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e Obtained feature vectors for each word In
audiobook text using word2vec & GPT2

e Primary progressive aphasia (PPA)
o progressive loss of speech and
language
e [hree subtypes
o Semantic
o Logopenic
o Nonfluent

Figure 1. The impact and
location of three PPA subtypes

e Temporal Response Function (TRF)
Modeling!
o Maps neurophysiological data to
stimulus’ acoustic/linguistic feature(s)

e Natural Language Processing (NLP)
models can be used to derive feature
vectors that approximate a word’s
semantic features

Figure 2:
Transforming
text into a
feature vector
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e NLP model’s choice of word
embeddings impacts feature vectors

e Aim: To compare how two different
embedding types affect TRF-based
neurophysiological prediction

e EEG responses obtained while
participants listen to audiobook

e n =10 for each PPA subtype +
age-matched controls

Electrode Measured potentials

for each electrode

Processing

Figure 3: Anillustration of the EEG process
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Word2Vec uses
static embeddings?

Figure 4: In word2vec, a word’s feature vector does not take

into account its surrounding words.

C GPT2 uses
C contextualised
(Masked Self-Attention . embeddlngs

Figure 5. In GPT2, its masked self-attention layer ensures a word’s
feature vectors takes previous words into account

e Computed each word’s semantic
dissimilarity value for use in TRF3

Dissimilarity(w;)
1 - p[t(w;), mean[t(w;.y), (Wi, ..., (W), f(wy)] |

Figure 6: Dissimilarity formula for a text’s ith word.
p represents pearson correlation, f represents feature vector
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e TRF modeling used to predict EEG
responses as a function of semantic

issimilarity. mTRF toolbox used*

e [RF trained with LOOCV
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Figure 7: Diagram depicting sample temporal response function

modeling for spectrotemporal features.

Figure 8: Comparing TRF produced w/ word2Vec and GPT2

Temporal Response Function
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Similar TRF model from GPT2 and word2Vec

Figure 9: Correlating GPT2 and word2Vec's predictive
accuracy. HC refers to healthy control.
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word2vec Prediction Accuracy

e Similar range on both axes indicates similar
predictive accuracy

e Highly correlated across PPA subtypes +
controls

e Little difference in predictive accuracy
across groups

Discussion + Future steps

e Unexpectedly, contextualised embeddings
did not provide a superior TRF wrt.
neurophysiological prediction

e However, this can only be said for the TRF
model’s current parameters

Immediate future:

e Need to determine existence of
parameters where contextualised
embeddings outperform static
embeddings as expected

There are two TRF parameters to initially
experiment with:

e Change time lags
o Currently -500 ms—1000ms
o TRF noisy at the edges, try trimming
time lags to -100 ms—700ms
e Change EEG frequency range from 1-4
Hz to 1-15Hz

Long-term future:
Evaluate whether TRF

modelling can

differentially diagnose
PPA subtypes
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