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Chapter 1

Introduction

Reinforcement Learning (RL) is a broad topic that has been studied for

decades. Though originated from a control perspective, it has substantively

and fruitfully interacted with other engineering and scientific disciplines. More

recently, with the exciting achievements of Deep Learning (DL), the combi-

nation of deep neural networks and RL has made unprecedented successes in

sophisticated real-world challenges in many areas such as biology, robotics and

natural language processing. Many state-of-the-art algorithms are proposed un-

der this framework such as Deep-Q-network [Mnih et al., 2015], policy-gradient

based method [Mnih et al., 2016], guided policy search [Levine and Koltun,

2013], adversarial training based imitation learning [Ho and Ermon, 2016].

Though the integration of RL and DL has a long history, there is

still significant space for improvement on existing literature, especially from

a probabilistic point of view. We will briefly go through the background

knowledge of RL tasks, and then look into how to boost deep RL algorithms

with the help of the deep probabilistic models.

The goal of a RL task is to learn how to map situations to actions so as

to maximize a numerical reward. A RL task is usually proposed under a Markov

1



Decision Process (MDP) framework defined by tuple (S,A, p, r), where the

state space S and action space A can be either continuous or discrete. The state

transition probability p : S× S×A→ [0,∞) represents the probability density

of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A.

The environment emits a bounded reward r : S × A → [rmin, rmax] on each

transition. Denoting the policy as a map from state to action π(a|s) : S→ A,

the objective function we want to maximize can be expressed as

J(π) =
∞∑
t=0

γtr(st,at), (1.1)

where γ is a discounting factor, s0 is the initial state, at is generated with

respect to policy π(a|s) and p(st+1|st,at) follows the transition probability

p. Since the trajectory is sampled based on the policy π(a|s), the cumulative

discounted return J(π) is noted as a function of π. Similarly, we can define

the value functions starting from any state or state-action pairs as follows:

V π(s) = Eπ
[ ∞∑
k=0

γkrt+k|st = s
]
, for all s ∈ S

and

Qπ(s,a) = Eπ
[ ∞∑
k=0

γkrt+k|st = s,at = a
]

By definition, the relationship between V π(s) andQπ(s,a) is V π(s) = Ea∼π(a|s)Q
π(s,a).

We further use ρπ(s) and ρπ(s,a) to denote the state and state-action marginals

of the trajectory distribution induced by policy π(a|s).

After introducing the notations and preliminary of classical RL setup,

we present two big categories of deep RL algorithms: value based algorithms
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and policy gradient based algorithms. Note that the boundary between them

can be pretty blurred. During the introduction, we will mark the highlights

where probabilistic models can be applied to make improvements, and we will

summarize those points at the end of the this Chapter.

1.1 Value based algorithm

Value based algorithms are always composed of two iterative steps:

policy evaluation and policy improvement.

Policy evaluation: For the policy evaluation part, we want to evaluate

V π(s) and Qπ(s,a) (here we mainly discuss the state-action value function

Q since that is more widely used), which can be obtained by either a Monte

Carlo (MC) estimation method or a Temporal Difference (TD) method. The

estimation via MC is straightforward as follows

Qπ(st,at) =
∞∑
t=0

γtr(st,at),

where (st,at) are on-policy samples, which means they are collected by running

the current policy π. Otherwise, one can use bootstrap to avoid sampling the

whole trajectory for policy evaluation with the help of a Bellman Equation:

Qπ(st,at) = r(st,at) + γEat+1∼π(at+1|st+1)Q
π(st+1,at+1).

By TD method, the policy evaluation can be achieved only with the next state

action tuple rather than the whole trajectory as needed by the MC method;

the trade-off between the MC and TD methods is a bias-variance trade-off.
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The MC method is an unbiased estimator while more samples are needed for a

single estimation. By contrast, the TD method is a biased estimator (the bias

comes from the function approximation of Qπ) but has a smaller variance.

Policy improvement: After evaluating the action-value function Qπ,

the policy can be naturally updated by π+(a|s) = arg maxaQ
π(s,a) where

π+ denotes the updated policy; otherwise, it can also be updated with respect

to the Boltzmann distribution of Qπ as in Haarnoja et al. [2018a], which is

updated by minimizing KL(π(a|s)|| eQ
π(s,a)

Z(s)
), where Z is a normalizing constant.

However, in the deep RL setting, the Qπ function is always modeled by a

neural network where the state-action pair is an input to the network. As

a result, when the state and action space are continuous, the Boltzmann

distribution induced by Qπ is no longer analytic. One naive way to overcome

this is to approximate the Boltzmann distribution by a multivariate Gaussian

distribution with a diagonal covariance matrix [Haarnoja et al., 2018a], which

may lead to unsatisfactory results. Now we highlight the first place where a

probabilistic model can be used to make improvements: 1. how to construct a

model to approximate a flexible distribution.

Deep-Q-learning (DQN) algorithm [Mnih et al., 2013] is proposed fol-

lowing these two steps, where the policy evaluation and policy improvement are

replaced by an action-value function iteration for efficiency; more specifically,

the action-value iteration follows the Bellman Optimality Equation:

Q∗(st,at) = r(st,at) + γE
[

arg max
a′∈A

Q∗(st+1,a
′)
]
.

4



Note that the argmax operator is the bottleneck of the DQN, and makes DQN

only applicable to the discrete-action space or low-dimensional continuous-

action space tasks. To overcome this challenge, Deep Deterministic Policy

Gradient algorithm (DDPG) [Lillicrap et al., 2015] proposes using a determinis-

tic map a = π(s) to approximate the action that maximize Q∗(s,a), since the

mapping π and optimal action-value function Q∗ are deterministic, the gradient

can be propagated. On the other hand, another feasible way is to approximately

solve the argmax problem by proposing a number of candidate actions and

take the argmax from them; one naive proposal is the uniform distribution,

which can be inefficient when action dimension is high [Sun et al., 2020]. We

highlight the second place where a probabilistic model can be applied: 2. how

to construct a diverse proposal policy for DQN based algorithm.

1.2 Policy gradient based algorithm

Policy gradient (PG) based algorithm aims to maximize the discounted

cumulative return (1.1) directly. Under the PG framework, a policy is always

modeled as a neural network πθ(a|s), and the parameters θ are updated via a

stochastic gradient descent based method [Bottou, 2012]. Based on the policy

gradient theorem of Sutton et al. [2000], we have

∇θJθ(π) =
∑
s

ρπ(s)Qπθ(s,a)∇θπ(a|s),

where ρπ(s) is the discounted state marginal distribution. Though a PG based

algorithm optimize (1.1) directly and has a straightforward implementation,
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it is notorious that the gradient estimator ∇θJθ(π) has a large variance due

to the nature of MC estimation. Our third highlight place is: 3. how can we

reduce the variance of a MC estimation with Bayesian methods.

1.3 Distributional Reinforcement Learning

Under the classic RL framework, the value functions V and Q are

modeled as scalars, which may not be able to model the uncertainty from the

environment entirely. For example, in the mushroom dataset from Dua and

Graff [2017], there are poisonous and edible mushrooms; the reward of eating

an edible mushroom is always +1, however, eating a poisonous one will have a

probability of p getting sick and receive a −1 reward, but also with probability

1− p of feeling good and receive a reward +1. In this case, assume sp as the

state of a poisonous mushroom, we will have

Q(sp, eat) =

{
+1 with probability 1− p
−1 with probability p

(1.2)

where the action-value function Q should be modeled as a random variable

rather than a scalar. Dabney et al. [2018b] proposes the distributional RL

framework that models the value function as a random variable. Under this

framework, the classical Bellman Equation is modified to a Distributional

Bellman Equation:

Zπ(s,a)
D
= R(s,a) + γZπ(s′,a′). (1.3)

where Zπ(s,a) is a random variable, the distributional version of Qπ(s,a).

Several papers apply this distributional RL framework on discrete-action space
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tasks [Dabney et al., 2018a,b], and Singh et al. [2020] combines distributional

RL with a deterministic policy. Our fourth place to make contribution is, 4.

how to apply the distributional RL framework with a stochastic policy on the

continuous-action space tasks.

1.4 Boosting deep reinforcement learning algorithms with
deep probabilistic models

In this section, we will summarize the ideas we mentioned in the previous

sections and explain in detail how to achieve those goals.

1. How to construct a model to approximate a flexible distribution.

Since we want to minimize the KL-divergence between our target policy and

the Boltzmann distribution of an action-value function, the target policy

should have the following two properties: 1). The policy should be flexible

to characterize multi-modality, skewness, correlations, etc. 2). The policy

should have a tractable or an approximate entropy expression so that the

KL-divergence can be optimized. With a hierarchical Bayesian construction,

Yin and Zhou [2018b] introduces a complex marginal distribution with a neural

network transformation, and proves an asymptotic lower bound for the entropy

of the complex distribution. We implement this idea under a RL framework,

and empirically demonstrate its effectiveness. We will elaborate this in Chapter

4.

