure 3.13(b) we plot dSLR for a range of superconducting region sizes for the NSN
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Figure 3.13: (a) Comparison dSLR(e) for the NSNSN and NSN geometries. For the NSNSN system LS = 6ξ
and LCN = 2.75ξ and for the NSN system LNSNS = 14.75ξ. (b) Plot of dSLR for the NSN system with
LNSNS = 1.75ξ, 6ξ, 10ξ and 14.75ξ. The total cross-correlated noise energy distribution remains negative
over the entire energy interval.

system ranging from LNSNS = 1.75ξ to  LNSNS = 14.75ξ, and for all of these system sizes we see that the total

cross-correlated noise distribution remains negative over the full energy range of the system.

We will now readdress the relationship between the system size and the positivity of dSLR discussed

in Section 3.3 (specifically in Figure 3.4). To do so we will define the quantity

SLR+ =

∫
de clip+(dSLR(e)), (3.10)

where

clip+(x) =

{
0 x < 0

x x ≥ 0.
(3.11)

This expression corresponds to the total area of the positive regions of dSLR and gives us a simple

measure with which to compare the positivity of the cross-correlated noise for different values of LS and

LCN . In Figure 3.14 we have a contour plot of SLR+ as a function LS and LCN . One feature we immediately

recover which we saw indications of in Fig. 3.4 is the existence of a “sweet spot” for the value of LS which
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maximizes SLR+ . This behavior of the NSNSN system, namely zero positivity in the noise cross-correlations

for both very small and large values of LS , appears to be a general feature of the NSNSN geometry. Also,

Figure 3.14 shows a periodic-like relationship between SLR+ and LCN , in which a series of peaks in SLR+ is

separated by troughs where SLR+ is nearly zero. As we increase LCN the maximum value of SLR+ increases

accordingly. An interesting question for future analysis is whether the maximum values of SLR+ continue to

grow monotonically as we increase LCN further.

Figure 3.14: Area of the region of positive noise correlations, SLR+ , as a function of the system size, with
values of LS along the y-axis and values of LCN along the x-axis.

3.8 Temperature Dependence

In Section 3.2 we explained that the choice of temperature T0 = 16.3K was based on ensuring that

the transport was effectively restricted to the first transverse mode of the system (so as to simplify our

calculations) balanced with the requirement that there was a nontrivial population of excitations throughout
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the full energy range comprising the first transverse mode of the system. The balancing of these two

requirements can be seen in the Fermi distribution of the leftmost lead plotted in Figure 3.2. It is interesting

to consider the cross-correlated noise of the system as we lower the temperature of the system.

In Figure 3.15(a) we show a plot of the cross-correlated shot noise as a function of both energy

and system temperature, T0, for temperatures ranging from 0K to 16.3K, and for LCN = 2.75ξ, LS = 6ξ

and vl = .1∆0. From Figure 3.15(a) we can see that the behavior of the cross-correlated noise energy

distribution as a function of temperature breaks into roughly three regimes. At close to T0 = 16.3K the

distribution is heavily dependent on the quasibound state located roughly halfway through the energy range

of the system. At intermediate temperatures the population of excitations at energies near the quasibound

state is suppressed and, while we still see a positive peak at the quasibound state as seen in Figure 3.15(b)

for T0 = 8.15K, the magnitude of that peak is nearly twenty times smaller than what was seen in Figure

3.6(b).

Finally, at very low temperatures we see a new behavior in which we have a positive peak in the shot

noise distribution at energies just below the bias energy vl = .1∆0. This behavior is demonstrated in Figure

3.15(c), where we have set T0 = 1K. This peak is not associated with any quasibound states of the system and

can be traced back to a specific subcomponent of dSLRph , Σ4 = −(FLh N
R
p +FRp N

L
h )Re[rLL∗ph rRR∗ph tLRpp t

RL
hh ], which

is plotted alongside the total cross-correlated noise distribution in Figure 3.15(c). Using the classification

scheme discussed in Section 3.6 the term −(FLh N
R
p +FRp N

L
h )Re[rLL∗ph rRR∗ph tLRpp t

RL
hh ] corresponds to an EC-AR

term. It was shown in [42,43] that EC-AR terms in the cross-correlated noise correspond microscopically to

a process called synchronized Andreev and inverse Andreev reflection (AR-AR), a higher-order process in

which an Andreev reflection (from particle to hole) at one interface and an inverse Andreev reflection (from

hole to particle) at the other interface occur in a coherent fashion. Due to the simultaneous exchange of two

fermions, the correlations resulting from this process can be boson-like, and as such positive.
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Figure 3.15: (a) Plot of the cross-correlated shot noise distribution as a function of the system temperature,
T0, and energy e with LCN = 2.75ξ and LS = 6ξ. (b) Cross-correlated shot noise distribution for T0 = 8.15K.
(c) Cross-correlated shot noise distribution for T0 = 1K plotted alongside the subterm Σ4 = −(FLh N

R
p +

FRp N
L
h )Re[rLL∗ph rRR∗ph tLRpp t

RL
hh ], which is the primary positive contribution.
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3.9 The Andreev Approximation

We have so far presented results of the full scattering theory and thus far have not looked at the

effect of applying the Andreev approximation [7]. We introduced the Andreev approximation in more detail

in Section 1.2.4, but we will recap very briefly here. The Andreev approximation can be used if the ratio

between the gap energy ∆0 and the Fermi energy εf , ∆0

εf
, is sufficiently small that to good approximation

we can drop higher order terms in the ratio ∆0

εf
from the BdG equations, reducing them to a pair of coupled

first-order differential equations known as the Andreev equations. In the high-transparency limit we consider

here, this gives rLLpp = rLLhh = rRRpp = rRRhh = 0 as well as tLRhp = tLRph = tRLhp = tRLhp = 0 in the scattering matrix

(with the remaining scattering elements modified accordingly). With the Andreev approximation applied it

is possible to write down the explicit expressions for the scattering elements, and they are given in Appendix

B along with the simplified cross-correlated shot noise.

Figure 3.16: Comparison between the full scattering theory and results using the Andreev approximation.
In (a) the differential cross-correlated shot noise and in (b) the magnitude of the current. While the results
agree well away from the resonance, at the resonance we see that the Andreev approximation breaks down
badly for the noise.

In Figure 3.16 we compare the cross-correlated shot noise and current distributions from the full

scattering theory and using the Andreev approximation. Away from the resonance the results using the

Andreev approximation are nearly indistinguishable qualitatively from the full scattering theory. At energies
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close to the resonance, however, we see from Figure 3.16(a) that the behavior of dSLR(e) strongly diverges.

Whereas there is a clear positive peak in the noise distribution in the full scattering theory results, using

the Andreev approximation the noise distribution remains purely negative and instead has a large negative

dip at the resonance. The choice to use LSCO’s parameters in our model system was motivated partly by it

having one of the largest values of ∆0

εf
among commonly studied superconductors, so it is an ideal substance

for analyzing the Andreev approximation. The key issue here is the fact that the Andreev approximation

treats terms such as |tLRph | and |rLLpp | as negligible, while in reality these terms are nontrivial for the NSNSN

system and are components of the main positive contributions to the cross-correlated noise, as seen in Figure

3.12.

There are also some qualitative differences to be found in the results for the quasibound states of

the system. In Figure 3.17 we plot the poles of |tLRpp | using the Andreev approximation. While the energy

of this pole is comparable to what was found using the full scattering scattering theory in Figure 3.6(a), we

now find only a single pole as opposed to the pair of poles.

3.10 Conclusions

In this chapter we studied the scattering properties and the current and cross-correlated shot noise

distributions of an NSNSN system. We have obtained analytical expressions for the scattering matrix of the

system without the Andreev approximation. We then used the scattering matrix elements to calculate the

current and cross-correlated shot noise energy distributions and have used numerics to plot these quantities

for a variety of system parameters. We find a one-to-one correspondence between the energies of quasibound

states in the system and regions of positive correlations in the cross-correlated shot noise distributions. This

connection between the positions of the quasibound states and the positive noise correlations is robust and

is shown to be the case even as we introduce multiple quasibound states by increasing our system size.
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Figure 3.17: Quasibound state pole using the Andreev approximation. While at approximately the same
energy, we do not see the double poles we did in Figures 3.6 and 3.7.

Moreover, we find that while the Andreev approximation gives strong qualitative agreement for the current

and cross-correlated shot noise at energies away from the quasibound states, it breaks down notably at the

quasibound state energies. We also find differences between the results of the full scattering theory and the

Andreev approximation when looking at the poles of the scattering matrix in the complex energy plane.

