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Abstract

Mobile Robot Operator for Downstream Oil & Gas

Industrial Facilities

John J Borer IV, M.S.E.

The University of Texas at Austin, 2020

Supervisor: Eric van Oort

This thesis considers the application of robots in downstream Oil & Gas facil-

ities. Automation is important in industrial facilities where improvements in safety,

efficiency, and environmental performance are becoming increasingly important. Here

we present a mobile robotic platform for the performance of inspection and survey

tasks in downstream facilities. We demonstrate a hybrid localization strategy using

a novel metric which allows for long term autonomy in large distributed industrial

environments. An environmental sensing package and gas source localization algo-

rithm are deployed on the platform to identify and localize fugitive emission sources.

Our mobile robotic platform, hybrid localization strategy, and gas source localization

algorithm form an autonomous remote operator capable of meaningfully contributing

to the advancement of automation in industrial facilities.
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Chapter 1

Introduction

This work examines and demonstrates the use of robotic systems for au-

tonomous localization and survey in downstream oil and gas (O&G) processing facili-

ties. System operators in O&G and similar facilities face hazards including poisonous

or explosive gasses, pressurized containers, and fall hazards. Demonstrating the ca-

pability of a mobile platform to automate a subset of routine inspection tasks that

expose operators to these hazards is the goal of this work. Capabilities demonstrated

here can be applied across a wide variety of industrial sites and domains.

1.1 The Need for Robots in Oil and Gas Facilities

Oil and gas processing operations take place across a broad range of industrial

sites including refineries, pipeline terminals, and tank farms. Each facility serves a

unique function but share in common a general hazard profile associated with their

role as processors of pressurized, flammable, and volatile liquids. Immensely complex

suites of industrial machinery which need continuous monitoring and inspection are

required to safely handle these hydrocarbon products. Containing pressurized liquid

or gas within myriad different pipes, valves, tanks, and pumps, some of considerable

age, is a challenging task. Among such a complex system there is the potential for
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Figure 1.1: Example refinery environment showing the complex integrated nature of a
hydrocarbon processing facility. Note how the individual process blocks are crowded
but separated by large open spaces. [13]

leakage and emission into the atmosphere of some portion of the processed volume.

These fugitive emissions are undesirable and their detection is the focus of

routine inspection tasks. Static sensing arrays are able to detect fugitive emissions,

but are prone to false alarm, and their cost and complexity limit the number that

can be installed on any one location. Human operators with handheld gas sniffers are

required to inspect emission hot spots when a static sensor signals a detection event.

A mobile robotic platform mounted with gas sensing equipment can perform this same

task without exposing humans to risk. In addition to fugitive emission sensing, robotic

platforms can be used to inspect valves and pressure gauges, audio emissions, and

safety conditions. Robotic labor augmentation allows the human operator to perform

tasks that take advantage of their critical thinking and creativity while eliminating

dull and dangerous routine duties.
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Furthermore, robotic platforms bring with them powerful computational ca-

pabilities. In addition to sensing, algorithms can process and examine many data

streams to provide the operator data to better understand facility state. This data

and analysis can be recorded and stored with perfect fidelity for future use in a uni-

fied information processing workflow. These capabilities avoid many of the errors

encountered by humans performing repetitive tasks under stress during which they

are expected to record and analyze data.

There are however downsides of robotic platforms. They lack critical reason-

ing, handle environmental dynamism poorly, and are constrained in their ability to

physically access the world. These downsides, along with numerous others not listed

here, generally mean that robotics platforms are well placed to augment operators

but not replace them. There is a readily identifiable subset of tasks that robotic sys-

tems excel at, but until facilities and workflows are made to accommodate automated

inspection systems, they will remain a tool in the tool box at the disposal of plant

operators.

1.2 Problem Definition

Our goal, to automate oil and gas facility fugitive emission survey tasks, is

comprised of two distinct parts. Part one is providing a system capable of performing

mobile patrols of a large processing facility. Part two is identifying and applying

algorithms to solve the fugitive emission source localization problem. This structure

mimics the role operators currently perform and builds new capabilities by taking

advantage of the tools a mobile robotic platform has.
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An array of technology, software, and hardware are required to effectively solve

both of these tasks. Our work draws on existing solutions to aspects of the problem

including robot navigation and localization, obstacle avoidance, and plume model-

ing. We then expand from these foundations applying new capabilities and structure.

This work seeks to demonstrate an extensible framework for robotics in industrial

environments and show the applicability of the open source Robot Operating Sys-

tem (ROS) for future research and deployment applications. Our goal of providing

solutions within the ROS environment influenced technical decisions and software

design.

Autonomous navigation in large structured environments like oil and gas pro-

cessing centers is challenging. Dynamic obstacles including vehicles and humans

require active local planning and object avoidance. In addition to dynamic obstacles,

the intricate 3D structure of process blocks makes characterizing the overhead space

a requirement for path planning.

Navigating across a large facility with areas of obstructed overhead view poses

two distinct problems. First, the facility is too large and and too dynamic to make

generating a comprehensive static map for localization feasible. Second, overhead

obstruction blocks Global Navigation Satellite Systems (GNSS) in large parts of the

facility which make localization and path planning with GNSS alone impossible. This

context can be visualized in Fig. 1.1 where large open spaces in between process

blocks, and crowded spaces within process blocks complement each other. We refer to

this context, of being unable to depend solely on a static map or GNSS for localization,

as hybrid localization. It is the hybrid localization problem which we solve by building
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and improving upon previously existing methods. Provided with the ability to localize

in hybrid environments and avoid obstacles during navigation, mimicking facility

operator inspection rounds is feasible.

Here we present a novel, metric based on GNSS carrier noise, re-initialization

framework to manage transitions between localization modalities which accounts for

the loss of sensor data needed by specific localization algorithms. The algorithm

presented here is evaluated in a real-world environment and demonstrated on a mobile

robotic platform localizing in an area characterized by regions that favor different

localization modalities where the regions are generally known and consistent over

time.

If static fugitive emission sensors in a processing facility alarm, personnel are

required to confirm the conditions which the alarm signals actually exist. Intermittent

leaks and calibration issues often cause false alarms which expend valuable operator

resources during inspections. The platform’s primary goal is the verification of static

emission sensor alarms. However during inspection tasks it can take advantage of its

environmental sensing package to provide a detailed characterization of the source

state to repair crews.

Accurately characterizing the dispersion of gaseous wind born pollutants like

fugitive hydrocarbon emissions from mobile robotic platforms is a challenging and

open problem. Wind models depend on large measurement sets and are described

by a large parameter space required to characterize the stochastic nature of fluid

flow. Additionally emission source rates may vary over time as processing pressures

fluctuate and machinery is actuated. Finally, sensors required to effectively capture
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the measurement needed to describe the emission source state are limited in their

accuracy, solution time convergence, and coverage.

Our robot platform carries wind and gas sensors to provide the environmental

sensing capability required to evaluate emission localization models. The stochastic

nature of the transport and emission phenomenon, and our inability to guarantee so-

lution convexity in complex environments encourages the use of Monte Carlo Bayesian

methods for source localization. We present an application of particle filtering using

the platforms sensing suite in concert with a Gaussian Plume (GP) transport model

to predict fugitive emission source state. This capability, instead of mimicking a pre-

viously performed task, introduces a new capability and meaningfully enhances the

facility operator’s ability to locate and diagnose problem emission areas.

1.2.1 Hybrid Global Localization Problem

Our mobile platform’s pose can be represented in a coordinate space with

n poses P = {P1, P2, . . . , Pn} . For the general case, localization is performed in

six dimensional space, but for our case assuming a level working area, this reduces

to two linear dimensions and one angular dimension in R3. Each pose Pi ∈ R3

can be represented as (xi, yi, θi). Where xi and yi are position and θi orientation.

Continuously providing an estimate of this 2D pose in sensor occluded environments

is the responsibility of a hybrid localization algorithm.
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1.2.2 Gas Emission Source Localization Problem

Fugitive emissions sources are considered as point sources with a fixed emission

rate. For the general case consider the R4 space with s sources S = {S1, S2, . . . , Ss}.

Each source Si ∈ R4 is represented as (xi, yi, zi, qi) where xi, yi, zi is the source position

and qi the source emission rate. While our research group has previously studied

multisource problems related to radiation here we consider only a single source S

with state invariant with respect to time.

The mobile platform as it traverses the facility work space produces m mea-

surements M = {M1,M2, . . . ,Mm}. Each measurementMi is a tuple (Wi, ci, ti, xi, yi, zi)

where the first term is a wind measurement, the second term a gas concentration,

the third a time stamp, and the final three a map location. Each wind measurement

Wi is composed of the wind velocity vi and wind azimuth φi. The concentration

measurement is used directly in the source localization algorithm and the wind mea-

surement is used to parameterize the emission forward transport model. Note that

the emission sensor used is considered to not be directionally dependent. Thus for

gas source localization, the pose of the robot for purposes of placing the sensor (as

opposed to hybrid localization) further reduces to R2 inclusive of (xi, yi).

1.3 Summary of Objectives

This thesis provides an understanding of the fully equipped mobile platform

“Philbart”, algorithms deployed on it, and its application in an O&G facility. Robots

in industrial facilities performing patrol and sensing have proliferated. Improvements

in and reduction in cost of sensing hardware like LIDAR, gas and wind sensors, and
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GNSS receivers has made long term multi-purpose autonomy possible.

Here we present the two main areas considered in this thesis; contributions to

localization for long-term autonomy and gas source localization. First, an algorithm

for maintaining an accurate estimate of the robots pose Probot with two intermittently

available localization modes. Second, an application for predicting the state of a single

fugitive emission source S given a set of measurements M automatically collected

around the work space. Specifically the material covered here includes,

• Describe the Philbart mobile robot platform and how it is equipped to operate

in an industrial facility

• Understand hybrid localization and how it deployed in the field

• Examine the how hybrid localization performed during a robot deployment on

the University of Texas campus

• Review gas source localization and its implementation

• Show the effectiveness of our proposed gas source localization algorithm in sim-

ulation.

We describe and demonstrate a field deployable mobile robotic platform plat-

form ready to advance the state of the art in downstream O&G facility automation.
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1.4 Organization

First, we review work already done in the three previously discussed focus

areas; applied robotics in O&G facilities, localization in the presence of sensor occlu-

sions, and gas source localization. All three areas are highly active areas of research

and industrial development. Relevant preexisting efforts are discussed in the literature

review.