2. How to construct a diverse proposal policy for DQN based algorithm.

One feasible way of applying a DQN based algorithm on the continuous-action
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space tasks is to propose reasonable candidate actions that potentially have large

action-values and choose the argmax over the candidate set rather than solving

a complex optimization problem. We approach this by proposing candidate

actions from a proposal policy that tries to balance between maximizing Q

greedily and being diverse. We defer this part to Chapter 5 as a potential

future work.

3. How can we reduce the variance of a MC estimation with Bayesian methods.

When evaluating MC estimation in Bayesian literature, it is common to control

the variance with a baseline whose expectation is easier to calculate or even

is a certain number. There are a number of papers working from various

aspects to make the policy gradient based algorithm more stable and efficient

[Maddison et al., 2017, Jang et al., 2017], but most of them are working on the

continuous-action cases. In Chapter 2, we propose a “try-and-see self-critic”

method to produce an unbiased and low-variance policy gradient estimator,

referred to as the ARSM gradient estimator. Further in Chapter 3, we design

a sample-efficient on-policy RL algorithm with the help of the ARSM gradient

estimator and demonstrate its efficacy on a set of benchmark tasks.

4. How to apply the distributional RL framework with a stochastic policy on

continuous-space tasks.

The difficulty of applying a distributional RL framework is fitting a distribu-

tional Bellman equation rather than the classical Bellman equation, which

requires distributional matching instead of scalar matching. Dabney et al.

[2018b], Bellemare et al. [2017a], Dabney et al. [2018a] propose methods to dis-
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cretize the value function by its value range or quantiles for the discrete-action

tasks; on the other hand, Singh et al. [2020] approaches this by applying a

generative network that does not require any prefixed discretization. Inspired

by Singh et al. [2020], we propose a distributional RL framework for stochastic

policy on the continuous-space tasks; combined with a flexible policy, the

proposed method achieves the state-of-art performance across a number of

benchmarks. We present this part in Chapter 4.
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Chapter 2

ARSM: Augment-REINFORCE-Swap-Merge

Gradient for Categorical Variables and Policy

Optimization

To address the challenge of backpropagating the gradient through cate-

gorical variables, we propose the augment-REINFORCE-swap-merge (ARSM)

gradient estimator that is unbiased and has low variance. ARSM first uses

variable augmentation, REINFORCE, and Rao-Blackwellization to re-express

the gradient as an expectation under the Dirichlet distribution, then uses vari-

able swapping to construct differently expressed but equivalent expectations,

and finally shares common random numbers between these expectations to

achieve significant variance reduction. Experimental results show ARSM closely

resembles the performance of the true gradient for optimization in univariate

settings; outperforms existing estimators by a large margin when applied to

categorical variational auto-encoders; and provides a “try-and-see self-critic”

variance reduction method for discrete-action policy gradient, which removes

the need of estimating baselines by generating a random number of pseudo

The content in this chapter was published in Yin et al. [2019]; I was mainly involved in
the reinforcement learning section, where I worked on designing the ARSM policy gradient
algorithm, finished the theoretical proof and conducted empirical experiments.

10



actions and estimating their action-value functions.

2.1 Introduction

The need to maximize an objective function, expressed as the expectation

over categorical variables, arises in a wide variety of settings, such as discrete

latent variable models Zhou [2014], Jang et al. [2017], Maddison et al. [2017]

and policy optimization for reinforcement learning (RL) with discrete actions

Sutton and Barto [1998], Weaver and Tao [2001], Schulman et al. [2015a], Mnih

et al. [2016], Grathwohl et al. [2018]. More specifically, let us denote zk ∈

{1, 2, . . . , C} as a univariate C-way categorical variable, and z = (z1, . . . , zK) ∈

{1, 2, . . . , C}K as a K-dimensional C-way multivariate categorical vector. In

discrete latent variable models, K will be the dimension of the discrete latent

space, each dimension of which can be further represented as a C-dimensional

one-hot vector. In RL, C represents the size of the discrete action space and z is

a sequence of discrete actions from that space. In even more challenging settings,

one may have a sequence of K-dimensional C-way multivariate categorical

vectors, which appear both in categorical latent variable models with multiple

stochastic layers, and in RL with a high dimensional discrete action space or

multiple agents, which may consist of as many as CK unique combinations at

each time step.

With f(z) and qφ(z) denoted as the reward function and distribution

for categorical z, respectively, we need to optimize parameter φ to maximize
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the expected reward as

E(φ) =
∫
f(z)qφ(z)dz = Ez∼qφ(z)[f(z)]. (2.1)

Here we consider both categorical latent variable models and policy optimization

for discrete actions, which arise in a wide array of real-world applications. A

number of unbiased estimators for backpropagating the gradient through

discrete latent variables have been recently proposed Tucker et al. [2017],

Grathwohl et al. [2018], Yin and Zhou [2019], Andriyash et al. [2018]. However,

they all mainly, if not exclusively, focus on the binary case (i.e., C = 2). The

categorical case (i.e., C ≥ 2) is more widely applicable but generally much more

challenging. In this paper, to optimize the objective in (2.1), inspired by the

augment-REINFORCE-merge (ARM) gradient estimator restricted for binary

variables [Yin and Zhou, 2019], we introduce the augment-REINFORCE-swap-

merge (ARSM) estimator that is unbiased and well controls its variance for

categorical variables.

The proposed ARSM estimator combines variable augmentation [Tanner

and Wong, 1987, Van Dyk and Meng, 2001], REINFORCE [Williams, 1992b]

in an augmented space, Rao-Blackwellization [Casella and Robert, 1996], and

a merge step that shares common random numbers between different but

equivalent gradient expectations to achieve significant variance reduction. While

ARSM with C = 2 reduces to the ARM estimator [Yin and Zhou, 2019], whose

merge step can be realized by applying antithetic sampling [Owen, 2013] in the

augmented space, the merge step of ARSM with C > 2 cannot be realized in
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this manner. Instead, ARSM requires distinct variable-swapping operations to

construct differently expressed but equivalent expectations under the Dirichlet

distribution before performing its merge step.

Experimental results on both synthetic data and several representative

tasks involving categorical variables are used to illustrate the distinct working

mechanism of ARSM. In particular, our experimental results on latent vari-

able models with one or multiple categorical stochastic hidden layers show

that ARSM provides state-of-the-art training and out-of-sample prediction

performance. Our experiments on RL with discrete action spaces show that

ARSM provides a “try-and-see self-critic” method to produce unbiased and

low-variance policy gradient estimates, removing the need of constructing base-

lines by generating a random number of pseudo actions at a given state and

estimating their action-value functions. These results demonstrate the effec-

tiveness and versatility of the ARSM estimator for gradient backpropagation

through categorical stochastic layers. Python code for reproducible research is

available at https://github.com/ARM-gradient/ARSM.

2.1.1 Related Work

For optimizing (2.1) for categorical z, the difficulty lies in developing a

low-variance and preferably unbiased estimator for its gradient with respect to

φ, expressed as ∇φE(φ). An unbiased but high-variance gradient estimator

that is universally applicable to (2.1) is REINFORCE [Williams, 1992b]. Using

the score function ∇φ log qφ(z) = ∇φqφ(z)/qφ(z), REINFORCE expresses the

13
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gradient as an expectation as

∇φE(φ) = Ez∼qφ(z)[f(z)∇φ log qφ(z)], (2.2)

and approximates it with Monte Carlo integration [Owen, 2013]. However, the

estimation variance with a limited number of Monte Carlo samples is often too

high to make vanilla REINFORCE a sound choice for categorical z.

To address the high-estimation-variance issue for categorical z, one often

resorts to a biased gradient estimator. For example, Maddison et al. [2017] and

Jang et al. [2017] relax the categorical variables with continuous ones and then

apply the reparameterization trick to estimate the gradients, reducing variance

but introducing bias. Other biased estimators for backpropagating through

binary variables include the straight-through estimator Hinton [2012], Bengio

et al. [2013] and the ones of Gregor et al. [2014], Raiko et al. [2014], Cheng et al.

[2018]. With biased gradient estimates, however, a gradient ascent algorithm

may not be guaranteed to work, or may converge to unintended solutions.

To keep REINFORCE unbiased while sufficiently reducing its variance,

a usual strategy is to introduce appropriate control variates, also known as

baselines [Williams, 1992b], into the expectation in (2.2) before performing

Monte Carlo integration [Paisley et al., 2012, Ranganath et al., 2014, Mnih

and Gregor, 2014, Gu et al., 2016a, Mnih and Rezende, 2016, Ruiz et al.,

2016, Kucukelbir et al., 2017, Naesseth et al., 2017]. For discrete z, Tucker

et al. [2017] and Grathwohl et al. [2018] improve REINFORCE by introducing

continuous relaxation based baselines, whose parameters are optimized by
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minimizing the sample variance of gradient estimates.

