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Abstract 

 

End-to-end Drilling Optimization using Machine Learning 

 

Chiranth Manjunath Hegde, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Kenneth Gray 

 

Drilling costs occupy a significant portion of oil and gas project’s budget. 

Optimization of drilling - increasing speed, reducing vibrations, and minimizing borehole 

instability - can lead to significant savings and hence have been extensively studied. 

Currently, most drilling optimization tools (or models) only tackle a single drilling metric: 

they seek to optimize either the rate of penetration (ROP), torque on bit (TOB), mechanical 

specific energy (MSE) or drilling vibrations. Models are often built independent of other 

metrics (without coupling) and do not accurately represent downhole conditions since 

drilling metrics are interrelated. This may lead to over or underestimation of the metric 

optimized which can severely reduce the effect of optimization.  

The objective of this dissertation is to introduce techniques, strategies, and 

algorithms that can be used to build a fully coupled drilling optimization model. Drilling 

optimization is studied by first optimizing ROP– where models for ROP prediction and 

inference are constructed using machine learning. Strategies and algorithms for 

determining optimal drilling parameters using ROP models are discussed. The unique 

problem posed by data-driven models are solved using meta-heuristic algorithms.  



 ix 

A coupled model is constructed by building ROP, TOB, and MSE models 

conjointly using the random forests algorithm. Drilling vibrations – axial, lateral, and 

torsional – are modeled using a machine learning classification algorithm. This 

classification algorithm used to restrict the optimization space, ensuring that optimal 

parameters do not induce vibrations ahead of the bit. This model is used to investigate the 

effect of optimizing ROP and MSE on field data. 

A workflow is introduced linking all the aforementioned models into an end-to-end 

drilling optimization tool. The tool can be used as a recommendation system where field-

measured data are used to determine and implement optimal drilling parameters ahead of 

the bit. The dissertation illustrates the use of statistical (or machine) learning techniques to 

address the problems encountered in drilling optimization.  
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Chapter 1: Introduction 

Oil and gas will account for more than half of the world’s energy by 2040 

(Petroleum, 2016). Oil and gas are extracted from rocks (or reservoirs) found deep below 

the earth’s surface. Drilling is a process used to gain access to these reservoirs by 

excavating rock. This process creates a circular wellbore with the use of a drill bit, a 

rotating mechanism, a drill string (used to transfer weight to the bit), and drilling fluid 

(used to counteract downhole pressure, bit cooling and transfer of excavated rock to the 

surface). The first documented spring hole well was drilled in 1806 to a depth of 58 feet 

by David and Joseph Ruffner (Pees, 2004). Today, technological advances have led to 

wells reaching measured depth and horizontal reaches of over 10000 meters. Since drilling 

is unobservable, measurement tools are used to infer downhole conditions. Data from these 

measurement tools collected on the surface of the rig as well as downhole (near the bit) can 

be analyzed to improve the process. This thesis will discuss strategies, workflows, models, 

and algorithms which can be used to analyze, improve, and optimize drilling using data. 

1.1 MOTIVATION AND PROBLEM DESCRIPTION 

Drilling occupies a substantial portion of an oil and gas project budget; hence any cost-

saving measure directly relates to reduced costs. The cost of drilling wells over the past 

couple of years have increased inspite of technological advances (Aerts, Guus; Brun, 

2015). The cost of drilling a well varies depending on the (geographic) location, geology 

of the reservoir, type of play (onshore vs offshore), technologies used, operator, service 

company, and expertise of staff. According to a recent report published by the EIA (EIA, 

2016), the average cost for drilling an onshore well in North America is around $6-7 million 

(Figure 1.1) and an offshore well can range from $50 million to $200 million. Moreover, 
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drilling operational costs occupy a sizable portion of well’s costs: 30-40% (onshore) and 

around 60% (offshore). Given the expense of drilling to reach oil and gas deposits, 

improving drilling efficiency can be imperative to the success of an oil and gas project. 

 

 

Figure 1.1: Average cost of drilling wells in North American shale plays from 2006-2015 

(EIA, 2016) 

Over the past couple of decades, engineers and researchers have made efforts to 

reduce the cost of drilling by increasing the speed of drilling, avoiding drilling dysfunction 

(by reducing drilling vibrations), and minimizing the amount of energy used to excavate 

rock. These cost-saving efforts include the optimization of different drilling metrics or key 

performance indicators (KPIs) such as rate of penetration (ROP), the intensity of drilling 

vibrations, mechanical specific energy (MSE), and cost per foot of drilling. Other factors 

which affect the overall drilling optimization process such as hole quality, borehole 

assembly (BHA), geomechanics, bit hydraulics, and mud selection have been studied. The 

objective of these optimization efforts is to reduce operating costs due to drilling while 

ensuring a high-quality wellbore is drilled (which can be used for oil and gas production 
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with minimal treatment). This dissertation will address the optimization of drilling 

operational related metrics such as ROP, MSE, and cost-per-foot.  

The rate of penetration (ROP) during drilling is a direct measure of the time taken 

to drill a well, apart from other times involved such as trips, bit change, and downtime. 

Controlling the ROP can be extremely important in drilling since it directly relates to time 

saved. Hence, maximizing ROP using data measured on the rig is a common (and most 

widely adopted) goal for drilling optimization. Mechanical specific energy (MSE) 

measures of the amount of energy required to break a unit volume of rock. If the MSE is 

minimized while drilling a well, least amount of energy will be expended in excavating or 

breaking the rock – maximizing the productivity of drilling. Vibrations are an unwanted 

effect of the drilling process; excessive vibrations damage the drilling bit (which may result 

in premature bit change), lead to waste of energy, and cause drilling dysfunction. 

According to literature (Wang et al., 2010), around 40% of drilling dysfunctions can be 

attributed to drilling vibrations. Reducing vibrations should automatically result in the 

better use of energy imparted to the bit (reducing MSE) and improve the productivity of 

the well.  

The modeling and optimization of these key drilling metrics have not been 

consolidated – description of the entire process is scarce, even with respect to a single 

drilling metric. While many prediction techniques and algorithms have been published, 

only a few papers describe strategies to use these algorithms to improve ROP or MSE. The 

most widely used drilling models are empirical models which were developed decades ago 

based on laboratory experiments. In this new age, where large amounts of data are collected 

during drilling operations, several statistical and machine learning techniques can be 

applied to optimize drilling, perhaps more efficiently. Additionally, the popular models 

used today have many limiting assumptions – many of which do not hold. For example, 
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some ROP optimization models assume the absence of drilling vibrations (Caicedo, 

Calhoun, & Ewy, 2005). Drilling models are also built independent of other metrics in 

drilling – there is no coupling between interrelated drilling parameters such as ROP, MSE, 

torque and drilling vibrations. As a result, these models do no accurately describe downhole 

conditions. 

This dissertation attempts to demystify drilling optimization. It will explore 

prediction, inference, and optimization of several metrics which can be used for drilling 

optimization. Algorithms and strategies are discussed to optimize and couple interrelated 

metrics in a complex drilling environment.  

1.2 OBJECTIVES 

The objective of this dissertation is to address several research questions which are 

essential in the design of an end-to-end drilling optimization tool (or workflow). 

ROP has always been the most popular metric which is used to measure drilling 

productivity. However, these models used for ROP predictions were discovered half a 

century ago. New algorithms leveraging statistical and machine learning techniques (data-

driven techniques) need to be evaluated as potential tools to predict ROP. These developed 

ROP models can be used for determining optimal parameters ahead of the bit which when 

implemented increase ROP. Optimal parameters are determined using a suitable 

optimization algorithm – which depends on the ROP model employed. Meta-heuristic 

algorithms are evaluated to optimize data-driven ROP models and gradient-based 

algorithms for empirical ROP models. Their applicability is studied as a real-time and post-

drilling processing tool.  

Algorithms to combine empirical models and machine learning models – hybrid 

models – have been developed. These models provide tradeoffs between model prediction 
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accuracy and interpretability. Additionally, they can be used for ROP model interpretation: 

a useful tool to make on-the-fly drilling decisions. 

Most ROP models and optimization workflows completely ignore the effect of 

drilling vibrations: the biggest ROP inhibitor. Existing vibration models exist 

predominantly for planning purposes. Real-time vibration prediction tools are scarce. The 

use of machine learning for real-time vibration intensity classification has yet to be studied. 

Only one model considers the effects of ROP, vibrations, and MSE (together) – 

ExxonMobil’s drilling advisory system (DAS). Even this model does not couple bottom 

hole drilling parameters which are known to be interrelated. The development of a fully 

coupled drilling optimization model has been outlined. 

The quantification of ROP optimization on other drilling metrics such as MSE, 

TOB, and vibrations requires the use of a coupled model. A coupled model can be used to 

evaluate the effects of optimizing one drilling metric over another. 

1.3 OUTLINE 

The outline of this thesis roughly follows the research objectives that are defined in section 

1.2. Chapter 2 describes in detail the ROP modeling process. ROP is modeled using 

traditional (or empirical model) models – which are the workhorse of the industry – and 

data-driven models. Several models are evaluated based on their predictive accuracy by 

comparing them to data measured in the field. Torque-on-bit (TOB) modeling using data-

driven methods are also discussed. Chapter 3 develops a new class of models – the hybrid 

models – which combine traditional and data-driven models. These models provide a 

tradeoff between the two models – providing higher accuracy than traditional models while 

not losing much model interpretability, unlike the data-driven models. Chapter 4 discusses 

ROP optimization. The models are “inverted” to determine optimal rig-based parameters 
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which when implemented ahead of the bit will improve ROP. Several optimization 

algorithms are evaluated to optimize traditional and data-driven models. The intuition 

behind the success of data-driven models in ROP prediction and optimization is discussed. 

Chapter 5 illustrates the effect of different metrics for drilling optimization. ROP, MSE, 

TOB, and cost-per-foot are evaluated as potential metrics to be optimized while drilling. 

Chapter 6 lays out a method to model drilling vibrations in real-time using surface and 

downhole data. Axial, lateral or torsional vibrations are modeled using machine learning 

classification algorithms. This vibration model described herein can be used to constrain 

the optimization algorithm such that the selected optimal parameters do not induce drilling 

vibrations. Chapter 7 combines previously described concepts into two drilling 

optimization models or workflows. The first model – TVOPT – is a ROP optimization 

model which controls drilling vibrations. It uses traditional ROP models to predict ROP, 

gradient ascent (constrained by the vibration model) to find optimal drilling parameters. 

The second model – coupled machine learning optimization model (CMOPT) – is a fully 

coupled end-to-end drilling optimization model based on machine learning. Chapter 8 

summarizes the previous chapters, summarizes the research conducted and identifies areas 

for future work. The appendices cover added details which are left out of the chapters. 
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Chapter 2:  Prediction of Rate of Penetration (ROP) and Torque on bit 

(TOB) during drilling1,2 

This chapter compares two strategies for ROP modeling while evaluating their 

accuracy, reliability, and effectiveness. Physics-based (deterministic, traditional or 

empirical) models and data-driven (statistical learning or machine learning) models are 

used for ROP prediction in drilling a vertical well with a PDC bit. ROP is a function of 

many variables which include, but are not limited to, parameters on the surface, lithology, 

geology, bit design, mud, human factors, downhole conditions, and mud rheology. There 

are bit-specific models, lithology-specific models, and operator-preferred models. This 

chapter will address the preferred traditional models in the industry which are the 

Bingham(Bingham, 1964), Motahhari (Motahhari, Hareland, & James, 2010), Hareland 

(Hareland & Rampersad, 1994) and the Bourgoyne and Young Model (Bourgoyne Jr & 

Young Jr, 1974). The traditional models require weight on bit, flow rate, the strength of 

rock and rotary speed (RPM) as input parameters for ROP prediction. Data-driven models 

are built using the same input parameters. Both classes of models are analyzed to show that 

machine learning models perform better in terms of accuracy and reliability. Models are 

analyzed on different formations to ensure a robust evaluation. Both types of the models 

are evaluated by running simulations on data measured during drilling a well in the 

Williston Basin, North Dakota. Results indicate that for the same inputs, data-driven 

                                                 
1 Hegde, C., & Gray, K. E. (2017). Use of machine learning and data analytics to increase drilling 

efficiency for nearby wells. Journal of Natural Gas Science and Engineering, 40, 327–335. 

https://doi.org/10.1016/j.jngse.2017.02.019 

 
2 Hegde, C., Daigle, H., Millwater, H., & Gray, K. (2017). Analysis of rate of penetration (ROP) prediction 

in drilling using physics-based and data-driven models. Journal of Petroleum Science and Engineering, 

159, 295–306. https://doi.org/10.1016/j.petrol.2017.09.020 

 

The author of this thesis is the primary author of both papers 
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models perform more accurately (lower error in prediction) and more reliably (higher R2). 

This chapter also utilizes data-driven models to model the torque-on-bit (TOB).  

2.1 ROP MODELS 

The rate of penetration (ROP) measures the speed at which a wellbore is drilled. 

The ROP can be calculated by measuring the depth drilled in an interval of time with the 

units ft/hr. Higher ROP implies faster drilling: better rig performance, increasing the 

productivity of the rig. ROP along with a few other parameters can indicate drilling kicks 

(flow of formation fluids into the wellbore while drilling), over- or under pressured 

conditions, and stick-slip in drilling (absorption and release of energy due to torsional 

vibrations), adding to its importance. Since ROP is a direct measure of the time taken to 

drill a well, apart from other times involved such as trips, bit change, and downtime, 

controlling the ROP can be extremely important in drilling. Maximizing ROP is one form 

of optimizing drilling which reduces drilling time. This section will introduce different 

strategies to model the rate of penetration in drilling; these models can be used to predict 

and control drilling rates. The strategies predict ROP using drilling control parameters – 

parameters which can be controlled on the surface of the rig such as rotary speed (RPM), 

weight-on-bit (WOB) or flow-rate. ROP modeling techniques can be classified into three 

broad categories: traditional models, data-driven models, and hybrid models (covered in 

Chapter 3). Traditional models are based on equations which were developed based on 

experimental results and field-based intuitions. Data-driven models include the use of 

machine learning or statistical learning algorithms to develop a model for ROP prediction. 

Hybrid models combine these two concepts by using machine learning algorithms to 

combine or fit deterministic models. They can be used for prediction or model inference – 
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providing trade-offs between accuracy and interpretability – and will be covered in detail 

in Chapter 3. 

2.1.1 Traditional ROP Models 

Given the interest in ROP prediction and analysis, traditional models were 

developed for ROP prediction based on laboratory experiments. These models have been 

improved over the past few decades to incorporate advances such as bit technology, drilling 

in unconventional reservoirs, or introduction of more parameters. Most of these models 

have been based on the physics of drilling with empirical coefficients to incorporate 

changes in lithology, geology, and other factors not readily measured. Empirical 

coefficients are determined and adjusted as the well is drilled. Data acquired during drilling 

(or data from pad/offset wells) can be used to determine these empirical coefficients. The 

empirical coefficients are constrained (by defining upper and lower bounds) so that the 

values utilized are based on physics-based and engineering judgment. 

One of the earliest ROP models was developed by Maurer (Maurer, 1962) where 

the author applied a rock cratering approach developing a ROP formula for roller-cone bits. 

The parameters included in the model are weight-on-bit (WOB), rotary speed (RPM), bit 

diameter and rock strength. This paper introduced an important concept called rock 

floundering: beyond a certain WOB, there was no improvement in ROP because of the 

reduction in hole cleaning ability. The accumulation of cuttings around the bit makes it too 

difficult clean at the bit which would impair ROP improvements due to increasing WOB. 

Hence, increasing WOB beyond a certain limit would not result in an increased ROP. A 

ROP prediction model introduced by Bingham (Bingham, 1964) – hereby referred to as the 

Bingham model – uses weight on bit (WOB), rotations per minute (RPM), and bit diameter 

as inputs. An empirical constant ‘k’ was used as a formation dependent parameter. This 



 10 

model stressed the importance of hole cleaning ability and its relation to ROP. A model 

introduced by Eckel (Eckel, 1967) incorporated the effects of drilling mud on ROP. A 

Reynolds number function was used to correlate ROP with mud properties. It was shown 

that an increase in the Reynolds number function correlated well with high ROP 

measurements. Based on this paper it was concluded that a mud with a low kinematic 

viscosity would be recommended for easier drilling or higher ROP yield.  

Bourgoyne and Young’s (BY) model (Bourgoyne Jr & Young Jr, 1974) introduced 

a more sophisticated model – hereby referred as the BY model –  with additional 

parameters to include more physical and geological aspects involved in drilling. This model 

is perhaps the most comprehensive traditional model to date which describes ROP. The 

model contained eight input parameters: formation strength, normal compaction trend, 

under compaction, differential pressure, bit diameter and bit weight, rotary speed, tooth 

wear, and bit hydraulics.  

Walker (Walker, Black, Klauber, Little, & Khodaverdian, 1986) introduced a 

model which utilized triaxial rock strength tests and the Mohr-Coulomb failure criterion to 

develop a roller cone ROP equation dependent on WOB, borehole pressure, rock porosity, 

average grain size, and in-situ formation compressive strength. Winters (Winters, Warren, 

& Onyia, 1987) developed a model which separated the effects of drilling into physical 

breakage of the rock and hole cleaning. This model works well in low differential pressure 

but fails in cases of higher differential pressures (Soares, 2015).  

A modified model for ROP modeling of drag bits was introduced which helped 

improve ROP accuracy (Hareland & Rampersad, 1994) – hereby referred to as the 

Hareland model. The original drag bit model contained three empirical parameters to model 

lithology and other eccentric factors. This ROP model was used to reduce the cost per foot 

of drilling wells in the North sea successfully (Bratli, Hareland, Stene, Dunsaed, & 
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Gjelstad, 1997; Nygaard, Hareland, Budiningsih, Terjesen, & Stene, 2002). This model 

was later modified to include the effect of the confined compressive strength of rock 

(Motahhari et al., 2010)  and the effect of PDMs (positive displacement motors) – hereby 

called the Motahhari Model. It is still used today given the prolific use of PDC bits in 

drilling. This chapter will evaluate traditional ROP models using one model from each era 

of ROP modeling – Bingham model, BY model, Hareland model, and Motahhari model. 

2.1.2 Data-driven ROP Models  

The intuition behind data-driven techniques is to build ROP models purely based 

on data collected during drilling utilizing surface measured parameters such as weight on 

bit, rotations per minute, and flow rate to predict ROP. Machine learning can be used for 

accurate ROP prediction during drilling within a given facies or even for multiple facies in 

succession (with adequate training data). Machine Learning (ML) methods are 

advantageous since they do not contain any empirical constants or drill bit specifications 

and are not bound to a specific borehole assembly (BHA). The ML model predictions 

depend only on the input data, and selection of input parameters to the model (commonly 

known as features in machine learning circles).  

Neural networks, a nonlinear statistical model, has been used for predicting ROP 

(Bilgesu, Tetrick, Altmis, Mohaghegh, & Ameri, 1997). Further exploration of neural 

networks using different input parameters for ROP prediction has been studied 

(Jahanbakhshi, 2012). A model using two input parameters – RPM and WOB – was used 

within a similar framework for ROP optimization through automation (Dunlop et al., 

2011). Neural networks are powerful tools which are well suited for high dimensional 

modeling (Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & Hinton, 2015; 

Schmidhuber, 2015), however, underperform (when compared to several simpler statistical 
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learning techniques) for low dimensional problems. This led to the use of simpler statistical 

learning techniques such as bagging and random forests which predict ROP with a higher 

accuracy as compared to previously used data-driven techniques (Chiranth Hegde, 

Wallace, & Gray, 2015). 

2.2 DATASET AND METHODOLOGY 

Experiments are conducted on a depth-based drilling data set spanning from 6001 

ft to 9128 ft true vertical depth (TVD). Data from twelve of these formations have been 

used for ROP prediction analysis. This data was acquired from a vertical section of a well 

drilled in the Bakken shale. The data contains drilling parameters measured on the surface 

in a depth-based format – per 0.25 ft of drilled depth. Depth based data or filtered times 

series data are preferred for ROP modeling since they tend to be less noisy (G S Payette et 

al., 2017; S. P. Wallace, Hegde, & Gray, 2015), and they provide an easy means to overlay 

these data with the depths of formation tops (created by geologists). A simplified 

stratigraphic column is shown in Figure 2.1 (left). The entire interval of data used for model 

validation in this dissertation was drilled with the use of a Smith 616 PDC bit. ROP has 

been plotted against depth and color-coded by each formation in Figure 2.1 (right). 

Experiments are conducted to test the accuracy of traditional and data-driven models for 

the ROP prediction by comparing the predicted values to the data measured in the field. 

2.2.1 Experiments 

Models are individually built on each formation. Traditional models are 

conditioned to fit the data; data-driven models are built based on the data. In the case of 

traditional models, the functional relationship of the input parameters remains constant and 

empirical values are tuned to fit the data. However, in the case of data-driven models, the 
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data is used to learn (or form) these functional relationships between the input and output 

features based on data. Figure 2.2 outlines the implementation of ROP prediction 

simulations in this chapter. A portion of the well is drilled (without any modeling), and the 

data collected during drilling this interval are called the training data. In Figure 2, 100 ft. 

of drilled data has been used as training data. All traditional models have empirical 

constants which depend on the geological properties of the rock, bit design, and drilling 

conditions. These empirical constants must be determined or calibrated to each formation. 

One way to calibrate them is by using the training data to determine the empirical 

coefficients of the traditional models - conditioning the models to the data so that they can 

be used to predict ROP ahead of the bit. A data-driven model is built on the training data 

using a fitting or learning algorithm. As opposed to just calibrating the data-driven 

modeling using training data, the functional relationship between these input parameters is 

learned using this data. Both the traditional and data-driven models may then be tested for 

prediction accuracy and goodness of fit (R2) over an arbitrary test data interval as illustrated 

in Figure 2.2. The paper uses this simulation experiment to determine the accuracy and 

reliability of both types of models. Incorporation of data-driven models in field operations 

will be addressed in later chapters. The data-driven models use the same input parameters 

– to train models – as those used in traditional models (RPM, weight-on-bit, flow rate, and 

rock strength). This ensures that the physics between the two models remains comparable, 

often called feature engineering in the machine learning circles. ROP may be a function of 

many other input parameters such as pressure at the bit, cutting cleaning at the bit, mud 

weight, and mud type. However, it is assumed that the effects of these other parameters are 

represented in the data that is used to build the model. The output parameters of both 

models are ROP.  
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The predicted ROP – using both models – are compared to the actual measured data 

(test data). This comparison provides a way to evaluate each model. It is necessary to avoid 

overfitting and underfitting the data with the developed model. If a model has low training 

error and high test error, it is said to have overfit the data. Overfitting occurs due to 

excessive variance of the model and underfitting due to excessive bias of the model. Bias 

is accumulated when a simple model is used to explain a complex real-world phenomenon. 

Variance is associated with the error accumulated in the model when data sets are changed 

– it measures the ability of the model to generalize. The bias-variance tradeoff is a constant 

theme in machine learning (James et al., 2013); picking the best model – which results in 

low bias and low variance –  is often best managed by cross-validation.  

 

 

Figure 2.1: (left) Generalized stratigraphic column for the Williston Basin, North Dakota  

(Theloy, 2014); (right) ROP vs Depth plot over different formations in a 

vertical section of a well drilled in Williston Basin, North Dakota. ROP, 

TOB, and Vibrations models are built on field data collected surface and 

downhole while drilling this well (C. M. Hegde & Gray, 2018) 
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Figure 2.2: ROP simulation experiment schematic showing training and test set. The 

training set is utilized to build the model or determine empirical constants. 

The test set is used to evaluate the model. The test set is not used for model 

training to ensure an unbiased evaluation of model accuracy. Since the 

main aim of ROP modeling is prediction ahead of the bit – the test set in 

this case is data ahead of the bit 

2.2.2 Data Exploration and Feature Selection 

A pairs plot is often used to plot the data and measure correlations between field 

variables (Figure 2.3). Pairs plots are particularly useful to discern patterns in data. For 

example, a simple linear relationship between two parameters (if seen in the pairs plot) can 

be modeled using linear models. Each plot in Figure 2.3 has a “window”, which can be 

numbered for easy evaluation. Numbering is similar to matrix indexing, i.e. window(i,j) 

would represent a window in the ith row and jth column. The X-axis in each subplot 

represents the units for an ith input parameter. Hence each input parameter or each window 
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would have an X and Y axis representing the data plotted in that window. Each window in 

the plot contains two parameters plotted against each other. For example, window (1,2) 

plots depth on the X-axis and ROP on the Y-axis. Window (2,1) displays the correlation of 

the variables plotted in the window (1,2). Input features for data-driven models can be 

selected using the correlation between control and response variables. An analysis of the 

pairs plot can result in discarding some input features based on low correlation to the target 

or redundancy. The analysis of this pairs plot shows that none of the variables are highly 

correlated with each other – changes of collinearity are low. 

2.2.3 Train, Validation and Test Sets 

Data are divided into different sets to avoid overfitting. The training set include the 

data used to fit the model or train an algorithm; the validation set is used to pick hyper-

parameters or fine-tune models; the test set is the held-out (or blind) set used for an 

unbiased evaluation of model error (Figure 2.2). Data are partitioned into these sets to 

balance the bias-variance tradeoff which exists in these models (James et al., 2013). A 

model is said to have excessive bias or underfit when a very simple algorithm is used to 

model a complicated process – if linear regression is used to model nonlinear data. A model 

is said to have excessive variance (and overfits the dataset) if the performance of the model 

deteriorates when applied to new data. In the case of overfitting, the model fits the noise 

present in the original dataset; it is unable to generalize to new data and performs poorly 

when deployed into production. Underfitting is common when dealing with traditional 

models since simple (power-law based or convex-like) models are used to model ROP. 

Overfitting is a common phenomenon associated with statistical and machine learning 

models since more complex algorithms tend to fit the noise in measurements. The tradeoff 
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between over and underfitting is a bias-variance trade-off visualized for a hypothesized 

case in Figure 2.4. 

 

 

Figure 2.3: Pairs plots of drilling parameters evaluated for field data. Each drilling 

parameters is plotted as a scatter plot against another measured parameter. 

The Top right triangle of the plot matrices shows the correlation between 

the two variables plotted in that window.  
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Figure 2.4: Plot of squared bias and variance, together with their sum for a simulated 

dataset. Also shown is the average test set error for a test data set the size 

of 1000 points. The minimum value of (bias)2 + variance occurs around 

ln λ = −0.31, which is close to the value that gives the minimum error on 

the test data. In this figure, λ is a hyperparameter used to vary the 

flexibility of the model which controls the bias and variance (Bishop & 

Christopher, 2016) 

The bias-variance tradeoff stems from the definition of error and the expected value of the 

test error (Equation 2.1). 

E(Y −  Ŷ)  =  Var(Ŷ)  +  𝐵𝑖𝑎𝑠(Ŷ)2  +  𝑉𝑎𝑟(∈) (Equation 2.1) 

where, Y is the response, Ŷ is the estimated function, ∈ is the irreducible error (most often 

normal; occurs due to measurement error, sensitivity of instruments etc.). It is common 

practice to use a validation set along with the training set to evaluate the performance of 

the trained model on the test set. The validation set is a small portion of the training set – 

20-30% – used to estimate test error and fine-tune the model. The main disadvantage of 

the validation set approach is the loss of data for training.  
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Cross-validation solves this problem by reusing the training set for validation repeatedly. 

In K-fold cross-validation the dataset is split into K parts. If K=5, the training set would be 

split in a 1:5 ratio. The smaller split is used as a validation set and the larger split for 

training, i.e., 4 parts training and 1-part validation. In each iteration, 4 parts of the data 

would be used for training and one part for validation. This is randomized and repeated 

until each of the five parts is used for validation. Another similar method commonly 

employed is the leave out one cross-validation (LOOCV), where all but 1 data point is used 

for training and the model is tested on the single left out data point. This process is repeated 

until all points have been tested (or all points have been left out). Analysis has shown that 

K-fold cross-validation results in a better estimate of test error as compared to vanilla cross-

validation or leave-one-out-cross-validation (James et al., 2013). 

2.3 THEORY AND CALCULATIONS 

This section explores the theory behind each traditional and data-driven model 

explored in this chapter. Broadly models can be classified as: 

• Traditional (Physics-based) models 

1. Bingham model 

2. Motahhari Model 

3. Hareland Model 

4. Bourgoyne and Young (BY) Model 

• Data-driven models 

1. Linear Regression Model 

2. K Nearest Neighbors Model 

3. Tree based Model 

4. Bagging Model 
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5. Random Forest Model  

6. Neural Network Model 

• Hybrid Models (covered in chapter 3) 

1. Hybrid - One 

2. Hybrid - N 

 

2.3.1 Traditional Models 

It is important to look at the governing equations of the physics-based models. This 

will lead to an understanding of the input parameters, and their importance in drilling. 

Bingham’s model (Bingham, 1964) was the earliest of the traditional models considered in 

this chapter. The model was designed to be applied to any bit-type. 

 

𝑅𝑂𝑃 = 𝑎𝑅𝑃𝑀 (
𝑊𝑂𝐵

𝐷𝑏
)

𝑏

, (Equation 2.2) 

where ROP is the rate of penetration (ft/hr), WOB is the weight on bit (klbs or lbs), RPM 

is the rotary speed of the drill (revolutions/sec), Db is the bit diameter (in), and ‘a’ and ‘b’ 

are  constants determined for a given rock formation. These constants can be determined 

by using a fitting algorithm (such as least squares) on the training data. The constants 

represent a quantification of the ease of drilling through a particular formation. 

Hareland’s model (Hareland and Rampersad, 1994) proposed a bit-specific model – 

specific to the drag bit – which is the second traditional model used in this paper. 

  

𝑅𝑂𝑃 = 14.14𝑁𝑐𝑅𝑃𝑀
𝐴𝑣

𝐷𝑏
, (Equation 2.3) 
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where Nc is the number of cutters, Av is the area of rock compressed ahead of a cutter (in2), 

and the other variables repeat themselves from the Bingham model. Av is set based on the 

type of drag bit; in the case of a polycrystalline diamond cutter (PDC) bit it can be 

formalized as: 

𝐴𝑣 =

cosα sinθ ((
𝑑𝑐

2
) 𝑐𝑜𝑠−1 (1 −

4𝑊𝑂𝐵

𝑐𝑜𝑠𝜃𝜋𝑁𝑐𝜎𝑐𝑑𝑐
2) − (

2𝑊𝑂𝐵

𝑐𝑜𝑠𝜃𝜋𝑁𝑐𝜎𝑐
−

4𝑊𝑂𝐵2

(𝑐𝑜𝑠𝜃𝜋𝑁𝑐𝜎𝑐𝑑𝑐
 )2

)
0.5

(
𝑊𝑂𝐵

𝑐𝑜𝑠𝜃𝜋𝑁𝑐𝜎𝑐
))   

(Equation 2.4) 

where α is the cutter side rake angle (degrees), θ is the cutter back rake angle (degrees), dc 

is the cutter diameter (in), and σc is the unconfined compressive strength (psi). 

Motahhari’s model (Motahhari et al., 2010) was PDC-bit-specific, and incorporated a wear 

function: 

 

𝑅𝑂𝑃 = 𝑊𝑓 (
𝑅𝑃𝑀𝛾𝑊𝑂𝐵𝛼

𝐷𝑏𝑈𝐶𝑆
), (Equation 2.5) 

where UCS is the unconfined rock strength (psi), Wf is the wear function, G is the model 

coefficient which represents the drillability, α and γ are ROP related model exponents.   

The Bourgoyne and Young (BY) model (Bourgoyne Jr & Young Jr, 1974) estimates ROP 

as a function of eight parameters as shown in Equation 2.6. 

 
𝑑𝐷

𝑑𝑡
= 𝐸𝑥𝑝(𝑎1 + ∑ 𝑎𝑗𝑥𝑗

8
𝑗=2 ) (Equation 2.6) 

 

where D is the well depth (ft), t is time (hr), 𝑎1 is the formation strength parameter, 𝑎2 is 

the normal compaction trend exponent, 𝑎3 is the undercompaction exponent, 𝑎4 is the 

pressure differential exponent, 𝑎5 is the bit weight exponent, 𝑎6 is the rotary speed 

exponent, 𝑎7 is the tooth wear exponent, and 𝑎8 is the hydraulic exponent. Coefficients 𝑎1 
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through 𝑎8 are determined with a multiple regression technique, using several data points 

to determine the eight unknowns that best fit a specific set of field data.  

The models covered in this section have been derived based on laboratory and field based 

experiments incorporating the different physical phenomena during drilling. They all 

contain some empirical constants which are dependent on the formation being drilled. 

These empirical constants are calculated using the training set as outlined in Figure 1, 

conditioning each model to the data measured in a specific formation. A complete analysis 

of constant bounds and calculation of ROP has been covered by in detail by Soares (Soares, 

Daigle, & Gray, 2016). The traditional model introduced in this section seem like data-

driven themselves – they attempt to fit an analytical or smooth convex function with some 

empirical parameters (which are determined using the training set). They seem like the 

data-driven model created decades ago. However, they work well to integrate the physics 

such as the bit wear function.  

2.3.2 Data-driven Models 

The previous section analyzed models which were derived using the physics of the 

borehole. Their main limitation is the constraint placed on equation form. Looking at 

Equation 2.2 – 2.6 it is evident that only power-law models were used to model ROP. While 

this analysis may work for certain formations, it has a possibility of producing less accurate 

results. The underfitting of the model indicates that some input features which affect the 

ROP have been left out or incorrectly modeled. A more flexible model would circumvent 

this issue – provide the ability to model ROP based on the data collected for a specific 

formation. This leads to the use data-driven models, which use the training data to 

determine the relationship between the input parameters for ROP prediction. Pairwise 

correlation of drilling data is plotted in Figure 2.3. Input parameters correlated to ROP such 



 23 

as Depth, RPM and flow-rate can be used for fitting a ROP model. However, the 

incorporation of domain knowledge or feature engineering is used to ensure that the model 

is built in a robust fashion. Figure 2.5 illustrates the process of building a data-driven 

model. A model is built as a function of input feature (or parameters) to determine or 

predict the response Y (ROP). The input features chosen in this paper are easily measured 

on the surface, which makes them inexpensive to obtain. Some of these input parameters 

can be changed easily on the drilling-rig to improve or maximize ROP (Chapter 4). Data-

driven models are fit using a fitting algorithm – commonly referred to as a machine learning 

algorithm. Some commonly used fitting algorithms are explained. 

2.3.2.1 Linear Regression 

Linear regression is the simplest machine learning algorithm which can be used to fit data. 

It makes an important assumption – data are linearly related. ROP is modeled as a linear 

function of the input features (Equation 2.7). This method is simple, easy and efficient in 

cases of linear data: 

ROP =  ∑ 𝑎𝑛𝑥𝑛
𝑁
𝑛=1 , (Equation 2.7) 

where xn are feature vectors, and an are constants determined based on the formation being 

drilled. The constants an can be determined by minimizing the least squares or “ l2” loss 

(defined as: (𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑅𝑂𝑃𝑎𝑐𝑡𝑢𝑎𝑙)
2
).  
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Figure 2.5: Schematic showing the process of building a data-driven model. The response 

variable (Y) is fitted as a function of several input parameters – RPM, 

WOB, Flow-rate, and UCS – to model ROP. Any suitable fitting 

algorithm can be used to model ROP as a function of these input vectors 

2.3.2.2 K Nearest Neighbors (KNN) 

The KNN is a non-parametric method which does not assume any functional form 

or make linearity assumptions. For a specified integral value of K and a prediction point 

x0, the algorithm searches for K closest neighbors (No). The estimation is the average of all 

the training data in No. This model will perform poorly in high dimensional spaces (with 

the increase of input parameters or dimensions, the ability of the algorithm to find nearest 

neighbors decreases). This algorithm can be used to predict ROP independently as a 
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standalone data-driven model or by combining different deterministic model predictions 

using the hybrid-One algorithm. 

 

 ROP =  
1

𝐾 
∑ 𝑅𝑂𝑃𝑁0

𝐾
𝑛=1 , (Equation 2.8) 

 

2.3.2.3 Trees 

Trees represent a simple non-linear method to predict data. A simple tree has been 

built to predict ROP (Figure 2.6). It consists of a series of splitting rules. The first split 

assigns the observation having flow rate > 374 to the right branch. The next parameter 

evaluated is UCS: if it’s less than 5428 psi then a ROP prediction of 110 ft/hr is returned. 

On the other hand, if the flow rate was less than 374 and RPM is less than 63 then a 

prediction of 53 ft/hr would be returned. Overall the tree stratifies data into different 

segments based on input features.  

 

Figure 2.6: Schematic of a tree used to predict ROP. The input variables are branched off 

(or split) based on a greedy approach to minimize the l2 error of the result.  
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The stratification of input features takes place by splitting the input feature space 

using an algorithm. The tree itself is built using a greedy algorithm (building the best 

possible tree would result in a combinatorial explosion (Friedman, Hastie, & Tibshirani, 

2001)). The sample predictor space of ‘N’ dimensions is divided into m distinct non-

overlapping regions (Rm). For each observation that falls into a region Ri the mean value of 

the training values in Ri is the predicted ROP. The goal is to find regions (Ri) which 

minimize the sum of squared errors of the entire training set. Trees are typically grown 

until a stopping criterion is reached: a minimum of three observations in each region. For 

simplicity, consider a case where ROP is predicted only using RPM and WOB as input 

features. A simplified two-dimensional feature space is split using a simple (greedy) 

algorithm is plotted in Figure 2.7. If WOB is less than 2500 lbs: the average value of scatter 

that resides within the region “R1” is returned as the ROP prediction. Similarly, if WOB is 

greater than 2500 lbs and RPM is less than 60 – ROP prediction is the average of the scatter 

enclosed in “R3”.  

 

 

Figure 2.7: Three region partition for ROP modeling using RPM and WOB as input 

predictors. The regions are calculated using the tree building algorithm 

are labeled as R1, R2 and R3. If WOB is less than 2500 lbs – ROP 

prediction of the average of the scatter within R1 is returned as a result.  
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Although trees by design are used to predict nonlinear data, they can severely overfit. One 

way to avoid this is the use of pruning in trees where long trees are grown and then 

shortened by “pruning” (James et al., 2013). However, trees are the building blocks of 

ensemble algorithms like bagging, boosting, and random forests which are efficient 

predictors and prevent overfitting. A three-dimensional view of a sample feature space is 

shown in Figure 2.8. 