A commercial platform and sensor suite were selected early in the timeline and

are described in Chapter Three. The literature review explains why this is possible as

multiple hardware options have proven feasible to meet the domain and task require-

ments. It is their autonomous capabilities that must be improved. Thus Chapter

Three reviews the Philbart robotic platform, its sensor payload, and summarizes key

design choices. A key requirement for the hardware selection was compatibility with

ROS through open interfaces or existing drivers. By using ROS, we can building on

existing software middleware and packages which dramatically reduce the software

engineering effort and assure the system can be developed in the future. In this

chapter, we discuss how ROS accelerated our development process and how it can ac-

celerate the deployment of robotic platforms in O&G facilities across the application

spectrum.

Chapters Four and Five go into detail on the hybrid localization and gas source

localization algorithms. Providing the requisite background information to under-

stand their deployment, design, and mathematical background. A background in

Bayesian statistics is helpful to fully understand the material. Each chapter presents

the results of experiments testing the respective algorithm. The original intention
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was to deploy and test the Philbart platform at a decommissioned processing facility

in Oklahoma. Unfortunately however the 2020 Corona Virus pandemic prevented

this from coming to fruition in time for this work. Instead we present the results

of hybrid localization on the University Of Texas campus and gas source localiza-

tion in a simulated olfactory sensing environment. Chapter six presents conclusions

and speculates on how further work can contiue to explore the application of mobile

robotics in industrial facilities.
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Chapter 2

Literature Review

Here we review published literature that addresses industrial automation in

O&G, hybrid localization, and gas source localization. Automation in O&G, including

mobile robots, is a relatively new area and focuses primarily on high cost offshore up-

stream applications. With the advent of cheaper hardware and more robust software,

automated systems are beginning to make their way into all parts of the ecosystem.

Hybrid localization technology is an area of active and fast-paced research

with huge implications for the future of autonomous vehicles. There is an established

corpus of material covering a broad range of applications, here we will explore some

of these areas to provide the context to understand our design choice. Emission

source localization has a long history tightly aligned with the progression of the

environmental movement, and here we will focus on its adaptation to mobile robots.

Our platform’s objective is primarily gas source detection with a secondary goal of

localization. For this reason, we approach the task differently than many proposed

solutions where source localization is the primary task.

11



2.1 Robotics in Oil & Gas

There are a variety of efforts deploying robots or remote systems in refinery or

related industrial settings. Here we focus only on those few systems that would meet

the necessary specification related to our objectives or include features worth noting

relating to their autonomous capabilities that could support the objectives above.

In 2009, Fraunhofer Institute for Manufacturing Engineering and Automation

in collaboration with the University of Stuggart deployed one of the first robots in an

O&G processing facility [27]. Researchers deployed the MIMROex mobile robot (Fig.

2.1) on an active offshore processing platform. Tasks such as visual inspection and

navigation were taught to the platform with a teach pendant and then executed au-

tonomously. A reflective landmark based localization scheme required modifying the

operating environment and created a burden on the operators tasked with deploying

and maintaining the system. During testing on an operational offshore production

facility MIMROex spent 50% of its time conducting reflective landmark mapping, a

considerable time sink. Operating the robot in potentially explosive atmospheres re-

quired ATEX certification [2] which extended development time and limited hardware

choices. For platforms intended to validate robot application in example industrial

O&G facilities the certification requirement is onerous and not necessary if an analog

environment can be produced.

Shell in coordination with Carnegie Mellon University developed the Sensabot

mobile robot (Fig. 2.2) in two design iterations, Mark 1 deployed in 2011, and Mark

2 deployed in 2015 [62]. The platform was designed for deployment in the North

Caspian on remotely operated production facilities in the Kashagan oil megaproject.
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Figure 2.1: MIMROex deployed on an offshore production facility inspecting a com-
ponent. [11]

Early in the design phase teleoperation was identified as the target operation mode

in order to build trust with skeptical plant operators and managers. The platform

is equipped with gas, noise, visual, and vibration sensors to assess plant operating

conditions. Mark 2 is equipped with a manipulator capable of moving or reorienting

its sensor payload in the workspace. In order to operate in hazardous environments

each component, including more than a dozen custom enclosures, underwent IECEx

certification [8]. The platform weighs 450kg and is capable of traversing multi-level

processing blocks with the use of custom installed climbing racks.

TOTAL launched the Autonomous Robots for Oil and Gas Sites (ARGOS)

challenge in 2013 [47]. Two applications were identified as the focus of the effort, the

first being emergency operations and the second, routine facility inspection. Dual

use robots are valuable because platforms meant solely for emergency response are

13



Figure 2.2: Sensabot Mark2 with boom mounted sensing payload for deployment in
hard to reach areas. The cog rail system gears, for multi-level traversal, are mounted
externally on the wheel hubs. [16]

used rarely and are difficult to integrate with operation teams. Team ARGONAUTS

(Fig. 2.3), a collaboration between Taurob and TU Darmstadt, won first place [46].

Autonomous behavior was blended with user supervised control to reduce the infor-

mation load during remote task execution. The open source ROS middleware was

used to implement arm motion planning, autonomous mapping, and navigation al-

gorithms. ATEX certification [2], a requirement of the ARGOS challenge, allows the

platform to be deployed in classified hazardous environments, but limited widespread

unclassified testing and autonomous capability verification.

While some aspects of the tasks were automated, none of the three platforms

utilized fully autonomous behavior, and none have been scaled to full widely used
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Figure 2.3: Argonaut, the ARGOS challenge winning platform deployed for testing
in Total’s Shetland gas plan. [1]

commercial applications.

Recently commercial hazardous atmosphere certified platforms have come to

market. ExRobotics [3] has deployed over 20 remote operator platforms in O&G

facilities across the globe. However they have limited autonomous capabilities, for

example localization and navigation tasks are controlled by following a stripe of orange

tape placed on the ground. Furthermore operators have run into roadblocks servicing

the certified platforms at their own facilities when mechanical problems surface.
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2.2 Hybrid Localization

Accurate and continuous estimation of a mobile robotic platform’s pose is a

requirement for long-term autonomy. The proliferation of inexpensive sensor tech-

nology and reliable open source software has facilitated the introduction of mobile

platforms into university campuses, industrial facilities, and transportation networks.

This project, in part, harnesses this technology and deploys it in downstream O&G

facilities. A common sensor suite for these platforms typically consists of a com-

bination of wheel encoders, an inertial measurement unit (IMU), stereo cameras, a

LIDAR, and a Global Navigation Satellite System (GNSS) receiver. Combined, they

enable a variety of sensor fusion filtering techniques used to generate a state estimate

of the robot’s pose. Each sensor has strengths which our proposed hybrid localiza-

tion algorithm takes advantage of so that a sensor is always available to produce an

accurate pose estimate.

Wheel encoders have the desirable property of measuring wheel motion regard-

less of external disturbance. When used to estimate robot pose however, slippage and

the lack of an external reference means that the uncertainty in the state estimate grows

without bound. Therefore a system cannot depend solely on wheel encoders, but they

are useful for estimates over short periods of time when no externally referenced pose

measurement is available.

LIDAR and GNSS produce data that can be used to generate an externally

referenced pose estimate with bounded error. Environmental characteristics such as

large feature-free areas, overhead obstructions, and indoor/outdoor spaces interfere

with the ability of either to continuously generate reliable information. Environ-
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mentally specific sensor-dependent occlusion degrades the ability of mobile robot

platforms using these sensors to track their position in commonly encountered appli-

cation domains.

In a large and complex real-world facility such as an industrial facility, sensor

occlusions can be caused by many environmental factors:

• Variation in the ground surface due to surface type, weather, etc.

• Including both indoor and outdoor regions of interest

• Communication lapses including WIFI, cellular, GNSS, or radio due to physical

occlusion

• Local interference with sensors due glare, electromagnetic interference, etc.

Robotic platforms must maintain a valid pose estimate while considering the

inevitable failure of sensors used to determine its pose.

2.2.1 Technologies

Optimal estimation of the change in pose of an outdoor mobile robot while re-

ceiving intermittent GNSS solution data has been previously examined in [33] [64] [67]

[38]. Fusing accurate wheel encoder odometry with available GNSS measurements al-

lows for continuous state estimation in the event of GNSS occlusions. Once GNSS has

been lost however the state estimate uncertainty, conditioned only on wheel encoder

odometry, grows without bound until a usable GNSS signal is reacquired. These

methods are predicated on the notion that GNSS coverage will be reacquired before
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Figure 2.4: Differential drive autonomous ground vehicle robotic operator Philbart
with LIDAR and GNSS receivers.

the state estimate degrades beyond a usability threshold. For applications where a

total GNSS blackout occurs for extended periods or wheel odometry degrades rapidly,

this is not the case.

Autonomous vehicles operating in urban spaces with degraded GNSS coverage

are an area of active research interest. Image-based localization [72] [74] is popular

for its low hardware cost and high reliability when accurately initialized. However it

depends on robust pre-execution environmental characterization which can be costly

and time prohibitive. Furthermore it requires conditions favorable for imaging that

are impossible to guarantee and can be effected by lighting, weather conditions, and
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proximity.

Simultaneous Localization and Mapping (SLAM) of large urban spaces with

GNSS drift correction [50] [69] is a proven way to generate large scale maps as in-

put for probabilistic localization algorithms like Monte Carlo Localization (MCL). In

large obstacle free areas, even if the map is accurately generated, will not be useful

for LIDAR based probabilistic localization algorithms. These techniques require ex-

tensive data management and may fail in dynamic environments such as industrial

facilities. Without dedicated data acquisition hardware and software pipelines this

solution can be unwieldy, over paramaterized, and not easily maintained.

Opportunistic sensing takes advantage of widely proliferated wireless net-

works [30] - of particular interest due to forthcoming 5G infrastructure - and can

provide robust continuous localization solutions for urban spaces where these sig-

nals proliferate. This however is predicated on the presence of the relevant networks

and the availability of appropriate sensor technologies, and neither may be available

in remote facilities where robotics can be most useful. Also high frequency signals

that are used by opportunistic sensing localization are easily degraded by physical

obstructions like those commonly found in industrial facilities.

Researchers [22] [24] have directly integrated GNSS measurements into existing

LIDAR based MCL algorithms. The contribution from each pose estimate data source

(GNSS or MCL) is weighted by the relative information contained in each. This

method is also predicated on the ability to generate and manage continuous maps

across large spaces which as previously mentioned is a challenging task for large

industrial facilities.
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Both [71] [32] consider transitioning between LIDAR and GNSS based local-

ization in structured hybrid environments. Partitioning the work-space into discrete

LIDAR or GNSS available zones provides an intuitive way to understand and manage

localization needs and thus limit the requirement for large and difficult to maintain

maps. Decisions to transition between localization modes are made based on either

GNSS position covariance or the operator’s learned experience. Without an informed

metric that accurately reflects sensor occlusion, switching between localization modal-

ities is a manual and error prone process.