Acknowledgments

This work was supported by the Robert A. Welch Foundation (Grant No. F-1051).

63



Part II

Quantum Circuit Simulation Using
Signal Processing Based Hardware
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Chapter 4

Signal Processing Based Special Purpose Quantum Circuit
Simulation

4.1 Introduction

In 1980, Paul Benioff first introduced the concept of a quantum computer by demonstrating that a

closed quantum system could be used to model the general process of computation [14]. The idea was later

formalized by David Deutsch through the concept of a universal quantum computer as a generalization of

a classical Turing machine [37]. Nearly a decade later, Peter Shor demonstrated that quantum computers

could be used to factor large numbers more efficiently than any known classical algorithm and that such

devices could be designed with fault tolerance [103, 104]. Quantum computers thereby offer a challenge to

the strong Church-Turing thesis that one can do no better than a classical Turing machine [1, 114].

Current approaches to quantum computing are based on a variety of physical platforms, such as

photonics, trapped ions, or superconducting circuits [85,110]. All of these approaches rely upon maintaining

a highly coherent quantum state through a series of gate operations in order to achieve a computational

advantage. Preparing and manipulating such systems can be quite difficult, as small interactions with the

environment quickly lead to decoherence of the state and, consequently, a significant loss in performance [57].

Among the most exciting recent developments in the field of quantum information is the rapid de-

velopment of theoretical and experimental progress in demonstrating quantum computational supremacy.

There are currently two leading proposals for demonstrating quantum computational supremacy, random

circuit sampling (RCS) [3, 4], and boson sampling [2], specifically, the related offshoot gaussian boson sam-
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pling [48]. Both of these proposals have recently seen experimental demonstrations which appear to have

successfully demonstrated the quantum computational supremacy of the underlying quantum systems. The

demonstration of RCS was performed by the group of John Martinis at Google using 53 superconduct-

ing transmon qubits on their “Sycamore” chip [10]. Gaussian boson sampling was demonstrated with a

maximum of 73 detected photons by the group of Jian-Wei Pan and Chao-Yang Liu at USTC using their

reconfigurable Jiuzhang photonic device [126]. Both of these experiments are highly impressive, but they

also highlight an important challenge in the development of large scale quantum computers operating in

the quantum supremacy regime, verification and validation of the correctness of the quantum computer’s

results. The most naive and straightforward approach to such a verification would be to directly calculate

the full list of amplitudes for all possible output states and to use this to directly verify that the quantum

computer is indeed sampling from the induced probability distribution. In Google’s paper, however, they

showed that this naive approach to verification, using an algorithm such as the one proposed in [3], would

take ∼ 10, 000 years using all of the RAM available on Oak Ridge National Lab’s Summit supercomputer.

This was later refined by IBM Q in an analysis that showed that, in principle at least, this verification

could be done in a few days by leveraging Summit’s secondary storage to store the full list of amplitudes

on disk [92]. Regardless, it is clear that storage requirements, energy use—IBM did not include an estimate

here, but using Summit’s rated power consumption of 13MW with IBM’s 60h estimated run time yields

roughly 780MWH of energy consumption—and financial costs render such an approach to simulation and

verification untenable for routine use at the scale of these early supremacy experiments.

Motivated by this insight, we have developed a novel approach to simulate quantum circuits using

classical analog signal processing1. This approach uses a signal model which admits a Hilbert space descrip-

1The results in this chapter are based on the research paper: B. R. La Cour, C. Ostrove, G. Ott, M. J. Starkey and G. R.
Wilson, Classical emulation of a quantum computer, International Journal of Quantum Information, 14, 04 (2016). C. Ostrove
ran the experiments, performed simulations and data analysis, generated the figures in Sections 4.3 and 4.4 and contributed to
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tion that is mathematically equivalent to a multi-qubit, gate-based quantum computer [31]. Within this

model, we have devised a novel scheme for addressing individual qubits, or groups of qubits, and applying

gate operations upon them using analog electronic adders, multipliers, and filters. We furthermore have

constructed a model of quantum measurement gates based on performing signal projection operations as

well as phenomenological models based on amplitude threshold detections that are capable of simulating

phenomena such as quantum contextuality and entanglement, important to quantum computing [64, 65].

Thus, using this approach it is possible to simulate any particular quantum computing algorithm or proto-

col, including Shor’s factoring algorithm, Grover’s search algorithm, fault-tolerant quantum error correction,

and even quantum teleportation. Finally, a hardware demonstration system has been constructed that is

capable of simulating a two-qubit quantum device.

We will discuss the practical considerations of this approach further in Section 4.5, but to be com-

pletely clear, just as existing digital quantum circuit simulations have exponential resource scaling in the

form of, say, memory or computation time, the signal processing approach described in this chapter has

exponentially scaling resource requirements in the form of the signal’s bandwidth. Similarly, the complexity

of the comb-like filters needed to perform the crucial subspace projection operation described in Section 4.2.3

scales similarly as we increase the number of qubits in our simulation. There are also challenges imposed

by the intrinsic noisiness of the underlying analog hardware. Nonetheless, there are a number of intrinsic

advantages to this approach as well, for example the ability to perform one and two-qubit gate operations

in a single time step independent of the number of qubits in the simulation. Moreover, it has been projected

that this approach would have substantially lower energy requirements as compared to a comparably sized

digital simulation [31].

the writing of these sections. B. R. La Cour suggested and advised the experiments, and contributed most of the writing for
the rest of the paper. M. J. Starkey and G. Ott contributed to the design and operation of the hardware prototype.
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In Section 4.2 we describe the basic physical representation for our quantum simulation scheme and

then turn to a hardware implementation of a two-qubit device in Section 4.3. The fidelity of this device is

analyzed in Section 4.4, and the prospects for a larger-scale device are discussed in Section 4.5.

4.2 Physical Representation

This section describes the notional physical representation of quantum states and various gate opera-

tions. These are described in more detail elsewhere. [31] Here, we summarize the description for completeness

and, later, turn to a specific hardware implementation. We begin with a description of the mathematical

Hilbert space of an n-qubit quantum system, then relate these mathematical constructs to a classical, signal-

based representation.

4.2.1 Hilbert Space Description

The state of an n-qubit quantum computer may be represented by an element |ψ〉 of a 2n-dimensional

Hilbert space H taking on the particular form of a tensor product of n two-dimensional Hilbert spaces

H0, . . . ,Hn−1 such that H = Hn−1 ⊗ · · · ⊗H0, where ⊗ is the tensor product. A single element of one of

the n constituent Hilbert spaces constitutes a qubit. The specification of an inner product 〈φ〉ψ between

states |φ〉 and |ψ〉 in H completes the Hilbert-space description.

We shall denote by |0〉i and |1〉i a pair of orthonormal basis states, termed the computational

basis, for Hi and i ∈ {0, . . . , n − 1}. Taking tensor products of these individual basis states, we obtain

a set of 2n orthonormal basis states for the product space, H. A particular binary sequence x0, . . . , xn−1

therefore corresponds to a single basis state |xn−1〉n−1 ⊗ · · · ⊗ |x0〉0. For brevity, this binary sequence may

be represented by its decimal form, x = x020 + · · ·+ xn−12n−1 ∈ {0, . . . , 2n − 1}, so that the corresponding

basis state may be written succinctly as |x〉 or, more explicitly, as |xn−1 · · ·x0〉. Let 〈x〉ψ = αx ∈ C for a
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given state |ψ〉 ∈ H and basis state |x〉. This state may then be written

|ψ〉 =

2n−1∑
x=0

αx |x〉 . (4.1)

4.2.2 Signal-based Representation

A key concept in our classical representation of a quantum state is the notion of in-phase and

quadrature signals, which may be used to encode two distinct signals within one signal. Suppose we have a

complex number α = a+ jb, with a, b ∈ R. Physically, the real and imaginary values may be represented by,

say, a pair of distinct direct current (DC) voltages. It is also possible to encode them in a single alternating

current (AC) voltage signal s(t) of carrier frequency ωc > 0 such that

s(t) = Re[αejωct] = a cos(ωct)− b sin(ωct) . (4.2)

Given s(t), the parameters a and b can be recovered by the following procedure. First, we split the

signal into two copies, then multiply each by 2 cos(ωct) and −2 sin(ωct), respectively, to obtain

2 cos(ωct) s(t) = a+
[
a cos(2ωct)− b sin(2ωct)

]
(4.3a)

−2 sin(ωct) s(t) = b−
[
b cos(2ωct) + a sin(2ωct)

]
. (4.3b)

Multiplication by the quadrature components thus creates signals at the sum and difference frequencies 2ωc

and 0 (i.e., DC). Low-pass filtering these two signals, then, yields the coefficients a and b, as desired.