 

Figure 2.8: Three-dimensional view of sample space of two features X1 and X2 predicting 

a response function (James et al., 2013) 

2.3.2.4 Bagging 

The accuracy of trees can be improved by using it within an ensemble algorithm. 

Trees suffer from high variance – when built on two separate halves of the training dataset 

they are likely to be yield different results. An algorithm with low variance (like linear 

regression) would not have this problem. The variance of samples (X1, X2,…Xn) can be 

reduced by averaging them since the variance of the mean (𝑋 ̅) of these samples is 
σ2

n
. In 
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this setting, multiple trees can be averaged to reduce their overall variance, preventing 

overfitting. These trees can be built on pseudo independent data sets carved from the 

original dataset using bootstrapping (Efron, 1987). In summary, many trees are grown on 

each bootstrapped training sample (which emulates a new dataset) and averaged to reduce 

the overall variance. This powerful algorithm described using trees can be generalized and 

applied to any other machine learning algorithm to help reduce overfitting. Each ROP 

predictor f1,f2,.. are calculated using B separate training sets and averaged to obtain a single 

low-variance model as shown in Equation 2.9.  

 

𝑓𝑎𝑣𝑔(x)  =  
1

𝐵
∑ 𝑓�̂�(𝑥)𝐵

𝑏=1 , (Equation 2.9) 

2.3.2.5 Random Forests 

Bagging improves the results of the tree algorithm. However, with the inclusion of 

a decorrelation of input features, it is possible to improve accuracy even further. The 

random forests (Breiman, 2001) algorithm is an extension of the bagging algorithm which 

applies a condition to decorrelates trees. This decorrelation is performed by selecting a 

subset of input features at each split of building a tree. Rather than considering all available 

input drilling features (ROP, WOB, UCS, flow-rate, etc.), only a subset of input features – 

selected using cross-validation – are used to build a tree. The random forest also allows a 

feature ranking chart which can be used to determine the importance of input features used 

in a model. This feature importance chart can act as a proxy for model inference – a high 

importance placed on WOB would indicate that the change in ROP is most sensitive to 

WOB (example plotted in Figure 2.9). However, it is important to note that this analysis 

represents the results from a greedy algorithm which may not always be indicative of the 
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true situation; additionally, no information can be inferred about the direction of influence 

of each input feature. 

 

 

Figure 2.9: Random forest feature importance ranking. The feature importance of the 

model shown in this figure ranks rock strength followed by WOB as the 

most important parameters affecting ROP 

2.3.2.6 Neural Networks and Deep Learning 

Neural networks are universal function approximators – they can be used to 

approximate any function (Ng, 2000). They were commonly referred to as artificial neural 

networks (ANN) since they mimicked the way the brain is hypothesized to work. However, 

in recent times (with sufficient rebranding) they are often referred to as neural nets, deep 

nets or neural networks. A neural network builds a function approximator with the use of 

neurons and layers (Figure 2.10). A deep neural net is a neural network which has multiple 

layers – commonly used for approximation of high dimensional functions. Neural networks 

commonly require massive amounts of data to train an accurate model; they work really 

well for applications where the input features are high dimensional such as images and 

videos (> 10,000 dimensions). For low-dimensional problems (<500 dimensions), 
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traditional statistical learning methods such as linear regression, logistic regression, 

random forests, and bagging generally outperform neural networks. 

Deep neural nets (also called forward feed nets, artificial neural nets, or multi-layer 

perceptrons) are the quintessential deep learning models. Their main goal is to estimate an 

unknown function (Y) in terms of some input parameters (Xi). The name feedforward 

implies that information only flows forward in the model as compared to the recurrent 

models (Schmidhuber, 2015). Feedforward neural networks are called networks because 

they are represented by composing together many different functions. The model is 

associated with a directed acyclic graph describing how the functions are composed 

together. For example, three functions f1, f2, f3 are connected in a chain to form the function: 

f = f3(f2 (f1(x))). In this case, these chained functions are represented as layers for easy 

visualization; f1here represents the first layer of the neural network. Neural networks, in 

general, have three sets of layers: the input layer, the middle (hidden) layers, and the output 

layer. The input layer consists of inputs features which are used to learn the unknown 

function (or response). The output layer consists of the output or response. The hidden 

layers consist of several non-linear transformation functions multiplied with a weight 

(determined using a learning algorithm), which “warp” the input high dimensional data 

into a “simpler” lower dimensional space so that a lower order model can be fitted. It is 

common practice to use stochastic gradient descent as the learning algorithm (Rumelhart, 

Hinton, & Williams, 1988) and rectified linear units for the non-linearity function 

(Krizhevsky et al., 2012). A simplified version of a feed-forward neural network has been 

shown in Figure 2.10.  

The design of a deep learning network is not very different from fitting a function (such as 

linear regression). The estimation of this function is modeled as an optimization problem: 

it consists of an objective function, learning algorithm, and a model family. The objective 
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function should represent how well the model estimated the output. Negative log likelihood 

(Goodfellow, Bengio, & Courville, 2016) is commonly used for classification in machine 

learning and “l2 loss” for regression. In the case of neural networks, the cost function is 

nonconvex – unlike linear regression – and cannot be solved using linear solvers. Instead, 

an iterative gradient based approach is used to drive the cost as low as possible using an 

algorithm called gradient descent. Feedforward neural networks with multiple hidden 

layers are often called deep neural networks. The discovery of neural networks dates back 

many decades, however, their adoption for commercial applications has been recent – 

mostly attributed to the increase in training data and computational power. 

 

 

Figure 2.10: Schematic of a neural network with three hidden layers. This qualifies as a 

deep neural network based on its definition 

Deep learning  is a part of a broader class of machine learning algorithms which have been 

applied to various fields such as computer vision, speech recognition, text analysis, 

machine translation (Goodfellow et al., 2016; C. M. Hegde, Awan, & Wiemers, 2018; 

LeCun et al., 2015; Schmidhuber, 2015). For drilling optimization applications – data is 

low-dimensional – and neural networks will often overfit. The dataset used for analysis in 
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this chapter does not have sufficient data to prevent overfitting. As a result, neural networks 

are not used for ROP modeling since traditional statistical learning methods provide a 

better solution conforming with the Occam's Razor theorem (Blumer, Ehrenfeucht, 

Haussler, & Warmuth, 1987). 

2.3.2.7 Model Ensembles 

An ensemble data-driven model (or ensemble learning ROP model) combines other 

data-driven algorithms (such as linear regression, bagging, neural nets, random forests, etc. 

(C. M. Hegde, 2016)) to create an ensemble or combination of data-driven models 

(Equation 2.10). This method is particularly useful in prediction of highly non-linear data 

where simple models can be combined for more accurate estimations. 

ROP =  𝑤1𝐷𝐷1 + 𝑤2𝐷𝐷2 +  𝑤3𝐷𝐷3, (Equation 2.10) 

where DDn are data-driven models (random forest, neural network or linear regression), 

and wn are constants determined based on the formation being drilled. ‘wn’ can be 

determined by using the stacking algorithms such as the feature-weighted linear stacking 

(Sill, Takács, Mackey, & Lin, 2009). The constants of the additive models can also be 

determined using other machine learning algorithms such as linear regression or random 

forests. In most cases, adding a constraint – the sum of model weights should sum up to 1 

– converts the problem into a form (geometric programming) that is easy to solve 

(Friedman et al., 2001). The premise behind this algorithm is that the deficiencies of one 

model will be counteracted by other models – a team effort for ROP prediction.  

2.4 PARAMETRIC STUDY OF TRAINING SET LENGTHS 

The accuracy of data-driven models predominantly relies on the quality, range, and volume 

of the training data. This section is dedicated to the parametric analysis of training data: its 
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range and volume for efficient ROP prediction. The change in accuracy of ROP prediction 

based on changing the type and size of the training set relative to the test set is evaluated. 

 

2.4.1 Type of training data 

Since the accuracy of data-driven models is largely dependent on the training data, this 

section evaluates three different types of training data to predict ROP illustrated in Figure 

2.11. The first kind of training data (case 1) is the data obtained while drilling the formation 

in question– formation specific training data. The third kind of training set (Case 3) is the 

data obtained while drilling preceding formations (or upper levels), which are used to 

predict ROP in a different formation: for example, using Broom Creek drilling data to 

predict ROP in Tyler formation (as shown in Figure 2.11 (left) as case 3). Case 3 is a 

situation which is encountered when the bit enters a new formation, and no prior data for 

that formation is available. ROP modeling in a new formation should use data of the same 

formation from pad wells or use physics-based models. ROP modeling during formation 

transitions can be handled without any modeling or by using a weak Gaussian prior or a 

prior based on data obtained from drilling similar formations. The second kind of training 

data (case 2) is a combination of the cases 1 and 3, where the training set contains drilling 

data from other preceding formations as well as data from the formation in question. This 

case of training data would answer whether data from the same BHA but a different 

formation would help in the prediction of ROP. 

Training sets can be evaluated based on the accuracy of ROP predictions of a model is built 

on it. The normalized error for different models is compared to ensure an unbiased 

comparison. Intuitively one can expect case 1 to be a better training set than case 2 – 

because case 1 has formation specific drilling data (or relevant data). However, case 2 
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contains data from other formations as well as the relevant data. This extra data (partially 

relevant) gets equal preference – by the algorithm – in building the data-driven model, 

which decreases the accuracy of models built on case 2. Case 2 is expected to be better 

than case 3 since it has some formation specific relevant data, whereas case 3 has data from 

other formations. Case 3 represents a situation where a data-driven model is trained on data 

collected in a different formation – not recommended. One school of thought would be to 

avoid using this type of data for building models since different geological formations are 

inherently different, using data from other formation for training a data-driven model defies 

the fundamental principal of geosciences. However, this case has been evaluated to show 

that relevant data is extremely important for model accuracy. This also goes to show that 

manually generated data cannot be used for ROP prediction or if used will result in poor 

accuracy. Additionally, it provides extra confidence in the model since random data or poor 

data does not yield as good a result as using pertinent data. 

Three training sets are used to build a data-driven model which is evaluated for ROP 

prediction errors on the same test set. The best training set is determined by comparing 

their normalized prediction errors (Equation 2.11). Figures 2.12 shows the test set errors 

for the three different training sets. As expected, case 1 outperforms case 2 and case 3 for 

ROP prediction.  

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝑃−𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑂𝑃|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑂𝑃
, (Equation 2.11) 

 

Ratcliffe is the only formation where training data from case 2 and outperforms case 1. 

This is hypothesized due to the thickness of the formation. This formation has 67 ft of data, 

which makes it a very thin formation. The sparsity of available data in the formation causes 

higher error rates in case 1 as compared to cases 2. These results indicate that for thinly 
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bedded formations it is better to include training data from previous formations to augment 

the dataset.    

 

 

Figure 2.11: Illustration of test and training sets for parametric evaluation of nature of 

training set. A total of three cases have been illustrated 
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Figure 2.12: Boxplot evaluation of test set errors of models built on three different cases 

of training sets. As expected, overall case 1 outperforms the other two 

cases indicating that most accurate models require formation related data 

 

 

Figure 2.13: Line plot evaluation of test set errors of models built on three different cases 

of training sets for several different formations. In all cases (except 1) 

models built on case 1 outperform cases 2 and 3 
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2.4.2 Training-test ratio in ROP prediction 

This section evaluates the relationship between the ratio of training-test sets and model 

accuracy. The drilling data in each formation is partitioned into training and test sets for 

ROP prediction (Figure 2.2). Increasing the length of the training set should ideally 

improve the accuracy of the data-driven model since more data would be available for 

learning. Data-driven models tend to produce better results with additional data. The 

optimum size of the training set (one that produces a reasonable test error) depends on the 

formation and data.  

The size of the training set relative to the test set is changed for each formation; the ROP 

prediction error for each case on the test set is recorded. The training set is changed in size, 

varying its length from 10% to 90% of the size of formation. The remainder is used as the 

test set. The average prediction error for each case is compared. Figure 2.14 shows the 

results obtained from this parametric study. A data-driven model – using the random forest 

algorithm – is used to predict ROP for each case. Figure 2.14 shows a decrease in error 

with an increase in the training-test set ratio, indicating that an increase in the length of the 

training set produces an increase in accuracy (as expected). The accuracy desired (say a 

normalized error ratio of 0.2) can be computed using the plot in Figure 2.14.  

 

2.4.3 Optimal training sets 

The plots in this section 2.4.1 and 2.4.2 provide some insight into practical applications of 

data-driven models in drilling. Training sets are more reliable and efficient for data-driven 

models when constrained to the formation of interest (case 1). Optimal training-test set 

ratios vary depending on required accuracy and formation. If an error rate of 0.2 or 20% is 

assumed to be required, then a train-test ratio of 0.2 between training and test set length 
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remains sufficient for most formations. A lower error rate requires a larger volume of 

training set data, pushing the training-test set ratio to 0.3-0.5 in a few cases as seen in Figure 

2.14. In some cases (Tyler and Ratcliffe) higher ratios such as 0.7 may be necessary for 

low error rates of 10%. In one case (Broom Creek) a low error rate <10% is not possible 

for any ratio of training-test set data evaluated in this analysis using the random forest ROP 

model. The minimum training to test ratio required (for a data-driven random forest-based 

model) to outperform a traditional model (conditioned to the entire data set i.e. best-case 

scenario) are summarized in Table 2.1. The results indicate that in most cases 20-30% of 

the formation depth is sufficient to outperform the best traditional model for the formation 

in question. There undoubtedly is a relationship between model accuracy and thickness of 

formations. For data-driven models, the increase of data results in an increased predictive 

accuracy. 

 

Figure 2.14: Line plot describing the relationship between model error and ratio of training 

to test data. The increase in the amount of training data shows a decline 

in model test error.  
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Table 2.2 shows an analysis of the amount of training data required to achieve a 10% and 

20% ROP prediction error for some formations in the data set. For 80% accuracy, the 

amount of training data required is around 40ft on average except for Broomcreek and 

Tyler formations which are higher. Broomcreek and Tyler require around 80 points in 

training data. For 90% accuracy, the amount of training data required is around 65 points 

on average except for Broomcreek and Tyler. This also shows the importance of model 

update or retraining as drilling proceeds. The frequency of retaining and the improvement 

of model accuracy with an increase in training data are currently being researched. 

 

Table 2.1: Parametric analysis to determine the size of the training set to outperform 

traditional models 

Formation 

Name 

Training to Test Ratio 

required to perform better 

than the best traditional 

model 

Length of 

Dataset 

Best Traditional 

Model 

Base Last Salt 0.2 211 Bingham 

Broom Creek 0.2 196 Hareland 

Charles 0.4 348 Motahhari 

Kibbey Lime 0.1 220 Hareland 

Lodgepole 0.2 348 Hareland 

Mission 

Canyon 0.3 764 Hareland 

Ratcliffe 0.4 65 Hareland 

Tyler 0.2 432 Hareland 
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Table 2.2: Amount of training data required for ROP accuracy 

Formation 

Name 

Training Points to achieve an 

accuracy of 0.2 

Training Points to achieve an 

accuracy of 0.1 

Base Last Salt 42 63 

Broom Creek 78 NA 

Kibbey Lime 22 66 

Lodgepole 35 70 

Ratcliffe 26 59 

Tyler 86 302 

 

2.5 ROP PREDICTIONS: RESULTS AND DISCUSSIONS 

Traditional models were used to model ROP based on field data. Simulations are run 

individually on each formation since ROP models are formation-dependent. The traditional 

models were used to predict ROP based on the methodology outlined in literature (Soares 

et al., 2016). Errors are normalized to ensure unbiased comparison with results from other 

formations. An ANOVA test and the high test error for linear regression models show that 

data modeled here is not linear. The prediction error rate has been plotted as a line and box 

in Figure 2.15. The test-train ratio of 0.5 was used for the experiments evaluated in Figure 

2.15. Boxplots summarizing the change of test-train ratios and model accuracy as shown 

in Figure 2.16. The boxplot plotted here are contain the median of all values displayed with 

the 25th and 75th quartile as edges of the box. The whiskers extend the box plot to the 

extreme values. Outliers are plotted as a point outside the box plot. In order for a datum to 

be an outlier, it must be larger than the 75th percentile by at least 1.5 times the inter quartile 

range or smaller than the 25th percentile by at least 1.5 times the inter quartile range. The 

interquartile range is the difference between the 75th and 25th percentile. Alongside the 

traditional models, the accuracy of the random forest model is plotted for comparison. The 
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random forest hyperparameters were chosen based on cross-validation error (the out of bag 

error would be a great alternative as well). A total of 1000 bootstrapped trees were averaged 

each with a feature selection subset of 3 and a minimum sample required at leaf node of 3. 

Since the minimum samples at the leaf is 3, the minimum data used to make a prediction 

is 3 points, however, the average is expected to be higher, depending on the data and the 

node split. The number of bootstrapped trees utilized for this algorithm is 1000, which is 

high considering the dimensions of the data that are being modeled. It is hypothesized that 

this is due to the chosen value for the minimum leaf size since the minimum samples at the 

leaf is small (3), there was a chance for each tree to over fit. The averaging of trees 

decreases is the main knob which controls variance in a random forest. Hence a larger 

number of trees were required to prevent overfitting.  

Once the hyperparameters have been determined, the random forest model is trained in 

minimal time (180 ms for training a random forest model with 1000 trees) 8 GB DDR3 

RAM laptop with Intel 7thgeneration i7 7500U CPU @ 2.60 GHz processor running 

python’s scipy package (Jones et al., 2001). However, tuning the model can take longer 

depending of the number of hyper parameters evaluated. Implementing a random search 

(Bergstra & Bengio, 2012) instead of a grid search can help improve computation 

efficiency of this process. 
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Figure 2.15: Normalized model error of traditional models compared with the random 

forest model for ROP prediction; A test-train ratio of 0.5 was used to train 

a model for each formation; (Top) The normalized error has been plotted 

on the y-axis against the formation; (Bottom) Box plot of the normalized 

errors for all formations. 

Based on figures 2.15 and 2.16 it is evident that the random forest model performs 

better than traditional models for the prediction of ROP. As the length of the training set is 

increased the resultant error decreases for the random forest model. However, this does not 

hold for traditional models; the error decrease with an increase in the train-test ratio is not 

evident; in the case of traditional models where the functional form cannot be modified – 

only the empirical constants are changed. The prediction error for traditional models may 

also decrease as more data is used for training in certain cases since using more data 
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“generalizes” the empirical constants. The empirical constants if determined at shorter 

intervals will lead to higher accuracy – similar to a local regression analogy (S. P. Wallace 

et al., 2015).  The flexibility of this functional form enables the random forest model to 

slowly “learn”. 

 

 

Figure 2.16: Model error with different train-test ratios (displayed at the top left corner of 

each image); a test train ratio is the ratio of the length of the training set 

to the test set; As the ratio increases the random forest model error 

decreases as expected. Traditional models sometimes result in a smaller 

error with more training data – the effect is not as pronounced as the 

random forest model 

Several machine learning algorithms are used to model ROP based on field data. 

Simulations are run individually on each formation since ROP models are formation-

dependent. The traditional models followed the train-test split method as discussed in 
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section 2.2. Test errors are normalized to ensure unbiased comparison with results from 

other formations. The prediction error rate has been plotted as a line and box plot for data 

evaluated with a test-train ratio of 0.5 in Figure 2.17. The data are split into training and 

test set spatially – the first half of the formation is used for training and the second half to 

evaluate the model. Boxplots summarizing the change of test-train ratios and model 

accuracy as shown in Figure 2.18. The figures 2.17 and 2.18 indicate that for this dataset, 

random forests outperform other algorithms for ROP prediction. In specific formations, 

KNN or linear regression may perform better than random forests. It might be better to 

approach ROP prediction using a bag-of-models approach: where the best models based 

on cross-validation error for a given formation is used for prediction. Hyperparameters for 

each machine learning algorithm evaluated in this plot have been chosen based on their 

cross-validation error. The KNN algorithm was implemented with K=4, bagging with a 

total of 1000 bootstrapped trees, and linear regression keeping only statistically significant 

predictors with a p-value lower than 0.05. The neural networks were implemented using a 

learning rate of 0.001, two layers with 8 and 4 neurons each. Hyperparameter search for 

the neural networks included modifying the learning rate, number of layers, early stopping, 

number of units for each layer, loss function, and optimization algorithm using a 

randomized search grid (Bergstra & Bengio, 2012).  
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Figure 2.17: Normalized model error of data-driven models compared for ROP 

prediction; A test-train ratio of 0.5 was used to train a model for each 

formation; (Top) The normalized error has been plotted on the y-axis 

against the formation; (Bottom) Box plot of the normalized errors for all 

formations. 
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Figure 2.18: Data-driven model error with different train-test ratios (displayed at the top 

left corner of each image); a test train ratio is the ratio of the length of 

the training set to the test set; As the ratio increases (from 0.25 to 0.75 

top to bottom) the data-driven models show a decrease in error as 

expected. 

Figure 2.19 shows ROP prediction using the Bingham model and a random forest model 

as a means to visualize predictions and understand R2. The R2
 is a metric which is used to 

determine the amount of variance explained by the model. The test data (blue), training 

data (orange) and ROP predictions (green) in Figure 2.19 have been colored to make a clear 

distinction. The machine learning model (random forests) had an R2 of 0.97, whereas the 

Bingham ROP model produced an R2 of 0.64. The ROP predictions made using the 

Bingham model appear to be the best fit line, not following the ROP trends seen in the data. 
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Figure 2.19: ROP predictions using random forest and the Bingham model. While the 

random forest is able to capture the trend of the data to predict ROP, the 

Bingham model produces a best fit line 

Table 2.3 summarizes the results in a compact form. As previously described the random 

forest ROP model can be used for inference. The most important features for ROP 

prediction or modeling can be useful to the engineer, as it can dictate the parameters which 

control the ROP in that formation. Figure 2.20 provides a measure of the importance of 

each drilling input variable influencing ROP for a model built on Lodgepole limestone 

formation using the random forests algorithm. The feature importance depends on the 
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model; hence it will change depending on the formation in question. The importance plot 

(Figure 2.20 (right) suggests that changing the WOB and flow-rate will change the ROP 

more significantly as compared to RPM for lodgepole limestone. The black vertical lines 

show the standard deviation of this importance metric – due to the random nature of the 

algorithm. 

 

Table 2.3: Summary of ROP simulation results  

Predictor R2 

Normalized 

Error 

Random Forest 0.84 0.14 

KNN 0.72 0.19 

Linear 

Regression 0.12 0.16 

Bingham 0.46 0.34 

Motahhari 0.63 0.27 

Hareland 0.19 0.16 

BY 0.34 0.33 

 

 

Figure 2.20: (Left) ROP prediction using the random forest ROP model; the first half of 

the formation is used to train the model; (Right) Feature importance of 

the random forest model used to model ROP in the lodgepole limestone 

formation; The black lines indicate the standard deviation of the input 

features. 
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2.6 TORQUE ON BIT (TOB) MODELS 

Prediction of downhole torque during drilling can help mitigate drilling problems 

as well as aid in drilling optimization by improving the mechanical specific energy (MSE) 

of drilling. Surface torque is commonly measured on the rig and typically easy to obtain. 

Unfortunately, it is still rare to obtain torque on bit (TOB) measurements close to the bit, 

which are more important since it plays an integral role in the MSE calculations. Torque is 

measured on the rig surface using a sensor, most of torque and drag modeling is focused 

on predicting the loss of torque from the surface to the bit – estimating the torque on bit 

(TOB). The basic concept of TOB prediction or calculation has not changed over the past 

few decades. However, with increases in computational resources, there has been a surge 

of numerical and mathematical modeling of TOB. Models have built upon the basic model 

introduced in the past (Johancsik, Friesen, & Dawson, 1984). However, with increasing 

complexity in drilling and introduction of horizontal and extended reach wells, these 

fundamental TOB modeling techniques often fall short. TOB measurements are usually 

available post bit-run as instrumented subs are typically memory only tools, except with 

wired-pipe technology (Trichel et al., 2016). Downhole torque and drag modeling provide 

one method to estimate the TOB without downhole measurement. However, predictions in 

real-time require an analytical model with a closed form solution to cope with 

computational constraints (Gerbaud, Menand, & Sellami, 2006). Recently the pioneering 

work by Ertas (D. Ertas, Bailey, Wang, & Pastusek, 2014) has shown that TOB estimation 

is possible using surface torque by applying the transfer matrices technique. This 

estimation of TOB was then used for vibration control. Authors (C. Hegde, Wallace, & 

Gray, 2015) have used statistical learning methods to predict downhole torque using 

surface drilling parameters. They argued that analytical models were inaccurate and FEM-
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based models are not feasible in real-time. A simple solution was to use a pattern matching 

or machine learning algorithm to learn the torque response downhole. 

Alternatively, TOB can be calculated from surface torque by measuring the difference 

between the torque on and off bottom during drilling: a crude estimate which assumes no 

contact between the drill string and borehole. As shown by Menand (S Menand & Mills, 

2017), the differential pressure can be used to estimate TOB as shown in equation 2.11. 

 

𝑇𝑂𝐵∆𝑃 𝑀𝑜𝑡𝑜𝑟 =
𝑇𝑚𝑎𝑥

𝑃𝑚𝑎𝑥
∗ ∆𝑃, (Equation 2.11) 

 

where,  ∆P is the differential pressure, Tmax is the mud motor max related torque (ft-lbs), 

and Pmax is the mud motor max related ∆P. In this chapter, TOB has been modeled as a 

function of drilling input parameters – RPM, WOB, flow-rate, and UCS – to measure the 

change in TOB with changing downhole conditions. This model will be integral to the 

prediction and optimization of MSE as discussed in later chapters. Modeling torque as a 

function of control parameters (using a data-driven approach) allows easy coupling of the 

ROP and TOB (Pavone & Desplans, 1994). The TOB model is fitted as a function of WOB, 

RPM, flow-rate and UCS using the random forests algorithm. By fitting the TOB model 

with the same input parameters as the ROP model it is possible to measure the change of 

ROP and TOB jointly (or in a coupled manner) when drilling control parameters are 

changed. Alternatively, a full-scale physics-based model of torque on bit (TOB) (Stephane 

Menand et al., 2006) can be used to model the TOB – this will not result in a coupled 

model.  
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2.7 TOB PREDICTIONS: RESULTS AND DISCUSSIONS 

TOB has been modeled using machine learning algorithms presented earlier in this chapter. 

Analytical and finite element based TOB models have not been discussed since they 

deviate from the main use of these models – coupling with the ROP model and TOB 

prediction for MSE optimization. Several machine learning algorithms were used to model 

TOB based on field data. Simulations are run individually on each formation since TOB 

models are formation-dependent. The traditional models followed the train-test split 

method as discussed in section 2.2. Test errors are normalized to ensure unbiased 

comparison with results from other formations. The prediction error rate has been plotted 

as a line and box in Figure 2.21. The test-train ratio of 0.5 was used for the experiments 

evaluated in Figure 2.21. The hyperparameters for each algorithm were chosen based on 

their cross-validation error. The best random forest model was built using 1000 trees, a 

random feature subset of 3 and a minimum leaf node size of 5. The hyper parameters search 

for other parameters were conducted using a random search implemented in scikit 

learn(Pedregosa et al., 2011). Boxplots summarizing the change of test-train ratios and 

model accuracy as shown in Figure 2.22. The figures 2.21 and 2.22 indicate that for this 

dataset, random forests consistently perform well for predictions. Since random forests 

perform well for both ROP and TOB prediction and use the same input feature for 

prediction, they can be built together using input data. TOB feature importance can be 

calculated paralelling  the calculation performed for the random forest ROP prediction 

model. The importance plot (Figure 2.23 (right)) suggests that changing the WOB is the 

most significant input feature which controls the TOB for lodgepole limestone. The black 

vertical lines show the standard deviation of this importance metric – due to the random 

nature of the TOB prediction model. 
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Figure 2.21: Normalized model error of traditional models compared with the random 

forest model for TOB prediction; A test-train ratio of 0.5 was used to 

train a model for each formation; (Top) The normalized error has been 

plotted on the y-axis against the formation; (Bottom) Box plot of the 

normalized errors for all formations. 
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Figure 2.22:  Model error with different train-test ratios (displayed at the top left corner 

of each image); a test train ratio is the ratio of the length of the training 

set to the test set; As the ratio increases the model error for TOB 

decreases as expected. 

 

Figure 2.23: (Left) TOB prediction using the random forest model; the first half of the 

formation is used to train the model; (Right) Feature importance of the 

random forest model used to model TOB in the lodgepole limestone 

formation; The black lines indicate the standard deviation of the input 

features. 
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2.8 CONCLUSIONS 

This chapter introduced modeling of important drilling optimization metrics such 

as ROP and TOB. Traditional models are most often the industry standard for ROP 

prediction. Although sound in physics, these models introduce many empirical coefficients 

which restrict their functional form. Empirical coefficients are determined by conditioning 

the models to the data – the training set. Data-driven models, on the other hand, rely purely 

on the data to build the model, but the inclusion domain expertise improves the quality of 

the model. The data-driven models described in this chapter used input features – WOB, 

RPM, flow rate, and UCS – derived from the physics-based models for ROP prediction. 

Traditional and data-driven models were used to predict ROP on the test set. Results 

showed that some data-driven models outperformed traditional models. The random forest 

algorithm performed the best among the data-driven models resulting in an average 12% 

error on the test set and an R2 of 0.84. The random forest algorithm also improved 

prediction accuracy as more data was used to train the model whereas the traditional 

models did not. In some formations, ROP was better predicted by other machine learning 

algorithms and even by traditional models, however, the best overall predictor of ROP is 

the random forest algorithm. A bag-of-models approach can be used where the best model 

is utilized for ROP prediction ahead of the bit for a given formation based on cross-

validation error on the training set. 

Data-driven models were used to model the TOB during drilling using WOB, RPM, 

flow-rate and UCS as input features. This modeling scheme allows joint modeling of ROP 

and TOB using the same input features – coupling them. Of all the algorithms, the random 

forests model outperformed all others evaluated with an average error of 16% on the test 

set. This error can be reduced with the use of more data for prediction.  
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Chapter 3:  Rate of penetration (ROP) modeling using hybrid models: 

deterministic and machine learning3 

The previous chapter discussed modeling of ROP using deterministic and data-

driven models. Deterministic models impose constraints on functional form but provide a 

means to interpret the model whereas the data-driven models were unconstrained in form 

– leading to an increase in prediction accuracy at the cost of interpretability. There is a 

middle ground between the two models, where the perks of both models can be combined 

resulting in a model which provides trade-offs between accuracy and inference – the hybrid 

model. 

3.1 INTRODUCTION 

Data-driven modeling techniques provide high-performance, reproducible, and 

scalable solutions. Their unknown functional form – is it exponential, polynomial, etc.? –

makes their interpretation difficult. They use drilling parameters – RPM, WOB, flowrate, 

and UCS – as inputs, while not constraining functional form. This allows them to model 

the data more closely, resulting in higher accuracy. This increase in accuracy is a result of 

sacrificing model inference or interpretability. Knowing the functional form of a ROP 

model can be used to derive insights (the most influential input drilling control parameter). 

Hence, finding a middle ground between these two models can result in a good trade-off 

between accuracy and interpretation (or model inference). The goal of this chapter is to 

evaluate the performance of hybrid models – a combination of deterministic and machine 

learning models – in modeling rate of penetration (ROP) of drilling. This modeling 

                                                 
3 Hegde, C., Soares, C., & Gray, K. (2018). Rate of penetration (ROP) modeling using hybrid models: 

deterministic and machine learning. Unconventional Resources Technology Conference. Houston, Texas, 

USA: Unconventional Resources Technology Conference 

 

The author of this thesis is the primary author of the paper 

 



 56 

methodology has been carried out with success in climate science (Goldstein, Coco, 

Murray, & Green, 2014), where, combining the strengths of inductive (data-driven) and 

deductive (physics-based) approaches into a hybrid model was successful. 

This chapter analyzes different ROP modeling strategies. Bingham, BY, and 

Motahhari models constitute the applied deterministic ROP models. The best machine 

learning algorithm from Chapter 2 (random forests algorithm) is used as the data-driven 

model for ROP prediction. A novel way to formulate hybrid models has been discussed by 

presenting two broad strategies: ensembles of a single deterministic model (hybrid-One) 

and ensembles of several deterministic models (hybrid-N). Both types of hybrid models 

are evaluated for ROP predictive accuracy and model inference on twelve different 

formations by running experiments on data measured while drilling a well in the Williston 

Basin, North Dakota. A case study for Mission Canyon limestone shows the application of 

each drilling model in detail – for prediction and inference. Hybrid models result in a higher 

ROP prediction accuracy when compared to deterministic models. Additionally, they can 

be used as effective inferential tools, unlike data-driven models.  

3.2 DATASET AND  EXPERIMENTS  

The dataset used for validation follows the same field-based data as presented in 

Chapter 2. Experiments are conducted to test the accuracy of different models for ROP 

prediction on measured field data. The same methodology as presented in Chapter 2 

(section 2.2) has been used for ROP prediction and evaluation.  
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3.3 THEORY: ROP MODELING 

Deterministic models used for ROP modeling – the Bingham, Motahhari and BY 

model – have been described in Chapter 2 (section 2.3). Data-driven models used for ROP 

prediction have been analyzed in Chapter 2 (section 2.3).  

3.3.1 Hybrid Models 

These models combine deterministic and machine learning models; their objective 

is to provide a trade-off between interpretability and prediction accuracy. Two approaches 

are utilized to build a hybrid model: ensembles of a single deterministic model (hybrid-

One) and ensembles of several deterministic models (hybrid-N). 

3.3.1.1 Hybrid-One Model 

This model uses a single deterministic ROP model within an ensemble algorithmic 

framework. Deterministic models have fitting parameters (or constants) which are 

determined based on the geology and drill bit design. The Hybrid-One model uses an 

ensemble machine learning algorithm to effectively fit these parameters in batches.  

The ensemble algorithm combines many versions (or “realizations”) of the same 

deterministic model to yield a hybrid model. Figure 3.1 shows a flowchart of this algorithm 

by using Bingham’s model as a base. ‘N’ versions of Bingham’s model are combined using 

an ensemble algorithm such as regression, bagging or random forests. A “version” of 

Bingham’s model is a model with unique fitted coefficients. These coefficients are selected 

by fitting the deterministic model on a subset (or batch) of the training set. For example, a 

Bingham model can be built using a random one-tenth of the training set. This constitutes 

a form or version of the model as shown in Figure 3.2. This is repeated ‘N’ times. All ‘N’ 

models are fed into an ensemble algorithm which is used to combine all versions of the 

model to a single predictive model – the Hybrid-One model. This algorithm works on the 
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premise that many input features can be underrepresented in the final model while fitting 

the entire formation at once. Alternatively, this two-layered fitting procedure guards 

against outliers and increases the influence of underrepresented input features. The analogy 

used in this algorithm is similar to ensembling machine learning algorithms; ensembling 

many algorithms work on the premise that some models correct or capture deficiencies of 

other models better. Since deterministic models are not stochastic in nature, the training set 

is partitioned into ‘N’ parts; a model trained on each “Nth” part acts a “version” of the 

deterministic model. These N parts can be obtained by splitting the data set into “N” parts 

or with the use of bootstrapping. The overall flavor of this algorithm follows bagging 

closely. 
 

 

Figure 3.1: Schematic for building a Hybrid-One model using Bingham’s model as the 

base deterministic model; Several versions of the Bingham’s models are 

combined using an ensembling algorithm 
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Figure 3.2: Building a form of a Bingham model; Training set is randomly sampled as 

shown in the figure for data, which is used to fit a Bingham model. This 

fitted Bingham model is called a “version” of a Bingham model. 

3.3.1.2 Hybrid-N Model 

All three previously described deterministic ROP models are combined to provide 

better ROP predictions. This is based on the premise that certain downhole conditions 

which are not explained by one model can be explained using another model – similar to 

intuition behind an ensemble model containing many machine learning algorithms. 

Therefore, it is hypothesized that the deficiencies of models are canceled out by the other 

models in the ensemble – work together mimicking a team effort. Each model is assigned 

a weight (𝑤𝑖) determined mathematically to reduce the overall error in ROP prediction. 

Machine learning algorithms are used to determine the weight since they account for 

correlation between the input ROP models and account for overfitting. Figure 3.3 shows a 

schematic of the hybrid-N model where three deterministic models – Bingham, Hareland 
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and BY model – are combined using an ensembling algorithm to yield a predictive model. 

This template can be easily extended to numerous other oil and gas applications such as 

prediction of production using different models, decline curve analysis for better accuracy, 

history-matching, etc. A constraint is often beneficial for ensembling different algorithms 

to ensure that the optimization problem is well defined (Friedman et al., 2001). The weights 

of each model are set to only take on values between 0 and 1. Additionally, the sum of all 

‘N’ model weights are set to 1 (this makes it a geometric programming problem, making 

the optimization easy (Friedman et al., 2001)). There can be cases where some model 

weights are driven to zero, indicating that the model in question does not contribute to the 

final model. 

 

 

Figure 3.3: Schematic for building Hybrid-N ROP model using three deterministic 

models; Compared to the Hybrid-One algorithm, the hybrid-N algorithm 

combines different models using an ensembling algorithm 
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3.4 ENSEMBLING ALGORITHMS 

This section describes algorithms which are used for the development of hybrid and 

data-driven ROP models. KNN, trees, bagging, neural networks and random forests can 

also be used as ensembling algorithms by feeding them meta-data (data already processed 

by models) instead of field measured data. Since the application and theory of these 

algorithms remain the same, the reader is referred to the previous chapter (section 2.3). 

New algorithms are presented in this section. 

3.4.1 Mean 

This algorithm would be applied to build the hybrid-N model; it predicts ROP by 

using an 𝑛th of the ‘N’ inputs (Equation 4). For the case shown in Figure 3.3, since three 

input models were used, ROP is predicted using a third of each model’s prediction. While 

not a machine learning algorithm, this method has been presented given its sheer simplicity. 