2.2 ARSM Gradient For Categorical Variables

Let us denote z ∼ Cat(σ(φ)) as a categorical variable such that

P (z = c |φ) = σ(φ)c = eφc
/∑C

i=1 e
φi , where φ := (φ1, . . . , φC) and σ(φ) :=

(eφ1 , . . . , eφC )/
∑C

i=1 e
φi is the softmax function. For the expectated reward

defined as

E(φ) := Ez∼Cat(σ(φ))[f(z)] =
∑C

i=1 f(i)σ(φ)i,

the gradient can be expressed analytically as

∇φcE(φ) = σ(φ)cf(c)− σ(φ)cE(φ) (2.3)

or expressed with REINFORCE as

∇φcE(φ) = Ez∼Cat(σ(φ))

[
f(z)(1[z=c] − σ(φ)c)

]
, (2.4)

where 1[·] is an indicator function that is equal to one if the argument is

true and zero otherwise. However, the analytic expression quickly becomes

intractable for a multivariate setting, and the REINFORCE estimator often

comes with significant estimation variance. While the ARM estimator of Yin

and Zhou [2019] is unbiased and provides significant variance reduction for

binary variables, it is restricted to C = 2 and hence has limited applicability.

Below we introduce the augment-REINFORCE (AR), AR-swap (ARS),

and ARS-merge (ARSM) estimators for a univariate C-way categorical variable,

and later generalize them to multivariate, hierarchical, and sequential settings.
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2.2.1 AR: Augment-REINFORCE

Let us denote π := (π1, . . . , πC) ∼ Dir(1C) as a Dirichlet distribution

whose C parameters are all ones. We first state three statistical properties

that can directly lead to the proposed AR estimator. We describe in detail in

Appendix A.1 how we actually arrive at the AR estimator, with these properties

obtained as by-products, by performing variable augmentation, REINFORCE,

and Rao-Blackwellization. Thus we are in fact reverse-engineering our original

derivation of the AR estimator to help concisely present our findings.

Property I. The categorical variable z ∼ Cat(σ(φ)) can be equivalently gen-

erated as

z := arg mini∈{1,...,C} πie
−φi , π ∼ Dir(1C).

Property II. E(φ) = Eπ∼Dir(1C)[f(arg mini πie
−φi)].

Property III. Eπ∼Dir(1C)[f(arg mini πie
−φi)Cπc] = E(φ)+σ(φ)cE(φ)−σ(φ)cf(c).

These three properties, Property III in particular, are previously un-

known to the best of our knowledge. They are directly linked to the AR

estimator shown below.

Theorem 1 (AR estimator). The gradient of E(φ) = Ez∼Cat(σ(φ))[f(z)], as

shown in (2.3), can be re-expressed as an expectation under a Dirichlet distri-

bution as
∇φcE(φ) = Eπ∼Dir(1C)[gAR(π)c],

gAR(π)c : = f(z)(1− Cπc),

z : = arg mini∈{1,...,C} πie
−φi .

(2.5)

16



Distinct from REINFORCE in (2.4), the AR estimator in (2.5) now

expresses the gradient as an expectation under a Dirichlet distributed random

noise. From this point of view, it is somewhat related to the reparameterization

trick [Kingma and Welling, 2013, Rezende et al., 2014], which is widely used

to express the gradient of an expectation under reparameterizable random

variables as an expectation under random noises. Thus one may consider AR as

a special type of reparameterization gradient, which, however, requires neither

z to be reparameterizable nor f(·) to be differentiable.

2.2.2 ARS: Augment-REINFORCE-Swap

Let us swap the mth and jth elements of π to define vector

πm�j := (πm�j
1 , . . . , πm�j

C ),

where πm�j
m = πj, π

m�j
j = πm, and ∀ c /∈ {m, j}, πm�j

c = πc. Another property

to be repeatedly used is:

Property IV. If π ∼ Dir(1C), then πm�j ∼ Dir(1C).

This leads to a key observation for the AR estimator in (2.5): swapping

any two variables of the probability vector π inside the expectation does not

change the expected value. Using the idea of sharing common random numbers

between different expectations to potentially significantly reduce Monte Carlo

integration variance [Owen, 2013], we propose to swap πc and πj in (2.5), where

j ∈ {1, . . . , C} is a reference category chosen independently of π and φ. This
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variable-swapping operation changes the AR estimator to

∇φcE(φ) = Eπ∼Dir(1C)[gAR(πc�j)c]

gAR(πc�j)c : = f(zc�j)(1− Cπj),

zc�j : = arg mini∈{1,...,C} π
c�j
i e−φi ,

(2.6)

where we have applied identity πc�jc = πj and Property IV. We refer to z defined

in (2.5) as the “true action,” and zc�j defined in (2.6) as the cth “pseudo action”

given j as the reference category. Note the pseudo actions satisfy the following

properties: zc�j = zj�c and zc�j = z if c = j, and the number of unique values

in {zc�j}c,j that are different from the true action z is between 0 and C − 1.

With (2.3), we have another useful property as

Property V.
∑C

c=1∇φcE(φ) = 0.

Combining it with the estimator in (2.6) leads to

Eπ∼Dir(1C)

[
1
C

∑C
c=1 gAR(πc�j)c

]
= 0. (2.7)

Thus we can utilize 1
C

∑C
c=1 gAR(πc�j)c as a baseline function that is nonzero

in general but has zero expectation under π ∼ Dir(1C). Subtracting (2.7) from

(2.6) leads to another unbiased estimator, with category j as the reference, as

∇φcE(φ) = Eπ∼Dir(1C)[gARS(π, j)c],

gARS(π, j)c := gAR(πc�j)c − 1
C

∑C
m=1 gAR(πm�j)m,

=
[
f(zc�j)− 1

C

∑C
m=1 f(zm�j)

]
(1− Cπj),

(2.8)

which is referred to as the AR-swap (ARS) estimator, due to the use of variable-

swapping in its derivation from AR.
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2.2.3 ARSM: Augment-REINFORCE-Swap-Merge

For ARS in (2.8), when the reference category j is randomly chosen from

{1, . . . , C} and hence is independent of π and φ, it is unbiased. Furthermore,

we find that it can be further improved, especially when C is large, by adding

a merge step to construct the ARS-merge (ARSM) estimator:

Theorem 2 (ARSM estimator). The gradient of E(φ) = Ez∼Cat(σ(φ))[f(z)]

with respect to φc, can be expressed as

∇φcE(φ) = Eπ∼Dir(1C)

[
gARSM(π)c

]
,

gARSM(π)c := 1
C

∑C
j=1 gARS(π, j)c

=
∑C

j=1

[
f(zc�j)− 1

C

∑C
m=1 f(zm�j)

]
( 1
C
− πj).

(2.9)

Note ARSM requires C(C − 1)/2 swaps to generate pseudo actions, the

unique number of which that differ from z is between 0 and C − 1; a naive

implementation requires O(C2) arg min operations, which, however, is totally

unnecessary, as in general it can at least be made below O(2C) and hence is

scalable even C is very large (e.g., C = 10, 000); please see Appendix A.2 and

the provided code for more details. Note if all pseudo actions zc�j are the same

as the true action z, then the gradient estimates will be zeros for all φc.

Corollary 3. When C = 2, both the ARS estimator in (2.8) and ARSM

estimator in (2.9) reduce to the unbiased binary ARM estimator introduced in

Yin and Zhou [2019].

Detailed derivations and proofs are provided in Appendix A.1. Note for

C = 2, Proposition 4 of Yin and Zhou [2019] shows that the ARM estimator
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is the AR estimator combined with an optimal baseline that is subject to an

anti-symmetric constraint. When C > 2, however, such type of theoretical

analysis becomes very challenging for both the ARS and ARSM estimators.

For example, it is even unclear how to define anti-symmetry for categorical

variables. Thus in what follows we will focus on empirically evaluating the

effectiveness of both ARS and ARSM for variance reduction.

2.3 ARSM Estimator for Multivariate, Hierarchical, and
Sequential Settings

This section shows how the proposed univariate ARS and ARSM estima-

tors can be generalized into multivariate, hierarchical, and sequential settings.

We summarize ARS and ARSM (stochastic) gradient ascent for various types

of categorical latent variables in Algorithms 2-4 of the Appendix.

2.3.1 ARSM for Multivariate Categorical Variables and Stochastic
Categorical Network

We generalize the univariate AR/ARS/ARSM estimators to multivariate

ones, which can backpropagate the gradient through a K dimensional vector

of C-way categorical variables as z = (z1, . . . , zK), where zk ∈ {1, . . . , C}.

We further generalize them to backpropagate the gradient through multiple

stochastic categorical layers, the tth layer of which consists of a Kt-dimensional

C-way categorical vector as zt = (zt1, . . . , ztKt)
′ ∈ {1, . . . , C}Kt . We defer all

the details to Appendix A.3 due to space constraint.
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Note for categorical variables, especially in multivariate and/or hier-

archical settings, the ARS/ARSM estimators may appear fairly complicated

due to their variable-swapping operations. Their implementations, however,

are actually relatively straightforward, as shown in Algorithms 2 and 3 of the

Appendix, and the provided Python code.