A similar approach may be used to encode two complex numbers α and β, and hence a single qubit,

using the complex quadrature signals ejω0t and e−jω0t. Physically such a choice would, again, correspond to

using two distinct real signals, each representing the real and imaginary parts, to realize the complex signal.

With this “dual rail” representation, the corresponding complex signal is given by

ψ(t) = αejω0t + βe−jω0t . (4.4)
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As before, the coefficients α and β may be recovered (as pairs of DC voltages) by multiplying copies of

ψ(t) by e−jω0t and ejω0t, respectively, and then low-pass filtering. Note that multiplication, in this case, is

complex multiplication between two dual-rail signals, which results in a dual-rail output.

More generally, we may identify the single-qubit basis states |0〉i and |1〉i, for qubit i, with the basis

functions φωi0 and φωi1 , where φωi0 (t) = ejωit and φωi1 (t) = e−jωit are the in-phase and quadrature signals,

respectively. For n qubits, the basis state |x〉 is represented by the basis signal φx composed of a product of

n single-qubit signals as follows:

φx(t) = φωn−1
xn−1

(t) · · · φω1
x1

(t) · φω0
x0

(t) , (4.5)

where φωi0 (t) and φωi1 (t) are defined above. Thus, function multiplication serves as a tensor product between

qubits. Unlike the Kronecker product of matrices, though, the order is unimportant, as the qubits are

distinguished by their distinct frequencies. Note that the spectrum of φx will consist of the 2n sums and

differences of the n component frequencies, which represent the Hilbert space. We refer to this description

as the quadrature modulated tonals (QMT) representation.

By way of convention, we take 0 < ω0 < · · · < ωn−1, where ωi = 2iω0, and refer to this as the octave

spacing scheme. The quantum state |ψ〉 can now be represented as a complex, n-qubit signal ψ which, at

time t, is given by

ψ(t) =

2n−1∑
x=0

αxφx(t) . (4.6)

For two such signals φ and ψ, the inner product is defined to be

〈φ〉ψ =
1

T

∫ T

0

φ(t)∗ψ(t)dt , (4.7)

where T is a multiple of the period 2π/ω0 of the signal. Note that the inner product corresponds to a low-

pass filter, and 〈φx〉ψ = αx represents a pair of DC values giving the components of the quantum state for
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the |x〉 basis state. This completes the Hilbert space description, thereby demonstrating the mathematical

equivalence of this representation to that of a multi-qubit quantum system.

4.2.3 Gate Operations

In our approach, subspace projections are used for performing gate operations. Given a quantum

state |ψ〉 ∈ H, we can mathematically decompose it into the two orthogonal subspaces corresponding to,

say, qubit i as follows:

|ψ〉 = Π
(i)
0 |ψ〉+ Π

(i)
1 |ψ〉 = |0〉i ⊗

∣∣∣ψ(i)
0

〉
+ |1〉i ⊗

∣∣∣ψ(i)
1

〉
, (4.8)

where
∣∣∣ψ(i)

0

〉
and

∣∣∣ψ(i)
1

〉
are the (n− 1)-qubit partial projection states.

A linear gate operation on a single qubit may be represented by a complex 2× 2 matrix U , where

U =

(
U0,0 U0,1

U1,0 U1,1

)
. (4.9)

If U acts on qubit i of state |ψ〉, then the transformed state is

|ψ′〉 =
[
U0,0 |0〉i + U1,0 |1〉i

]
⊗
∣∣∣ψ(i)

0

〉
+
[
U0,1 |0〉i + U1,1 |1〉i

]
⊗
∣∣∣ψ(i)

1

〉
(4.10)

Thus, the gate operation is applied only to the addressed qubit basis states, not to the partial projections.

This, of course, is only a mathematical operation. A physical method of construction is needed to realize

the transformation.

In our QMT representation, a pair of complex signals ψ
(i)
0 (t) and ψ

(i)
1 (t) corresponding to the partial

projection states
∣∣∣ψ(i)

0

〉
and

∣∣∣ψ(i)
1

〉
are produced by taking the initial complex signal ψ(t), multiplying copies

of it by φωi0 (t) and φωi1 (t), respectively, and passing them through a pair of specialized bandpass filters

that output the desired projection signals [31]. Given this pair of complex signals, along with the complex,

single-qubit basis signals φωi0 (t) and φωi1 (t), we may construct the transformed signal ψ′(t) using analog
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multiplication and addition operations as follows:

ψ′(t) =
[
U0,0 φ

ωi
0 (t) + U1,0 φ

ωi
1 (t)

]
ψ

(i)
0 (t) +

[
U0,1 φ

ωi
0 (t) + U1,1 φ

ωi
1 (t)

]
ψ

(i)
1 (t) . (4.11)

Two-qubit gate operations, such as Controlled NOT (CNOT) gates, may be constructed similarly.

Importantly, this approach to performing gate operations requires only a single subspace decompo-

sition of the original signal into two constituent signals and does not require a full spectral decomposition,

as would be required if one were performing an explicit matrix multiplication operation over the entire

2n-component state. This approach provides a significant practical advantage to implementation and more

closely emulates the intrinsic parallelism of a true quantum system.

4.2.4 Measurement Gates

The procedure for performing measurements is quite similar to that for performing gate operations.

To perform a measurement on, say, qubit i, we construct the partial projection signals ψ
(i)
0 (t) and ψ

(i)
1 (t),

as before, and measure their root-mean-square (RMS) values, given by

q
(i)
0 =

1

T

∫ T

0

∣∣∣ψ(i)
0 (t)

∣∣∣2 dt , q
(i)
1 =

1

T

∫ T

0

∣∣∣ψ(i)
1 (t)

∣∣∣2 dt . (4.12)

This can be done most easily by adding the real and imaginary parts of, say, ψ
(i)
0 (t), measuring the RMS

value of the sum, and then squaring the result, since

1

T

∫ T

0

[
Reψ

(i)
0 (t) + Imψ

(i)
0 (t)

]
dt = q

(i)
0 . (4.13)

According to the generalized Born rule, the outcomes 0 and 1 occur with probability p
(i)
0 ∝ q

(i)
0 and

p
(i)
1 ∝ q

(i)
1 , and these probabilities may be computed explicitly through analog sum and division operations.

For each such qubit measurement, a random input DC voltage representing a random number ui, chosen

uniformly in the interval [0, 1], may be input to a comparator device such that when ui > p
(i)
0 a binary

outcome of 1 is obtained with a probability given by the Born rule.
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To measure a second qubit, the same procedure is followed but using the (unnormalized) “collapsed”

state Π
(i)
0 |ψ〉 or Π

(i)
1 |ψ〉, depending upon whether outcome 0 or 1, respectively, was obtained in the first

measurement. The selection of the collapsed state may be implemented through a simple switch controlled

by the binary measurement output. This procedure may be repeated until all n qubits are measured. Doing

so results in an n-bit digital output whose distribution follows the quantum mechanical predictions, at least

to the limits of hardware fidelity.

4.3 Hardware Implementation

The results of this chapter come from an early hardware prototype device capable of initializing the

system into an arbitrary two-qubit state and operating using a universal set of gate operations. In Chapter

5 we will present results based on a later prototype. A picture of the hardware setup is shown in Figure 4.1.

We use a signal generator to produce a baseline 1000 Hz tonal, from which all other signals are generated

and thereby phase coherent. The lower frequency qubit, labeled B, is taken from the signal generator, with

a separate, 90-degree phase-shifted signal used to represent the imaginary component. The higher frequency

qubit, labeled A, is derived from qubit B via complex multiplication, which results in frequency doubling.

Thus, ωA = 2π(2000 Hz) and ωB = 2π(1000 Hz). The two single-qubit signals are multiplied to produce the

four basis signals φ00(t) = ej(ωA+ωB)t, φ01(t) = ej(ωA−ωB)t, φ10(t) = ej(−ωA+ωB)t, and φ11(t) = ej(−ωA−ωB)t

centered at frequencies +3000 Hz, +1000 Hz, −1000 Hz, and −3000 Hz, respectively.

State synthesis is performed by multiplying these four basis signals by four complex coefficients α00,

α01, α10, and α11, each represented by pairs of DC voltages, and adding the results to produce the final,

synthesized signal ψ(t) representing the quantum state |ψ〉. An example of a synthesized signal is given in

Fig. 4.2, which shows the ideal pair of signals, representing the real and imaginary parts of ψ(t), and the

recorded signals generated in the hardware. In this example, the state is specified by the complex coefficients
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Figure 4.1: Photograph of an early prototype hardware setup. The three breadboards correspond to basis
signal generation (left), state synthesis (center), and gate operations (right). The devices in the background
are an oscilloscope (left), a signal generator (center), and a DC power supply (right). The electronics are
interfaced via a desktop computer (to the left, not shown).