The premise is that the ‘𝑁’ ROP models used are dependent on different drilling parameters 

and can compensate for each other. For example, Bingham’s ROP model highly depends 

on ROP and WOB, whereas Motahhari’s model is the very sensitive to rock strength.  

 

ROP =  
1

𝑁 
∑ 𝐷𝑛

𝑁
𝑛=1 , (Equation 3.1) 

 

where, ‘N’ is the number of input deterministic models and Dn is the ROP 

prediction of the nth model.  

3.4.2 Stacking 

Regression ensembling is the simplest machine learning technique which assumes 

that the data are linearly related. For the hybrid-N algorithm, it assumes that the metadata 

- predictions of ROP models themselves - can be combined linearly to predict the response 
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(Equation 3.2). Regression assigns each deterministic model with a weight, which 

measures its relative contribution to the final ROP model. The least squares algorithm is 

used to minimize the 𝑙2 norm. The premise of using linear regression is that ROP 

predictions from different models are sufficiently non-linear; these non-linear metadata can 

be combined linearly to predict the response. 

 

ROP =  ∑ w𝑛𝐷𝑛
𝑁
𝑛=1 ,  (Equation 3.2) 

 

where, w𝑛 is the weight of each prediction, and 𝐷𝑛  is the ROP prediction of the nth 

deterministic model. Since these models are prone to overfitting, adding constraints often 

helps improve the efficacy of regression. By constraining the weights (w𝑛) (or squares of 

weights) to sum to 1 and remain non-negative the problem is better formulated (called 

stacking). This ensures that stacking does not assign higher weights to more complex 

models and converts the least squares regression to a quadratic programming problem 

(Friedman et al., 2001).  

3.4.3 Ridge Regression 

This algorithm adds constraints to the regression equation by adding a 

regularization term (Equation 3.2).  

 

ROP =  ∑ w𝑛𝐷𝑛
𝑁
𝑛=1  + λ ∑ 𝑤𝑛

2
 

𝑁
𝑛=1  , (Equation 3.3) 

ROP =  ∑ w𝑛𝐷𝑛
𝑁
𝑛=1  + λ ∑ 𝑤𝑛

 
 

𝑁
𝑛=1  , (Equation 3.4) 
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where, w𝑛 are the weights of each prediction, and D𝑛 is the ROP prediction of the 

𝑛𝑡ℎ deterministic model, λ is a tuning parameter selected using cross-validation. The extra 

term in Equation 3.3 as compared to Equation 3.2 is the regularization term; it adds a 

constraint on the weights which helps prevent overfitting by penalizing large weights 

(making the model less flexible). The use of the 𝑙1constraint instead of 𝑙2 is called lasso 

regression (Equation 3.4). The lasso acts as a feature selector and drives weights to zero; 

the lasso is particularly useful in cases with large a number of features resulting in a sparse 

model (Efron & Hastie, 2016). 

3.5 RESULTS AND DISCUSSIONS 

Models are evaluated in this section based on their test errors. 40% of the data in 

each formation are used for building the model (training set) and the rest to evaluate 

accuracy (test set). Model hyperparameters are finetuned using cross-validation on the 

training set; trained models are then evaluated on the test set for an unbiased test accuracy. 

Deterministic models and machine learning algorithms were used to model ROP based on 

field data. Figure 3.4 summarizes the performance of using deterministic models for ROP 

prediction. Results indicate that the random forests algorithm outperforms deterministic 

models for ROP prediction. Among the deterministic models, the Motahhari model 

performs better than Bingham and the BY model. In a few formations, the deterministic 

models yield acceptable results. However, in most cases, they underfit and result in low 

test accuracy. 

A random forests model built using WOB, RPM, flow-rate and UCS as input 

features produced lower error rates than all other model explored so far. Different machine 

learning algorithms have been evaluated for ROP prediction (Figure 3.5) of which random 

forests outperformed all others in test accuracy paralleling results seen in literature (C. 
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Hegde, Daigle, Millwater, & Gray, 2017; Chiranth Hegde & Gray, 2017; Chiranth Hegde 

et al., 2015). 

 

 

Figure 3.4: ROP prediction using data-driven models (40/60 split). Random forests ROP 

prediction has the lowest error as compared to all other statistical 

learning algorithms 

 

Regularized (or ridge) regression, KNN, and bagging were used as ensembling 

algorithms to combine each deterministic model using the hybrid-One algorithm. Since the 

input models are used as metadata for the ensemble, this model is prone to overfitting 

(especially if the different “realizations” of the deterministic models are similar). Ridge 

regression and bagging gives some protection against overfitting and serves as good 

candidates for ensembling. Figures 3.6, 3.7, and 3.8 show the results of using a Hybrid-

One model for ROP prediction. Ridge regression produces the best hybrid models using 
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Bingham and BY as a base deterministic model resulting in a significant increase in test 

accuracy over their vanilla deterministic counterparts. For the Motahhari model, using 

bagging works well and improves accuracy. Overall, the results show the hybrid-One 

model results in better ROP prediction as compared to purely deterministic models as 

hypothesized. While these models still do not always outperform machine learning models, 

most hybrid-One models come close.  

 

 

Figure 3.5: Performance of ROP models on test data for the entire dataset (40/60 split). 

Three deterministic models and one machine learning algorithm have 

been evaluated for test set accuracy. 
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Figure 3.6: Hybrid-One models using the bagging algorithm. Bingham and Motahhari 

hybrid-One models perform better than the deterministic models; the 

hybrid-One BY model has a higher mean error than the deterministic 

model itself; all models perform worse than machine learning models. 

 

 

Figure 3.7: Hybrid-One models using the random forest algorithm. All three hybrid-One 

models perform worse than the deterministic models and machine 

learning models. 
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Figure 3.8: Hybrid-One models using the ridge regression algorithm. The hybrid-One 

with Bingham and BY models perform much better than the 

deterministic models. The hybrid-One Motahhari model does not 

perform as well as the deterministic model overall. Whereas the machine 

learning model outperforms all models. 

Using the hybrid-N algorithm, models were built and evaluated against test data. A 

total of seven algorithms – mean, regression, bagging, random forests, KNN and stacking 

–  were used to combine deterministic models in an effort to identify the best hybrid-N 

algorithm (Figure 3.9). Results indicate that the stacking algorithm outperforms other 

evaluated algorithms. Additionally, stacking is a linear algorithm which makes its 

interpretation easy; Table 3.1 summarizes the weights assigned to each deterministic model 

by the stacking algorithm. These weights can be considered to be a proxy for the 

importance of each deterministic model in the final ROP model.  

Data-driven models perform well in most cases for ROP prediction. In certain 

instances, with a shortage of data, it may be more feasible to use a deterministic model. 

Hybrid models provide an alternative way to fit deterministic models which often boosts 

accuracies and still provides some interpretability. In general, for a field application, a bag-

of-models approach should be preferred – the best model for that specific formation based 

on cross-validation error is used as opposed to an overall best model for the entire well.   
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Figure 3.9: Performance of hybrid-N models for ROP modeling. A total of seven 

algorithms have been evaluated to determine the best algorithm for the 

use of the hybrid-N model. 
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Table 3.4: Weights assigned to each formation based on stacking algorithm used to create 

a hybrid-N ROP model 

 

Hybrid-N Model 
Contribution 

Formation Bingham Motahhari BY 

Piper Limestone 0 0.35 0.65 

Spearfish Sandstone 0.59 0.21 0.2 

Pine Salt Sandstone 0 0.77 0.23 

Broom Creek 
Sandstone 0 0.64 0.36 

Tyler Sandstone 0.1 0.76 0.15 

Kibbey Lime 
Limestone 1 0 0 

Kibbey Lime Shale 0 0 1 

Charles Sandstone 0 0.6 0.4 

Charles Limestone 0.05 0.76 0.19 

Ratcliffe Sandstone 0.65 0.35 0 

Base Last Salt 
Limestone 0.04 0.91 0.04 

Base Last Salt 
Sandstone 0.25 0.26 0.49 

Mission Canyon 
Limestone 0.11 0.89 0 

Lodgepole Limestone 0 0.24 0.76 

 

3.5.1 Model Analysis and Interpretation 

Deterministic models provide utmost transparency in the ROP modeling process. 

The exact form of the equation is known, which makes model interpretation (or inference) 

easy. The parameters which affect the ROP – RPM, WOB, UCS, and flowrate – are built 

into the equation; hence, once the constants are determined it is easy to carry out an 

inferential analysis. For example, if the best fit Bingham model had RPM raised to 0.5 and 

WOB raised to 1.5, then WOB would be the most influential parameter which affects ROP 

while drilling that formation. The problem with these models is their accuracy. 
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Alternatively, machine learning based ROP models result in much higher predictive 

accuracy, however, they have low inferential capabilities (except in the case of linear 

regression-based methods). The random forest algorithm allows the ranking of input 

features (or compute the importance of each input feature) in the model which can be used 

as a proxy for inference. An example of this feature importance has been shown in Figure 

3.10. It is calculated by measuring the increase in information (or Gini index) with a split 

in the decision tree for a given input feature. This is averaged across all trees and plotted 

(Figure 3.10). Since the random forest and bagging algorithm builds trees using a greedy 

algorithm the feature importance may not be representative of the true physical 

phenomena; they merely represent the feature importance in the model. Additionally, it 

does not provide a direction of change but only a magnitude of importance. 

 

 

Figure 3.10: (Left) ROP prediction using random forests in Lodgepole Limestone; 

(Right) Drilling parameter interest using random forests for ROP 

prediction in Lodgepole Limestone 

Hybrid models provide a tradeoff between accuracy and ability to perform model 

inference. The hybrid-One algorithm introduced an alternative method to fit and tune 

hyperparameters using deterministic models. Since it is an additive model, it can be used 
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to determine the most influential sub-models which can be used for inference (since these 

sub-models are “realizations” of a deterministic model). The hybrid-N algorithm provides 

a simple method to evaluate the importance of a deterministic model for each formation. 

This can be traced back to the most influential input parameter of the dominant model. The 

Bingham model calculates ROP based on the change in RPM and WOB. The most 

dominant term added in Motahhari’s model is UCS (when compared to Bingham’s model); 

BY similarly adds flow-rate. Hence, it can be hypothesized that the weight of a 

deterministic model (Tab1e 3.1) in the hybrid-N algorithm is representative of the 

dominant drilling operating parameters for that formation (note that WOB and RPM are 

combined into one parameter). This provides a proxy for model importance and thereby 

input feature importance. This model importance can be compared to the feature 

importance which is calculated using the random forests algorithm (Table 3.2). 
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Table 3.5: Comparison of random forest feature importance and hybrid-N model weights. 

Important random forest features are highlighted in blue and green for 

high hybrid-N weights 

 

A higher feature importance of UCS is associated with a higher weighting of the 

Motahhari model in all cases. In a few cases where the random forest model associates 

high feature importance to RPM and WOB, the Bingham model is dominant or most 

relevant for the Hybrid-N model. Moderate importance of all features is associated high 

weight of the BY model – the BY is made of eight input parameters and is not overly 

dominant in one feature, making this is a plausible result (as opposed to the initial 

hypothesis that BY is a flow-rate dominant model). This also shows that the modeling 

schemes presented in chapters 2 and 3 are essentially moving in the same direction; some 

methods are more flexible than others which may result in a better fit.  

 

 

 Random Forest Importance Hybrid-N Model Contribution 

Formation WOB RPM Flow UCS Bingham Motahhari BY 

Piper Limestone 0.35 0.2 0.11 0.34 0 0.35 0.65 

Spearfish Sandstone 0.28 0.15 0.31 0.25 0.59 0.21 0.2 

Pine Salt Sandstone 0.08 0.43 0.31 0.18 0 0.77 0.23 

Broom Creek Sandstone 0.37 0.19 0.07 0.36 0 0.64 0.36 

Tyler Sandstone 0.61 0.07 0.04 0.28 0.1 0.76 0.15 

Kibbey Lime Limestone 0.17 0.24 0.02 0.58 1 0 0 

Kibbey Lime Shale 0.5 0.16 0.13 0.22 0 0 1 

Charles Sandstone 0.22 0.09 0.15 0.54 0 0.6 0.4 

Charles Limestone 0.27 0.19 0.14 0.41 0.05 0.76 0.19 

Ratcliffe Sandstone 0.58 0.12 0.15 0.14 0.65 0.35 0 

Base Last Salt Limestone 0.32 0.19 0.14 0.35 0.04 0.91 0.04 

Base Last Salt Sandstone 0.47 0.15 0.1 0.28 0.25 0.26 0.49 

Mission Canyon Limestone 0.26 0.12 0.09 0.53 0.11 0.89 0 

Lodgepole Limestone 0.43 0.1 0.2 0.26 0 0.24 0.76 
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3.6 CASE STUDY:  MISSION CANYON LIMESTONE 

This section applies previously discussed ROP analysis on the Mission Canyon 

formation which is made up of limestone. The dataset was separated into training and test 

sets with a 40/60 split.  

3.6.1 ROP Prediction 

ROP modeling is undertaken on the training set. The Motahhari model is used as 

the base deterministic model for this formation since it was most accurate among the 

deterministic models. The random forests algorithm is built using 1000 trees and a feature 

subset of 2; WOB, RPM, flow-rate, and UCS are used as input parameters. All 

deterministic models are stacked using the stacking algorithm for the Hybrid-N ROP 

predictor; the model’s weights are displayed in Table 3.2. 100 Motahhari models are 

ensembled using the random forest algorithm to create the hybrid-One model. The test 

errors and ROP predictions of these models have been plotted in Figure 3.11; all models 

perform well producing low test error; both hybrid models perform better than the 

deterministic and random forest model. 
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Figure 3.11: ROP predictions of models developed for Mission Canyon Limestone; (Left) 

ROP predictions of deterministic Motahhari model; (Left -middle) ROP 

predictions of data-driven random forest model; (Right-middle) ROP 

predictions of the hybrid-One model; (Right) ROP predictions of the 

Hybrid-N model; 

3.6.2 ROP Inference 

ROP models built in the previous section are used for inference. The deterministic 

model used – Motahhari’s model – has three formation related constants. α and γ represent 

the exponents of WOB and RPM in Equation 2.5. For this formation, α is 1.064 and γ is 1. 

This shows that a percent change in WOB will have a higher impact on the ROP than a 

percent change in RPM providing field intuition.  

Random forest’s feature importance plot (Figure 3.12) emphasizes that UCS is the 

most important parameter influencing ROP followed by WOB, RPM, and flow-rate. 

Hence, to change ROP while drilling this formation, WOB is the key controlling parameter, 

since rock strength is not a controllable parameter. This method does not provide the 

direction of change like the deterministic model. 
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Hybrid-N model weights are 0.11 for Bingham, 0.89 for Motahhari, and 0 for the 

BY model. Zero weight assigned to a model implies that the BY model does not help 

improve ROP predictions. From an interpretation perspective, the dominant drilling feature 

of the excluded deterministic model – flow-rate in this case – is not an important feature 

influencing the ROP. This is supported by the random forest model’s feature importance 

plot shown in Figure 3.12. The weights of the hybrid-N model imply that rock strength is 

the key feature which affects ROP (followed by WOB and RPM). These results align 

perfectly with the previously discussed models. However, in this case, unlike random 

forests, it is possible to derive the exact relationship between ROP and the input features. 

The model is composed of two ROP models – 0.11* Bingham + 0.89*Motahhari; each of 

these models has a relationship between ROP, WOB, and RPM which can be used for 

inference in the form of an additive model as shown in Equation 3.5. 

 

𝑅𝑂𝑃 ∝ 0.11 ∗  𝑅𝑃𝑀 ∗ 𝑊𝑂𝐵0.5 +  0.89 ∗ 𝑅𝑃𝑀 ∗ 𝑊𝑂𝐵1.064 , (Equation 3.5) 

 

The hybrid-One model combines different versions of a deterministic model. 

Bagging was used for ensembling Motahhari models (since it gave the best ROP 

predictions); the feature importance of the bagging predictor can be used to determine the 

most prominent versions of Motahhari’s models (Figure 3.13). For Mission Canyon 

formation, the most influential version of the Motahhari model is the 4th version; for which 

the empirical constants α and γ are 1. Other models have decreasing amounts of influence 

on the model; the empirical constants for these versions can be calculated to form an 

additive equation for ROP inference (similar to Equation 3.5). However, in this case 

extracting the empirical constants of versions 1,6, and 0 provide no additional information. 

This provides the same level of inference as the deterministic model but fits the data better: 
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resulting in higher accuracy. This method of model fitting and inference bears the same 

flavor as the boosting algorithm. In this case, the best deterministic model is fit to the data 

and the portion of data left unexplained (residuals) are refit with the same deterministic 

model to reduce prediction error. Inference can be performed similarly on the hybrid-N 

model; the terms in Equation 8 for this method would all be composed of the different 

“realizations” of the same model. 

 

 

 

Figure 3.12: Random forest ROP model input feature importance for Mission Canyon 

Limestone.  
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Figure 3.13: Hybrid-One model feature importance for Mission Canyon Limestone 

 

3.7 CONCLUSIONS 

Deterministic models are often the industry standard for ROP prediction. Although 

sound in physics, these models introduce many empirical coefficients and functional 

constraints for fitting which often lead to poor results. Machine learning models, on the 

other hand, utilize data to predict ROP; machine learning models are more flexible 

allowing them to be better ROP predictors.  

Empirical coefficients in deterministic models are calculated by conditioning the 

models to the data – the training set. Data-driven models, on the other hand, rely purely on 

the data. Hybrid models combine the two analogies. Two algorithms for building hybrid 

ROP models have been discussed: hybrid-One and hybrid-N. The hybrid-One model 

combines different versions (or realizations) of a single deterministic model – providing 

an alternative method to determine empirical constants. The hybrid-N model combines 
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predictions from different deterministic models using an ensembling algorithm. This is 

based on the premise that one model can compensate for the weaknesses of other models 

present in the ensemble. The hybrid model algorithms introduced in this paper can easily 

be extended to other applications in oil and gas.  

Traditional, hybrid, and data-driven models were simulated to predict ROP in 

different formations. Models were evaluated using normalized ROP test error. The machine 

learning model –  using random forests –  outperformed all other models in terms of 

predictive accuracy on average. However, adopting the bag-of-models analogy can be more 

beneficial – this method selects the best model for each formation based on the cross-

validation error. It produces better results as opposed to selecting an overall best algorithm. 

In general, ROP data are non-linear; deterministic models attempt to estimate this 

nonlinear data using power law or exponential functions and as a result underfit the data. 

However, they provide great inferential insight into ROP modeling, which is not available 

using machine learning. The hybrid models can also provide inferential insight using 

additive ROP equations. For the hybrid-One model, the “version (s)” of a deterministic 

model with the highest weight(s) (or that which explains the highest variance) can be used 

for inference. The hybrid-N algorithm provides valuable insights: the weight of a 

deterministic ROP model in the hybrid-N algorithm can be used to gain information about 

the dominant drilling parameter which influences ROP. Feature importance of random 

forests and the weights of the hybrid-N model showed synergy – indicating that both 

modeling techniques were converging to the same solution. A case study implements these 

ideas to model ROP and gain insight into the drilling process for Mission Canyon 

Limestone formation. 
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Chapter 4: Optimization of drilling models4 

The previous chapters covered the modeling of parameters such as ROP and TOB 

using deterministic and data-driven algorithms. Metrics such as ROP, TOB, and 

mechanical specific energy (MSE) are of key interest in drilling since they relate to the 

productivity of the rig. The purpose of modeling these metrics is to better understand the 

drilling process. This understanding can lead to better decisions and improvement of these 

key metrics.  

4.1 INTRODUCTION 

The drilling models themselves have been modeled as a function of drilling control 

parameters (which can be controlled on the surface of the rig); these models can be used to 

find key drilling control parameters which improves drilling metrics. For example, since 

ROP was modeled as a function of RPM, WOB, flowrate, and UCS – the ROP model can 

be inverted to determine the optimal settings of ROP, WOB, and flowrate which results in 

the highest ROP. This optimization methodology is prolific in science and engineering; 

drilling optimization by specifying an objective function can be traced back decades – 

where ROP was shown to improve by solving an optimization problem in order to 

maximize ROP (Lummus, 1970). The objective function – namely, the ROP – was 

maximized for economic benefit in drilling since ROP is inversely proportional to the cost 

of the well. While many papers have discussed the optimization of ROP, the same concept 

can be easily extended to other metrics to optimize TOB, reduce drilling vibrations, 

                                                 
4 Hegde, C., Daigle, H., & Gray, K. (2018). Performance comparison of algorithms for real-time rate of 

penetration optimization in drilling using data-driven models. SPE Journal. 

 

The author of this thesis is the primary author of the paper 
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optimize MSE and so on. This chapter will discuss the optimization of ROP using physics-

based and data-driven models; the key concept of optimization remains the same, hence 

the methodology and algorithms discussed here can be applied for the optimization of other 

drilling metrics such as TOB or MSE. 

Most discussions of optimization algorithms have been geared towards post-

drilling analysis or planning tools and not real-time applications. Modeling the ROP in 

real-time (concurrent with drilling operations) is more complicated given the dynamic 

conditions, data collection, data quality, data transmission, and computational speed 

requirement (Bybee, 2011). However, real-time optimization of ROP can be more effective 

in saving operational costs. It is common practice to try and change drilling control 

parameters on the rig to improve ROP in real-time. This optimization is commonly carried 

out based on experience and intuitions of the driller: in the absence of any mathematical 

framework.  

Optimization of analytical or deterministic models in a real-time scenario does not 

suffer from computational run-time constraints since the equations (objective functions, at 

least in drilling) are generally convex or smooth and in general can be solved for optimal 

parameters (Meng, Haige, Jinying, Liu, & Zhixue, 2015). A more complicated response 

equation can be solved using meta-heuristic algorithms such as swarm algorithms (Self, 

Atashnezhad, & Hareland, 2016) or the shuffled frog algorithm (Yi, Kumar, & Samuel, 

2015). 

Research related to ROP optimization of data-driven models have been discussed 

for post-drilling analysis without considering any computational time constraint (Chiranth 

Hegde & Gray, 2017). Data-driven models have been known to be disadvantageous for 

real-time applications since they can be non-linear functions whose functional form is 
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unknown; making it difficult to optimize data-driven models in real-time. The nonlinearity 

is essential for an accurate ROP model.  

This chapter covers an approach to optimize drilling models. A strategy to  optimize 

ROP models – physics-based and data-driven – has been discussed. Of late, literature seems 

to consist of two classes of ROP models – physics-based and data-driven (especially using 

neural networks); however, the integral part of the problem, which is the utilization of these 

models for determining optimal drilling control parameters are generally not covered. To 

address these gaps in literature this chapter delves into the optimization – algorithms, cost 

functions, and computational constraints – of these drilling models so that they may be 

used for effective simulation and analysis. Additionally, applications of these algorithms 

for real-time optimization have also been addressed. 

This chapter introduces three types of optimization algorithms one for optimizing 

traditional models – gradient ascent, and two types of algorithms for data-driven models: 

simple and metaheuristic algorithms. The algorithms are used to invert the ROP model – 

use the model to determine drilling control parameters which maximize the ROP. The data-

driven model used in this chapter is equivalent to the model introduced in chapter 2. 

Optimization of a deterministic model is easy and computationally effective. For data-

driven models since the optimization is not straightforward, five algorithms are evaluated 

based on ROP increase (percentage of ROP improvement with respect to the base case) 

while noting their computational efficiency (algorithm run-time on drilling data). A 

computationally efficient algorithm is not required to make recommendations each second 

but to have a continuous supply of optimal parameters on the screen with minimal data-

lag, i.e. a model built using the most recently available data. Operators must choose the 

most suitable algorithm based on available resources. Practically making a change every 

stand would be more viable than every minute or 10 minutes. The algorithms are evaluated 
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by running simulations on data measured during drilling a well in the Williston Basin, 

North Dakota as described in chapter 2. Results indicate that the particle swarm algorithm 

produces the best set of drilling parameters to maximize the objective for the data-driven 

models. However, given its computational inefficiency and its effect on data-lag, for a real-

time drilling scenario, it is better to opt for the simplex or random search method. The 

simplex and random search methods perform worse in terms of ROP improvement but are 

computationally efficient for real-time closed-loop drilling optimization and result in an 

improved ROP. The tradeoff between ROP increase and computational run-time can be 

important for real-time implementations. 

4.2 OVERVIEW OF OPTIMIZATION ALGORITHMS 

Optimization algorithms are used to optimize a function (target, response or 

objective). This involves selection of the optimal element (maximum or minimum) from 

the entire solution space (made up of different variables). Simple optimization problems 

can make use of calculus to find the optimal solution. For example, if the objective function 

is : f(k) = k2 − 5, the minimum of the function (-5) can be obtained by taking the 

derivative and setting it to zero. The optimization problem may be constrained (where 

constraints are placed on variables) or unconstrained. In the case of ROP optimization, the 

optimization is constrained by drilling control parameters. Additional constraints can be 

imposed based on the objective function to be optimized or for vibration control (covered 

in chapters 6 and 7). The selection of the algorithm used for optimization of the objective 

function – referred to hereby as the optimization algorithm – is crucial since the quality of 

the solution depends on it. The selection of the optimization algorithm depends on the type 

of the objective function being optimized. Knowing the functional form of the objective 
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function – polynomial, exponential, log, linear, affine – aids in the selection of the best 

algorithm.  

A function is convex if its epigraph – the set of points on or above the plot of the 

function – is a convex set. In other words, a function twice differentiable, where the second 

derivative is always greater than or equal to zero for its entire domain is a convex function. 

A convex function is special since it can be always be optimized to find the global 

minimum (Boyd & Vandenberghe, 2010). Convex functions have been studied in science 

and engineering for decades, and detailed (easily implementable) solutions exist (Boyd & 

Vandenberghe, 2010). However, the optimization of a non-convex function can pose many 

difficulties and can be time-consuming. Additionally, there is no guarantee that a global 

minimum is indeed found. A function can be smooth – gradient is defined everywhere and 

is a continuous function – or non-smooth (Figure 4.1). Optimization of a smooth function 

is generally easier since gradients can be computed.  

 

 

Figure 4.1: Examples of convex, non-convex, smooth and non-smooth functions 

 

Equation-based ROP models are generally convex in nature (or can be converted 

to convex functions with a transformation) and can be easily optimized to attain a global 
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maximum. ROP can be optimized by finding the maximum of the ROP objective function. 

For example, in the case of Bingham’s ROP model the equation for ROP – 𝑅𝑂𝑃 =

 𝑎𝑅𝑃𝑀((
𝑊𝑂𝐵

𝑐
)𝑏) – is estimated using a power law model. The function is monotonically 

increasing; the maximum can be obtained when the argument is maximum. In the case of 

Bingham’s model, the maximum ROP occurs when RPM and WOB are both at their 

maximum values. Data-driven ROP models are unknown in functional form: pre-

determined knowledge of the function aiding in optimization is not possible.  

Algorithms can be classified as gradient-based (slope is used to determine next step 

eventually leading to the optimal value) or non-gradient based. Gradient descent is a 

popular algorithm where small steps are taken in the direction of the gradient of the 

function (or steepest ascent). This method works well for convex functions. However, in 

case of non-convex functions, there are possibilities of being stuck in a local minimum. 

One viable way to use gradient descent for the data-driven model is to re-run the algorithm 

in a large loop: repeatedly find the optimal parameters (starting each time at a random 

position), using this algorithm until convergence for many iterations; then compare all 

converged local minimums to find the global minimum. This method is time-intensive and 

is not the best way to approach this problem. A meta-heuristic solution has been adopted 

instead. Meta-heuristics is a subfield of stochastic optimization where a degree of 

randomness is used to find the optimal solution. It is apt for optimizing data-driven models 

since a brute-force approach is infeasible. Meta-heuristic algorithms are useful for inverse 

problems where the function itself is unknown (like the data-driven ROP model in this 

case). The reader is referred to literature (Boyd & Vandenberghe, 2010; Luke, 2009) for 

convex-, non-convex-, and meta-heuristics-based optimization literature and further 

reading. 
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4.2.1 Solution Space (or optimization space) 

The solution space for the optimization algorithms is constrained based on 

operational, instrumental and field limits. For the purposes of this paper, the solution space 

was limited by the drilling parameters observed in the training set. For example, the WOB 

observed in the training set of the lodgepole limestone was between 26-42 klb. The WOB 

bounds for the algorithm’s search was set between these values. However, in practice, there 

are other considerations which influence the solution space (Chapman et al., 2012).  

4.2.1.1 WOB Limits 

WOB limits occur due to PDC bit design, tool design, BHA design, where a 

maximum WOB is specified to prevent damage to the bit. WOB considerations due to 

buckling of the drill string in case of a high axial load.  

4.2.1.2 Surface RPM Limits 

Surface RPM limits arise due to PDC bit design, downhole tool design, and motor 

constraints. Top drive manufacturers specify a maximum torque vs RPM curve which can 

be utilized to set these limits.   

4.2.1.3 ROP Limits 

ROP constraints are generally constrained physically due to limitations of hole 

cleaning and well stability.  

4.2.1.4 Pump Limits 

Pump limits will influence the maximum flow rate in a well. Pump limitations will 

be specified by the manufacturer. This can also affect the differential pressure at the bit 

which will influence the ROP. Differential pressure limits can be calculated for rig 
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equipment in cases of high standpipe pressure to prevent damage to the rig equipment. 

Other factors include formation fracture and association with lost circulation resulting from 

high friction imposed due to high flow rates. Additionally, the risk of washouts due to 

excessive flowrate must also be considered. 

4.2.2 Algorithms 

Broadly, the optimization algorithms used in this chapter are classified as gradient-

based, simple and meta-heuristic algorithms. Gradient-based algorithms are used to 

optimize traditional ROP models. Simple algorithms are the easiest algorithms to optimize 

the ROP function. Eyeball method and the random search algorithm fall in this category. 

Meta-heuristic algorithms implement a form of stochastic optimization. The simplex 

algorithm, differential evolution-based algorithms, and swarm optimization algorithms 

have been evaluated. 

 

4.2.2.1 Calculus-based optimization 

A simple optimization problem can be solved using calculus analytically. For 

example, if the objective function is of the form: f(k) = k2 − 5, taking the derivative of 

the function and setting that equal to zero yields a minimum at 0. If functions take on such 

simple forms, it is possible to evaluate them analytically using calculus. The Bingham ROP 

model is one such function, which can be evaluated using calculus. 

 

ROP = 𝑎𝑅𝑃𝑀((
𝑊𝑂𝐵

𝑏
)𝑐), (Equation 4.1) 
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It can be assumed that the constants ‘a’, ‘b’, and ‘c’ are >=0. This is a valid 

assumption since ‘a’ and ‘b’ are dimensionless constants which characterize the drillability 

of the formation. Taking the derivative of the equation with respect to RPM yields equation 

4.2. 

 
𝑑 𝑅𝑂𝑃

𝑑𝑅𝑃𝑀
=

𝑎

𝑏𝑐 𝑊𝑂𝐵𝑐, (Equation 4.2) 

 

Setting equation 4.2 to 0 yields WOB = 0. Since the second derivative of Equation 

4.1 is 0, it cannot be concluded to be a maximum or minimum.  Equation 4.3 is obtained 

by taking the derivative of ROP w.r.t to WOB. 

 
𝑑 𝑅𝑂𝑃

𝑑𝑊𝑂𝐵
=

𝑎𝑐

𝑏𝑐 𝑊𝑂𝐵𝑐−1 ∗ 𝑅𝑃𝑀, (Equation 4.3) 

 

Setting equation 4.3 to 0 implies that either WOB or RPM should be 0. The second 

derivative shown in equation 4 is always greater than 0 in operation since RPM and WOB 

are greater than 0. Hence this is a minimum. 

 
𝑑2 𝑅𝑂𝑃

𝑑𝑊𝑂𝐵2 =
𝑎𝑐(𝑐−1)

𝑏𝑐 𝑊𝑂𝐵𝑐−2 ∗ 𝑅𝑃𝑀, (Equation 4.4) 

 

The results of this optimum show that a minimum of ROP is achieved when WOB 

and RPM are set to 0 respectively. The maximum of the function – which is of interest –  

cannot be obtained by this method.  

However, by evaluating the function in a given range (30 <= RPM <=60, and 10000 

<= WOB <= 20000) the maximum ROP can be calculated by looking at the end range of 
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the function since it is monotonically increasing in both variables. In this case, the 

maximum ROP is achieved at 60 RPM and a WOB of 20000 lbs as seen in Figure 4.2. 

 

 

Figure 4.2: Optimization of a Bingham’s ROP model using numerical methods. The 

Bingham’s model used in this figure has ‘a’ of 0.6, bit diameter of 8.75 

in, and ‘b’ of 2.2 

4.2.2.2 Gradient ascent 

Gradient ascent (or descent) is a simple algorithm that is very useful in searching 

for the argmax (arguments of a function which lead to a maximum value of the function) 

or argmin (arguments of a function which lead to a minimum value of the function) of a 
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function. The gradient (or Jacobian) at a point indicates the direction of steepest ascent. By 

traveling in the direction of steepest ascent, it is possible to eventually reach the maximum. 

The negative of the gradient is taken to find the minima. In a three-dimensional world, the 

intuition of gradient ascent can be best explained with a hiking analogy. It is similar to 

standing in a valley and trying to hike towards the peak of a mountain. By moving in the 

direction of the steepest, the hiker would eventually reach the mountain peak. This can be 

expanded to any number of dimensions and the Jacobian replaces the role of the gradient. 

This has been used very successfully for fitting purposes in neural networks where gradient 

descent is by far the best algorithm for training (Rumelhart et al., 1988). The speed or time 

it takes to reach the peak of the mountain depends on the size of the steps that are taken in 

the direction of steepest ascent. This is often referred to as the learning rate in machine 

learning, where the step size α can be varied. If α is small, the algorithm will eventually 

converge towards a maximum, but it may take a long time. If α is large, the algorithm may 

converge faster, but it may also overshoot and never find the maximum. Gradient ascent is 

also known as a first-order method because it requires calculation of the first derivative at 

each iteration. Gradient ascent does not ascertain that the given argmax indeed refers to a 

global maximum; it is possible to get stuck in a local maximum. One simple way to avoid 

this is to use random restarts and average the results which work well in practice. An 

example has been shown in Figure 4.3 where gradient descent has been used to find the 

minima of a ‘sinc’ function. 

 



 90 

 

Figure 4.3: (Left) Sinc function plotted between -20 and 20 on the X-axis and 0.2 and -1 

on the Y-axis; The objective of the gradient descent algorithm is to find 

the minima of the function displayed; (Middle) The use of vanilla gradient 

descent results in a local minima as opposed to a global minima which is 

evident from the plot; (Right) The use of gradient descent with random 

return the global minima as opposed to a local minima. 

4.2.2.3 Eyeball algorithm 

This is a simple algorithm which can be used to improve ROP ahead of the bit for 

any model. It is similar to field-based rules which are employed in drilling. The training 

set is evaluated for the best (90th percentile) of ROP data points (drilling parameters which 

result in the highest ROP) as shown in Figure 4.4. The results of these points are used to 

determine the optimal settings ahead of the bit. The input settings (RPM, WOB, and flow 

rate) that produced the highest ROP in the training set are then used ahead of the bit. The 

best input settings of the training set – drilling parameters that produced the highest ROP 

in the training set – are then applied ahead of the bit to yield a higher ROP as shown in 

Figure 4.5. Pseudo code for eyeball method has been described in the Appendix. It is better 

to choose the 90th – 100th percentile and evaluate a few points as opposed to a single best 

setting since it decreases the variance in picking drilling parameters. However, it must ne 

ensured that these points are in the same proximity. In an ideal case, the average of these 

optimal points in the training set would converge to the global minimum. In the average 

case, they converge to values which lie in between the local minima and global minima. 
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This method is extremely simple and will yield an improved ROP if the training 

data are efficiently sampled i.e. the driller changes RPM, WOB and flow rate to evaluate 

effects of each input parameter on ROP in the training set. It is extremely easy to implement 

and bears no computational constraints. A variation of this method is used in drilling pad 

wells, where the driller or engineer uses intuition based on earlier drilled wells. This is a 

mathematical approach to rig-based decision optimization (Fred E Dupriest & Koederitz, 

2005). This method may not always work since it relies heavily on the assumption that the 

rock strength, the geology and other drilling conditions remain unchanged ahead of the bit. 

However, given its simplicity, it would be recommended in drilling long horizontal shale 

sections where the formation type does not change, and the bit wears gradually.  

 

 



 92 

 

Figure 4.3: Eyeball method schematic: picking 90th percentile of ROP; Data collected by 

varying different parameters are used to gain an intuition of the well; The 

parameters which led to the best ROP in the training data can be used 

ahead of the bit for improved ROP. 
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Figure 4.5: Application of eyeball method schematic on test data ahead of the bit. The data 

colored in blue are the training data: data collected as soon as we enter a 

new formation for the purposes of modeling. The data ahead of the bit in 

red is the original data observed while drilling without any optimization. 

The data colored in green is the improved ROP when optimization is 

employed. The green data plotted here is a hypothetical case.   
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4.2.2.4 Random search (Latin hypercube initialization) 

Random search is the simplest meta-heuristic algorithm. Random samples from the 

solution space are evaluated. If the solution space is heavily sampled, this algorithm will 

approach the brute force solution and find a global optimum. The sampling method is 

important because it determines the samples evaluated. Latin hypercube sampling is a 

technique of sampling which is useful for sampling high dimensional spaces. It guarantees 

better coverage of high dimensional (>3 dimensions) spaces as compared to random or 

Monte Carlo based sampling. Latin hypercube sampling ensures that samples will provide 

information when some variables are dominant over others (Stein, 1987).  

To perform the LHS, the cumulative probability (100%) is divided into multiple 

segments, one for each iteration. A probability is randomly picked within each segment 

using a uniform distribution, and this is mapped to the correct representative value in of 

the variable’s actual distribution. For example, a simulation with 1000 iterations would 

split the probability into 1000 segments, each representing 0.1% of the total distribution. 

One sample is chosen from each segment. This is repeated for each variable. After all the 

variables have been sampled, variables are randomly grouped, ensuring that each variable’s 

value is used only once. Pseudo code for random search has been described in Appendix. 

The random search algorithm builds on the eyeball algorithm; rather than just limiting the 

evaluation to explored values, the random search algorithm searches the optimization space 

more thoroughly. 