Structured transition between LIDAR and GNSS localization based on sensor

availability is an efficient and effective way to maintain accurate hybrid localization.

Methods that require full facility maps which are difficult to acquire and maintain

are not practical for facilities without dedicated technical staff. Nor is opportunistic

sensing, which depends on signals which often are not present, a viable solution. Here

we propose a solution that addresses the problem of identifying the best localization

modality given a dynamic, sensor occluding environment.

2.3 Source Localization

Transport modeling and source localization has previously been demonstrated

in the literature, approaches to both are discussed here.

2.3.1 Source Localization in Other Disciplines

A diverse set of technical disciplines have an interest in locating a source

using measurements of the effect the source has on the environment. This general
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class of problems often has both optimization and Bayesian based solutions. For the

case of linear problems, linear optimization techniques or linear Bayesian methods

like Kalman filters are optimal. Non-linear domains are addressed with non-linear

optimization or non-linear Bayesian methods.

The electroencephalogram (EEG) is a technique to measure neuron activity

in the brain. Identifying the activity source center using noisy measurements and

an imperfect source model is a localization problem analogous to our own. He [37]

showed non-linear optimization under simplifying constraints produced a solution

which best explained the measurement in a norm squared error sense. Antelis [25]

proposed both Kalman and Particle filters to solve the same problem in the Bayesian

framework. Bayesian methods have the benefit of producing a most likely estimate

and covariance which quantifies the certainty of the estimate. Work in EEG neuron

activity source localization is challenged by the specification of representative source

models which can be used to accurately predict measurements. Specifying an accurate

source and transport model is also an important and challenging part of the gas source

localization problem.

Nuclear facilities can contain large amounts of hazardous nuclear material.

During processing, storing, or transporting the material radiation can be accidentally

released. Locating the source of errant radiation emissions is a task regularly per-

formed by radiation control technicians (RCT). During this survey process the RCT

may be exposed to radiation which is undesirable for their health and safety, and

facility operation. Howse [40] used an array of four stationary detectors to track the

position of a moving source using a non-linear least squares estimator. This problem
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formulation closely mimics our gas source localization model except that in our case

there is a single sensor that is moved to multiple locations via a robot and the source

itself is stationary. Anderson [48] applied a particle filter to localize stationary radi-

ation sources using a mobile measurement robot, in an approach directly analogous

to our own. The method developed by Anderson et al. allow for different transport

models to be used within the algorithm. In general, radiation localization benefits

from a more structured source model which describes how radiation intensity atten-

uates as the inverse squared distance. However when physical attenuation is taken

into account model complexity grows and the problem is challenging to solve for the

general case.

2.3.2 Gaussian Plume Transport Model

Efforts to understand the flow of pollutants in advective and diffusive flow

began as early as the 1920’s. It was realized early that ensemble averaged concentra-

tion profiles of an emission source undergoing advective and diffusive dispersal had

structure [49]. The GP model produces analytical forecasts of atmospheric dispersion

of wind borne pollutants by describing this ensemble averaged concentration profile.

It combines the estimates from Turner’s Workbook of Atmospheric Dispersion Es-

timates [70] with meteorological data to calculate a 2D Gaussian shaped profile of

dispersion as a function of atmospheric stability and downwind distance.

Intended to calculate the impact of emissions from industrial emission sources,

the model and its derivatives has found widespread acceptance by US regulatory bod-

ies [23]. Commonly evaluated at downwind distances of 0.5-100km and over extended
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Figure 2.5: Graphical depiction of the GP model. Note the model captures the
ensemble average of the oscillating instantaneous plume boundary, and that dispersion
σ increases as a function of downwind distance X. [5]

time spans, it has been shown to accurately model the dispersion of non-buoyant

emissions. The GP model was not originally intended to predict hectometer scale

dispersion on short time scales. In particular Pasquill’s [61] stability classes, com-

monly used to parameterize the model, describe atmospheric characteristics on a

regional level and multi-hour/day time scale. Regardless of intention, the model has

been used as a transport model of choice for gas dispersion estimation at a variety

of scales due to its simple parametrization, computational tractability, and relative

accuracy [41]. In chapter 5 we will examine the model more closely.

2.3.3 Filament Dispersion Model

Introduced in 2002 [31], the filament model describes dispersion in turbulent

fluid. It bridges the gap between complete discretized numerical simulation and time
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averaged ensemble averaging like the GP model.

Figure 2.6: The filament dispersion model. Puffs released by the emission source are
composed of filaments modeled as collections of molecules. As time progresses the
puffs disperse due to turbulent effects. [4]

Chemical releases are represented as a series of puffs. Each puff is composed

of a number of filaments where each filament is modeled as a cloud of particles whose

distribution is described by a 3D Gaussian. See Fig. 2.6 for a graphical depiction of

the abstraction. The model considers that point source chemical releases are manip-

ulated by three phenomenon,

1. Turbulent Diffusion

2. Molecular Diffusion

3. Wind Driven Advection

Diffusion drives dispersion whereas advection drives transport. The relative

length scale of the turbulence, referred to as eddy scale, effects how the turbulent
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diffusion effects the dispersion process. Molecular diffusion has a relatively small

impact on the macro scale when compared to turbulent diffusion and wind driven

advection. The three commonly considered turbulent diffusion scales and their effects

are given in decreasing eddy scale as:

1. Eddies larger than each puff transport the puff as a whole- these cause a sinu-

soidal pattern that when time averaged resembles the GP

2. Eddies on the same scale as a puff- greatly distorts each individual puff by

displacing filaments from the center axis

3. Eddies smaller than each puff locally mix the particles- this causes little change

to the macroscopic behavior of the plume

The filament model is used to validate our implementation of the source lo-

calization algorithm in a simulated environment.

2.3.4 Source Characterization Using Static Sensor Arrays

Middleton [57] applied the GP model to predict the concentration of nitrogen

oxides near an elevated freeway interchange. Modeling the freeway as a discretized

set of point sources produced a downwind concentration profile that agreed well with

ground truth measurements taken on a sub-kilometer scale. With the validated model,

they predicted the effect of freeway elevation on the downwind dispersal of highway

pollution on nearby residential areas.
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Bourque [29] used a Lagrangian puff model, which when averaged over time

approximates the GP model, to evaluate the deposition of sulfur dioxide downwind

of an elevated industrial emission stack. The Lagrangian puff model uses an auto-

correlated time scale dependent parameter and accounts for scale dependent wind

speed variation to model the dispersal of wind blown pollutants. Measurements ac-

quired with a truck mounted sulfur dioxide sensor driven across the plume and 29

static sulfation plates validated the model’s dispersal prediction’s over the downwind

region. Combining mobile and static sensors is a paradigm that can be applied to

O&G facilities where static gas sensing networks may already exist and can therefore

be augmented with the introduction of mobile sensing platforms like Philbart.

Hosseini [39] presents a Bayesian framework using the GP forward model to

estimate the source emission rate of particulate matter from an industrial lead smelt-

ing facility. Before data collection, the estimated emission regions were identified and

their centroids calculated. This reduced the state space of the solution to strictly the

multi-source emission rates. Particulate emission was estimated from seven distinct

zones, using measurements from downwind active and dust-jar accumulation sensors.

Although difficult to validate, the estimated source terms correlated well with the

relative activity in each emission zone.

The three cases shown above are predicated on a known emission source lo-

cation. Given a known source location, the source state space is limited to a single

variable describing the emission rate. Our case considers an unknown source location

and emission rate. The the application of the forward model is the same in both

cases regardless of the state size. Optimization and Bayesian methods which evaluate
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both the source emission rate and location provide more information. Without an

informative prior on the emission location as is the case for our deployment scenario

in large O&G facilities, estimating both terms is required, and is the problem solved

in our implementation.

Optimization is a method to find the minimum cost of an objective function.

This requires an initial guess for the source term and a set of measurements that can

be evaluated against model predictions. Pattern search, a gradient free optimization

technique, was used in [75] to estimate the complete source term of a single source

using the GP transport model. It is highly dependent on initialization, but converges

faster than direct gradient methods when initialized properly. Genetic algorithms,

which can avoid the local optima pitfalls of gradient and pattern search methods,

have also been explored. Haupt [36] demonstrated the potential of a genetic algo-

rithm to solve the global optimization source localization problem, including the wind

parameter state, using the GP forward model.

Bayesian methods, instead of producing a single optimal solution, generate

a probability density over the state space. Source term estimation is the process

of finding the emission rate and location that create the most peaked probability

density function in the state space. Although Bayesian methods explicitly account

for noise in the sensor, transport, and source model, accurately calculating these

noise terms is challenging and an understood limitation. Due to transport model and

measurement model non-linearity, Monte Carlo methods that directly sample the

probability distribution are commonly used [41]. Samples of the state space allow for

direct forward calculation of the transport model which ensures that the probability
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distribution is accurately transformed and unconstrained by the limitations imposed

by probability distribution models.

Markov Chain Monte Carlo (MCMC) methods construct an ensemble of Markov

chains colloquially referred to as ”walkers”, each representing a sample of the state

space. The integral of the walkers at any time step can be used to analytically re-

construct the probability density function at that point. Auto-correlated noise is

added to each sample, and states which are more likely, are more often accepted for

inclusion. After a convergence period the sampled distribution reaches a steady state

which represents the underlying state distribution.

Keats [45] used the adjoint of the transport equation with MCMC sampling

to estimate the mean and quantify the uncertainty of a source release in an ur-

ban environment. Use of the adjoint eliminated repeated forward transport model

evaluations, and by preserving computer power, allowed for more dense MCMC sam-

pling of the state space. This yielded a tractable solution capable of accurately

calculating the source term for an emission source in an urban area. Even when

not explicitly accounting for the complex urban environment perturbing wind pat-

tern, the method returned an informative estimate of both the state and uncertainty.

Other’s [43] [65] [73] expand on the use of MCMC methods for GSL. These include

different proposal distribution generation methods, sample inclusion heuristics, and

multiple sources respectively.

Sequential Monte Carlo (SMC) methods represent the state space with a dis-

crete weighted set of samples. Instead of storing an entire history of belief, from which

auto-correlated noise is generated from, each generation of samples is considered in-
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dependently. Efficiently and accurately drawing samples from the prior distribution

then weighting them proportional to the measurement likelihood, will produce a pro-

gressively more accurate estimate of the source term as measurements are taken.

Gunatilaka [35] presented an SMC method to estimate the source parameters of a

chemical plume source in a simulated environment. Importance sampling was used to

iteratively generate more samples in areas of the state space that contribute more to

the probability distribution. Progressive Correction was used to extract information

from sparse priors more quickly, which decreased convergence time.