α00 = 0.6579− 0.2895j, α01 = 0.5385 + 0.1383j, α10 = −0.2280 + 0.3953j, and α11 = −0.2460− 0.4277j.

To implement gate operations, we use a set of analog four-quadrant multipliers, filters and opera-

tional amplifiers to realize the mathematical operations described previously. For example, to perform a gate

operation on qubit A, we use a pair of low-pass filters to remove the 2000 Hz component from e±jωAtψ(t).

The resulting partial projections ψ
(A)
0 (t) and ψ

(A)
1 (t) are a pair of 1000 Hz signals corresponding to qubit B.

To perform the gate operation, we take a matrix U , given by, say,

U =

[
U00 U01

U10 U11

]
=

[
0.1759 + 0.1836j 0.4346 + 0.8460j
−0.4346 + 0.8640j 0.1759− 0.1836j

]
(4.14)

and use it to construct two qubit-A signals of the form U00e
jωAt + U10e

−jωAt and U01e
jωAt + U11e

−jωAt.

These, in turn, are multiplied by the corresponding partial projections and added to form the final signal

ψ′(t), given by

ψ′(t) =
(
U00e

jωAt + U10e
−jωAt

)
ψ

(A)
0 (t) +

(
U10e

jωAt + U11e
−jωAt

)
ψ

(A)
1 (t) . (4.15)

The resulting output using the gate specified in Equation 4.14 applied to the signal in Figure 4.2 is shown

in Figure 4.3.
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Figure 4.2: Plot of two complex signals representing a quantum state with coefficients α00 = 0.6579−0.2895j,
α01 = 0.5385 + 0.1383j, α10 = −0.2280 + 0.3953j, and α11 = −0.2460 − 0.4277j. The left plot shows the
ideal signal, while The right plot shows that recorded signal generated by the hardware. The colors red and
blue indicate the real and imaginary parts, respectively. The top plots show the time-domain signals, while
the bottom plots show the frequency-domain signals.

Figure 4.3: Plot of two complex signals representing the output of a quantum gate operation. The input
signal is that shown in Figure 4.2, and the gate, operating on qubit A, is given by Equation 4.14.
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4.4 Fidelity Analysis

The quality of a quantum state or gate operation is typically measured in terms of the gate fidelity,

which is a number between 0 and 1, where 1 is ideal. For an ideal state |ψ〉 and recorded state
∣∣∣ψ̂〉, the

fidelity is

F (ψ̂, ψ) =
| 〈ψ̂|ψ〉 |
‖ψ̂‖ ‖ψ‖

. (4.16)

Using this definition, we can measure the fidelity of a state synthesis or gate operation over an ensemble of

random realizations.

As an illustration, we performed synthesis of the entangled singlet state |ψ〉 = [|01〉 − |10〉]/
√

2 and

examined the fidelity of the signal used to emulate this state (just prior to performing a gate operation on

it). Using Equation 4.16, we compared the ideal quantum state to the actual signal, using the recorded

signal to compute the inner product 〈ψ̂〉ψ and the normalization ‖ψ̂‖. Figure 4.4 shows the results of this

analysis, where a histogram of fidelity over 500 realizations of the signal is shown. In this example, we find

a mean state fidelity of 0.991 ≈ 99%.

The definition of fidelity given by Equation 4.16 assumes a pure initial and final state; in general,

the states may be mixed. A mixed state may be thought of as a random ensemble of pure states; for n-

qubit states a mixed state may be represented by a 2n × 2n positive semidefinite matrix ρ. In our classical

simulation, a single pure state is always realized and can be known, but in a true quantum system this

is not so. Instead, one must infer the quantum state through a variety of measurements. One widely

accepted approach uses quantum state tomography (QST) to estimate the quantum state from a complete

set of orthonormal measurements. In our case, we use the 16 pair-combinations of four Pauli spin matrices,

normalized to unity with respect to the Hilbert-Schmidt inner product [84]. To fairly compare our system

with a true quantum system, then, we can also perform QST to obtain an estimated quantum state ρ̂ and
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Figure 4.4: Histogram of signal fidelity for 500 realizations of an initial entangled state of the form |ψ〉 =
[|01〉 − |10〉]/

√
2. The mean fidelity, indicated by the red vertical line, is about 0.991.

thereby compute the fidelity compared to the ideal quantum state ρ = |ψ〉 〈ψ| using the formula [56]

F (ρ̂, ρ) =
Tr
(√√

ρ ρ̂
√
ρ
)√

Tr(ρ) Tr(ρ̂)
. (4.17)

These measurement outcomes are in a maximum likelihood QST calculation to obtain the estimated

quantum state ρ′ and, from this, the measured fidelity F (ρ′, ρ) [5, 63, 65]. For the ideal singlet state and a

sample size of 1000, for example, we obtained a measured fidelity of about 0.998 ≈ 99%, comparable to what

was found earlier through a direct calculation of F (ψ′, ψ).

A similar technique was used to measure gate fidelity. Given a pure singlet state, we applied a

random ensemble of unitary gates on qubit A. For each realization of a gate U , the ideal quantum state is

|ψ′〉 = U |ψ〉. If we denote the recorded state by ψ̂′, then the gate fidelity will be F (ψ̂′, ψ′). The results

for this example are summarized in Figure 4.5 where, over an ensemble of 500 runs, a mean fidelity of

0.989 ≈ 99% was obtained.
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Figure 4.5: Histogram of gate fidelity for a random set of 500 unitary gates applied to qubit A on an initial
entangled state of the form |ψ〉 = [|01〉 − |10〉]/

√
2. The mean fidelity, indicated by the red vertical line, is

about 0.989.

4.5 Practical Considerations

The device as currently implemented is limited to two qubits. Additional qubits are straightforward

to implement but require additional bandwidth that scales exponentially with the number of qubits. The

complexity of the filters needed to perform the subspace projection operations increases similarly. Using

current integrated circuit technology, a device of up to 20 qubits could easily fit on single chip, while 40

qubits would seem to be a practical upper limit [31].

Current development efforts are focused on building a set of programmable one- and two-qubit gates.

Once these are completed, we will have the ability to initialize an emulated quantum state and operate on it

with a programmable sequence of universal gates to execute any particular quantum computing algorithm.

Future work will focus on scaling up the number of qubits and migrating from a simple breadboard setup

to a more sophisticated, chip-based implementation. Classical error sources, such as additive noise, can be
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modeled as a quantum operations, such as a depolarizing channel, and this is discussed in the next chapter.

We envision a device based on the concepts described above that would interface with a traditional

digital computer and serve as an analog co-processor, much as is done in our current prototype. Thus, a

digital computer, tasked with solving a particular problem, perhaps as a subroutine to a larger computation,

would designate an initial quantum state and sequence of gate operations to be performed on this state

through a digital-to-analog converter (DAC) interface. The co-processor would produce a final state (i.e.,

a signal) which would then be subject to a sequence of measurement gate operations. The result would be

a particular binary outcome, which would then be reported back to the digital computer via an analog-to-

digital (A/D) converter.

The price paid for the computational efficiency of the analog co-processor lies in the hardware

complexity needed to implement the device. Each single-qubit projection operation on an n-qubit state

requires a pair of distinct, comb-like filters with 2n/4 (positive) passband frequencies, while each two-

qubit operation requires the ability to perform n(n − 1) different projection operations. A key part of the

development for a larger scale device would consist of the design of tunable bandpass filters with multiple

nulls for the subspace projection operations.

The number of qubits will also be limited by the available bandwidth and the lowest frequency ω0

(or period T ) of the signal. Under the octave spacing scheme, n qubits would require a frequency band from

ω0 to 2nω0. Each gate operation would require a time O(T ) to complete, and any useful algorithm would

have a number of gates that grows only polynomially in n. Thus, for a base qubit frequency of, say, 1 MHz,

a single gate operation acting simultaneously on all 210 digital states of a 10-qubit signal would take about

T = 1 µs. If we compare this to a nominal single-core, 1 GHz digital processor, the time to process all

N = 210 ∼ 106 inputs would also be about 1 µs. Thus, a mere 10 qubits would give a processing step time

comparable to that of a modern digital processor.
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Chapter 5

Improving the Performance of a Signal Based Quantum Circuit
Simulator Using Quantum Error Correction

5.1 Introduction

Underlying the usefulness of quantum systems for information processing is the ability to scale

up what are now small laboratory scale prototype devices to the sizes necessary for addressing problems

that cannot already be tackled with classical hardware. Before the discovery of techniques for performing

quantum error-correction (QEC), it was thought that the inherent fragility of quantum coherent systems

would make scaling up to these sizes virtually impossible in practice. This was not unlike the situation in

the early days of digital computing, when real-time error correction techniques were first contemplated [94].