2.3.2 ARSM for Discrete-Action Policy Optimization

In RL with a discrete action space with C possible actions, at time t,

the agent with state st chooses action at ∈ {1, . . . , C} according to policy

πθ(at | st) := Cat(at;σ(φt)), φt := Tθ(st),

where Tθ(·) denotes a neural network parameterized by θ; the agent receives

award r(st, at) at time t, and state st transits to state st+1 according to

P(st+1 | st, at). With discount parameter γ ∈ (0, 1], policy gradient methods

optimize θ to maximize the expected reward J(θ) = EP,πθ [
∑∞

t=0 γ
tr(st, at)]

[Sutton and Barto, 1998, Sutton et al., 2000, Peters and Schaal, 2008, Schul-

man et al., 2015a]. With Q(st, at) := EP,πθ [
∑∞

t′=t γ
t′−tr(st′ , at′)] denoted as the

action-value functions, Q̂(st, at) :=
∑∞

t′=t γ
t′−tr(st′ , at′) as their sample esti-

mates, and ρπ(s) :=
∑∞

t=0 γ
tP(st = s | s0, πθ) as the unnormalized discounted

state visitation frequency, the policy gradient via REINFORCE [Williams,

1992b] can be expressed as

∇θJ(θ)=Eat∼πθ(at|st), st∼ρπ(s)[∇θ lnπθ(at|st)Q(st, at)].
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For variance reduction, one often subtracts state-dependent baselines b(st)

from Q̂(st, at) [Williams, 1992b, Greensmith et al., 2004]. In addition, several

different action-dependent baselines b(st, at) have been recently proposed Gu

et al. [2017], Grathwohl et al. [2018], Wu et al. [2018], Liu et al. [2018], though

their promise in appreciable variance reduction without introducing bias for

policy gradient has been questioned by Tucker et al. [2018].

Distinct from all previous baseline-based variance reduction methods,

in this paper, we develop both the ARS and ARSM policy gradient estimators,

which use the action-value functions Q(st, at) themselves combined with pseudo

actions to achieve variance reduction:

Proposition 4 (ARS/ARSM policy gradient). The policy gradient ∇θJ(θ)

can be expressed as

∇θJ(θ) = E$t∼Dir(1C), st∼ρπ(s)

[
∇θ
∑C

c=1 gtcφtc
]
, (2.10)

where $t = ($t1, . . . , $tC)′ and φtc is the cth element of φt = Tθ(st) ∈ RC;

under the ARS estimator, we have

gtc : = f c�jtt∆ ($t)(1− C$tjt),

f c�jtt∆ ($t) : = Q(st, a
c�jt
t )− 1

C

∑C
m=1Q(st, a

m�jt
t ),

ac�jtt : = arg mini∈{1,...,C}$
c�jt
ti e−φti , (2.11)

where jt ∈ {1, . . . , C} is a randomly selected reference category for time step t;

under the ARSM estimator, we have

gtc :=
∑C

j=1 f
c�j

t∆ ($t)(
1
C
−$tj). (2.12)
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Note as the number of unique actions among am�j
t is as few as one, in

which case the ARS/ARSM gradient is zero and there is no need at all to

estimate the Q function, and as many as C, in which case one needs to estimate

the Q function C times. Thus if the computation of estimating Q once is

O(1), then the worst computation for an episode that lasts T time steps before

termination is O(TC). Usually the number of distinct pseudo actions will

decrease dramatically as the training progresses. We illustrate this in Figure

A.4, where we show the trace of categorical variable’s entropy and number of

distinct pseudo actions that differ from the true action. Examining (2.11) and

(2.12) shows that the ARS/ARSM policy gradient estimator can be intuitively

understood as a “try-and-see self-critic” method, which eliminates the need of

constructing baselines and estimating their parameters for variance reduction.

To decide the gradient direction of whether increasing the probability of action

c at a given state, it compares the pseudo-action reward Q(st, a
c�j
t ) with the

average of all pseudo-action rewards {Q(st, a
m�j
t )}m=1,C . If the current policy

is very confident on taking action at at state st, which means φtat dominates

the other C − 1 elements of φt = Tθ(st), then it is very likely that am�jt
t = at

for all m, which will lead to zero gradient at time t. On the contrary, if the

current policy is uncertain about which action to choose, then more pseudo

actions that are different from the true action are likely to be generated. This

mechanism encourages exploration when the policy is uncertain, and balance

the tradeoff of exploration and exploitation intrinsically. It also explains our

empirical observations that ARS/ARSM tends to generate a large number of
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unique pseudo actions in the early stages of training, leading to fast convergence,

and significantly reduced number once the policy becomes sufficiently certain,

leading to stable performance after convergence.

Figure 2.1: Comparison of a variety of gradient estimators in maximizing (2.13).
The optimal solution is σ(φ) = (0, . . . , 1), which means z = C with probability
one. The reward is computed analytically by Ez∼Cat(σ(φ))[f(z)] with maximum
as 0.533. Rows 1, 2, and 3 show the trace plots of reward E[f(z)], the gradients
with respect to φ1 and φC , and the probabilities σ(φ)1 and σ(φ)C , respectively.
Row 4 shows the gradient variance estimation with 100 Monte Carlo samples
at each iteration, averaged over categories 1 to C.

2.4 Experimental Results

In this section, we use a toy example for illustration, demonstrate both

multivariate and hierarchical settings with categorical latent variable models,

and demonstrate the sequential setting with discrete-action policy optimization.

Comparison of gradient variance between various algorithms can be found in

Figures 2.1 and 2.3-A.3.
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2.4.1 Example Results on Toy Data

To illustrate the working mechanism of the ARSM estimator, we consider

learning φ ∈ RC to maximize

Ez∼Cat(σ(φ))[f(z)], f(z) := 0.5 + z/(CR), (2.13)

where z ∈ {1, . . . , C}. The optimal solution is σ(φ) = (0, . . . , 0, 1), which leads

to the maximum expected reward of 0.5 + 1/R. The larger the C and/or R

are, the more challenging the optimization becomes. We first set C = R = 30

that are small enough to allow existing algorithms to perform reasonably well.

Further increasing C or R will often fail existing algorithms and ARS, while

ARSM always performs almost as good as the true gradient when used in

optimization via gradient ascent. We include the results for C = 1, 000 and

10, 000 in Figures A.1 and A.2 of the Appendix.

We perform an ablation study of the proposed AR, ARS, and ARSM

estimators. We also make comparison to two representative low-variance

estimators, including the biased Gumbel-Softmax estimator [Jang et al., 2017,

Maddison et al., 2017] that applies the reparameterization trick after continuous

relaxation of categorical variables, and the unbiased RELAX estimator of

Grathwohl et al. [2018] that combines reparameterization and REINFORCE

with an adaptively estimated baseline. We compare them in terms of the

expected reward as
∑C

c=1 σ(φ)cf(c), gradients for φc, probabilities σ(φ)c, and

gradient variance. Note when C = 2, both ARS and ARSM reduce to the

ARM estimator, which has been shown in Yin and Zhou [2019] to outperform a
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wide variety of estimators for binary variables, including the REBAR estimator

of Tucker et al. [2017]. The true gradient in this example can be computed

analytically as in (2.3). All estimators in comparison use a single Monte Carlo

sample for gradient estimation. We initialize φc = 0 for all c and fix the

gradient-ascent stepsize as one.

As shown in Figure 2.1, without appropriate variance reduction, both

AR and REINFORCE either fail to converge or converge to a low-reward

solution. We notice RELAX for C = R = 30 is not that stable across different

runs; in this particular run, it manages to obtain a relatively high reward,

but its probabilities converge towards a solution that is different from the

optimum σ(φ) = (0, . . . , 0, 1). By contrast, Gumbel-Softmax, ARS, and ARSM

all robustly reach probabilities close to the optimum σ(φ) = (0, . . . , 0, 1) after

5000 iterations across all random trials. The gradient variance of ARSM is

about one to four magnitudes less than these of the other estimators, which

helps explain why ARSM is almost identical to the true gradient in moving σ(φ)

towards the optimum that maximizes the expected reward. The advantages of

ARSM become even clearer in more complex settings where analytic gradients

become intractable to compute, as shown below.

2.4.2 Categorical Variational Auto-Encoders

For optimization involving expectations with respect to multivariate

categorical variables, we consider a variational auto-encoder (VAE) with a

single categorical stochastic hidden layer. We further consider a categorical
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VAE with two categorical stochastic hidden layers to illustrate optimization

involving expectations with respect to hierarchical multivariate categorical

variables.