Both Li [51] and Neumann [60] combine SMC with sequential importance

resampling on mobile robot platforms to localize an outdoor gas source in real exper-

iments. The use of mobile sensors allowed for the integration of informative search

strategies, discussed here in the next section. A challenge faced by SMC methods is

an inability to accurately quantify the uncertainty in the transport and measurement

model, which leads to spurious estimate uncertainty. With testing and calibrating

these noise parameters can be tuned or automatically learned. Our implementation

uses a SMC method, also called a particle filter, to solve the GSL problem. It uses im-

portance sampling and resampling to avoid degeneracy and maintain a full coverage

of the relevant state space.

2.3.5 Source Characterization Using Mobile Sensors

Development of increasingly sensitive sensors and compact low power elec-

tronic packaging has made possible the use of fully mobile gas sensors on vehicles,

robots, and drones. These technological advances combined with an increase in do-
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mestic natural gas productions and sharpened focus on environmental stewardship

have increased interest in optimal planning for gas emission survey platforms. In

addition to traditional in-situ sensors, remote sensors like infrared cameras can also

be used to localize emissions sources from a distance [26]. This sensing paradigm is

not considered here because it is out of the application project scope and cannot be

effectively applied when GSL is a secondary system objective.

Source seeking algorithms have been deployed on mobile robotic gas sensing

platforms, drones, and ground vehicles. Researchers have sought inspiration from

taxis-the movement of an organism in response to external stimuli. The response to

chemical stimuli like food, called chemotaxis, is a gradient based searched method

found widely in the biological world. Its effective application by terrestrial animals

sparked interest in the robotics community [55] [54]. There are however shortcomings

with chemotaxis, like the underlying assumption that concentration continuously in-

creases close to the source. Complex wind dynamics often rule this assumption null

and variation in wind direction during sensing can meaningfully impact its ability

to converge. Furthermore the ability of the platform to physically approach the

emission source cannot be guaranteed in an O&G processing facility. Also, the source

may be intermittent and temporally dependent on process activities. Finally, because

gas source localization is a secondary task of the platform considered here, physical

source localization behaviors like chemotaxis which require the directed motion of the

platform cannot be performed while executing the primary task.

Motion in response to fluid flow, anemotaxis, like wind or water is another

widely found biological source seeking behavior that has found interest in the GSL
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robotics community. Algorithms that mimic this behavior as found in nature like

plume crossing upwind search [42] take advantage of both chemical and wind sensors.

This dual dependency can makes them more robust to low wind speeds and intermit-

tent gas sensor readings. However the methods are predicated on the notion that gas

sources are upwind and that almost full facility coverage is available, which often is

not the case.

Mobile robotic gas sensing research focuses primarily on optimal search strate-

gies. Taking account for chemical gradients chemotaxis, fluid flow anemotaxis, or

information gain infotaxis. By and large the source term estimation algorithms, if

deployed, are the same as those applied with static sensor networks. Mobile systems

however benefit from more complete sensor coverage and the ability to optimize mea-

surement location, which can yield faster converging and more precise source term

estimates.

2.4 Summary

Mobile robotic systems have been deployed across a variety of O&G production

and processing facilities. The documented efforts shown focused on building a certified

platform for deployment in real hazardous environments. These systems prove that

systems can be certified, but at what cost. What is now needed is improvements in

their value as tools in a hazardous facility that is sufficient to justify the certification

expense. Informed by the difficulty and expense taken to deploy a certified system,

our approach is the opposite. Deploy a non-certified system to prove the concept and

then later when the applications have been proven, consider certified platforms.
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Hybrid localization is a widely explored but still open challenge. Considering

the deployment environment that our platform is intended for we adopt a rule-based

switching strategy. We improve on [71] [32] by introducing a new metric taking

advantage of the GNSS carrier noise ratio. We demonstrate that the carrier noise

ratio captures the transition between LIDAR and GNSS preferred environments. Gas

source localization is a secondary objective of our platform, and therefore a passive,

non-source seeking, particle filter localization strategy is used. We apply the GP

model in concert with the algorithm from [51], but instead consider a continuous

measurement space instead of a boolean space. Then we validate our algorithm

against using the filament model [31] in the GADEN simulator [58].
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Chapter 3

Experimental Platform

Since the purpose of this research is to develop improved autonomous capabil-

ities instead of certifiable hardware, the project could be completed with an assembly

of commercial off the shelf (COTS) robotic hardware and sensors that are compatible

with the Robot Operating System ROS. Using COTS systems instead of building a

prototype system, allowed the project to accommodate a relatively short development

timeline. Both lead-time for delivery and operational capabilities out of the box were

key requirements, as was assurances that components could be replaced or bought

at scale by the sponsor if the project was successful. For these reasons, this chapter

summarizes the hardware and software configuration.

A medium sized differential drive base was chosen as the platform. Computing

and sensor hardware was added as required to produce the capabilities needed to

serve the functions previously described. The on-board computer runs Linux and the

software stack is built around the ROS middleware.

3.1 Hardware

The base is a Clearpath Husky (Fig. 3.1), a widely available research and

industrial platform. Its battery system has been upgraded to a 40Ah high density
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Lithium Ion pack which can power the robot for four hours. This extended operating

window, twice what the lead acid battery provided, is important for operations in

large industrial spaces. Considering that the platform will be operating in an outdoor

environment the base has been weatherized to an IP55 rating. This means that it is

protected against damaging dust ingress and water spray.

Figure 3.1: Clearpath Husky base without external sensor payloads. Large pneumatic
tires allow the platform to safely travel across a broad spectrum of surfaces. [7]

3.1.1 Range Sensors

Ranger sensors provide valuable information for localization and obstacle avoid-

ance algorithms. Laser based sensors like LIDAR are accurate over long distances and

are useful for mapping and localization. Operating in a complex 3D environment like

a refinery however poses additional challenges considering that the 3D structure of

34



the environment must be considered for obstacle avoidance. Due to the high cost of

3D LIDAR systems the platform has been equipped with a 2D LIDAR and multiple

3D stereo cameras.

LIDAR

A forward facing SICK Tim571 (Fig. 3.2a) is mounted on the front of the

top plate. It has maximum range of 25m, an aperture of 270◦, and and angular

resolution of 0.33◦. It is rated for outdoor use and has an IP67 rating. Onboard

power is provided by the platform’s auxiliary power supply infrastructure. Data is

returned to the onboard computer via an ethernet port and fed directly into a ROS

enabled driver interface where it is then fed into localization and obstacle avoidance

algorithms.

RealSense Stereo Cameras

Four Intel RealSense D435 cameras (Fig. 3.2b) using active infrared stereo

vision are mounted on the forward portion of the top plate. Two are forward and two

are side facing, which provides robust coverage of the frontal 3D space. Each has a

maximum rated range of 10m that in practice depends on lighting conditions. Best

performance has been achieved during nighttime or indoor operation where direct

sunlight cannot impinge on the sensor. To reduce the volume of data processed and

remove noisier more distant measurements the range is artificially reduced to 5m or

less. Power is provided to the cameras through a common powered USB3 hub. Data

is fed to the onboard computer where it is used for obstacle avoidance.
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The capabilities of depth cameras are rapidly improving. Since the time of the

purchase new cameras are available using stereo vision with light [21] and ultrasonic

[19] sensors.

(a) Sick Tim571 weatherproof 2D LIDAR
[17]

(b) Intel RealSense D435 with active in-
frared stereo RGB-D

Figure 3.2: The two range sensors mounted on Philart, the LIDAR used for Monte
Carlo Localization and mapping, and the RealSense used for 3D obstacle avoidance
during navigation. [9]

3.1.2 Referenced Position Sensors

Measurement devices that directly capture information about the kinematic

state of the platform are critical inputs into localization algorithms. The platform

has two earth referenced sensors, both the GNSS and IMU, and one self referenced

sensor, the wheel encoders.

36



Global Navigation Satellite System

GNSS systems produce earth referenced measurements of the platform’s lat-

itude and longitude. These are then transformed into a local coordinate system in

which the measurement is then converted into the platforms (x, y) location with re-

spect to the deployment area datum.

Two Swift Navigation Duro (Fig. 3.3a) GNSS receivers, each with their own

antenna, are mounted on two offset corners of the platform. One receiver calculates

position, and the second is referenced to the first to calculate heading. Both solu-

tions vary in quality (i.e. precision and accuracy) considerably depending on satellite

coverage and solution correction availability. A real time kinematic (RTK) correction

when available allows for the calculation of solutions accurate to less than 2cm. In

commonly encountered GNSS occluded environments the coverage is sporadic and

must be accommodated by the localization system.

Inertial Measurement Unit

The inertial measurement unit (IMU) measures acceleration, angular position,

and angular rate with an accelerometer, magnetometer, and gyroscope respectively.

These measurement can be used in an absolute, relative, or integrated manner to

generate estimates of the robots kinematic state.

A Lord MicroStrain 3DM-GX5-25 (Fig. 3.3b) mounted on the underside of

the top plate feeds this data directly into the onboard computer via USB3 which

also provides power to the device. Magnetic interference and high vibration mean-

ingfully impacts the quality of the generated measurement data. Practice has shown
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(a) Swift Navigation Duro ruggedized
GNSS receiver (bottom) and antenna [18]

(b) Lord Microstrain inertial measure-
ment unit with triaxial accelerometer, gy-
roscope, and magnetometer [10]

Figure 3.3: Eternally referenced positions sensors on the Philbart platform.

the magnetometer to produce unreliable orientation data and the accelerometer to

produce mixed results in real field deployments. This inability to measure an accu-

rate magnetic azimuth influenced our decision to choose a static datum and manual

initialization in our hybrid localization algorithm.

Wheel Encoders

Each motor drive assembly, one for each side, has wheel encoders which mea-

sure the the angular displacement of the motor at its measurement frequency. Given

the wheel radius, this angular velocity can be converted into an estimate of the wheels

linear velocity. This velocity can then be integrated to position to provided a posi-

tion estimate referenced to the point where the platform started counting encoder

rotation.

Noise in the measurement device itself, slippage between the driving surface

and wheels, and an imperfect turning model reduce the wheel encoder’s position
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estimate accuracy. Over short distances, 0-25m the information can provide a valuable

and continuous position reference, but over greater distances, or after sharp turns the

accuracy of the estimate will degrade significantly. For this effort, the weight of

the sensors on the system odometry tuning model does not significantly impact the

default tuning. In a refinery setting, variation in the ground surface may impact

turning and thus it will be critical to validate the system’s odometry generated pose

with other sensing modalities.