Beginning with the discovery of Shor’s famous 9-qubit code in 1994, and followed by subsequent advances

within the field of QEC, a path towards large-scale fault-tolerant quantum computers now exists [39,75].

Experimental implementations of many of the components that go into the performance of QEC

protocols have been tested for most of the potential candidate platforms for quantum computing. Ion-trap

quantum computing experiments have been performed that tested the performance of a three-qubit stabilizer

code using a system comprised of the hyperfine levels of three trapped beryllium atoms with intentionally

induced errors and found a reduction in the gate error by as much as 0.3 for large error probabilities [27].

Further ion-trap experiments have looked at multiple rounds of QEC using the three-qubit phase-flip code on

a system of three calcium ions under the influence of intentionally induced errors between each round, which

found a degradation in fidelity consistent with first-order insensitivity to induced errors [101]. Experiments
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performed using logical qubit states encoded as “cat-states” of a superconducting quantum oscillator reported

a 10% enhancement in coherence time using QEC over the longest lived physical qubit comprising the

composite system and a factor of 20 times longer than the shortest lived component (a transmon qubit) [87].

A demonstration of a universal set of one-qubit gate operations acting on logically encoded qubit states in

a superconducting quantum oscillator has shown an average fidelity for logical gate operations of 0.985 [49].

For superconducting transmon qubits experimental tests have verified first-order insensitivity to induced

phase-flip and bit-flip errors using three-qubit repetition codes; however those same experiments also found

that for low error probability the overhead of QEC actually reduced overall performance [95]. Experiments

on transmons have also demonstrated the implementation of stabilizer measurements of the type necessary

for the fault-tolerant implementation of QEC with stabilizer codes [96]. Recent experiments on transmon

qubits have also demonstrated a reduction in the failure rate of input state retrieval by as much as a factor

of 8.5 using multiple rounds of QEC as compared to rates for unencoded qubits [59].

In nuclear magnetic resonance (NMR) systems, experimental tests of logical operations on a system

of five nuclear spins encoded in the 5-qubit Perfect code in the presence of induced errors found that the

average gate performance was enhanced relative to what would be expected for an unencoded qubit subject

to the same noise [125]. Furthermore, experiments on NMR systems have also demonstrated an improvement

using QEC for a system subjected to phase noise and encoded in a 3-qubit phase-flip repetition code [19].

In nitrogen vacancy center qubits, an experimental implementation of the 3-qubit phase-flip code under the

influence of induced noise found a reduction in error for large induced-error probabilities [32]. Finally, in

photonic systems, tests have been performed using both single-photon and continuous-variable (CV) settings.

In the CV setting, an experimental test of a CV generalization of the Shor 9-qubit code in the presence of

induced noise found an enhancement using QEC for each of the induced error modes [8]. In the single-

photon setting experimental tests of a simple code for protection from coherence loss from spurious Z basis
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measurements was found to recover the original state following intentionally induced measurements with a

fidelity of 0.98 [78]. Additionally, an experiment using a 4-qubit code designed to protect from photon loss

errors in a single photon system recovered from induced photon loss errors with a fidelity of 0.80 [93].

A number of analogies are often drawn between quantum mechanical systems and classical analog

systems [40]. A key distinction made with regard to computing is that, under certain assumptions, a scalable

quantum computer is capable of satisfying the threshold theorem for fault tolerance [1]. In previous work we

have shown how one may explicitly embed the same Hilbert space structure found in a gate-based quantum

computer directly into a signal processing framework in which information is represented using complex,

basebanded analog voltage signals [68]. This analogy allows for a rich set of connections to be drawn between

problems in both signal processing and quantum computing applications. In a separate work, for example,

we have shown how this mathematical connection can be leveraged to incorporate techniques developed for

QEC to solve problems in digital wireless communications [73]. A prototype quantum emulation device

(QED) that utilizes this embedding and physically performs the operations described in hardware has been

developed and tested [67]. A natural question to ask given this device is whether it is possible to utilize

techniques from QEC to enhance the performance of what is otherwise a purely classical analog device. On

a practical level this is an interesting question for multiple reasons. Firstly it is believed that error correction

in analog devices is very difficult, and the difficulty of this problem has long stymied advances in technologies

that rely on analog data processing and collection [120]. Secondly, it is not clear that QEC should work

on a classical analog device at all. Regardless of our embedding scheme, the device dynamics are governed

purely by classical physics and, as such, the assumptions inherent in QEC’s formulation, such a linearity of

errors, are not necessarily justified. In Section 5.2 we discuss a simple example (additive white Gaussian

noise) where it is possible to directly express the classical errors in the quantum formalism. In this work

we demonstrate that in practice, despite the above caveats, QEC protocols do in fact provide additional
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robustness to noise in our system and improve its performance overall1.

5.2 Modeling Classical Errors as Quantum Operations

In order to effectively make use of QEC techniques in our alternative setting it is useful to first recast

the modeling of our system’s error dynamics into the same mathematical framework used in the quantum

mechanical setting. Quantum operations provide one such framework and are used to model the evolution of

noisy quantum system dynamics. The quantum operations formalism provides the tools needed to describe

the evolution of open quantum systems, those coupled to external environmental degrees of freedom, along

with the apparent non-unitary system evolution that can occur. The mapping ρ 7→ E(ρ) is a superoperator

that maps the input density operator ρ acting on a Hilbert space H to the final density operator E(ρ), here

taken to be also acting on H, and is called the quantum operation or, for trace-preserving maps, the quantum

channel [86].

Quantum operations can be described using the operator-sum representation in which the evolution

of the system is specified by a discrete set {Ek} of operators on the Hilbert space, called the Kraus operators

[60]. In this formulation, the quantum operation takes the form

E(ρ) =
∑
k

EkρE
†
k . (5.1)

where, for a trace-preserving quantum channel,
∑
k EkE

†
k = I is the identity.

Operators from the Pauli group are an example of Kraus operators. The Pauli group for a system

of n qubits is given by the set of all n-fold tensor products of the one-qubit Pauli matrices σ0 = I, σ1 =

1The results in this chapter are based on the research paper: C. Ostrove, B. La Cour, S.A. Lanham and G. Ott, Improving
performance of an analog electronic device using quantum error correction, Journal of Physics Communications, 3, 8 (2019).
C. Ostrove designed the experiments, wrote the code for and performed the data analysis, generated the figures and performed
a substantial portion of the writing. B. La Cour suggested the project, advised the developmental design and shared in the
writing and revision process. S.A. Lanham and G. Ott contributed to the design and operation of the hardware prototype,
including the implementation of the additional qubits needed for the larger experiments.
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X, σ2 = Y, σ3 = Z. The Pauli group on n qubits forms a complete basis for 2n× 2n matrices, so it is always

possible to rewrite the operator-sum representation of a quantum operation in a canonical form by rewriting

the operation elements as linear combinations of Pauli group elements [86].

The depolarizing channel is a prototypical channel within the QEC literature. Correcting depo-

larizing errors on a number of qubits is as hard as correcting arbitrary errors on those qubits and, so, it

is a simple and useful stand-in [86]. For the purposes of error correction in classical analog systems, the

depolarizing channel is of particular interest because it can be shown to directly correspond to the presence

of additive Gaussian white noise (AWGN) in a system [66]. The depolarizing channel is a noise process in

which with some probability p we lose all information about the state of our system and it is replaced with

the maximally mixed state I/N where N = 2n is the dimension of the system. As a quantum operation we

can write the generalized depolarizing channel as follows:

E(ρ) = (1− p)ρ+
p

N
I . (5.2)

Making use of the identity

I =
1

N

3∑
m1=0

· · ·
3∑

mn=0

σm1 ⊗ · · · ⊗ σmn ρ σm1 ⊗ · · · ⊗ σmn , (5.3)

the depolarizing channel can be written in the operator-sum representation. For the one-qubit case, this is

given by

E(ρ) = (1− p′)IρI +
p′

3
(XρX + Y ρY + ZρZ) , (5.4)

where p′ = 3p/4.