Following Jang et al. [2017], we consider a VAE with a categorical hidden

layer to model D-dimensional binary observations. The decoder parameterized

by θ is expressed as pθ(x | z) =
∏D

i=1 pθ(xi | z), where z ∈ {1, . . . , C}K is a

K-dimensional C-way categorical vector and pθ(xi | z) is Bernoulli distributed.

The encoder parameterized by φ is expressed as qφ(z |x) =
∏K

k=1 qφ(zk |x).

We set the prior as p(zk = c) = 1/C for all c and k. For optimization, we

maximize the evidence lower bound (ELBO) as

L(x) = Ez∼qφ(z |x)

[
ln pθ(x |z)p(z)

qφ(z |x)

]
. (2.14)

We also consider a two-categorical-hidden-layer VAE, whose encoder

and decoder are constructed as

qφ1:2
(z1, z2 |x) = qφ1

(z1 |x)qφ2
(z2 | z1),

pθ1:2(x | z1, z2) = pθ1(x | z1)pθ2(z1 | z2),

where z1, z2 ∈ {1, . . . , C}K . The ELBO is expressed as

L(x) = Eqφ1:2
(z1,z2 |x)

[
ln

pθ1
(x |z1)pθ2

(z1 |z2)p(z2)

qφ1
(z1 |x)qφ2

(z2 |z1)

]
. (2.15)

For both categorical VAEs, we set K = 20 and C = 10. We train them

on a binarized MNIST dataset as in van den Oord et al. [2017] by thresholding

each pixel value at 0.5. Implementations of the VAEs with one and two
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Table 2.1: Comparison of training and testing negative ELBOs (nats) on binarized
MNIST between ARSM and various gradient estimators.

Gradient estimator REINFORCE RELAX ST Gumbel-S. AR ARS ARSM Gumbel-S.-2layer ARSM-2layer

−ELBO (Training) 127.0 117.4 94.1 133.6 97.4 82.0 91.3 78.3

−ELBO (Testing) 127.6 118.7 96.4 135.0 101.4 86.7 98.3 89.5

Figure 2.2: Plots of negative ELBOs (nats) on binarized MNIST against
training iterations (analogous ones against times are shown in Figure A.5).
The solid and dash lines correspond to the training and testing respectively
(best viewed in color).

categorical hidden layers are summarized in Algorithms 2 and 3, respectively;

see the provided code for more details.

We consider the AR, ARS, and ARSM estimators, and include the

REINFORCE [Williams, 1992b], Gumbel-Softmax [Jang et al., 2017], and

RELAX [Grathwohl et al., 2018] estimators for comparison. We note that Jang

et al. [2017] has already shown Gumbel-Softmax outperforms a wide variety

of previously proposed estimators; see Jang et al. [2017] and the references

therein for more details.

We present the trace plots of the training and validation negative ELBOs

in Figure 2.2 and gradient variance in Figure A.3. The numerical values are
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summarized in Table 2.1. We use the Gumbel-Softmax code 1 to obtain the

results of the VAE with a single categorical hidden layer, and modify it with

our best effort for the VAE with two categorical hidden layers; we modify the

RELAX code 2 with our best effort to allow it to optimize VAE with a single

categorical hidden layer. For the single-hidden-layer VAE, we connect its latent

categorical layer z and observation layer x with two nonlinear deterministic

layers; for the two-hidden-layer VAE, we add an additional categorical hidden

layer z2 that is linearly connected to the first one. See Table A.1 of the

Appendix for detailed network architectures. In our experiments, all methods

use exactly the same network architectures and data, set the mini-batch size

as 200, and are trained by the Adam optimizer Kingma and Ba [2014], whose

learning rate is selected from {5, 1, 0.5} × 10−4 using the validation set.

The results in Table 2.1 and Figure 2.2 clearly show that for optimizing

the single-categorical-hidden-layer VAE, both ARS and ARSM estimators

outperform all the other ones in both training and testing ELBOs. In particular,

ARSM outperforms all the other estimators by a large margin. We also consider

Gumbel-Softmax by computing its gradient with 25 Monte Carlo samples,

making it run as fast as the provided ARSM code does per iteration. In this

case, both algorithms take similar time but ARSM achieves −ELBOs for the

training and testing sets as 94.6 and 100.6, respectively, while those of Gumbel-

Softmax are 102.5 and 103.6, respectively. The performance gain of ARSM can

1https://github.com/ericjang/gumbel-softmax
2https://github.com/duvenaud/relax
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be explained by both its unbiasedness and a clearly lower variance exhibited

by its gradient estimates in comparison to all the other estimators, as shown

in Figure A.3 of the Appendix. The results on the two-categorical-hidden-layer

VAE, which adds a linear categorical layer on top of the single-categorical-

hidden-layer VAE, also suggest that ARSM can further improve its performance

by adding more stochastic hidden layers and clearly outperforms the biased

Gumbel-Softmax estimator.

2.4.3 Maximum Likelihood Estimation for a Stochastic Categorical
Network

Denoting xl,xu ∈ R392 as the lower and upper halves of an MNIST

digit, respectively, we consider a standard benchmark task of estimating the

conditional distribution pθ0:2(xl |xu) [Raiko et al., 2014, Bengio et al., 2013, Gu

et al., 2016a, Jang et al., 2017, Tucker et al., 2017]. We consider a stochastic

categorical network with two stochastic categorical hidden layers, expressed as

xl ∼ Bernoulli(σ(Tθ0(b1))),

b1 ∼
∏20

c=1 Cat(b1c;σ(Tθ1(b2)[10(c−1)+(1:10)])),

b2 ∼
∏20

c=1 Cat(b2c;σ(Tθ2(xu)[10(c−1)+(1:10)])),

where both b1 and b2 are 20-dimensional 10-way categorical variables, Tθ(·)

denotes linear transform, Tθ2(xu)[10(c−1)+(1:10)] is a 10-dimensional vector con-

sisting of elements 10(c− 1) + 1 to 10c of Tθ2(xu) ∈ R200, Tθ1(b2) ∈ R200, and

Tθ0 ∈ R392. Thus we can consider the network structure as 392-200-200-392,

making the results directly comparable with these in Jang et al. [2017] for

30



Table 2.2: Comparison of the test negative log-likelihoods between ARSM and various
gradient estimators in Jang et al. [2017], for the MNIST conditional distribution
estimation benchmark task.

Gradient estimator ARSM ST Gumbel-S. MuProp

− log p(xl |xu) 58.3 ± 0.2 61.8 59.7 63.0

stochastic categorical network. We approximate log pθ0:2(xl |xu) with K Monte

Carlo samples as

log 1
K

∑K
k=1 Bernoulli(xl;σ(Tθ0(b

(k)
1 ))), (2.16)

where b
(k)
1 ∼

∏20
c=1 Cat(b

(k)
1c ;σ(Tθ1(b

(k)
2 )[10(c−1)+(1:10)])),

b
(k)
2 ∼

∏20
c=1 Cat(b

(k)
2c ;σ(Tθ2(xu)[10(c−1)+(1:10)])). We perform training with K =

1, which can also be considered as optimizing on a single-Monte-Carlo-sample

estimate of the lower bound of the log marginal likelihood. We use Adam

[Kingma and Ba, 2014], with the learning rate set as 10−4, mini-batch size as

100, and number of training epochs as 2000. Given the inferred point estimate

of θ0:2, we evaluate the accuracy of conditional density estimation by estimating

the negative log-likelihood − log pθ0:2(xl |xu) using (2.16), averaging over the

test set with K = 1000.

As shown in Table 2.2, optimizing a stochastic categorical network with

the ARSM estimator achieves the lowest test negative log-likelihood, outper-

forming all previously proposed gradient estimators on the same structured

stochastic networks, including straight through (ST) [Bengio et al., 2013] and

ST Gumbel-softmax [Jang et al., 2017] that are biased, and MuProp [Gu et al.,

2016a] that is unbiased.
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Figure 2.3: Top row: Moving average reward curves. Bottom row: Log-variance
of gradient estimator. In each plot, the solid lines are the median value of ten
independent runs (ten different random seeds for random initializations). The
opaque bars are 10th and 90th percentiles. Dashed straight lines in Cart Pole
and Lunar Lander represent task-completion criteria.

2.4.4 Discrete-Action Policy Optimization

The key of applying the ARSM policy gradient shown in (2.12) is

to provide, under the current policy πθ, the action-value functions’ sample

estimates Q̂(st, at) :=
∑∞

t′=t γ
t′−tr(st′ , at′) for all unique values in {ac�jt }c,j.

Thus ARSM is somewhat related to the vine method proposed in Schulman

et al. [2015a], which defines a heuristic rollout policy that chooses a subset of

the states along the true trajectory as the “rollout set,” samples K pseudo

actions uniformly at random from the discrete-action set at each state of the

rollout set, and performs a single rollout for each state-pseudo-action-pair to

estimate its action-value function Q. ARSM chooses its rollout set in the same

manner, but is distinct from the vine method in having a rigorously derived

rollout policy: it swaps the elements of $t ∼ Dir(1C) to generate pseudo

actions if state st belongs to the rollout set; the number of unique pseudo

32



actions that are different from the true action at is a random number, which is

positively related to the uncertainty of the policy and hence often negatively

related to its convergence; and a single rollout is then performed for each of

these unique pseudo actions to estimate its Q.

