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Abstract 

 

Genetic architecture of trait divergence in Panicum hallii ecotypes 

 

Albina Rifovna Khasanova, PhD 

The University of Texas at Austin, 2021 

 

Supervisor:  Thomas E. Juenger 

 

Environmental heterogeneity across a species range can drive functional trait variation and 

lead to the formation of locally adapted ecotypes. Plant ecotypes are often differentiated by suites 

of correlated root and shoot traits that share common genetic, developmental, and physiological 

relationships. This divergence requires coordination between multiple plant organ systems. This 

research predominantly examines the genetic architecture underlying root-shoot trait relationships 

and their interaction with the environment in order to develops a more complete picture of the 

adaptive differences that arise between ecotypes. We used a recombinant inbred line population 

derived from upland and lowland ecotypes of the diploid C4 perennial bunch grass Panicum hallii 

to examine the following: 1. The quantitative genetics of root and shoot trait coordination. 2. The 

quantitative genetics of the impact of plant root microbiomes collected from natural environments 

on plant root and shoot traits. 3. How plant host genetics shape root microbiomes. Utilizing 

extensive phenotyping of plant traits and a quantitative genetic approach, we identified several 

genomic ‘hotspots’ which control suites of correlated root and shoot traits, thus indicating genetic 

coordination between plant organ systems in the process of ecotypic divergence. In addition, we 
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found that genomic regions of colocalized quantitative trait loci (QTL) for the majority of shoot 

and root growth related traits were independent of colocalized QTL for shoot and root resource 

acquisition traits. The allelic effects of individual QTL underscore ecological specialization for 

drought adaptation between ecotypes and reveal possible hybrid breakdown through epistatic 

interactions. We show that the growth and development of ecotypes and their trait divergence 

depends on soil microbiomes and find that broad-sense heritability is modified by soil 

microbiomes, revealing important plant genotype-by-microbiome interactions for quantitative 

traits. We detected a number QTL interacting with the soil microbiome, including epistatic 

interactions dependent on soil microbiome context. We also show that microbial inocula habitat 

of origin changes the heritability for individual microbes (ASVs) and that different plant genomic 

regions are associated with abundance of individual microbes and community level structure. Our 

results highlight the genetic architecture underlying trait divergence and the importance of 

microbial interactions in C4 perennial grasses. 
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Chapter 1:  The genetic architecture of shoot and root trait divergence 

between mesic and xeric ecotypes of a perennial grass1 

ABSTRACT 

Environmental heterogeneity can drive patterns of functional trait variation and lead to the 

formation of locally adapted ecotypes. Plant ecotypes are often differentiated by suites of 

correlated root and shoot traits that share common genetic, developmental, and physiological 

relationships. For instance, although plant water loss is largely governed by shoot systems, root 

systems determine water access and constrain shoot water status. To evaluate the genetic basis of 

root and shoot trait divergence, we developed a recombinant inbred population derived from mesic 

and xeric ecotypes of the perennial grass Panicum hallii.  Our study sheds light on the genetic 

architecture underlying the relationships between root and shoot traits.  We identified several 

genomic ‘hotspots’ which control suites of correlated root and shoot traits, thus indicating genetic 

coordination between plant organ systems in the process of ecotypic divergence. Genomic regions 

of colocalized quantitative trait locus (QTL) for the majority of shoot and root growth related traits 

were independent of colocalized QTL for shoot and root resource acquisition traits. The allelic 

effects of individual QTL underscore ecological specialization for drought adaptation between 

ecotypes and reveal possible hybrid breakdown through epistatic interactions. These results have 

implications for understanding the factors constraining or facilitating local adaptation in plants. 

                                                 
1Khasanova A, Lovell JT, Bonnette J, Weng X, Jenkins J, Yoshinaga Y, Schmutz J, Juenger TE. 

2019. The genetic architecture of shoot and root trait divergence between mesic and xeric ecotypes 

of a perennial grass. Frontiers in Plant Science 10: 1–10. Albina Khasanova designed and 

conducted glasshouse and field experiments, analyzed the results and wrote the chapter.  
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INTRODUCTION 

Adaptations to abiotic stress have been implicated as driving factors in ecological 

speciation (Lexer and Fay, 2005; Stebbins, 1952), where populations have diverged across a 

number of traits, exhibit different niche characteristics, and eventually become reproductively 

isolated (Yardeni et al., 2016; Lowry, 2012; Clausen, 1951). Local adaptation to soil water 

availability is an especially important driver of plant evolution (Kooyers et al., 2015; Rajakaruna, 

2004; Stebbins, 1952) and can impose strong natural selection on populations, leading to the 

formation of ecotypes that are differentially adapted to xeric and mesic habitats (Kumar et al., 

2008; Joly et al., 1989). Xeric and mesic ecotypes are often characterized by the divergence of 

common suites of morphological and phenological traits (Lowry, 2012; Clausen, 1951) related to 

maintaining water status and tolerating drought (Juenger, 2013; Markesteijn and Poorter, 2009; 

Chapin et al., 1993). 

While leaf and shoot traits are important drivers of adaptation to drought (Juenger, 2013; 

Carmo-Silva et al., 2009), the properties of root systems determine plant water access and can 

place constraints on shoot water status (Hund et al., 2009; Price et al., 2002). Shoot traits may be 

related to root traits through genetic correlation (Bouteille et al., 2012) or be dependent upon root 

traits through resource allocation tradeoffs (Hammer et al., 2009), including changes in carbon 

allocation between root and shoot systems (Hummel et al., 2010). Higher root mass ratio (RMR) 

increases water foraging capability to maintain plant water status, which can be accomplished by 

allocating more resources towards roots (Knights et al., 2006) or by inhibiting above ground 

growth (Hendricks et al., 2015). Specific leaf area (SLA, the ratio of leaf area to leaf dry mass) 

and specific root length (SRL, the ratio of root length to root dry mass) are both important plant 
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traits linked to resource acquisition (Cheng et al., 2016; Reich, 2014) and SRL is typically thought 

of as the below ground analog of SLA (Reich, 2014; Eissenstat et al., 2000). These traits are often 

positively correlated (Valverde-Barrantes et al., 2017; Reich, 2014; Withington et al., 2006) and 

associated with rapid growth (Pérez-Harguindeguy et al., 2016; Reich, 2014)—where an 

acquisitive root strategy (high SRL) can be aided by an acquisitive leaf strategy (high SLA; Pérez 

-Ramos et al., 2013). Despite evidence that root and shoot trait covariance is an important driver 

of plant adaptation, few studies have documented how combinations of specific shoot and root 

traits generate locally adapted ecotypes. The genetic basis of such trait complexes and the 

implications of recombining adaptive shoot and root traits in hybrids are poorly understood. 

Quantitative genetic analyses and the mapping of quantitative trait loci (QTL) permit 

exploration of the genetic basis of trait correlations and trait divergence (Milano et al., 2016; Lovell 

et al., 2015; Fishman et al., 2002). Importantly, by simultaneously analyzing multiple traits, QTL 

mapping can infer the loci and genetic interactions that drive ecological trait correlations. 

Functional traits with a high degree of correlation that underlie divergence can result from 

pleiotropy through shared developmental genetics or genetic linkage (Lovell et al., 2013; Via and 

Hawthorne, 2005) as a result of correlational selection (Brodie et al., 1995). For example, 

colocalized QTL for root and shoot traits including root biomass, root volume, shoot biomass and 

plant height have been identified in a wheat recombinant inbred line population (Iannucci et al., 

2017) likely resulting from pleiotropy or tightly physically linked genes. Overall, there is growing 

evidence for substantial genetic variation in root system architecture and root/shoot relationships. 

However, the loci driving these trait correlations and the degree to which these patterns impact 

plant productivity are largely unknown. 
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Panicum hallii is a small, self-fertilizing, C4 perennial bunch grass native to North America 

that occurs across a large geographical range comprised of diverse habitats and climates. Average 

annual precipitation ranges from 127 cm per year on the eastern border of its distribution to 13 cm 

per year on the west. P. hallii occurs as two distinct ecotypes (xeric upland and mesic lowland) 

that are classified as separate varieties, P. hallii var. hallii (hereafter referred to as hallii) and P. 

hallii var. filipes (hereafter referred to as filipes). Hallii is typically found in xeric upland habitats 

with shallow, dry, calcareous and rocky soils in the American southwest and northern Mexico; 

while filipes occurs in mesic lowland areas on clay and silt soils mostly along the Gulf Coast Plain 

of Texas and Mexico (Waller, 1976; Gould, 1975). The xeric upland ecotype, hallii, is smaller in 

stature and overall size than the mesic lowland ecotype filipes: with smaller leaves, fewer tillers, 

earlier flowering time, fewer flowers per inflorescence, but larger seed size and seed mass (Lowry 

et al., 2013; Waller, 1976). This is consistent with its polyploid relative, Panicum virgatum (an 

important biofuel candidate), where upland ecotypes are typically smaller, flower earlier (Lowry 

et al., 2014a) and have less leaf area (McMillan, 1965) than lowland ecotypes. Previous analyses 

of shoot traits in a F2 population of P. hallii (Lowry et al., 2014b) demonstrated that a few large-

effect loci drove multivariate shoot trait divergence between hallii and filipes, and complete 

genomes has been assembled and compared (Lovell et al., 2018). Here, we investigate the genetic 

architecture of multidimensional root phenotypic traits and their relationship with shoots to 

develop a more complete picture of the adaptive differences between these ecotypes. 

In this study, we cross xeric and mesic ecotypes of P. hallii, to generate a population of 

recombinant inbred lines (RIL) at the F7 generation and subsequently constructed a new genetic 

map based on whole genome re-sequencing. We utilized extensive phenotyping of root and shoot 
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traits and a quantitative genetic approach to identify the genetic architecture of trait relationships 

and their divergence among ecotypes. We discovered shared QTL clusters involved in genetic 

correlations between root and shoot growth related traits that were independent of QTL clusters 

for carbon allocation and phenology related traits. The allelic effects of individual QTL underscore 

ecological specialization for drought adaptation between hallii and filipes and reveal possible 

hybrid breakdown through epistatic interactions. 

MATERIALS AND METHODS 

Morphological shoot and root phenotyping under greenhouse conditions 

We developed a population of recombinant inbred lines (RILs) derived from a cross of 

hallii and filipes and constructed a genetic map from whole genome re-sequencing (see 

Supplementary Appendix A1). Seedlings of 174 F7 RILs and the two parental genotypes were 

planted to 6 cm x 30 cm Cone-Tainers (Stuewe and Sons, Tangent, OR) filled with Field and 

Fairway Profile (The Turf Trade, NJ, USA) media. Plants were grown in completely randomized 

block design within three blocks on a single bench at the University of Texas greenhouse (see 

Supplementary Appendix A2). Plants were harvested within three days of a common 

developmental stage defined as when a fully expanded flag leaf with a visible ligule was 

observable on any tiller with an emerging panicle. Harvest dates across the population ranged from 

27-51 days after germination. The tiller height, leaf length and area of the flag leaf of the main 

tiller were measured and tiller number was counted at the time of harvest. Total root number was 

counted and then the root system was spread out in a clear acrylic water filled tray and scanned at 

a 600 dpi resolution using an EPSON Scanner (Model 12000XL, Epson America, Inc., San Jose, 
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CA, USA) calibrated for use with WinRhizo Pro 2015 root image analysis software (Regent 

Instruments Inc., Canada). Leaf, shoot and root tissue was dried and weighed to obtain biomass. 

Specific leaf area (SLA) was calculated (Supplementary Appendix A2).  

Root trait data was obtained from scans using WinRhizo Pro 2015 software and included 

total root length (cm), total root volume (cm3), and average root diameter (mm). Specific root 

length (SRL; cm g-1)), root tissue density (RTD, g cm-3), and root mass ratio (RMR) were 

calculated for each plant (Supplementary Appendix A2). 

Data and QTL analysis 

Data analyses centered on fitting linear mixed models and considered RIL genotype as a 

fixed effect (proc mixed, SAS) for the measured phenotypic traits. Block was also included as a 

fixed effect covariate when it had a significant impact on measured traits (emergence day, specific 

root length and root diameter). The SAS procedure PROC CORR was used to calculate genetic 

correlation coefficients of traits based on RIL line means. Broad-sense trait heritability was 

calculated using h2boot software using one-way ANOVA among inbred RILs with 1000 bootstrap 

runs (Phillips and Arnold, 1999). Trait divergence between parental lines was evaluated with a t-

test in SAS. 

The majority of the measured traits were continuously distributed with relatively strong 

multivariate structure based on pairwise correlational analyses. As such, we also used genetic 

principal component analysis (PCA) to obtain a multidimensional overview of shoot and root trait 

variation and integration. PCA was performed on the trait means of each line for the following 

phenotypic variables: emergence day, tiller number, root number, root biomass, shoot biomass, 

root diameter, root tissue density, specific root length, specific leaf area, tiller height, leaf length, 
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root volume and total root length. PCA was completed using SAS with the proc princomp function. 

The first three principal components that together explained 75% of total variation were retained 

for QTL analysis.  

QTL mapping was completed in R using the R/qtl package (Broman and Sen, 2009) on the 

RIL breeding values as described above. When quantitative trait data distributions were not 

normally distributed, data was log (emergence day, tiller number) or square root (shoot biomass) 

transformed. Two functions were used to determine the position of QTL and to conduct the 

calculation of estimates for additive effects and epistasis (an additive-by-additive interaction 

between quantitative trait loci) (script: 

https://github.com/AlbinaKh/P.hallii_RIL_RootShoot_QTLmapping). The scantwo function with 

1000 permutations was used to calculate penalties for main effect and interactions for each 

phenotypic trait, and the stepwise QTL function was used to conduct a forward-backward search 

and account for epistasis with a maximum of 6 QTL (at least two QTL peaks in addition to those 

detected with the scanone function) that optimized the penalized LOD score criterion. Threshold 

values for type 1 error rates were set at alpha = 0.05 for all traits based on permutation. 1.5 LOD 

drop intervals of QTL were calculated using the qtlStats function (Jtlovell/qtlTools, 2018). In 

addition, QTL analysis was performed on the first three principal components following the above 

procedure. 

Confirming root and shoot biomass QTL in a field study 

To further confirm and evaluate major QTL detected in our greenhouse study, we 

conducted a follow up field experiment on a focal QTL during the 2016 growing season. Ten RILs 

homozygous at the shared QTL region for root and shoot biomass were selected for this experiment 
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(5 with filipes alleles and 5 with hallii alleles). Eight biological replicates of each selected RIL line 

and eight replicates of the two parental genotypes were planted on May 10, 2016 under both 

restrictive and well-watered irrigation treatments ((10 RILs + 2 parents) x 8 biological replicates 

x 2 irrigation levels = 192 plants; see Supplementary Appendix A2). Plants were harvested towards 

the end of the summer growing season in August. Shoots were separated from roots, dried at 55°C 

for 4 days before weighing for biomass. Trait values more extreme than 1.5x the interquartile range 

were removed as outliers prior to analysis. For statistical analysis, we used linear mixed models 

with proc mixed in SAS. The main effect for the model was genotype at the focal QTL (filipes or 

hallii alleles at the marker position), treatment and genotype-by-treatment interaction. RIL line 

was used as a random effect to control for background genetic variance. 

RESULTS 

Heritable shoot and root trait differences between mesic and xeric ecotypes 

The RIL parents representing mesic and xeric ecotypes of Panicum hallii (HAL2 and FIL2) 

had significantly different shoot and root trait mean values (Table 1.1). The xeric genotype, HAL2, 

had 2.3-fold earlier first panicle emergence (t values at 5 dfs and P values; t=2.87, P=0.035), 3.3-

fold less shoot biomass (t=4.39, P=0.007) and 2.8-fold less root biomass (t= 3.08, P=0.028), 1.8-

fold shorter plant height (t= 3.43, P=0.018), 2.2-fold shorter leaf length (t=6.3, P=0.001), 2-fold 

shorter total root length (t=3.29, P=0.022), 2.5-fold lower total root volume (t=3.41, P=0.02), and 

1.3-fold increased specific root length (t=-2.5, P=0.05) relative to the mesic genotype FIL2 (Table 

1.1).  
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We estimated broad-sense trait heritability (H2) as the proportion of observed phenotypic 

variance due to genetic differences among RILs in the population. In the RIL population, all 

measured traits were heritable, with H2 ranging from 18% to 66% for shoot traits and from 34% 

to 60% for root traits (bootstrap based significance, in all cases P<0.001). The most heritable traits 

were leaf length (66%), plant height (64%), shoot biomass (60%), root length (60%) and root 

biomass (58%; Table 1.1). Transgressive segregation, where the range of recombinant phenotypes 

extends beyond the range of parental values (Rieseberg et al., 1999), was found among the majority 

of traits except shoot biomass, plant height, leaf length, root biomass and root number, where FIL2 

had trait values that were the highest or close to the highest of population wide values, while HAL2 

values were generally in the middle of the population trait distribution (Table 1.1). 

Many shoot and root phenotypic traits showed remarkably strong genetic correlations in 

the RIL population (Table A1). For example, shoot and root biomass (r=0.92, P<0.0001), tiller and 

root number (r=0.67, P<0.001), shoot biomass and root volume (r=0.91, P<0.0001), and shoot 

biomass and total root length (r=0.90, P<0.001) were all positively genetically correlated. We 

performed principal component analysis (PCA) to characterize the multivariate structure of our 

data. The first three PCA axes explained 75% of the overall trait variance. Principal component 

one (PC1; 45.5% variance explained) was composed of general plant size traits (shoot biomass, 

root biomass, number of tillers, number of roots, tiller height, leaf length, root volume and root 

length). Principal component two (PC2; 16.5%) was mainly composed of root resource acquisition 

traits (SRL, root diameter and root tissue density). Principal component three (PC3; 12.6%) was 

composed of carbon acquisition and allocation traits (SLA, RMR and panicle emergence; Table 

A2; Figure A1). 
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contents with the style TOC 3. 

QTL underscore root and shoot trait divergence between hallii and filipes 

Given high H2 values, it is not surprising that QTL were detected for all measured traits. 

A total of 32 QTL were identified for 14 phenotypic traits: two QTL for one phenological trait, 14 

QTL for five shoot traits and 16 QTL for eight root traits (Table 1.2, Figure 1.1, Figure A2). QTL 

for all traits showed additive effects in the direction of parental divergence, except for one of three 

QTL for tiller number, one of four QTL for root diameter, and one of three QTL for SRL. Filipes 

alleles had later panicle emergence and increased trait values for plant size related traits, including: 

emergence day, root number, root tissue density, root biomass, shoot biomass, tiller height, leaf 

length and root volume. Hallii alleles increased trait values associated with water acquisition 

(SRL) and carbon acquisition and allocation (RMR, SLA). 

The additive effects of each QTL explained from 5.25% to 15.4% of phenotype variation 

for shoot traits, and from 5.9% to 18.6% for root traits (Table 1.2). Of these 32 QTL, eight QTL 

occupied unique positions in the genome: root tissue density on chr1, leaf length on chr2, tiller 

number on chr3, root number on chr3, SLA on chr5 and chr8, tiller height on chr6, and root 

diameter on chr8.  As expected, three of these single QTL were also identified by principle 

component QTL (Table A3, Figure 1.1). The confidence intervals of all other QTL are shared or 

colocalized with at least one other QTL. 
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Trait-specific QTL cluster into genomic ‘hotspots’ 

We identified three major and five minor clusters of root and shoot trait QTL occurring 

over five different chromosomes (Table 1.2, Figure 1.1). Here we identify QTL clusters (CL) by 

chromosome and numerical order from the telomere for each chromosome. As expected, we found 

that positions of QTL for principle components were highly indicative of the locations of QTL 

clusters for the traits loading on particular PC axes (Table A3, Figure 1.1, Figure A2). 

QTL for PC1 localized to three genomic clusters of QTL for plant size traits. CL9.1 

contains shoot biomass and leaf length QTL. CL5.1 contains root biomass, shoot biomass, root 

volume, total root length and panicle emergence QTL. CL5.3 contains root biomass, shoot 

biomass, root volume, total root length, tiller number and root number QTL. A separate QTL pair 

for tiller height and root diameter not identified with PC1 lies between these two large clusters. 

PC2 QTL localized with one of two genomic clusters of QTL for root resource acquisition traits. 

CL1.1 and 3.1 both contain SRL and root diameter traits. PC3 QTL localized to a single genomic 

cluster (CL7.2) related to carbon allocation traits. CL7.2 contains panicle emergence day, leaf 

length, number of tillers, RMR and SLA. Near this PC3 associated QTL is a minor cluster (CL7.1) 

of leaf length and SRL (Table 1.2, Table A3; Figure 1.1). 

Four pairwise epistatic interactions, where the effect of one QTL depends on the allelic 

state of an unlinked QTL, were detected (Table 1.2, Table A3; Figure 1.2). Three QTL from cluster 

CL5.3 (shoot biomass, root biomass and PC1) interacted with other QTL for these traits located in 

CL5.1. In addition, the root number QTL from CL5.3 interacted with the root number QTL on 

chr3. Individuals that possess the hallii allele for these QTL at CL5.3 mask the positive effects of 

their interactive QTL. 
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A Major Pleotropic Effect QTL is Confirmed in the Field 

To confirm the effects of QTL observed in a controlled greenhouse study, we phenotyped 

two sets of RILs homozygous for different parental alleles at the loci for shoot and root biomass 

(CL5.2) in a field experiment. While the magnitude of increased biomass for lines with filipes 

alleles at the selected QTL observed in the field is 24% less for the root biomass and 11% less for 

the shoot biomass relative to the greenhouse, the effects are significant and in the same direction 

as those observed in the greenhouse. Field grown lines with filipes parental alleles produced 1.9-

fold more root biomass (P=0.0024) and 2.7-fold more shoot biomass (P=0.0002) relative to field 

grown lines with hallii parental alleles (Figure 1.3). In addition, the HAL2 parental line showed a 

1.8-fold increase trend in RMR (P=0.09) over the FIL2 parental line under field conditions 

compared to the 1.2-fold difference observed in the greenhouse (P=0.018). There were no 

significant differences between the irrigation treatments or the interaction of treatment by genotype 

for RILs or the parental genotypes. However, root biomass showed a 1.2-fold increase trend under 

the dry treatment relative to the wet treatment (P=0.08). 