To see the connection to AWGN suppose the quantum state |ψ〉 is represented by the time-domain

signal ψ given by

ψ(t) =

N−1∑
x=0

φx(t) 〈x|ψ〉 =

N−1∑
x=0

〈x|ψ〉 exp

[
i

n∑
k=1

(−1)xkωkt

]
, (5.5)
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where x = xn−12n−1 + · · ·+x020 and ωk = 2kω0 for some ω0 > 0. Additive noise produces a stochastic signal

ψ̃ = ψ + w, where w is a zero-mean complex white Gaussian noise process with spectral density σ2 such

that E[w∗(t)w(t′)] = σ2δ(t− t′), where E represents an expectation value. Note that ψ̃ is outside the Hilbert

space of ψ since w is a broadband signal. Projecting ψ̃ back into this space, which is done by narrowband

filtering, yields a quantum state of the form
∣∣∣ψ̃〉 ∝ |ψ〉+ |ν〉. Here, |ν〉 is represented by a stochastic signal

given by

ν(t) =

N−1∑
x=0

φx(t) 〈x|w〉 =

√
σ2

T

N−1∑
x=0

zxφx(t) , (5.6)

where T is a multiple of 2π/ω0, {zx}x are independent standard complex Gaussian random variables, and

we have used the inner product definition

〈x|w〉 =
1

T

∫ T

0

φx(t)∗w(t) dt . (5.7)

The corresponding quantum channel may be found by taking the expectation value of the outer product∣∣∣ψ̃〉〈ψ̃∣∣∣. Since

E[〈x|ψ̃〉 〈ψ̃|x′〉] = 〈x|ψ〉 〈ψ|x′〉+
σ2

T
E[zxz

∗
x′ ] = 〈x|ψ〉 〈ψ|x′〉+

σ2

T
δxx′ , (5.8)

we deduce that the quantum channel is given by

E(ρ) =

(
1 +

Nσ2

T

)−1 [
ρ+

σ2

T
I

]
. (5.9)

which is of the same form as equation 5.2. This shows how a classical noise process, in this case additive

white Gaussian noise, can be described by an equivalent quantum operation.

5.3 Description of the QEC Protocol

For our experiment we used the 5-qubit Perfect code, which is the smallest code capable of correcting

an arbitrary error on a single physical qubit [69]. The 5-qubit code is a stabilizer code with the generators

given in table 5.1.
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Table 5.1: Generators for the stabilizer group of the 5-qubit Perfect code.

M0 = Z1X2X3Z4

M1 = Z0Z2X3X4

M2 = X0Z1Z3X4

M3 = X0X1Z2Z4

|ψ〉 Z H Z • H • • H • H

|0〉 H • • H

|0〉 H • •
∣∣ψ̄〉

|0〉 H

|0〉


Figure 5.1: Circuit for encoding states into the 5-qubit Perfect code. The qubits are numbered 0 to 4 from
top to bottom.

To encode the logical single-qubit state |ψ〉 = α |0〉+β |1〉 into the physical state
∣∣ψ̄〉 = α |0̄〉+β |1̄〉,

we use the code words

|0̄〉 =
1

4
(I +M0)(I +M1)(I +M2)(I +M3) |00000〉 (5.10)

|1̄〉 =
1

4
(I +M0)(I +M1)(I +M2)(I +M3) |11111〉 , (5.11)

where a little endian qubit numbering convention (0 to 4, read right to left) is adopted. The encoding

circuit is given in figure 5.1.

In addition to the encoding circuit, we also need the corresponding syndrome detection circuit.

To perform syndrome detection we use a fault-tolerant circuit construction introduced by DiVincenzo and

in the form presented by Mermin [39, 83]. The circuit diagram for this is given in figure 5.2. This circuit

construction, which uses four additional ancillary qubits, is not the most qubit-resource efficient fault-tolerant

syndrome detection scheme but is easy to implement and understand. (For a more resource-efficient scheme,
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see [25, 123].) Table 5.2 gives the correspondence between the measurement results on the ancilla qubits in

figure 5.2 and the error that was measured. Each controlled operation in figure 5.2 projects the system into

the ±1 eigenspace of each of the stabilizer group generators, and the measurement on the corresponding

ancilla tells into which of the two eigenspaces the state was projected. Since all of the Pauli operators are

involutions, the correction operation is simply to apply the same Pauli operation indicated by the syndrome

measurement.

Z X X

Z Z X

X Z Z


∣∣ψ̄〉

X X Z

Z X X Z

|0〉 •

|0〉 •

|0〉 •
Syndrome

|0〉 •


Figure 5.2: Circuit for fault tolerant error detection using the 5-qubit Perfect code. The encoding qubit are
numbered 0 to 4 from top to bottom, and the ancilla qubits corresponding to the syndromes M0, . . . ,M3

are ordered from top to bottom as well. The mapping between the measurement results and corresponding
errors is summarized in table 5.2.

Transverse (i.e., separable) gates are needed in order to implement fault-tolerant encoded gates on

the encoded states. The 5-qubit Perfect code has transversal Pauli gates, with σ̄m = σ⊗5
m , as well as a set of

Clifford operations given by

Ksx,sy,sz = exp

[
iπ

3
√

3
(sxX + syY + szZ)

]
for sx, sy, sz ∈ {−,+} (5.12)

that are also transversal, with K̄sx,sy,sz = K⊗5
sx,sy,sz [124]. This gives an easy way to implement a set of test

gates with which to evaluate improved performance on our device. In the performance experiments described
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Table 5.2: Syndrome-Error Correspondence for 5-Qubit Code
Syndrome Error Syndrome Error

M0M1M2M3 M0M1M2M3

0000 No Error 1000 Z2

0001 Z1 1001 X4

0010 X3 1010 X1

0011 Z0 1011 Y1

0100 X0 1100 Z3

0101 X2 1101 Y2

0110 Z4 1110 Y3

0111 Y0 1111 Y4

in section 5.4, the system is benchmarked using the Pauli Z and X gates as well as the Clifford SH gate.

The SH gate is given by the product of the phase gate S =
√
Z and the Hadamard gate H = (X+Z)/

√
(2)

and corresponds to K+,+,+ in equation 5.12. Thus,

K+,+,+ = eiπ/4SH =
1

2

(
1 + i 1 + i
−1 + i 1− i

)
. (5.13)

5.4 Experiments

To evaluate the performance of our hardware device we performed a series of tests to determine

performance with and without the use of QEC protocols. We then compared the single-gate fidelity in each

of the two cases using a random set of logical input states.

5.4.1 Experimental Design

The details of the hardware are described in the previous chapter. Two of the five encoding qubits

were represented in the frequency domain using signals with four narrowband tonals at ±1000 Hz and ±3000

Hz. The other three qubits were represented in the time domain using a wavetrain of eight such signals [62].

(The classical signal representation requires time-frequency resources that will, of course, scale exponentially

with the number of qubits.) Gate operations on frequency domain qubits were performed in hardware using
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analog filters, operational amplifiers, and four-quadrant multipliers. Likewise, the signal multiplication

operations necessary for performing gates on the time-domain qubits was performed in hardware with the

reordering operations handled digitally following an analog-to-digital converter (ADC). The configuration

was chosen such that qubits 0 and 1 were represented in the frequency domain, while qubits 2 through 4

were represented in the time domain. The choice was arbitrary, and other configurations give similar results.

For more information regarding the time domain encoding scheme and the corresponding gate operations

see [62]. The general workflow of the experiments is detailed in the flowchart in figure 5.3.

Encoding
(SOFTWARE)

• State Synthesis using combination
of frequency and time-bin encoding
scheme

•Application of 5-Qubit Perfect code
encoding circuit

Gate Operation
(HYBRID)

•Apply Either Transversal X, Z or SH
gate

•Operations on frequency domain
qubits done on using QED Device.

•Operations on time encoded
qubits simulated in software.

Decoding
(SOFTWARE)

•Using time encoding add 4
ancillary qubits needed for
syndrome detection.

• Simulate syndrome detection and
measurements.

•Using results from syndrome
detection apply appropriate
corrective gate.

Figure 5.3: Flow-chart which describes general workflow for QEC experiment on QED.

The first stage of each of the experiments is a software pre-processing step in which we generate a

set of 100 pure state inputs uniformly at random according to the Haar measure [86]. Each of these states

is synthesized digitally and, in software, encoded into the 5-qubit code using the circuit given in figure 5.1.

After this pre-processing stage, the physical analog signals are generated with a digital-to-analog converter

(DAC), and a selected transversal gate is applied in hardware using analog electronics. The transformed

signals are then sampled digitally using an ADC and buffered in memory. This digitized signal is converted

back to the corresponding quantum state, upon which syndrome measurements may be performed using

measurements based on the Born rule. Finally, a software-based post-processing stage occurs in which the

transformed states have the syndrome detection circuit of figure 5.2 applied, along with the appropriate
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correction gate based on the syndrome measurement results as given in table 5.2. The decoding circuit is

then applied (The circuit given in figure 5.1 but in reverse order) and the fidelity between the measured

output state and the correct result is calculated. Note that only the encoded gate is performed in hardware

— all encoding, error correction, and decoding is performed in software.