As ARSM requires the estimation of Q function for each unique state-

pseudo-action pair using Monte Carlo rollout, it could have high computational

complexity if (1) the number of unique pseudo actions is large, and (2) each

rollout takes many expensive steps (interactions with the environments) before

termination. However, there exist ready solutions and many potential ones.

As given a true trajectory, all the state-pseudo-action rollouts of ARSM can

be independently simulated and hence all pseudo-action related Q’s can be

estimated in an embarrassingly parallel manner. Furthermore, in addition to

Monte Carlo estimation, we can potentially adapt for ARSM a wide variety

of off-the-shelf action-value function estimation methods [Sutton and Barto,

1998], to either accelerate the estimation of Q or further reduce the variance

(though possibly at the expense of introducing bias). In our experiment, for

simplicity and clarity, we choose to use Monte Carlo estimation to obtain Q̂ for

both the true trajectory and all state-pseudo-action rollouts. The results for

RELAX and A2C are obtained by running the code provided by Grathwohl

et al. [2018]3.

We apply the ARSM policy gradient to three representative RL tasks

3https://github.com/wgrathwohl/BackpropThroughTheVoidRL
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with discrete actions, including the Cart Pole, Acrobot, and Lunar Lander

environments provided by OpenAI Gym [Brockman et al., 2016], and compare it

with advantage actor-critic algorithm (A2C) [Sutton et al., 2000] and RELAX

[Grathwohl et al., 2018]. We report the moving-average rewards and the

estimated log-variance of the gradient estimator at every episode; for each

episode, the reward score is obtained by running the updated policy on a new

random environment; and the variance is obtained by first applying exponential

moving averages to the first and second moments of each neural network

parameter with decay 0.99, and then taking the average of the estimated

variances of all neural network parameters.

Shown in Figure 2.3 are the mean rewards over the last 100 steps; the

opaque bar indicates 10th and 90th percentiles obtained by ten independent runs

for each method (using 10 different random seeds for random initializations);

the solid line is the median value of these ten independent runs. ARSM

outperform both baselines in all three tasks in terms of stability, moving

average rewards, and log-variance of gradient estimator. All methods are cross

validated by optimizers {Adam Optimizer, RMSProp Optimizer} and learning

rates {1, 3, 10, 30} × 10−3. Both the policy and critic networks for A2C and

RELAX have two 10-unit hidden layers with ReLU activation functions [Nair

and Hinton, 2010]. The discount factor γ is 0.99 and entropy term is 0.01.

The policy network of ARSM is the same as that of A2C and RELAX, and

the maximum number of allowed state-pseudo-action rollouts of ARSM is set

as 16, 64, and 1024 for Cart Pole, Acrobot, and Lunar Lander, respectively;
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see Algorithm 4 and the provided code for more details. Using our current

implementation that has not been optimized to fully take the advantage of

parallel computing, to finish the number of episodes as in Figure 2.3, ARSM

on average takes 677, 425, and 19050 seconds for CartPole, Acrobot, and

LunarLander, respectively. For comparison, for these three tasks, RELAX on

average takes 139, 172, and 3493 seconds and A2C on average takes 92, 120,

and 2708 seconds.

2.5 Conclusion

To backpropagate the gradients through categorical stochastic layers,

we propose the augment-REINFORCE-swap-merge (ARSM) estimator that

is unbiased and exhibits low variance. The performance of ARSM is almost

identical to that of the true gradient when used for optimization involving a

C-way categorical variable, even when C is very large (such as C = 10, 000).

For multiple C-way categorical variables organized into a single stochastic

layer, multiple stochastic layers, or a sequential setting, the ARSM estimator

clearly outperforms state-of-the-art methods, as shown in our experimental

results for both categorical latent variable models and discrete-action policy

optimization. We attribute the outstanding performance of ARSM to both

its unbiasedness and its ability to control variance by simply combing its

reward function with randomly generated pseudo actions, where the number of

unique pseudo actions is positively related to the uncertainties of categorical

distributions and hence negatively correlated to how well the optimization
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algorithm has converged; there is no more need to construct separate baselines

and estimate their parameters, which also help make the optimization more

robust. Some natural extensions of the proposed ARSM estimator include

applying it to reinforcement learning with high-dimensional discrete-action

spaces or multiple discrete-action agents, and various tasks in natural language

processing such as sentence generation and machine translation.
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Chapter 3

Discrete Action On-Policy Learning with

Action-Value Critic

Reinforcement learning (RL) in discrete action space is ubiquitous in

real-world applications, but its complexity grows exponentially with the action-

space dimension, making it challenging to apply existing on-policy gradient

based deep RL algorithms efficiently. To effectively operate in multidimensional

discrete action spaces, we construct a critic to estimate action-value functions,

apply it on correlated actions, and combine these critic estimated action values

to control the variance of gradient estimation. We follow rigorous statistical

analysis to design how to generate and combine these correlated actions,

and how to sparsify the gradients by shutting down the contributions from

certain dimensions. These efforts result in a new discrete action on-policy RL

algorithm that empirically outperforms related on-policy algorithms relying

on variance control techniques. We demonstrate these properties on OpenAI

Gym benchmark tasks, and illustrate how discretizing the action space could

benefit the exploration phase and hence facilitate convergence to a better local

The content in this chapter was published in Yue et al. [2020a]; I brought up the
algorithm, and conducted experiments for CARSM algorithm. Dr. Zhou and I worked
together to come up with the toy example for demonstrations.
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optimal solution thanks to the flexibility of discrete policy.

3.1 Introduction

There has been significant recent interest in using model-free reinforce-

ment learning (RL) to address complex real-world sequential decision making

tasks [Silver et al., 2018, MacAlpine and Stone, 2017, OpenAI, 2018]. With

the help of deep neural networks, model-free deep RL algorithms have been

successfully implemented in a variety of tasks, including game playing [Silver

et al., 2016, Mnih et al., 2013] and robotic controls [Levine et al., 2016]. Among

those model-free RL algorithms, policy gradient (PG) algorithms are a class

of methods that parameterize the policy function and apply gradient-based

methods to make updates. It has been shown to succeed in solving a range

of challenging RL tasks [Mnih et al., 2016, Schulman et al., 2015a, Lillicrap

et al., 2015, Schulman et al., 2017, Wang et al., 2016, Haarnoja et al., 2018a,

Liu et al., 2017b]. Despite directly targeting at maximizing the expected

rewards, PG suffers from problems including having low sample efficiency

[Haarnoja et al., 2018a] for on-policy PG algorithms and undesirable sensitivity

to hyper-parameters for off-policy algorithms [Lillicrap et al., 2015].

On-policy RL algorithms use on-policy samples to estimate the gradi-

ents for policy parameters, as routinely approximated by Monte Carlo (MC)

estimation that often comes with large variance. A number of techniques have

sought to alleviate this problem for continuous action spaces [Gu et al., 2016b,

Grathwohl et al., 2018, Liu et al., 2017a, Wu et al., 2018], while relatively
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fewer have been proposed for discrete action spaces [Grathwohl et al., 2018,

Yin et al., 2019]. In practice, RL with discrete action space is ubiquitous in

fields including recommendation system [Dulac-Arnold et al., 2015], bidding

system [Hu et al., 2018], gaming [Mnih et al., 2013], to name a few. It plays

an important role in the early stage of RL development [Sutton and Barto,

1998], and many value-based algorithms [Watkins and Dayan, 1992, Mnih

et al., 2013, Van Hasselt et al., 2016] can handle such setup when the action

space is not large. However, when the action space is multidimensional, the

number of unique actions grows exponentially with the dimension, leading to

an intractable combinatorial optimization problem at every single step that

prevents the application of most value-based RL methods.

Under the setting of high-dimensional discrete action space, policy-

gradient based algorithms can still be applied if we assume the joint distribution

over discrete actions to be factorized across dimensions, so that the joint policy

is still tractable [Jaśkowski et al., 2018, Andrychowicz et al., 2018]. Then the

challenge boils down to obtaining a gradient estimator that can well control its

variance. Though many variance reduction techniques have been proposed for

discrete variables [Jang et al., 2017, Tucker et al., 2017, Yin and Zhou, 2018a,

Raiko et al., 2014], they either provide biased gradients or are not applicable

to multidimensional RL settings.

In this paper, we propose Critic-ARSM (CARSM) policy gradient, which

improves the recently proposed augment-REINFORCE-swap-merge (ARSM)

gradient estimator of Yin et al. [2019] and integrates it with action-value
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function evaluation, to accomplish three-fold effects: 1) CARSM sparsifies the

ARSM gradient and introduces an action-value Critic to work with multidi-

mensional discrete actions spaces; 2) By estimating the rewards of a set of

correlated discrete actions via the proposed action-value Critic, and combining

these rewards for variance reduction, CARSM achieves better sample efficiency

compared with other variance-control methods such as A2C [Mnih et al., 2016]

and RELAX [Grathwohl et al., 2018]; 3) CARSM can be easily applied to other

RL algorithms using REINFORCE or its variate as the gradient estimator.