4.2.2.5 Simplex (or Amoeba) method 

The simplex algorithm is commonly called the amoeba method or Nelder-Mead 

algorithm. It is named after its creators (Nelder & Mead, 1965) who modified the original 

work of Dantzig (circa 1945) to make it better suitable for non-linear optimization. The 



 95 

amoeba method uses three solutions (or three random samples) and labels them best, 

intermediate and worst based on the response evaluation of each sample.  

At each step, it attempts to replace the worst solution with a new, better solution 

among three candidates: a reflected point, an expanded point and a contracted point (as 

shown in Figure 4.6). Each of these new samples lies along a line from the worst point 

through the centroid of the simplex (a point that is in the middle of all points except the 

worst point). The best solution among the reflected, contracted, and expanded point is 

chosen. This process is repeated till convergence. 

If neither the reflected point, nor the expanded point, nor the contracted point is 

better than the current worst solution, the amoeba shrinks itself by moving all points 

(except for the best point) halfway toward the best point. The algorithm terminates when 

the vertices are close to each other in value, and the best vertex is considered the optimal 

solution. Pseudo code for simplex has been described in Appendix. 
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Figure 4.6: Visualization of the amoeba method for optimization of a data-driven model 

4.2.2.6 Differential evolution 

A subset of the popular genetic algorithms, a population-based method: many 

random solutions (called a population) are initialized. Each solution is evaluated for its 

fitness (how optimal it is) before it is discarded or retained in the next iteration. The 

retained solutions are tweaked (variables are changed slightly) based on certain rules 

borrowed from evolutionary biology. The tweaked solutions are then added to the 

population. This methodology is iterated until convergence. 

Differential evolution (Storn & Price, 1997) is a variant of genetic algorithms with 

two major changes. First, the tweaked solutions are compared to their original form (from 

which they were tweaked), and the better solution is retained. Second, the number of 

samples tweaked in each round is calculated based on the variance of the initialized 
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solutions (or population). The second major change is advantageous since the tweaking 

will be large when the variance is high; otherwise, it will remain low, making it an adaptive 

genetic algorithm. 

The tweaking of variables employs vector calculations in an N-dimensional space 

(where N is the number of drilling parameters being optimized). There are multiple 

tweaking operations (commonly called a mutation in optimization circles) that can be 

performed on variables. For example, pick three random points (�⃗�, �⃗⃗�, 𝑐) in the population 

and tweak away from one of them (�⃗�) by performing vector addition on the other two points 

(�⃗�+ �⃗⃗�-𝑐). The tweaked point is compared to a member of the population to retain the better 

solution. This process is repeated until convergence. The locations of new points are based 

on the locations of the previous points; however, the vector addition and subtraction allow 

exploration of the global solution space. Pseudo code for differential evolution has been 

described in the Appendix. 

4.2.2.7 Particle swarm optimization (PSO) 

This algorithm is a stochastic optimization technique modeled after swarming or 

flocking of animals (Kennedy, 2011). This is like the simplex algorithm; however, more 

than three samples are used, and each sample is called a particle. PSO operates well in a 

multi-dimensional setting where at each iteration the solution is tweaked towards the 

current best solution. 

Each particle in the PSO has a location and velocity. The velocity determines the 

direction and speed of travel at the next time step. Put another way, if x(t−1) and x(t) are 

the locations in space of the particle at times t-1 and t, then at time t: v = x(t) - x(t-1). Each 

particle starts off with a random location and a random velocity. 
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At each time step, the velocity vectors of each particle are updated based on the 

global optimum discovered till that time step. The velocity vector is modified to point at a 

specified magnitude towards to global minimum. The particle is tweaked based on the 

velocity vector and some noise. The pseudocode for this algorithm has been described in 

the Appendix. 

4.3 RESULTS AND DISCUSSION 

ROP models built using equation-based methods as well as data-driven methods 

have been evaluated for optimal control parameters. In both cases, models were built 

individually on each formation with half the dataset used for training and the rest for testing 

(as explained in Chapter 2).  

The feasibility of an algorithm to be used in real-time drilling depends on the 

accuracy of the algorithm in finding the global optimum ROP. Each algorithm has been 

evaluated for an increase in ROP and the run-time is noted. The runtime refers to the time 

for execution of optimization running on an 8 GB DDR3 RAM laptop with Intel 

7thgeneration i7 7500U CPU @ 2.60 GHz processor running python’s scipy package (Jones 

et al., 2001). Runtime for algorithms is important since it directly relates to the amount of 

data-lag of the ROP model. With a fast algorithm, a continuously updating ROP model can 

be utilized which is built using the most recent data collected as opposed to a ROP model 

built using older data or a model with “data-lag”. This has been addressed further in section 

4.4.1.  

Each optimization algorithm was used to find optimal settings of drilling 

parameters to obtain maximum ROP ahead of the bit (test set).  Figure 4.7 is a schematic 

of the entire optimization process. The top left panel in Figure 4.7 is a density plot of WOB 

in the training set encountered in Lodgepole formation. The panel shows the WOB used in 
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the training set(blue), as well as the recommended weight-on-bit (orange and green) based 

on the employed algorithm’s recommendation. The recommended WOB values are 

suggested values (for the driller or engineer by the algorithm) which if used would result 

in an improvement of ROP ahead of the bit. RPM and flow-rate settings have been plotted 

in a similar manner in the top right and bottom left panels in Figure 4.7. The bottom right 

panel describes the predicted change in ROP based on implementing the recommended 

settings for each input drilling parameter. The density plot in blue is the current ROP, in 

green and orange are the improvements in ROP that can be expected. Figure 4.8 shows the 

effect of using the recommended drilling parameter settings ahead of the bit. The new (or 

simulated) ROP based on optimal drilling parameters for the test set was calculated using 

the data-driven model (hereby referred to as the simulated test results). The simulated test 

results are compared to the original ROP to evaluate its improvement. A higher increase in 

ROP would indicate a better solution, making the algorithm more accurate (to the actual 

global maximum). Table 4.1 summarizes ROP improvement and computational run-time 

statistics of the evaluated algorithms. It is important to note that in Figure 4.8, the predicted 

ROP improvement has some variance (it is not a straight line). This randomness comes 

from the UCS values of the data. ROP was modeled as a function of four drilling control 

parameters – RPM, flow-rate, WOB, and UCS. Only three parameters are controllable on 

the rig; UCS remains unchanged. The continuously changing value of UCS over the 

formation causes the predicted improvement in ROP to exhibit some variance. If ROP was 

modeled as a function of RPM, flow-rate, and WOB only, the predicted improvement in 

ROP for the rest of the formation would be a single value, or when plotted it would be a 

straight line (as it is for the case of Bingham and BY Models). 
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Table 4.1: ROP improvement and algorithmic run-time statistics 

ROP Increase Mean Median 

Lower 

Quartile 

Upper 

Quartile Range 

Gradient Ascent 

(Hareland) 0.28 0.184 0.056 0.464 0.408 

Eyeball 0.234 0.192 0.161 0.2724 0.111 

Random Search 0.2877 0.218414 0.197 0.41494 0.218 

Simplex 0.3008 0.218366 0.177 0.3917 0.215 

PSO 0.4528 0.259 0.2122 0.5508 0.339 

DE 0.4082 0.275 0.20529 0.5414 0.336 

Runtime (s)      
Gradient Ascent 

(Hareland) <0.1 <0.1 <0.1 <0.1 <0.1 

Eyeball <0.1 <0.1 <0.1 <0.1 <0.1 

Random Search <0.1 <0.1 <0.1 <0.1 <0.1 

Simplex 5.93 5.48 4.93 5.51 0.58 

PSO 196.41 64.43 27.71 120.34 92.63 

DE 18.475 12.06 11.9 21.73 9.83 
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Figure 4.7: Recommended settings by eyeball and random search algorithms for 

lodgepole limestone formation 
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Figure 4.8: Increase in ROP based on recommended settings by eyeball and random 

search algorithms in the Lodgepole limestone formation 

From a practical standpoint, operational parameters can be changed after drilling 

each stand. This will provide sufficient time – the time taken for a drilling connection – to 

run the algorithm to determine optimal drilling control parameters ahead of the bit. The 

complexity of random search and eyeball methods are linear. Simplex runs in polynomial 

time if implemented well; DE and PSO are highly dependent on the hyper parameters such 

as the number of populations, number of swarms, maximum number of iterations. 

However, with good implementation practices these can be reduced to polynomial time 

(Luke, 2009). Meta-heuristic methods have often been known to be time consuming. 
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Similar results have been reported while using the swam algorithm for optimizing an ROP 

model built using neural networks  (Gandelman, 2012). Thinking about it intuitively, a 

ROP model built using a simple tree with 2 input parameters (or 2 dimensions) should look 

like a three dimensional plane (James et al., 2013). The ROP model used in the paper is 

more complex since it’s an average of 100 randomized trees (with a randomization step in 

building the tree), where each tree has a block like structure but in five dimensions forming 

a hyperplane. Hence, navigating this space to find the best parameters will be time 

consuming. The time difference between the algorithms is due to the number of function 

evaluations (Simplex (39) << DE (137) << PSO (1075)) – analyzed using a code profiler.  

The amount of time taken to run these algorithms will depend on the computational 

power available on the rig (if performed at the rig). An alternative option is to run these 

analyses using cloud computing capabilities if data are continually processed in a real time 

operating center. In the case of the latter, the computational run time is not an issue, and 

the algorithm of choice can be purely based on its performance. Computational runtime is 

not an issue while using gradient ascent (for equation-based models) or eyeball or random 

search. 

4.3.1 Practical Implementation 

The use of these algorithms would be primarily in an advisory mode where optimal 

parameters can be computed based on drilling data on the rig. Drilling operational 

parameters cannot be changed every second or every minute due to human constraints 

(such as response time of the driller), operational constraints (the changes may take time 

to show effect on the ROP), and unwanted oscillatory response of the system. 

The frequency of drilling parameter change can be in the range of every 50-100ft 

of drilling or 10 minutes of drilling. A minimum of 30-40 ft of drilling or 5 minutes may 
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be required to evaluate the changes induced in drilling speed due to drilling operational 

changes. The reason optimization algorithms must run computationally efficiently (or in 

real-time) is to maximize the amount of data used for the calculation or prevent a “data-

lag”. This also ensures that the latest model is computed and used for ROP analysis. Two 

cases are presented to help explain this concept. 

4.3.1.1 Drilling parameters set every stand 

After drilling one stand, the data collected is used to update and re-train the ROP 

model. An optimization algorithm is used to find the best parameters for drilling the next 

stand. In this case, 120 seconds exist (say, the connection time plus any overhead in data 

collection and processing) to re-calibrate the model and run the optimization algorithm to 

obtain real-time parameters. If the calculations are performed on the rig, simplex or random 

search may be used to calculate the best parameters. If the results are calculated in an offsite 

real-time processing center or using cloud computing, the particle swarm algorithm can be 

used to determine the best operating parameters. These operating parameters are then used 

to drill the next stand, and this process is repeated until the entire formation is drilled. 

4.3.1.2 Drilling parameters changed on-the-fly or when drilling is too slow 

Data is being collected real time during drilling. Assume the time when drilling the 

new stand was 12:00:00 PM GMT and the average ROP was 60 ft/hr. After drilling for a 

period of 15 mins (current time: 12:15:00 PM GMT; 15 ft drilled), the parameters are re-

evaluated to check for changes. In this case, if the PSO algorithm is used, and the PSO 

algorithm takes 240s of run time (including any overhead costs), the data used for such a 

computation will lag by 4 minutes, i.e. only the first 11 minutes of real-time data will be 

used to make any suggestions. However, if the simplex method were used instead, the data-
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lag would be around 0.5 minutes. These run-times correspond to the use of a fast computer 

(or a cloud processing unit). If an on-site rig computer is used, depending on the processing 

time this value can range from 10x-200x, given the complexity of the algorithm. In this 

case, using PSO would not be recommended since the operational parameters are lagging 

several hundreds of feet and cannot be considered real-time. 

4.3.2 Traditional ROP Models 

Traditional models are optimized using the gradient ascent algorithm. The data are 

whitened to a mean of 0 and standard deviation of 1; this ensures that the problem is well 

conditioned (Ng, 2000). A learning rate of 0.01 was used to successfully obtain stable 

solutions for all four equation-based models. The optimal parameters were used in the 

corresponding traditional model to predict the ROP ahead of the bit (on the test set). 

Results of using improved drilling control parameters are shown in the form of a 

box-plot in Figure 4.9. The mean ROP before optimization was 50 ft/hr for the entire well; 

by implementing optimal parameters, the predicted improved average ROP: 77 ft/hr for 

Bingham’s model, 75 ft/hr for Motahhari’s model, 64 ft/hr for Hareland’s model, and 74 

ft/hr for BY model. These are very encouraging results; however, the assumptions of the 

model must be taken into account. It has been shown that increasing WOB indefinitely 

does not result in an increase in ROP due to an inefficient cleaning of cuttings at the bit 

(called floundering of rock (Maurer, 1962)). In the case of Bingham’s model, the result 

shown in Figure 4.9 is obtained by implementing the argmax, which includes the maximum 

WOB permissible. This result may not be an accurate representation of the improvement 

of ROP since the prediction of ROP itself had a high error as discussed in Chapter 2. The 

prediction of ROP using Hareland’s model was the most accurate among all equation-based 
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model used, hence, the predicted increase in ROP and optimal parameters returned with 

this model would be most trustworthy of actual improvements in ROP. 

 

 

Figure 4.9: Predicted ROP on the test set implementing optimal parameters obtained 

using the gradient ascent optimization algorithm. 

These results have been presented anyway since the methodology behind their 

implementation is important. In cases where these models do provide an accurate 

representation of drilling, the use of the gradient ascent algorithm to find optimal drilling 

parameters and implement them ahead of the bit will result in increased ROP. The change 

in ROP in each formation has been plotted in Figure 4.10. 
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Figure 4.10: ROP maximization using equation-based ROP models; Optimal drilling 

control parameters are determined using the gradient ascent algorithm 

and implemented on the test set; Predicted ROP is returned and shown in 

the form of a line plot.  

4.3.3 Data-driven ROP Models 

In the case of data-driven ROP models, different algorithms are evaluated based on 

the ROP improvement (the computational runtime is noted as well). Figure 4.11 shows a 

line and boxplot comparisons of the simple optimization (random search and eyeball) 

algorithms. The run-time has not been plotted since it was trivial (<100 ms). A total of 500 

samples were drawn using the LHS algorithm and evaluated in the random search.The line 

plots show that random search performs marginally better than the eyeball method. Box 
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plot comparison shows an increased ROP with the random search. The eyeball method 

only samples from the best points; this may result in a situation where a portion of the 

sample space which is more optimal is missed. LHS has better sampling regime – it ensures 

that the entire solution space is sampled. The improved performance of LHS can be 

attributed to a more robust sampling and a broader range of the solution space. 

 

 

Figure 4.11: Comparison of ROP optimization for data-driven models using eyeball and 

random search algorithms 

Figure 4.12 shows a line and boxplot comparison of the advanced meta-heuristic 

optimization algorithms. The tolerance of meta-heuristic algorithms was set to 1 ft/hr– if 

an improvement of atleast 1 ft/hr of ROP is not achieved in 100 iterations the algorithm is 

terminated. The tolerance is based on practicality if the solution. Differential evolution was 

implemented with an initial population size of 30, mutation (a proxy for search radius) of 

[0.5,1), recombination constant (probability of producing an offspring) of 0.7, and the 

population was initialized using the latin hypercube algorithm. The particle swarm 

algorithm was initialized with a population of 100, velocity scaling of 0.5, and scaling to 
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search away from the best location of 0.3 implemented using the pyswarm package in 

python (Miranda, 2018). The hyperparameters for the meta-heuristic algorithms were 

calculated using manual tuning. A grid-based search was used to calculate the best hyper 

parameters for each algorithm using the normalized increase in ROP as well as the 

computation runtime as metrics for evaluation. 

Based on the line plots (Figure 4.12 left top) for ROP increase it can be concluded 

that PSO > DE > simplex. The difference in median ROP increase between PSO and 

simplex is ~ 4% based on the box plots (Figure 4.12 left bottom). The computational run-

time for these algorithms are in the same order as ROP increase with PSO >> DE >> 

simplex (Figure 4.12 right top and bottom). Simplex algorithm can be executed fast enough 

to avoid major effects of data-lag (this depends on the available computational resources 

on the rig). Optimizing ROP for higher depth does not change the functional form of the 

ROP model being optimized, hence making the algorithmic run-time invariant. If the model 

is retrained with additional data, as drilling proceeds, the run-time would depend on the 

complexity of the new ROP model.  
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Figure 4.12: Comparison of advanced optimization algorithms ROP increase and 

computational run-time (logarithm of base 10 has been used in the plot) 

A parametric analysis was carried out to evaluate the effect of repeatedly re-training 

the model while drilling as shown in Figure 4.13. Changing the length of the training set 

will change the ROP model and expand the solution space. Since the solution space 

increases with continuously increasing training set, both computational time, as well as 

ROP improvement, may change. 

The algorithmic runtime and increase have been plotted for optimizing different 

models by re-training the model 5 times within a formation in Figure 4.13. New ROP 
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models were built at different training set lengths (0.4,0.5,0.6,0.7,0.8) for each formation. 

The box plots in Figure 4.13 are similar to Figure 4.12, indicating algorithmic runtime is 

invariant of training set sizes for this dataset (logarithm of base 10 has been used in the 

plot). 

 

 

Figure 4.13: Analysis of algorithm performance for varying the length of the training set 

or continuous model updating during drilling (logarithm of base 10 has 

been used) 

 

 

4.3.4 Uncertainty Analysis 

Uncertainty analysis of the expected increase in ROP for each formation evaluated 

can be calculated for the data-driven ROP models given the probabilistic nature of the 

models and algorithms used. The equation-based ROP models are deterministic – an 

uncertainty interval is not possible. The optimization results in the previous section 
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described the improvement of ROP on 14 different formations. In this section, an 

uncertainty analysis is conducted to calculate the 95% confidence interval for ROP 

improvement on the test set. The 95% of the time, the range defined by this (confidence) 

interval will contain the possible improvement in ROP. This analysis is commonly 

practiced in reservoir engineering to aid the decision-making processes.  

In each simulation, the training and test set are changed by randomly choosing data 

points to act as the test and training set respectively. The test-train split – the ratio of 

training set length to test set length – is kept fixed at 0.5. At each iteration, 50% of the data 

points selected in a formation are chosen to be part of the training set, and the rest will be 

a part of the test set. 1000 Monte Carlo based simulations are evaluated to calculate the 

95% confidence interval. Each time a model is built on the training set, optimization 

algorithms are used to evaluate the best drilling parameters, and these drilling parameters 

are used in a drilling simulation to test the improvement in ROP. The projected 

improvement in ROP for the eyeball method and LHS random search algorithm has been 

plotted in Figure 4.14. Results show that ROP optimization based on the eyeball method 

and LHS random search is consistent with the previous simulation shown in Figure 4.11. 

An average ROP improvement of 22.5% and 32% can be expected from the eyeball and 

random search simulations. The projected improvement in ROP for the simplex, particle 

swarm, and differential evolution algorithms are plotted in Figure 4.15. Results parallel 

those seen in Figure 4.12 with some variance around the ROP improvement in each 

formation. Tabulated statistics are shown in Table 4.2. A low-variance is indicative of a 

consistent algorithm. 
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Figure 4.14: 95% confidence interval for ROP improvement using eyeball method and 

LHS random search based on 1000 Monte Carlo simulations. A line plot 

joins the medians of each box-plot. The red dotted line corresponds to 

the average improvement in ROP for all the formation over the length of 

the well. 
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Figure 4.15: 95% confidence interval for ROP improvement using eyeball method and 

LHS random search based on 1000 Monte Carlo simulations. A line plot 

joins the median of each box plot for all formations. The line plot can be 

compared to the line plots in Figure 4.12 to evaluate consistency in the 

ROP optimization with each algorithm. The red dotted line corresponds 

to the average improvement in ROP for all the formation over the length 

of the well. 
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Table 4.2: Statistics for Monte Carlo uncertainty analysis for ROP optimization 

simulations 

  Eyeball LHS Simplex PSO DE 

Mean 0.225 0.32 0.3089 0.44 0.42 

Variance 0.125 0.0525 0.024 0.17 0.14 

 

4.3.5 Why do data-driven algorithms work? 

Following the discussion of the convexity of equation-based ROP models, it is 

interesting to note that they are even monotone increasing, in most cases: if you increase 

the WOB and the bit rotational speed, the ROP will forever increase. This has been shown 

to be a bad method of modeling ROP since it does not account for rock floundering and bit 

cleaning effect. Too high a WOB may result in phase III where inefficient cleaning of 

broken rock at the bit will hinder the ROP from increasing (Detournay, Richard, & 

Shepherd, 2008). Ideally, during drilling, ROP should behave in a manner that can be 

modeled by a convex function. However, the wear of the drilling bit, vibrations, borehole 

assembly (BHA) may modify this response and make it more complicated. ROP, WOB 

and RPM data have been plotted in Figure 4.16 to better understand the relationship 

between these drilling parameters. The scatter shown in Figure 4.16 does not follow an 

easily observable trend, making it difficult to fit a convex function well. This is precisely 

why traditional ROP models have lower accuracy when compared with data-driven ROP 

models. It is difficult to fit ROP data when the function to be fit is highly constrained, 

especially when the drilling conditions makes the ROP behave in a nonconvex manner. 

Data-driven models have performed better because of their ability to represent non-linear 

data more effectively as compared to traditional functions forms (like polynomials or 

exponential functions). The scatter shown in Figure 4.16 can be fitted with a convex 
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function with high error. A data-driven model can fit the scatter more effectively, however, 

the fitted function will not be convex since the data does not follow a convex trend.  

Looking at the first two windows in Figure 4.16 it is possible to gain an intuition of 

the success of the data-driven models. The plot in the first window shows a scatter of ROP, 

WOB, and RPM. Suppose Bingham’s model is fitted to this data – the model is a power 

law model and would have an appearance similar to Figure 4.2 – it would not fit well. The 

model would attempt to fit a smooth plane curve to the data, which would result in a lower 

accuracy. Looking at the second window, it’s possible to discern a paraboloid which would 

be fitted well by a power law model. Equation-based models work well when such 

situations are encountered where the data follow convex functions and can be fitted easily. 

However, in most other cases as seen in Figure 4.16, the scatter cannot be fitted well by a 

power law model or a smooth convex surface. The random forest model (which would 

appear similar to Figure 2.8 yields a better fit. It is pretty obvious why: in its simplest form, 

the algorithm partitions the scatter into smaller manageable regions and returns the average 

of this scatter as the ROP prediction. The splitting of data into small regions, and fitting 

these small regions individually yields an accurate ROP predictor. On the surface this is 

prone to overfitting (since the scatter is split into small regions); this is combated by the 

averaging of trees in a random forest. Chapter 2 covers a thorough error analysis on 

modeling ROP data using data-driven models as opposed to traditional models. 
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Figure 4.16: Three-dimensional scatter of ROP, WOB, and RPM data in 12 different 

formations. Plots indicate that ROP relationship within each formation is 

non-linear and non-convex 

4.3.6 Effect of ROP model on optimization 

The algorithm used to determine the optimal parameters are crucial, however, the 

model used for ROP prediction itself affects this result. Recalling that traditional models 

are functionally power law models they may not be able to capture complex coupling, 

unlike the data-driven models. An example is the effect of rock floundering, where an 

increase in WOB indefinitely does not increase but leads to a decrease in ROP due to 

inefficient cleaning at the bit (Maurer, 1962). This has been reported and confirmed by 

field-based studies (F E Dupriest, Witt, & Remmert, 2005). The traditional models always 

predict higher ROP with increased WOB and higher RPM given their functional form. 

Hence, there is a chance that the optimal parameters for RPM and WOB will lie in the 

middle and not edges of the input parameter sample spaces – in which case using a 

traditional model will not lead to an ideal solution. Contour plots can be used to efficiently 

visualize this phenomenon and have been plotted in Figure 4.17. The contour plots (Figure 

4.17) for traditional as well as data-driven models have been plotted for the Lodgepole 

Limestone formation in a reduced two-dimensional sample space (WOB and RPM). As 

expected, the traditional models predict an increase in ROP with an increase in WOB and 

RPM (similar to Figure 4.2). The field-data are evaluated for the maximum ROP measured 

and has been plotted as a red star on the plot. Based on the plot it is evident that the random 

forest model captures the ROP variation with changes in RPM and WOB. However, all 

traditional models predict an increase in ROP with increases in WOB and RPM which does 

not yield the best ROP and may lead to rock floundering. The contour of ROP variation for 
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Hareland (the best traditional model) and random forest model (the best data-driven model) 

have been plotted in Figures 4.18, and 4.19 for each formation.  

 

 

Figure 4.17: Contour plots of the WOB and RPM sample space for different ROP models 

–  Bingham, Motahhari, BY and Random Forest. The true maximum ROP as 

determined by field-based measurements has been plotted as a red star. The 

traditional models move away from the true maximum and would lead to 

reduced ROP whereas the random forest more accurately captures the ROP 

variation  
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Figure 4.18: Contour plots of the WOB and RPM sample space for the Hareland ROP 

model for all formations. The true maximum ROP as determined by field-

based measurements has been plotted as a red star. 
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Figure 4.19: Contour plots of the WOB and RPM sample space for the Random Forest 

ROP model for all formations. The true maximum ROP as determined by 

field-based measurements has been plotted as a red star. This model does a 

good job of capturing the variation of ROP using input parameters. 

4.4 CONCLUSIONS 

Traditional or deterministic models are most often the industry standard for ROP 

and MSE optimization. Data-driven models are commonly more accurate than 

deterministic models, however, inverting them to determine optimal parameters is more 

difficult. The deterministic models can be functionally convex in nature (like the Bingham 

model) and/or smooth analytical functions making their optimization easy with the use of 

analytical methods or algorithms such as gradient ascent. 
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The optimization of traditional models showed an average improved ROP of over 

28% for all models. However, the ROP predictions themselves were not accurate using 

these models, hence the ROP predictions using optimal values cannot be fully trusted for 

this dataset. Additionally, the assumptions of some models are not represented in these 

optimized results. If a well being drilled can be accurately modeled using traditional 

models, this methodology can be used to improve ROP in real-time or for drilling an 

adjoining well. The most accurate equation-based model for this dataset (Hareland’s 

model) showed an average increase of 28% on the test set with the implementation of 

optimal drilling control parameters. 

Data-driven models pose a problem for real-time optimization since their functional 

form is essentially unknown. This inverse problem is commonly solved using meta-

heuristic algorithms. Two simple and three meta-heuristic algorithms were evaluated in 

this chapter based on their ROP improvement ahead of the bit (higher the better) and run-

time. Simple algorithms, like the eyeball method and random search, performed well, 

improving the ROP by 20 and 21% on average for 14 formations tested in this chapter. 

Their run-time was trivial (<100 ms) making them effective algorithms for real-time use 

with zero data-lag. Advanced meta-heuristic algorithms used in this paper: simplex 

method, differential evolution and particle swarm method improved the ROP by 30%, 40% 

and 45% (on average). The computational run-times (mean) were 5.93 s for simplex, 

18.475 s for DE and 196.41 s for PSO. These run-times can have adverse effects on the 

amount of data used to train the model in real-time (or data-lag). An uncertainty analysis 

was carried out using a Monte Carlo based simulation to calculate the 95% confidence 

intervals for the improvement in ROP. None of these confidence intervals contained zero: 

making these results statistically significant (Casella & Berger, 2002). The results of the 

Monte Carlo analysis bolster the claims of the proposed algorithms. 
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Analysis showed that data-driven models can be used for real-time drilling despite 

the unknown functional form. Algorithms should be carefully selected to provide a 

satisfactory ROP improvement ahead of the bit and run with feasible computational power 

to minimize the data-lag of recommendations. All algorithms evaluated in this paper 

worked well, however, the simplex algorithm performed with the best tradeoff. The 

simplex algorithm resulted in a 30% improvement in ROP ahead of the bit on average with 

a low variance of 2.5% and can be executed within 6 seconds. A Monte Carlo based 

simulation was used to calculate the 95% confidence interval of ROP optimization ahead 

of the bit to aid in algorithmic selection and decision-making. Algorithm selection will 

depend on rig conditions, operator preferences and computational feasibility which vary. 

This chapter can be used as a template and a starting point for algorithmic selection for 

data-driven model optimization.  

The optimization of ROP models provides an explanation of the superior 

performance of data-driven ROP models. The data captured in the field are often non-

increasing, non-convex functions which are difficult to model using power-law or 

analtyical models. The random forest algorithm captures this data more efficiently by 

splitting the drilling parameter space to fit small portions of the data. Additionally, the 

effect of using different ROP models for optimization was evaluated. Analysis through 

contour plots showed that the optimal parameters calculated using traditional models are 

often wrong and nowhere close to the actual solution measured out in the field. The random 

forest algorithm performs well and captures most of the variation of ROP in the WOB and 

RPM parameter space giving a solution which closely matches observed field data. 
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Chapter 5:  Optimum Drilling Metrics and Parameters5  

Drilling optimization is generally approached by optimizing ROP. Other metrics in 

drilling such as MSE, TOB, and cost-per-foot of drilling are not as prolific as ROP. The 

earlier chapters in this dissertation provided tools to model and optimize ROP. However, 

these tools can easily be extended to other drilling metrics such as MSE, TOB, or cost-per-

foot of drilling. Structured steps towards optimization were introduced for ROP in drilling 

by defining an objective function, and optimizing it thereafter (Tansev, 1975). However, 

the functions being optimized to improve drilling performance in literature has always been 

ROP. ExxonMobil's drilling advisory system (DAS) is a popular system which 

incorporated the effect of vibrations for ROP optimization (Chang et al., 2014; Gregory S. 

Payette et al., 2015) moving towards the ideas laid out by Tansev (Tansev, 1975). The 

objective of this chapter is to investigate the effect of not only using ROP but also using 

torque on bit (TOB), cost-per-foot (CPF), and MSE as the objective (metric cost functions) 

for drilling optimization. Drilling is optimized from a mathematical perspective: choose an 

objective function, determine best control parameters, and evaluate their effect on drilling.  

A procedure to optimize engineering operations using machine learning (using the 

data-driven models developed in earlier chapters) has been laid out. Models (discussed in 

Chapter 2) can be optimized based on drilling control parameters – drilling parameters 

which can be controlled or changed on the surface of the rig. Heuristic algorithms are used 

to determine optimal settings of control parameters (to optimize machine learning functions 

as discussed for ROP in Chapter 4). These algorithms are then used (on fitted models) to 

determine the best control parameters ahead of the bit. Different objective functions are 

                                                 
5 Hegde, C. M., & Gray, K. E. (2018). Evaluation of coupled machine learning models for drilling 

optimization. Journal of Natural Gas Science & Engineering. 

 

The author of this thesis is the primary author of the paper 
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evaluated to determine the effect of choosing a given objective function for drilling 

optimization. Model evaluation is performed by running experiments on field measured 

data. Results show that choosing MSE as an objective function may be more suitable than 

purely optimizing ROP. Only data-driven models are evaluated in this chapter since they 

are coupled. 

5.1 DRILLING METRICS 

 A metric (cost or objective function) represents the entity or function which 

is being optimized. The objective is modeled in terms of controllable parameters. This 

allows determining an optimal set of controllable parameters to optimize this objective. For 

example, when ROP is the objective function, the aim would be to maximize ROP. ROP 

is modeled as a function of WOB, RPM, flow-rate, and strength of rock (UCS). An 

optimization algorithm is used to determine optimal control parameters – WOB, RPM, 

flow-rate – so that ROP can be maximized ahead of the bit. 

5.1.1 ROP 

The ROP of drilling has long attracted researchers and engineers. It is by far the 

most commonly optimized metric in drilling. Since the rate directly corresponds to the time 

taken, improving the rate can lead to time saved. However, this metric has many 

disadvantages: higher rates are associated with higher vibrations which lead to drilling 

dysfunctions. Drilling dysfunctions or tool failures would incur replacement costs of tools 

and a trip (which can be very time intensive) – offsetting any time saved due to higher 

ROP.  
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5.1.2 TOB 

The TOB objective function would seek to minimize TOB which draws less power 

from the motor and has shown to reduce drilling vibrations or stick-slip (D. Ertas et al., 

2014). Traditionally torque and drag are modeled during the well design process with the 

objective of minimizing drag for drilling wells (especially extended reach wells). There is 

a loss of energy along the wellbore, hence the torque measured at the bit is always lower 

than the torque measured on the surface. Minimum energy used to rotate the drill string 

providing the same ROP is more advantageous.  

5.1.3 MSE 

The MSE (Equation 5.1) objective functions seek to minimize MSE which will 

minimize the amount of energy used to extract rock. MSE is a calculated parameter and 

measured as a function of ROP and TOB. MSE is not directly modeled but calculated using 

ROP and TOB models (or measurements). 

 

𝑀𝑆𝐸 =  
𝑊𝑂𝐵

𝐴𝑏
+

120𝜋∗𝑅𝑃𝑀∗𝑇𝑂𝐵

𝐴𝑏∗𝑅𝑂𝑃
,  (Equation 5.1) 

5.1.4 Cost 

Cost (or cost-per-foot) of drilling has often been used as a metric for bit selection 

(Ebrahimi & Novieri, 2010; Gjelstad, Hareland, Nikolaisen, & Bratli, 1998; Nygaard et al., 

2002; Rashidi, Hareland, & Nygaard, 2008) but can be modified as a drilling optimization 

metric. Intuitively, the cost-per-foot of drilling should be the key metric to optimize, since 

the main objective of drilling optimization is to improve its economics.  

Costs are broken down into two categories: fixed and variable operation costs. 

Fixed costs include costs such as bit cost, rig cost, equipment cost. Variable costs depend 
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on the time taken to drill, salaries and so on. A back-of-the-envelope calculation can be 

performed by simplifying the cost-per-foot using Equation 5.2. 

 

𝐶𝑃𝐹 =  
𝐵𝑖𝑡 𝐶𝑜𝑠𝑡 + (𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑖𝑝 𝑇𝑖𝑚𝑒) ∗ 𝑅𝑖𝑔 𝐶𝑜𝑠𝑡

𝐹𝑒𝑒𝑡 𝑑𝑟𝑖𝑙𝑙𝑒𝑑 𝑖𝑛 𝑏𝑖𝑡 𝑟𝑢𝑛
, (Equation 5.2) 

Unless the well is tripped due to routine operations such as casing the well or 

running tools, the effect of the fixed costs is minimized as the hole gets deeper. When a 

new bit is run in hole, the initial cost-per-foot for that bit will be infinite given the nature 

of the equation. However, this cost decreases as the well is drilled and variable costs 

increase. Eventually the time-related costs overtake the fixed costs (as drilling proceeds). 

A cost-per-foot plot has been shown in Figure 5.1 on both linear and log scale. Figure 5.2 

plots cost-per-foot for different formations.  
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Figure 5.1: Cost-per-foot of drilling the well on linear (top) and log (bottom) scale. A 

linear decline is seen after the first hundred feet of drilling on the linear 

scale and thousand on the log scale. A deviation from this linear decline is 

often used as a signal for bit change. 
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Figure 5.2: Cost-per-foot plots for each formation. A deviation from linear decline has 

neem commonly used to infer the presence of a dull bit.  

Figures 5.1 and 5.2 were plotted using well-related costs outlined in Table 5.1 and 

a rig rate of $30000/day. Even though intuitively it makes sense to use cost-per-foot as a 

metric for drilling optimization, it does not work well from an optimization perspective. 

The main component of Equation 5.2 which can be controlled is the time taken (including 

on-bottom and off-bottom) due to drilling. Out of these times, the only the ROP can be 

modeled using controllable drilling parameters and subsequently optimized. The decrease 

of downtime or tripping time cannot be controlled by changing rig-based parameters but 

should be approached from a management perspective. For example, if 100 ft of the well 

remains to be drilled, and the bit is dull, rather than change the bit, the remaining depth can 

be drilled at a lower speed. Drilling at a lower speed will outweigh the time taken to change 

the bit. Such a decision can be made by the engineer on-site (an algorithm is not required). 
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Similarly, improving tripping times – which depend on equipment and crew (C. M. Hegde 

et al., 2018) – can be better dealt with efficient management practices. The cost-per-foot 

metric heavily relies on drilling time which is controlled by ROP and for the purposes of 

this thesis does not differ from improving the rate of drilling. Hence, the main metrics 

which are evaluated in this chapter are ROP, TOB, and MSE.  

Table 5.1: Drilling details from daily report used to calculate CPF 

Start 
(ft) End (ft) 

DrillingTime 
(hrs) 

Non-Drilling 
Time (hrs) 

Depth Drilled 
(ft) 

2237 4212 7 17 1975 

4212 6763 22 2 2551 

6763 7693 22.5 1.5 930 

7693 8661 22.5 1.5 968 

8661 9130 10.5 13.5 469 

 

Models used for running experiments to evaluate these metrics have been covered in 

Chapter 2. Optimization algorithms and the optimization space (or dimensions) used to 

find optimal parameters have been covered in Chapter 4. Figure 5.3 plots the accuracy of 

a random forest model used for ROP, TOB, and MSE. 
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Figure 5.3: Evaluation of errors due to ROP, TOB and MSE model predictions. (top) 

Normalized errors of MSE, TOB and ROP model. Random forest algorithm 

was used to train a model on each formation using half the data for training. 

The trained model was evaluated for prediction accuracy on the test data. 

The errors are well within 15% for ROP, TOB, and MSE, showing the 

accuracy of these models as compared to the field evaluated measurements. 

(bottom) The models are used to predict ROP (left), TOB (middle) and MSE 

(right), and compared to the measurements seen in the field. As seen from 

these figures the models perform well with a low error during prediction. 

These models are sufficiently accurate to be used thereafter in this paper for 

optimization analysis and simulations. 
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5.2 DRILLING OPTIMIZATION MODEL 

As described in the previous section, data-driven models are built for ROP, TOB, 

and MSE separately for each formation. The model can be used to predict ROP, TOB or 

MSE given the drilling control parameters. Since ROP and TOB models are built using the 

random forest algorithm they are coupled – a change in WOB will show a change in ROP 

as well as TOB. Correspondingly, since MSE is a function of ROP and TOB, changes in 

WOB can be translated into changes in MSE. Figure 5.4 shows the basic methodology 

behind data-driven optimization in drilling (similar to the process explained in Chapter 2). 