3.1.3 Environmental Sensing

In order to paramaterize the gas source localization transport model and gener-

ate measurements for the particle filter the environmental sensing package consisting

of an anemometer and gas sensor is used.

Anemometer

The GP transport model, used to predict the downwind concentration of a

pollutant, requires the wind speed and direction as input. Under the assumptions

applied to the environment for the GP model the values measured on the robot are

assumed constant and uniform across the workspace.

Philbart is equipped with a MaxiMet GMX200 2D sonic anemometer capable

of measuring wind speed and direction from 0.01m/s to 60 m/s over a 360◦ azimuth.

It generates nearly instantaneous measurements and publishes them at 1Hz to a

RS232-USB3 adapter plugged into the onboard USB3 hub. Data is fed into a simple

ROS driver node which decodes the serial message and publishes the wind speed and
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azimuth as a 2D vector in the anemometer link frame.

Gas Sensor

To evaluate the likelihood function in the particle filter a measurement of the

true gas concentration is needed. Each particles evaluated likelihood is used to weight

it according to the probability that it represents the source which produced the true

measurement.

A RKI M2A explosion proof Methane sensor is mounted on Philbart’s sen-

sor rack. The measured concentration ranges from 0-9000 ppm and is given with a

resolution of 20ppm. It’s 30 second or less measurement response time means that

it does not provide an instantaneous reading, but on the time and space scales that

our platform operates at it is fit for the purpose. Both analog amperage and digital

outputs are available from the sensor’s control computer. Our platform uses the digi-

tal 2-wire RS-485 modbus communication protocol which allows Philbart to monitor

system state in addition to the measured concentration.
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(a) MaxiMet GMX200 2D ultrasonic
anemometer [6]

(b) RKI M2A explosion proof infrared
gas sensor, configure to detect methane
[14]

Figure 3.4: Philbart’s environmental sensing package measurements are used to eval-
uate the gas source localization algorithm.

3.2 Software

The onboard computer runs the Ubuntu 18.04LTS Linux distribution operat-

ing system. Open source robotics software is primarily targeted at Linux distributions

and provides a level of control that is more challenging to acquire on Windows sys-

tems. Furthermore, the robotics community has adopted Linux as the operating

system of choice writ large, which means that much of the open source software the

platform takes advantage of are poorly supported elsewhere.

In order to manage and control the interaction of all the different parts of the
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system the Melodic distribution of ROS is deployed on the computer. It is the most

widely distributed and used open source robotic middleware in the world and has

solutions to many commonly encountered problems such as visualization, communi-

cation, and control. Its system model is a graph structure (Fig. 3.5), where processes

are represented as nodes and communication between processes are represented as

edges called topics.

Figure 3.5: Example ROS graph structure. Nodes are represented as ovals inside of
their enclosing namespace and topics are represented by rectangles connected with
directed arrows to nodes. [15]

This graph structure divides the complex layout of the system into indepen-

dent pieces with discrete responsibilities and dependencies. In addition to nodes and

topics there is also a parameter server, services, and actions which provide additional

functionality. Onboard processes, each performed in individual nodes, are broken

down into three general categories,

1. Driver Nodes- Run, monitor, and process sensors
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2. Utility Nodes- Responsible for hardware control and monitoring system health

3. Function Nodes- Implement high level functionality like navigation, localization,

and sensing

This discretized structure, found both in ROS itself and our high level node

class abstraction, allows for rapid development, stable software APIs, and reliable

operation during development. It is notable that team Argonaut [46], the winner of

the ARGOS challenge, also used ROS to on their platform. This allows for energy

and time to be focused on testing and application instead of troubleshooting and

development.
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Chapter 4

Hybrid Localization

State of a mobile vehicle can be represented by its full, 12 member (6DOF)

spatial kinematic description:

x̄ = [ X θ Ẋ θ̇ ]T (4.1)

where X = [ x y z ] represent the linear dimension and θ = [ θR θP θY ] represent the

angular dimension. Dot notation is used to indicate the first derivative with respect

to time. Modeling limitations and noise in the process and measurement force us to

consider a most likely estimate of the state x̂, instead of the true state x̄.

4.1 Transformation Tree

The Robot Operating System (ROS) guideline for mobile platform coordinate

frames [56] establishes a best practice regarding how coordinate transforms should be

structured. The base link frame is a robot fixed frame attached at a fixed location on

the platform, like the center of the bottom base plate. Each onboard measurement is

collected in their respective sensor link frame and transformed to the base link frame.

The odom frame is a world fixed frame in which the pose of the robot is

refreshed at a high frequency. Estimates generated in the odom frame are generally
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Figure 4.1: Mobile robot transformation trees increasing in the number of externally
referenced measurements from left to right.

self-referenced and accumulate error over time. High frequency continuous data like

wheel encoder odometry is used to generate the odom → base link transform. For our

purposes the odom frame can serve as a short horizon reference but is not suitable for

extended periods of travel, particularly when turning sharply or on loose surfaces.

The map is a world fixed frame in which the robot pose error is bounded when

measurements are available. Unlike the odom frame it is not continuous and can

experience instantaneous discrete jumps. Low frequency discrete data like MCL or

GNSS pose is used to generate the map → odom transform. Incorporating globally

referenced measurements ensures that the map frame can be used as a long-term

reference.

When no externally referenced pose measurement is available, a mobile robot’s

transform tree includes only the odom and base link frames (Fig. 4.1a). Given either

a GNSS or MCL generated pose measurement, the tree includes all three primary

frames (Fig. 4.1b).
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4.1.1 Hybrid Localization Transformation Tree

When two externally referenced pose measurement sources are available - as is

the case considered here - each sensor’s measurement frame is considered individually

(Fig 4.1c). Latitude and longitude solutions generated by the GNSS receiver are

converted into an (x, y) position measured in meters displaced from a site specific

GNSS datum δGNSS. The datum is itself an earth referenced latitude and longitude

coordinate local to the operational area. The MCL pose is generated with respect

to an arbitrary map mcl frame whose origin carries no fundamental earth referenced

meaning and is a function only of the mapping algorithm used to acquire the map.

Given that the deployment area is large, maps can only be recorded in sub-

spaces of the navigable region. For this reason, the robot’s map frame was selected

to be the the GNSS measurement frame. This means that GNSS solutions can be

directly integrated into the estimator and that MCL poses first must be transformed

from the arbitrary map mcl frame into the robot’s map frame. In order to gener-

ate this transform the MCL and GNSS reference frames are registered using a least

squares optimization on correspondent points measured in both frames.

4.2 Pose Measurement Sources

The following section reviews our pose measurement methods to provide the

required background to understand our hybrid localization strategy. In general our

method can extend to include any number of globally referenced measurement sources.

Here however our method and the measurement heuristic we present are based on the

GNSS and LIDAR sensing paradigm available on our platform.
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4.2.1 GNSS

Orbiting satellites transmit encoded ”navigation messages” towards earth.

Each message includes the encoding satellite’s coordinate in the geocentric coordinate

system WGS-84 and a time generated by an on-board atomic clock. When received

by the platform’s on-board receiver the time of arrival is recorded. The difference

in time between message generation and its arrival is used to calculate the distance

between the satellite and receiver given the speed of the transmission media [28].

Given at least four unique satellites, trilateration can be used to calculate the

position of the receiver on the earth. Errors associated with the receivers on-board

clock mean that the calculated distances, referred to as pseudoranges, potentially

have significant error.

Two solution methods, code phase or the much more accurate carrier phase,

are used to calculate pseudorange. Code phase measurements depend on the com-

parison of the pseudorandom code generated between the satellite and receiver. This

code generation occurs on the microsecond scale which can introduce +100m error in

electromagentic signals traveling at the speed of light. The GNSS signal carrier phase

has a frequency of over 1 GHz and serves as a more accurate calibration reference,

facilitating the calculation of solutions with sub-centimeter error.

The variance of the four solution types available on our platforms receiver is

given in Table 4.1. These values were provided by the GNSS software manufacturer,

and then calibrated during real deployment experiments
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Table 4.1: Solution Accuracy

Solution Type σ (m)
SPP 25.0

SPP-SBAS 15.0
Float RTK 4.0
Fixed RTK 0.01

aStandard deviation is for horizontal position accuracy.

4.2.2 MCL

Monte Carlo localization is a well-established and widely deployed probabilistic

localization solution in robotics [68]. It takes advantage of a particle filter’s weighted

discrete representation of state and ability to accurately capture the effects of non-

linearity in the state equations.

For the 2D flat-world case considered here, MCL estimates the pose of the

platform given odometry u, a range sensor measurement z and a known map M .

Provided an initial state estimate (x, y, θ)0, an odometry motion model p(xi|xi−1, ui),

and a measurement likelihood function p(zi|xi,M), MCL will iteratively generate a

probabilistic pose estimate.

Requiring an initial state estimate distinguishes MCL from GNSS which is a

true earth referenced measurement needing only to be acquired and not initialized.

Initializing the MCL filter at the proper time is one of the primary tasks for our

hybrid localization implementation.
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4.2.3 GNSS Carrier Noise

GNSS receiver accuracy depends on generating code and carrier frequency

copies that replicate the signal generated by the satellite. If these signals are inac-

curately recreated then they cannot be matched to the measured signal. The carrier

frequency is more sensitive to signal interference than the code frequency and can be

used as an accurate proxy for GNSS solution availability [66].

When the noise is greater than the GNSS receivers tolerance the carrier to

noise ratio will drop below its threshold value,

C

N0

<
C

N0 threshold

(4.2)

In this cases the carrier tracking loop will loose the GNSS lock and begin

generating spurious noisy solutions. Field testing has shown that this threshold serves

as an effective and proactive indicator of GNSS solution availability which can be used

to manage localization sensor stream priority.

4.3 State Estimation

Extended Kalman Filter implementations, introduced in the 1960s [44], have

been used to estimate state in broad number of application domains. EKF’s are able

to handle moderate non-linearity while remaining computationally tractable. They

do this by linearizing the model about the mean estimate using the Jacobian. Our

system’s pose can be described by a nonlinear dynamic system,

xk = f(xk−1) + wk−1 (4.3)
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Where wk−1 ∼ N(0, Qk−1) and xk is our length 12 state vector representing the 6

DOF kinematic description. Measurements zk are considered nonlinear functions of

the state that are corrupted by zero mean Gaussian measurement noise.

zk = h(xk) + vk (4.4)

Where vk ∼ N(0, Rk) and h is the measurement transition function. Prediction of

the mean and covariance are shown in (4.5) and (4.6) respectively.

x̂k = f(xk−1) (4.5)

P̂k = FPk−1F
T + Qk−1 (4.6)

Here f is a 3D omnidirectional motion model derived directly from Newtonian me-

chanics for a point mass. Evaluating the predicted estimate error covariance (4.6) is

accomplished by projecting forward with the transfer function Jacobian F f evaluated

at the current estimated state xk−1 and corrupting with process noise Qk−1. When a

sensor measurement is received, the EKF correction step is executed,

Sk = HkP̂kH
T
k + Rk (4.7)

Kk = P̂kH
T
kS−1

k (4.8)

xk = x̂k + Kk(zk −Hkx̂k) (4.9)

Pk = (I−KkHk)P̂k (4.10)

First, the innovation covariance Sk and the semi-optimal Kalman gain Kk are cal-

culated. Then the corrected mean (4.9) and covariance (4.10) can be calculated in

parallel. The Jacobian Hk of the measurement transition function h evaluated at the

mean is then used to predict the measurement’s expected value.