Although we mainly focus on on-policy algorithms, our algorithm can also be

potentially applied to off-policy algorithms with the same principle; we leave

this extension for future study.

The paper proceeds as follows. In Section 2, we briefly review existing

on-policy learning frameworks and variance reduction techniques for discrete

action space. In Section 3, we introduce CARSM from both theoretical and

practical perspectives. In Section 4, we first demonstrate the potential benefits

of discretizing a continuous control task compared with using a diagonal

Gaussian policy, then show the high sample efficiency of CARSM from an

extensive range of experiments and illustrate that CARSM can be plugged into

state-of-arts on-policy RL learning frameworks such as Trust Region Policy

Optimization (TRPO) [Schulman et al., 2015a]. Python (TensorFlow) code is

available at https://github.com/yuguangyue/CARSM.
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3.2 Preliminaries

RL is often formulated as learning under a Markov decision process

(MDP). Its action space A is dichotomized into either discrete (e.g., A =

{1, . . . , 100}) or continuous (e.g., A = [−1, 1]). In an MDP, at discrete time

t ≥ 0, an agent in state st ∈ S takes action at ∈ A, receives instant reward

r(st, at) ∈ R, and transits to next state st+1 ∼ P(· | st, at). Let π : S 7→ P(A)

be a mapping from the state to a distribution over actions. We define the

expected cumulative rewards under π as

J(π) = Eπ [
∑∞

t=0 γ
tr(st, at)] , (3.1)

where γ ∈ (0, 1] is a discount factor. The objective of RL is to find the

(sub-)optimal policy π∗ = arg maxπ J(π). In practice, it is infeasible to search

through all policies and hence one typically resorts to parameterizing the policy

πθ with θ.

3.2.1 On-Policy Optimization

We introduce on-policy optimization methods from a constrained opti-

mization point of view to unify the algorithms we will discuss in this article.

In practice, we want to solve the following constrained optimization problem

as illustrated in Schulman et al. [2015a]:

maxθ Eπθold

[
πθ(at|st)
πθold

(at|st)Q
πθold (st, at)

]
subject to D(θold,θ) ≤ ε,

where Qπθ(st, at) = Eπθ [
∑

t′=t γ
t′−tr(s′t, a

′
t)] is the action-value function and

D(·, ·) is some metric that measures the closeness between θold and θ.
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A2C Algorithm: One choice of D(·, ·) is the L2 norm, which will

lead us to first-order gradient ascent. By applying first-order Taylor ex-

pansion on πθ around θold, the problem can be re-written as maximizing

Eπθold
[Qπθold (st, at)]+∇θJ(πθold

)T (θ−θold) subject to ||θ−θold||2 ≤ ε, which will

result in a gradient ascent update scheme; note ∇θJ(πθold
) := ∇θJ(πθ)|θ=θold

.

Based on REINFORCE [Williams, 1992a], the gradient of the original objective

function (3.1) can be written as

∇θJ(πθ) = Eπθ [
∑∞

t=0Q
πθ(st, at)∇θ log πθ(at|st)] . (3.2)

However, a naive Monte Carlo estimation of (3.2) has large variance that

needs to be controlled. A2C algorithm [Mnih et al., 2016] adds value function

V πθ(s) := Eat∼πθ [Qπθ(st, at)] as a baseline and obtains a low-variance estimator

of ∇θJ(πθ) as

gA2C = Eπθ [
∑∞

t=0A
πθ(st, at)∇θ log πθ(at|st)] , (3.3)

where Aπθ(st, at) = Qπθ(st, at)− V πθ(st) is called the Advantage function.

Trust Region Policy Optimization: The other choice of metric

D(·, ·) could be KL-divergence, and the update from this framework is in-

troduced as TRPO [Schulman et al., 2015a]. In practice, this constrained

optimization problem is reformulated as follows:

max
θ
∇θJ(πθold

)T (θ − θold)

subject to 1
2
(θold − θ)TH(θold − θ) ≤ δ,

where H is the second-order derivative ∇2
θDKL(θold||θ)|θ=θold

. An analytic

update step for this optimization problem can be expressed as

θ = θold +
√

2δ
dTH−1d

d, (3.4)
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where d = H−1∇θJ(πθold
), and in practice the default choice of ∇θJ(πθold

) is

gA2C as defined at (3.3).

3.2.2 Variance Control Techniques

Besides the technique of using state-dependent baseline to reduce vari-

ance as in (3.3), two recent works propose alternative methods for variance

reduction in discrete action space settings. For the sake of space, we defer to

Grathwohl et al. [2018] for the detail about the RELAX algorithm and briefly

introduce ARSM here.

ARSM Policy Gradient: The ARSM gradient estimator can be

used to backpropagate unbiased and low-variance gradients through a sequence

of unidimensional categorical variables [Yin et al., 2019]. It comes up with a

reparametrization formula for discrete random variable, and combines it with

a parameter-free self-adjusted baseline to achieve variance reduction.

Instead of manipulating on policy parameters θ directly, ARSM turns

to reduce variance on the gradient with respect to the logits φ, before back-

propagating it to θ using the chain rule. Let us assume

πθ(at | st) = Categorical(at |σ(φt)), φt := Tθ(st),

where σ(·) denotes the softmax function and Tθ(·) ∈ RC denotes a neural

network, which is parameterized by θ and has an output dimension of C.

Denote $c�j as the vector obtained by swapping the cth and jth

elements of vector $, which means $c�j
j = $c, $

c�j
c = $j, and $c�j

i = $i if
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i /∈ {c, j}. Following the derivation from Yin et al. [2019], the gradient with

respect to φtc can be expressed as

∇φtcJ(φ0:∞) = EP(st | s0,πθ)P(s0)

{
γtE$t∼Dir(1C) [gtc]

}
,

gtc :=
C∑
j=1

[
Q(st, a

c�j
t )− 1

C

C∑
m=1

Q(st, a
m�j
t )

](
1

C
−$tj

)
,

where P(st | s0, πθ) is the marginal form of
∏t−1

t′=0 P(st′+1 | st′ , at′)Categorical(at′ ;σ(φt′)),

$t ∼ Dir(1C), and ac�jt := arg mini∈{1,...,C}$
c�j
ti e−φti . In addition, ac�jt is

called a pseudo action to differentiate it from the true action at =: arg mini∈{1,...,C}$tie
−φti .

Applying the chain rule leads to ARSM policy gradient:

gARSM =
∑∞

t=0

∑C
c=1

∂J(φ0:∞)
∂φtc

∂φtc
∂θ

= Est∼ρπ,γ(s)

{
E$t∼Dir(1C)

[
∇θ
∑C

c=1 gtcφtc

]}
,

where ρπ,γ(s) :=
∑∞

t=0 γ
tP(st = s | s0, πθ) is the unnormalized discounted state

visitation frequency.

In Yin et al. [2019], Q(st, a
c�j
t ) are estimated by MC integration, which

requires multiple MC rollouts at each timestep if there are pseudo actions that

differ from the true action. This estimation largely limits the implementation

of ARSM policy gradient to small action space due to the high computation

cost. The maximal number of unique pseudo actions grows quadratically with

the number of actions along each dimension and a long episodic task will result

in more MC rollouts too. To differentiate it from the new algorithm, we refer

to it as ARSM-MC.
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3.3 CARSM Policy Gradient

In this section, we introduce Critic-ARSM (CARSM) policy gradient

for multidimensional discrete action space. CARSM improves ARSM-MC in

the following two aspects: 1. ARSM-MC only works for unidimensional RL

settings while CARSM generalizes it to multidimensional ones with sparsified

gradients. 2. CARSM can be applied to more complicated tasks as it employs

an action-value function critic to remove the need of running multiple MC

rollouts for a single estimation, which largely improves the sample efficiency.

For an RL task with K-dimensional C-way discrete action space, we

assume different dimensions atk ∈ {1, . . . , C} of the multidimensional discrete

action at = (at1, . . . , atK) are independent given logits φt at time t, that is

at1⊥at2 · · · ⊥atK |φt. For the logit vector φt ∈ RKC , which can be decomposed

as φt = (φ′t1, . . . ,φ
′
tK)′, φtk = (φtk1, . . . , φtkC)′, we assume

P (at |φt) =
∏K

k=1 Categorical(atk;σ(φtk)).