In addition to the encoded and error-corrected gate operations, a set of control runs was performed

for each of the gates using the same set of input states and the same number of repetitions. This control

run was performed directly on the one-qubit input states encoded in the frequency domain rather than on

the logically encoded states.

5.4.2 Performance Metrics

A common metric used to quantify the performance of a quantum gate is the gate fidelity. Let |ψ〉

denote the notional input state for our gate, and let U denote the gate that we intend to apply. In practice

what is actually implemented is a noisy version of U , which may be described by a quantum operation E.

The gate fidelity for a particular input state, defined as

F =
√
〈ψ|U† E(|ψ〉 〈ψ|)U |ψ〉 , (5.14)

measures how closely the noisy implementation of U approximates the desired one. A more general (input-

independent) measure of the performance is the median gate fidelity, denoted F̄ , which is taken over an

ensemble random input states and, for each one, several repetitions of a given gate operation. A median

is preferred over the mean in order to characterize typical behavior in highly skewed data. Since fidelity is

bounded above by 1, changes in the fidelity as a result of error-correction can be very small in absolute terms.

The performance of a system in the long-term often has an exponential sensitivity to the infidelity (1−F ) of

the operations and, so, we define a metric that reflects this sensitivity, which we call the log-fidelity, denoted
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f , and define it as

f = − log10 (1− F ). (5.15)

The choice of base 10 for the logarithm in equation 5.15 gives the log fidelity a simple interpretation

in terms of a more common colloquial measure, the number of nines in the fidelity. As defined, the log-fidelity

is equal to the number of nines plus an interpolation between an integer number of nines. We note that

the definition of this measure draws analogy between the log-fidelity and the decibel scale used in classical

systems for characterizing performance in terms of the signal-to-noise ratio (SNR). Use of the median fidelity

also has the desirable property that median log-fidelity, f̄ , is equal to − log10(1− F̄ ), a property not shared

by the mean fidelity.

5.4.3 Results

Starting with the Z gate we find that without QEC implemented, the median fidelity over the entire

set of 100 input state randomizations and 1000 experimental runs was 0.99463 with an approximate 95%

confidence interval of (0.99460, 0.99467) obtained by bootstrapping over 104 random samples. Also useful for

visualization of the performance statistics is the cumulative distribution function (cdf), which allows one to

more easily compare the spread of the distributions. The results for the Z gate with QEC implemented tell

a more interesting story. In figure 5.4 we compare the cdf and corresponding probability density functions

(pdf) for the corrected and uncorrected Z gates. After error correction, it was found that the median

fidelity for the Z gate increased to 0.9999764 (0.9999761, 0.9999768). This was true despite the fact that the

experimental error correction procedure tended to broaden the tail on the fidelity distribution, resulting in

several outliers. This can be observed in the appearance of a bimodal clustering of low fidelity results that

can be seen in the inset plot of figure 5.4. The reasons behind this tail broadening behavior will be expanded

on further in section 5.5. Looking at the log-fidelities given in figure 5.4 shows, however, that despite the
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Figure 5.4: Plots of the cdf and pdf for the Z gate log-fidelity over all randomized input states and experi-
mental realizations. The inset figure shows a zoomed-in section of the error-corrected data set’s pdf within
the log-fidelity range [0, 4].

fact that QEC has a tendency to broaden the tails by periodically causing low fidelity outcomes, most of

the time the procedure substantially improves the performance. This is further evidenced by looking at the

change in the median log-fidelity, where we find, without error correction, the median log-fidelity for the Z

gate is 2.270 (2.267, 2.273) and, with error-correction, it improves to 4.628 (4.622, 4.634).

The X and SH gate results are similar to those found for the Z gate, and a summary of the results

can be found in figures 5.5 and 5.6 respectively. In figure 5.5 it can be seen in both cases that we again have

a tail broadening effect in the error-corrected results with a similar bimodal clustering of the low-fidelity

outcomes. However, the vast majority of events demonstrate a substantial improvement. For the X gate,

despite the tail broadening, the median fidelity after error correction, 0.999426 (0.999423, 0.999429), was

significantly higher than that of the uncorrected gate, which was found to be 0.99739 (0.99736, 0.99743).

The median log-fidelity after QEC was found to be 3.241 (3.239, 3.243), as compared to 2.584 (2.578, 2.590)

without error correction. Likewise, for the SH gate, the median fidelity of the uncorrected SH gate was
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found to be 0.99527 (0.99524, 0.99530), which was improved to 0.9999055 (0.9999048, 0.9999061) with QEC.

The median log-fidelity of the uncorrected SH gate was found to be 2.325 (2.322, 2.328); after QEC this

increased to 4.024 (4.022, 4.027).
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Figure 5.5: Plots of the cdf and pdf for the X gate log-fidelity over all randomized input states and all
experimental realizations. The inset figure shows a zoomed-in section of the error-corrected data set’s PDF
within the log-fidelity range [0, 4].

5.5 Discussion

One of the key issues raised by the experimental results with the application of QEC to the QED

is the tail broadening effect that is observed on the fidelity. In order for QEC to be useful it is important to

understand the conditions and noise processes which contribute this behavior. The device itself is subject to

a myriad of classical noise sources including everything from Johnson noise, inherent to finite-temperature

operation, to phase and frequency drift resulting from signal filtering in the gate and measurement operations.

For the purposes of higher level modeling, however, it suffices to conceptually model the errors in the

system as resulting from two main types of error. The first error source is gate errors caused by the
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Figure 5.6: Plots of the cdf and pdf for the SH gate log-fidelity over all randomized input states and all
experimental realizations. The inset figure shows a zoomed-in section of the error-corrected data set’s PDF
within the log-fidelity range [0, 3.25].

imperfect implementation of the gate operations, and the second is due to general imperfections in the

circuit construction, which puts a floor on the fidelity of our state representation even in the absence of any

gate operation. Gate operations on the QED are implemented using analog multiplication operations with

gate coefficients defined by a corresponding set of analog DC voltage values. The DC values that define

the coefficients are inherently imperfect, however. Due to a combination of quantization error caused by

the finite resolution of the digital-to-analog converters (DACs) and stochastic noise sources such as thermal

noise, these DC values will fluctuate and be randomly distributed about the desired values. We suspect that

different gates will have different fidelities due to the differing DC voltages needed to realize each in the

hardware implementation. The Z gate, for example, has similiar DC voltages to an identity gate and would

therefore be expected to perform better.

A key feature of all of the above noise processes is that they are inherently continuous, whereas
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the QEC corrections we apply are inherently discrete. In particular, codes such as the 5-qubit perfect code

are constructed with a model in mind that is based on the idea that errors act on qubits within the state

locally and independently. In cases where too many qubits are hit by the noise process it is possible to

misidentify the error syndrome and in the correction process transform the state of the system into one

nearly orthogonal to the original. From this we can see a likely candidate for the source of the bimodal

clustering of low fidelity values in the experimental results presented in section 5.4.3. We can see a clear

example of this in figure 5.4, where there are two modes of the QEC pdf at log-fidelities of about 3.5 and 5.

This leaves open an interesting possibility for improving the performance of the QEC protocols in the device

by designing decoding procedures which leverage the additional information we have access to from having

an explicit representation of the state of the system and which performs corrections in a continuous manner.

We explore this idea more directly in the context of applying QEC to wireless communication applications,

and it is likely the ideas developed in that context would be similarly applicable to the QED device [73].