A portion of the well is drilled (without any modeling), and the data collected during 

drilling this interval are called the training set.  This training data are used to build data-

driven models for ROP, TOB, and MSE. An objective function is defined and optimized 

using an optimization algorithm with constraints set by the on-site engineer. It is important 

to note that only unmodified metrics (ROP, TOB, or MSE) have been analyzed in this 

chapter and not combinations since the model is already coupled. The ExxonMobil DAS 

combines different drilling metrics towards an integrated objective function which is then 

minimized. This is required since the DAS does not couple drilling metrics; ROP was 

estimated using response surfaces and TOB using an analytical model. The machine 

learning models used in this chapter are coupled, defining a single objective is sufficient. 

The optimized control parameters are used to drill ahead of the bit. After the completion of 

another joint/stand, newly acquired data are used to update the model. This process is 

repeated in a closed loop process until the entire formation is drilled. 
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Figure 5.4: Flowchart describes the drilling optimization process. The first step is to 

acquire drilling data by drilling one or more stands into a formation. These 

data are not modeled and treated as training data. Models are then built on 

this training data. An objective function (MSE for example) is defined and 

optimized using a metaheuristic algorithm. The optimized drilling control 

parameters are implemented for drilling the next joint/stand. Data acquired 

from the next joint/stand can be used to update all the models, after which 

the cycle is repeated in a closed loop. 

5.2.1 Experiments 

Experiments (or simulations) are conducted to evaluate and compare different 

drilling metrics. A simulation would entail using a drilling model to simulate the actual 

drilling environment. The models can be used with new control parameters to simulate the 
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ROP, TOB, and MSE ahead of the bit (or in any other unknown environment). An example 

simulation has been expanded for clarity.  

5.2.2 Simulation Example 

5.2.2.1 Acquire Training Data 

One stand of lodgepole limestone formation is drilled. While drilling this formation 

acquired surface parameters are used for training data-driven models. Driller is encouraged 

to vary drilling control parameters (WOB, RPM, flow-rate) while drilling this section so 

that sufficient ranges of drilling control parameters are covered (Sanderson et al., 2017). 

Implementation of a design of experiments sampling scheme such as the Taguchi method 

(Taguchi, 1986) can be an efficient way to carry out sampling training data (more details 

covered in the appendix). 

5.2.2.2 Build Model 

ROP is modeled using the random forests algorithm with WOB, RPM, flowrate, 

and UCS as input parameters. A similar model is constructed for TOB. The MSE is 

calculated using the ROP and TOB models. 

5.2.2.3 Find Recommended Settings 

MSE is chosen as an objective function; MSE is calculated for the training data and 

minimized using an optimization algorithm with control parameter constraints specified by 

the on-site engineer. Optimal control parameters which minimize the MSE are 

communicated to the driller to drill the next joint/stand. 
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5.2.2.4 Implement Control Parameters 

The optimal control parameters (WOB, RPM, flow-rate) are used by the driller to 

drill the next joint/stand. Data are collected while drilling this stand, which is then added 

to the training set. In this thesis, to simulate such a setting, the optimal parameters are fed 

into the drilling model (consisting of data-driven models) to simulate the ROP, TOB, and 

MSE.  

5.2.2.5 Update Model 

Additional data improves the accuracy of data-driven models. Hence, it is 

recommended that the models are repeatedly retrained with newly added training data. The 

frequency of retraining or updating the model is left to the preference of the operator. This 

process is repeated in a closed-loop until the entire formation is drilled. Additional details 

are covered in the appendix. 

5.3 OPTIMIZATION ALGORITHMS 

As introduced in chapter 4, meta-heuristic algorithms work well for finding optimal 

parameters of data-driven models. Hence the particle swarm optimization (PSO) algorithm 

has been used to find optimal parameters of drilling metrics. While this algorithm works 

well for ROP and TOB minimization, it takes very long to converge for optimizing MSE 

due to the Pareto optimality condition (Censor, 1977). Since the minimization of MSE 

requires TOB to be minimized and ROP to be maximized, it contains a dual objective which 

depends on the same input parameters, converging to a solution can be difficult. The 

random search algorithm converges fast but fails to retrieve a good solution. Bayesian 

optimization using Gaussian processes yield a good solution which converges quickly. The 

theory, application, and results of using Gaussian processes for optimization have been 

briefly explained in this section.  
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Bayesian optimization can be used to find optimal parameters of a “black box” 

function by sampling from a Gaussian process (GP). The tractable posterior distribution 

induced by the GP leads to efficient use of the information gathered by previous 

experiments, enabling optimal choices about what parameters to try next (Snoek, 

Larochelle, & Adams, 2012).  

5.3.1 Theory 

As with the case of metaheuristic algorithms, this algorithm seeks to find the 

minimum (or maximum) of the objective function (𝑓(𝑥)) on some bounded set χ. Bayesian 

optimization is different from other optimization algorithms discussed in chapter 4 since it 

first constructs a model for 𝑓(𝑥) before exploiting this model to find the next evaluation 

point. The idea is to use all previous evaluations of the function 𝑓(𝑥) and not just the local 

gradients which provide a great trade-off in the exploration-exploitation space. This helps 

find the minimum (or maximum) in a few iterations or function calls as opposed to other 

algorithms such as DE or PSO. The reader is referred to the paper by Brochu (Brochu et 

al., 2010) for an in-depth analysis of the algorithm. 

Figure 5.5 shows a typical run of Bayesian optimization on a toy 1D problem 

(Brochu et al., 2010). The optimization starts with two points. At each iteration, the 

acquisition function is maximized to determine the next sampling location. The objective 

is then sampled at the argmax of the acquisition function; the Gaussian process is updated, 

and the process is repeated.  Bayesian optimization has two primary components: the 
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posterior distribution over the objective (solid line in Figure 5.5) and the acquisition 

function (colored green in Figure 5.5). 

 

 

Figure 5.5: An example of using Bayesian optimization on a toy 1D design problem 

reproduced (Brochu et al., 2010). The figures show a Gaussian process (GP) 

approximation of the objective function over four iterations of sampled 

values of the 1D objective function. The figure also shows the acquisition 

function in the lower shaded plots. The acquisition is high where the GP 

predicts a high objective (exploitation) and where the prediction uncertainty 

is high (exploration)—areas with both attributes are sampled first. 
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5.3.1.1 Posterior Distribution 

Baye’s rule (Equation 5.3) defines the prior, posterior and likelihood. 

 

P(M|D)  =  P(E|D)  ∗  P(D), (Equation 5.3) 

 

where,  P(D) is the prior, P(E|D) is the likelihood, and P(M|D) is the posterior 

distribution. The prior of the model is some prior belief that is expected of the function 

being approximated. Many families of functions can be used for a prior, however, it has 

been shown that using a Gaussian Process (GP) as a prior is successful for Bayesian 

Optimization (Mockus, 1994). A GP is a stochastic process such that each collection of 

random variables has a multivariate normal distribution. A Gaussian distribution can be 

completely specified by its mean and covariance; similarly, a GP can be specified by its 

mean and covariance matrices. Hence, when evaluated at x, rather than returning a scalar 

value, the GP returns a mean and variance of a normal distribution which define that input 

x. It is commonly assumed for simplicity that the mean function is 0, however, the 

covariance function is predefined. The covariance function or kernel are application 

specific; commonly used kernels in machine learning are exponential distance kernel, 

Matern kernel (Minasny & McBratney, 2005), and the logistic kernel (Ng, 2000). The best 

results were reported with the use of the exponential distance kernel (Equation 5.4). 

 

𝐤(𝒙𝒊, 𝒙𝒋)  =  𝒆𝒙𝒑(−
𝟏

𝟐
||𝒙𝒊  −  𝒙𝒋||𝟐), (Equation 5.4) 

 

This function approaches a value of 1 when points are close together and a value of 

0 as points are far apart. A covariance matrix can be constructed for each pair of points 

sampled from the data as shown in Equation 5.5. 
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K =  (
𝐤(𝒙𝟏, 𝒙𝟏) ⋯ 𝐤(𝒙𝟏, 𝒙𝒏)

⋮ ⋱ ⋮
𝐤(𝒙𝒏, 𝒙𝟏) ⋯ 𝐤(𝒙𝒏, 𝒙𝒏)

) , (Equation 5.5) 

 

For the purposes of optimization, previously evaluated points are used to make 

future predictions using the GP. Assuming that n points have already been sampled from 

the function, the value of the n+1th point can be evaluated using Equation 5.6. 

 

(
𝑓1:𝑛

𝑓𝑛+1
) ~ 𝛮 (0, (

𝐾 𝑘
𝑘𝑇 𝐤(𝒙𝒏, 𝒙𝒏))), (Equation 5.6) 

 

where, 𝑓𝑛+1 is the function evaluation at the unknown point, 𝑓1:𝑛 are the known 

function values, K is the covariance matrix, and k is the covariance of the unknown point 

with all known points (using Equation 5.4). This can be solved using the multivariate 

gaussian theorem (P. Murphy, 1991) giving the solutions laid out in Equation 5.7 and 5.8. 

 

𝜇(𝑥𝑛+1) = 𝑘𝑇𝐾−1𝑓1:𝑛 , (Equation 5.7) 

 

𝜎2(𝑥𝑛+1) = 𝑘𝑇𝐾−1𝑓1:𝑛 , (Equation 5.8) 

 

where, 𝜇 is the mean and 𝜎 is the standard deviation of the newly predicted point. 

5.3.1.2 Acquisition Functions 

The role of the acquisition function is to guide the search for the maximum or 

minimum of the objective function. The sequential design for optimization (SDO) 

algorithm (Cox & John, 1992) is used as the acquisition function. A lower confidence 
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bound (LCB) for minima and upper confidence bound (UCB) for maxima (Equations 5.9 

and 5.10) are defined. 

 

LCB(x𝑛+1)  = 𝜇(𝑥𝑛+1) - 𝜅 ∗ 𝜎  (𝑥𝑛+1), (Equation 5.9) 

 

UCB(x𝑛+1)  = 𝜇(𝑥𝑛+1) + 𝜅 ∗ 𝜎  (𝑥𝑛+1), (Equation 5.10)  

 

where, 𝜅 is a hyperparameter chosen using cross-validation. 

 

5.3.2 Bayesian Optimization for ROP and MSE 

ROP optimization is efficient using the PSO algorithm, however, can be time 

intensive. The use of Bayesian optimization yields a good solution with fewer iterations. 

A GP prior was used with an exponential distance covariance kernel. Ten function 

evaluations were initiated and with the use of the UCB acquisition function for 

optimization. Figure 5.6 plots the contour of ROP as a function of drilling control 

parameters – WOB and RPM – for all formations. The true maximum of ROP has been 

plotted as a star; the algorithm iterations are numbered. It is evident that a good solution 

close to the true optimum is returned by the algorithm in all cases, with a few iterations. 

The average number of iterations or function evaluations for the PSO algorithm was 1075. 

The contour of Lodgepole Limestone formation has been shown in Figure 5.7 for better 

clarity. These figures show that Bayesian optimization using an exponential distance kernel 

and UBC acquisition function can successfully be used for ROP optimization and the 

optimal parameters returned are close to the true global optimum. 
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Figure 5.4: Bayesian optimization algorithm used to find optimal parameters for ROP for 

all formations; The iterations of the algorithm have been labelled on each 

plot; The minimum MSE has been plotted using a maroon star; Each plot is 

the contour of MSE predictions as retrieved by the model; The star 

represents the actual minimum as observed in the field.  
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Figure 5.7: ROP contour plot using the model for Lodgepole Limestone; The true 

maximum of ROP has been plotted as a maroon star; Bayesian optimization 

is used to find the optimal WOB and RPM; Each iteration or function 

evaluation of the algorithm has been numbered. 

 

The optimization of MSE is more complicated as compared to ROP since MSE is 

a function of ROP and TOB. The minimization of MSE requires maximization of ROP as 

well as the minimization of TOB, both of which depend on the same drilling control 

parameters. Figure 5.8 plots contours of all three metrics along with their individual 

argmin/argmax. As seen from this figure, it is evident that simply picking the optima 

individually for ROP or TOB will not produce the optimal MSE. Figure 5.9 plots the 

contour of MSE as a function of drilling control parameters – WOB and RPM – for all 

formations. The true minimum of MSE has been plotted as a star; the algorithm iterations 
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are numbered. It is evident that a good solution close to the true optimum is returned by 

the algorithm in all cases, with a few iterations. The simplex and differential evolution 

algorithms did not converge for this problem. The average number of iterations or function 

evaluations for the PSO algorithm was over two thousand. The contour of Lodgepole 

Limestone formation has been shown in Figure 5.10 for better clarity. These figures show 

that Bayesian optimization using an exponential distance kernel and LCB acquisition 

function can successfully be used for MSE optimization. 

 

 

Figure 5.8: Contours for ROP, TOB, and MSE in Lodgepole Limestone as modeled; The 

true optimal values of each metric have been plotted as a cyan star; Since 

MSE is a function of ROP and TOB, the optimal control parameters depend 

on ROP and TOB which are in turn controlled by WOB and RPM. 
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Figure 5.9: Bayesian optimization algorithm used to find optimal parameters for MSE for 

all formations; The iterations of the algorithm have been labelled on each 

plot; The minimum MSE has been plotted using a maroon star; Each plot is 

the contour of MSE predictions as retrieved by the model; The star 

represents the actual minimum as observed in the field.  
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Figure 5.10: MSE contour plot using the model for Lodgepole Limestone; The true 

maximum of MSE has been plotted as a cyan star; Bayesian optimization is 

used to find the optimal WOB and RPM; Each iteration or function 

evaluation of the algorithm has been numbered. 

5.4 RESULTS AND DISCUSSIONS 

5.4.1 ROP Optimization 

ROP is used as the objective function, hence drilling control parameters will be 

changed to maximize ROP in each formation. In this case, ROP is modeled as a function 

of WOB, RPM, flow-rate, and UCS on the training data (50% of formation data in this 

case). Ideal parameters are computed using the PSO algorithm on the trained model for 

each formation. The change in ROP, MSE, and TOB because of changing these control 

parameters to maximize ROP has been observed and plotted in Figure 5.11.  
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The 95% confidence interval of the response has also been plotted. By definition, 

95% of the time the range defined by this interval will contain the possible improvement 

in ROP. In each simulation (to generate the confidence intervals), the training and test set 

are changed by randomly choosing data points to act as the test and training set 

respectively. The test-train split – ratio training set length to test set length – is kept fixed 

at 0.5. At each iteration, 50% of the data points selected in a formation are chosen to be 

part of the training set, and the rest will be a part of the test set. 1000 bootstrapped 

simulations are evaluated to calculate the 95% confidence interval for each drilling 

response parameter. ROP change for each formation is plotted in Figure 5.12. Figures show 

that using ROP as the objective function has the potential to improve ROP by 28% on 

average for all formations. However, along with the increase in ROP, there is a 

corresponding increase in MSE and TOB which may not be desirable. 
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Figure 5.11: Effect on ROP, MSE and TOB on the test set when the formation is drilled 

with the optimal control parameters calculated by the PSO algorithm using 

ROP as an objective function. The changes in the drilling parameters are 

simulated by observing the changes on a machine learning model built for 

each drilling parameter. The figure shows that if ROP purely is optimized, 

an increase in ROP is accompanied with an increase in TOB and MSE 

which might be undesirable. The shaded regions around the dotted lines (for 

ROP, TOB, and MSE) represent the 95% confidence interval for each 

prediction. 
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Figure 5.12: Effect of ROP optimization on MSE in each formation. The changes in MSE 

are simulated by observing the changes on a machine learning model built 

for ROP and TOB. The figure shows that if ROP purely is optimized, an 

increase in ROP is accompanied by an increase in MSE which might be 

undesirable. 

5.4.2 TOB Optimization 

The TOB response is modeled as a function of WOB, RPM, flow-rate, and UCS on 

the training data (50% of formation data in this case). These drilling control parameters can 

be changed to manage or reduce the TOB response and thereby reducing vibrations. 

Reducing the TOB response of the drill bit will reduce the MSE since MSE is directly 

proportional to TOB. Ideal parameters are computed using the PSO algorithm on the 

trained model for each formation. Effect of optimal control parameters and their 95 % 

confidence interval has been plotted in Figure 5.13. Changes in TOB in each formation 

have been plotted in Figure 5.14. Figures show that using TOB as the objective function 

has the potential to reduce TOB by 12% on average for all formations. However, this results 

in a smaller increase in ROP and an increase in MSE which is undesirable. 
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Figure 5.13: Effect on ROP, MSE, and TOB on the test set when the formation is drilled 

with the optimal control parameters as calculated by the PSO algorithm 

using TOB as an objective function. The changes in the drilling parameters 

are simulated by observing the changes on a machine learning model built 

for each drilling parameter. The figure shows that if TOB purely is 

optimized, a small decrease in TOB and MSE is accompanied by a reduced 

increase in ROP. The shaded regions around the dotted lines (for ROP, 

TOB, and MSE) represent the 95% confidence interval for each prediction. 
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Figure 5.14: Effect of TOB optimization on MSE in each formation. The changes in MSE 

are simulated by observing the changes on a machine learning model built 

for ROP and TOB. The figure shows that if TOB purely is optimized, a 

smaller increase in ROP is accompanied with a slight increase in MSE as 

compared to purely optimizing ROP 

 5.4.3 MSE Optimization 

MSE (Equation 5.1) is calculated using the ROP and TOB data-driven models with 

a train-test ratio of 50%. Ideal parameters are computed using the PSO algorithm. 

However, the convergence, in this case, takes substantially longer (~10x) since there are 

competing responses. Bayesian optimization described in section 5.3.2 is used to optimize 

MSE since it leads to faster convergence. ROP and TOB themselves are functions of WOB, 

RPM, flow-rate, and UCS. Parameters must be chosen such that ROP can be increased, 

with a slight increase or decrease in torque so that the overall MSE can be minimized. The 

changes in ROP, MSE, and TOB because of changing these control parameters has been 

observed and plotted in Figure 5.15 along with their 95% confidence interval. Changes in 

MSE in each formation have been plotted in Figure 5.15. A slightly smaller increase in 
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ROP is observed when compared to Figure 5.11, however, reduced TOB and MSE are 

observed which are desirable. A decrease in MSE shows that less energy is being utilized 

by the bit to destroy a given volume of rock which shows that it is more efficient. A 

reduction in TOB may also lead to a reduced vibrational response which can help prevent 

drilling dysfunction. 

 

 

Figure 5.15: Effect on ROP, MSE, and TOB on the test set when the formation is drilled 

with the optimal control parameters as calculated by the PSO algorithm 

using MSE as an objective function. The changes in the drilling parameters 

are simulated by observing the changes on a machine learning model built 

for each drilling parameter. The figure shows that if MSE is minimized by 

controlling RPM, WOB and flow-rate to manipulate the MSE, an increase in 

ROP is accompanied by a decrease in TOB and decrease MSE which is 

highly desirable. The shaded regions around the dotted lines (for ROP, 

TOB, and MSE) represent the 95% confidence interval for each prediction. 
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Figure 5.16: Effect of MSE optimization on the MSE response in each formation. The 

changes in MSE are simulated by observing the changes on a machine 

learning model built for ROP and TOB. The reduction in MSE in the 

simulated test set shows that optimal parameters can be calculated which 

will increase ROP and decrease MSE at the same time 

5.4.4 Hypothesis Testing 

Hypothesis testing is commonly used in the scientific analysis to test the validity of 

the hypothesis from a statistical perspective. Hypothesis testing consists of evaluating a 

null hypothesis and rejecting the null hypothesis if sufficient evidence of the alternative 

hypothesis exists. It is widely used in the fields of statistics, science, and engineering.     

The confidence interval commonly chosen with a width of 95% represents the range 

which will contain the true value of the mean from the population. For example, if the 

confidence of interval for MSE in the lodgepole limestone formation is: 5000-15000 psi, 

this means that the population means of MSE corresponding to lodgepole limestone will 

lie between 5000 and 15000 psi 95% of the time. Confidence interval in a way represents 

the lower and upper limits of allowable statistical variation. Hence if the confidence 
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interval of two different distributions intersect they cannot be claimed to be statistically 

different.  

For the study in this dissertation, the objective of the hypothesis tests is to test 

whether optimization of drilling models results in a significant change in ROP, MSE, and 

TOB; a difference large enough that it could not have occurred by chance and is actually 

significant. An example is illustrated in the Figure 5.17 below. In Figure 5.18, ROP 

optimization has been studied in the Piper limestone formation. The distribution in red 

plots the ROP distribution before optimization: that observed while drilling the formation. 

The green distribution represents the ROP post optimization: new ROP once optimal 

parameters are used for drilling the same formation. The null hypothesis being tested is 

that both distributions are the same i.e. there is no difference between the distributions 

observed in red and green. This would imply that the formation is being drilled as 

efficiently as possible. The alternative hypothesis states that ROP increases post 

optimization. In other words, there exists a solution or set of input parameters which can 

result in an improved ROP while drilling this formation. Based on the p-value for a two-

sample t-test (Casella & Berger, 2002) conducted on the data – which was 5.43 E-6 – the 

null hypothesis is rejected in favor of the alternative hypothesis for the analysis pertaining 

to Figure 5.17. The optimization algorithm’s solution helps improve the ROP. Such an 

analysis can also be useful in determining the efficiency of the optimization algorithm. This 

principle can be easily extended to MSE and TOB analysis, to check if the improvements 

shown by the simulator post optimization is significant compared to the data observed 

before. 
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Figure 5.17: Figure showing hypothesis test on ROP simulation. Distribution in red 

represents the distribution of ROP values before ROP optimization. The 

distribution in green shows the ROP values after optimization. Hypothesis 

testing is used to determine the p-value based on the difference between the 

two distributions based on their mean (represented as dotted lines in the 

figure) and standard deviation. This case when analyzed using two-sample t-

test results in a p-value of 5E-6 showing that they are different distributions. 

This analysis assumes that the data points are independent, the distributions are 

normal or Gaussian, and ROP predictions made using the ROP model are accurate. The 

ROP predictions are accurate since they have been modeled using a random forest 

algorithm; they have been tested to show a low error, which indicates that the random forest 

algorithm predicts ROP accurately and should generalize well for a given formation. The 

data points are independent given their sampling procedure and filters employed. However, 

not all distributions of ROP are approximately normal. Distributions can deviate from 

normality as shown in Figure 5.18 in the Charles Sandstone formation. Violation of this 

normality assumption can lead to incorrect conclusions due to overinflated p-values and 

falsely narrow confidence intervals. An alternative is to utilize a non-parametric method 

such as the bootstrap to calculate confidence intervals for each distribution. If confidence 

intervals of the difference between the means of the two distributions do not include 0, they 
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are said to be statistically different: the null hypothesis is rejected. In the case of Figure 

5.18, the confidence interval of the difference of the means is: 21.63 - 29.29 ft/hr.  

 

 

Figure 5.18: Figure showing hypothesis test on ROP simulation. Distribution in red 

represents the distribution of ROP values before ROP optimization and 

green after. The means are plotted in the form of dotted lines. In this case, 

the normal assumption breaks down for both distributions which affect the 

p-values and conclusions of hypothesis testing. 

A hypothesis test was conducted to determine the significance of ROP 

improvement in each formation. The distributions of the original and improved ROP along 

with their means have been plotted in Figure 5.19. Both analytic confidence intervals and 

bootstrap confidence intervals have been shown in Table 5.2. Based on the results seen in 

Table 5.2, it can be concluded that ROP optimization significantly improves the ROP in 

all formations and is not likely to have been caused by chance. Figure 5.20 and Table 5.3 

summarize similar statistics for TOB which show that all TOB improvements are 

significant. Figure 5.21 and Table 5.4 summarize similar statistics for MSE. MSE reduction 

using optimization for all but one formations are significant. The confidence interval for 

Kibbey Limestone contains 0, which means that a statistically significant difference in the 

means is not observed. All analysis have been tabulated and displayed in Tables 5.2,5.3, 
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and 5.4. The difference in their values depicts the results due to the non-normality of the 

probability distributions.  

 

 

 

Figure 5.5:  ROP optimization distribution for all formations. ROP plotted in red refers 

to measured ROP. The distribution plotted in green is the distribution of the 

optimized ROP. The means are plotted in dotted lines.  



 157 

 

Figure 5.20: TOB optimization distribution for all formations. TOB plotted in red refers 

to measured TOB. The distribution plotted in green is the distribution of the 

optimized TOB. The means are plotted in dotted lines. 
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Figure 5.21: MSE optimization distribution for all formations. MSE plotted in red refers 

to measured MSE. The distribution plotted in green is the distribution of the 

optimized MSE. The means are plotted in dotted lines. 
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Table 5.2: Confidence Intervals for difference in means for ROP Optimization 

Formation 

Analytic 

2.5 

Percentile 

(ft/hr) 

Analytic 97.5 

Percentile 

(ft/hr) 

Boostrap 

2.5 

Percentile 

(ft/hr) 

Boostrap 

97.5 

Percentile 

(ft/hr) 

Piper Limestone 7.88 17.00 8.00 17.03 

Spearfish Sandstone 12.66 23.84 13.18 24.40 

Tyler Sandstone 11.74 14.91 11.70 14.92 

Kibbey Lime 

Limestone 2.06 5.04 2.40 5.60 

Kibbey Lime Shale 4.29 7.05 4.37 7.09 

Charles Sandstone 21.36 28.99 21.54 29.16 

Charles Limestone 5.05 10.81 5.93 10.69 

Ratcliffe Sandstone 8.69 14.91 8.68 14.88 

Base Last Salt 

Limestone 4.58 12.12 3.95 11.60 

Base Last Salt 

Sandstone 4.66 7.13 4.70 7.14 

Mission Canyon 

Limestone 2.18 3.38 2.16 3.36 

Lodgepole Limestone 5.29 5.49 5.32 5.53 
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Table 5.3: Confidence Intervals for difference in means for TOB Optimization  

Formation5.3 

Analytic 

2.5 

Percentile 

(lb-ft) 

Analytic 

97.5 

Percentile 

(lb-ft) 

Boostrap 

2.5 

Percentile 

(lb-ft) 

Boostrap 

97.5 

Percentile 

(lb-ft) 

Piper Limestone -1092.71 -561.972 -1048.28 -497.676 

Spearfish Sandstone -1835.13 -1369.51 -1814.27 -1352.63 

Tyler Sandstone -903.065 -713.406 -898.202 -707.66 

Kibbey Lime 

Limestone -1204.53 -423.405 -1187.92 -425.699 

Kibbey Lime Shale -384.939 -95.6488 -370.342 -77.3619 

Charles Sandstone -1815.55 -1332.19 -1808.06 -1321.17 

Charles Limestone -1349.05 -965.215 -1334.8 -951.774 

Ratcliffe Sandstone -1077.36 -451.148 -1067.67 -452.202 

Base Last Salt 

Limestone -2265.38 -1525.56 -2263.11 -1531.31 

Base Last Salt 

Sandstone -344.398 -49.3379 -324.733 -29.2358 

Mission Canyon 

Limestone -495.743 -365.405 -493.632 -362.429 

Lodgepole Limestone -189.388 -32.6174 -174.009 -11.4547 
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Table 5.4: Confidence Intervals for difference in means for MSE Optimization 

Formation 

Analytic 

2.5 

Percentile 

(psi) 

Analytic 

97.5 

Percentile 

(psi) 

Boostrap 

2.5 

Percentile 

(psi) 

Boostrap 

97.5 

Percentile 

(psi) 

Piper Limestone -4931.69 -2095.17 -5203.52 -2334.1 

Spearfish Sandstone -5868.18 -4527.06 -6020.56 -4655.14 

Tyler Sandstone -13339.7 -10670.5 -13419.9 -10727.9 

Kibbey Lime 

Limestone -16887.3 -6412.12 -17345.8 -6847.8 

Kibbey Lime Shale -2863.79 722.2739 -2929.93 715.076 

Charles Sandstone -23027 -15903.2 -23845.6 -16535.8 

Charles Limestone -14330.8 -10321.9 -14567.1 -10574.6 

Ratcliffe Sandstone -12378.3 -6249.13 -12729.8 -6585.07 

Base Last Salt 

Limestone -14605.4 -8943.01 -14638.7 -9008.38 

Base Last Salt 

Sandstone -6853.47 -4081.14 -6941.69 -4140.9 

Mission Canyon 

Limestone -4535.67 -3412.12 -4554.22 -3399.94 

Lodgepole Limestone -2869.99 -1593.38 -2837.36 -1551.74 

 

 

5.5 CONCLUSIONS 

Even though Drilling optimization is a key area of research, the effect of metrics 

for drilling optimization remains relatively unexplored. This chapter evaluated three 

metrics for drilling optimization by changing the objective function and evaluating its 

effect on other key performance indicators (KPI) used in drilling. Based on the objective 

function being optimized, the results vary.  

Cost-per-foot is not a good objective function for algorithmic optimization since it 

translates to ROP optimization. Good engineering decisions and improved management 

practices can reduce the aspects of cost-per-foot not covered by ROP. The best objective 
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function to use for a well will depend on several factors such as the operator, the costs of 

drilling, equipment, operating costs, history of drilling dysfunctions.  

ROP optimization has been the workhorse of this industry for many decades. 

Several downsides of ROP optimization have been established, however, it is still the most 

popular metric used for drilling optimization. Based on the analysis in this chapter, when 

ROP is used as an objective function and maximized, it results in increased MSE and 

increased torque responses. This may lead to the non-optimal use of bit energy, excessive 

vibrations, and drilling dysfunction which can offset the time saved due to improvements 

in ROP. Using ROP as an objective function leads to an improvement of ROP by an 

average of 31%, whereas MSE increases by 4% and torque on average increased by 10%. 

If the vibration response of the bit is minimal then these settings would provide the 

maximum ROP increase and lead to considerable time savings. However, in most cases, 

drilling vibrations inhibit ROP and techniques to deal with vibrations are addressed in 

Chapter 6. 

When TOB is used as an objective function, reduction in TOB resulted in a small 

ROP improvement and an increase in MSE (which is undesirable). However, in cases with 

high axial, lateral or torsional vibrations, this might be more desirable since reducing 

vibrations can help avoid drilling dysfunction. An average of 10% reduction in TOB was 

noticed with a 16% increase in ROP and 15 % increase in MSE. This setting may be optimal 

in cases where the bit has excessive vibrations.  

MSE was initially introduced in drilling for bit selection but has soon become an 

important KPI in drilling. It represents the efficiency of the use of energy downhole. Using 

MSE as an objective function resulted in improved ROP, reduction in TOB, and a reduction 

in MSE. Given the nature of the MSE equation, just minimizing TOB will lead to an 

improved MSE since TOB is measured in lbs and ROP in ft/hr – the magnitude of units of 
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TOB is higher. This can be avoided by thresholding a minimum ROP or by normalizing 

the units during optimization. Bayesian optimization is used for faster convergence over 

the PSO algorithm. Optimizing using the MSE objective function lead to an average 

decrease of MSE by 15%, increase in ROP by 20% and reduction of torque by 7%. By far, 

using MSE as an objective function has the most balanced improvement for drilling – an 

increase in ROP, reduction in torque and MSE at the same time. While the increase in ROP 

is not as high as compared to purely optimizing ROP, there is an improvement in MSE and 

TOB which have potential to increase the longevity of the bit. 
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Chapter 6: Classification of drilling vibrations using machine learning 

Previous chapters have covered the prediction, inference, modeling, and 

optimization of ROP. Chapter 5 discussed the definition of an objective function and its 

optimization for drilling. However, a key component of drilling optimization not addressed 

so far is drilling vibrations. This chapter introduces the use of classification algorithms to 

model and classify the intensity and effect of drilling vibrations – a major inhibitor. 

6.1 INTRODUCTION 

A significant part of ROP optimization is the mitigation of drilling vibrations since 

they are a major ROP limiter (Fred E Dupriest & Koederitz, 2005; Macpherson, Mason, & 

Kingman, 1993). Drilling vibrations can be largely divided into axial (vertical), lateral 

(whirl), and torsional vibrations (stick-slip). Over 40% of drilled depth per year is affected 

by drilling vibrations and ROP improvements are observed when they are mitigated (Abdul 

Rahman et al., 2012; Bailey et al., 2008; Janwadkar et al., 2006). Low levels of vibrations 

have also been identified to limit weight-on-bit (WOB), ROP, and borehole quality (D. 

Ertas, Bailey, Wang, & Pastusek, 2013).  

Such adverse effects of vibrations have resulted in the development of static, basic 

and enhanced electrodynamic, and numerical modeling techniques (such as finite element 

or finite difference) to analyze the dynamic behavior of the drill string (Ghasemloonia, 

Rideout, & Butt, 2015). Vibration issues are commonly addressed via bit, BHA or drill 

string redesign which are often expensive. A cheaper alternative is controllable drilling 

parameter management. Axial vibrations can commonly be avoided with good bit design 

in the planning phase (D. Ertas et al., 2014) or the use of polycrystalline diamond compact 

(PDC) bits. Lateral vibration modeling and mitigation has been carried out extensively by 

ExxonMobil (Bailey et al., 2008), concluding that BHA design can help significantly 
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mitigate lateral vibrations. Stick-slip mitigations using BHA and bit improvements have 

been proposed (Davis, Smyth, Bolivar, & Pastusek, 2012; Jaggi, Upadhaya, & Chowdhury, 

2007; Janwadkar et al., 2006; Mahyari, Behzad, & Rashed, 2010; Pastusek, Brackin, & 

Lutes, 2005; Zhu, Tang, & Yang, 2014). Yet a cheaper alternative is to use combinations 

of drilling input parameters to “break out” of the harmonic vibrations or stick-slip such as 

increasing rotary speed (RPM) and reducing weight-on-bit (WOB) (Macpherson et al., 

1993) or just reduction of WOB (Patil & Teodoriu, 2013). The use of real-time drilling 

parameter control for reduction of stick-slip with active monitoring has been successful 

(Dufeyte & Henneuse, 1991; Pavone & Desplans, 1994; Robnett, Heisig, McGinley, & 

Macpherson, 2002; Shuttleworth, Van Kerkoerle, Folmer, & Foekema, 1998). However, 

these methods depend more on the reservoir, BHA, geology, heterogeneity, etc. and as such 

cannot be generalized. The use of active control systems (Kyllingstad & Halsey, 1987) was 

introduced; it has been improved to model stick-slip vibrations using surface data using the 

transfer matrices approach (D. Ertas et al., 2014). This stick-slip modeling method (which 

makes some linearity assumptions) has been incorporated into a drilling optimization 

workflow by ExxonMobil called the drilling advisory system (Chang et al., 2014).  

The use of vibration modeling and monitoring is a complex process often requiring 

many simplifying assumptions; they may not always generalize to different BHAs, 

reservoirs, geology, and formations. Additionally, physical processes such as bit wear, 

heterogeneity, cuttings loading, buckling of the drill string – which are continuously 

changing during drilling – can violate many simplifying assumptions. In such cases, 

modeling vibrations using a data-driven approach specific to a particular geology, BHA, 

and formation may be more lucrative. Furthermore, if the primary aim of modeling of 

vibrations is to identify optimal drilling input parameters for improving ROP and reducing 

vibrations: a data-driven approach can provide an excellent alternative modeling scheme. 
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This chapter introduces a simple and effective method to model the effect of axial, lateral 

and torsional drilling vibrations using machine learning. A data-driven approach is used 

given its simplicity, high accuracy, versatility,  and ease of coupling with other ROP data-

driven models (C. Hegde et al., 2017; Chiranth Hegde & Gray, 2017). The objective of this 

chapter is to show that machine learning classification algorithms can be used to accurately 

classify the effect of drilling vibrations with a high accuracy. This classifier can be coupled 

with a ROP optimization model (be it data-driven or not) to optimize ROP while keeping 

drilling vibrations to a minimum as shown in Chapter 7.  

Since the objective is to control the vibrations, a classification approach is 

introduced wherein different classification algorithms – logistic regression, linear 

discriminant analysis (LDA), quadratic discriminant analysis (QDA), Gaussian mixture 

models (GMMs), and random forests are used to classify the effect of vibrations in each 

formation. Common issues related to machine learning classification such as an imbalance 

of data sets and choice of metrics have been addressed. Stick-slip index (SSI) is used as a 

metric to define the effect of torsional vibrations on a drilling system. Axial and lateral 

vibrations are can be classified based on their readings – a separate metric is not required 

since the accelerometer readings directly translate into drilling dysfunction and tool failure 

indices (Y. I. Arevalo, Medina, & Naslausky, 2011). SSI has been effectively classified 

using classification algorithms with high accuracy; alternative metrics (F-1 score and area 

under the receiver operating characteristic curve) which better define success in 

classification are used to pick the best algorithm. The random forest algorithm performs 

extremely well (average F-1 score of 0.9) to successfully classify SSI into pre-defined 

binary classes. Axial and lateral vibrations are also classified by the random forests 

classifier with high F-1 scores. This algorithm can be easily implemented into a ROP 
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optimization framework to provide constraints for selecting optimal control parameters 

(discussed further in Chapter 7).  

6.2 THEORY: DRILLING VIBRATIONS 

6.2.1 Types of drilling vibration 

Drilling vibrations can be classified into torsional vibrations (stick-slip), axial 

vibrations (bit-bounce phenomenon), and lateral vibrations (whirl) as shown in Figure 6.1. 

 

 

Figure 6.1: Visualization of different types of vibrations (Drillstring Vibrations and 

Vibration Modeling, 2010) 

6.2.1.1 Torsional Vibrations 

Downhole measurements have shown that not all the rotational energy used to 

rotate the drill string is transferred to the bit. The bit exhibits large fluctuations in RPM 

most of the time. This rotational motion is due to the cuttings build up at the bit and the 

torsional flexibility of the drill string which causes a non-linear relationship between torque 

and angular velocity at the bit (Jansen, 1991). The RPM during such events has been 
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visualized in Figure 6.2. Torque at the bit as compared to the surface follow similar trends 

but can vastly differ in magnitude (Figure 6.3). It is difficult to predict downhole conditions 

by purely relying on surface drilling data. As visualized in the figures, energy builds up at 

the bit and is released. At times the buildup of energy is so severe that the bit momentarily 

comes to rest before it unwinds with excessive energy which may lead to the bit rotating 

in the opposite direction. This event is referred to as a stick-slip. A useful measure or metric 

used to represent the effect of stick-slip is the stick-slip index (SSI) as described in 

Equation 6.1. 