50



4.3.1 Disturbance Rejection

The generic implementation of the EKF shown above will incorporate all mea-

surements regardless of the likelihood that the measurement was truly produced by

observing the state. An errant measurement is one that deviates from the predicted

value significantly. These measurements have the potential to meaningfully degrade

the quality of the corrected state estimate. Errant measurements can be received by

the EKF when the GNSS quality degrades, MCL is not initialized, or when sensors

malfunction. Rejecting these measurements ensures that transitions happen smoothly

and the estimate maintains its accuracy.

Mahlalanbois distance is a multidimensional generalization of the distance

between a point and a distribution (4.11). The inverse weighted squared difference

of the true measurement zk and the predicted the measurement Hkx̂k quantifies the

distance between the sample zk and the distribution N ∼ (Hkx̂k,Sk).

d2
M(zk) = (zk −Hkx̂k)

TS−1
k (zk −Hkx̂k) (4.11)

For a for a given measurement source specific threshold αs, a measurement

zsk will be rejected if d2
Msk > α2

s [63]. Effectively this acts as an estimate-uncertainty

scaled protection against spurious data.

4.4 Hybrid Localization

Mappable areas and areas with good GNSS coverage are often, but not neces-

sarily, complementary. A hybrid localization framework should be able to maintain a

continuous pose estimate in the presence of changing localization modalities. A static
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globally referenced coordinate frame to which both GNSS and MCL measurements

can be referenced must be established first. This frame should be unambiguous, fixed

in the real world, and readily measured with one of the sensing modalities. A GNSS

coordinate and East North-Up frame (ENU) fit these criteria and can be readily and

repeatably selected with survey tools or available web mapping services. Initializa-

tion of the state filter with a logged pose is required on startup. For the intended

application of our platform, a mobile survey robot, this reflects the reality of being

stored at a single location and repeatedly deployed on a survey route over the course

of an operational deployment.
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Figure 4.2: Deployment area shown from Google maps. The building in the upper
right corner is 19 stories tall. The overall space is approximately 60x60 meters includ-
ing a large open plaza, treed area, grass, pavement and large air exhaust outlet. [20]

Algorithm 1 details the logic behind measurement availability and filter re-

initialization. Algorithm 2 shows our EKF implementation and takes account for

disturbance rejection.

Four phases of operation defined by dominant localization modality were con-

sidered by [71],

1. GNSS

2. GNSS → MCL
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3. MCL

4. MCL → GNSS

Where the → indicates that a transition from an area of GNSS coverage to

MCL coverage occurs or vice versa. This pattern of GNSS→MCL→ GNSS describes

common outdoor robotics application areas, particularly in distributed industrial fa-

cilities.

Algorithm 1 Hybrid Localization

1: x̂← xinit {Initialize filter state}
2: while True do
3: if zGNSS then {Solution Available}
4: x̂← EKF (zGNSS)
5: end if
6: x̂← EKF (zMCL)
7: if CN0 < CN0lim then {Lost GNSS}
8: x̂MCL ← x̂ {Reinitialize MCL filter}
9: end if

10: end while

Algorithm 2 EKF w/ Disturbance Rejection

1: x̂k = f(xk−1)
2: P̂k = FPk−1F

T + Qk−1

3: ỹsk = zsk −Hskx̂k
4: if d2

M(zsk) < α2
s then {Accept measurement}

5: xk = x̂k + Kk(zk −Hkx̂k)
6: Pk = (I−KkHk)P̂k

7: else {Reject measurement}
8: continue;
9: end if
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GNSS

During GNSS only operation a low variance solution is available and this

measurement will dominate the state estimate. High variance MCL pose estimates,

unable to converge because of limited map coverage, will be considered disturbances

and rejected by the Mahalanbois threshold αs. If GNSS solutions become temporar-

ily unavailable wheel odometry maintains the state estimate, albeit with a rapidly

increasing estimate uncertainty. This increase in uncertainty is actually desirable

as it ensures that the eventually reacquired GNSS solution will not be rejected by

the estimator’s disturbance rejection threshold which is proportional to the estimate

covariance.

GNSS → MCL

A transition from GNSS to MCL is detected when the average carrier noise of

all satellites drops below the threshold CN0lim . Empirical evaluation has shown that

for outdoor transitions and outdoor to indoor transitions value of 150-165 indicates

a transition. More complete characterization of the threshold metric is left for future

work. If this threshold is reached and the error between the current pose estimate

and MCL estimated pose is large, then the MCL filter is reinitialized with the current

best state estimate. This pose error metric ensures that the filter is not repeatedly

reinitialized after GNSS coverage is lost and MCL has started producing the state

estimate.

If the MCL filter is mistakenly reinitialized, and a transition has not occurred

the algorithm will continue to accept both GNSS and MCL estimates. Without an
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information rich map the MCL estimate will degrade and its data will be rejected by

the Mahalanobis distance threshold.

MCL

Once initialized and given an information rich map, MCL will produce a low

variance pose estimate that will dominate the EKF filter estimate. If errant GNSS

solutions are received during this time, they will be rejected as disturbances by the

Mahalanbois threshold and ignored. If they are not rejected, the large covariance of

the low quality SPP or SPP-SBAS solution (Tab. 4.1) means that the filter effectively

ignores them, in favor of the high confidence low variance MCL pose estimate.

MCL → GNSS

Transitioning from MCL to GNSS cannot be initiated in the same way as a

GNSS to MCL transition. The reason for this is that the system is dependent on

the re-acquisition of a high quality GNSS solution, something which is out of the

platforms control, unlike the initialization of a map. As the mapped area is exited

the MCL solution correction degrades, wheel odometry dominates the estimate, and

the state covariance increases. This increase is beneficial because it ensures that when

a high-quality GNSS signal is reacquired it will not be rejected as a disturbance by

the Mahalanbois threshold.

After the required number of satellites have been brought into view a solution

can be calculated and used for localization. Initially these measurements can be noisy

and rejected by the rejection threshold, but practice has shown them to converge
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rapidly. Once reacquired GNSS can be used to localize in large open, feature sparse

areas.

4.5 ROS Implementation

The framework described above has been implemented on a Clearpath Husky

running Ubuntu 18.04 LTS and ROS Melodic as summarized in 3. In addition to

generic utility nodes, three algorithm implementation nodes are responsible for im-

plementing hybrid localization.

ekf se map: The robot localization package [59] provides an EKF sensor fu-

sion node which we use to generate the map to odom transform. This transform

localizes us within the world frame. It takes as measurement input the on-board

wheel odometry, MCL generated pose, and GNSS generated 2D position.

It provides an extensible EKF framework and can include as many kinematic

sensors as are available. Special care to not include duplicate state measurements

has to be taken to prevent filter jitter. Hybrid localization’s management of two

competing MCL and GNSS pose measurements ensures this does not happen.

navsat transform : The robot localization package also provides a GNSS co-

ordinate transformation node. It is responsible for translating lat/long solutions into

a coordinate frame consistent with a local datum and east-north-up right handed

frame. Conversion of the lat/long into an (x,y) point in a local frame allows direct

comparison of GNSS with the other measurement modalities. Standard ROS imple-

mentations of the node initialize the datum at the location of the first GNSS solution.
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Our application requires that coordinates are consistent across deployment cycles and

therefore we take advantage of a static datum initialized at the same location every

time.

amcl : The ROS amcl package [52] provides an adaptive MCL implementa-

tion that tracks the 2D pose of a robot against a provided map. A laser scan, map,

and odometry transformation matrix are required node topic inputs. This adaptive

particle filter measures the approximation error introduced by the discrete representa-

tion with the Kullback-Leibler distance. As the approximation error increases more

samples are added and vice versa, which has been shown to reduce computational

overhead and accelerate convergence.

4.6 Hybrid Localization Results

Testing of the hybrid localization framework presented here was performed

both on a university campus and a separate research facility with infrastructure anal-

ogous to an industrial facility. Shown here is an example test from the University

of Texas campus (Fig ?? The platform has successfully localized itself in both en-

vironments and autonomously executed navigation and planning. For the results

presented in this work, the mobile platform was teleoperated through environments

known to require a hybrid approach for localization. odometry, LIDAR, and GNSS

messages were recorded. This data was then fed to the hybrid localization nodes and

to determine their efficacy.

The qualitative comparison of four different localization modalities is seen in

Fig. 4.3. Raw odometry tracks the route but suffers from continual drift and some
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Figure 4.3: State estimate considering all four localization paradigm. Robot traveled
clockwise starting and ending in the lower right hand corner

measurement discontinuity. The platform was started in a poorly mapped area which

means the MCL estimate relied almost entirely on odometry prediction and closely

mimics the raw odometry track. Its continuity and smoothness is a function of the

EKF’s disturbance rejection which discarded the majority of the incoming MCL pose

estimates.

GNSS generated a consistent and accurate estimate in the first half of the

course where satellite coverage was robust. However adjacent to large overhead field

of view obstruction the receiver was unable to calculate a solution and the estimate.

Depending on odometry only, the system significantly deviated from the actual state.
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Before the platform fully passed the obstruction, the receiver reacquired a noisy and

inaccurate solution which, resulted in jittery and discontinuous behavior of the pose

estimate.

Figure 4.4: Carrier noise ratio and satellite count as a function of time. Note the
CN0 threshold and its rapid response to solution loss.

The developed Hybrid localization generated the most accurate measurements,

rejected disturbances, and both autonomously and smoothly transitioned between

localization modalities depending on availability. Re-initialization of the MCL filter

was triggered by the reduction in the carrier noise ratio below the threshold value (Fig.

4.4). The CN0 responds more quickly than satellite count when obstructions block

the overhead field of view resulting in more timely re-initialization. Another benefit
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of CN0 is that it is calculated for each solution individually. This is in contrast to

the covariance of the GNSS estimate which depends on its time history and therefore

generates a lagged signal quality metric.