DISCUSSION 

Ecotypes are often differentiated by suites of correlated root and shoot traits that may share 

common genetic and developmental architectures as a result of adaptive differentiation. One of 

our major findings was several genomic ‘hotspots’ of colocalized QTL for multiple shoot and root 

traits. This is consistent with a previous study of a P. hallii F2 population covering a suite of 

ecotype differentiating shoot trait QTL which clustered on chr5 (Lowry et al., 2014b). In addition 

to confirming this important locus, we discovered additional root traits linked to this region along 
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with additional regions of clustered loci for root and shoot traits. Colocalized QTL controlling 

traits such as root biomass, shoot biomass, among others, has also been shown in RIL populations 

of wheat and sorghum (Mace et al., 2012; Iannucci et al., 2017). These findings indicate that 

specific loci can shape both shoot and root morphological traits, through tight linkage of several 

genes controlling individual traits or a single pleiotropic gene that controls several traits. 

PC1 QTL localized to three genomic regions controlling several size related root and shoot 

traits (shoot biomass, root biomass, root volume, and other). We found that the hallii allele had 

additive effects in the direction of ecotype divergence and contributed to smaller root and shoot 

phenotypes in every case compared to the filipes allele. This finding is consistent with the global 

pattern observed in angiosperm plants whose shoot and root biomass are positively correlated 

(Enquist and Niklas, 2002) and with other studies on perennial grasses where total biomass is 

decreased under water limited conditions (Tozer et al., 2017; Weißhuhn et al., 2011; Baruch, 

1994). Importantly, we show that one of the main growth QTL effects is robust to the environment 

and persists under natural field conditions.  

In addition to differences in absolute size, there are expected differences in carbon 

acquisition and allocation between xeric and mesic ecotypes. PC3 resulted from cluster of carbon 

allocation and phenology related traits (SLA, RMR, tiller number and panicle emergence). Plants 

with hallii alleles had greater SLA, RMR, tiller number, and faster panicle emergence. Thinner 

leaves (high SLA) have lower carbon cost and are associated with increased photosynthetic 

capacity (Cornelissen et al., 2003; Reich et al., 1997). Increased RMR helps to maintain plant 

water status and productivity under drought (Comas et al., 2013). Faster flowering time along with 

greater tiller number allows for rapid production of seeds when resources are available for short 



 14 

time periods. These factors combined may indicate that hallii employs a fast acquisitive strategy 

for drought escape; acquiring nutrients rapidly and flowering quickly to enter a dormant state 

before periods of summer drought. Acquisitive shoot and root strategies have been associated with 

fast growth strategies and summer dormancy in other perennial grasses (Balachowski et al., 2016). 

This contrasts with the lower SLA, and RMR of the mesic filipes, which may employ a slow 

strategy of thicker longer lasting leaves, larger more persistent roots, and abundant above ground 

foliage. This common genetic control of ecotype differentiating traits involving shoot and root 

organs suggests that these factors evolved in tandem. Variously, we found a relatively weak 

genetic correlation between SLA and SRL, which are important plant traits linked to resource 

acquisition (Cheng et al., 2016; Reich, 2014) and associated with fast growth (Pérez-Harguindeguy 

et al., 2016; Reich, 2014). Each of these traits had three independent QTL. Thus, divergence of 

these traits is likely due to independent loci which become structured across ecotypes as a result 

of strong directional or correlational selection.  In this case, our crossing scheme was able to largely 

decouple these traits through recombination. 

Observed pairwise epistatic interactions for root biomass, shoot biomass and root number 

showed that hallii alleles mask the effects of filipes alleles in all cases. When lines are homozygous 

for hallii parental alleles at CL5.3, it contributes to smaller phenotypes for these traits, regardless 

of the genotype at their respective interactive QTL. This suggests that the CL5.3 loci could include 

a pleiotropic gene with major effect that controls the development of multiple shoot and root size 

related traits. Natural populations of P. hallii ecotypes are largely homozygous, thus these linked 

QTL likely work together in a positive direction and contribute to the phenotypic trait correlations 

that underlie ecotype divergence. The observed epistasis in the RIL population could be involved 
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in ecological speciation (Burke and Arnold, 2001), and these interactions in hybrid plants could 

be deleterious and impact survivorship by undermining synergistic trait relationships. For example, 

the combination of reduced root and shoot size effected by hallii alleles may be desirable in xeric 

environments, but deleterious in natural hybrids or under the higher competition mesic 

environments that filipes inhabits. 

Greenhouse detected genetic correlations confirmed under field conditions 

There is persistent concern that effects observed in greenhouse studies are not 

representative of plant performance in natural or agronomic environments. Although greenhouse 

and growth chambers may be able to replicate a wide range of temperature and light conditions, 

other differences between these artificial and natural environments can be significant. 

Furthermore, greenhouse studies are often conducted on very young plants and in smaller than 

optimal pots, which can significantly alter root architectures compared to natural environments. 

Several recent studies have highlighted how differences in conditions between glasshouse and 

natural settings can affect the mapping of genetic architectures for various plant traits (Poorter 

et.al., 2012; reviewed in Lovell et al., 2016).  

We sought to overcome this concern by confirming the glasshouse detected genetic 

architecture of two of our chief traits of interest (root biomass and shoot biomass) in selected RILs 

and parental genotypes in a field setting at full plant maturity. In the RILs, we found that our 

glasshouse observed QTL were confirmed. For the parental lines, we found that root mass ratio 

differences between the xeric and mesic ecotypes nearly doubled under field conditions as 

compared to the glasshouse study. This suggests that adaptive allocation of biomass to roots 

increases with plant age and can also be constrained by pot limitations in the glasshouse. More 
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importantly, these results provide credence to the assumption that our glasshouse study is 

predictive of plant performance in a natural setting. Future studies with P. hallii should explore 

the genetic architecture of shoot:root traits over multiple perennial seasons in additional field 

studies.  These data will help to clarify the lifetime fitness consequences of allocation strategies 

and potential ecological tradeoffs that arise in natural habitats. 

CONCLUSION 

In the process of ecotype formation, populations can diverge across many functional traits 

and exhibit different niche characteristics, which requires coordination between plant organ 

systems. Root traits are involved in adaptive differentiation to abiotic stresses by their direct effects 

on water acquisition, and through correlation, tradeoffs or constraints with shoot traits (Mace et 

al., 2012; Hammer et al., 2009). Our study sheds light on the genetic architecture underlying the 

relationships between root and shoot traits involved in ecotype divergence of Panicum hallii and 

demonstrates that some correlated traits are under common genetic control as a result of QTL 

colocalization and interaction, while other traits are controlled by independent loci. We found 

several genomic hotspots relating to multiple root and shoot traits and a striking pattern of epistatic 

interaction impacting overall plant growth. Further insight into the molecular basis of these loci 

will be an important step in understanding the genetic coordination and ecological importance of 

root and shoot systems involved in ecotype divergence. 

DATA ACCESSIBILITY 

The raw sequencing data was deposited at NCBI (Table A4). 
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TABLES 

Table 1.1. FIL2 and HAL2 root and shoot trait value means with SE and t-statistics; and RIL root and shoot trait value means, range 

and broad-sense heritability (H2) with SE. t-statistics given at 5 degrees of freedom with statistically significant P-values 

indicated in bold text. 

Phenotypic Trait FIL2 HAL2 t  P-value RIL mean RIL range H2±SE 

Panicle Emergence 

(day) 9.25±1.19 4.00±1.38 2.87 0.035 7.01±1.74 1.00 – 18.33 0.51±0.05 

Shoot Biomass (g) 4.74±0.49 1.41±0.57 4.39 0.007 1.65±0.33 0.29– 4.74 0.59±0.05 

Tiller Number 6.25±0.48 5.00±0.56 1.68 0.150 6.00±0.83 3.00 – 14.50 0.50±0.05 

SLA 325.62±18.15 382.77±20.96 -2.06 0.094 381.58±33.17 264.67 – 499.36 0.18±0.08 

Plant Height (cm) 21.18±1.82 11.63±2.11 3.43 0.018 12.57±1.56 4.30 – 23.65 0.63±0.04 

Leaf Length (cm) 30.77±1.72 14.23±1.98 6.30 0.001 15.66±1.46 4.75– 24.27 0.66±0.04 

Root Biomass (g) 1.38±0.18 0.51±0.21 3.08 0.028 0.54±0.10 0.12 – 1.60 0.58±0.06 

Root Number 14.00±0.97 8.33±1.11 3.84 0.012 8.87±1.39 2.50 – 15.00 0.38±0.05 

SRL (cm g-1) 10.14±0.85 13.37±0.98 -2.50 0.055 12.27±1.11 6.12 – 17.95 0.43±0.06 

RTD (g cm-3) 0.06±0.01 0.05±0.01 1.31 0.247 0.05±0.01 0.03 – 0.08 0.39±0.07 

Root Diameter (mm) 0.46±0.01 0.44±0.02 1.27 0.259 0.45±0.01 0.37 – 0.55 0.37±0.05 

Root Volume (cm3) 2.43±0.28 0.98±0.32 3.41 0.019 1.00±0.17 0.26 – 2.90 0.56±0.05 

Root Length (m) 1.37±0.14 0.67±0.16 3.29 0.022 0.65±0.11 0.12 – 1.64 0.59±0.04 

RMR 0.22±0.01 0.27±0.01 -3.44 0.018 0.25±0.02 0.16 – 0.39 0.34±0.09 
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Table 1.2. Main and epistatic effects of QTL for the Panicum hallii RIL population. 

Phenotype Chr 

 Peak 

(cM) 

1.5 Lod 

Interval LOD % var 
Effect SE 

Positive 

allele 

donor 

QTL Cluster 

(CL) 

Panicle Emergence  5 52.1 40-59 4.59 9.85 -0.044 0.009 filipes CL5.1 

(day) 7 80.0 31-83 4.31 9.2 -0.039 0.008 filipes CL7.2 

Shoot Biomass  5 58.6 56-60 7.43 14.8 -0.044 0.007 filipes CL5.1 

 (g) 5 136.0 128-142 5.08 9.82 -0.031 0.007 filipes CL5.3 

 9 66.1 60-71 4.78 9.19 -0.027 0.005 filipes CL9.1 

 Epi5:5   2.86 5.36 0.027 0.007   

Tiller Number 3 40.5 38-48 7.23 14.74 -0.054 0.009 filipes  

(count) 5 137.0 128-142 3.47 6.73 -0.037 0.009 filipes CL5.3 

  7 73.6 46-81 4.84 9.56 0.039 0.008 hallii CL7.2 

SLA  5 13.3 0-26 3.15 5.25 9.772 2.543 hallii  

(cm2g-1) 7 66.0 60-74 8.56 15.37 16.394 2.494 hallii CL7.2 

  8 19.8 16-23 8.33 14.90 16.077 2.484 hallii  

Tiller Height  5 76.0 74-77 6.16 13.34 -1.765 0.320 filipes CL5.2 

(cm) 6 83.9 69-88 3.82 8.05 -1.096 0.256 filipes  

Leaf Length  2 89.7 76-96 4.28 8.56 -1.19 0.264 filipes  

(cm) 7 43.6 35-64 4.39 8.80 -1.293 0.283 filipes CL7.1 

  9 63.4 59-75 3.41 6.76 -0.985 0.246 filipes CL9.1 

Root Biomass 5 58.6 56-60 8.81 18.61 -0.012 0.002 filipes CL5.1 

(g) 5 136.0 135-142 8 16.71 -0.010 0.002 filipes CL5.3 

 Epi5:5   4.61 9.21 0.008 0.002   

Root Number   3 88.0 69-104 6.18 13.9 -1.08 0.199 filipes  

(count) 5 125.7 125-130 5.36 11.94 -0.81 0.196 filipes CL5.3 

 Epi3:5   2.79 5.99 0.73 0.202   

SRL (cm g-1) 1 91.5 82-94 5.3 11.02 0.66 0.131 hallii CL1.1 
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Table 1.2 (continue) 

 

Phenotype Chr 

 Peak 

(cM) 

1.5 Lod 

Interval LOD % var 
Effect SE 

Positive 

allele 

donor 

QTL Cluster 

(CL) 

 3 18.8 17-36 5.16 10.7 0.78 0.156 hallii CL3.1 

 7 44.7 34-49 3.16 6.4 -0.55 0.145 filipes CL7.1 

RTD (g cm-3) 1 6.3 0-20 3.15 7.9 -0.001 0.0004 filipes  

Root Diameter 1 86.0 82-94 4.73 8.68 -0.009 0.002 filipes CL1.1 

(mm) 3 34.2 30-36 5.36 9.91 -0.011 0.002 filipes CL3.1 

  5 71.9 66-75 3.78 6.84 0.010 0.002 hallii CL5.2 

  8 47.9 43-52 4.65 8.50 -0.009 0.002 filipes  

Root Volume 5 58.6 56-63 3.96 8.85 -0.134 0.030 filipes CL5.1 

(cm3) 5 117.2 109-142 3.07 6.77 -0.119 0.032 filipes CL5.3 

Root Length 5 58.6 44-138 3.12 7.85 -0.82 21.29 filipes CL5.1,2,3 

RMR (ratio) 7 67.0 62-74 6.36 15.34 0.0137 0.002 hallii CL7.2 

Chr, chromosome; Peak, cM (centimorgan) position of the QTL peak; LOD, logarithm of odds; % var, percent of variance; 

SE, one standard error; SLA, specific leaf area; SRL, specific root length; RTD, root tissue density; RMR, root mass ratio; 

Epi, epistasis.  
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FIGURES 

 

Figure 1.1. Genetic map of the Panicum hallii RIL population with location of trait QTL. 

Colored bars indicate 1.5-LOD drop confidence intervals. Location of dots within 

the bars is the location of QTL peaks. Arrow represents the direction of additive 

effect, with up or down arrows indicating that the hallii allele increases or decreases 

the trait value. 

 

 



 21 

 

 

Figure 1.2. Pairwise epistatic QTL in the Panicum hallii RIL population. Plotted points indicate 

two-locus genotype means ± 1SE for the two loci containing root biomass between 

CL.5.1 and CL.5.3 (A), shoot biomass between CL.5.1 and CL.5.3 (B), root number 

between QTL 3.88 and CL.5.3 (C) and PC1 between CL.5.1 and CL5.3 (D). 
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Figure 1.3. Mean ± 1SE of shoot biomass (A) and root biomass (B) for field grown Panicum hallii RILs homozygous for either 

filipes or hallii parental alleles at shoot and root biomass QTL located in cluster CL5.1. Picture of field grown RILs 

homozygous at CL5.1 for filipes allele (top row) and hallii allele (bottom row) (C). 
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Chapter 2:  Quantitative genetic-by-soil microbiome interactions in a 

perennial grass affect functional traits 

ABSTRACT 

• Plants interact with microbiota that can impact plant growth, performance, and local 

adaptation. However, few studies have explored the impact of microbial communities from distinct 

native locations on plant functional traits, and less is known about how host-microbe interactions 

affect the quantitative genetics of plant traits. 

• We used a recombinant inbred line (RIL) mapping population derived from upland 

and lowland ecotypes of the diploid C4 perennial bunch grass Panicum hallii to explore 

quantitative genetic responses to soil microbiomes. Our experimental design included contrasts of 

RILs grown in the presence and absence of microbial communities derived from native habitats. 

We collected data for multiple traits thought to be important in ecotype divergence. 

• We show that the growth and development of ecotypes and their trait divergence 

depends on soil microbiomes. Moreover, we find that broad-sense H2 is modified by soil 

microbiomes, revealing important plant genotype-by-microbiome interactions for quantitative 

traits. We detected a number of quantitative trait loci (QTL) that interact with the soil microbiome, 

including epistatic interactions that depend on the context of the soil microbiome. 

• Our results highlight the importance of microbial interactions in ecotypic 

divergence and trait genetic architecture in C4 perennial grasses. 
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INTRODUCTION 

Plants have evolved alongside microbes for millions of years and have formed intricate 

relationships with soil microbial communities via their root systems. Soil microbial community 

composition is shaped by soil abiotic conditions and varying soil types contain microbiomes with 

distinct taxonomic distributions (Hartman & Tringe, 2019; Fierer, 2017). Plant host genetics also 

drive the assembly of rhizosphere and endosphere microbial communities (Trivedi et al., 2020; 

Jones et al., 2019), and crop varieties or natural ecotypes (or genotypes) grown in a common 

environment can differ in root and rhizosphere community structure (Bowsher et al., 2020; Li et 

al., 2018; Perez-Jaramillò et al., 2017; Wagner et al., 2016). To some degree, the root microbiome 

can be thought of as an extended phenotype of the plant. Plant-soil-microbiome relationships can 

influence plant traits and there is strong evidence that microbes can yield positive effects on plant 

performance directly or indirectly by impacting plant functional traits (Egamberdieva et al., 2017; 

Wagner et al., 2014; Lau & Lennon, 2012). Plant root associated microbiomes impact root traits, 

can increase nutrient acquisition, provide indirect impacts on shoot traits (such as increasing shoot 

biomass) and promote tolerance to abiotic and biotic stress (Santhanam et al., 2015; Mendes et al., 

2013; Sukumar et al., 2013; Friesen et al.,2011). In synthetic community research, growing the 

same genotype in the presence or absence of differing sets of selected microbiomes produces a 

wide range of plant trait modulation (De Souza et al., 2020; Vorholt et al., 2017). Given the 

growing evidence of microbial effects on plant growth and development, it’s possible that plant 

microbial interactions also play a role in the process of local adaptation, where plant populations 

diverge and exhibit different niche characteristics and habitat preferences. 
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Many plant species are composed of highly varied ecotypes across their range, each of 

which may show a high degree of trait divergence. Traits under strong genetic control can be 

profoundly influenced by environmental factors and the degree to which these factors influence 

plant traits can vary widely across genotypes. These types of interactions are termed genotype-by-

environment interaction (GxE; Des Marais et al., 2013). Many studies focus on local adaptation 

and GxE in response to changing conditions (Midolo & Wellstein, 2020; Leimu & Fischer, 2008), 

however, the relative contribution of abiotic and biotic factors is often unclear (Runquist et al., 

2020). Plants encounter diverse biotic factors including competition, herbivory, pathogens and an 

array of microbial communities (Bischoff et al., 2006; Järemo et al., 1999), but little is known 

about how specific interactions between plants and microbial communities contribute to 

adaptation. The vast majority of studies exploring plant-microbe interactions focus on pairwise 

interactions with strong effects, often involving nitrogen fixing symbionts, model beneficial 

bacterial strains, or agronomically important pathogens. However, plants often grow better in 

novel or foreign soil microbial communities compared with those found in their native range 

(Benning & Moeller, 2020; Lankau & Keymer, 2018), which could indicate maladaptation derived 

from the presence of specialized pathogens or host microbiome mismatching.  Additional 

experimental studies exploring the impact of microbial communities are critically needed to fully 

elucidate aspects of plant-microbe interactions and local adaptation. 

Several difficulties arise in studying plant-microbe interactions in both laboratory and field 

settings. Microbial communities are highly diverse and dynamic and many of their constituent 

strains are difficult to isolate and culture independently. Synthetic community approaches utilize 

small groups of isolated microbes for use in research, but such communities are incomplete 
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representations of real-world conditions and are often grown in unrealistic conditions (e.g., on agar 

plates or in Magenta boxes). Conversely, manipulating microbial communities in natural 

conditions is nearly impossible due to a plethora of uncontrollable factors. A hybrid approach of 

introducing microbial communities to lab grown plants through controlled and quantified 

inoculum derived directly from natural sources can bridge these two solutions (Wagner et al., 

2014).  While not without limitations, such studies allow an evaluation of the impact of the 

microbiome on plant traits that vary quantitatively in response to the presence of microbes in more 

controlled environments and help introduce tools like high throughput phenotyping, genetic 

mapping, and genomic analyses to plant-microbiome studies (Singer et al., 2020).  

Numerous QTL mapping studies have explored the genetic architecture of GxE in natural 

and crop populations for a number of abiotic factors and this approach has become widely utilized 

to study plant responses to abiotic stress and to understand plant trait plasticity (Des Marais et al., 

2017; Vij & Tyagi, 2007). Far less work has been directed at the influence of biotic factors, 

specifically microbiomes. QTL involved in the recruitment of mycorrhizae have been studied for 

a variety of crops such as maize, poplar, and winter wheat (Lehnert et al., 2017; Labbé et al., 2011; 

Kaeppler et al., 2000). While mycohorrizal fungi are widely studied and their function is better 

known, microbiomes are a diverse assemblage of many bacterial and fungal clades, and approaches 

which examine whole microbiomes may be more reflective of how plant adaptation is shaped 

through these interactions in natural environments. 

Panicum hallii is a diploid, C4, self-fertilizing, North American native perennial bunch 

grass that occurs across a large geographical range with diverse habitats and climate. There are 

two naturally occurring ecotypes of P. hallii that are classified as separate varieties: an upland 
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xeric ecotype, P. hallii var. hallii (hereafter referred to as hallii) and a lowland mesic ecotype, P. 

hallii var. filipes (hereafter referred to as filipes). These ecotypes display trait divergence in a 

similar direction and magnitude to other perennial grass species with upland and lowland ecotypes 

which is thought to be driven by adaptive evolution along precipitation gradients across the species 

range (Khasanova et al., 2019; Gray et al., 2014; Lowry et al., 2014a). Many observations have 

shown that both ecotypes of P. hallii display a large degree of plasticity in several shoot traits in 

response to changes in abiotic factors including light (Weng et al., 2019) and precipitation (Lovell 

et al., 2018), yet these differences are minor in comparison to the differences inherent between the 

ecotypes. However, little is known about the importance or relative contribution of biotic factors 

including microbial influences in shaping plant shoot and root traits in this system and plants in 

general compared to these more widely studied abiotic factors.  

Here, we used quantitative genetics to understand the impact of soil microbiomes on root 

and shoot traits. By using a recombinant inbred population derived from a cross between two 

ecotypes, we can identify plant genomic regions contributing to these microbial-mediated traits.  

To overcome the limitations of synthetic community approaches and the complexity of natural 

soils, we took a hybrid approach of inoculating sterilized soils with naturally derived microbial 

communities in a glasshouse setting. In this study, we analyze a population of recombinant inbred 

lines (RILs) derived from a cross between the upland and lowland ecotypes of P. hallii. 