 

 

Figure 6.2: (a) Stick slip vibrations as seen at the bit versus that seen at the surface (or 

table speed)(Christoforou & Yigit, 2001) ; (b) RPM during stick-slip events 

measured using surface and downhole sensors(Ledgerwood III et al., 2013). 
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Figure 6.3: Bit torque vs surface torque during a stick-slip (Christoforou & Yigit, 2001) 

6.2.1.2 Axial Vibration 

This vibration mode is due to irregular movements of the drill string along its 

vertical axis causing bit-bounce which may result in tooth wear and bearing failure (Li & 

Guo, 2007). Additionally, due to coupling mechanisms, it may excite lateral vibrations of 

the string (Shyu, 1989). The bit-bounce pattern can be detected at the surface; axial 

vibrations are prolific with the use of roller-cone bits. It is more common during drilling 

of hard formations. They may cause accelerated bearing and tool wear, seal failure, broken 

tooth cutters, and reduction in the ROP; these are the most common catastrophic outcomes 

of axial vibration and bit bounce (Ashley, McNary, & Tomlinson, 2001). However, the use 

of polycrystalline diamond compact (PDC) bits reduces axial vibrations during drilling. 

 

6.2.1.3 Lateral Vibration 

Lateral vibrations are difficult to detect on the surface and can be considered one 

of the most lethal forms of drilling vibration (Marquez, Boussaada, Mounier, & Niculescu, 

2015). Bending waves are not propagated up to the surface via the drill string as are 
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torsional and longitudinal waves – due to the difference in the wave speed for different 

types of modes (Ghasemloonia et al., 2015). Hence, the modeling of the vibration modes, 

extracting the natural frequencies and analyzing the dynamic behavior of the BHA is 

important for failure prevention. The rotating BHA interacts with the borehole wall which 

generates shocks to form lateral vibrations. The collisions with the borehole wall may result 

in hole eccentricity. These shocks can severely damage the bit (Figure 6.4). They may also 

result in modification of the drilling direction with repeated shocks to the wellbore (Jansen, 

1993). The lateral vibration behavior of the drill string is strongly influenced by BHA 

vibration and its prevention includes the effective design of BHA (Bailey et al., 2008). 

 

 

Figure 6.4: Vibrations during lateral motion of the drill string (Christoforou & Yigit, 

2001) 

6.2.2. Vibration Frequencies and Resonances 

Natural frequencies are frequencies at which a structure can vibrate harmonically. 

If a structure is excited at one of these frequencies then large oscillations are observed, the 

largest of which occur at the fundamental frequency (Thomson, 1996) as shown in figure 

6.5. A drill string may get excited due to load or displacement excitations at various points 
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along the drill string. Vibration modeling (time or frequency domain) can be utilized to 

model critical drilling RPM which can result in resonant frequencies for the current BHA 

configuration. The critical RPM is the surface RPM at which the frequency of excitation 

will correspond to the natural frequency of the BHA.  

 

 

Figure 6.5: Lateral vibration mode shapes  (Drillstring Vibrations and Vibration 

Modeling, 2010) 

6.2.3 Measurement of Vibrations 

Vibrations are measured downhole using an accelerometer. The three axes refer to 

a system comprising the vibration-acquisition board and three off board accelerometers (Y. 

Arevalo & Fernandes, 2011) as a part of the measurement while drilling (MWD) tool. The 

three accelerometers are mounted in a mutually orthogonal arrangement along the central 

axis of the tool. The X-axis sensor measures axial shocks, the ‘Y’ and ‘Z’ sensors measure 

lateral shocks in orthogonal directions. Data can be transmitted in real-time using downhole 

telemetry. A commonly used metric to measure the effect of torsional vibrations is the 

stick-slip index (SSI) which can be calculated using downhole measurement tools as shown 
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in Equation 6.1. SSI is a convenient method to represent stick-slip since a value of 1 would 

represent full stick-slip, i.e. the bit is momentarily stationary. At higher values of SSI, the 

bit stop turning for a period of time or is said to be “stuck”(D. Ertas et al., 2014). Lateral 

and axial vibration intensities do not require a metric and the measurement from the 

downhole accelerometer can be directly used for classification.  

 

𝑆𝑆𝐼 =   
𝑀𝑎𝑥(𝑏𝑖𝑡 𝑅𝑃𝑀)−𝑀𝑖𝑛(𝑏𝑖𝑡 𝑅𝑃𝑀)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑏𝑖𝑡 𝑅𝑃𝑀)
  , (Equation 6.1) 

 

Axial vibrations are not generally a problem while using PDC bits. However, an axial 

severity estimate (ASE) has been defined in literature (M. D. Ertas et al., 2015) which 

measures the axial severity estimate of the drill string (Equation 6.2). 

 

𝐴𝑆𝐸 =   
𝑀𝑎𝑥(𝑏𝑖𝑡 𝑊𝑂𝐵)−𝑀𝑖𝑛(𝑏𝑖𝑡 𝑊𝑂𝐵)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑏𝑖𝑡 𝑊𝑂𝐵)
, (Equation 6.2) 

 

However, the effect of axial and lateral vibrations on the drill string and tool failure has 

been better studied using simpler metrics: the acceleration of the drill string vibrations (or 

g’s as reported by the downhole accelerometers). Studies (Y. Arevalo & Fernandes, 2011) 

have shown that capping lateral and axial vibrations at less than 1.0 g’s results in a 

reduction of tool failure by 80%. 

 

6.3 THEORY: MACHINE LEARNING CLASSIFICATION 

A function can be estimated in terms of its input parameters using a model: 𝑌 =

𝑓(𝑋1, 𝑋2, . . , 𝑋𝑛). Algorithms used to determine the unknown function are often grouped as 

classification algorithms (ones used to determine a qualitative result) and regression 

algorithms (used to determine a quantitative result). Qualitative variables take on values of 
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different classes (vibration is low or high) or categories and quantitative variables take on 

numeric values (value of ROP or MSE). This section will introduce the use of classification 

techniques to classify drilling vibrations.  

Classification algorithms estimate the class of the output based on input parameters. 

For example, drilling vibrations are to be classified as low or high using measured while 

drilling (MWD) drilling parameters such as rate of penetration (ROP), rotations per minute 

(RPM), weight on bit (WOB), flow-rate (Q) and torque (TQ) as inputs. A classification 

algorithm can be used to estimate the severity of vibrations based on MWD data. A 

classifier (classification algorithm) seeks a way to determine if the drilling vibrations will 

be low or high based on data. Figure 6.6 illustrates classification of torsional drilling 

vibrations into two classes. 

 

 

Figure 6.6: Density plot of the SSI of torsional drilling vibrations in the Tyler sandstone 

formation. The vibrations have been classified into two distinct classes 

colored green (low SSI <1) and red (high SSI > 1). A classifier is used to 

determine the class of vibrations (low or high) based on input MWD 

parameters. 
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Commonly used classification algorithms are logistic regression, linear 

discriminant analysis, support vector machines, Gaussian mixture models, random forests, 

and neural networks. Neural networks and deep neural networks perform well for high 

dimensional data such as image classification; they will not be discussed in this chapter 

(since drilling data is low dimensional); the reader is referred to other resources for the 

application of neural networks for classification (Krizhevsky et al., 2012; LeCun et al., 

2015; Ng et al., 2015).  

6.3.1 Logistic Regression 

Logistic regression is a classification technique used to model the odds of an event. 

It models the probability that an output 𝑌 belongs to a particular class: probability that the 

vibrations are low or high. The mathematical notation can be written as: 𝑃(𝑌 =

𝑦|𝑋1, 𝑋2, . . , 𝑋𝑛) or 𝑃(𝑆𝑆𝐼 = 𝑙𝑜𝑤|𝑅𝑂𝑃, 𝑀𝑆𝐸, 𝑅𝑃𝑀, . . , 𝑄). The values of probability will 

range from 0 to 1. Hence, with a given set of input parameters the probability of a particular 

class can be computed (James et al., 2013).  

In a linear regression setting this would be modeled as: 𝑃(𝑦) =  𝑤1𝑋1 +

𝑤2𝑋2+, . . , 𝑤𝑛𝑋𝑛 or concisely 𝑃(𝑦) =  𝑊𝑇𝑋 ,where the input parameters 𝑋1, 𝑋2, . . , 𝑋𝑛 are 

represented as a matrix X and 𝑤1, 𝑤2, . . , 𝑤𝑛 are represented as the vector W (Goodfellow 

et al., 2016). In the case of logistic regression, the expression  𝑊𝑇𝑋 is embedded within a 

sigmoid function (Equation 6.3) which forces the values of the outputs (P(y)) to lie between 

0 and 1. This transforms the regression equation to yield the logistic regression equation 

(Equation 6.4). 

 

𝑆𝑖𝑔(𝑦) =  
1

1+𝑒−𝑦, (Equation 6.3) 

𝑃(𝑦) = 𝑆𝑖𝑔(𝑊𝑇𝑋) =  
1

1+𝑒−𝑊𝑇𝑋
=  

𝑒𝑊𝑇𝑋

1+𝑒𝑊𝑇𝑋
=  

𝑒𝑤1𝑋1+𝑤2𝑋2+,..,𝑤𝑛𝑋𝑛

1+𝑒𝑤1𝑋1+𝑤2𝑋2+,..,𝑤𝑛𝑋𝑛
 (Equation 6.4) 
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The weight matrix (𝑊𝑇) can be determined using the principle of maximum 

likelihood (James et al., 2013) using training data. The maximum likelihood function 

estimates the values of W for which the training data (X) are most likely. The probability 

of a particular class occurring can then be calculated directly using Equation 6.4.  

An extension or variant of logistic regression which can be useful is principal 

components analysis (PCA) logistic regression – logistic regression on the principal 

components of the data – similar to PCA regression (C. M. Hegde, Wallace, & Gray, 2015). 

The first principal component of a dataset is calculated by determining the direction along 

which the data vary the most. The second principal component orthogonal to the first 

component calculates the direction along which the remaining data varies the most. PCA 

is used as a dimension reduction tool. Additionally, it can also serve to congregate the most 

important features of the data into a low dimensional form. Equation 6.4 can be modified 

by replacing 𝑋𝑖 with 𝑍𝑖 where 𝑍𝑖 represents the ith transformed component for PCA logistic 

regression. 

6.3.2 Discriminant Analysis 

Linear discriminant analysis (LDA) is a classification method which works by 

flipping Bayes’ rule to estimate 𝑃(𝑆𝑆𝐼 = 𝑙𝑜𝑤|𝑅𝑂𝑃, 𝑀𝑆𝐸, 𝑅𝑃𝑀, . . , 𝑄). It tends to work 

well when data are close to normally distributed. LDA is more stable than logistic 

regression when classes are well distributed, training sets are small, and when the output 

contains more than two classes (James et al., 2013). Probability of a given class can be 

estimated using LDA using Equation 6.6. 

 

𝑃(𝑌 = 𝑘| 𝑋 = 𝑥) =  
𝜋𝑘

 𝑓𝑘
 (𝑥)

∑ 𝜋𝑙
 𝑓𝑙

 (𝑥)𝐾
𝑙=1

, (Equation 6.6) 
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where, 𝜋𝑘
  is the prior probability of class ‘k’; this is the probability that a given 

sample belongs to class ‘k’. And 𝑓𝑘
 (𝑥) is the class conditional density of X in the class 

K=’k’. In general, 𝜋𝑘
  can be estimated using the fraction of training data that belong to 

class ‘k’. However, the calculation of 𝑓𝑘
 (𝑥) is more challenging; it is assumed to follow a 

Gaussian distribution (Equation 6.7) to make calculations tractable.  

 

𝑃(𝑌 = 𝑘| 𝑋 = 𝑥) =  
𝜋𝑘

 𝑁(𝜇𝑘,𝜎𝑘
2)

∑ 𝜋𝑙
 𝑁(𝜇𝑙,𝜎𝑙

2)𝐾
𝑙=1

, (Equation 6.7) 

 

where, 𝑁(𝜇𝑘, 𝜎𝑘
2) is a normal distrbition with a mean of 𝜇𝑘 and variance 𝜎𝑘

2. The 

decision boundary for LDA is linear. In cases of nonlinear behavior of the data it may be 

better to use quadratic discriminant analysis (QDA) which is an extension of LDA, except 

it assumes that each class has its own covariance matrix (James et al., 2013) – resulting in 

nonlinear decision boundaries.  

6.3.3 Support Vector Machines (SVM) 

Logistic regression can breakdown in cases where there exists a linearly separable 

hyperplane (maximum likelihood fails and some parameters tend to infinity (Efron & 

Hastie, 2016)). While uncommon, it can happen when the number of predictors is large. 

SVMs pursue the ability to separate classes with a hyperplane using basis expansions and 

transformations.  

An optimal hyper plane as shown in Figure 6.7 shows a case where two classes can 

be separated using a hyperplane as a decision boundary. In Figure 6.7 (left) three possible 

hyperplanes are shown which can be used to classify the data. Out of all possible separating 

hyperplanes, an optimal separating hyperplane is preferred (Figure 6.7 (right)) since it 

ensures that the distance between the two classes is maximum (which helps prevent 
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overfitting on test data). If the data are not perfectly separable, a soft margin classifier can 

be used instead; the soft margin classifier allows some data points to violate the decision 

boundary (often called cost). This process of finding a hyperplane can be written in the 

form of an optimization problem as shown in Equation 6.8. 

 

 

Figure 6.7: Two classes of data are separated using a decision boundary. In this case the 

decision boundary is a hyperplane of one dimension. (Left) three potential 

hyperplanes are shown which can be used to classify the data; each classifier 

can be used to separate the data; (Right) The optimal separating hyper plane 

which create a maximum margin between the two classes (Efron & Hastie, 

2016) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝛽0𝛽1
∑ [1 − 𝑦𝑖(𝛽0 + 𝑥𝑖𝛽)] + 𝜆|𝛽|2

2
 

𝑛
𝑖=1  (Equation 6.8) 

 

where, 𝛽 are the weights, 𝜆 is a regularization parameter, and  [1 − 𝑦𝑖(𝛽0 + 𝑥𝑖𝛽)] 

is the cost for being on the wrong side of the margin. 𝛽 can be rewritten as an inner product 

of the input features or in other words a kernel or basis function on the input features can 

be used before feeding it to Equation 6.8; this expands the application of these hyperplanes 
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to non-linear data. The hyperplane of a support vector machine can be non-linear 

depending on the kernel used to perform the dot product; popular kernels include linear, 

polynomial, sigmoid and radial kernels.  

6.3.4 Gaussian Mixture Models (GMMs) 

A Gaussian mixture model (GMM) attempts to find a mixture of multi-dimensional 

Gaussian probability distributions that best model any input dataset. GMMs are an 

unsupervised classification technique often used for kernel density estimation. However, 

the can be modified to be used as a supervised learning algorithm for the classification of 

SSI by fitting a GMM for each class. The GMM model can be fit to a set of data using the 

expectation maximization theorem. 

Intuitively the algorithm is similar to K-means clustering: it uses an expectation–

maximization approach which qualitatively does the following: 

1. Choose starting guesses for the location and shape 

2. Repeat until converged: 

1. Expectation-step: for each point, find weights encoding the probability of 

membership in each cluster (or class) 

2. Maximization-step: for each cluster, update its location, normalization, and 

shape based on all data points, making use of the weights 

The algorithm fits the data with a smooth Gaussian model (not a sphere like K-

means). Just as in the k-means expectation–maximization approach (James et al., 2013), 

this algorithm (being greedy) can sometimes miss the globally optimal solution, and thus 

in practice multiple random initializations are used (VanderPlas, 2016). The unsupervised 

learning algorithm can be modified to fit a classification role: test data are assigned to the 

most likely gaussian cluster. 
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For the data analyzed in this paper, the data belong to two classes – low and high 

vibrations – and this GMM model attempts to find the underlying distribution of each class. 

Once the underlying probability distribution of each class has been estimated, new data can 

be automatically classified to one distribution over the other based on the probability that 

they are drawn from either distribution. GMMs have a special property; since they estimate 

the underlying probability distribution of the data as a mixture of gaussians, they are 

generative models. This means that new data – which have not been observed yet – can be 

generated using a GMM model (which is useful for simulation).  

Assume that a total of ‘K’ classes is present in the population of vibrations (in this 

case 2) and a total of ‘N’ training data samples. Each class ‘K’ can be estimated using a 

gaussian distribution with a mean (𝜇𝑘)  and variance (𝜎𝑘
2). The probability that a datum 

from this population (of vibrations) belongs to a given class (low or high) can be 

categorized using a mixture coefficient or the prior (𝜋𝑘
 )  with a constraint –  Σ 

 𝜋𝑘
 = 1 – 

so that the probability distribution is normalized. The probability that a datum belongs to a 

given distribution can be calculated using Equation 6.8.  

 

𝑝(𝑥) =  ∑ 𝜋𝑘
 𝑁(𝑥|𝜇𝑘, Σ𝑘

2)𝐾
𝑘=1 , (Equation 6.8) 

 

where, Σ is the covariance matrix of the two classes. Typically, for classification 

problems data are assumed to come from ‘K’ gaussian distributions (number of gaussians 

= 2 for estimation). This can be improved by assuming that each class comes from a 

mixture of gaussians, expanding the role of this classifier to better estimate highly 

nonlinear dsitributions. Hence each class is fitted with an ‘M’ component mixture of 

gaussian where ‘M’ is chosen using the Bayesian information criterion (BIC). During 
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classification, the normalized likelihood ratio can be used to determine class assignment. 

This method can outperform a vanilla GMM model for nonlinear data. 

6.3.5 Random Forest Classifiers 

The random forest algorithm is an ensemble based machine learning algorithm that 

performs well for low dimensional drilling data (Chiranth Hegde & Gray, 2017). It is made 

up of averaging many decision trees. A decision tree is a nonlinear classification algorithm 

but suffers from high error, large variance and generally overfits the data as discussed in 

Chapter 2. This is solved by averaging many decision trees – built on different bootstrapped 

datasets – to effectively reduce the variance and improve the predictive power of the 

algorithm. Additionally, at each step in the tree building process, a subset of input features 

is arbitrarily chosen; number of features chosen is modeled as a hyperparameter often 

determined using cross-validation. This randomization of feature selection decorrelates the 

input trees which helps improve its accuracy. Classification can be performed by selecting 

the class using the majority voting scheme. Additionally, a probability can be calculated 

by measuring the number of trees which advocate for a particular class. This algorithm can 

be used to measure the importance of each feature vector in classification – a feature 

ranking – which is extremely useful for model inference. Feature importance is calculated 

by measuring the entropy loss due to a split of a given input variable in a decision tree 

(averaged over all trees). 

6.3.6 Ensemble Models 

Ensemble models are meta-algorithms – they combine other algorithms – to form 

one machine learning model. Classification ensemble models use a voting or weighted 

voting scheme for ensembling models. For example, three machine learning algorithms – 
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logistic regression, support vector machines and gaussian mixture models – can be 

ensembled into a single model. The class predicted by the ensemble model will be the 

majority vote among the three machine learning classes used within the ensemble. A 

modified version of this algorithm will incorporate weighted voting, where each individual 

classifier is assigned weights to their votes. For example, if it is believed that the 

distribution is more non-linear, GMMs and SVMs can be given twice the weight of a 

logistic regression within the ensemble. Optimal weights can be calculated using cross-

validation or using the stacking algorithm for the metric of interest. 

6.4 CLASSIFICATION METRICS 

In the case of regression algorithms accuracy can be calculated by looking at the 

𝑙1or 𝑙2 norm. However, classification algorithms have a variety of metrics which need to 

be chosen depending on the problem. These metrics are based on a confusion matrix which 

is defined in terms of type-I and type-II errors. A confusion matrix has been shown in Table 

6.1. When a classification model is used to predict the class of a test datum, there are a total 

of four possibilities (assuming the two classes are true and false) : the classifier predicts 

true and it’s actually true – a true positive; the classifier predicts true and it’s actually false 

– a false positive; the classifier predicts false and it’s actually false – a true negative; the 

classifier predicts false and it’s actually true – a false negative.  

 

Table 6.1: Table describing a confusion matrix for classification models 

Confusion Matrix True Condition 

Predicted Condition True Positive (TP) False Positive (FP) or 

Type I error 

False Negative (FN) 

or Type II error 

True Negative (TN) 
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6.4.1 Classification Accuracy 

Classification accuracy is the simplest metric which can used for classification 

models. It represents the percentage of test data that are classified correctly, i.e. either a 

true positive or a true negative as shown in Equation 6.9. Albeit simple, this metric may 

not always capture all the nuances of classification problems.  

 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃 +𝐹𝑃+𝑇𝑁+𝐹𝑁
 (Equation 6.9) 

 

In the case of a class imbalance – where one class occurs much more often than the other 

class – this metric would fail. Let’s assume that the number of vibration measurements 

which are below the threshold occur 99% of the time, and the number of vibrations 

measurements which are high occur 1 %. If a classifier has an accuracy of 99.2% it does 

not imply that the classifier is any good since a baseline classifier which classifies all data 

as low would result in an accuracy of 99%. Another instance where falls short is when the 

price or cost of misclassifications vary; the price of a classification error for a false positive 

as compared to a false negative may be vastly different. In this case, a false positive refers 

to a situation where vibrations are actually high but are predicted low. If the classifier 

results in too many false positives, it can lead to drilling dysfunction. However, a false 

negative implies that low vibration was classified as high; this does not pose the same 

danger as a false negative, however, represents a missed opportunity. Since accuracy does 

not differentiate between the two types of misclassifications, it can be an ineffective way 

to evaluate classification models. If classes are equally balanced and error type is 
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unimportant, this metric provides an easy way to evaluate different classification 

algorithms. 

6.4.2 F-1 Score 

The F-1 score provides an alternative to evaluate classification algorithms by 

addressing the deficiencies of classification accuracy. The f-1 score is a harmonic sum of 

two metrics called precision and recall. Precision is a measure which calculates the 

proportion of vibrations that were classified true and are actually true (Equation 6.10). 

Recall on the other hand calculates the proportion of vibrations that are actually true when 

predicted true by the algorithm (Equation 6.11). Precision is about being precise, implying 

that all data which are true have been correctly identified. Recall measures the effectiveness 

of capturing all the true (or low vibration) cases correctly; a classifier which labels all data 

as true (or low) will have perfect recall. If the focus of the problem is to minimize false 

negatives, recall should be as close to 1 as possible without precision being too low. If false 

positives are to be minimized then precision is to be maximized. In most cases it is 

preferable to combine precision and recall into a single metric which can be used to 

evaluate classifiers. This can be done using a harmonic mean called the F-1 score (Equation 

6.12) which reaches 1 at its best and 0 at its worst. If either false positives are to be weighted 

higher than the false negatives F-beta score can be used instead (Baeza-Yates & Ribeiro-

Neto, 1999). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑃
 (Equation 6.10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑁
 (Equation 6.11) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (Equation 6.12) 
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6.4.3 Receiver Operator Characteristic (ROC) curve 

Recall is often called the sensitivity of a classifier. Specificity measures the 

proportion of negatives that were predicted correctly (Equation 6.13). Specificity is the 

exact opposite of recall.  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +𝐹𝑃
 (Equation 6.13) 

 

ROC analysis (Fawcett, 2006) plots the true positive rate (or recall) on the Y-axis and the 

false positive rate (or 1 - specificity) is plotted on the X-axis. The overall performance of 

a classifier, summarized over all possible thresholds, is given by the area under the ROC 

curve (AUC). An ideal ROC curve will hug the top left corner, so the larger area under the 

curve implies a better classifier. 

6.5 CLASS IMBALANCE 

In many classification problems, classes are rarely evenly split; one class is 

generally more populous than the other(s). This imbalance can be severe in some cases 

such as outlier detection (99:1). Classification with highly imbalanced classes leads to an 

underestimation of conditional probabilities of the minority class as shown in Figure 6.8. 

A simple strategy is to attempt to rebalance the classes to improve the performance of the 

classifier. Some strategies for rebalancing classes are: 

• Undersampling: all the observations from the minority class are retained. The 

majority classes are sampled without replacement; the number of samples 

corresponds to the size of the minority class. 
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• Upsampling: a new fixed size – one between the sizes of the minority and majority 

classes are chosen. The minority class is sampled with replacement and the majority 

class is sampled without replacement. 

• Negative downsampling: different samples sizes are used in this procedure. All 

observations from the minority class are retained. A different number of 

observations from the majority class are sampled without replacement. 

• Weighting: the cost function can be reweighted to account for the class imbalance. 

In the case of logistic regression, a weighted cross entropy can be used. The weight 

can be determined using cross-validation. 

 

 

Figure 6.8: The effect of fitting a classifier to imbalanced data sets. The minority class 

(right distribution) has been represented by crosses and the majority class 

(left distribution) using blocks. The red curve refers to a fit when classes are 

imbalanced and the dotted curve when the classes are balanced. Vertical 

height represents the probability that an observation belongs to the minority 

class (B. C. Wallace & Dahabreh, 2014). 
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6.6 METHODOLOGY 

In this section, the effect of drilling vibrations on dysfunction, specifically, SSI are 

classified into two classes: low and high. This method can easily be extended to multiple 

classes – low, medium or high. The dataset described in Chapter 2 has been utilized for 

model evaluation and validation. A scatter plot of torque versus WOB (colored by SSI) is 

shown in Figure 6.9. Since the vibration data, in this case, are imbalanced, a procedure to 

balance the classes (described in section 6.5) can be utilized to improve the accuracy of the 

classifier. Classification of lateral and axial vibrations are carried out in the same manner, 

except the classification is performed directly on the accelerometer reading – a metric such 

as SSI is not required. Figures 6.10 and 6.11 show a scatter plot of torque versus WOB 

(colored by axial vibration and lateral vibration respectively).  
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Figure 6.96: Scatter plot of torque vs WOB for 12 formations in the dataset; Data are 

color-coded based on the intensity of SSI (green<1, red>1); Some data are 

easy to classify such as data in Kibbey Limestone where a threshold on 

WOB will suffice. However, in most cases, a non-linear classification 

algorithm is necessary to classify the data. In a few cases, the two classes 

are intermixed which increases the difficulty of classification. 
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Figure 6.10: Scatter plot of torque vs WOB for 12 formations in the dataset; Data are 

color-coded based on the intensity of axial vibration (green<0.75, red>0.75); 

Most data in this dataset are in the safe threshold for axial vibrations. In 

some cases like Lodgepole limestone, a nonlinear classifier may be 

necessary for separating the two classes. 
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Figure 6.11: Scatter plot of torque vs WOB for 12 formations in the dataset; Data are 

color-coded based on the intensity of lateral vibration (green<1, red>1); 

Most data in this dataset are in the safe threshold for axial vibrations. In 

some cases, like Lodgepole limestone, a nonlinear classifier may be 

necessary for separating the two classes. 

6.6.1 Model 

A classification algorithm is used to classify the SSI of torsional vibrations (or 

accelerometer readings of axial and lateral vibrations). A binary case has been evaluated 

in this paper where a pre-determined threshold is used to separate the data. The threshold 

used in this paper is 1; if the SSI is greater than 1 the data are classified as high (red in 

Figure 6.9) and if it is less than 1, the data are classified as low (green in Figure 6.9). The 
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classification model is built using several classification algorithms which are evaluated for 

their efficacy. The classification models are built using drilling operations parameters as 

input data – WOB, flowrate, RPM, ROP, and torque-on-bit (TOB). The actual partition 

between the two classes can be simple (limiting WOB in the case of Kibbey Lime limestone 

separates the two classes) or it can be complicated (Tyler sandstone would require a non-

linear decision boundary). Estimates for ROP and TOB – using a deterministic (Soares et 

al., 2016) or machine learning model (Chiranth Hegde et al., 2015) – can be used in place 

of actual measurements for classification. Once a model is built, the model can be used to 

predict the class of the SSI for a new set of input parameters for the test data. The use of a 

classification model inside a ROP optimization model can lead to a safe increase of ROP 

without excessive vibrations as shown in Figure 6.9. 

The exact same process that is carried out for classification of SSI is used to classify 

axial and lateral vibrations. All three vibration classification methods can be used together 

to ensure that drilling dysfunction due to vibrations is avoided during drilling.  

 

6.6.2 Experiments 

Simulation-based experiments are conducted to evaluate and compare different 

classification algorithms. Models are built individually on each formation. The vibration 

data collected in a given formation are divided into training and test sets; classification 

algorithms are fine-tuned using cross-validation. The test metric is calculated by evaluation 

of each algorithm on the held-out test set. The data were not severely imbalanced in this 

dataset. However, this is imbalance is dependent on the threshold used for class 

assignment, using a higher or lower threshold could lead to a major class imbalance in 

which case techniques discussed in Section 6.5 can be employed. Correcting class 
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imbalance helped improve classification metrics such as F-1 score and AUC for data which 

were imbalanced towards higher SSI (fewer data points for low SSI).  

Fine tuning models involve feature selection (which input features are to be retained 

for classification) and hyperparameter selection. For logistic regression, a simple 

hypothesis test on the coefficient of an input feature can be used for feature selection 

similar to linear regression. Only input features with a p-value lower than the critical p-

value (0.05) are retained in the model. There are no hyperparameters for logistic regression. 

PCA logistic regression follows the same protocol as logistic regression, except the input 

features, are rescaled (based on their principal components). The priors for LDA are chosen 

based on training set ratios and dimensions are set based on a number of classes (in this 

case 2). QDA incorporates a full covariance matrix for both classes. GMMs are built 

assuming the data is drawn from a Gaussian of two mixtures since it is binary classification. 

The random forest algorithm utilized 500 bootstrapped samples, a leaf size of 5, and a 

random feature subset of 3. The ensemble model combined the results of logistic 

regression, LDA, QDA, random forests, and GMMs using weighted voting (weights 

determined using cross-validation).  
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Figure 6.12: Flowchart describes the ROP drilling optimization process. The first step is 

to acquire drilling data by drilling one or more stands into a formation. ROP 

models are then built on training data. ROP is optimized by manipulating 

input parameters (Chiranth Hegde & Gray, 2017). These ‘optimal’ 

parameters are tested with the Vibration model to ascertain that SSI is below 

a threshold. The “accepted” optimized drilling control parameters are 

implemented for drilling the next joint/stand thereby optimizing ROP.  

6.6.3 Practical Application and Scalability 

One major use of this vibration classification algorithm is within a drilling 

optimization model as explained in Figure 6.12. This model allows for flexibility and the 

vibration model can be used as an “add-on” feature to any ROP or MSE optimization 

model. The optimal parameters predicted using the drilling optimization model is fed into 

the classification model for approval. The classification model checks if the vibrations are 

acceptable (by classifying and affirming that they belong to the “low” class) ensuring that 

the recommended parameters do not result in excessive SSI which may cause drilling 
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dysfunction. From an optimization perspective, this classification model places additional 

constraints on the optimization space. Previously, optimization spaces were constrained 

using operational limits or practical limits; this model imposes an additional constraint 

which includes the effect of drilling vibrations. This feature is incorporated into the drilling 

optimization workflow to develop an end-to-end drilling optimization model in Chapter 7.  

 

6.7 RESULTS AND DISCUSSIONS: TORSIONAL VIBRATIONS 

Models were trained and finetuned using cross-validation. Evaluation metrics have 

been calculated and plotted using a boxplot as shown in Figure 6.13. The AUC score for 

different classifiers indicates that random forests outperformed other algorithms. However, 

most algorithms evaluated in this paper except for GMMs performed reasonably well. 

Logistic regression with the addition of nonlinear features (such as WOB2 or WOB0.5) 

yielded lower AUC scores as compared to standard logistic regression. Classifiers from 

two formations have extremely low F-1 scores; these are classifiers belong to the Ratcliffe 

sandstone and Mission Canyon limestone formations. Models for these formations can be 

improved using feature engineering or class balancing and are further analyzed in section 

6.7.1. Rather than choosing an overall best model, selecting the best model for each 

formation often yields better results (further discussed in section 6.7.2). This will also 

guard against deficient models (for specific formations). Table 6.2 shows the best model 

for each formation by classification metric. Fine tuning models involves input feature 

selection (which input features are to be retained for classification) and hyper parameter 

selection. For logistic regression, a simple hypothesis test on the coefficient of an input 

feature can be used for feature selection similar to linear regression. Only input features 

with a p-value lower than the critical p-value (0.05) are retained in the model. There are no 
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hyper parameters for logistic regression. PCA logistic regression follows the same protocol 

as logistic regression, except the input features are rescaled (based on their principal 

components). The priors for LDA are chosen based on training set ratios and dimensions 

are set based on number of classes (in this case 2). QDA incorporates a full covariance 

matrix for both classes. GMMs are built assuming the data is drawn from a gaussian of two 

mixtures since it is binary classification. The random forest algorithm utilized 1000 

bootstrapped samples (1000 trees), a minimum leaf sample size of 5, and a random feature 

subset of 3. The ensemble model combined the results of logistic regression, LDA, QDA, 

random forests, and GMMs using weighted voting (weights determined using cross 

validation).  

 

 

 

Figure 6.13: Model evaluation for SSI classification on the test dataset 
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Table 6.2: Tabulation of the best model by metric for each formation for SSI 

classification 

Formation Best AUC AUC Score 
Value 

Best F1 F1 Score Best Classification 
Accuracy 

Accuracy 
Value Piper Limestone QDA 0.69 LDA 0.83 LDA 0.73 

Spearfish Sandstone Logistic 
Regression 

0.74 Random 
Forests 

0.93 Random Forests 0.86 

Tyler Sandstone QDA 0.78 LDA 0.90 LDA 0.81 

Kibbey Lime Limestone LDA 0.97 LDA 0.83 LDA 0.91 

Kibbey Lime Shale Ensemble 0.78 LDA 0.77 Ensemble 0.73 

Charles Sandstone PCA Logistic 
Regression 

0.85 Random 
Forests 

0.77 Random Forests 0.79 

Charles Limestone QDA 0.89 QDA 0.80 QDA 0.81 

Ratcliffe Sandstone QDA 0.82 PCA 
Logistic 

Regression 

0.62 QDA 0.72 

Base Last Salt Limestone Random 
Forests 

0.92 QDA 0.86 QDA 0.81 

Base Last Salt Sandstone QDA 0.85 QDA 0.88 QDA 0.83 

Mission Canyon Limestone Random 
Forests 

0.80 Random 
Forests 

0.68 Random Forests 0.74 

Lodgepole Limestone Ensemble 0.78 QDA 0.89 QDA 0.83 

6.7.1 Analysis of Poor Classifiers 

Figure 6.13 summarizes the performance of different classifiers. For the purposes 

of the application described in this dissertation, it is more important to use AUC and F-1 

score as evaluation metrics as opposed to classification accuracy. All algorithms evaluated 

for the classification of SSI consistently performed poorly on two formations: Ratcliffe 

sandstone and Mission Canyon limestone. The data from these formations were not 

remarkably different as compared to other formations. Ratcliffe is a thin formation; 

however, Mission Canyon limestone is the formation with the most number of data points; 

hence the performance of the classifiers cannot be attributed to lack of data.  

On further inspection of the logistic regression model, the deficiencies of the model 

are apparent. The input features used to create these models had low p-values: they are not 

statistically significant input features for the model (Table 6.3). Hypothesis testing is used 

to determine whether an input feature is relevant. A p-value – as determined in hypothesis 

testing – is the probability of obtaining as extreme a value given the null hypothesis is true. 

A critical p-value – a value above which the null hypothesis is rejected is taken to be 0.05. 
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If a p-value is above 0.05 it is not considered to be relevant to the output since the null 

hypothesis is not rejected (or fails to be rejected). In the case of Ratcliffe and Mission 

Canyon formations, the p-values for all input features are above critical p-value of 0.05; 

hence the SSI in these formations are unrelated to the input data. On the contrary, a 

successful model’s p-values have been shown in Table 6.3 for Base Last Salt limestone. 

The obvious step would be to collect relevant data or modify the features so that they are 

relevant to SSI. The addition of nonlinear features in no way improves the model. However, 

when the features are modified using principal component analysis they appear to be 

significant. For the Ratcliffe sandstone formation, the first two (principal) components 

have significant p-values of 0.016 and 0.024 for a logistic regression model. Similarly, in 

the Mission Canyon limestone formation, the first two components have significant p-

values of 0.009 and 0.03 for a logistic regression model. In this case, with the use of feature 

engineering, it was possible to improve the F-1 score and AUC of the classifier. While this 

analysis is possible for logistic regression due to its linearity, it is not possible to carry out 

a similar analysis for other classifiers. An equivalent analysis is to compute the proportion 

of variance explained by each feature for more complex classifiers. 

Table 6.3: Hypothesis tests for logistic regression models for SSI classification 

Input 
Feature 

Ratcliffe Sandstone 
(p-value) 

Mission Canyon 
Limestone (p-value) 

Base Last Salt 
Limestone (p-value) 

ROP 0.79 0.637 0.486 

WOB 0.356 0.447 0.001 

RPM 0.265 0.688 0.046 

Torque 0.244 0.913 0.035 

Flow rate 0.161 0.069 0.001 
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6.7.2 Balancing Classes 

Class imbalances can lead to poor classification models. For the case analyzed in 

this dissertation, the class imbalance depends on the threshold used to split SSI into 

different classes. A class imbalance ratio: number of data points in the low SSI versus high 

SSI classes have been tabulated in Table 6.4. The upsampling algorithm was used to 

balance out the two classes. Accuracy, AUC, and F-1 score for formations with a class 

imbalance ratio of less than 1 drastically increased after using upsampling to balance 

classes. Results of the best models have been plotted in Figure 6.14.  