Note that an imperfect map mcl → map transform, acquired before testing,

skewed the final position of the robot. For future deployments it will be possible to

improve, validate, and register the needed transform.
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Chapter 5

Gas Source Localization

Given a known but randomly selected source location (xs, ys, zs)i and emission

rate qi, these data can be used to parameterize and evaluate the predicted pollutant

concentration C(x) = h(x) at any location x in the state space, where h(·) is the GP

transport model.

Given a concentration measurement, the likelihood that the predicted pol-

lutant concentration C(x) was generated by the known but random source can be

evaluated. Our particle filter algorithm uses this prediction, measurement, and like-

lihood evaluation cycle to generate an estimate of the source state

5.1 Setup

Measurements of pollutant concentration ck are collected across the 3D inves-

tigation space at (x, y, z)k. Concurrently a platform mounted meteorological station

captures environmental wind speed vk and azimuth θk. These nk independently gen-

erated data are time synchronized with a ROS message synchronizer and fed directly

into the filter running on the onboard computer.

Gaussian Plume: General time-dependent 3D concentration gradient of a substance
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dispersed by diffusion and advection is described by the advection-diffusion equation,

∂C

∂t
= −~∇ · (~uC) + ~∇ · (D~∇C) + P (5.1)

The first term represents the concentrating effect of advection, the second the dispers-

ing effect of diffusion, and the last is the source term. Solution of the full differential

equation for the general case is computationally expensive and difficult to accurately

model. For the special limiting case of a static solution and the following conditions,

1. Source emission rate is constant and positive

2. Emission are produced from a single stationary source

3. Dispersion is strictly a deterministic function of downwind distance

4. Advection velocity is constant and only in the horizontal 2D plane

5. Workspace is 2D and emissions cannot permeate through the ground surface

These conditions, while applicable for long term time averaged plume model-

ing, do not accurately capture short term plume emission behavior. Which can result

in over predicted downwind concentration or an inaccurate source location azimuth

in addition to other complications. The downwind concentration can be predicted

with the given GP model as,

C(x̃) =
q

u

1

2πσyσz
exp

(
− ỹ2

2σ2
y

)
exp

(
− z̃2

2σ2
z

)
(5.2)

63



Where coordinates denoted with a tilde are represented in a right handed

source local frame with its origin at the source location and positive x-axis in the same

direction as the wind azimuth. The vertical and horizontal dispersion parameters σy

and σz, functions only of downwind distance, are given by,

σy,z(x̃) = ay,zx̃(1 + by,zx̃)−cy,z (5.3)

Parameters a, b, c are the static wind parametrization which describe the rela-

tive effect of advection and diffusion in the horizontal and vertical planes. These are

specified based on the wind parameterization stability class.

Measurement: Pollutant concentration measurements zk corrupted by zero mean

independent and identically distributed Gaussian noise ωk are collected across the

task space.

zk = Ck + ωk (5.4)

Associated with each of the nk concentration measurements is a 3D globally

referenced coordinate (x, y, z)k. Measurement models are dependent on the sensing

modality and sensor errors. Furthermore, data screening can be applied to reduce

the variability inherent in gas concentration measurements. This work considers the

most general cases of instantaneous real value measurements.

Likelihood Function: Rearranging (5.4) considering that ω ∼ N(0, σ2), the proba-

bility distribution function of the measurement can be written as,
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p(zk; θ) =
1√

2πσ2
e−

(zk−Ck)
2

2σ2 (5.5)

On the right, the exponential error term calculates the difference between the

measured concentration zk, a random variable, and the predicted concentration Ck.

The relationship p(zk; θ) represents the probability of the measurement given a de-

terministic source parameter θ. When the predicted concentration and the measured

concentration are the same the likelihood is maximized. Considering the entire set of

Zk measurements, the likelihood function is defined as,

ΛZk(θ) , p(Zk; θ) (5.6)

This likelihood notation is structured to show that the data Zk has already

been acquired, and that it is the parameter set θ that most likely produced the

observed data set, which is extracted from the measurement history with a Bayesian

filter.

5.2 Particle Filter

Belief in state is represented by a probability density function. As measure-

ment data is collected across the workspace the belief is updated based the new

information. Noise corrupted measurements and processes require that statistical

estimation techniques like particle filtering be applied. These have the benefit of

providing an estimate of the most likely value and a measure of confidence in that

estimate.
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A Gaussian transformed by a nonlinear function, like the GP model is no longer

Gaussian. We consider here the application of nonlinear statistical techniques whose

formulation is not dependent on the Gaussian probability density model assumption.

Particle filtering is one such technique that represents belief in state by discrete

particle approximations. This discrete particle approximation allows for the analytical

evaluation of the forward model and the distribution’s moments.

Initialization: An area of investigation, for example the area of the industrial facility

being surveyed is randomly seeded with np state vectors θj drawn from a uniform

distribution over the state space, each representing a potential source. This initial

set of particles p represents the discrete a priori belief in state. Associated with each

state is a weight ωj that quantifies the relative belief that the particle represents the

true state. The state vector and its associated weighting is grouped into an individual

unit pj = [xs ys zs q ω]j called a particle. As the number of particles tends to infinity

the discrete probability approximation approaches the true distribution exactly.

Reweight: Each new concentration measurement provides information about the

true state. A particle which more closely represents the state that generated the

measurement will be weighted more heavily. A weight update for each particle is cal-

culated based on the similarity between the predicted concentration C(θj) produced

by the source the particle represents and the measured value zj.

wj(i) = wj(i− 1) ·Nzj ,σ2(C(θj)) (5.7)

To ensure that the particle set represents a axiomatic probability distribution
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a normalization such that
∑np

j=1wj = 1 is performed. Log-likelihood normalization is

used to prevent numerical underflow on precision limited computers.

wj(i)← log(wj(i)) + log(Nzj ,σ2(C(θj)))

wj(i)← exp(wj(i))−max(w(i))

wj(i)← wj(i)/sum(w(i))

Resample: Areas of the state space that contain the true source state should con-

tain more samples. Resampling is the process that places particles in areas of high

probability, increasing resolution, and removes particles from areas of low probability.

When the number of effective particles npeff falls below a predetermined

threshold npmin the resampling algorithm is executed. Effective particle count is

used to quantify the number of particles whose weight is sufficiently low that they no

longer contribute to the probability belief. If the weight is equally distributed among

all np particles then npeff = np and it the weight is carried by one single particle

then npeff = 1.

The well established multinomial method in Alg. 3 at line 12 implements the

resampling step. Particles are chosen from the particle set using a uniform random

distribution across the particle cumulative weight sum. A sample with a higher weight

is more likely to be replicated.
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Algorithm 3 GSL Particle Filter

1: Initialize np particles p
2: Load measurements Zk

3:

4: for i = 2 : nz do
5: C(θj) = h(θj) {Predict}
6: wj(i) = wj(i− 1) ·Nzj ,σ2(C(θj)) {Reweight}
7: wj = wj/

∑np
j=1wj ∀.j {Normalize}

8: neff = 1/
∑np

j=1w
2
j {Calculate effective particles}

9:

10: if neff < npmin then
11: Initialize particle set pnew
12: for j = 1 : np do {Resample}
13: η = U[0,1](j) {Pick}
14: Find m such that

∑m−1
l=1 wl ≤ η <

∑m
t=1wt

15: pnew(j) = p(m) with wnew = 1
np

16: end for
17: p = pnew
18: end if
19: end for

5.3 Simulated Test Environment

All the hardware components necessary to evaluate the system have assembled

and integrated with the mobile platforms and data from each sensor is available in

ROS. Due to travel and other restrictions related to the Corona Virus pandemic, we

were not able to complete hardware testing for this report, and the effort is scheduled

to be completed in the near future.

However, a ROS integrated mobile robotic olfaction simulator GADEN [58]

allowed a preliminary evaluation of our gas source localization implementation.
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GADEN breaks simulation into three steps:

1. Environment Definition

2. Wind Simulation

3. Gas Dispersion Simulation

Environment Definition

The environment consists of the 3D structures that interrupt or modify fluid

flow. GADEN allows the construction of these environments using publicly or com-

mercially available computer automated design programs. Two 3D polymesh descrip-

tions of the environment, describing the internal and external structure, are exported

and taken as input for the wind simulation step.

Wind Simulation

GADEN uses the open source computational fluid dynamics (CFD) tool Open-

Foam [12] to simulate the wind velocity in each discretized cell. OpenFOAM uses the

3D polymesh generated in the environment definition step as input. The complexity

of CFD modeling is a challenge for non-expert users therefore accepted generic pa-

rameterizations of the model and solver for non-compressible air flow are used with

the GADEN package. Simulated wind flow patterns, either static or dynamic, are

exported from OpenFOAM for use in the gas filament dispersion simulator.
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Gas Dispersion Simulator

Integrating the filament model from [31] into a ROS package is the most signif-

icant contribution of the GADEN package. The filament model previously discussed

is run offline with the output of the environmental model and CFD simulation. Its

output, describing the filament dispersion, is stored in configuration files and then

replayed for simulation. In addition to simulating the filament model the package

provides ROS integrated simulated gas and anemometer sensors.

5.4 Results

Presented here is the results of a test of our particle filter gas source localization

algorithm in the GADEN olfaction simulator.

Simulated Environment

In Fig. 5.1 the simulated environmental is shown. On the left hand side

the RGB axis represents the origin of the map frame that pose estimates are made

with respect to. To the right of the RGB axis a green rectangular bollard that

represents the gas source. Emanating from the top of the gas source are black particles

representing the emitted filaments. On the right side of the figure the blue body is

the environmental sensing platform, containing both a simulated anemometer and gas

sensor. The green arrow represents the simulated anemometer measured azimuth.

The GADEN filament model is paramaterized in a launch file and evaluated

before run time and stored for replay during simulation. A variable rate of between

zero and ten filaments released are released each second. Each filament has an emis-
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Figure 5.1: Simulated GADEN olfaction gas source emission environment in RVIZ.

sion concentration of 10ppm at its center and an initial standard deviation of 10cm.

Each filament is disturbed by turbulent eddies as it is transported by advection. The

filament standard deviation growth ratio is 10 cm
2

s
and sampled white noise with a

standard deviation of 2cm is added at each simulation time step.

A sample of the measured gas concentration is shown in Fig. 5.2 given as

ppm with respect to time. It is readily apparent that modeling the measurement

signature is challenging. Even when downwind of the source, total measurement

blackouts occur for extended periods of time. Controlled field tests and experience

with emission modeling on short time scales has shown the intermittent character of

concentration measurements to be a major complicating factor. A known limitation

of the GP model is that it explicitly assume concentration is invariant with respect

to time.
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Figure 5.2: Measured gas concentration in the GADEN simulator. The sporadic noisy
measurement replicates conditions described in controlled field tests.