Specifically, we sought to answer four questions: 1) Does the native soil microbiome drive 

plasticity in P. hallii above- and below-ground traits? 2) Are microbiome effects general, or 

specifically related to the location of origin of the microbiome? 3) Do P. hallii ecotypes exhibit 

GxE in response to variable soil microbiomes? And, 4) Can we map genetic effects and their 
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interactions with the microbiome to the genome? Overall, our experiment demonstrates the impact 

of living soil microbiomes on the quantitative genetic architecture of both root and shoot traits in 

P. hallii and highlights the potential importance of microbiomes in local adaptation. 

MATERIALS AND METHODS 

Plant Material 

We used a population of recombinant inbred lines (RILs) derived from a cross between P. 

hallii var. hallii (HAL2 ecotype) and P. hallii var. filipes (FIL2 ecotype) to evaluate the genetic 

basis of plant-microbiome interactions. A single F1 hybrid individual was used to generate a large 

population of F2 plants which were bred by single seed descent to the F7 generation (Khasanova 

et al., 2019). Both parental lines have full genome assemblies that are publicly available 

(https://phytozome-next.jgi.doe.gov/; Lovell et al., 2018). The RIL population genetic linkage map 

was constructed by shallow whole-genome resequencing and is congruent with the physical 

genome. Seeds of 293 F7 RILs and the two parental ecotypes were sterilized with 50% bleach for 

five minutes, rinsed with sterile water, treated with 30% ethanol for 30 seconds and finally given 

five sterile water rinses. Seeds were then scarified with sandpaper and placed on wet sterilized 

sand in petri dishes sealed with parafilm in August 2018 and allowed to germinate for five days 

on a bench in a glasshouse located at the University of Texas at Austin (16-h days at 500 μE m −2 

s −1, 28°C; 8-h nights at 24°C). Germinated seedlings were then transferred haphazardly over a 

three-day period to prepared treatment pots. 
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Microbial Inoculum Collection and Treatment Soil Preparation 

RIL plants and parental replicates were grown in the presence and absence of native 

microbiome inoculations. Inoculum consisted of soils obtained from the same locations where we 

obtained the parental lines used in the creation of the RIL mapping population (Lady Bird Johnson 

Wildflower Center in Austin, TX for var. hallii and the Corpus Christi Botanical Garden, in Corpus 

Christi, TX for var. filipes).  The Austin soil is a reddish rocky clay/silt and the Corpus soil is a 

grey sandy loam; specific nutritional and mineral contents are given in Table A5. Soils were 

collected from areas where P. hallii was present by clearing the soil surface of plant matter, 

collecting soil by shovel to a depth of 25 cm and subsequently removing any root material present 

in the sample. 

To create the four treatments, we mixed 1% by volume of native soil inoculum (to minimize 

the effect of nutritive and textural soil properties from the inoculum) with a twice-autoclaved 

horticultural soil mix of compost, decomposed granite and vermiculite (Thunder Dirt, Geo 

Growers, Austin, TX) and left it for two weeks to incubate in closed 400-liter plastic containers 

(Edwards et al., 2019). We selected this particular commercial soil mix because it homogenizes 

well and facilitates root extraction and cleaning. For soils utilized in the control treatments, the 1% 

soil inoculum was twice autoclaved over a 24-hour period before mixing and incubation. Given 

the nature of this large-scale glasshouse experiment under an open-air environment, true sterility 

of the control treatments is not possible and thus we refer to the treatments by their inoculum 

source: microbiome treatments as Austin Inoculated (AI) and Corpus Inoculated (CI), and control 

treatments as Mock Austin Inoculated (MAI) and Mock Corpus Inoculated (MCI). Our Mock 

treatment combinations are likely to obtain their living microbiome through incomplete or 



 30 

inadequate sterilization, by dispersal from adjacent pots, or from inoculation through the general 

glasshouse environment. Our goal is simply to use sterilization and inoculation as tools to 

manipulate the microbiome, and we acknowledge that our treatments levels will be far from sterile 

controls or natural microbiomes. Nevertheless, we feel this experimental system allows us to assess 

the holistic impact of soil microbes, above and beyond what could be obtained from studies of 

individual microbes or experiments under more artificial conditions.  

Microbial DNA extraction and 16S rRNA gene sequencing 

To characterize the microbial community composition at each native location, we collected 

samples of rhizosphere and root from eight haphazardly selected hallii individuals growing at 

Austin and nine filipes individuals growing at Corpus. Additionally, five bulk soil samples (all 

plant material removed) from each site were collected in areas adjacent to living hallii plants (44 

samples total). DNA extraction of these samples was performed with the DNeasy PowerSoil Pro 

Kit (Qiagen, Hilden, Germany). 16S ribosomal RNA gene regions were amplified using the 515F-

806R primer pair, barcoded and sequenced on the Illumina Novaseq platform on the SP flowcell 

using 250x250. To characterize treatments in the glasshouse experiment, this procedure was 

performed again on rhizosphere, root and soil samples taken at harvest from seven replicates of 

each parent in each treatment (four treatments x 14 parents x three compartments = 168 samples). 

Experimental Design 

Each treatment consisted of all 293 RILs and seven replicates of each parent for a total of 

307 plants per treatment in the experiment (four treatments x 293 RILs + 56 parents =1,228 plants). 

Incubated soil for treatments and controls was transferred to 950 ml 3" x 8" Mini-Treepots (Stuewe 
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and Sons, Tangent, OR). Treepots were lined with sterile plastic bags perforated at the bottom to 

allow water drainage and facilitate easy root system removal. Pots for all four treatments were 

randomized in a single block design in a glasshouse and left for acclimation in open air for two 

weeks before seedlings were transplanted. Plants were watered with UV sterilized tap water for 

the duration of the experiment. 

Harvest and Phenotyping 

Plants were harvested prior to first panicle emergence after six weeks of growth over a 

five-day period. Individual plants were extracted from pots by gently pulling the plastic bag from 

the pot to prevent damage to the root system. Next, the plastic bag was cut open and plants with 

their attached root system were removed from the soil by gently shaking them over a wire mesh. 

Soil rhizosphere samples for parental lines were collected by dipping each root system into 

sterilized 50 ml tubes filled with 1X phosphate buffered saline (PBS) buffer. Plants were then hung 

by the shoot base on a clamping apparatus and soil particles were removed from the root system 

with a spray of UV-sterilized water. Roots were then separated from shoots and preserved in 90% 

ethanol for future phenotyping. Tillers were counted and flag leaf area of the main tiller was 

measured. Shoot and leaf tissue were dried at 55°C and weighed separately to obtain aboveground 

biomass, and to calculate Specific leaf area (SLA; fresh leaf area / dry mass of the leaf (cm2 g-1)). 

For each plant, we calculated number of roots produced and then the entire intact root 

system was carefully spread out in a clear acrylic tray filled with UV sterilized water and then 

scanned on an EPSON 12000XL flatbed scanner (Epson America, Inc., San Jose, CA, USA) 

calibrated for use with WinRhizo Pro 2019 root image analysis software (Regent Instruments Inc., 

Canada).  In addition, one representative nodal root with attached lateral roots was haphazardly 
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selected and scanned separately to facilitate collection of 1st order root length and lateral root 

length. Following scanning, a small portion of the central root system for parental lines was 

sampled into Eppendorf tubes and frozen for DNA extraction and PCR amplification to determine 

root endosphere microbial community composition. The remaining root tissue was collected and 

dried for 96 hours in an oven at 55°C, and weighed to obtain root system biomass.   

Scans of the root systems and selected single roots were analyzed with WinRhizo Pro 2019 

software to determine total root length (cm), total root volume (cm3), and average root diameter 

(mm), for intact root systems; and lateral root length and the 1st order root length for selected 

individual roots. Lagarde’s local threshold parameter was used to facilitate recognition of thin and 

pale roots and the following traits were calculated: specific root length (SRL; total root length / 

root biomass (cm g-1)), root tissue density (RTD; root biomass / total root volume (g cm-3)), and 

root mass ratio (RMR, root biomass / total biomass). 

Sequence Analysis 

Demultiplexed sequences were trimmed to remove adapter and primer binding sites using 

Cutadapt (Martin, 2011). Amplicon sequence variants (ASVs) were inferred using DADA2 

(Callahan et al., 2016). Errant ASVs due to chimerization were detected using the “consensus” 

method in DADA2 and discarded. Any ASV with a sequence length of greater than 256 bp or less 

than 250 bp were discarded. Taxonomic classifications were assigned to each ASV using 

DADA2’s assignTaxonomy () function using the Silva reference database (version 132, Quast et 

al., 2013). 

Microbiome data was analyzed using the software package R (R Core Team, 2020). ASVs 

assigned to mitochondrial and chloroplast lineages were discarded from the data prior to 
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normalization. For principal coordinates analysis (PCoA) and phylum level abundance statistics, 

the raw counts were normalized to account for differences in sequencing depth between samples 

by dividing each ASV count by sequencing depth of a particular sample and multiplying by 1000 

to place the counts on a per mille scale. Principal coordinate analyses were conducted using the 

capscale () function in the package Vegan (Oksanen et al., 2020). Bray Curtis dissimilarity on log2 

transformed abundances was used for all PCoAs unless otherwise noted. Alpha diversity was 

calculated using Shannon Entropy from the diversity () function in Vegan. Differential abundance 

of aggregated phylum abundances was performed using linear models on log2 transformed 

abundances. Differential abundance of ASVs between conditions was conducted using DESeq2 

on raw counts (Love et al., 2014).  

Plant trait data from all replicates of parental ecotypes was analyzed to test the genotypic 

and microbial treatment effects on plant morphological traits. We fit factorial linear mixed models 

using PROC MIXED in SAS (Littell et al., 1996) consisting of Ecotype, Treatment, and Ecotype 

x Treatment interactions as fixed effects. Preliminary analysis did not show any significant 

differences (in all cases, P > 0.113 between MAI and MCI treatments for parental ecotypes and 

RILs), thus the average between them was used for this and all subsequent analyses (hereafter 

referred to as the Mock Inoculated (MI) treatment).  

To explore the impact of the microbiome on the quantitative genetic architecture of our 

measured traits, we fit linear mixed models testing for GxE using the sommer package 

(Covarrubias-Pazaran, 2018) in R based on the additive and epistatic relationship matrix 

determined from the genotypic data of the RIL. Our approach competed a simple “base” model 

including additive genetic variance (Va), additive*additive epistatic variance (Vaa) and a fixed 
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treatment effect to more complex models that allowed either the additive genetic variance (Va), 

additive*additive epistatic variance (Vaa) or the residual to vary by the microbiome treatment (AI, 

CI, MI). Models were compared with AIC and LIK and assumed no covariance among treatments. 

We calculated broad-sense H2 as Va+ Vaa/Vp and present variance components and model 

comparisons.  

The observation of different QTL effects under different treatment conditions provides 

evidence for QTL x environment interactions. There are a number of potential statistical strategies 

for detecting the occurrence of QTL x environment interactions (Des Marais et al., 2013).  To 

detect QTL present in the AI, CI and MI treatments, we completed QTL mapping on RIL values 

in R using the R/qtl package (Broman & Sen, 2009) in each environment separately. When 

quantitative trait data distributions were not normally distributed, data was log transformed (Tiller 

Number, Root Number, Shoot Biomass, Root Biomass, Root Diameter, RMR, Lateral Root 

Length). We used calc.genoprob with step=2 and map.function="kosambi" to calculate genotype 

probabilities every two cM. Penalties for main effects were calculated with the scantwo function 

on 1000 permutations and the stepwise QTL function was used to conduct a forward-backward 

search accounting for epistasis (additive-by-additive interaction between QTL) with a maximum 

of seven QTL (QTLs detected with scanone function plus at least two QTL peaks) that optimized 

the penalized LOD score criterion. For all traits the alpha was set at 0.05 as a threshold for type 1 

error rates based on permutation to detect main QTL. We also lowered our threshold to alpha = 

0.1 to detect suggestive QTL, and the qtlStats function was used to calculate the 1.5 LOD drop 

interval of QTL.  
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We further tested for QTL x environment interactions in a full linear model incorporating 

the data from the three treatments using the PROC MIXED procedure of SAS. First, in R, we used 

fill.geno with the method = "maxmarginal" and min.prob = 0.95 to fill in missing genotypic data. 

These data were then used in a series of linear models in SAS including the main and interactive 

effects of all significant markers detected in the initial QTL analysis and the interaction of these 

markers with the experimental treatments (Lynch & Walsh, 1998). Marker x treatment interaction 

indicates QTL x environment interaction, marker x marker interaction represents epistasis 

averaged over the environments, and marker x marker x treatment interaction indicates 

environment specific epistasis. We performed this analysis to test GxE interaction effects by 

contrasting the AI, CI and MI microbiomes (e.g. potentially identifying different soil or residual 

microbiome impacts). To test the significance of individual marker alleles at each treatment, we 

used the slice function in SAS as tests of simple effects (Winer, 1971) for all significant marker x 

treatment and marker x marker x treatment interactions. 

RESULTS 

Treatment drives bacterial community composition 

We used 16S rRNA gene amplicon sequencing classified into ASVs to characterize both 

the native microbial communities and the communities generated by our experimental 

inoculations. For parental ecotypes growing under natural habitats, PCoA revealed strong 

location/ecotype and compartment effects (i.e. soil, rhizosphere, and root) across axes one and 

two, respectively (Figure 2.1 a). Permanova mirrored these results with location/ecotype 

explaining the most variance (R2 = 0.21, P < 0.001) and compartment explaining the second most 
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(R2 = 0.15, P < 0.001; Table 2.1). Microbiota varied significantly in alpha diversity between the 

compartments, but not between location (Figure 2.1 b). Phylum level distributions were overall 

consistent between microbiota of plants growing at the two natural locations with Proteobacteria, 

Actinobacteria, and Acidobacteria being dominant members (Figure 2.1 c), which is congruent 

with results from previous root-associated microbiome studies (Singer et al., 2019; Wagner et al., 

2016; Edwards et al., 2015; Lundberg et al., 2012). Only three relatively low abundance phyla 

displayed significant differences between location-ecotype: WPS-2 and Entotheonellaeota in the 

rhizosphere and Rokubacteria in the root (Figure A3). Conversely, microbiota from the two 

locations were much more divergent at the ASV level and we identified a total of 735 unique ASVs 

which were differentially abundant by compartment (440 in soil, 251 in rhizosphere, and 401 in 

roots; Figure 2.1 d).  

We next analyzed microbiota acquired under experimental conditions in the glasshouse by 

sampling roots and rhizosphere from the parents of the RIL population, along with soil from 

unplanted pots. PCoA revealed that inoculum and compartment significantly impacted microbiota 

composition (Figure 2.2 a). Alpha diversity was also impacted by compartment and inoculum: in 

general, we found that plants inoculated with native soil slurries hosted microbiota with greater 

Shannon diversity compared to plants with heat-killed, mock microbiota (Figure 2.2 b). As 

expected, when comparing the effect of inoculum source within heat killed or native conditions, 

we found that microbial communities of plants and soil with heat-killed inocula were significantly 

more similar than if the inoculum was unsterilized and this effect was consistent independent of 

compartment (Figure A4). Similar trends were observed at the phylum level: there were many 

more differentially abundant phyla by soil source when the inoculum was intact rather than heat 
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treated (Figure 2.2 c, d). When identifying ASVs whose abundance was impacted by soil 

inoculation source, many more ASVs were differentially abundant in comparisons between native 

soil inoculum compared to the heat killed versions (Figure 2.2 e). These results indicate that heat 

sterilization of inoculum dampens the effect of soil source on compositions of the resulting 

microbiome and that plants inoculated with native microbiota host significantly different microbial 

communities in the rhizosphere and roots. 

When analyzed together, we found that glasshouse and field microbiomes formed distinct 

communities, yet were still identifiable by soil source (Figure A5a). These patterns were evident 

at the phylum level. For example, when comparing the relative abundance of phyla between field 

microbiota and treated glasshouse microbiota, Acidobacteria, Actinobacteria, and Patescibacteria 

were significantly more abundant under field conditions while Bacteroidetes, Firmicutes, 

Gemmatimonadetes, and Gammaproteobacteria were more abundant under glasshouse conditions 

(linear model on log transformed relative abundances for each phylum, adjusted P value < 0.05, 

Figure A5b). Taken together these results indicate that while the microbiomes resulting from 

inoculations of field soil could not fully recapitulate microbiota under field conditions, the 

experimental treatments retained significant differences in bacterial community structure between 

Austin and Corpus inoculations. Furthermore, our mock inoculated treatments (heat sterilized 

microbiota) resulted in bacterial communities with minimal differences compared to plants 

inoculated with live microbiota. 

Effect of microbiome on parental traits 

Differences in traits among parents were driven by plant ecotype (genotype), environment 

and genotype by environment interactions (GxE). Parental ecotypes differed in shoot and root traits 
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across all treatments. For example, FIL2 produced 1.64-fold more shoot biomass (P<0.0001), 1.98-

fold more root biomass (P<0.0001), 1.46-fold higher RTD (P<0.0001) and 1.80-fold lower SRL 

(P<0.0001) relative to HAL2 (Figure 2.3 a, d, e; Table A6; Table A7). These results mirrored 

earlier descriptive studies of P. hallii ecotypes (Palacio Meija et al., 2021; Lowry et al., 2014b), 

including earlier studies of the shoot and root traits studied here (Khasanova et al., 2019). 

Treatment also had a significant effect on plant traits (Figure 2.3 a-c, e, f; Table A6, Table A7). 

For example, plants grown in inoculated soils had greater shoot biomass (1.35-fold more biomass 

in CI and 1.17-fold more in AI treatments relative to the MI treatment (P=0.027)), lower lateral 

root length (1.2-fold less in CI and 1.53-fold less in AI relative to MI (P=0.046)), and showed 

changes in SLA dependent upon treatment (1.05-fold increase in AI and 1.06-decrease in CI 

relative to MI (P=0.039)). Importantly, we also identified several ecotype x microbiome 

interactions (Figure 2.3 d-f; Table A6, Table A7). For example, SRL of FIL2 decreased 1.17-fold 

under AI and 1.33-fold under CI relative to MI soil, while HAL2 showed 1.1-fold increase in SRL 

under AI and no change under CI relative to MI (P=0.039; Figure 2.3 d; Table A6, Table A7). 

RTD of FIL2 increased 1.1-fold under AI and 1.36-fold under CI relative to MI, while HAL2 

showed 1.1-fold decrease under AI and 1.1-fold increase under CI relative to MI (P=0.046; Figure 

2.3 e; Table A6, Table A7). In total, seven traits showed ecotype differences between parental 

lines, five traits were affected by microbial treatment and three traits had significant ecotype x 

microbiome interaction (Figure 2.3; Table A6, Table A7). 

The impact of the microbiome on the quantitative genetic architecture of our measured 

traits was evaluated by comparing “base” and “GxE” linear mixed models. In 11 out of 12 cases, 

the GxE models were favored by AIC and log likelihood ratio tests (Table A8). Broad-sense 
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heritability was low for most traits (ranging from 0.01 to 0.18; Table A6). Overall, we document 

considerable evidence that the microbiome modifies the expression of quantitative genetic 

variation in P. hallii. 

QTL across and between microbial treatments 

A total of 32 QTL were identified for 12 traits across all environments (Figure 2.4; Table 

A9, Table A10).  The additive effects of each QTL explained from 2.9 - 22% of trait variation 

(Table A9). Of these 32 QTL, six QTL occupied unique positions in the genome. The confidence 

intervals of all other QTL overlapped or colocalized with at least one other QTL. Eight traits (shoot 

biomass, tiller number, SRL, lateral root length, root diameter, root number, root biomass and total 

root length) had 16 QTL with overlapping confidence intervals grouped into two genomic hotspots 

on chromosome three (Figure 2.4; Table A9). The hotspot located on 3@4.3 (chromosome number 

@ centimorgan) showed an additive effect in the direction of parental ecotype divergence, while 

the other hotspot located on 3@58 showed an additive effect opposite the direction of parental 

divergence. Pleiotropic genes or linked genes with correlated effects may drive these genomic 

hotspots of correlated traits. We also found significant epistatic interaction between these two 

hotspots. Individuals possessing the hallii allele for the QTL on 3@58, masked the effects of their 

interactive QTL on 3@4.3 (Table A9).  

We detected 11 ecotype x microbiome QTL for 10 traits (Figure 2.5 a-k; Table A9, Table 

A10). Each of these QTL were analyzed to directly test in which treatment they were present, and 

to estimate the direction and magnitude of their effects (Figure 2.5 a-k; Table 2.2, Table A11). In 

the MI treatment, QTL for shoot biomass, root biomass and root number were detected with the 

hallii allele contributing to a higher trait value (Figure 2.5 a, i, j). In the CI treatment, QTL for 
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RMR and SRL were detected with the filipes allele contributing to a higher trait value (Figure 5b, 

c). In the AI treatment, QTL for tiller number, root number, root diameter, lateral root length, shoot 

biomass, root biomass, root length and first order root length had allelic effects with the hallii 

allele contributing to a higher value for all traits except root diameter (Figure 2.5 d-k). Of these 

QTL, four have overlapping confidence intervals and are grouped into a hotspot on chromosome 

seven and three are grouped together on chromosome nine (Figure 2.5 e-k; Table 2.2, Table A11). 

Two of the three QTL present on chromosome nine were also detected in the MI treatment (Figure 

2.5 i, j; Table 2.2, Table A11). Epistatic interactions between two QTL for root diameter (chr 

1@68 and 2@78.8) were present only in AI and CI (Figure 2.6 a-c, Table 2.2, Table A11) and 

individuals possessing genotypes at the two loci from the same parent (recovering the ecotypic 

configuration) produced traits with the smaller magnitude (Figure 2.6 b, c). 

DISCUSSION 

There is growing appreciation for the important and often complex interactions that exist 

between plants and their associated microbial communities. Exploring the genetic architecture of 

plant trait-microbiome interactions is an important step in determining if these interactions may 

play a role in local adaptation and evolution. Here, we conducted a QTL study with a P. hallii RIL 

mapping population in soils inoculated with microbiomes from native P. hallii habitats to observe 

the impact of microbiomes on plant traits and genetic architecture. We found that the microbiota 

in the natural habitat of the RIL parental lines are distinct and served as suitable experimental 

treatments to quantify the effects of different microbiota on host-plant traits. In this study, soils 

inoculated with native microbiomes drive trait plasticity in both, above and below ground traits, 

and these effects were both general and location specific with respect to the origin of the microbial 
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inoculum. We found QTL that displayed GxE for ten of twelve measured traits, suggesting 

widespread genetic variation in trait responses to plant-microbiome interaction. We also identified 

epistatically interacting QTL for root diameter present only in microbiomes from native locations, 

indicating that hybridization may disrupt genes and their interaction with microbes through root 

characteristics. Overall, our study suggests that plant-microbe interactions play an important role 

in plant genetic architecture and impact plant functional traits.  