5.6 Conclusions

We have shown that the techniques of quantum error correction can be successfully applied in

domains seemingly far removed from standard quantum mechanical systems. The QED device implements a

classical representation of quantum states based on pairs of analog voltage signals to perform its information

processing. As a classical device it is in principle subject to a whole myriad of errors, some of which, as

in the case of AWGN, are representable as quantum operations. Yet, in practice, it is found that QEC

nonetheless yields a practical performance boost. All three gates studied — the X, Z and SH gates —

showed marked improvement in their operating characteristics, with an average increase in log-fidelity over

the three gates of about 1.57. Given the general effectiveness of QEC at improving the device’s performance

it seems reasonable to suppose that in the above experiments the device is operating in a regime in which the
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errors are dominated by those in which there is a quantum analogue amenable to QEC, even if our models

have not fully captured the details of those analogues yet. The results of this work may have applicability

beyond computing and could serve as a basis for advanced techniques in robust, fault-tolerant classical

communication through the use of quantum error correction protocols on classical messages.
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Chapter 6

Summary and Conclusions

In the first part of this dissertation we have explored the behavior of superconducting heterostruc-

tures, a field with deep connections to condensed matter physics, theoretical superconductivity, and the

design and function of quantum information processing platforms. Tying all of our investigations together in

the field of superconducting heterostructures has been the use of a scattering theory methodology based on

the Bogoliubov-de Gennes equations, which describes the spectrum for quasiparticle excitations in spatially

inhomogenous superconductors [35]. This, together with techniques modified from classic work by Demers

and Griffin [36] as well as Blonder, Tinkham and Klapwijk [16], allowed us to study the local and nonlocal

noise correlations without the application of the Andreev approximation and with material parameters in

the high-Tc regime for the NSN and NSNSN geometries. This theory was developed in detail in Chapter 1.

In Chapter 2 we began by calculating the the full scattering matrix for a quasi-1D NSN geome-

try without the Andreev approximation applied (the exact expressions are in Appendix A). The scattering

through an NSN geometry superconducting heterostructure is particularly interesting because of it’s connec-

tion to the field of Cooper pair splitting devices, where the sign of the noise cross-correlations can indicate

the presence of electron bunching and the generation of electronic entanglement. The scattering results were

used to generate energy distributions for the local shot noise in the short, medium and long junction regimes

where, because of the positivity of the noise correlations, we found signatures of electron anti-bunching in

the left lead. For the energy distributions of the nonlocal noise correlations we found that, while overall the

noise cross-correlations were negative, there were positive contributions from correlations between electrons
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and holes in the two normal leads. We also looked at the dependence of the total nonlocal shot noise, as well

as its separate contributions, on the size of the central superconducting region finding a peak in the positive

particle-hole contributions at short lengths.

In Chapter 3 we extended the scattering theory methods to the more complicated NSNSN geometry.

The NSNSN geometry has not been widely studied in the superconducting heterostructure community, but

introduces very interesting new features related to the presence of sub-gap quasibound states in the central

normal region of the system. We began by again solving for the full scattering matrix of the system, without

the application of the Andreev approximation. Resonances in the plots of the scattering elements show clear

evidence for the presence of sub-gap quasibound states, which is further corroborated by the presence of

scattering matrix poles in the complex energy domain. Additionally, we observed that for energies close to

that of the quasibound states there was a substantial enhancement in the magnitude of the particle-hole

transmission term (also, called crossed Andreev reflection) causing it to, for certain sets of parameters,

become the largest transmission channel in the system. This already differs quite a bit from the results we

obtained in Chapter 2, where we found the particle-hole transmission amplitude was an order of magnitude

smaller than the normal transmission channels.

We used the scattering matrix elements to calculate the cross-correlated shot noise energy distribu-

tions and found a robust, one-to-one, correspondence between the energies of quasibound states and regions

of positive correlations in the cross-correlated shot noise distributions. We then repeated this analysis using

the Andreev approximation and found that the predicted cross-correlated noise distribution breaks down at

the quasibound state energies. An analysis of the dependence of the magnitude of the positive noise cross-

correlations on the size of the central normal and two superconducting regions was performed. Resultingly

we found both the existence of a “sweet spot” for the size of the superconducting normal regions, as well as a

periodic-like behavior of the positive noise correlations with the size of the central normal region. Finally, we
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studied what happened as you lowered the temperature of the system down to zero and found a crossover in

the noise distributions between quasibound state dominated behavior at high and intermediate temperatures

and the low-temperature limit where the positive correlations are instead related to a higher-order process

called synchronized Andreev and inverse Andreev reflection.

In the second part of this dissertation I focused on work I performed related to the development of

a special purpose signal-processing based hardware platform for performing quantum circuit simulation. In

Chapter 4 we introduced the theoretical basis for this approach and the method for encoding the Hilbert

space structure of a quantum circuit into the frequency domain of a complex analog voltage signal. We

also introduced the mapping between gate operations and measurements in a quantum circuit and the corre-

sponding signal-processing operations used to simulate them. Also in this chapter we presented experimental

results based on an early two-qubit hardware prototype in which we measured the fidelity of performing state

synthesis and the fidelity of random 1-qubit gate operations.

In Chapter 5 we explored whether we could make use of standard stabilizer-code based quantum

error correction protocols for improving the performance of our prototype signal-processing based quantum

simulation device. An important aspect was demonstrating that, at least for certain specific classical noise

sources, it is possible to map the noise in the underlying classical hardware to a corresponding quantum

channel in our simulation which is amenable to correction using standard QEC codes. For our experiments

measuring the performance of this approach, we used the 5-qubit perfect code to encode a state, performed

a transversal gate operation, and then digitized our signal and performed syndrome detection as a post-

processing step. We found an improvement in the median fidelity of 1 to 2 orders of magnitude, depending

on the particular gate we applied. The results of this work inspired us to look beyond just applications in

computing and informed our investigations into the applications of the theory of quantum error correction for

the development of new coding schemes for performing channel-blind wireless classical communication [73].
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A NSN Junction Transmission and Reflection Amplitudes
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The denominator DEN is given by
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B Expressions for Scattering Coefficients and Noise for the NSNSN System
Using the Andreev Approximation

In Equations 10 and 11 below we give the expressions for tRLpp and tRLhh respectively using the Andreev

approximation.

tRLpp = − (u− v)2(u+ v)2ei((h2+h4)(kh+kp)+h3(qh+qp)−h4qp)

Denpp
(10)
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The expressions for the different contributions to the cross-correlated shot noise also simplify under

the Andreev approximation due to the setting of rLLpp = rLLhh = rRRpp = rRRhh = 0 and tLRhp = tLRph = tRLhp =

tRLhp = 0
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A Semenov, Current-assisted thermally activated flux liberation in ultrathin nanopatterned nbn super-

conducting meander structures, Physical Review B 81 (2010), no. 2, 024502.

[12] J George Bednorz and K Alex Müller, Possible high Tc superconductivity in the Ba La Cu O system,

Zeitschrift für Physik B Condensed Matter 64 (1986), no. 2, 189–193.

[13] CWJ Beenakker, Three “universal” mesoscopic josephson effects, Transport Phenomena in Mesoscopic

Systems, Springer, 1992, pp. 235–253.

[14] P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model

of computers as represented by Turing machines, Journal of Statistical Physics 22 (1980), 563.
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[42] Martina Flöser, From local to non-local transport : Percolation in quantum hall systems, cross-

correlations in superconducting hybrid structures, Ph.D. thesis, The University of Grenoble, 10 2012.
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[44] G. Fülöp, S. d’Hollosy, A. Baumgartner, P. Makk, V. A. Guzenko, M. H. Madsen, J. Nyg̊ard,

C. Schönenberger, and S. Csonka, Local electrical tuning of the nonlocal signals in a cooper pair splitter,

Phys. Rev. B 90 (2014), 235412.
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Thomas Mühl, Bernd Büchner, Reinhold Kleiner, and Dieter Koelle, Low-noise Y Ba2Cu3O7 nano-

squids for performing magnetization-reversal measurements on magnetic nanoparticles, Physical Re-

view Applied 3 (2015), no. 4, 044011.

[103] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, 35th Annual

Symposium on Foundations of Computer Science, 1994 Proceedings, 1994, pp. 124–134.

117



[104] P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review A 52

(1995), R2493–R2496.

[105] Manfred Sigrist, Introduction to unconventional superconductivity, AIP Conference Proceedings, vol.

789, AIP, 2005, pp. 165–243.

[106] Martin Stehno, Investigations of nonlocal transport and current noise in mesoscopic normal metal-

superconductor hybrid structures, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2013.

[107] Francesco Tafuri and John R Kirtley, Weak links in high critical temperature superconductors, Reports

on Progress in Physics 68 (2005), no. 11, 2573.

[108] Yukio Tanaka and Satoshi Kashiwaya, Theory of tunneling spectroscopy of d-wave superconductors,

Physical review letters 74 (1995), no. 17, 3451.

[109] Yukio Tanaka and Satoshi Kashiwaya, Theory of the josephson effect in d-wave superconductors, Phys-

ical Review B 53 (1996), no. 18, R11957.

[110] M. W. Johnson et al., Quantum annealing with manufactured spins, Nature 473 (2011), 194–198.

[111] Piotr Trocha and Ireneusz Weymann, Spin-resolved andreev transport through double-quantum-dot

cooper pair splitters, Phys. Rev. B 91 (2015), 235424.
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