Anemometer measurements from GADEN are shown in Fig. 5.3. The cell

velocity calculated during the pre-processing wind simulation step is taken at the

anemometer location in the map frame. Samples from a Gaussian distribution are

then drawn and used to corrupt the simulated wind cell velocity. This corrupted

measurement is then published to ROS by the simulated anemometer node. Our

gas source localization particle filter node subscribes to this topic and receives the

simulated measurement. It is used to parameterize the forward transport model to

evaluate the likelihood function for each particle.

As measurements are taken and processed by the filter, information is ex-

tracted from them. This information is used to update our probability distribution

which represents our belief about the true source state. Without an informative prior

our filter initializes the state space with a uniform distribution of particles. This is

represented in Fig. 5.4 by the random initial spread of the particles represented by

red cylinders. As time progresses and measurements are taken, the particle filter is
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Figure 5.3: Measured wind direction (red) in radian and speed (blue) in m/s measured
by the simulated anemometer in the GADEN simulation environment.

evaluated continuously. Particles in unlikely portions of the state space are elimi-

nated and areas with a high likelihood are populated with more particles. In Fig. 5.5

the filter state is shown mid-convergence after partial information has been extracted

from the measurement stream. Quantifying time to convergence is challenging be-

cause of uncertainty around the state space size, measurement information value, and

noise model. Shown in Fig. 5.6 is the filter state after convergence. The particles,

themselves each representing a simulated source, have converged to approximately

the same location as the simulated source represented by the green bollard.

The convergence of the filter’s pose estimate is shown in Fig. 5.7 where the blue

Figure 5.4: Particles imme-
diately after initialization

Figure 5.5: Particles con-
verging to the true source
location

Figure 5.6: Particle con-
verged near the true state

73



data represent the filters most likely belief at each update and the orange dot is the

simulated true state. Immediately after initialization, the most likely filter estimate,

is the center of the state space over which the uniform distribution is sampled over,

the coordinate (0,0) in this experiment. The particle set covariance at initialization

is infinity. Given facility maps, or an a priori assessment of likely emission sources,

an informative prior can be used to reduce convergence time and the likelihood of a

spurious source estimates.

On startup the information available in each measurement is relatively large

compared to the information encoded in the particle set. Therefore the first 10-

20 measurement evaluations cause large updates to the particle set when resampled.

During this initial convergence, before the probability density is well structured by the

likelihood function, the estimate can temporarily diverge from the true state. Before

particles have been culled from unlikely areas the likelihood of many of the particles

will be low and contribute little to the effective particle count. Resampling happens

often when the first informative measurements are received because the number of

effective particles after each reweighting is likely to be below the threshold.

Convergence to the true state cannot be guaranteed because of the stochastic

nature of the filament dispersion model and inaccuracy in the assumptions behind

the GP model. Our results visualized in Fig. 5.8 show the filter building an informed

prior on the source location from noisy and discrete environmental measurements.

This prior can then be given to plant operators who can locate and then eliminate

the emission source. After the particle set has converged to a pointed likelihood

distribution, updates happen less frequently and the incremental change in the most

74



Figure 5.7: Most likely state estimate
(blue) and the true state (orange). Ini-
tial resampling causes large updates in be-
lief when compared to later measurements
which only produce small incremental up-
dates after the filter has converged.

Figure 5.8: Error between the most likely
estimate and the true state as a func-
tion of resampling measurement steps for
the two linear dimensions. The measure-
ment device was for this test was static
and therefore the horizontal resolution (y-
position) performed worse than the verti-
cal.

likely estimate goes to zero. The peakedness of the likelihood function derived from

the GP model is dependent on the coordinate direction and wind parameterization.

This likelihood anisotropy results in a 1m error in the y-position and less than 0.1m

of error in the x-position. In real deployments the motion of the robot horizontally

across the plume increases horizontal resolution and decreases horizontal position

error.

5.5 Roadmap for Hardware Testing

As stated at the beginning of the chapter, the Corona Virus prevented devel-

opment and testing of the localization model on hardware. Both gas and anemometer

sensors have been integrated with the Philbart platform in hardware and software.

The particle filter has also been integrated in ROS to be compatible with the pub-
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lished environmental sensor message types. Testing at the University of Texas is

planned for Spring 2021. A controlled CO2 release will serve as a surrogate for a

fugitive emission leak and the gas sensing hardware on the platform will be adjusted

to measure CO2 instead of methane.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Modern robotic platforms in downstream O&G facilities have the potential

to enhance safety and efficiency. This effort focused on addressing to capabilities

that are necessary for robust deployment and added value in industrial environments:

robust navigation and fugitive emission detection and localization.

6.1.1 Philbart

Previously deployed platforms like the MIMROex, Sensabot, and Argonaut

underwent rigorous hazardous environmental certification. Considering however that

the role these platforms will play in facilities is not proven, the expense in time

and money to certify platforms may not be justified. There are a broad range of

analog industrial facilities without hazardous atmospheres that can be used to validate

the application of remote operators. Since these systems show there is a path for

certification, reserving the certification process for after a capability has been proven

will encourage the testing and deployment of robots in O&G facilities.

This work, although interrupted by the 2020 Corona Virus pandemic, demon-

strates that uncertified platforms can deploy and validate remote operator capabili-
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ties. Large industrial companies are risk averse and plan for piece-wise integration of

new technology. Furthermore capital expenditure on large technology programs hap-

pen over long time scales which means it is important that the use case is validated up

front. Our use of commercial off the shelf hardware and open source software meant

that the platform could be developed rapidly and use case proven with significantly

less up front engineering than other efforts.

6.1.2 Hybrid Localization

Maintaining an accurate pose estimate of Philbart is critical for all remote op-

erator tasks. This is an active and broad area of research and technical application.

Localization solution complexity varies widely, from single use run time algorithms

to complex full area map reconstruction. The refinery environment and practical

limitations on technology solutions available to field operations are important con-

siderations. Also the limited availability of signals that can used for localization is

unique to large industrial processing facilities.

Our hybrid localization strategy takes advantage of the complementary avail-

ability of GNSS and LIDAR localization solutions, and accuracy of inexpensive GNSS

and LIDAR sensors. Collecting and maintaining accurate full facility maps for MCL

algorithms is not feasible. Nor is complete GNSS satellite coverage available in re-

finery facilities. Our solution is to separate the workspace into areas of preferred

sensing modalities and arbitrate the transition between them. Maintaining an accu-

rate pose estimate across challenging sensing occluded environments allows for long

term autonomy and minimum operator input or supervision during deployment.
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6.1.3 Gas Source Localization

Sensor networks in oil & gas facilities are designed to detect explosive or poi-

sonous gas levels. They are prone to false alarm and cannot localize an emission source

except by its proximity to the sensor. The environmental sensing package and gas

source localization algorithm deployed on Philbart augments facility operators abil-

ity to detect emissions. When an alarm is triggered the platform can automatically

deploy to the area of concern to verify the conditions the alarm indicates actually ex-

ist. Older facilities with outdated sensor networks frequently experience false alarms

which require valuable facility operator time and effort to rectify.

Mobile robot gas source localization, instead of mimicking a previously per-

formed task, is a new capability introduced by our platform to the downstream space.

The ability of mobile robot platforms with gas and anemometer sensors to localize

emission sources has been proven in laboratory and field setting but not in real in-

dustrial facilities. Our algorithm when deployed has the potential to augment the

operator with a new capability that will increase safety and allow for the elimination

of fugitive emissions.

6.2 Future Work

Robotic platforms in industrial facilities are proliferating across the globe.

Development of a well equipped mobile platform, capable of guaranteeing localization

for long term autonomy, and providing accurate gas source localization algorithms is

only part of a diverse technical field. While this work explored these three ideas there

is exciting work still to be done.
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6.2.1 Robotic Platforms in Downstream Facilities

Deploying Philbart into an decommissioned analog downstream oil & gas pro-

cessing facility will allow for the field validation of our proposed method. As previ-

ously stated the 2020 Corona Virus pandemic prevented a field deployment in time for

the conclusion of this thesis. As more and more companies begin to explore robotic

operator augmentation we believe that uncertified commercial off the shelf platforms

will be the best tool for proof of concept applications.

Ongoing efforts to integrate a manipulator mounted camera with the mobile

base are being explored (Fig. 6.1). Automated visual inspection of valves, gauges,

and sight glasses though not originally in the project scope is an area of great interest

to facility operators. As the set of tasks which that can be automated increases, the

demand for the platform increases. When an as yet undiscovered viability threshold

is met the urgency to deploy platforms like Philbart will grow.

6.2.2 Hybrid Localization

The relationship between carrier noise and GNSS solution availability is known

to exist and is used as a transition metric in our hybrid localization algorithm. Our

experiments however do not fully elucidate this relationship or assign causality to its

behavior in commonly encountered environments. Testing and recording the metric

response across a variety of sensor occlusion scenarios will provide the information

required to accurately assess the transition metric threshold. With a better under-

standing of the threshold and its dependence on environment our hybrid localization

algorithm can more accurately predict transitions. Furthermore it is possible that the
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Figure 6.1: A HEBI manipulator with attached GoPro mounted on the Philbart
mobile base.

metric trend before total loss of the GNSS solution could provide advanced warning

about predicted transitions.

6.2.3 Gas Source Localization

Sensing modalities including infrared cameras and spectroscopy-based remote

lasers are increasingly deployed on mobile robotic platforms. Recent work developed

informative search strategies for a platform mounted with such a spectroscopy-based

remote gas sensor [53] in an indoor environment. The ability to sense emissions
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remotely allows for increased state space coverage and for increased stand off be-

tween the platform and the hazardous environment. Actively classifying hazardous

atmosphere zone in real time using remote emission sensors has the potential to sig-

nificantly decrease the risk profile associated with mobile robots. If developed further

remote sensing has the potential to influence how electrical systems including active

robotic sensing platforms are allowed to operate in O&G facilities.

Our source localization algorithm likelihood models a single emission source.

Multi-source emission scenarios are challenging to model because in our deployment

context the number of source cannot be explicitly known a priori. Reversible jump

MCMC methods [34] hare used to dynamically adjust the size of the state space

such that the state model better explains the observed phenomenon. Sampling based

methods like particle filters do however suffer from the curse of dimensionality and

increases in state space size can tax computer hardware. Building and demonstrating

an adaptive state space gas source localization Bayesian filter in a refinery environ-

ment would be a valuable contribution.
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