It is clear that host traits are impacted by microbial communities. Although soil microbes 

interact directly with the root system, they can induce changes that affect entire plant. The presence 

of microbiomes from native soil inoculum induced trait plasticity in above and belowground traits 

for the parental lines that was general and location specific (Figure 2.3). For example, traits linked 

to resource acquisition such as specific leaf area (SLA) and specific root length (SRL) were altered 

in responses to the presence of microbiomes. High SLA correlates with high nitrogen contents and 

low structural investments in leaves, which yields high rates of photosynthesis to promote rapid 

growth (Cornelissen et al., 2003; Reich et al., 1997), a trait necessary in xeric environments with 

short seasons terminated by drought (Balachowski et al., 2016). This is consistent with high SRL, 

where plants produce longer and thinner roots with less structural input to search for water 

(Balachowski et al., 2016). SLA showed a plastic response to location specific native 

microbiomes: SLA was increased for plants with the AI microbiome and decreased for plants with 

the CI microbiome. This pattern is consistent with the directionality of ecotypic divergence. 

Moreover, SRL showed GxE in response to microbiomes that was also concordant with the 

direction of parental trait divergence: with xeric adapted hallii showing higher SRL in the presence 

of native microbiomes while mesic adapted filipes showed lower SRL.  
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We detected two groups of QTL interacting with native microbiomes. The first included 

QTL which responded to native soil inoculums regardless of their origin and a second where QTL 

interacted with native soil inoculum from only one site. For example, QTL for root number 8@33.1 

was present only in the MI treatment and not detected in native treatments, suggesting that native 

microbiomes reduce variation for this trait (Figure 2.5 a). This could be explained by microbial 

taxa which flourished under MI treatment given that the niche competition was relaxed. QTL for 

SRL (4@19.1) and RMR (3@74.9) showed location specific GxE (Figure 2.5 b, c); plants with 

the filipes allele in the CI treatment resulted in a higher trait value. This is opposite to the direction 

of SRL trait divergence in parental ecotypes and to their response to the CI treatment. Eight QTLs 

showed location specific GxE to the AI treatment (Figure 2.5 d-k). Our previous study conducted 

at the panicle emergence stage suggested that xeric hallii employs a fast-acquisitive strategy for 

drought escape by acquiring nutrients rapidly and flowering quickly to enter dormancy before the 

onset of summer drought (Khasanova et al., 2019). This is consistent with current study conducted 

at the tillering stage where plants with the hallii allele in interaction with the AI microbiome 

produced more root and shoot biomass. This is accomplished by the increased production of tillers 

with roots to support them.  Root systems of plants with these hallii QTL hotspots produced longer 

and thinner roots, putatively allowing increased foraging and resource acquisition. Four of these 

QTL present in interaction with AI clustered in the genomic “hotspot” on chromosome seven and 

three QTL clustered on chromosome nine. This common genetic control of ecotype differentiating 

traits involving above and below ground traits suggests that these factors interact with the AI 

microbiome in tandem, potentially contributing to ecotype divergence and local adaptation. The 

effects of QTL with GxE are small in our study, possibly due to the fact that the data was collected 
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at the early seedling stage. Future studies at later life stages may shed the light on whether these 

impacts are amplified over time.  

We also identified epistatically interacting QTL for root diameter present only in 

treatments with microbiomes from native locations (Figure 2.6). When lines are homozygous for 

either hallii or filipes alleles at both of the interacting QTL, individuals produce smaller diameter 

roots. In contrast, individuals with mismatched genotypes (HH/FF) at the pair of interacting loci 

develop larger diameter roots. This indicates that hybridization may disrupt genes and their 

interaction with microbes through root characteristics. Epistatic interactions involving effector 

host-sensitivity systems are not uncommon in plant-microbiome interactions (Jeuken et al., 2009). 

It may be that mismatched sensing of pathogens and disrupted downstream immune system 

responses underlie our discovery. However, we observed no obvious damage or necrosis in our 

roots and the observed epistatic QTL effects did not translate to decreases in aboveground biomass. 

Additional studies, perhaps based on fine-mapping or transcriptomic experiments, will be needed 

to further evaluate links between epistasis-microbiome interactions and root developmental 

responses. 

A strength of our approach to treatment inoculation was prioritizing community effects, as 

opposed to the effect of single bacterial inoculants. However, given the exciting experimental 

advances of isolated bacterial strains in synthetic communities, targeted communities using locally 

adapted bacterial strains or combinatorics (Paredes, 2018) could be used to address how the 

presence / absence of particular microbial members impact plant phenotypes. In addition, it is 

intriguing to speculate on the type of plant genes and molecular mechanisms underlying the host 

x microbiome QTL detected in our study. It could be that these QTL harbor genes that interact 
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only indirectly with the host microbiome, perhaps through abundance of soil nutrients as modified 

by microbes. For example, certain soil microbes in our inoculates may alter the abundance or 

availability of soil nutrients with subsequent consequences for genetic variation in root or shoot 

growth. It may be that QTL are related to root exudates or metabolites released that may recruit or 

amplify key beneficial microbes with subsequent impacts on available nutrients. There are many 

examples of soil resource abundances of key nutrients impacting plant growth, including genes 

that demonstrated plastic responses to nutrient availability (Brumbarova & Ivanov, 2019). 

Alternatively, it may be that the genes within QTL intervals are involved in more direct interactions 

with microbes. For example, recent studies have shown that phytohormones, microRNAs and 

secreted peptides are known to recruit and foster the establishment of symbiotic arbuscular 

mycorrhizal fungi (Muller & Harrison, 2019).  Moreover, Finkel et al. (2020) recently discovered 

an important role of the bacterial genus Variovorax in plant root growth by modification of auxin 

concentration gradients in the rhizosphere, which subsequently modulates other microbiota 

members. Plants also deploy extensive immune systems to ward off pathogens and control access 

of microbes to endophytic compartments (Chen et al., 2020) and some of our interactions may be 

related to ecotypic specific resistance or susceptibility. Our observation of an epistatic interaction 

is especially interesting as they may represent sensing and signaling pathways that are triggered or 

directed by microbes. In our case, epistatic interactions may also represent hybrid incompatibilities 

between ecotypes that are driven by the microbial community. Given the broad confidence 

intervals of our genome wide scans, we resist the temptation to consider and discuss specific 

candidate genes.  Nevertheless, we emphasize that our approach leads to a direct pathway of fine-
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mapping and the identification and cloning of new genes involved in plant-microbiome 

interactions.  

Our results show that microbiomes impact the influence of genetic architecture on plant 

traits in two locally adapted ecotypes of Panicum hallii. These effects were broadly divided into 

two categories, effects dependent upon the presence of inoculated microbiomes in general and 

effects dependent upon microbiomes originating from a specific location of origin. This pattern 

sheds light on the role biotic factors may play in ecotype divergence and raises questions about 

how the modification of plant genetic architecture by microbes leads to local adaptation and 

ultimately speciation. Further work in this system has several pathways forward. Broad 

characterization of microbial communities can be used to determine how genetic variation shapes 

microbial communities as well as individual microbes. For example, this approach may allow for 

differentiating the effects that are mediated by plant-fungal interactions vs. plant-bacterial 

interactions. Once more is known about specific members of the microbial community that play 

large roles in impacting plant traits, reductionist approaches including targeted inoculations of 

bacterial / fungal strains and reverse genetic approaches could be used to identify specific 

mechanisms underlying plant-microbe interactions.  
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TABLES 

Table 2.1. PERMANOVA Partitioning and Analysis of 16S community composition of native populations of P. hallii ecotypes and 

experimental plants grown in glasshouse. 

Collected Effect Df SS MS F.Model R2 P-Value 

native 

environment 
Location/Ecotype 1 1.893 1.893 14.066 0.216 0.001*** 

Compartment 2 1.351 0.677 5.029 0.154 0.001*** 

Location/Ecotype x Compartment 2 0.395 0.197 1.469 0.045 0.079 

glasshouse Ecotype 1 0.105 0.105 1.655 0.004 0.085 

Treatment 3 7.835 2.611 40.960 0.370 0.001*** 

Compartment 2 4.313 2.156 33.824 0.203 0.001*** 

Ecotype x Treatment 3 0.241 0.080 1.261 0.011 0.151 

Ecotype x Compartment 2 0.095 0.047 0.750 0.004 0.804 

Ecotype x Compartment 6 1.209 0.201 3.161 0.057 0.001*** 

Ecotype x Treatment x Compartment 6 0.231 0.038 0.605 0.010 0.999 
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Table 2.2. Main and epistatic effects of GxE QTL for the Panicum hallii RIL population. 

Trait TRT Chr 
 Peak 

(cM) 

1.5 Lod 

Inter-val 
LOD 

% 

var 
Effect SE 

Donor of 

Positive 

allele 

GxE 

(Mixed 

Model) 

RMR CI 3 74.1 68-83 3.6 5.3 -0.02 0.006 filipes CI 

SRL CI 4 19.1 16-32 2.7 3.5 -1.12 0.316 filipes CI 

Root Number MI 8 33.1 16-39 2.8 3.8 0.03 0.008 hallii MI 

Tiller number AI 7 17 2-22 4.4 6.5 0.06 0.013 hallii AI 

Root Diameter AI 7 2.7 0-48 3.9 4.8 -0.01 0.003 filipes AI 

Root Number AI  7 0.3 0-10 3.5 5.4 0.04 0.011 hallii AI 

Lateral Root Length AI *7 3.4 0-63 2.6 4.1 0.08 0.022 hallii AI 

Shoot Biomass AI *9 3.9 0-10 2.5 3.9 0.06 0.017 hallii AI 

Root Biomass AI 9 3.9 0-8 3.2 4.5 0.07 0.018 hallii AI, MI 

Root Length AI 9 3.9 0-12 2.8 4.1 135.40 37.720 hallii AI 

1st Order Root 

Length 
AI 9 25.6 14-31 4 6.2 1.09 0.250 hallii 

AI 

Root Diameter  CI Epi1@68*2@79.5     5.1 5.8 -0.02 0.003   AI, CI 

* indicates suggestive QTL detected with alpha=0.1; GxE (Mixed Model – Treatment x Marker interactions using PROC mixed in 

SAS): indicates treatment in which QTL effect is significant; TRT – Detected in treatment; Chr – Chromosome; SE – Standard 

Error. 
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FIGURES 

 

Figure 2.1. Parental genotypes grown under natural conditions host distinct microbiota. Panels: 

(a), principal coordinate graph based on Bray-Curtis dissimilarities; (b), Shannon 

diversity of samples from native parental habitats; (c), phylum level distribution of 

microbiota from natural habitats; (d), number of ASVs with differential abundance 

between parental habitats broken down by phylum where bars to the left indicate 

number of ASVs enriched in the Austin habitat, while bars to the right indicate 

number of ASVs enriched in the Corpus habitat. Color legends in b and d are 

consistent with panel a. 
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Figure 2.2. Microbial treatments differ significantly in community composition for plants growing in the glasshouse. Panels: (a), 

principal coordinate graph based on Bray-Curtis dissimilarities; (b), Shannon diversity of glasshouse samples; (c), 

phylum level distribution for microbiota from glasshouse samples; (d), differentially abundant phyla between soil 

treatments for mock and native microbiota where black boxes around tiles indicate a significant difference (adjusted P < 

0.05) between soil treatments and the red color indicates a log fold change favoring the AI microbiota while blue favors 

CI microbiota; (e), number of differentially abundant ASVs when comparing AI vs. CI soil inoculum for both native and 

mock treatments where bars to the left indicate the comparison for the mock treatments while bars to the right indicate 

native treatments. The color scheme in panels b and e are consistent with panel a. 
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Figure 2.3. Effect of plant ecotype (E) and microbial treatment (TRT) and their interaction 

(E*TRT) on plant functional traits. Traits: (a), shoot biomass; (b), specific leaf area; 

(c), lateral root length; (d), specific root length; (e), root tissue density; (f), first 

order root length (data are means +S.E.). 
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Figure 2.4. Genetic map of the Panicum hallii RIL population with locations of significant trait QTL by microbial treatment. 
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Figure 2.5. Tests of effect slices for significant Treatment x Marker interactions for traits in the 

full model analysis of QTL x treatment interactions using PROC mixed in SAS with 

QTL modeled on the marker nearest the QTL peak. Panels: (a), root number at 

8@33.1; (b), root mass ratio at 3@74.9; (c), specific root length at 4@19.1; (d), 

first order root length at 9@25.6; (e), lateral root length at 7@3.4; (f), tiller number 

at 7@17.0; (g), root diameter at 7@2.7; (h), root number at 7@0.3; (i), shoot 

biomass at 9@3.9; (j), root biomass at 9@3.9; (k), root length at 9@3.9. 
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Figure 2.6. Pairwise epistatic QTL in the P. hallii RIL population detected only under Austin 

Inoculated and Corpus Inoculated treatments, with plotted points indicating two-

locus genotype means ± 1SE for the two loci impacting root diameter. Root 

diameter QTL interactions for treatments: (a) Mock Inoculated (MI); (b), Austin 

Inoculated (AI); (c), Corpus Inoculated (CI). 



 54 

Chapter 3:  Quantitative genetics of host plant genome shape the root 

microbiome in a perennial grass 

ABSTRACT 

• Plants shape their root microbiomes in ways that can impact plant health, growth 

and local adaptation. Studying the impact of plant genetics on microbial communities from distinct 

native locations can show how plants interact with specific microbes and the extent to which host 

genetics affect overall microbial community diversity.  

• We utilized a recombinant inbred line (RIL) mapping population produced by 

crossing upland and lowland ecotypes of Panicum hallii to explore how plant genetic architecture 

impacts root microbial communities. We used 16s rRNA sequencing to evaluated root microbial 

community composition of RILs grown in soils inoculated with microbial communities derived 

from native habitats and mock inoculated soils.  

• We show that habitat of origin for microbial inocula changes the heritability for 

individual microbes (ASVs) and that root microbial community structure is distinct between 

treatments. We also found different plant genomic regions associated with abundance of individual 

microbes and community level structure across treatments. 

• These results highlight the role of host genetics in shaping microbial community 

composition. 
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INTRODUCTION 

Plants host a wide range of microbial communities in association with their root and shoot 

systems. These relationships are complex and multidirectional in their nature, and dependent upon 

the highly regulated expression of both plant and microbial genes. Whereas microbial communities 

associated with plant shoots are often dominated by a small number of bacterial clades suited to 

the arid and rapidly changing habitats of leaves, communities associated with plant roots can have 

larger degrees of diversity (Wagner et al., 2016; Toju et al., 2019). Soil contains some of the most 

complex and heterogeneous microbial habitats on the planet and plant root associated microbiomes 

are similarly complex as well. The root rhizosphere microbiota (microbes living in the soil region 

surrounding plant roots), the root rhizoplane microbiota (microbes living on the root surface that 

is in contact with the soil) and the root endosphere microbiota (microbes living within plant root 

tissue) are also distinct both from one another and the surrounding soil communities (Lundberg et 

al., 2012; Lang et al., 2019). Soil microbes aid plants by fixing atmospheric nitrogen, modulating 

plant hormonal signals, increasing the availability of soil borne nutrients and preventing plant 

disease by out-competing or deterring pathogenic microorganisms (Jacoby et al., 2017). 

Understanding the genetics behind how plants actively shape microbial diversity can be exploited 

in ways that can improve plant health, productivity and growth, aid in the understanding and 

prevention of plant diseases, enhance crop yields, and more broadly shed light on the impact of 

microbes on specific plant traits in both artificial and natural environments. The degree to which 

microbiomes contribute to plant health is becoming more widely recognized (Trivedi et al., 2020) 

and breeders in many crop systems are seeing gains by exploiting beneficial microbes (Bakker et 

al., 2012; Finkel et al., 2017). 
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There is increasing evidence that host genetics influence and interact with the microbiome 

and that this impact on microbial community structure varies by species and habitat. Plant 

microbiome studies have shown that both endophytic and epiphytic beneficial microbes 

(mutualists) can be attracted and detrimental microbes (pathogens) can be suppressed by plants 

(Andersen et al., 2018; Hartman et al., 2009; Raaijmakers et al., 2009). Many other microbes 

interacting with plants may be commensals presenting little cost or benefit to plants (Hartman & 

Tringe, 2019). For instance, the rhizosphere communities of two locally adapted Mimulus guttatus 

ecotypes were shown to be genetically influenced (Bowsher et al., 2020) and long-term persistence 

of host mediated microbiomes after transplantation to non-native horticultural soils has been 

observed in Panicum virgatum (Singer et al., 2019). Many of the studies conducted thus far on 

how plant genetics can shape root microbiomes have largely been done on few individuals, specific 

mutants, or in highly artificial settings involving synthetic microbial communities consisting of 

only a few organisms. The emergence of affordable high throughput sequencing is now allowing 

the broad characterization of entire plant microbiomes. Specifically, this allows detailed 

characterization of the many bacterial members of the microbiome on large numbers of 

individuals. Individual bacterial lineages can be identified by sequencing of the 16S rRNA gene 

and the amplicon sequence variants (ASVs) identified from these sequences can be used to identify 

specific bacteria. When these sequences are compared to a reference database, the bacterial 

taxonomic classification of each variant can be assigned and their abundance quantified by 

counting the occurrence of particular ASV reads. Combining these tools with quantitative genetic 

approaches to study large populations is a powerful approach to more effectively understand the 

scope of interactions between plant genetics and microbiomes. 
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Quantitative trait loci (QTL) mapping is a test for association between variation in plant 

genomes and variation in phenotypic traits. Given that QTL mapping only requires genotype and 

phenotype data across groups of individuals, and that root microbial community composition is 

effectively an extended plant phenotype of the plant, we can conduct QTL studies on bacterial 

counts of root microbes (Bergelson et al., 2019). In the root microbiome of any particular 

individual plant, each individual ASV can be present or absent; and if present, the abundance of 

each ASV can vary from plant to plant. QTL mapping provides a direct way to assess the genetic 

architecture that underlies the interaction between plant genes and microbial community 

composition and structure. Heritability is also measure of the amount of phenotypic variation 

present in a population that is due to genetics in contrast to other factors such as chance or the 

environment. Heritability is classified into two categories: broad-sense heritability (H2), which 

estimates contributions to the phenotype from all genetic sources; and narrow-sense heritability 

(h2), which estimates only the contributions that are due to additive genetic effects. Sets of 

genome-wide markers can be used to effectively estimate heritability among individuals (Wu et 

al., 2017). Heritability values range from 0 to 1, with 0 indicating no genetic control and 1 

indicating complete genetic control of a given phenotype. Given the large amount of information 

about the presence of individual microbes and community level structure that can be extracted 

from microbiome DNA sequencing, these approaches can help to unravel the relationships 

between host genotype and microbiome community structure. 

 In this study, we examine plant genome – microbiome relationships in Panicum hallii, a 

perennial bunch grass native to North American. Its range covers a spread of diverse climates and 

habitats. P. hallii occurs naturally as two ecotypes that are classified as separate varieties: a xeric 
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upland ecotype, P. hallii var. hallii (hereafter referred to as hallii) and a mesic lowland ecotype, 

P. hallii var. filipes (hereafter referred to as filipes). Here, we obtain soil from the native 

environments of P. hallii ecotypes to serve as a source of microbial inoculum, creating treatments 

that contain microbes derived from the natural environment of each P. hallii ecotype. We blended 

these native microbiome inocula in both their live and heat killed forms with heat treated 

greenhouse soil to create two living native and two heat killed or mock soil treatments. To obtain 

sequences of root bacterial communities, we sampled the root systems of 293 recombinant inbred 

lines (RILs) produced from a cross between var. hallii and var. filipes grown under these four 

microbial inoculations. Our primary goals in this study are to (i) identify to what extent plant 

genetics affect overall microbial community diversity and the presence and abundance of 

individual bacteria, and (ii) to determine if these impacts are controlled by few or many genetic 

loci. 

MATERIALS AND METHODS 

We collected soil for inoculum from the native locations of the parental ecotypes (Lady 

Bird Johnson Wildflower Center in Austin, TX for var. hallii and Corpus Christi Botanical Garden, 

in Corpus Christi, TX for var. filipes). To prepare treatment soils (Inoculated), we mixed 1% by 

volume of native soil with a twice autoclaved horticultural soil mix of compost, decomposed 

granite and vermiculite (Thunder Dirt, Geo Growers, Austin, TX). To prepare control soils (Mock 

Inoculated), we mixed 1% by volume of twice autoclaved native soil with twice autoclaved 

horticultural soil mix. We used a cement mixer to thoroughly combine all soils and divided each 

treatment between two 400-liter covered trays and left them to incubate for two weeks indoors. 

We prepared four treatments in total: Austin Inoculated (AI), Corpus Inoculated (CI), Mock Austin 
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inoculated (MAI) and Mock Corpus Inoculated (MCI). After incubation, we transferred soil into 

950 ml 3" x 8" Mini-Treepots (Stuewe and Sons, Tangent, OR) lined with sterile plastic bags 

perforated at the bottom for water drainage. We then randomized all pots into 20 cell racks and 

placed them in the greenhouse. We allowed pots to acclimate to greenhouse conditions for two 

weeks, and then transplanted seedlings into the pots. Full details of the experimental design can be 

found in Khasanova et al. (in prep/chapter 2). 

For this study, we used a population of recombinant inbred lines derived from a cross 

between var. hallii and var. filipes. The development of this population is described in Khasanova 

et al., 2019. We sterilized seeds of both parents and 293 F7 RILs by treatment with 50% bleach 

followed by a rinse with sterile water, a rinse with 30% ethanol, and 5 additional rinses with sterile 

water. We then removed the seed coat by scarification with sandpaper, and placed seeds in petri 

dishes filed with wet sterilized sand. We sealed the petri dishes with parafilm and placed them on 

a greenhouse bench at the University of Texas at Austin in August 2018 (16-h days at 500 μE m 

−2 s −1, 28°C; 8-h nights at 24°C), rotating dishes daily to normalize growth. After five days, we 

transferred germinated seedlings over a three-day period to the prepared treatment plots and 

irrigated them from above with UV sterilized top water for the course of the 6-week experiment. 