 

Table 6.4: Class imbalance ratio for difference thresholds of SSI for data over all formations 

 SSI 

Formation 0.5 0.75 1 1.5 2 3 

Piper Limestone 0.30 0.93 2.64 17.15 46.20 117.00 

Spearfish Sandstone 0.78 2.95 6.46 13.13 17.83 36.67 

Tyler Sandstone 0.57 1.36 4.65 30.25 78.45 874.00 

Kibbey Lime Limestone 0.11 0.22 0.44 1.43 1.80 3.15 

Kibbey Lime Shale 0.07 0.20 1.33 11.86 14.65 26.69 

Charles Sandstone 0.17 0.39 0.83 2.97 4.15 6.78 

Charles Limestone 0.18 0.41 0.74 1.68 2.10 3.52 

Ratcliffe Sandstone 0.11 0.16 0.51 1.55 1.81 3.50 

Base Last Salt Limestone 0.40 1.19 2.55 3.68 4.15 7.58 

Base Last Salt Sandstone 0.65 1.53 2.20 6.23 7.49 14.73 

Mission Canyon Limestone 0.18 0.36 0.63 6.85 7.60 16.29 

Lodgepole Limestone 0.36 1.19 3.31 12.07 20.21 64.55 
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Table 6.5: Tabulation of the best model by metric for each formation after correcting for 

class imbalance 

Formation AUC Model AUC F1 Score Model F-1 Accuracy Model Accuracy (%) 

Piper Limestone Logistic 

Regression 
0.83 Logistic Regression 0.83 Logistic 

Regression 
0.83 

Spearfish Sandstone Random Forests 0.92 Random Forests 0.92 Random Forests 0.93 

Tyler Sandstone LDA 0.91 LDA 0.91 Random Forests 0.91 

Kibbey Lime Limestone Logistic 

Regression 
0.91 Logistic Regression 0.91 Random Forests 0.96 

Kibbey Lime Shale Logistic 

Regression 
0.81 Logistic Regression 0.81 Random Forests 0.83 

Charles Sandstone Random Forests 0.82 Random Forests 0.82 QDA 0.82 

Charles Limestone Random Forests 0.87 Random Forests 0.87 Random Forests 0.89 

Ratcliffe Sandstone Random Forests 0.93 Random Forests 0.93 QDA 0.88 

Base Last Salt Limestone LDA 0.90 LDA 0.90 LDA 0.86 

Base Last Salt Sandstone Random Forests 0.92 Random Forests 0.92 Random Forests 0.88 

Mission Canyon Limestone Random Forests 0.85 Random Forests 0.85 Random Forests 0.85 

Lodgepole Limestone QDA 0.89 QDA 0.89 QDA 0.89 

 

 

 

 

Figure 6.14: Model evaluation metrics on test dataset for SSI classification after class 

imbalance correction. 

As seen from Figure 6.14 and Table 6.5 using upsampling results in an 

improvement of the F-1 score and AUC; the increase is generally higher for formations 

which have a class imbalance ratio less than 1. Upsampling also helps increase classifier 

accuracy for Ratcliffe and Mission Canyon formations which previously had very low F-1 

scores. The increase in metric is related to the false positive count. Based on the analysis 
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of confusion matrices for the balanced classes, the increase in F-1 score is related (in this 

case) to an increase or decrease in the precision of each classifier. When the class imbalance 

ratio is less than 1, the number of data points in the “low” class are rarer. Classifiers trained 

on these data are prone to high false positive error rates since false positives are the test 

data which are “low” but incorrectly classified as “high”. After classes are balanced, the 

equality of the dataset prevents misclassifications to some extent which results in an 

increased precision. In particular, class balancing helps classification for this dataset since 

the classifiers developed were prone to false positives. Conversely, this does not occur in 

cases where the class imbalance ratio is high. On the other hand, small increases in some 

algorithms may be noticed in some cases with high-class imbalance. This is due to the 

increase in the number of true positives which affects the precision. 

6.7.3 Bag of Models Approach 

As opposed to defining a single best classification model for all formations, it is 

better to use the best classifier for a given formation. Using F-1 score as an evaluation 

metric, the model with the highest F-1 score for a given formation – based on cross-

validation error – can be used to classify SSI for that formation. Adopting this method will 

result in a formation dependent classifier as shown in Table 6.2 and Table 6.5; this is the 

bag-of-models approach, where the best classifier among many is used for a specific 

formation based on some evaluation criteria. This method follows the no free lunch 

theorem in statistics. 

An analysis of this approach has been shown in Figure 6.15; test error of four 

approaches have been plotted. The first approach is to use logistic regression for all 

formations, the second is to use linear discriminant analysis for all formations, the third is 

to use random forests for all formations, and the last is to use the bag-of-models approach. 
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While this approach does not improve the evaluation metric by a large amount for AUC, it 

makes a difference to the F-1 score for certain formations.  

 

Figure 6.15: Analysis of performance of four approaches for classification of vibrations; 

(Left) Analysis of four classification approach on AUC score. There is 

almost no difference between the random forests and bag-of-models 

approach; (Right) Analysis of four classification approaches on F-1 score 

showing an improvement when using bag-of-models approach. 

6.7.4 Inference 

The classification models developed can also be used to create input variable 

importance charts. These charts are useful in gaining inferential intuition about SSI during 

drilling. For logistic regression, a pseudo R2 (Equation 6.14) value can be used to assign 

variable importance to input features. 

 

𝑝𝑠𝑒𝑢𝑑𝑜 𝑅2 = 1 −
log (𝐿𝑐)

log(𝐿𝑛𝑢𝑙𝑙)
, (Equation 6.14) 

 

where, 𝐿𝑐 denotes the (maximum) likelihood value from the current fitted model, 

and 𝐿𝑛𝑢𝑙𝑙 denotes the corresponding value for the null model – the model with only an 
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intercept. This method does not provide the direction of impact – if the influence towards 

the positive or negative class. The sign of the input feature’s coefficient in the logistic 

regression can be used to determine the direction of influence. A positive sign indicates 

influence towards the positive class and vice-versa. The random forest classifier has a 

similar feature importance calculator which uses information gained to assign importance 

to features (Figure 6.16). This concept can be extended to other classification algorithms 

such as SVMs (Guyon & Elisseeff, 2003).  

 

 

Figure 6.16: Feature importance of a random forest SSI classifier for Lodgepole 

limestone 

6.8 RESULTS AND DISCUSSIONS: AXIAL VIBRATIONS 

Classification of axial vibrations is performed with a threshold of 0.75 since axial 

vibrations were not a problem in this dataset, all accelerometer values recorded were below 

the threshold of 1 (Figure 6.17). However, for the sake of completeness, the threshold is 

lowered to 0.75 to demonstrate classification of axial vibrations. Models were trained and 

finetuned using cross-validation. Evaluation metrics have been calculated and plotted using 

a boxplot as shown in Figure 6.18. A correction for class imbalance (similar to analysis in 

section 6.7.2) has been applied to the classifier shown in Figure 6.18. 
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Figure 6.17: Plot of axial vibrations in the dataset; All measurements of axial vibrations 

were less than 1, hence to demonstrate classification a threshold of 0.75 is 

utilized. 

 

Figure 6.18: Axial vibration model evaluation metrics on test dataset after class 

imbalance correction. 

The AUC score for different classifiers indicates that logistic regression, LDA, and 

random forests performed really well. This performance holds in cases of other metrics 

such as F-1 score and classification accuracy as well. Table 6.6 shows the best model for 

each formation by metric. Only formations where vibrations above the threshold (of 0.75) 

was observed have been modeled with a classifier. Only four formations in this dataset had 

axial vibrations above the threshold. Inspection of Figure 6.18 and Table 6.6 reveal that 

classifiers are extremely efficient at classifying axial vibrations. The bag-of-models 

approach can be used to select the best model for each formation. Model hyper parameters 
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were chosen using cross validation. Only input features with a p-value lower than the 

critical p-value (0.05) are retained in the model. The priors for LDA are chosen based on 

training set ratios and dimensions are set based on number of classes (in this case 2). QDA 

incorporates a full covariance matrix for both classes. GMMs are built assuming the data 

is drawn from a gaussian of two mixtures since it is binary classification. The random forest 

algorithm utilized 1000 bootstrapped samples (1000 trees), a minimum leaf sample size of 

4, and a random feature subset of 2. The ensemble model combined the results of logistic 

regression, LDA, QDA, random forests, and GMMs using weighted voting (weights 

determined using cross validation). 

 

 

 

 

 

 

Table 6.6: Tabulation of the best axial vibration classification model by metric for each 

formation after correcting for class imbalance. Only formations with axial 

vibrations over the threshold have been classified. 

 Best 

Model 
AUC 

Best 

Model 
F-1 Score 

Best 

Model 
CA 

0 
Random  

 

Forests 

0.98 
Random  

Forests 
0.985714 

Random  

Forests 
0.99 

1 
Logistic  

 

 

Regression 

0.89 
Random  

Forests 
0.892857 

Logistic  

Regression 
0.89 

2 Ensemble 0.91 Ensemble 0.906863 LDA 0.91 

3 
Logistic  

 

 

Regression 

0.88 
Logistic  

Regression 
0.881443 

Logistic  

Regression 
0.88 
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6.9 RESULTS AND DISCUSSIONS: LATERAL VIBRATIONS 

Classification of lateral vibrations is performed with a threshold of 1 similar to an 

analysis performed using SSI classification. Models were trained and finetuned using 

cross-validation. Evaluation metrics have been calculated and plotted using a boxplot as 

shown in Figure 6.19. A correction for class imbalance (similar to the analysis performed 

in section 6.7.2) has been applied to the classifier shown in Figure 6.19.  

 

-

 

Figure 6.19: Lateral vibration model evaluation metrics on test dataset after class 

imbalance correction. 

The AUC score for different classifiers indicates that the random forests classifier 

outperformed all others. This performance holds in cases of other metrics such as F-1 score 

and classification accuracy as well. Table 6.7 shows the best model for each formation by 

metric. Only formations where vibrations above the threshold (1) were observed has been 

modeled with a classifier. Only ten formations in this dataset had lateral vibrations above 

the threshold. Inspection of Figure 6.19 and Table 6.7 reveal that classifiers are extremely 

efficient at classifying lateral vibrations. The bag-of-models approach can be used to select 

the best model for each formation. Model hyper parameters were chosen using cross 

validation. The random forest algorithm utilized 1000 bootstrapped samples (1000 trees), 
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a minimum leaf sample size of 5, and a random feature subset of 2. The hyper parameters 

used to build other models remained consistent with the axial vibration model. 

 

 

 

Table 6.7: Tabulation of the best lateral vibration classification model by metric for each 

formation after correcting for class imbalance. Only formations with lateral 

vibrations over the threshold have been classified. 

Formation Best Model AUC 

Best 

Model 

F-1 

Score Best Model CA 

Piper Limestone 

Random 

Forests 0.81 LDA 0.78 

Random 

Forests 0.82 

Spearfish Sandstone 

Logistic  

Regression 0.94 

Random 

Forests 0.95 

Logistic  

Regression 0.94 

Tyler Sandstone QDA 0.77 

Random 

Forests 0.78 

Random 

Forests 0.76 

Kibbey Lime 

Limestone 

Random 

Forests 0.97 

Random 

Forests 0.90 

Random 

Forests 0.97 

Kibbey Lime Shale 

Random 

Forests 0.99 

Random 

Forests 0.99 

Random 

Forests 0.99 

Charles Sandstone 

Random 

Forests 0.97 

Random 

Forests 0.93 

Random 

Forests 0.97 

Charles Limestone 

Random 

Forests 0.98 

Random 

Forests 0.99 

Random 

Forests 1.00 

Base Last Salt 

Limestone 

Random 

Forests 0.94 

Random 

Forests 0.95 

Random 

Forests 0.87 

Base Last Salt 

Sandstone QDA 1.00 QDA 1.00 QDA 1.00 

Mission 

CanyonLimestone 

Random 

Forests 0.99 

Random 

Forests 0.99 

Random 

Forests 0.99 
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6.10 CONCLUSIONS 

Vibrations are the main inhibitor of ROP improvement in drilling, hence, a method 

to predict and control vibrations is crucial to maintaining efficient drilling operations. This 

paper introduced a novel method to classify a vibration-based metrics – stick-slip index 

(SSI), axial and lateral vibrations – using drilling operational parameters. These 

classification techniques use machine learning algorithms to classify the severity of 

vibration metrics. This model can be used in conjunction with a ROP optimization model 

to control drilling vibrations while improving ROP. 

Different classification algorithms were evaluated for the classification of SSI. 

Based on the problem setup, classification accuracy is not the best metric to evaluate 

classifiers. AUC and F-1 scores were introduced to select the best classification algorithms. 

Overall the random forest algorithm outperformed other evaluated algorithms for 

classification of SSI when evaluated with the AUC and F-1 score. All classifiers had low 

F-1 scores for two formations: Ratcliffe and Mission Canyon. Classes were balanced by 

upsampling the minority class to help improve the performance of the classifiers. 

Upsampling also resulted in drastic improvements of random forests classifier for 

formations with a class imbalance ratio less than 1. It was concluded that a bag-of-models 

(one where the best classifier for that formation is used) approach always led to the best 

AUC and F-1 score. The random forest algorithm was used to create input feature 

importance ranking: adding valuable inferential capability to the model. 

Classifiers for axial and lateral vibrations performed well resulting in high values 

of AUC score, F1-score, and classification accuracy. Classifiers were only built for 

formations in which vibrations exceeded the threshold. These classifiers can be easily 

incorporated into a ROP optimization workflow in addition to the SSI classifier. 
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Chapter 7:  End-to-end Drilling Optimization 

This chapter links all previous chapters to introduce a method to fully optimize 

drilling. Both machine learning and empirical models are analyzed and a workflow for end-

to-end drilling optimization has been presented. 

7.1 INTRODUCTION  

Research in drilling optimization has always focused on modeling and optimizing 

ROP. Recognizing the limitation of industry standard drilling optimization tools, 

ExxonMobil developed a physics based drilling optimization model (Chang et al., 2014) 

called the drilling advisory system (DAS). The DAS is the first model of its kind that 

optimizes ROP while limiting drilling vibrations. Vibrations are more commonly modeled 

during the planning stage and are seldom considered during drilling operations. If the well 

does incur excessive vibrations, drilling is paused and resumed when vibrations subside. 

Other field-based rules such as the change of RPM and WOB to “break-out” of vibrations 

are commonly practiced. The key engineering contribution of the DAS is the incorporation 

of the effect of vibrations (D. Ertas, Bailey, Wang, Pastusek, et al., 2013; Gregory S. 

Payette et al., 2015) into the ROP optimization model. Much of its success in field related 

ROP improvements can be attributed to controlling drilling vibrations. Vibrations are 

modeled and controlled using a physics-based vibrations model; the model arrives at an 

analytical solution for torsional severity estimate using the transfer matrices method (D. 

Ertas et al., 2014). The DAS is a mixture of physics-based models and response surface 

modeling; the different elements of the DAS are combined using a modified objective 

function. The ROP model, MSE calculator, and vibrations model are independent and do 

not interact with each other – making this an uncoupled model. Since different drilling 

metrics interact with each other the DAS combines them in a modified objective function 
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(Gregory S. Payette et al., 2015). Rather than just optimize the ROP, the modified objective 

function seeks to maximize ROP while not increasing the MSE and controlling the intensity 

of drilling vibrations. This method may potentially ignore more complicated dependencies 

since it does not couple drilling metrics. Additionally, it is assumed that the modified 

objective can adequately represent downhole interaction. 

This chapter links all earlier chapters to introduce two novel end-to-end drilling 

optimization workflows (or models). The first model – TVOPT – is similar in function to 

the DAS, where traditional ROP models can be used to optimize ROP while controlling 

for drilling vibrations and MSE. The second model – CMOPT – couples torque, ROP, and 

drilling vibrations using machine learning to optimize drilling – a novel technology which 

further builds on technologies such as ExxonMobil’s DAS and TVOPT.  

7.2 DRILLING OPTIMIZATION WORKFLOW 

7.2.1 TVOPT 

 The TVOPT model optimizes ROP while controlling vibrations and MSE. The 

ROP is modeled using traditional models or equation-based methods as discussed in 

Chapter 2. Drilling vibrations are modeled using classification algorithms used in Chapter 

5. If drilling vibrations are instead modeled using ExxonMobil’s physics-based algorithm, 

this model would essentially converge to the DAS. However, capturing vibrational 

intensity using classification algorithms has been shown to be extremely effective and has 

the capability to improve with additional training data (Chapter 6). A maximum MSE 

threshold can be set to ensure that adequate use of energy for drilling; this also controls the 

torque (Equation 5.1) since the MSE is directly proportional to torque. Setting a limit on 

surface torque is common practice in drilling operations, hence the field-based threshold 

on surface torque can be converted to an MSE threshold. The ROP models can be optimized 
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using gradient ascent as shown in Chapter 4 (Section 4.4.2). A constraint is placed on the 

sample space used for gradient ascent a vibration classification models discussed in 

Chapter 6. This constraint can be used to limit vibrations in the form of axial, lateral or 

torsional vibrations. The process has been mapped using the flowchart shown in Figure 

6.1. The ROP model presented in this workflow can be swapped out for any other ROP 

predictor. The method used to calculate the effect of vibrations in the DAS (D. Ertas et al., 

2014) requires rigorous calculation and several manufacturer related parameters. The use 

of a classification algorithm for vibrations classification can be readily implemented into a 

WITSML stream of data without any delay. It can be implemented on any rig, by a 

company man, operator, or consultant. It can also be applied post-drilling to analyze 

deficiencies to improve future drilling wells. Additionally, since it’s based on machine 

learning, with additional data it has the ability to improve in accuracy. Sadly, a comparison 

of the vibrational model used in the DAS to the classification algorithm is not possible for 

the dataset used in this dissertation since it is missing certain field related constants. 
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Figure 7.1: Flowchart describing the TVOPT process; ROP is modeled as a function of 

drilling control parameters using the best traditional model; The model 

optimization space is restricted by using a classification algorithm to limit 

axial, lateral and torsional vibrations to a pre-defined threshold; Further 

restrict the optimization space using an MSE threshold; Determine optimal 

parameters using gradient ascent; The output control parameters can be 

implemented ahead of the bit. 

7.2.2 CMOPT 

The CMOPT model optimizes ROP, MSE or a user defined metric using a coupled 

drilling model while controlling vibrations. The ROP and TOB are jointly modeled using 

data-driven models which induce coupling between them (as discussed in Chapter 2). 

Drilling vibrations are modeled using classification algorithms (Chapter 6) using the 

coupled ROP and TOB models. Limits for the optimization space are set using field-related 

constraints and the vibrations classification model. The ability to model ROP, TOB, and 

drilling vibrations together using the same inputs features – thereby coupling them –  is its 

key differentiating factor. A change in WOB can be used to simulate changes in ROP, TOB 

and drilling vibrations – which is not possible using ExxonMobil’s DAS or TVOPT. 

Hence, this model does not require a complicated objective function which was necessary 

for DAS and TVOPT; the use of a modified objective function made it possible to 
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incorporate the effects of vibrations and MSE on ROP optimization for the aforementioned 

models.  

If ROP is optimized, PSO can be used to find optimal parameters implemented 

ahead of the bit; Bayesian optimization can be used for optimizing MSE. A constraint is 

placed on the optimization space using a vibration classification model. This constraint can 

be used to limit vibrations in the form of axial, lateral or torsion. The workflow of the 

CMOPT model has been visualized using a flowchart (Figure 7.2). The machine learning 

algorithms used for training each drilling metric can be replaced with other algorithms, 

however, to couple the model, its integral that the entire system be based on machine 

learning. This model can be easily implemented on any rig, by a company man, operator, 

or consultant using an input data stream (cloud-based or otherwise). It can also be applied 

post-drilling to analyze deficiencies to improve future drilling wells. Additionally, since 

it’s based on machine learning, the model accuracy can improve as more data are collected.  

The model can be updated at a prespecified frequency. Assuming this frequency 

was set at one stand; upon drilling 90 ft, all models are retrained. The newly retrained 

models are optimized, and a new set of drilling control parameters are calculated. This new 

set of drilling control parameters can be implemented ahead of the bit. Since all models are 

data-driven, continuous retraining allows these models to update and improve accuracy 

over time since model accuracy increases as more data are collected (Chiranth Hegde, 

Daigle, Millwater, & Gray, 2017). The update period can also be defined based on a metric 

or drilling model. For example, models can be updated if the measured vibrations are too 

high or if MSE increases abruptly. 
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Figure 7.2: Flowchart describing the CMTOP modeling process; ROP and TOB are 

modeled together as a function of drilling control parameters using the best 

data-driven algorithm; The model optimization space is restricted by using a 

classification algorithm to limit axial, lateral and torsional vibrations to a 

pre-defined threshold (can alternatively be used as a constraint in the 

implementation of the optimization algorithm); Determine optimal 

parameters using PSO or Bayesian optimization; The output control 

parameters can be implemented ahead of the bit; The model is retrained 

periodically. 

7.3 RESULTS AND DISCUSSIONS: TVOPT 

The end-to-end drilling optimization model was implemented according to the 

template shown in Figure 7.1. Each formation was split into two parts – a training and test 

set using a 50/50 split. The initial 50% of the data collected in the formation is used as 

training data to train drilling models for ROP and drilling vibrations (SSI only). A threshold 

for MSE can be selected either using field-based intuition. The Hareland ROP model was 

utilized for ROP prediction since this model yielded the best accuracy for the dataset being 

analyzed (Chapter 2). The drilling vibrations are modeled using the classification model; 

regions of the sample space can be marked based on their vibration classification: low or 

high. The optimization model is constrained to the allowable (or green) regions of the 
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sample space (Figure 7.5). This will ensure that the optimal control parameters as returned 

by the optimization algorithm will not induce vibrations (which can offset the positive 

effect of ROP improvement). The gradient ascent algorithm was used to find optimal 

parameters in the constrained region. An alternative approach to the optimization problem 

is to set the classification model as an equality constraint. The qualifying optimal control 

parameters are implemented ahead of the bit – on the test set (remaining 50% of data). The 

modified response curves can be compared to evaluate the change in ROP. This process 

has been carried out for all formations; results are summarized in the form of a box plot 

(Figure 7.3). Results show that an increase of 10ft/hr on average has been observed while 

drilling the well with the use of this model. While a deterministic model does not provide 

confidence intervals for a given formation, the 95% confidence interval around the mean 

for all data is shown in Figure 7.3. It is calculated using the data points observed for ROP 

prediction for all formations around the mean using a bootstrapping approach described in 

Chapter 5. A line plot has been used (Figure 7.4) to gain additional insight into the ROP 

change in each formation. Formation 3 (Tyler sandstone) shows a decrease in ROP despite 

attempting to optimize ROP. This can be explained by the ROP model whose predictions 

are an underestimation for Tyler sandstone. The optimal parameters improve the ROP with 

respect to the ROP model. Since the ROP model was itself an underestimation, the 

improved ROP is also lower than the ROP measured (Figure 7.5). Figure 7.6 shows the 

optimization space based on the SSI classification model (green for allowable vibrations 

and red otherwise) for each formation analyzed in this chapter.  
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Figure 7.3: Results of ROP optimization using the TVOPT model. Regions marked in red 

on the plot cover the 95% confidence interval for the mean of the 

corresponding boxplot.  

 

Figure 7.4: Results of ROP optimization shown as a line plot for the TVOPT model 
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Figure 7.5: (left) ROP prediction in Tyler Sandstone – an underestimation; (Right) 

Optimized, predicted and measured ROP in the test dataset for Tyler 

Sandstone; The optimized ROP is higher than the predicted ROP, however, 

since the predicted ROP is an underestimation of the measured ROP, the 

optimized ROP is lower than the measured ROP. 
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Figure 7.6: Optimization space colored using the SSI as predicted by the SSI 

classification model. Regions colored in red indicate high SSI (>1) and 

green otherwise. The optimal parameters of traditional ROP models are 

typically found in the upper right corner of a scatter plot, given the nature of 

the empirical ROP equations. In certain formations, these regions can induce 

high torsional vibrations during drilling; Modeling the SSI beforehand can 

prevent this situation as illustrated. The cyan star represents the optimal 

parameters as determined without the use of an SSI model 

7.4 TVOPT CASE STUDY: CHARLES LIMESTONE 

A case study is illustrated to show the application of the proposed drilling 

optimization model. It is assumed that the formation is drilled one stand at a time. The 90 

ft of data was used as the training set. The rest of the formation was used as the test set for 
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model evaluation. ROP models are built using the Motahhari ROP model using WOB, 

RPM, and UCS as input parameters. The cross-validation error for this model is less than 

15%; hence, the models are declared to be efficient. The test set accuracy and ROP 

improvement due to optimization have been plotted in Figure 7.7. The SSI classification 

model was built using the random forests classifier algorithm since it resulted in the lowest 

validation set error; the test set accuracy was 84% (with an F-1 score of 0.79 and area under 

curve (AUC) score of 0.879). Models were optimized using the gradient ascent algorithm; 

the optimization space has been shown in Figure 7.8. 

 

 

Figure 7.7: (Left) ROP prediction in the test set using the Motahhari ROP model for this 

formation; (Right) ROP improvement using optimal control parameters in 

the test set; 
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Figure 7.8: (Left) Optimization space as modeled by SSI classifier; (Right) ROP contours 

as modeled by Motahhari’s ROP model. 

7.5 RESULTS AND DISCUSSIONS: CMOPT 

The end-to-end drilling optimization model was implemented according to the 

template shown in Figure 7.2. Each formation was split into two parts – a training and test 

set using a 50/50 split. The initial 50% of the data collected in the formation is used as 

training data to train drilling models for ROP, TOB, SSI, and MSE. A metric is chosen for 

optimization – ROP or MSE. These models are used to optimize the objective function 

(ROP or MSE) using the PSO algorithm. The algorithm is implemented with inequality 

constraints using the SSI classification model; the output of the algorithm – the optimal 

control parameters – must lie in the acceptable region defined by the SSI model. These 

optimal control parameters are implemented ahead of the bit – on the test set (remaining 

50% of data). The modified response curves can be compared to evaluate the change in the 

metric (ROP or MSE). This process has been carried out by using ROP and MSE as 

objective functions. Figure 7.9 summarizes the results for all formations analyzed using a 

boxplot. 
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Figure 7.9: Results of drilling optimization using the end-to-end optimization model 

using ROP and MSE as metrics. Regions marked in red on the plot cover the 

95% confidence interval for the mean of the corresponding boxplot. 

(Left)Average ROP increase of 19 ft/hr using the optimization model; 

(Right) Average decrease in MSE of 19643 psi using the optimization model 

The average of each boxplot has been highlighted in Figure 7.9 using a shaded 

region colored red. The shaded region covers the 95% confidence interval of the mean of 

the dataset. The confidence interval was obtained using bootstrapping as opposed to using 

analytical methods since the data are nonparametric showing deviations from the normal 

distribution. ROP optimization shows an average increase of ROP by 19 ft/hr – much 

higher increase compared to TVOPT. The confidence interval for this improvement is 

between 63 and 64.75 ft/hr. MSE optimization shows massive improvements in MSE – a 

reduction of average MSE by 19643 psi. The confidence interval for the average optimized 

MSE lies between 19257 and 20044 psi. The larger decrease in MSE can be attributed to a 

simultaneous decrease in TOB and increase in ROP of the bit. It is recommended that a 

minimum and maximum TOB are specified while optimizing for MSE since the units of 

TOB are 100 times larger than the units of ROP. During optimization, a larger reduction 

of TOB by is possible as compared to ROP which can result in simply decreasing WOB to 

improve MSE. This would yield a poor result since the objective is to improve ROP or 

maintain ROP while reducing the MSE. An alternative is to normalize the data with a mean 
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of 0 and standard deviation of 1 before performing optimization; not only does this method 

result in faster converge, but also tends to yield a better solution. 

 A line plot has been used to show the improvement of ROP and MSE for each 

formation in Figure 7.10. The line plot consists of a 95% confidence interval which shows 

the ROP or MSE improvement for each formation. A formation does not show 

improvements – beyond statistical doubt – in MSE or ROP if the if the confidence interval 

intersects with the X-axis. Figure 7.10 shows no changes or improvements in ROP for all 

but one formation – Base Salt Limestone. The improvement in ROP has been measured 

with respect to the actual data measured in the field. For this formation, the ROP model 

underestimated the actual ROP. The optimization algorithm is used on the ROP model and 

results in an improvement when compared to the predicted ROP but not the measured ROP 

(Figure 7.11). 
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Figure 7.10: Results of drilling optimization by formation using the end-to-end 

optimization model using ROP and MSE as metrics. Regions marked shades 

around the thick line cover the 95% confidence interval for the average 

improvement for each formation. A formation’s ROP or MSE does not 

improve if this confidence interval intersects with the X-axis of the 

corresponding boxplot. (Top) Average ROP increase; (Bottom) Average 

decrease in MSE 

 

Figure 7.11: (Left) ROP Model prediction for Base Last Limestone; (Right) ROP 

improvement for Base Last Limestone; The prediction – which 

underestimates the data measured in the test set – is improved, however, the 

improved ROP is also an underestimate of the measured ROP 
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7.5.1 Coupled Effect 

It is possible to investigate the change of other important drilling metrics due to 

optimization of one metric (as discussed in Chapter 5). This section investigates the change 

in MSE due to ROP optimization and the change in ROP due to MSE optimization. 

If ROP is optimized, it would be ideal if MSE remains constant or decreases. 

Increases in MSE due to ROP optimization generally occur due to excessive vibrations (or 

formation change). Using the coupled model (CMOPT) it is possible to note the changes 

in MSE when optimal parameters to optimize ROP are implemented. The parameters for 

ROP optimization are calculated with the aim of purely optimizing ROP. Figure 7.12 shows 

the effect of ROP optimization on ROP and MSE; shaded regions around the line plots 

indicate 95% confidence intervals. If the confidence intervals intersection with the X-axis, 

then no statistical change is observed. An average improvement of 30 % is observed for 

ROP and decrease of MSE by 30%. Charles sandstone does not see an improvement in 

MSE and an MSE increase is observed in the case of Base Last Salt limestone. 

 

 

Figure 7.12: Effect of ROP optimization on drilling metrics. An increase of ROP by 30% 

and a decrease in MSE by 30% is observed. The shaded portions of the plot 

indicate 95% confidence intervals. The average change across all formations 

has been plotted as a dotted line by color. 
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MSE optimization is a bit more complicated since ROP is part of the objective 

function being optimized. The parameters for MSE optimization are calculated with the 

aim of purely optimizing MSE – which is possible by increasing ROP or reducing TOB. 

Hence there can be a situation – which is highly undesirable – where MSE is minimized 

by decreasing TOB using a reduction in WOB, and correspondingly reducing ROP. If the 

change in WOB results is a large decrease in TOB as compared to ROP, then this will 

reduce MSE, making it a valid set of optimal parameters as per its definition. It is possible 

to evade this solution by enforcing a lower limit on TOB. Figure 7.13 shows the effect of 

MSE optimization on ROP and MSE; shaded regions around the line plots indicate 95% 

confidence intervals. An average improvement of 21.2 % is observed for ROP and MSE 

decrease of 49.1 % has been observed in the case of MSE optimization. No ROP 

improvement is observed in Charles (sandstone and limestone) formations and a decrease 

in Base Last Salt limestone. 

 

 

Figure 7.13: Effect of MSE optimization on drilling metrics. An increase of ROP 

by 21% and a decrease in MSE by 49% is observed. The shaded 

portions of the plot indicate 95% confidence intervals. The average 

change across all formations has been plotted as a dotted line by 

color. 
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7.6 CMOPT CASE STUDY: CHARLES LIMESTONE 

A case study is illustrated to show the application of the proposed drilling 

optimization model. It is assumed that the formation is drilled one stand at a time. The 90 

ft of data was used as the training set. The rest of the formation was used as the test set to 

evaluate the model. ROP and TOB models were built using the random forest algorithm 

using WOB, RPM, flow-rate, and UCS as input parameters. The cross-validation error for 

both models were less than 10%; hence, the models are declared to be efficient. The test 

set accuracy of both models has been shown in Figure 7.14. The SSI classification model 

was built using the random forests classifier algorithm since it resulted in the lowest 

validation set error; the test set accuracy was 87% (with an F-1 score of 0.78 and area under 

curve (AUC) score of 0.87). 

 

 

Figure 7.14: Test set predictions for ROP and TOB model built using the random forests 

algorithm on Charles Limestone. The model was trained on data collected 

while drilling the initial 90 ft of the formation.  
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Figure 7.15: 2D representation of Optimization space for Charles Limestone. The area 

shaded in green includes drilling control parameters which will not result in 

excessive SSI – the constrained optimization space. Optimal parameters 

obtained upon constraining the optimization space – with the use of the SSI 

model – are plotted in yellow. The unconstrained optimization – which can 

result in excessive SSI – is plotted with a blue star. (Left) ROP optimization 

(Right) MSE optimization. 

Drilling optimization results of two KPIs or metrics have been evaluated – ROP 

and MSE. The models were optimized using the PSO algorithm with constraints. The 

optimization space is obtained by taking the end ranges of WOB, RPM, and flow-rate in 

the training dataset. For example, since RPM varied between 20 and 60 in the training set, 

the optimization space is bound at these limits for RPM. The SSI model is used to evaluate 

any additional constraints which can occur due to excessive torsional vibrations. The entire 

optimization space is classified using the SSI model into low and high vibration zones. The 

optimization algorithm is constrained to the subspace which does not result in excessive 

torsional drilling vibrations – the area marked in green in Figure 7.15. The Bayesian 

optimization algorithm is used to find the optimal control parameters to optimize ROP or 

MSE ahead of the bit. Figure 7.13 shows a two-dimensional representation of the 

optimization space along with the optimal control parameters. The optimal parameters 

returned by the algorithm in the case of ROP and MSE optimization lie in the green region 
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(Figure 7.13). The optimal parameters for ROP and MSE optimization are different since 

the objective functions optimized are different. The optimized KPIs: increase in ROP and 

decrease in MSE are shown in Figure 7.14. In this case, no further model update was 

required for improving results. However, while drilling a longer formation, the ROP, TOB 

and SSI model can be continuously recalibrated by training them after drilling each stand.  

 

 

Figure 7.16: Optimized ROP (left) and MSE (right) using PSO algorithm for optimization 

with vibration-based constraints set using the SSI model 

The case presented here did not incur lateral vibrations during drilling. The drilled 

well analyzed in this dissertation did not show high lateral vibrations in general. One 

formation –Mission Canyon limestone – exhibited signs of lateral vibrations (when the 

threshold is lowered to 0.75). The optimization windows for ROP and MSE optimization 

for this formation are shown in Figures 7.17 and 7.18. In this case, the CMOPT model 

would have two equality constraints – one for SSI and the second for lateral vibration – 

constraining the optimization space to account for both sources of vibrations. An additional 

constraint can be similarly added to the optimization algorithm in the CMOPT model to 

account for axial vibrations if required. 
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Figure 7.17: 2D representation of Optimization space for Mission Canyon Limestone. 

The area shaded in blue includes drilling control parameters which will not 

result in excessive SSI or lateral vibrations – the constrained optimization 

space. Optimal parameters obtained upon constraining the optimization 

space – with the use of the SSI model – are plotted in yellow. The 

unconstrained optimization – which can result in excessive SSI – is plotted 

with a blue star. (Left) SSI optimization window (Right) Lateral vibration 

window 
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Figure 7.7: 2D representation of Optimization space for Mission Canyon Limestone for 

MSE optimization. The area shaded in blue includes drilling control 

parameters which will not result in excessive SSI or lateral vibrations – the 

constrained optimization space. Optimal parameters obtained upon 

constraining the optimization space – with the use of the SSI model – are 

plotted in yellow. The unconstrained optimization – which can result in 

excessive SSI – is plotted with a blue star. (Left) SSI optimization window 

(Right) Lateral vibration window 

 

7.7 CONCLUSIONS 

This chapter introduced two drilling optimization models the TVOPT and CMOPT. 

The former improved upon a method of modeling which has existed in the industry for 

over half a century. Drilling vibrations have affected ROP improvements but have never 

been adequately addressed for drilling optimization. The TVOPT model predicts ROP 

using traditional models. The modeled ROP along with drilling control parameters are used 

in a machine learning classification model to classify the optimization space. An 

optimization algorithm (gradient ascent) is used to find optimal parameters – which can be 

used to improve ROP ahead of the bit. However, values of the optimal parameters are 

restricted by the drilling vibrations classification model – which ensures that the optimal 

parameters do not induce excessive vibrations upon implementation. The use of this model 
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resulted in a ROP improvement of 10 ft/hr (14.8%) on average across all formations. 

TVOPT was successful in improving ROP for all formations except one (Figure 7.4) – 

Tyler Sandstone. A closer investigation into the ROP improvement for each formation 

showed that the underestimation of the ROP model caused this apparent decrease in ROP 

performance. Overall, the TVOPT model provides a method to find optimal parameters for 

ROP improvement; these optimal parameters are safe – will not induce excessive drilling 

vibrations. A similar workflow can be used to keep axial and lateral vibrations in check. 

The CMOPT model introduced a modeling method to optimize any drilling metric 

(or objective) – ROP, MSE or a combination – using a coupled modeling scheme. 

Individual models for ROP, TOB, and SSI are built using the random forest algorithm. 

Training data are used to build models – ROP, TOB, MSE and SSI – for a given formation. 

An optimization algorithm – particle swarm method or Bayesian optimization– is used to 

determine optimal control parameters which will maximize or minimize the metric 

concerned. The optimization space is constrained using the SSI model to ensure that the 

optimal parameters do lead to high SSI while drilling thus avoiding drilling dysfunction. 

Optimization of ROP and MSE has been evaluated in this paper. ROP was improved by 

36% (19ft/hr) and MSE was reduced by 49%(19363 psi). The optimal parameters in both 

cases were constrained to low vibration regions of the optimization space. The coupled 

model was used to study the effect of ROP/MSE optimization on other drilling metrics. 

Optimizing for ROP led to an increase in ROP (36%) and decrease in MSE (30%), whereas 

optimizing for MSE resulted in a smaller increase in ROP (21%) and larger decrease in 

MSE (49%). A case study on the Charles limestone formation was used to illustrate the 

entire optimization process. Add more lateral and axial vibrations models into the 

workflow was shown with a case study in the Mission Canyon limestone formation. In 
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conclusion, it has been shown that end-to-end coupled drilling optimization using machine 

learning model was successful in optimizing drilling. 
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Chapter 8: Conclusions 

This chapter concludes the dissertation. The original research work has been 

discussed in Chapters 2 through 7. The objective of this chapter is to review the 

contributions of this dissertation and propose avenues for future work. 