We harvested plants at the tillering stage before panicle emergence over a 5-day period. During 

the harvest, we cleaned all soil particles from roots by affixing each plant to a clamping stand by 

the shoot base and spraying them with UV-sterilized water. We then separated the roots from the 

shoots just above the crown nodes and placed the intact root systems into 50 ml tubes filled with 

90% ethanol and stored them at 4°C for future processing. After root phenotypes were measured, 

we aligned all roots vertically and removed a 1 cm section of the entire root system from the 
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midpoint and placed the cut sections into Eppendorf tubes. Tubes were stored at -80°C for until 

DNA extraction and 16S PCR amplification to determine bacterial root microbiota composition, 

including the root endosphere and the root rhizoplane (surface). 

Microbial DNA extraction and 16S rRNA Sequencing and Sequence Analysis 

We performed DNA extraction with a non-commercial low-cost soil DNA extraction 

method (Bollmann-Giola et al., 2020). We used the primer pair 515F-806R to amplify16S 

ribosomal RNA regions, and then sequenced barcoded samples on the Illumina novaseq platform. 

We used the R software package to perform microbial sequence analysis (R Core Team, 2020) and 

Cutadapt to remove adapter sequencing and primer binding sites (Martin, 2011). We then used 

DATA2 to infer amplicon sequence variants (ASVs), and de-chimerized them using the 

“consensus” method in DADA2 (Callahan et al., 2016). We retained ASVs 250-256 bp length for 

future analysis. We used the assignTaxonomy() function in DADA2 with Silva reference database 

(version 132) to assign taxonomic classification (Quast et al., 2013) and discarded ASVs assigned 

to mitochondrial and chloroplast lineages. The average number of reads per sample was 227,201 

and we discarded all samples with coverage less than 10000 reads. Out of the resulting total of 

582,831 ASVs, we removed all ASVs that were present in less than 5% of all samples, resulting 

in 4176 ASVs that were present in one or more treatments for use in the following analysis.  

The resulting ASV data was corrected for batch effects with ComBat_seq (Zhang et al., 

2020) by first correcting for the incubating tray effect within each treatment, and then for DNA 

extraction and PCR amplification plate effects across treatments by specifying treatments as 

biological covariates to preserve signal in the adjusted data. In order to account for differences in 

sequencing depth between samples, we normalized adjusted raw counts by dividing each ASV in 
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each sample by the number of reads and multiplying by 1000 (to place all counts in per mille 

scale). We estimated alpha diversity with Shannon entropy from the diversity() function in the 

package Vegan. We estimated Beta diversity by using the capscale() function in the package Vegan 

to perform principal coordinate analyses (PCoA) with Bray Curtis dissimilarities on log2 

transformed abundances (Oksanen et al., 2020). We also conducted principal coordinate analyses 

on all ASVs within each treatment to generate multi-dimensional scales (MDS) for future QTL 

mapping. To create prevalence-abundance curves, we calculated abundance for each ASV as the 

average of normalized counts across all samples and prevalence as the ratio of the number of 

samples where each ASV was present divided by the number of samples.  

In preparation for QTL mapping, we filtered all ASVs within each treatment to those that 

were present in ≥ 90% of sampled lines to generate a “core” microbiome set (Fig S1a, b). This 

core microbiome contained 160 unique ASVs in AI, 166 in MAI; 201 in CI; 189 in MCI—totaling 

306 unique ASVs across all treatments. To more broadly explore the microbial community, we 

then filtered the data to generate an “extended” set of ASVs that were present in ≥ 40% of all lines 

in each treatment; resulting in 614 unique ASVs in MCI; 946 ASVs in CI; 674 ASVs in AI; 602 

ASVs in MAI—totaling 1269 unique ASVs across treatments (Fig S1a, c). ASV’s with prevalence 

values below 40% were insufficiently present to reliably conduct QTL mapping.  

We used the bestNormalize package in R to perform normalization of the count data 

(Peterson & Cavanaugh, 2020) for all ASVs. ASVs with high prevalence were normally 

distributed. ASV’s with lower prevalence exhibited a count distribution with a spike corresponding 

to the zero counts observed in a fraction of lines, following by a relatively normal distribution of 

counts. The absence of ASVs in any particular RIL or environment could be due to true absence, 
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sampling error related to sequencing depth, or possibly biological causes related to plant genotype. 

We decided to retain these zero values in our analysis to account for the possibility that they are 

biological in nature. We conducted QTL mapping on normalized ASV count values to detect QTL 

present in the AI, CI, MCI, and MAI treatments separately by using by using the R/qtl package 

(Broman & Sen, 2009). We used calc.genoprob with step=2 and map.function="kosambi" to 

calculate genotype probabilities every 2 cM. We used the “normal” model on core ASVs where 

count phenotypes were normally distributed. We also conducted QTL mapping on first 5 MDS 

values generated by PCoA that were normally distributed and on alpha diversity calculated as 

Shannon entropy. We used the scanone and scantwo functions with 1000 permutations followed 

by a stepwise QTL function to calculate penalties for main effects and interactions for each trait, 

and to perform a forward-backward search and account for epistasis with a maximum of 3 QTL. 

We set threshold values for type 1 error rates at alpha = 0.05 based on permutation. We also 

lowered our threshold to alpha = 0.1 to detect suggestive QTL and the 1.5 LOD drop interval of 

QTL was calculated with the qtlStats function. Overall, we performed more than 306 genomewide 

scans for ASV abundance. The reported p-values for genomes scans were corrected for multiple 

testing across SNPs (but not across taxa). We used the package Rqtl2 function est_herit () to 

calculated narrow sense heritability for each ASV abundance with a linear mixed model for all 

ASVs in the extended microbiome sets (Broman et al., 2018). 

We used the extended microbiome to look for composite signal as measured by LOD scores 

at markers across ASVs. First, we used the scanone function with “np” (non-parametric model, 

given that many of the count phenotypes were not normally distributed) to calculate genome wide 

LOD scores. This approach converts count data into ranks and performs a generalized Wilcoxen 
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rank-sum type test (Kruglyak & Lander, 1995). Then, for each marker and pseudomarker, we 

summed LOD scores across all ASVs to get a new cumulative LOD score for a hotspot test. To 

calculate a significance threshold, we shuffled the LOD scores across markers within each ASV 

for all ASVs, summed LOD scores and retained the largest cumulative LOD score for each 

permutation. We performed this 1000 times to get an empirical distribution of null cumulative 

LOD scores, and set alpha = 0.05 for the permutation threshold. 

RESULTS 

We used ASVs derived from 16S rRNA amplicon sequencing to describe the root 

communities in our experimental inoculations. Microbiota varied significantly in alpha diversity 

between the treatments (F=84.26, P < 0.0001; Figure 3.1 b). Pairwise comparisons of means 

revealed no difference in alpha diversity between mock inoculated treatments (MAI and MCI). 

Alpha diversity in the Austin inoculated treatment (AI) was significantly different from corpus 

inoculated treatment (CI) and MAI, but not from MCI; and CI treatment was significantly different 

from all other treatments (Figure 3.1b). PCoA revealed robust divergence in beta diversity due to 

treatment (Figure 3.1 a) that were verified by Permanova (R2 = 0.23, P < 0.001). 

For the core microbiome, native inoculated treatments had a 0.63-fold increase of unique 

ASVs relative to mock inoculated treatments. Out of 306 ASVs, 72 were unique for CI, 19 for AI, 

20 for MCI and 12 to MAI (Figure A6 b). For the extended microbiome, native inoculated 

treatments had a 3.7-fold increase of unique ASV relative to mock inoculated treatments. Out of 

1269 ASVs 406 were unique to CI, 104 to AI, 54 for MAI and 41 for MCI (Figure A6 c). Estimated 

narrow-sense heritability for the ASVs in the both the core and extended microbiomes ranged from 

0 – 22% (Figure 3.2 a-d). Out of 1269 in the extended microbiome ASVs, 931 ASVs had 0 
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heritability at least in one treatment, and only 52 of these were present in each treatment. Plots 

comparing heritability of the first 60 most heritable ASVs between CI and MCI, and the first 60 

most heritable ASVs between AI and MCI showed that heritability is often changed by the 

inoculation environment (Figure 3.2 e, f). In the core microbiome, bacteria from17 phyla were 

present, with Proteobacteria, Planctomycetes, Bacteriodes and Actinobacteria having the highest 

relative abundance (Figure A7). 

We detected seven QTL in total for beta diversity from multidimensional scaling (MDS) 

from PCoA, with each QTL explaining 4.0 – 10.5 percent of total variation (Figure 3.3, Table 3.1). 

Two QTL for MDS5 for MCI treatment were detected on chromosome three, with the hallii allele 

driving positive effects at one QTL, and the filipes allele driving positive effects at the second 

QTL. Two QTL, one in each native soil inoculated treatment (CI and AI) had overlapping 

confidence intervals on chromosome six, with the hallii allele contributing to higher MDS values. 

In addition, three suggestive QTL (alpha= 0.10) were detected for the AI treatment: two for MDS3 

on chromosomes two and six, with the filipes allele contributing to higher MDS values; and one 

for MDS4 on chromosome five, with the hallii allele contributing to higher MDS values. No QTL 

were detected for alpha diversity. 

We detected a total of 56 QTL for individual ASVs present in the core microbiome across 

all treatments (Figure 3.4, Table 3.2). Nineteen of these QTL were present in the CI treatment, five 

in AI, 18 in MCI and 14 in MAI. Most ASVs had only one detected QTL—except for three ASVs 

that had two QTL—and each QTL explained from 5-10% of variation for the abundance of their 

respective ASV. QTL were detected on all 9 chromosomes, with only 7 QTL occupying unique 

positions. The other 49 had overlapping confidence intervals with at least one other QTL. A few 



 65 

large hotspots were detected. The two largest had twelve and six QTL clustered on chromosomes 

three and four respectively. All of these QTL were from the CI, MAI, MCI treatments and none 

from the AI treatment. The third cluster on chromosome 9 contained 6 QTL, with all treatments 

represented. These QTL represented 9 of the 17 phyla detected in the core microbiome. QTL for 

BRC1, Planctomycetes and Proteobacteria were detected in all four treatments; QTL for 

Acidobacteria, Bacteriodetes, Firmicutes and Gemmatimonadetes were detected in 2-3 treatments; 

and QTL for Chloroflexi and Thaumarchaeota were detected in one treatment (Table 3.2). 

Quantitative genetic analyses of omics data often generate genetic mapping results for 

hundreds to thousands of phenotypes.  A common question is to ask whether there are common 

features of the genetic architecture or genomic regions impacting many phenotypes.  Such genomic 

“hotspots” have been detected for transcript and metabolite abundance but are relatively 

unexplored for microbial communities.  One challenge in studies of hotspots is the statistical 

thresholding of significance – only large effects are detected for most phenotypes.  To aggregate 

information across ASVs, we summed the LOD scores across all ASVs to see if for some markers 

there were many QTL for ASVs that we could not detect due to lack of power from any single 

ASV genomescan. Mapping on the composite signal of LOD sums for each marker across all 

ASVs in the extended microbiome resulted in multiple peaks within each treatment (Figure 5). All 

but one of PCoA MDS QTL overlapped with these composite peaks. Given the small LOD scores 

of detected QTLs in core microbiome, this result suggests that multiple ASVs are clustered in 

hotspot that are not detected in individual QTL analysis, possibly as a result of the detection power.  



 66 

DISCUSSION 

Host genetics can drive root microbiome community assembly and recruitment. Several 

recent studies have shown genetic variation within plant species for attributes of the microbiome 

including the abundance of specific microbes and total microbial community diversity (Bergelson 

et al., 2018; Tabrett & Horton, 2020). Here, we conducted a QTL study using a P. hallii RIL 

mapping population grown in soils inoculated with microbiomes from native P. hallii habitats to 

examine how plant host genetics impact communities of root associated bacteria. Our previous 

work (Khasanova et al., in prep) showed that the microbiota from the natural habitat of the RIL 

parental lines are distinct and thus serve as suitable inoculum for experimental treatments to 

quantify the effects of host genetics on different microbiota. In this greenhouse experiment, we 

found that individual root microbes differ in presence and abundance depending upon the source 

of microbial inoculum and plant genetics. Surprisingly, we found a number of hotspot genomic 

regions that affected overall microbiome community composition.  Moreover, we found that many 

loci are involved in driving changes in abundance of individual ASVs. Overall, our results suggest 

that plant host genetics play a role in shaping root bacterial communities. 

Most studies on the bacterial members of root microbiomes have focused on members of 

the rhizosphere communities and have reported large ranges of diversity, from < 100 to more than 

55,000 operational taxonomic units (Mendes et al., 2013). While the composition and function of 

rhizosphere, rhizoplane and endosphere communities are different, ultimately, the members of the 

endosphere arise from members of the rhizosphere that are either allowed in by the plant or are 

able to infiltrate plant tissues. Here, we found a total of 582,831 ASVs, indicating complex root 

surface and endosphere communities. To more closely look at dominant community members, we 



 67 

removed all ASVs that were present in less than 5% of all samples, resulting in 4176 ASVs used 

in this study. Out of our four treatments, we found the highest alpha diversity in the CI soils, which 

contained inoculum from a mesic environment, followed by AI and mock communities. It has been 

shown in native prairies that soil hydrology drives bacterial diversity, and wetter environments are 

higher in bacterial diversity in native prairies (Griffin et al., 2020). 

We found low levels of heritability across the majority of ASVs. This is consistent with 

other studies that have found low heritability of alpha diversity in maize leaf, in alpha and beta 

diversity in maize rhizosphere, and individual microbes in maize rhizosphere (Wallace at al., 2018; 

Walters et al., 2018; Peiffer et al., 2013). While heritability’s are low in this study, they vary 

considerably between individual ASVs and across the treatments. Single ASVs that are relatively 

heritable in one treatment, can have much lower heritability in another context, or vice versa (Fig 

2e, f). A possible cause of this is overall community structure differences between each treatment 

– it may be that the degree of host control or the abundance of a particular ASV depends on 

ecological aspects of the microbial community. Microbes in general are highly interdependent 

upon other members of the community and individual ASVs may find their prevalence or 

abundance greatly impacted by other members of the community. 

To evaluate the genetic architecture of how host genotype shapes community structure, we 

evaluated metrics of both alpha and beta diversity. Other studies have shown that plants alter their 

root microbiomes in a manner that is host-dependent. It has been found that host genotype drives 

rhizosphere composition in barley (Bulgarelli et al., 2015), differences in alpha diversity in potato 

(Weinert et al., 2011) and variation in beta diversity in maize (Peiffer et al., 2013). For alpha 

diversity, we mapped no QTL for Shannon entropy in any treatments. However, for beta diversity, 
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we mapped QTL on PCoA multi-dimensional scales in the AI, CI and MCI treatments (Figure 

3.4). For the native inoculated treatments, we found a shared QTL on chromosome 6, suggesting 

that this is a general microbiome effect where host genetics interacts with the native microbiomes 

on a community level. We also detected three additional QTL for the AI treatment showing 

location specific microbiome interactions. Two QTL were detected for the MCI treatment in the 

same genomic region of root and shoot phenotypic QTL from our previous work, which is also the 

same genomic region as the large hotspot containing single ASV QTL for the CI and MCI 

treatments.  

 To evaluate how host genetics interacts with specific microbes, we mapped QTL for the 

abundance of individual ASVs that were highly prevalent in the root microbial community. For 

the core microbiome of 306 unique ASVs, we found significantly more QTL for CI, MCI and MAI 

treatments than in the AI treatment. Some QTL for single ASVs occupy unique locations in the 

genome, but we also found evidence of hotspots that control multiple ASVs across different 

treatments, where QTL have overlapping confidence intervals (Figure 3.3). It should be noted, that 

these QTL are only for core microbiome members, that were present in 90% or more of all samples 

in any given treatment. Interestingly, about half of these QTL are for ASVs that were present in 

all four treatments, but QTL for these ASVs were only detected in one of the four treatments. This 

indicates that aspects of community structure or soil habitat impacted by our inoculation treatment 

can play a role in how individual microbes interact with plant genetics. Given that these QTL are 

of small effect, it is possible that we do not have enough power to detect other QTL that do not 

meet threshold.  



 69 

Since differences exist within the communities of every individual plant, some degree of 

beta diversity exists between all samples. While some QTL were detected for metrics of beta 

diversity, this does not account for the many differences of small effect that may exist for 

individual ASVs.  We hypothesis that there could be genomic regions with widespread impacts on 

the microbial community that are too diffuse and complex to easily detect. To examine the 

culmination of these many small genome – microbiome interactions, we decided to sum the LOD 

scores for all ASVs in the extended microbiome set (Figure 5). This approach is similar to testing 

community level interactions and it is still possible that individual loci may control many ASVs 

or that multiple ASVs act in concert. We found that summed LOD scores of all small effect ASVs 

exceeded threshold in the same genomic regions where we detected almost all of the PCoA QTLs 

in the same treatments. This is further evidence that these regions are involved in community 

assembly. This method detected additional regions in addition to the ones that matched our 

previous results, suggesting that there are many ASV QTL we cannot detect with single ASV 

analysis, and that community factors play a role in host genotype – microbiome interactions. 

In this study we examined the genetic architecture of plant root microbiome interactions in 

a Panicum hallii mapping population. The hallii and filipes parents of this population are locally 

adapted to their home xeric and mesic environments respectively. When plant populations diverge 

in response to encountering novel environments, they must adapt to not only abiotic changes, but 

biotic changes as well, such as soil microbiomes. Different microbes play different roles in 

different environments, and what constitutes a beneficial root microbiome in a xeric environment 

may be different than one that would be beneficial in a mesic environment. Thus, as plants diverge 

to inhabit new environments, they may also diverge in the types of microbes they are able to recruit 
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or exclude. We have shown that P. hallii possess variation in the ability to interact with 

microbiomes which may contribute to local adaptation by yielding distinct advantages in 

inhabiting new environments such as the ability to associate with microbes that alleviate drought 

stress or to keep out new pathogens encountered. Future work in this system could add further 

understanding of microbial factors involved in local adaptation. 
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TABLES 

Table 3.1. Main effects of QTL detected on multidimensional scaling (MDS) from PCoA within each treatment. 

Treatment MDS Marker Chromosome LOD % Var Effect SE Donor of 

         Positive allele 

AI MDS3 Chr06_2732462 6@10.9 6.96 10.57 0.328 0.056 hallii 

AI MDS3 *Chr02_55619688 2@115.5 2.76 4.05 -0.13 0.036 filipes 

AI MDS3 *Chr06_427744 6@0.0 2.98 4.39 -0.186 0.049 filipes 

AI MDS4 *Chr05_14001313 5@58.4 2.62 4.23 0.155 0.044 hallii 

CI MDS5 Chr06_3608105 6@16.7 2.90 4.82 0.186 0.050 hallii 

MCI MDS5 Chr03_5669221 3@14.5 5.15 7.88 0.199 0.040 hallii 

MCI MDS5   Chr03_15127510 3@46.7 4.35 6.61 -0.174 0.038 filipes 

 * indicates suggestive QTL detected with alpha=0.1;           

MDS - Multidimensional scaling from PCoA           
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Table 3.2. QTL for ASVs of core microbiome detected within each treatment. 

TRT ASV CHR LOD % 

VAR 

Phylum Class Order Family Genus 

AI 67 9@105.16 2.87 5.49 Planctomycetes Planctomycetacia Planctomycetal

es 

NA NA 

AI 33 1@21.19 3.32 6.32 Proteobacteria Deltaproteobacteria Myxococcales BIrii41 NA 

AI 346 9@60.93 3.04 5.81 Proteobacteria Alphaproteobacteria Thalassobacul

ales 

Thalassoba

culaceae 

Thalassobac

ulum 

AI 421 5@80.69 3.01 5.75 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiales

_Incertae_

Sedis 

Nordella 

AI 482 5@60.40 2.89 5.53 Proteobacteria Alphaproteobacteria Micropepsales Micropeps

aceae 

NA 

CI 36 3@2.86 3.13 5.98 Acidobacteria Subgroup_6 NA NA NA 

CI 95 7@27.46 3.53 6.71 Actinobacteria Actinobacteria Propionibacter

iales 

Nocardioid

aceae 

Aeromicrobi

um 

CI 131 3@85.94 4.22 7.97 Bacteroidetes Bacteroidia Cytophagales Microscilla

ceae 

NA 

CI 159 3@6.98 3.64 6.91 Bacteroidetes Bacteroidia Cytophagales MWH-

CFBk5 

NA 

CI 8 3@2.86 3.31 6.3 Bacteroidetes Bacteroidia Cytophagales Microscilla

ceae 

Chryseoline

a 

CI 79 9@95.07 4.22 7.96 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 

CI 23 3@2.86 3.1 5.92 Gemmatimonad

etes 

Gemmatimonadetes Gemmatimona

dales 

Gemmatim

onadaceae 

NA 

CI 294 4@27.21 3.42 6.52 Planctomycetes Planctomycetacia Pirellulales Pirellulace

ae 

Pir4_lineag

e 

CI 470 1@42.13 3.26 6.22 Planctomycetes Planctomycetacia Pirellulales Pirellulace

ae 

Pirellula 

CI 1019 6@26.11 3.39 6.46 Proteobacteria Alphaproteobacteria NA NA NA 
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Table 3.2 (Continue) 

TRT ASV CHR LOD % 

VAR 

Phylum Class Order Family Genus 

CI 178 3@8.34 3.86 7.31 Proteobacteria Gammaproteobacter

ia 

Gammaproteo

bacteria__Ince

rtae_Sedis 

Unknown_

Family 

Acidibacter 

CI 183 9@25.10 3.11 5.94 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobact

eraceae 

NA 

CI 287 1@46.74 3.25 6.2 Proteobacteria Gammaproteobacter

ia 

R7C24 NA NA 

CI 287 3@55.27 3.26 6.21 Proteobacteria Gammaproteobacter

ia 

R7C24 NA NA 

CI 322 1@68.70 3.8 7.2 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiales

_Incertae_

Sedis 

Bauldia 

CI 340 3@19.25 4 7.57 Proteobacteria Gammaproteobacter

ia 

Xanthomonada

les 

Xanthomon

adaceae 

Arenimonas 

CI 42 7@55.68 3.71 7.04 Proteobacteria Gammaproteobacter

ia 

Pseudomonada

les 

Pseudomon

adaceae 

Pseudomon

as 

CI 567 5@41.12 3.49 6.64 Proteobacteria Gammaproteobacter

ia 

R7C24 NA NA 

CI 366 5@55.15 3.37 6.41 Thaumarchaeot

a 

Nitrososphaeria Nitrososphaera

les 

Nitrososph

aeraceae 

Candidatus

_Nitrocosmi

cus 

MAI 117 9@98.47 3.1 5.91 Actinobacteria Actinobacteria Propionibacter

iales 

Nocardioid

aceae 

Nocardioide

s 

MAI 277 1@70.73 3.44 6.54 Actinobacteria Actinobacteria Propionibacter

iales 

Nocardioid

aceae 

Nocardioide

s 

MAI 73 5@4.01 3.83 7.26 Bacteroidetes Bacteroidia Cytophagales Hymenoba

cteraceae 

Pontibacter 
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Table 3.2 (Continue) 

TRT ASV CHR LOD % 

VAR 

Phylum Class Order Family Genus 

MAI 145 9@128.44 3.71 7.04 Firmicutes Bacilli Bacillales Planococca

ceae 

NA 

MAI 193 1@51.34 3.11 5.93 Gemmatimonad

etes 

S0134_terrestrial_gr

oup 

NA NA NA 

MAI 78 9@130.86 4.5 8.47 Gemmatimonad

etes 

Gemmatimonadetes Gemmatimona

dales 

Gemmatim

onadaceae 

Gemmatimo

nas 

MAI 213 1@35.06 3.11 5.94 Planctomycetes Planctomycetacia Planctomycetal

es 

NA NA 

MAI 54 4@42.81 3.17 6.05 Planctomycetes Planctomycetacia Pirellulales Pirellulace

ae 

Pir4_lineag

e 

MAI 70 3@0.00 3.24 6.17 Planctomycetes Planctomycetacia Pirellulales Pirellulace

ae 

Rhodopirell

ula 

MAI 17 3@19.25 2.96 5.66 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiace

ae 

Allorhizobiu

m_Neorhizo

bium_Parar

hizobium_R

hizobium 

MAI 175 5@103.75 3.23 6.16 Proteobacteria Gammaproteobacter

ia 

CCD24 NA NA 

MAI 186 3@82.28 3.22 6.14 Proteobacteria Gammaproteobacter

ia 

Betaproteobact

eriales 

Burkholder

iaceae 

Xylophilus 

MAI 338 2@1.61 3.68 6.98 Proteobacteria Deltaproteobacteria Myxococcales Sandaracin

aceae 

Sandaracin

us 

MAI 338 7@3.35 3.1 5.93 Proteobacteria Deltaproteobacteria Myxococcales Sandaracin

aceae 

Sandaracin

us 

MCI 110 5@51.14 3.27 6.23 Actinobacteria Actinobacteria Pseudonocardi

ales 

Pseudonoc

ardiaceae 

Pseudonoca

rdia 



 75 

Table 3.2 (Continue) 

TRT ASV CHR LOD % 

VAR 

Phylum Class Order Family Genus 

MCI 120 3@10.50 3.19 6.09 Actinobacteria Actinobacteria Propionibacter

iales 

Nocardioid

aceae 

Nocardioide

s 

MCI 14 9@92.09 3.34 6.36 Actinobacteria Actinobacteria Micrococcales Microbacte

riaceae 

NA 

MCI 189 9@86.81 3.34 6.36 Actinobacteria Actinobacteria Micrococcales Intraspora

ngiaceae 

Ornithinimi

crobium 

MCI 55 3@5.41 3.59 6.81 Actinobacteria Actinobacteria Streptomycetal

es 

Streptomyc

etaceae 

Streptomyce

s 

MCI 196 4@51.56 3.37 6.42 Bacteroidetes Bacteroidia Sphingobacteri

ales 

KD3-93 NA 

MCI 490 2@77.38 3.47 6.61 Bacteroidetes Bacteroidia Cytophagales Cyclobacte

riaceae 

NA 

MCI 157 5@40.25 3.23 6.16 BRC1 NA NA NA NA 

MCI 90 4@48.97 3.13 5.98 BRC1 NA NA NA NA 

MCI 81 4@44.86 3.05 5.83 Chloroflexi Chloroflexia Thermomicrobi

ales 

JG30-KF-

CM45 

NA 

MCI 252 4@51.56 4.12 7.8 Firmicutes Bacilli Bacillales Bacillaceae Paucisaliba

cillus 

MCI 213 3@6.98 3.2 6.1 Planctomycetes Planctomycetacia Planctomycetal

es 

NA NA 

MCI 267 2@62.14 3.46 6.58 Proteobacteria Alphaproteobacteria Rhizobiales D05-2 NA 

MCI 267 8@5.70 3.02 5.77 Proteobacteria Alphaproteobacteria Rhizobiales D05-2 NA 

MCI 284 3@17.16 5.27 9.85 Proteobacteria Gammaproteobacter

ia 

NA NA NA 

MCI 370 2@71.96 3.05 5.83 Proteobacteria Alphaproteobacteria Puniceispirillal

es 

Puniceispir

illales__Inc

ertae_Sedis 

Constrictiba

cter 
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Table 3.2 (Continue) 

TRT ASV CHR LOD % 

VAR 

Phylum Class Order Family Genus 

MCI 69 7@15.36 3.1 5.92 Proteobacteria Gammaproteobacter

ia 

Betaproteobact

eriales 

Nitrosomon

adaceae 

IS-44 

MCI 91 2@103.33 3.17 6.05 Proteobacteria Deltaproteobacteria Myxococcales BIrii41 NA 
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FIGURES 

 

 

Figure 3.1. Beta and alpha diversity of bacterial root community structure of each treatment. 

Panels: (a), Principal coordinate analysis (PCoA) based on Bray-Curtis 

dissimilarities of beta diversity in microbial composition for experimental 

treatments; (b), Shannon entropy as a measure of alpha diversity in microbial 

composition for experimental treatments. 
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Figure 3.2. Narrow sense heritability (h2) of extended microbiome ASV abundance in each 

treatment. Panels: (a), Corpus Inoculated (CI); (b), Austin Inoculated (AI); (c), 

Mock corpus inoculated (MCI); (d), Mock Austin inoculated (MAI); (e), reaction 

plot of first 60 most heritable ASVs in CI and MCI treatments; (f), reaction plot of 

first 60 most heritable ASVs in AI and MAI treatments. 
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Figure 3.3. Genetic map of Panicum hallii RIL population with significant QTL for multidimensional scaling (MDS) from PCoA 

within each treatment. * indicates suggestive QTL detected with alpha=0.1. 
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Figure 3.4. Genetic map of Panicum hallii RIL population with significant QTL for ASVs detected within each treatment for the 

core microbiome. 
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Figure 3.5. Composite signal of LOD sums for each marker across all ASVs in extended microbiome for each treatment.
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Appendices 

SUPPLEMENTAL MATERIAL FOR CHAPTER 1. 

Supplementary Appendix A1. 

Development of the RIL mapping population 

We developed a population of recombinant inbred lines (RILs) in order to evaluate the 

genetic basis of divergence between hallii and filipes. The parents of the RIL mapping population 

were genotypes selected from populations of the upland and lowland ecotypes of P. hallii. The 

upland parent (HAL2-11, hereafter referred to as HAL2) was a one-generation selfed progeny of 

an individual selected from a glasshouse planting of seed collected from a natural population of 

hallii located at the Lady Bird Johnson Wildflower Center (Austin, TX, USA; 30.16°N, 97.87°W). 

The lowland parent (FIL2) was selected from a glasshouse planting of seed collected from a natural 

population of filipes located near the coastal city of Corpus Christi, Texas (27.65°N, 97.40°W). 

FIL2 and HAL2 represent the genome reference genotypes for filipes and hallii respectively 

(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Phallii) and are largely 

homozygous individuals.  A cross of these two genotypes, with HAL2 as the maternal parent, 

yielded an F1 hybrid and self-fertilized seed obtained from this individual was used to establish a 

large F2 population (Lowry, 2012). A number of these F2 progeny were selected at random and 

propagated repeatedly via single seed descent until the F6 generation. DNA was obtained from 

leaf tissue of F6 seedlings and submitted for whole genome resequencing at the DOE Joint Genome 

Institute through the Community Science Program.  F7 seed was subsequently collected from the 

sequenced F6 individuals for this experiment.  

SNPs were called from whole genome resequencing of 356 RILs on four Illumina 2x150 

runs at 12x coverage. Libraries were quality filtered using the fastx toolkit ‘fastq_quality_filter’ 

program with a quality threshold of 33. Filtered reads were mapped to a soft masked P. hallii 
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reference genome (FIL-2 V2.0) using bwa mem with the default parameters. Mapped reads were 

filtered by samtools –Shb with a quality of 20. Bam files were indexed, sorted and duplicates were 

removed with picard. Reads adjacent to insertions / deletions were masked using GATK 

RealignerTargetCreator and reads were re-sorted and re-indexed prior to SNP calling. SNPs were 

called via GATK haplotypeCaller independently for each library, producing a gVCF for each. 

These were merged and re-genotyped by GATK’s genotypeGVCF and condensed into a 0/1/2 

(alternate allele counts) matrix with vcfTools. Genotype data from 335 RILs were included in the 

output genotype matrix. The resultant matrix was processed in R. SNPs with >10% and <80% 

homozygotes and <5% NA and <20% heterozygotes were retained. 

We applied a 3-step sliding window approach for marker calling: 1) The genome was 

broken into 200 marker windows (overlapping by 100 markers) and the proportion of each 

genotype was calculated. 2) Training data was constructed, retaining the 100 strongest 

heterozygous sites and a random sampling of 100 of the sites with > the mean proportion of each 

homozygote; 3) A random forest machine learning model was fit to the training data (the R caret 

package) and used to predict the genotypes of all sliding window intervals resulting in a 3361 

marker matrix. Raw sequence data was deposited in the NCBI short read archive under the 

BioProject ID in Table A4. 

Genetic map construction 

To build the genetic map, we culled the genotype matrix such that no two markers could 

have a pairwise recombination fraction <0.005. This culling procedure minimized the amount of 

segregation distortion and missing data within any 0.5 cM window. Linkage groups were formed 

from the resulting 1278 marker matrix. Markers were ordered within linkage groups using a 

travelling salesperson problem solver as implemented through the concorde program and parsed 

through the TSPMap function tspOrder (Monroe et al., 2017). We then fine-tuned the resulting 

genetic map first by culling the genotype matrix to a 711-marker grid where no markers resided 
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<1cM from an adjacent marker, then looking at improving the fine-order of markers using the 

ripple algorithm. Finally, chromosomes were named and oriented to maximize the similarity with 

the physical position of markers in the FIL2 genome annotation (phytozome.net). 
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Supplementary Appendix A2. 

Greenhouse experiment 

Seeds of 174 F7 RILs and the two parental genotypes were scarified with sandpaper and 

placed on wet sand in round petri dishes on September 5, 2016 and allowed to germinate in a 

greenhouse located at the University of Texas at Austin, Brackenridge Field Lab (12-h days at 500 

μE m −2 s −1, 28°C; 12-h nights at 24°C). On the 7th day after sowing, seedlings were transferred 

to 6 cm x 30 cm Cone-Tainers (Stuewe and Sons, Tangent, OR). Cone-Tainers were lined with 1 

mil plastic liners (perforated at the bottom for drainage) to facilitate separation of the plant and 

root systems from the container during harvest. Cone-tainers were filled with Field and Fairway 

Profile (The Turf Trade, NJ, USA) media. Plants were then assigned to a completely randomized 

block design within three blocks on a single greenhouse bench. Plants were bottom watered by 

block by soaking to saturation every three days with Grow liquid nutrient solution (DynaGro, 

Richmond, CA) to promote seedling growth. Plants were harvested within three days of a common 

developmental stage defined as when a fully expanded flag leaf with a visible ligule was 

observable on any tiller with an emerging panicle. The plant in its plastic bag was pulled from the 

pot gently to prevent damage to the root system. Then the bag was cut open and the profile 

substrate was gently removed by shaking the plant on wire mesh followed by light washing of the 

root system in a bucket of tap water. Shoot material was separated from root material. The tiller 

height (from base of the plant to the node of the flag leaf on the tiller with the emergent panicle), 

leaf length and area of the flag leaf of the main tiller were measured and tiller number was counted 

at the time of harvest. Total root number was counted and then the root system was spread out in 

a clear acrylic water filled tray and scanned at a 600 dpi resolution using an EPSON Scanner 

(Model 12000XL, Epson America, Inc., San Jose, CA, USA) calibrated for use with WinRhizo 

Pro 2015 root image analysis software (Regent Instruments Inc., Canada). The Lagarde’s local 

threshold parameter in the analysis software was enabled to ensure detection of thin and pale roots 
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and the diameter class size was set to 0.25 mm. Root trait data was obtained from scans using 

WinRhizo Pro 2015 software and included total root length (cm), total root volume (cm3), and 

average root diameter (mm). Leaf, shoot and root tissue was collected separately, dried for 96 

hours in an oven at 55°C, and weighed to obtain biomass.  

Specific root length (SRL; total root length / root biomass (cm g-1)), root tissue density 

(RTD; root biomass / total root volume (g cm-3)), root mass ratio (RMR, root biomass / total 

biomass) and specific leaf area (SLA; fresh leaf area / dry mass of the leaf (cm2 g-1)) were 

calculated for each plant. 

Confirming root and shoot biomass QTL in a field study 

Seed of selected lines were germinated and established in the greenhouse using the 

procedure outlined above for the RIL planting and subsequently transplanted into the field at the 

age of one month. Eight biological replicates of each line and eight replicates of the parental 

genotypes were planted on May 10, 2016 under both restrictive and well-watered irrigation 

treatments ((10 RILs + 2 parents) x 8 biological replicates x 2 irrigation levels = 192 plants). 

The field experiment was conducted at a site located within the Brackenridge Field 

Laboratory property of the University of Texas in Austin, TX, USA (N 30.2845, W 97.7809). The 

site elevation is 133 m above sea level and soils are Yazoo sandy loam greater than 1.2 m deep. 

The mean maximum temperature (August) is ~35.0 °C and the mean minimum temperature 

(January) is ~ 3.0 °C. This experiment was co-planted in vacant space within an existing P. hallii 

experiment which was established at a site capable of providing two separate levels of irrigation. 

The site contains 32 differentially irrigated ‘beds’ which are separated underground by 1.2-meter-

deep plastic sheeting (Regal Plastics, Austin, TX, USA) to prevent the spread of applied irrigation 

water. Irrigation was applied by dripline (0.9 GPH, 12” emitter spacing, Rain Bird, Azusa, CA). 

The treatment period occurred from June through August with the restrictive treatment receiving 

4.5 fold less irrigation in both number of irrigation events and total amount of water applied. 
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Plants were harvested towards the end of the summer growing season in August over a 

three-day period. To account for differences in size of the plants, an equal volume of the soil under 

each plant was harvested using a ‘shovelomics’ device that regulated shovel angle and depth while 

extracting plants from the field soil. Plants with roots attached were rinsed clean of soil over a 

metal screen. Shoots were separated from roots, dried at 55°C for 4 days before weighing for 

biomass. 
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Table A1. Pearson Correlation Coefficients for genetic correlations in the Panicum hallii RIL population. 

 

Trait ED TN RTN SHMASS RTMASS SRL RTD HEIGHT LFLG RMR SLA RTDM RTLG 

TN 0.116                         

RTN 0.039 0.669                       

SHMASS 0.215 0.545 0.758                     

RTMASS 0.132 0.615 0.789 0.921                   

SRL -0.192 -0.115 -0.05 -0.021 -0.15                 

RTD 0.195 0.195 0.191 0.281 0.336 -0.544               

HEIGHT 0.119 0.285 0.598 0.824 0.719 0.118 0.136             

LFLG 0.015 0.2 0.573 0.759 0.678 0.135 0.109 0.769           

RMR -0.281 -0.005 -0.121 -0.424 -0.085 -0.267 0.029 -0.495 -0.399         

SLA -0.331 0.079 0.001 -0.223 -0.095 0.259 -0.288 -0.114 -0.047 0.388       

RTDM 0.125 -0.071 -0.183 -0.260 -0.163 -0.696 -0.115 -0.317 -0.338 0.290 -0.135     

RTLG 0.057 0.566 0.772 0.905 0.925 0.185 0.198 0.762 0.734 -0.196 0.003 -0.450   

RTVOL 0.120 0.614 0.802 0.911 0.975 -0.059 0.150 0.722 0.670 -0.107 -0.045 -0.134 0.934 

ED, panicle emergence; TN, tiller number; RTN, root number; SHMASS, shoot biomass; RTMASS, root biomass; SRL, specific 

root length; RTD, root tissue density; HEIGHT, plant height; LFLG, leaf length; RMR, root mass ratio; SLA, specific leaf area; 

RTDM, root diameter; RTLG, root length. Significant correlations are indicated in bold text. 
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Table A2. Principal component (PC) loadings of measured traits in the Panicum hallii RIL 

population. 

Trait PC1 PC2 PC3 

Panicle Emergence (day) 0.158 0.378 -0.51 

Shoot Biomass (g) 0.97 0.065 -0.118 

Tiller Number (count) 0.607 0.215 0.373 

SLA (cm2 g-1) -0.119 -0.423 0.699 

Plant Height (cm) 0.84 -0.153 -0.22 

Leaf Length (cm) 0.793 -0.224 -0.137 

Root Biomass (g) 0.943 0.191 0.174 

Root Number (count) 0.836 0.082 0.252 

SRL (cm g-1) 0.039 -0.951 -0.08 

RTD (g cm-3) 0.273 0.563 -0.139 

Root Diameter (mm) -0.337 0.707 0.131 

Root Volume (cm3) 0.937 0.101 0.202 

Root Length (m) 0.954 -0.136 0.132 

RMR (ratio) -0.336 0.263 0.773 

SLA, specific leaf area; SRL, specific root length;   

RTD, root tissue density; RMR, root mass ratio.  
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Table A3. Main and epistatic effects of the first three principal component QTL for the Panicum hallii RIL population. 

Principal 

Component Chr 

Peak 

(cM) 

1.5 Lod 

Interval LOD 

% 

var Effect SE 

Donor 

of 

Positive 

allele 

 

 

QTL 

Cluster 

(CL) 

PC1 5 58.6 56-60 7.19 14.42 -1.215 0.209 filipes CL5.1 

  5 136.0 135-142 6.34 12.67 -1.049 0.206 filipes CL5.3 

  9 66.1 58-84 3.51 6.7 -0.664 0.164 filipes CL9.1 

  Epi5:5     3.14 6.0 0.812 0.212    

PC2 1 88.7 83-93 4.51 8.26 -0.458 0.099 filipes CL1.1 

  3 34.2 18-36 4.97 9.14 -0.533 0.109 filipes CL3.1 

 5 1.1 0-4 4.13 7.52 0.457 0.103 filipes  

 8 58.0 42-74 3.45 6.24 0.392 0.097 filipes  

PC3 7 67.0 65-72 12.14 25.05 0.676 0.084 hallii CL7.2 

  8 18.5 16-26 3.59 6.60 0.354 0.085 hallii CL8.1 

Chr, chromosome; Peak, cM (centimorgan) position of the QTL peak; LOD, logarithm of odds; % 

var, present of variance explained; SE, one standard error; PC1, principal component 1; PC2, 

principal component 2; PC3, principal component 3; Epi, epistasis. 
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Table A4. Raw sequence data deposited in NCBI short read archive under the BioProject ID. 