8.1 CONCLUSIONS 

Drilling optimization always will be an area of interest in the oil and gas industry. 

The current techniques used for drilling optimization date back many decades. Today, the 

increase in data collection, computational tools, and incentive for optimization has 

introduced many tools which can be utilized to improve the methodology and workflow 

involved. Machine learning (or data science or statistical learning) can be invaluable tools 

utilized in drilling, considering the volume of data collected on the rig – surface and 

downhole.  

This dissertation started by reviewing current techniques applied in the field: ROP 

modeling and optimization. Since ROP remains to be the most commonly used field metric, 

many ROP models have been proposed. Chapter 2 introduced a robust method to predict 

ROP while drilling wells: using the random forest algorithm (in the form of a data-driven 

model). This technique outperformed empirical models as well as other machine learning 

algorithms. This algorithm is particularly powerful for low-dimensional data – as recorded 

during drilling. It is important to note that algorithms which are better suited to the problem 

at hand are preferred to popular algorithms such as neural networks which are designed for 

high dimensional data problem (such as images, text, and videos). Torque-on-bit (TOB) an 

important metric was successfully modeled using a similar methodology. ROP and TOB 

are modeled as functions of drilling control parameters – WOB, RPM, Flowrate, and UCS. 

Modeling these metrics together using a machine learning algorithm helps couple the 
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models. The random forest model resulted in an average normalized error of 12% and R2 

of 0.84 for all formations analyzed. Similarly, TOB predictions using the random forest 

model resulted in an average error of 16%.  

The accuracy of data-driven models is contrasted with the loss of interpretability of 

the model. The ROP model – predicted by random forests – cannot be visualized in the 

form of an equation (a new concept for many). Empirical models on the other hand have 

high interpretability, but also low accuracy. Data-driven models have high accuracy but 

low interpretability. A trade-off exists where an increase in accuracy (compared to 

empirical models) and an increase in interpretability (compared to data-driven models) is 

possible. This class of models are called hybrid models, obtained by combining empirical 

and data-driven modeling techniques. Empirical coefficients in deterministic models are 

calculated by conditioning the models to the data – the training set. Data-driven models, 

on the other hand, rely purely on the data. Hybrid models combine the two analogies. Two 

algorithms for building hybrid ROP models have been discussed: hybrid-One and hybrid-

N. The hybrid-One model combines different versions (or realizations) of a single 

deterministic model – providing an alternative method to determine empirical constants. 

The hybrid-N model combines predictions from different deterministic models using an 

ensembling algorithm. The application of this model is used in cases where an inference of 

the model may be required. A case study was used to illustrate the application of such a 

tool while drilling. 

ROP models are created with the intention of using them to optimize ROP. While 

many ROP models exist in literature, not many papers pen down the how the models can 

be optimized to provide tangible results. Chapter 4 discussed strategies to optimize ROP 

models: empirical and data-driven. Empirical ROP models are easy to optimize since they 

modeled as power-law functions. Gradient ascent was used to find optimal parameters for 
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each ROP model; these optimal parameters were used to estimate the improvement in ROP 

on each formation. The optimization of traditional models showed an average improved 

ROP of over 28% for all models (much higher in a few cases). However, the ROP 

predictions themselves were not accurate (model accuracy was low when these models 

were employed for ROP prediction), hence the projected ROP improvements using optimal 

values cannot be fully trusted. In the case of data-driven models, the absence of an equation 

makes it difficult to find a suitable algorithm for its optimization. This problem persists in 

all cases where the model being optimized is data-driven – hence the solution proposed is 

a general solution which can be applied to any data-driven model. This inverse problem is 

commonly solved using meta-heuristic algorithms. Two simple algorithms and three meta-

heuristic algorithms were evaluated in this dissertation based on their ability to improve 

ROP ahead of the bit (higher the better) and computational run-time. Simple algorithms, 

like the eyeball method and random search, performed well, improving the ROP by 20% 

and 21% on average over all the formations tested. Their run-time was trivial (<100 ms) 

making them effective algorithms for real-time use with zero data-lag. Advanced meta-

heuristic algorithms: simplex method, differential evolution and particle swarm method 

improved the ROP by 30%, 40% and 45% (on average). The computational run-times 

(mean) were 5.93 s for simplex, 18.475 s for DE and 196.41 s for PSO. These run-times 

can have adverse effects on the amount of data used to train the model in real-time (or data-

lag). 

So far, the metric in the dissertation used for drilling optimization was ROP. 

However, it is known that ROP is not always the best parameter to optimize. Other drilling 

metrics such as MSE, TOB, and cost-per-foot were evaluated for drilling optimization in 

Chapter 5. Based on the objective function being optimized, the results can vary. Cost-per-

foot is not a good objective function for algorithmic optimization since it just translates to 
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ROP optimization. Good engineering decisions and improved management practices can 

make up for the aspects of cost-per-foot not covered by ROP. The best objective function 

to use for a well will depend on several factors such as the operator, the costs of drilling, 

equipment, operating costs, history of drilling dysfunctions. The coupled model was used 

to evaluate the changes in each metric due to optimization. Using ROP as an objective 

function leads to an improvement of ROP by an average of 31%, whereas MSE increases 

by 4% and torque on average increased by 10%. When TOB is used as an objective 

function, reduction in TOB resulted in a low ROP improvement and an increase in MSE 

which was undesirable. An average of 10% reduction in TOB was noted with a 16% 

increase in ROP and 15 % increase in MSE. Bayesian optimization can lead to faster 

convergence for optimization of MSE as compared to the particle swarm algorithm. 

Optimizing the MSE objective function led to an average decrease of MSE by15%, an 

increase of ROP by 20% and reduction of torque by 7%. By far, using MSE as an objective 

function has the most balanced improvement for drilling – an increase in ROP, reduction 

in torque and MSE at the same time. 

Vibrations are the main inhibitor of ROP improvement, hence, a method to predict 

and control vibrations is crucial for efficient drilling operations. Techniques to classify 

drilling vibrations are described in Chapter 6. Different classification algorithms were 

evaluated for the classification of axial, lateral and torsional vibrations. Overall the random 

forest algorithm outperformed other evaluated algorithms for classification of stick-slip-

index (SSI) when evaluated with AUC and F-1 score. Classifiers for axial and lateral 

vibrations performed well resulting in high values of AUC score, F1-score, and 

classification accuracy. Classifiers were only built for formations in which vibrations 

exceeded the threshold. These classifiers can be easily incorporated into a ROP 

optimization workflow in addition to the SSI classifier. 
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Chapter 7 combines all the individual models and theory described in the earlier 

chapters to introduce two drilling optimization models: TVOPT and CMLOPT. TVOPT 

improves upon a method of modeling which has existed in the industry for over half a 

century. The TVOPT model predicts ROP using traditional models. The modeled ROP 

along with drilling control parameters are used in a machine learning classification model 

to classify the optimization space which ensures that the optimal parameters do not induce 

excessive vibrations upon implementation. The use of this model resulted in a ROP 

improvement of 10 ft/hr (14.8%) on average across all formations. The CMOPT model 

introduces a method to optimize any objective – ROP, MSE or a combination – using a 

coupled modeling scheme fully based on machine learning. Individual models for ROP, 

TOB, and SSI are built using the random forest algorithm. The optimization space is 

constrained using the SSI model to ensure that the optimal parameters do not lead to high 

SSI while drilling thus avoiding drilling dysfunction. Optimization of ROP and MSE has 

been evaluated in this paper. ROP was improved by 36% (19ft/hr) and MSE was reduced 

by 50%(19363 psi).  

The dissertation has shown how statistical (or machine) learning techniques can be 

used to adequately address the problems encountered in drilling optimization. The model 

developed in this dissertation builds upon the state-of-the-art model currently available.  

8.2 FUTURE WORK 

The work conducted as a part of this dissertation marks the beginning of a new era 

in drilling optimization. These models can be used within a tool on the rig to optimize all 

wells drilled by an oil and gas operator. The work in this dissertation covered the use of 

modeling for improvement of ROP or MSE in a given well. This can be extended to 

multiple wells, where pad wells are drilled more efficiently utilizing the data collected in 
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the initial well. A Bayesian prior can be used to model the transition between use of data 

for modeling drilling in a given well. 

The use of well logs collected during logging-while-drilling (LWD), along with 

drilling data can be used to infer formation change. When drilling parameters remain 

stationary and vibrations low, this task can be achieved by looking for a change in MSE. 

However, the development of a score similar to the drilling score present in DAS can be 

beneficial to detect formation change or onset of drilling dysfunction.  

The ideas presented in this dissertation can be used to conduct drilling simulations. 

Geostatistical modeling can be used to create a map of rock strengths in a given reservoir. 

Once a map of UCS is obtained, drilling can be simulated using different ROP models. 

This can be used to help identify well paths to reduce the time and length of a required well 

to reach the target formation. Additionally, reinforcement learning algorithms can be 

incorporated into these models to better plan new wells.  

The main purpose of drilling is to be able to reach the reservoir. The use of well 

logs collected during logging-while-drilling (LWD) can be used to identify target 

formations in real-time. Maintaining borehole quality can be important while drilling target 

zones; this can lead to improved production and shorter completion times.  
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Appendices 
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Appendix A: Confidence Intervals for Random Forests 

This section explores confidence intervals of random forest ROP models: an added 

advantage of using a data-driven approach to model ROP (or any other drilling metric). 

Confidence intervals are analogous to the uncertainty of the predicted ROP. A confidence 

interval is an interval associated with a random variable yet to be observed or predicted 

(ROP in this case), with a specified probability of the random variable lying within the 

interval. A more mathematical definition of confidence intervals for random forests and its 

calculation is out of the scope here (Wager, Hastie, & Efron, 2014). Figure A-1 plots ROP 

predictions in Tyler sandstone using the random forests algorithm. The model is trained on 

data (shown as data points without error bars) and then used to predict ROP for the rest of 

the formation (data points with error bars). Error bars around the ROP predictions is the 

95% confidence interval for the predictions. The confidence interval is special to data-

driven models, i.e. it is not possible to estimate confidence intervals for traditional or 

deterministic models. These confidence intervals provide an additional advantage over 

traditional models since they estimate the uncertainty of the ROP prediction. Uncertainty 

in ROP prediction can be very useful from an engineering perspective to make drilling 

decisions. 
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Figure A-1: Confidence interval for ROP predictions using infinitesimal jackknife 

approach. The first half of the formation is used to train the model. The 

model is used to predict ROP along with confidence intervals. 

 

Another way to compute a confidence or prediction interval for random forests is to 

describe them using a quantile random forest. Quantile regression forests are an extension 

of the popular random forests; however, they describe conditional probabilities instead of 

fixed predictions. Quantile random forests can be used to quantify the complete conditional 

distribution of the entity at hand (ROP in our case). A complete conditional description of 
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the variable – P(Y ≤ y |X = x) – can be extremely useful, since it can be manipulated to 

yield very interesting quantities: outliers, prediction intervals quantile estimation, and 

probability (P10, P50, P90) estimates of ROP. Meinhausen (Meinshausen, 2006) formulated 

and described quantile regression forests. 

Trees are built for a random variable - as described in chapter 2; however, all the data are 

retained, not just the average (like in a conventional random forest algorithm). Instead of 

computing F(y|X=x), F(y|X<x) is calculated. Computing F(y|X<x) for the 2.5th and 97.5th 

percentile will yield a 95% confidence interval. The confidence interval for ROP 

predictions for Tyler sandstone using quantile regression forests has been plotted (Figure 

A-2). The model is trained on data (shown as data points without error bars) and then used 

to predict ROP for the rest of the formation (data points with error bars). 

Since this approach can be used to represent the variance in the ROP predictions, it can be 

combined or propagated to determine the confidence interval of the average improvement 

of ROP. Figures 7.3 and 7.9 calculate the confidence interval for the average improvement 

in ROP considering ROP predictions as a deterministic value. Since the random forest is 

stochastic, additional information or model prediction uncertainty from each ROP 

prediction can be propagated to improve this bound. This can be calculated using Monte 

Carlo based simulations. 
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Figure A-2: Prediction interval for ROP predictions using quantile random forest 

approach. The first half of the formation is used to train the model. The 

model is used to predict ROP along with confidence intervals. 
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Appendix B: ROP Prediction using Time Series Forecasting 

Time series approaches are very popular in finance, economics, and industrial 

engineering for modeling data in which are collected in a sequence. Drilling data is 

collected from sensors, sequentially in equally space-time intervals. The time intervals for 

the collection of data are often measured in terms of frequency (Hz) – the number of times 

a sample is collected in one second. In drilling, the sampling frequencies range from 1-15 

Hz  (sometimes as high as 128 Hz) but are often stored or transmitted at lower rates (Lesso, 

Ignova, Zeineddine, Burks, & Welch, 2011). A much more detail review and discussion of 

data collected in drilling have been covered in literature (Baumgartner, 2017). Hence, given 

the nature collection of drilling data, it is worth exploring whether ROP prediction is 

efficient using time series analysis. 

B.1: THEORY  

The main difference between time series analysis and linear regression is that the 

data are not necessarily independent and/or identically distributed. – which is an important 

assumption made while using linear regression. One defining characteristic of time series 

is that this is a list of observations where the ordering matters since there is a dependency 

and changing the order could change the meaning of the data being analyzed. The main 

time series modeling method approached in this section is the autoregressive integrated 

moving average (ARIMA) model. 

Time series analysis (Fuller, 2009) deals with three main components: trend, 

seasonality, and residuals. The trend is the way the date moves long term, does it increase, 

decrease, or remain the same. Random noise, for example, would not have any trend, 

whereas drilling data where ROP is continuously decreasing (along the length of a well as 

rock gets more compacted) would have a decreasing trend (Figure B-1). Seasonality is a 
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phenomenon which can occur due to the repeated nature of a measurement. For example, 

if a formation is laminated and drilled with constant drilling parameters, the ROP would 

be expected to show seasonality, where it would decrease while drilling through a hard 

formation and increase while drilling through a soft formation in a cyclic manner. In 

general, the dataset analyzed in this section does not contain such formations, hence further 

seasonality is not discussed further. In general, the seasonality component must be pre-

determined and known. 

 

 

Figure B-1: Generated data showing two separate time series measured. The first series 

has no trend (blue) and the second series has a trend (orange) drawn with a 

red line. 

The residuals are defined as data obtained after removing the trend and seasonality 

of the measurements. Modeling residuals accurately can result in a good prediction and are 

the primary responsibility of the ARIMA model. 

Data used in ARIMA models must be stationary. Stationary data: data whose 

unconditional joint distribution does not change when shifted with time; the mean and 

variance of the data do not change over time. Hence, stationarity can be measured by 

checking if the mean and variance of the data change with time. In this section, a Dickey-
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Fuller test is used to test for stationarity (Dickey & Fuller, 1979). The non-stationary time 

series can be transformed into a stationary one using: differencing, trend-removal, or 

transformations. 

Differencing is to difference the data. From a given time series 𝑍𝑡, a new time series 

can be defined as: 𝑌𝑖 =  𝑍𝑡  −  𝑍𝑡−1. If the data contains a trend, a curve fit to the data can 

be subtracted from the time series to obtain the residuals. Since the purpose of the fit is to 

simply remove long term trend, a simple fit, such as a straight line, is typically used 

(Croarkin, Tobias, & Zey, 2002). If data have non-constant variance, a transformation such 

as the logarithm or square root transformations may stabilize the variance(Casella & 

Berger, 2002). Data are typically analyzed for trend and seasonality. Once removed from 

the data, the residuals are further analyzed or modeled.  

The most common approach is the ARIMA model which is composed of two 

models itself, the autoregressive model (AR) and the moving average model (MA). The 

autoregressive model attempts to model the time series using the previously predicted value 

(Equation B-1). 

𝑋𝑡 = δ +  𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2. . . + 𝜑𝑝𝑋𝑡−𝑝−1 +  𝐴𝑡 
, (Equation B-1) 

where, 𝑋𝑡 is the time series, 𝐴𝑡 is white noise, and δ = (1 − ∑ 𝜑𝑖)𝜇𝑝
𝑖=1  (𝜇 is the 

process mean). An autoregressive model is a linear regression of the current value of the 

series against one or more prior values of the series. The number of dependent variables or 

value of ‘p’ is called the order of the AR model. These models can be fit using standard 

least squares algorithms. 

A moving average model is conceptually a regression model of the current value of 

the series against the white noise or random shocks of one or more prior values of the 

series. The random shocks at each point are assumed to come from the same distribution, 

typically a normal distribution, with zero mean and unit variance. The distinction in this 
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model is that these random shocks are propagated to future values of the time series. Fitting 

the MA estimates is more complicated as compared to AR models because the error terms 

are not observable. This means that iterative non-linear fitting procedures need to be used 

in place of linear least squares. In essence, the residual obtained by subtracting the mean 

of the residual of the differenced data is itself fitted with a model. 

 

𝑋𝑡 = μ +  𝜀𝑡 + 𝜃1𝜀𝑡−1. . . + 𝜃𝑞𝜀𝑡−𝑞 
  

 

where 𝑋𝑡 is the time series, μ is the mean of the series, 𝜀𝑡−𝑖 are white noise terms, 

and 𝜃1. . . 𝜃𝑞 are the parameters of the model. The value of q is called the order of the MA 

model.  

The two models are combined to model the time series in the form of an ARMA 

model (Box, Jenkins, Reinsel, & Ljung, 2015). The ARMA model assumes that the time 

series is stationary; if not, differencing can be used to enforce stationarity on the time series. 

An ARMA model with differencing is called ARIMA where ‘I’ stands for integrated. 

The fitting of an ARIMA model – assuming single differencing – the parameters or 

orders for the AR and MA models are determined using autocorrelation and partial 

autocorrelation plots (Box et al., 2015). The autocorrelation plot maps the autocorrelation 

function of the time series: a correlation of the signal with a time-delayed version of itself. 

The time delay is often called lag. The partial autocorrelation at lag k is the autocorrelation 

between Xt and Xt−k that is not accounted for by lags 1 through k−1. Once the ARIMA 

model is fitted to the data, forecasts can be used to predict the next observation of the time 

series. 
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B.2 ROP MODELING USING ARIMA 

Data from one formation – lodgepole limestone – is analyzed in this section for 

ROP prediction. The data are modeled as a time series, with time used as a proxy for depth. 

Since drilling 0.25 ft of depth occurs every 30 seconds on average, the data in this formation 

can be used for time series analysis (Figure B-2). For simplicity, the starting time of drilling 

has been set to 01-01-1970 at 00:00. The data is tested for stationarity using a Dickey-

Fuller test (Table B-1). Since the p-value of the test is above 0.05 indicating that the data 

are not stationary, differencing is used to induce stationarity. The differenced time series 

has a p-value of 0; the stationary time series can be used for ARMA modeling. 

  

 

Figure B-2: (left) Measured ROP plotted as a time series; (right) time series imprinted 

with a mean (trend) and rolling standard deviation. 

Table B-1: Results of the Dickey-Fuller test  

  Time Series 
Differenced Time 
Series 

Test Statistic -2.84 -7.61 

p-value 0.0520 2.22E-11 

#Lags Used 20 20 

Number of Observations  689 688 
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Figure B-3: (Left) Measured ROP plotted as a differenced time series; (Right) differenced 

time series imprinted with rolling mean (trend) and rolling standard 

deviation. 

The autocorrelation and partial autocorrelation plots for the differenced time series 

have been plotted as shown in Figure B-4. This plot can be used to infer and determine the 

order of the ARMA model. Experience and value of the standard error to coefficient ratio 

guide picking the order of the ARMA model. Looking at Figure B-4, the autocorrelation 

plot suddenly spikes up, after which it faces an exponential decline. The partial 

autocorrelation function cyclically fluctuates. This is a characteristic which is commonly 

seen in time series (Box et al., 2015; Croarkin et al., 2002) and is best approached by using 

both AR and MA components in the model. More complicated methods of model selection 

using the Akaike Information Criterion (AIC) have not been discussed (Brockwell & 

Davis, 2016). 
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Figure B-4: (Left) Autocorrelation function plot for differenced time series; (Right) 

Partial autocorrelation plot for differenced time series. 

The data are split into training and test sets using an 80/20 split. The best chosen parameters 

for this data-analysis was an AR(0) and MA(1) model. An out-of-sample forecast on the 

training test performs really well with low mean squared error (Figure B-5). The out-of-

sample forecast is made one step at a time; the forecast length is only 0.25 ft. Despite this 

high accuracy, this forecast is not practically very valuable. Since the model used is of the 

order MA(1), only one preceding data point is useful for future predictions. The predicted 

value can be used for future prediction to obtain a long-term forecast (Figure B-5). This 

forecast is poor; the model after a few iterations just predicts a general ROP trend. 
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Figure B-5: One-step forecast of ARMA model for ROP time series in Lodgepole 

Limestone 

 

 

Figure B-6: Short term or test set forecast of ROP using the time series model 

B-3 CONCLUSIONS 

This section presented ROP prediction using time series modeling methods. A one-

step forecast for ROP showed good predictions, whereas, short term or test set forecasts 
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only returned a general ROP trend as the prediction. This analysis does not incorporate the 

physics of the wellbore but treats the ROP measured as an independent signal. While this 

analysis may work for short term or one-step predictions, it fails practically as shown in 

Figure B-6. It can be concluded that data-driven models are better suited for ROP modeling 

as compared to time series analysis. 
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Appendix C: Sampling during Training  

 The modeling and optimization of ROP or MSE using machine learning is 

dependent on the quality of the training data. This determines the optimization space 

available for optimizing these parameters. In chapter 4, the optimization space or window 

was restricted to the data observed in the training set to prevent model extrapolation. 

Additionally, since machine learning models are built purely based on training data, having 

a good training data set with varying parameters is imperative to the success of the 

optimization model. This section discusses sampling during training or data collection in 

the training set. The development of the DAS (Chang et al., 2014) by ExxonMobil 

discusses the concept of sampling the parameter space. Essentially, control parameters – 

RPM, WOB, and Flowrate –should be varied sufficiently during training. This expands the 

applicability of the model developed in earlier chapters. The DAS system (Chang et al., 

2014) recommends that the maximum and minimum RPM, WOB and flow-rate window 

be set collectively based on the judgment of the drillers, drilling engineers, and rig 

supervisors. This window will depend on the bit, BHA, formation, hole section properties, 

and experience with previous wells drilled. The objective of defining a window is to avoid 

extrapolation by defining an optimization space limited by that window (Figure C-1). In 

addition to the parameter window, a step size of change is defined which can be used to 

determine the number of samples required to sufficiently cover the parameter space.  For 

example, if the current WOB entering a formation is 15000 lbf, setting the minimum step 

size as 1000 lbf, would change the WOB to 14000 or 16000 lbf in the next iteration.  
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Figure C-1: Parameter space (or optimization space) as defined by drillers and engineers 

(Chang et al., 2014). The step size has been defined and plotted in the form 

of a grid. 

Sampling the entire optimization space during training can take many iterations and a lot 

of time – if only one parameter is changed at a time. For example, if the number of levels 

are set to 10 for each factor (or drilling parameter) – WOB, RPM, and flowrate – then a 

total of 1000 “settings” would be required to sufficiently sample the entire optimization 

space. Additionally, this method can result in missing the optimum location completely 

(Dunn, 2010). Theory from the design of experiments (Dunn, 2010) can be used to aid 

this sampling process during training. 

 Design of experiments (DOE) can be applied here to decide the most optimal 

sampling method in the training set. Factors are parameters of interest, which are varied to 

change the outcome of the experiment; for drilling optimization, factors evaluated are 

WOB, RPM, and flow-rate. Levels are the total number of possible values these factors can 

take within an experiment; in this case, the level will be determined based on the 
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optimization space window and the step size. For example, if the window for WOB lies 

between 10 and 20 klbs with a step size of 1 lb, the number of levels is 10. 

 A full factorial design runs through all possible levels of each factor. Hence the 

number of experiments needed are: 𝐿𝑒𝑣𝑒𝑙𝑠𝑊𝑂𝐵 ∗ 𝐿𝑒𝑣𝑒𝑙𝑠𝑅𝑃𝑀 ∗ 𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑙𝑜𝑤𝑅𝑎𝑡𝑒. This can 

increase exponentially depending on the number of levels. If each factor – WOB, RPM, 

flow-rate – has 10 levels each, a total of 1000 experiments or “setttings” will need to be 

evaluated. Incorporating the amount of time, it takes to see the change in ROP or MSE at 

the bit due to a newly applied WOB or RPM on the surface and operational time, this is 

infeasible.  

One option is to reduce the number of factors – which can cause a decreased 

performance in the algorithm. Alternatively, a fractional factorial design can be utilized. 

Rather than sample at all locations, the fractional factorial design conducts a reduced 

number of experiments. Advanced methods like Plackett-Burman (Plackett & Burman, 

1946) design can be used when dealing with a higher number of factors (most often not 

required for drilling operations). Alternatively, the driller and engineer can manually 

decide to vary different parameters based on intuition and field-based experience – as 

suggested by the DAS. Other algorithms which can potentially be used to explore the 

training set are Bayesian optimization and multi armed bandit algorithms. 

The sampling of training data points for the data used in this formation are plotted 

below in the form of a 3-dimensional scatter plot in Figure C-2. Figures C-3, C-4, and C-5 

plot the two-dimensional scatter plot for different control parameters (RPM, WOB, and 

flowrate). RPM and WOB have been well sampled in the training data based on their 

scatter. However, flowrate is varied much during training. This should be considered 

during ROP model optimization.  
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Figure C-2: Each subplot contains the 3-dimensional scatter plot for each feature 

involved in ROP or MSE optimization for all formations analyzed. The 

input feature space provides additional insight into the data collection during 

training. This can be useful in determining bounds for the optimization 

feature space since extrapolating to scarcely sampled regions can be 

dangerous. The plot shows that the scatter is well spread out in the training 

region of the dataset for RPM and WOB. However, flow rate has not been 

well explored during training 
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Figure C-3: WOB and RPM feature space plot for all formations. Each subplot contains 

the 2-dimensional scatter plot for RPM and WOB. The plots show that these 

features have been explored well. A uniform sampling method when applied 

in the training region can help avoid model extrapolation 
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Figure C-4: WOB and Flowrate feature space plot for all formations. Each subplot 

contains the 2-dimensional scatter plot for flow rate and WOB. The plots 

show that flowrate has not been explored well. This should be considered 

while defining the feature space for parameter optimization 
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Figure C-5: Flowrate and RPM feature space plot for all formations. Each subplot 

contains the 2-dimensional scatter plot for RPM and flow rate. The plots 

show that flowrate has not been explored well. This should be considered 

while defining the feature space for parameter optimization 
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Restricting the optimization space for features that are not sampled well can help 

reduce erroneous model predictions ahead of the bit. In this case, flowrate can be restricted 

to only the values measured in the training dataset.  
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Appendix D: Drilling Model Optimization 

Following the discussion of different optimization algorithms, this section aims to provide 

a pseudo code for the algorithms covered in chapter 4. The pseudo code is meant to be used 

as a template for each algorithm. The pseudo code provided here is a variant of each method 

and this may not match pseudo code provided in other text books or papers. The aim of 

this section is to provide a better intuition of each algorithm to the reader. 

D.1 EYEBALL METHOD 

Loop over training set 

 Find high ROP in training set (best X%) 

 Determine drilling parameters which resulted in high ROP (optimum drilling 

parameters) 

Best = Average optimum drilling parameters  

Return Best 

 

D.2 RANDOM SEARCH 

Best (some initial random candidate solution) 

Create a vector of samples using latin hyper cube sampling algorithm (S) 

Loop over S : 

 Si = random candidate solution 

 If Si > Best: 

  Best = Si 

Until we run out of time  

Return Best 

 

D.3 SIMPLEX METHOD 

Initialize 3 points (a,b,c) 

Repeat 

 EvalROP(a,b,c) and determine best, intermediate and worst 

 Determine centroid 

reflected = reflect (worst) along centroid 

 expanded = reflect worst along centroid & expanded > best 

 contracted = reflect worst along centroid & contracted < best 
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If (worst > refected & expanded & contracted) : 

 Shrink 

Else: 

  Choose best amoung reflected, expanded and contracted 

Until time runs out or three vertices converge 

Return Best  

D.4 DIFFERENTIAL EVOLUTION 

Set alpha{mutation rate/rate of tweaking} 

Set Popsize {population size} 

P=[] 

Q= Val 

For I form 1 to Popsize: 

 Pi= new random individual 

Best= Max(ROP(Pi)) 

Repeat 

 For each element in Pi 

  EvalROP(Pi) 

  If Q!= Val or  ROP(Qi) > ROP(Pi) : 

   Pi=Qi 

  If Best = Val or ROP(Pi) > ROP(Best): 

   Best = Pi 

Q=P 

For each element in Q: 

 Determine a,b,c {random vectors} 

 D= a + alpha(b-c) 

 Pi = new sample tweaked from (D,Qi) 

Until we run out of time 

Return Best 

 

D.5 PARTICLE SWARM OPTIMIZATION 

Set swarmsize {size of swarm} 

Set alpha {proportion of velocity to be retrained} 

Set beta {proportion of personal best to be retrained} 

Set gamma {proportion of informant’s best to be retrained} 

Set delta {proportion of global best to be retrained} 

Set epsilon {jump size of particle} 

P=[] 

For swarmsize times do 

  P=P U {new random particle x with random initial velocity} 

Best = Value 
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Repeat 

 For each particle in P: 

  evalROP(Pi) 

  if Best != Value or ROP(Pi) > Best : 

  Best = Pi 

 For each particle in P: 

  Xg= best particle location globally 

  Xl = best local particle location 

  Xp = best personal particle location 

  For each dimension do 

   b = rand(0,beta) 

   c= rand(0,gamma) 

   d= rand(0, delta) 

   vi = alpha * vi + b *(Xi
p-Xi) + c*(Xi

l – Xi) + d*(Xi
g - Xi) 

  For each Pi in P: 

   Xi= Xi + Epislon x V 

 Until we run of out time 

Return Best 

 

 

  



 262 

Appendix E: Retraining Frequency 

The optimal parameters returned by the drilling optimization model can be applied 

ahead of the bit. It is recommended that the model is updated at a regular frequency to 

ensure that the model is up to date and best parameters are being used to drill. The model 

can be updated at a frequent interval (say every 4 stands) or when there is an increase in 

MSE or drilling vibrations.  

This model update depends on the data collected for training. In general, once 

training is complete, after drilling the first stand to collect training data, the optimal 

parameters are used ahead of the bit are generally implemented using an automatic driller. 

During this implementation, surface parameters – WOB, RPM, flowrate – are held 

constant. Hence the data collected in “application mode” cannot be used as training data to 

re-train the model in case of a formation change. Varying surface parameters to collect 

training has been discussed in Appendix C. In order to update the model effectively, a 

“training mode” would have to be adapted where drilling surface parameters – WOB, RPM, 

Flow-rate – are changed to collect good training data. Once enough training data are 

collected – determined by sufficiently accurate ROP, TOB, and drilling vibrations models 

– optimal parameters can be recalculated and implemented.  

Theoretically, retraining of these parameters is required if there is a formation 

change. Assuming that optimal parameters were initially calculated when the formation 

was first entered by the bit and then implemented using the auto driller, the MSE should 

remain relatively constant as long as the geology remains constant. The variability of the 

MSE should not exceed the variability seen in the collected torque data. A sharp change in 

MSE can indicate a formation change, drilling dysfunction or increased drilling vibrations 

which would require retraining. If MSE changes significantly – as determined using a 

hypothesis test – then the model can be retrained. In the case of re-training, practices 
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discussed in Appendix C must be adopted. If the model is instead updated after drilling 5-

10 stands, the last stand (or last joint) before which the model is updated should be used in 

“training mode” to gather good training data for the model update. It is suggested that the 

model is updated periodically (even if the formation remains the same) to account for 

dynamically changing downhole conditions such as mud weight and bit wear. 

An alternative approach to determining formation change is to use a machine 

learning model for formation classification. Known formation boundaries from drilling pad 

wells can be used to train a machine learning model to classify formation based on surface 

and downhole measured drilling data. Such a model has been trained to classify 3 

formations – Mission Canyon, Lodgepole, and Base Last Salt – using drilling surface and 

downhole parameters (WOB, RPM, Flow-rate, UCS, gamma log) as input features using 

the random forests algorithm. The accuracy of the classifier is high at 95% (with an F-1 

score of 0.95). The misclassifications are not really a problem since they appear alone – 

not a continuous set of misclassifications. By using a logic-based rule – a minimum of 20 

out of 25 data points in a sequence have to be classified correctly – formation change can 

be predicted very accurately during drilling (Figure E-1). This classifier can also be 

coupled with the change in MSE to make a more informed decision.  
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Figure E-1: Formation change classifier using surface and downhole drilling data 
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Appendix F: SMARTdrill – a tool which can optimize drilling  

This section describes the development of an optimization tool – SMARTdrill – 

which can be used on the rig for drilling optimization. This tool has three major components 

(or layers): the input layer, the analytics layer and the output layer (Figure 1). The analytics 

layer is composed of the algorithms and models utilized for drilling optimization – which 

has been the topical focus of this dissertation (Chapter 2-7). The input and output layers 

are addressed in this section. The aim is to be able to use SMARTdrill as a stand-alone tool 

on the rig for drilling optimization. 

 

 

Figure F-1: General schematic of the SMARTdrill tool 

F.1 INPUT LAYER 

The input layer or data pipeline ensures that relevant data are given to the analytics 

layer for calculation. These data are gathered from different sources on the rig and used for 

modeling and calculation of optimal parameters by the analytics layer. The main sources 

of data required – by the analytics layer – to calculate optimal parameters are collected by 

the surface sensors (RPM, WOB, Flow-rate) and downhole sensors (downhole RPM, 

lateral and axial vibration).  

Surface measured data are collected by surface sensors which process 

measurements, encode and send data (sometimes via the WITS protocol at the sensor itself) 

to the electronic drilling recorder (EDR) where it is displayed. The EDR acts as a data 

acquisition system for surface sensors. The data from the EDR is sent to a server directly 

or an intermediate data aggregator – which aggregate all data collected on a rig. 
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The downhole sensors which measure measured-while-drilling (MWD) parameters 

are sent to the MWD trailer operated by the service provider. The data from the downhole 

sensor is corrected and converted to the WITS-0 protocol using a computer and then 

transferred to a visual display such as the EDR. This data is also transferred directly to a 

server or an intermediate data aggregator – from which the operator can extract the data. 

Generally, the correction and transfer of downhole data takes a significant amount of time 

and cannot be obtained in real-time for most cases. However, technology is progressing 

rapidly – given the interest in drilling automation and data-driven decisions – and this can 

become a reality soon. 

Alternatively, given the current complications in obtaining downhole data in real-

time (or even close to real-time), better-equipped surface sensors which sample at a 

moderate frequency (5-150 Hz) can be used as a proxy. These surface sensors – such as 

Sting SenseTM – can be used in place of downhole data. While downhole data is preferred, 

it may not always be available on the rig – due to technological and cost constraints. Since 

the analytics layer consists of a data-driven model, a proxy for downhole sensor 

measurements can be easily incorporated into the model.  

The main purpose of the input layer is to aggregate data collected from various 

sources, convert it to a format which can be processed by the analytics layer. The surface 

data can be received from the EDR or surface sensors directly in the WITS format; MWD 

computers or a corresponding EDR can transmit the downhole sensor data in a WITS or 

WITSML format. Once the input layer receives all data, it is converted to an amenable 

format – arrays or data frames – which can be directly used by the analytics layer. The 

collected data is then transferred to the analytics layer for computation and calculation. A 

flow chart of input data is visualized in Figure E-2. Alternatively, MO drill’s input layer 

can retrieve data from an intermediate data aggregator if present on the rig. 
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Figure F-2: Flowchart of input dataflow on the rig to SMARTdrill 

F.2 ANALYTICS LAYER 

Data from the input layer is transferred to the analytical layer of SMARTdrill. This 

data can be readily analyzed by a python script (or any other programming language). The 

data are used to calculate optimal drilling parameters which are passed to the output layer. 

The SMARTdrill tool is self-contained; a processing unit present in this tool can be used 

to perform the calculations as described in the earlier chapter using the TVOPT or CMOPT 

model. The processing or computing power which can be embedded in a tool may be 

significantly lower than those available on the cloud. Hence algorithms which are 

computationally efficient will be preferred. With advances in technology, more powerful 

processing tools can be embedded in SMARTdrill – expanding its capabilities. The outputs 
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of the optimization model – optimal drilling parameters and any additional data can be 

passed to the output layer. 

 

F.3 OUTPUT LAYER 

Calculated results and other relevant data are passed to the output layer. Practically 

the SMARTdrill tool would be can be applied either as a recommender system or 

controlling system.  

The recommender system would advise the driller and engineer; specific settings 

of drilling operations parameters which would improve the current state of drilling using 

the TVOPT or CMLOPT model are displayed. This would require the output layer to 

communicate results to a visualization platform similar to the EDR (or the EDR itself if 

programmed to handle additional data). The role of this tool, in this case, would purely be 

advisory. The driller or engineer can choose to use these suggested drilling parameters 

ahead of the bit (Figure E-3). If accepted, these changes can be communicated to a tool 

such as the auto driller for implementation. 

 

 

Figure F-3: Flowchart for SMARTdrill to be used as a recommender system 
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A controlling system would require the output layer to automatically communicate 

the drilling parameters to the auto driller so that it can be automatically implemented. 

Retraining and implementation are completely handled by the tool when required (as 

discussed in Appendix E). This would result in the tool being used as a part of a completely 

automated drilling system. The driller and/or engineer can take up an observatory role 

stepping in and manually override the system if required (Figure E-4). 

 

Figure F-4: Flowchart of MO drill being used as a controlling system 

The output layer can encode data into the WITS (or WITSML) format to be passed 

to a server for storage. This can also include the models (ROP, TOB, MSE and vibrations), 

all calculated parameters, and optimal drilling parameters. This system of recording and 

storing this data can be useful for further analysis in the office or planning future wells. 
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