RIL (id) Bioproject ID Biosample ID 

1 PRJNA403347 SAMN07621924 

2 PRJNA403345 SAMN07621336 

4 PRJNA368209 SAMN06266727 

5 PRJNA368210 SAMN06266737 

7 PRJNA426989 SAMN08220570 

9 PRJNA368211 SAMN06266860 

12 PRJNA426952 SAMN08220594 

15 PRJNA368212 SAMN06266633 

17 PRJNA403402 SAMN07621245 

18 PRJNA368213 SAMN06266822 

19 PRJNA426938 SAMN08220598 

23 PRJNA402629 SAMN07621152 

24 PRJNA403343 SAMN07621460 

28 PRJNA402626 SAMN07621218 

31 PRJNA402613 SAMN07621188 

35 PRJNA368214 SAMN06266715 

36 PRJNA403344 SAMN07621520 

41 PRJNA426971 SAMN08220612 

46 PRJNA403362 SAMN07621308 

48 PRJNA427015 SAMN08220579 

51 PRJNA403373 SAMN07621470 

53 PRJNA402600 SAMN07620946 

54 PRJNA402599 SAMN07621148 

55 PRJNA426954 SAMN08220593 

56 PRJNA427017 SAMN08220558 

58 PRJNA402646 SAMN07621020 

60 PRJNA402660 SAMN07621361 

61 PRJNA368215 SAMN06266709 

62 PRJNA402603 SAMN07621213 

63 PRJNA368216 SAMN06266772 

65 PRJNA402633 SAMN07621394 

66 PRJNA426965 SAMN08220614 

67 PRJNA427014 SAMN08220580 

68 PRJNA368217 SAMN06266668 

69 PRJNA403360 SAMN07621309 

70 PRJNA426984 SAMN08220626 

71 PRJNA403434 SAMN07621381 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

73 PRJNA368218 SAMN06266696 

75 PRJNA426960 SAMN08220565 

77 PRJNA403429 SAMN07621726 

79 PRJNA426974 SAMN08220549 

81 PRJNA403348 SAMN07621335 

82 PRJNA426970 SAMN08220613 

83 PRJNA368219 SAMN06266839 

84 PRJNA403350 SAMN07621323 

85 PRJNA368220 SAMN06266968 

89 PRJNA427018 SAMN08220578 

90 PRJNA426933 SAMN08220619 

93 PRJNA368221 SAMN06266960 

95 PRJNA403342 SAMN07621657 

96 PRJNA426975 SAMN08220629 

99 PRJNA368222 SAMN06266824 

100 PRJNA403349 SAMN07621047 

101 PRJNA368223 SAMN06267001 

102 PRJNA403363 SAMN07620997 

104 PRJNA402589 SAMN07620959 

105 PRJNA368224 SAMN06266740 

106 PRJNA403356 SAMN07621022 

107 PRJNA427000 SAMN08220573 

108 PRJNA403403 SAMN07621270 

109 PRJNA402608 SAMN07621479 

110 PRJNA426997 SAMN08220572 

113 PRJNA403398 SAMN07621244 

114 PRJNA368225 SAMN06266677 

115 PRJNA403375 SAMN07620971 

117 PRJNA426946 SAMN08220563 

120 PRJNA402650 SAMN07621008 

125 PRJNA402597 SAMN07621475 

131 PRJNA403400 SAMN07621145 

132 PRJNA402588 SAMN07620869 

134 PRJNA402596 SAMN07621259 

136 PRJNA402615 SAMN07621177 

137 PRJNA427005 SAMN08220623 

141 PRJNA427011 SAMN08220604 

142 PRJNA403397 SAMN07621174 

144 PRJNA368226 SAMN06266817 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

145 PRJNA402606 SAMN07621080 

151 PRJNA427001 SAMN08220582 

156 PRJNA403358 SAMN07621322 

157 PRJNA426990 SAMN08220586 

158 PRJNA403419 SAMN07621070 

159 PRJNA403405 SAMN07621163 

160 PRJNA402611 SAMN07621147 

161 PRJNA427012 SAMN08220603 

165 PRJNA426939 SAMN08220634 

178 PRJNA402587 SAMN07620870 

179 PRJNA402632 SAMN07621058 

180 PRJNA426967 SAMN08220548 

181 PRJNA403370 SAMN07621284 

183 PRJNA368227 SAMN06266761 

184 PRJNA403414 SAMN07621078 

186 PRJNA368228 SAMN06266861 

187 PRJNA426942 SAMN08220618 

190 PRJNA426973 SAMN08220611 

192 PRJNA402586 SAMN07621103 

195 PRJNA368229 SAMN06266863 

198 PRJNA402657 SAMN07620968 

201 PRJNA368230 SAMN06266869 

202 PRJNA402585 SAMN07620970 

205 PRJNA402618 SAMN07621230 

206 PRJNA368231 SAMN06266649 

207 PRJNA426979 SAMN08220569 

208 PRJNA426982 SAMN08220587 

213 PRJNA368232 SAMN06266806 

220 PRJNA427022 SAMN08220601 

231 PRJNA402649 SAMN07621495 

236 PRJNA427010 SAMN08220621 

238 PRJNA426963 SAMN08220615 

239 PRJNA402634 SAMN07621490 

245 PRJNA402595 SAMN07621271 

247 PRJNA427008 SAMN08220555 

252 PRJNA368233 SAMN06266889 

253 PRJNA402591 SAMN07621283 

256 PRJNA368234 SAMN06266892 

258 PRJNA427019 SAMN08220577 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

259 PRJNA402434 SAMN07621291 

262 PRJNA368235 SAMN06266991 

263 PRJNA402639 SAMN07621044 

266 PRJNA426981 SAMN08220627 

267 PRJNA403388 SAMN07621186 

270 PRJNA368236 SAMN06266900 

277 PRJNA368237 SAMN06266814 

280 PRJNA402605 SAMN07621212 

281 PRJNA427020 SAMN08220559 

283 PRJNA368238 SAMN06266662 

285 PRJNA403379 SAMN07621333 

288 PRJNA402647 SAMN07621009 

291 PRJNA402625 SAMN07620865 

292 PRJNA402614 SAMN07621187 

293 PRJNA403351 SAMN07621046 

297 PRJNA402653 SAMN07621362 

298 PRJNA426969 SAMN08220588 

299 PRJNA403365 SAMN07621296 

302 PRJNA402593 SAMN07621474 

303 PRJNA403386 SAMN07621239 

304 PRJNA403406 SAMN07621257 

306 PRJNA426980 SAMN08220550 

307 PRJNA403409 SAMN07621116 

308 PRJNA402648 SAMN07621959 

309 PRJNA403435 SAMN07621380 

311 PRJNA426968 SAMN08220589 

312 PRJNA402604 SAMN07621478 

314 PRJNA426985 SAMN08220609 

317 PRJNA402598 SAMN07621149 

318 PRJNA426995 SAMN08220571 

319 PRJNA426945 SAMN08220617 

320 PRJNA426951 SAMN08220545 

322 PRJNA403430 SAMN07621217 

323 PRJNA402643 SAMN07621372 

324 PRJNA403368 SAMN07620983 

325 PRJNA426978 SAMN08220568 

328 PRJNA368239 SAMN06266771 

330 PRJNA403458 SAMN07621346 

332 PRJNA403376 SAMN07620944 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

333 PRJNA402628 SAMN07621153 

334 PRJNA426936 SAMN08220635 

336 PRJNA403383 SAMN07621210 

337 PRJNA427009 SAMN08220622 

338 PRJNA403428 SAMN07621443 

339 PRJNA402592 SAMN07620958 

341 PRJNA368240 SAMN06266859 

342 PRJNA403422 SAMN07621228 

344 PRJNA368241 SAMN06266934 

345 PRJNA403423 SAMN07621069 

348 PRJNA368242 SAMN06266650 

349 PRJNA368243 SAMN06266870 

352 PRJNA426959 SAMN08220590 

353 PRJNA403401 SAMN07621281 

354 PRJNA402443 SAMN07621268 

355 PRJNA426958 SAMN08220631 

356 PRJNA402664 SAMN07621348 

357 PRJNA402658 SAMN07621500 

360 PRJNA427023 SAMN08220620 

363 PRJNA403359 SAMN07621011 

365 PRJNA363831 SAMN06264661 

366 PRJNA426962 SAMN08220616 

367 PRJNA402619 SAMN07621176 

368 PRJNA402621 SAMN07621483 

369 PRJNA426944 SAMN08220562 

371 PRJNA363832 SAMN06265096 

372 PRJNA363833 SAMN06265097 

374 PRJNA403377 SAMN07621347 

378 PRJNA363834 SAMN06264660 

379 PRJNA363835 SAMN06265098 

380 PRJNA403340 SAMN07621060 

381 PRJNA427013 SAMN08220556 

382 PRJNA403364 SAMN07621678 

383 PRJNA426937 SAMN08220599 

385 PRJNA363836 SAMN06264659 

387 PRJNA363837 SAMN06265099 

388 PRJNA426935 SAMN08220560 

390 PRJNA426964 SAMN08220547 

391 PRJNA402642 SAMN07621747 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

394 PRJNA403392 SAMN07621294 

399 PRJNA363838 SAMN06264658 

402 PRJNA403378 SAMN07621334 

403 PRJNA363839 SAMN06265100 

406 PRJNA426948 SAMN08220544 

407 PRJNA427004 SAMN08220554 

411 PRJNA403366 SAMN07621295 

413 PRJNA426966 SAMN08220566 

416 PRJNA402655 SAMN07620980 

417 PRJNA426961 SAMN08220630 

418 PRJNA403369 SAMN07621469 

420 PRJNA426949 SAMN08220632 

421 PRJNA403367 SAMN07620996 

423 PRJNA403411 SAMN07621248 

425 PRJNA426998 SAMN08220625 

426 PRJNA363840 SAMN06265101 

427 PRJNA427016 SAMN08220557 

430 PRJNA402640 SAMN07621033 

431 PRJNA403353 SAMN07621035 

434 PRJNA426996 SAMN08220583 

436 PRJNA402590 SAMN07620886 

439 PRJNA403355 SAMN07621023 

441 PRJNA403346 SAMN07621970 

442 PRJNA363841 SAMN06264761 

443 PRJNA402623 SAMN07621146 

444 PRJNA403415 SAMN07621249 

447 PRJNA402617 SAMN07621482 

451 PRJNA402607 SAMN07621746 

457 PRJNA403427 SAMN07621043 

458 PRJNA426943 SAMN08220597 

459 PRJNA402624 SAMN07621164 

460 PRJNA426956 SAMN08220546 

463 PRJNA403421 SAMN07621229 

464 PRJNA363842 SAMN06265102 

466 PRJNA363843 SAMN06265103 

471 PRJNA426976 SAMN08220610 

472 PRJNA403374 SAMN07621117 

473 PRJNA426977 SAMN08220628 

474 PRJNA363844 SAMN06264760 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

476 PRJNA427003 SAMN08220581 

477 PRJNA426987 SAMN08220552 

478 PRJNA363845 SAMN06265104 

479 PRJNA403426 SAMN07621056 

481 PRJNA426994 SAMN08220606 

482 PRJNA427002 SAMN08220605 

483 PRJNA402610 SAMN07621201 

487 PRJNA403407 SAMN07621162 

488 PRJNA402661 SAMN07621958 

489 PRJNA403381 SAMN07621211 

491 PRJNA363846 SAMN06265105 

492 PRJNA363847 SAMN06264759 

493 PRJNA426992 SAMN08220585 

494 PRJNA363848 SAMN06265303 

668 PRJNA403399 SAMN07621282 

669 PRJNA402630 SAMN07621489 

671 PRJNA363849 SAMN06265304 

675 PRJNA403433 SAMN07621392 

679 PRJNA426983 SAMN08220551 

681 PRJNA403396 SAMN07621700 

682 PRJNA363850 SAMN06264758 

683 PRJNA363851 SAMN06265305 

684 PRJNA363852 SAMN06265306 

687 PRJNA402609 SAMN07621079 

689 PRJNA402663 SAMN07620956 

691 PRJNA363853 SAMN06264757 

694 PRJNA426988 SAMN08220607 

702 PRJNA403418 SAMN07621077 

704 PRJNA403425 SAMN07621057 

707 PRJNA426940 SAMN08220633 

708 PRJNA402627 SAMN07621395 

714 PRJNA427021 SAMN08220602 

716 PRJNA363854 SAMN06265307 

718 PRJNA403413 SAMN07621142 

719 PRJNA363855 SAMN06265308 

722 PRJNA403391 SAMN07621306 

727 PRJNA402641 SAMN07621032 

728 PRJNA426941 SAMN08220561 

729 PRJNA403393 SAMN07621293 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

730 PRJNA426955 SAMN08220592 

737 PRJNA426991 SAMN08220553 

742 PRJNA363856 SAMN06265106 

754 PRJNA402602 SAMN07621258 

755 PRJNA403384 SAMN07621321 

758 PRJNA403432 SAMN07621393 

759 PRJNA363857 SAMN06264756 

760 PRJNA363858 SAMN06265309 

768 PRJNA363859 SAMN06265310 

770 PRJNA402659 SAMN07620957 

771 PRJNA363860 SAMN06265311 

772 PRJNA363861 SAMN06265199 

773 PRJNA402636 SAMN07621383 

774 PRJNA363862 SAMN06265312 

775 PRJNA363863 SAMN06264657 

777 PRJNA403382 SAMN07621238 

781 PRJNA402656 SAMN07620969 

782 PRJNA403424 SAMN07621442 

783 PRJNA363864 SAMN06265313 

786 PRJNA363865 SAMN06265314 

791 PRJNA402631 SAMN07621059 

792 PRJNA403372 SAMN07621104 

793 PRJNA363866 SAMN06265198 

794 PRJNA363867 SAMN06265315 

795 PRJNA363868 SAMN06265316 

798 PRJNA363869 SAMN06264755 

799 PRJNA403466 SAMN07621319 

802 PRJNA403408 SAMN07621144 

803 PRJNA363870 SAMN06265317 

804 PRJNA363871 SAMN06265318 

805 PRJNA363872 SAMN06264656 

808 PRJNA363873 SAMN06265319 

811 PRJNA402654 SAMN07620981 

814 PRJNA403394 SAMN07621185 

816 PRJNA363874 SAMN06265320 

818 PRJNA403395 SAMN07621175 

819 PRJNA363875 SAMN06264754 

820 PRJNA403404 SAMN07621269 

825 PRJNA363876 SAMN06265321 
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Table A4. (continue) 

RIL (id) Bioproject ID Biosample ID 

826 PRJNA363877 SAMN06265322 

829 PRJNA402601 SAMN07620945 

831 PRJNA402651 SAMN07620995 

833 PRJNA363878 SAMN06265323 

834 PRJNA402662 SAMN07621501 

838 PRJNA363879 SAMN06264655 

841 PRJNA363880 SAMN06265326 

850 PRJNA363881 SAMN06265147 

853 PRJNA363882 SAMN06265327 

854 PRJNA403417 SAMN07621150 

858 PRJNA363883 SAMN06265328 

862 PRJNA402620 SAMN07621219 

863 PRJNA363884 SAMN06264654 

867 PRJNA403416 SAMN07621151 

868 PRJNA403431 SAMN07621216 
872 PRJNA363885 SAMN06265329 
874 PRJNA363886 SAMN06265330 
878 PRJNA363887 SAMN06265331 
880 PRJNA403387 SAMN07621198 
881 PRJNA403385 SAMN07621199 
887 PRJNA403390 SAMN07621307 
893 PRJNA402622 SAMN07621165 
898 PRJNA403412 SAMN07621143 
906 PRJNA402635 SAMN07621045 
909 PRJNA403371 SAMN07620982 
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Figure A1. Principal component analysis of shoot and root traits for the Panicum hallii RIL 

population. Traits: PC, principal component; RMR, root mass ratio; SLA, specific 

leaf area; SRL, specific root length; RTLRNGTH, root length; LFLG, leaf length; 

HEIGHT, plant height; SHMASS, shoot biomass; RTMASS, root biomass; 

RTVOL, root volume; RTN, root number; TN, tiller number; RTD, root tissue 

density; ED, emergence day; RTDM, root diameter.  
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Figure A2. Conditional LOD profile plots of detected QTL for shoot and root traits and first 

three principle components of a P. hallii RIL mapping population resulting from the 

final model of stepwise QTL mapping. 
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Figure A2. (continue) 
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SUPPLEMENTAL MATERIAL FOR CHAPTER 2. 

Table A5. Nutrient and mineral composition of native soils used for microbial inoculum. 

  
Austin, 

TX 
Corpus 

Christy, TX units 

pH 6.4 8.2 - 
Conductivity 271 482 µmho/cm 
Nitrate-N 26 14 ppm 
Phosphorus 19 9 ppm 
Potassium 271 360 ppm 

Calcium 4 7 ppm 
Magnesium 239 755 ppm 
Sulfur 24 33 ppm 
Sodium 12 353 ppm 
Iron 11.3 7.96 ppm 
Zinc 1.6 1.42 ppm 
Manganese 82.37 3.19 ppm 
Copper 0.8 0.77 ppm 
Boron 0.34 1.4 ppm 
Organic 
Matter 4.94 2.10 % 
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Table A6. Means + SE for the parental ecotypes, RILs, RIL range and broad-sense heritability 

(H2 + SE) for Mock Inoculated (MI), Austin Inoculated (AI), and Corpus 

Inoculated (CI) microbial treatments. 

Trait Treat- FIL2  HAL2 RIL RIL  H2±SE 

   ment Mean±SE Mean±SE Mean±SE range    
Shoot Biomass MI 361±30 233±30 318±8 26-924 0.04±0.04 
 (mg)     AI 468±43 237±46 353±11 31-992 0.04±0.04 
  CI 476±46 326±43 301±10 30-895 0.03±0.03 
Tiller Number MI 4.3±0.3 4±0.3 5.2±0.1 1-11.5 0.07±0.05 
 (count) AI 5±0.47 4.3±0.5 5.7±0.12 43843 0.08±0.05 
  CI 5.2±0.5 5±0.47 5.0-0.11 43843 0.10±0.06 
SLA MI 376±11 431±11 400±2.5 251-515 0.11±0.06 
(cm2g-1) AI 404±16 445±17 400±2.7 249-512 0.04±0.05 
  CI 379±17 382±16 400±3.2 73-535 0.07±0.05 
Root Biomass MI 80±8 43±9 61±2 5-179 0.04±0.05 
 (mg) AI 87±12 36±13 59±2 5-198 0.09±0.05 
  CI 90±13 51±12 48±1 4-176 0.08±0.05 
Root Number MI 12.7±0.7 10.5±0.7 11.4±0.2 3-22 0.11±0.06 
(count) AI 13±1 11.2±1.1 12.2±0.2 2-26 0.09±0.06 
  CI 14.2±1.1 12.1±1 10.9±0.23 2-27 0.03±0.04 
SRL  MI 13±0.8 19.3±0.8 20.4±0.27 9.3-35.9 0.15±0.06 
(cm g-1) AI 11.1±1.1 21.4±1.2 20.4±0.35 7.3-43.2 0.15±0.06 
  CI 9.8±1.2 20.4±1.1 19.8±0.32 8.3-41.7 0.18±0.07 
RTD  MI 25±1.2 19.8±1.2 34.6±0.38 18.8-59.9 0.06±0.05 
(g cm-3) AI 27.2±1.7 18±1.8 34.7±0.46 16.5-57.8 0.09±0.05 
  CI 34±1.8 21.2±1.7 35.0±0.47 9.4-60.8 0.07±0.05 
Root Diameter MI 0.63±0.01 0.59±0.01 0.44±0.003 0.35-0.64 0.12±0.06 
 (mm) AI 0.67±0.02 0.59±0.03 0.44±0.003 0.33-0.63 0.07±0.05 
  CI 0.63±0.03 0.55±0.02 0.44±0.003 0.35-0.67 0.05±0.05 
Lateral Root MI 156±16 137±16 198-5.9 1-919 0.06±0.05 
Length (cm) AI 87±24 103±24 187±6.8 5-721 0.01±0.04 
 CI 99±24 144±22 158±5.6 15-721 0.04±0.04 
1st Order Root  MI 23.4±0.9 23±0.8 25.2±0.21 17-40 0.01±0.03 
Length (cm) AI 26.4±1.3 22.4±1.3 25.1±0.25 14-38 0.03±0.04 
 CI 24.1±1.3 28.4±1.2 24.3±0.22 13-44 0.08±0.06 
Root Length MI 955±99 828±99 1159±34 65-3033 0.02±0.04 
(cm) AI 893±140 729±151 1124±37 70-3194 0.07±0.05 
  CI 875±151 1020±140 909±41 140-3167 0.02±0.04 
RMR MI 16.9±0.9 15.6±0.9 15.8±0.18 7-27 0.11±0.06 
(ratio) AI 15.2±1.3 12.8±1.4 14.2±0.19 6-27 0.15±0.07 
  CI 15.7±1.4 13.7±1.3 14.0±0.20 6-44 0.04±0.04 
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Table A7. P-values for genetic and microbial treatment effects of root and shoot traits for the 

Panicum hallii parental ecotypes across three microbial treatments (Mock 

Inoculates, Austin Inoculated and Corpus Inoculated). 

Trait Effect df F-value P-value 

Shoot Biomass Ecotype 1, 48 26.36 <0.0001 

(mg) Treatment 2, 48 3.89 0.027 

  Ecotype x Treatment 2, 48 0.92 0.405 

Tiller Number Ecotype 1, 48 1.05 0.313 

(count) Treatment 2, 48 2.66 0.080 

  Ecotype x Treatment 2, 48 0.15 0.863 

SLA Ecotype 1, 47 7.14 0.010 

(cm2g-1) Treatment 2, 47 3.46 0.039 

  Ecotype x Treatment 2, 47 1.60 0.212 

Root Biomass  Ecotype 1, 48 19.93 <0.0001 

(mg) Treatment 2, 48 0.38 0.689 

  Ecotype x Treatment 2, 48 0.19 0.828 

Root Number Ecotype 1, 48 6.16 0.016 

(count) Treatment 2, 48 1.35 0.269 

  Ecotype x Treatment 2, 48 0.02 0.979 

SRL  Ecotype 1, 48 113.01 <0.0001 

(cm g-1) Treatment 2, 48 0.67 0.520 

  Ecotype x Treatment 2, 48 3.47 0.039 

RTD  Ecotype 1, 47 48.12 <0.0001 

(g cm-3) Treatment 2, 47 6.45 0.003 

  Ecotype x Treatment 2, 47 3.32 0.046 

Root Diameter Ecotype 1, 48 11.81 0.001 

(mm) Treatment 2, 48 1.09 0.343 

  Ecotype x Treatment 2, 48 0.37 0.694 

Lateral Root  Ecotype 1, 46 0.67 0.415 

Length (cm) Treatment 2, 46 3.36 0.043 

  Ecotype x Treatment 2, 46 1.41 0.255 

1sr Order Root  Ecotype 1, 46 0 0.989 

Length (cm) Treatment 2, 46 3.74 0.031 

  Ecotype x Treatment 2, 46 5.01 0.010 

Root Length Ecotype 1, 48 0.20 0.652 

(cm) Treatment 2, 48 0.45 0.641 

  Ecotype x Treatment 2, 48 0.74 0.480 

RMR Ecotype 1, 48 3.87 0.055 

(ratio) Treatment 2, 48 2.21 0.122 

  Ecotype x Treatment 2 ,48 0.12 0.890 
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Table A8. Comparison of “base” and “GxE” linear mixed models to evaluate the impact of the microbiome on the quantitative 

genetic architecture of our measured traits (The Diagonal model allows Va or Vaa to vary by treatment). 

Trait Treatment Va Vaa Residual Test of GxE AIC LogLik P- 

         (model favored)     Value  

Shoot  Base model 2478±954 2505±526 20141±1153 No GxE 837 -415   

Biomass MI 473±605 342±778 20289±2825 Diagonal model 777 -385 0.001 

(mg) AI 1429±1220 0.00±1205 35880±4745      

  CI 103±571 620±816 26176±3317      

Tiller  Base model 0.54±0.16 0.21±0.05 2.52±0.14 No GxE 818 -406   

Number MI 0.19±0.11 0.00±0.08 2.65±0.35 Diagonal model 743 -368 0.001 

(count) AI 0.34±0.18 0.00±0.14 4.11±0.55      

  CI 0.35±0.16 0.00±0.10 3.07±0.42      

SLA Base model 273±81 58±28 1786±100 No GxE 831 -412   

(cm2g-1) MI 189±85 0.00±54 1533±208 Diagonal model 797 -395 0.001 

  AI 93±72 0.00±68 2067±269      

  CI 180±108 0.00±86 2568±341      

Root  Base model 111±38 73±18 806±45 No GxE 826 -10   

Biomass MI 40±36 0.24±35 1039±138 Diagonal model 768 -381 0.001 

 (mg) AI 123±65 0.00±46 1291±179      

  CI 18±24 41±24 703±98      

Root  Base model 1.57±0.53 0.84±0.23 11.55±0.65 No GxE 830 -412   

Number MI 1.26±0.57 0.00±0.36 10.51±1.42 Diagonal model 780 -387 0.001 

(count) AI 1.41±0.78 0.26±0.66 16.53±2.38      

  CI 0.39±0.43 0.00±0.48 15.21±1.93         
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Table A8. (continue) 

 

Trait Treatment Va Vaa Residual Test of GxE AIC LogLik P- 

         (model favored)     Value  

SRL  Base model 5.36±1.43 2.10±0.46 15.32±0.88 No GxE 773 -383   

(cm g-1) MI 2.99±1.15 0.00±0.60 16.67±2.32 Diagonal model 634 -314 0.001 

 AI 4.71±1.84 0.00±0.99 27.10±3.80      

 CI 4.7±1.67 0.00±0.79 21.32±3.05      

RTD  Base model 4.90±1.64 1.42±0.68 45.00±2.53 No GxE 843 -418   

(g cm-3) MI 2.43±1.57 0.00±1.34 40.34±5.26 Diagonal model 811 -402 0.001 

  AI 5.38±2.66 0.00±1.83 52.39±7.09      

  CI 3.78±2.36 0.00±2.27 56.98±8.02      

Root  Base model 342±118 261.60±56 2157±123 No GxE 836 -415   

Diameter MI 239±118 47.31±93 2201±324 Diagonal model 742 -368 0.001 

(µm) AI 230±137 10.05±113 3210±433      

  CI 178±124 0.00±110 3337±437      

Lateral Base model 571±7.46 426±148 8888±501 No GxE 829 -411   

 Root MI 570±371 0.00±316 9525±1243 Diagonal model 807 -400 0.001 

Length AI 164±313 0.00±404 12956±1625      

(cm) CI 164±234 171±325 8218±1158      

1st Order  Base model 0.31±0.21 0.29±0.17 13.70±0.76 No GxE 853 -423   

Root  MI 0.13±0.29 0.00±0.39 13.08±1.61 Diagonal model 851 -422 0.936 

Length AI 0.44±0.48 0.00±0.53 16.74±2.14      

(cm) CI 0.10±0.32 0.86±0.60 11.65±1.86      
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Table A8. (continue) 

 

Trait Treatment Va Vaa Residual Test of GxE AIC LogLik P- 

         (model favored)     Value  

Root Base model 2.55±0.99 2.46±0.54 22.54±1.28 No GxE 818 -406   

Length MI 0.71±0.87 0.00±1.00 31.93±4.01 Diagonal model 757 -375 0.001 

(m) AI 2.48±1.49 0.00±1.20 35.35±4.68      

  CI 0.37±0.59 0.00±0.74 23.78±2.98      

RMR Base model 1.91±0.50 0.14±0.13 9.77±0.54 No GxE 778 -386   

(ratio) MI 1.03±0.47 0.00±0.30 8.72±1.18 Diagonal model 751 -372 0.001 

  AI 1.43±0.56 0.00±0.30 8.32±1.17      

  CI 0.58±0.51 0.00±0.52 16.06±2.07      
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Table A9. QTL effects (main and epistatic) of for the Panicum hallii RIL population. 

Trait 
Detected at 

Treatment 
Chr 

 Peak 

(cM) 

1.5 Lod 

Interval 
LOD % var Effect SE 

Donor of 

Positive 

allele 

GxE  

(Mixed 

Model) 

Shoot  MI 3 4.3 2.8-6 9.7 13.9 0.10 0.019 hallii n 

Biomass MI 3 58 56-60 11.7 16.6 -0.15 0.020 filipes n 

(g) MI Epi3@4.3:3@58.0     6.8 9.2 0.11 0.020   Y 

Tiller  MI 3 4 3-6 7.4 9.8 0.05 0.012 hallii n 

number MI 3 58 56-60 9.4 12.6 -0.08 0.012 filipes n 

(count) MI 6 62.4 59-69 6.8 4.8 0.03 0.008 hallii n 

  MI 9 70 65-78 6.5 4.4 -0.03 0.008 filipes n 

  MI Epi3@4.0:3@58.0   4.9 6.3 0.06 0.013  Y 

  AI 9 70.2 68-80 3.3 4.9 -0.04 0.010 filipes n 

  CI 9 59.5 52-78 3.5 5.5 -0.04 0.010 filipes n 

SLA MI 7 52.7 38-63 5.8 8.7 13.19 2.503 hallii n 

(cm2g-1) AI 7 42.7 24-61 3.2 4.9 11.13 2.891 hallii n 

  CI 7 60.4 49-63 6.2 9.5 17.17 3.032 hallii n 

Root  MI 1 92.6 87-98 3 4.0 -0.06 0.016 filipes n 

Biomass MI 3 4.3 3-7 6.3 8.6 0.08 0.022 hallii n 

(g) MI 3 58 56-60 8.5 11.9 -0.14 0.022 filipes n 

  MI Epi3@4.3:3@58.0   4.7 6.3 0.11 0.023  n 

  AI *1 90 0-97 3.2 4.5 -0.07 0.018 filipes n 

  AI *4 29.3 27-32 3.2 4.5 0.07 0.018 hallii n 

  CI *3 57.4 51-65 2.6 4.1 -0.06 0.018 filipes n 

Root  MI *3 4.3 2-7 4.9 6.8 0.04 0.011 hallii n 

Number MI 3 57.4 54-73 7.6 10.8 -0.07 0.012 filipes n 

(count) MI *Epi3@4.3:3@57.4   2.2 2.9 0.04 0.012  n 
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Table A9. (continue) 

 

Trait 
Detected at 

Treatment 
Chr 

 Peak 

(cM) 

1.5 Lod 

Interval 
LOD % var Effect SE 

Donor of 

Positive 

allele 

GxE  

(Mixed 

Model) 

SRL  MI 1 92.6 86-95 4.2 4.9 1.12 0.252 hallii n 

(cm g-1) MI 3 7 3-9 13.2 16.4 2.08 0.316 hallii n 

  MI 3 56.1 54-69 6.5 7.6 -0.41 0.322 filipes n 

  MI 5 32.3 26-80 3.4 3.9 0.98 0.248 hallii n 

  MI Epi3@7.0:3@56.1   5.9 6.9 1.73 0.328  n 

  AI 3 11.2 4-25 6.7 9.7 2.22 0.390 hallii n 

  AI *9 70.2 58-78 2.7 3.7 1.19 0.340 hallii n 

  CI 3 4 3-10 10.9 14.8 2.41 0.398 hallii n 

  CI *3 51.9 51-60 4.9 6.3 -0.24 0.397 filipes n 

  CI *Epi3@4.0:@51.9     4 5.1 1.77 0.411   n 

RTD  MI *1 92.6 0-98 2.6 4.0 -1.43 0.408 filipes n 

(g cm-3) AI 4 29.3 18-32 3.5 5.1 1.91 0.475 hallii n 

  AI 8 50.8 45-62 3.2 4.7 -1.77 0.458 filipes n 

  CI 8 62.8 60-69 3.5 5.4 -1.96 0.483 filipes n 

Root  MI 1 37.3 28-44 4 4.5 -0.01 0.002 filipes n 

Diameter MI 3 4.3 3-6 16.8 20.9 -0.02 0.003 filipes n 

(mm) MI 3 58.4 54-60 11.6 13.8 0.02 0.003 hallii n 

  MI 5 31.7 13-36 3.1 3.5 -0.01 0.002 filipes n 

  MI Epi3@4.3:3@58.4   10.7 12.6 -0.03 0.003  n 

  AI 3 4.8 3-7 13.6 18.5 -0.03 0.004 filipes n 

  AI 3 58.4 57-60 9.2 12.1 0.02 0.004 hallii n 

  AI Epi3@4.8:3@58.4   8.5 11.0 -0.03 0.004  n 
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Table A9. (continue) 

 

Trait 
Detected at 

Treatment 
Chr 

 Peak 

(cM) 

1.5 Lod 

Interval 
LOD % var Effect SE 

Donor of 

Positive 

allele 

GxE  

(Mixed 

Model) 

Root  CI 3 4.8 3-7 17.1 21.9 -0.04 0.004 filipes n 

Diameter CI 3 58.4 54-60 7.9 9.4 0.02 0.004 hallii n 

(mm) CI Epi3@4.8:3@58.4     6.7 7.8 -0.02 0.004   n 

Lateral  MI *3 4.8 3-7 11.1 14.7 0.11 0.024 hallii n 

Root  MI *3 29.1 23-52 3.3 4.1 0.08 0.021 hallii n 

Length  MI *3 58.4 57-60 13.1 17.6 -0.18 0.024 filipes n 

(cm) MI *Epi3@4.8:3@58.4   9.5 12.5 0.17 0.024 hallii n 

Root  MI 3 4.3 3-7 6.9 9.7 195.25 45.630 hallii n 

Length MI 3 58 54-60 6.7 9.4 ##### 46.890 filipes n 

(cm) MI 5 25.7 3-32 3 4.1 123.30 33.150 hallii n 

  MI Epi3@4.3:3@58.4   4.6 6.3 220.75 47.590 hallii n 

  AI *5 24.2 13-29 2.7 4.0 131.38 36.980 hallii n 

RMR MI 8 35 30-41 3.1 4.5 -0.02 0.005 filipes n 

(Ratio) MI 9 62 58-70 3.6 5.2 -0.02 0.005 filipes n 

  CI 6 3.1 0-31 3.1 4.6 0.02 0.006 hallii n 

With * indicating suggestive QTL detected with alpha=0.1. GxE (Mixed Model) – Treatment x Marker interactions using PROC 

mixed in SAS. Y indicates QTL that were significant by mixed model between treatments. Treatments: Mock Inoculated (MI), 

Austin Inoculated (AI), Corpus Inoculated (CI). 
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Table A10. Full model analysis of QTL–treatment interactions using PROC mixed in SAS with QTL modeled on the marker nearest 

the QTL peak. 

Trait Effect Num DF Den DF F-Value P-Value 

Shoot  Treatment  2 446 0.16 0.8497 

Biomass 3@4.3 1 446 25.79 <0.0001 

(g) Treatment x 3@4.3 2 446 1.26 0.2835 

  3@58.0 1 446 43.29 <0.0001 

  Treatment x 3@58.0 2 446 2.01 0.1346 

  *9@3.9 1 446 3.1 0.0791 

  * Treatment x 9@3.9 2 446 7.87 0.0004 

  3@4.3 x 3@58.0 1 446 32.09 <0.0001 

  Treatment x 3@4.3 x 3@58.0 2 446 4.49 0.0117 

Tiller  Treatment 2 394 0.88 0.4149 

number 3@4.0 1 394 26.22 <0.0001 

(count) Treatment x 3@4.0 2 394 0.94 0.3924 

  3@58.0 1 394 33.42 <0.0001 

  Treatment x 3@58.0 2 394 1.61 0.2018 

  6@62.4 1 394 7.2 0.0076 

  Treatment x 6@62.4 2 394 0.64 0.5295 

  7@17.0 1 394 7.89 0.0052 

  Treatment x 7@17.0 2 394 9.94 <0.0001 

  9@70.0 1 394 18.63 <0.0001 

  Treatment x 9@70.0 2 394 0.61 0.543 

  3@4.0 x 3@58.0 1 394 24.74 <0.0001 

  Treatment x 3@4.0 x 3@58.0 2 394 3.47 0.0321 

SLA Treatment 2 522 0.23 0.7965 

(cm2g-1) 7@52.7 1 522 39.06 <0.0001 

  Treatment x 7@52.7 2 522 1.33 0.2664 
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Table A10. (continue) 

 

Trait Effect Num DF Den DF F-Value P-Value 

Root  Treatment 2 389 1 0.3701 

Biomass 1@92.6 1 389 6.42 0.0117 

(g) Treatment x 1@92.6 2 389 1.33 0.2662 

  3@4.3 1 389 7.6 0.0061 

  Treatment x 3@4.3 2 389 0.4 0.6688 

  3@58.0 1 389 20.47 <.0001 

  Treatment x 3@58.0 2 389 1.78 0.1697 

  *4@29.3 1 389 9.92 0.0018 

  * Treatment x 4@29.3 2 389 1.25 0.2889 

  9@3.9 1 389 3.58 0.0593 

  Treatment x 9@3.9 2 389 10.19 <0.0001 

  3@4.3 x 3@58.0 1 389 16.74 <0.0001 

  Treatment x 3@4.3 x 3@58.0 2 389 2.61 0.0749 

Root  Treatment 2 416 0.49 0.6147 

Number *3@4.3 1 416 9.61 0.0021 

(count) * Treatment x 3@4.3 2 416 0.43 0.6499 

  3@57.4 1 416 23.44 <0.0001 

  Treatment x 3@57.4 2 416 0.81 0.4467 

  7@0.3 1 416 5.63 0.0181 

  Treatment x 7@0.3 2 416 6.95 0.0011 

  8@33.1 1 416 4.73 0.0302 

  Treatment x 8@33.1 2 416 3.11 0.0457 

  *3@4.3 x 3@57.4 1 416 13.48 0.0003 

  * Treatment x 3@4.3 x 3@57.4 2 416 1.79 0.1686 
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Table A10. (continue) 

 

Trait Effect Num DF Den DF F-Value P-Value 

SRL  Treatment 2 358 0.31 0.7359 

(cm g-1) 1@92.6 1 358 8.9 0.003 

  Treatment x 1@92.6 2 358 0.27 0.7652 

  3@7.0 1 358 57.27 <0.0001 

  Treatment x 3@7.0 2 358 1.05 0.3527 

  3@56.1 1 358 4.22 0.0407 

  Treatment x 3@56.1 2 358 1.4 0.2482 

  4@19.1 1 358 9.85 0.0018 

  Treatment x 4@19.1 2 358 5.63 0.0039 

  5@32.7 1 358 9.6 0.0021 

  Treatment x 5@32.7 2 358 0.23 0.7973 

  *9@70.2 1 358 12.46 0.0005 

  * Treatment x 9@70.2 2 358 1.36 0.2583 

  3@7.0 x 3@56.1 1 358 15.91 <0.0001 

  Treatment x 3@7.0*3@56.1 2 358 0.93 0.397 

RTD  Treatment 2 415 0.21 0.8091 

(g cm-3) *1@92.6 1 415 3.6 0.0586 

  * Treatment x 1@92.6 2 415 1.13 0.3238 

  4@29.3 1 415 12.36 0.0005 

  Treatment x 4@29.3 2 415 0.13 0.8802 

  8@50.8 1 415 11 0.001 

  Treatment x 8@50.8 2 415 1.8 0.1668 
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Table A10. (continue) 

 

Trait Effect Num DF Den DF F-Value P-Value 

Root  Treatment 2 358 0.43 0.6506 

Diameter 1@37.3 1 358 3.13 0.0778 

(mm) Treatment x 1@37.3 2 358 2.13 0.1201 

  1@68.0 1 358 0.17 0.6813 

  Treatment x 1@68.0 2 358 0.36 0.7012 

  2@78.8 1 358 1.23 0.2683 

  Treatment x 2@78.8 2 358 3.13 0.0449 

  3@4.8 1 358 70.19 <0.0001 

  Treatment x 3@4.8 2 358 1.37 0.2542 

  3@58.4 1 358 39.18 <0.0001 

  Treatment x 3@58.4 2 358 0.07 0.9362 

  5@31.7 1 358 11.19 0.0009 

  Treatment x 5@31.7 2 358 1.15 0.318 

  7@0.3 1 358 7.2 0.0076 

  Treatment x 7@0.3 2 358 3.65 0.027 

  1@68.0 x 2@78.8 1 358 28.41 <0.0001 

  Treatment x1@68.0 x 2@78.8 2 358 3.27 0.0393 

  3@4.8 x 3@58.4 1 358 56.49 <.0001 

  Treatment x 3@4.8 x 3@58.4 2 358 0.8 0.4521 

Lateral  Treatment 2 434 0.79 0.4558 

Root  *3@4.8 1 434 23.23 <0.0001 

Length  * Treatment x 3@4.8 2 434 2.03 0.1331 

(cm) *3@29.1 1 434 11.07 0.001 

  * Treatment x 3@29.1 2 434 0.51 0.6017 
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Table A10. (continue) 

 

Trait Effect Num DF Den DF F-Value P-Value 

Lateral  *3@58.4 1 434 47.88 <.0001 

Root  * Treatment x 3@58.4 2 434 3.84 0.0221 

Length  *7@3.4 1 434 1.6 0.2072 

(cm) * Treatment x 7@3.4 2 434 4.21 0.0155 

  *3@4.8 x 3@58.4 1 434 48.61 <0.0001 

  * Treatment x 3@4.8 x 3@58.4 2 434 5.55 0.0042 

1st Order  Treatment 2 517 6.25 0.0021 

Root 9@25.6 1 517 9.89 0.0018 

Length(cm) Treatment x 9@25.6 2 517 5.98 0.0027 

Root  Treatment 2 415 5.19 0.0059 

Length 3@4.8 1 415 20.18 <0.0001 

(cm) Treatment x 3@4.8 2 415 0.01 0.9933 

  3@58.0 1 415 22.15 <0.0001 

  Treatment x 3@58.0 2 415 0.89 0.4108 

  5@25.7 1 415 17.53 <0.0001 

  Treatment x 5@25.7 2 415 0.62 0.5407 

  9@3.9 1 415 2.46 0.1179 

  Treatment x 9@3.9 2 415 6.27 0.0021 

  3@4.8 x 3@58.0 1 415 20.94 <0.0001 

  Treatment x 3@4.8 x 3@58.0 2 415 1.7 0.1834 
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Table A10. (continue) 

 

Trait Effect Num DF Den DF F-Value P-Value 

RMR Treatment 2 362 26.94 <0.0001 

(Ratio) 3@74.1 1 362 4.88 0.0278 

  Treatment x 3@74.1 2 362 4.28 0.0145 

  6@3.1 1 362 7.28 0.0073 

  Treatment x 6@3.1 2 362 1.16 0.3137 

  8@35.0 1 362 17.11 <0.0001 

  Treatment x 8@35.0 2 362 0.63 0.5306 

  9@62.0 1 362 3.18 0.0753 

  Treatment x 9@62.0 2 362 2.29 0.1023 

*indicates QTL detected with alpha =0.1 
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Table A11. Tests of effect slices of significant TRT x Marker interaction in the full model analysis of QTL x treatment interactions 

using PROC mixed in SAS with QTL modeled on the marker nearest the QTL peak. 

Trait 

Effect Treatment Num 

DF 

Den 

DF 

F-

Value 

P-Value 

Shoot Biomass * Treatment x 9@3.9 MI 1 446 3.77 0.0529 

(g)  AI 1 446 10.17 0.0015 

   CI 1 446 1.06 0.3031 

  Treatment x 3@4.3 x 3@58.0 MI 3 446 15.82 <0.0001 

   AI 3 446 11.68 <0.0001 

   CI 3 446 6.26 0.0004 

Tiller Number Treatment x 7@17.0 MI 1 394 0.66 0.416 

(count)  AI 1 394 25.32 <0.0001 

   CI 1 394 0.3 0.5872 

  Treatment x 3@4.0 x 3@58.0 MI 3 394 9.84 <0.0001 

   AI 3 394 11.48 <0.0001 

   CI 3 394 4.45 0.0043 

Root Biomass Treatment x 9@3.9 MI 1 389 3.88 0.0496 

(g)  AI 1 389 13.08 0.0003 

   CI 1 389 1.27 0.2599 

Root Number Treatment x 7@0.3 MI 1 416 0 0.9768 

(count)  AI 1 416 17.15 <0.0001 

   CI 1 416 1.48 0.2252 

  Treatment x 8@33.1 MI 1 416 10.76 0.0011 

   AI 1 416 0.86 0.3537 

   CI 1 416 0.46 0.4985 

SRL Treatment x 4@19.1 MI 1 358 0.74 0.3904 

(cm g-1)  AI 1 358 3.06 0.0809 

    CI 1 358 20.33 <0.0001 
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Table A11. (continue) 

 

Trait 

Effect Treatment Num 

DF 

Den 

DF 

F-

Value 

P-Value 

 Root Diameter Treatment x 7@0.3 MI 1 358 2.64 0.1052 

(mm)  AI 1 358 13 0.0004 

   CI 1 358 0.02 0.8993 

  Treatment x 1@68.0 x 2@78.8 MI 3 358 2.25 0.0818 

   AI 3 358 8.4 <0.0001 

   CI 3 358 9.11 <0.0001 

Lateral Root  * Treatment x 7@3.4 MI 1 434 0.19 0.6598 

Length (cm)  AI 1 434 8.17 0.0045 

   CI 1 434 0.46 0.496 

  * Treatment x 3@4.8 x 3@58.4 MI 3 434 20.95 <0.0001 

   AI 3 434 8.81 <0.0001 

   CI 3 434 4.64 0.0033 

1st Order Root  Treatment x 9@25.6 MI 1 517 0.2 0.6551 

Length (cm)  AI 1 517 21.51 <0.0001 

   CI 1 517 1.08 0.2982 

Root Length Treatment x 9@3.9 MI 1 415 1.03 0.3097 

(cm)  AI 1 415 10.85 0.0011 

   CI 1 415 0.74 0.3887 

RMR Treatment x 3@74.1 MI 1 362 0.56 0.4564 

(ratio)  AI 1 362 0.43 0.5104 

   CI 1 362 12.85 0.0004 

*indicates QTL detected with alpha =0.1. Treatments: Mock Inoculated (MI), Austin Inoculated (AI), 

Corpus Inoculated (CI). 
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Figure A3: Phylum level differences with plants growing in their native habitats. Black boxes 

around tiles indicate a significant different between Austin Inoculated (AI) and 

Corpus Inoculated (CI) environments (adjusted P value < 0.05). A red color 

indicates a higher abundance in the AI environment, while a blue indicates higher 

abundance in the CI environment. 
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Figure A4. Mock treatment microbiota are more similar than native treatment microbiota. The 

graph displays Bray-Curtis dissimilarities comparing inoculation within mock 

(Mock Austin Inoculated (MAI) vs. Mock Corpus Inoculated (MCI)) and native 

(Austin Inoculated (AI) vs. Corpus Inoculated (CI)) treatments levels. 
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Figure A5. Field and glasshouse derived samples host non-identical microbiota. Panels: (a), PCoA graph displaying all samples 

collected in the study; (b), phylum level differences between glasshouse and field grown samples. 
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SUPPLEMENTAL MATERIAL FOR CHAPTER 3. 

Figure A6. Selection of ASVs for QTL analysis. Panels: (a), scatter plot illustrating relationships between average abundance and 

prevalence in AI, CI, MAI and MCI microbial treatments with colored curves showing best fit for each treatment and 

dashed lines representing the 0.9 prevalence cutoff for the core microbiome and 0.4 prevalence cutoff for the extended 

microbiome; (b), Venn diagram showing shared and unique ASVs in the core microbiome; (c), Venn diagram showing 

shared and unique ASVs of the extended microbiome. 
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Figure A7. Relative abundance of phyla in the core microbiome in each treatment. 
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