Theorem 5 (Sparse ARSM for multidimensional discrete action space). The

element-wise gradient of J(φ0:∞) with respect to φtkc can be expressed as

∇φtkcJ(φ0:∞) = EP(st | s0,πθ)P(s0)

{
γtEΠt∼

∏K
k=1 Dir($tk;1C)[gtkc]

}
,

where $tk = ($tk1, . . . , $tkC)′ ∼ Dir(1C) is the Dirichlet random vector for
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dimension k, state t and

gtkc :=

{
0, if ac�jtk = atk for all (c,j)∑C

j=1 [∆c,j(st,at)]
(

1
C
−$tkj

)
, otherwise

∆c,j(st,at) := Q(st,a
c�j
t )− 1

C

∑C
m=1 Q(st,a

m�j
t ),

ac�jt := (ac�jt1 , . . . , ac�jtK )′,

ac�jtk := arg mini∈{1,...,C}$
c�j

tki e
−φtki .

We defer the proof to Appendix B.1. One difference from the original

ARSM [Yin et al., 2019] is the values of gtkc, where we obtain a sparse estimation

that shutdowns the kth dimension if ac�jtk = atk for all (c, j) and hence there is

no more need to calculate ∇θφtkc for all c belonging to dimension k at time t.

One immediate benefit from this sparse gradient estimation is to reduce the

noise from that specific dimension because the Q function is always estimated

with either MC estimation or Temporal Difference (TD) [Sutton and Barto,

1998], which will introduce variance and bias, respectively.

In ARSM-MC, the action-value function is estimated by MC rollouts.

Though it returns unbiased estimation, it inevitably decreases the sample

efficiency and prevents it from applying to more sophisticated tasks. Therefore,

CARSM proposes using an action-value function critic Q̂ω parameterized by

ω to estimate the Q function. Replacing Q with Q̂ω in Theorem 5, we obtain

ĝtkc ≈ gtkc as the empirical estimation of ∇φtkcJ(π), and hence the CARSM

estimation for ∇θJ(π) =
∑∞

t=0

∑K
k=1

∑C
c=1

∂J(φ0:∞)
φtkc

φtkc
∂θ

becomes

ĝCARSM = ∇θ
∑

t

∑K
k=1

∑C
c=1 ĝtkcφtkc.
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Note the number of unique values in {ac�jt }c,j that differ from the true action

at is always between 0 and C(C − 1)/2− 1, regardless of how large K is. The

dimension shutdown property further sparsifies the gradients, removing the

noise of the dimensions that have no pseudo actions.

Design of Critic: A practical challenge of CARSM is that it is noto-

riously hard to estimate action-value functions for on-policy algorithm because

the number of samples are limited and the complexity of the action-value

function quickly increases with dimension K. A natural way to overcome the

limitation of samples is the reuse of historical data, which has been successfully

implemented in previous studies [Gu et al., 2016b, Lillicrap et al., 2015]. The

idea is to use the transitions {s`, r`,a`, s′`}’s from the replay buffer to construct

target values for the action-value estimator under the current policy. More

specifically, we can use one-step TD to rewrite the target value of critic Q̂ω

network with these off-policy samples as

yoff
` = r(s`,a`) + γEã∼π(· | s′`)Q̂ω(s′`, ã), (3.5)

where the expectation part can be evaluated with either an exact computation

when the action space size CK is not large, or with MC integration by drawing

random samples from ã ∼ πθ(· | s′) and averaging Q̂ω(s′, ã) over these random

samples. This target value only uses one-step estimation, and can be extended

to n-step TD by adding additional importance sampling weights.

Since we have on-policy samples, it is natural to also include them to
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construct unbiased targets for Q̂ω(st, at):

yon
t =

∑∞
t′=t γ

t′−tr(st′ ,at′).

Then we optimize parameters ω by minimizing the Bellman error between the

targets and critic as

∑L
`=0[yoff

` − Q̂ω(s`,a`)]
2 +

∑T
t=0[yon

t − Q̂ω(st,at)]
2,

where L is the number of off-policy samples and T is the number of on-policy

samples. In practice, the performance varies with the ratio between L and

T , which reflects the trade-off between bias and variance. We choose L = T ,

which is found to achieve good performance across all tested RL tasks.

Target network update: Another potential problem of CARSM is

the dependency between the action-value function and policy. Though CARSM

is a policy-gradient based algorithm, the gradient estimation procedure is

closely related with the action-value function, which may lead to divergence of

the estimation as mentioned in previous studies [Mnih et al., 2016, Lillicrap

et al., 2015, Bhatnagar et al., 2009, Maei et al., 2010]. Fortunately, this issue

has been addressed, to some extent, with the help of target network update

[Mnih et al., 2013, Lillicrap et al., 2015], and we borrow that idea into CARSM

for computing policy gradient. In detail, we construct two target networks

corresponding to the policy network and Q critic network, respectively; when

computing the target of critic network in (3.5), instead of using the current

policy network and Q critic, we use a smoothed version of them to obtain the
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target value, which can be expressed as

yoff
` = r(s`,a`) + γEã∼π′(· | s′`)Q

′
ω(s′`, ã),

where π′ and Q′ω denote the target networks. These target networks are

updated every episode in a “soft” update manner, as in Lillicrap et al. [2015],

by

ωQ
′ ← τωQ + (1− τ)ωQ

′
, θπ

′ ← τθπ + (1− τ)θπ
′
,

which is an exponential moving average of the policy network and action value

function network parameters, with τ as the smoothing parameter.

Annealing on entropy term: In practice, maximizing the maximum

entropy (ME) objective with an annealing coefficient is often a good choice

to encourage exploration and achieve a better sub-optimal solution, and the

CARSM gradient estimator for ME would be

gME
CARSM = gCARSM + λ

∑K
k=1∇θH(πθ(at|st)),

where H(·) denotes the entropy term and λ is the annealing coefficient. The

entropy term can be expressed explicitly because π is factorized over its

dimensions and there are finite actions along each dimension.

Delayed update: As an accurate critic plays an important role for

ARSM to estimate gradient, it would be helpful to adopt the delayed update

trick of Fujimoto et al. [2018]. In practice, we update the critic network several

times before updating the policy network.
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In addition to the Python (TensorFlow) code in the Supplementary

Material, we also provide detailed pseudo code to help understand the imple-

mentation of CARSM in Appendix B.3.

3.4 Experiments

Our experiments aim to answer the following questions: (a) How does

the proposed CARSM algorithm perform when compared with ARSM-MC

(when ARSM-MC is not too expensive to run)? (b) Is CARSM able to efficiently

solve tasks with a large discrete action space? (c) Does CARSM have better

sample efficiency than the algorithms, such as A2C and RELAX, that have

the same idea of using baselines for variance reduction? (d) Can CARSM be

integrated into more sophisticated RL learning frameworks such as TRPO to

achieve an improved performance? Since we run trials on some discretized

continuous control tasks, another fair question would be: (e) Will discretization

help learning? If so, what are possible explanations?

We consider benchmark tasks provided by OpenAI Gym classic-control

and MuJoCo simulators [Todorov et al., 2012]. We compare the proposed

CARSM with ARSM-MC [Yin et al., 2019], A2C [Mnih et al., 2016], and

RELAX [Grathwohl et al., 2018]; all of them rely on introducing baseline

functions to reduce gradient variance, making it fair to compare them against

each other. We then integrate CARSM into TRPO by replacing its A2C gradient

estimator for ∇θJ(θ). Performance evaluation show that a simple plug-in of

CARSM estimator can bring the improvement. Details on experimental settings
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Figure 3.1: left panel: Change of policy over iterations in a single random trial
between Gaussian policy (left) and discrete policy (right) on a bimodal-reward
toy example. right panel: Average density on each action along with the
training iteration between Gaussian and discrete policies for 100 random trials.
Under this setting, the Gaussian policy fails to converge to the global optimum
while discrete policy always finds the global optimum.

can be found in Appendix B.2.2.

On our experiments with tasks in continuous control domain, we

discretize the continuous action space uniformly to get a discrete action

space. More specifically, if the action space is A = [−1, 1]K , and we dis-

cretize it to C actions at each dimension, the action space would become

Ã = {−C+1
C−1

, −C+3
C−1

, . . . , C−1
C−1
}K .

There are two motivations of discretizing the action space. First, Mu-

JoCo tasks are a set of standard comparable tasks that naturally have multidi-

mensional action spaces, which is the case we are interested in for CARSM.

Second, as illustrated in Tang and Agrawal [2019], discrete policy is often more

expressive than diagonal-Gaussian policy, leading to better exploration. We

will illustrate this point by experiments.
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Figure 3.2: top row: Performance curves for discrete domains. Comparison
between: A2C, RELAX, ARSM-MC, and CARSM. We show the cumulative
rewards during training, moving averaged across 100 epochs; the curves show
the mean ± std performance across 5 random seeds. bottom row: Perfor-
mance curves on CartPole with very large discrete action space. Comparison
between: A2C and CARSM over a range of different discretization scale
C ∈ {101, 501, 1001}. We show the cumulative rewards during training, moving
averaged across 100 epochs; the curves show the mean± std performance across
5 random seeds.

3.4.1 Motivation and Illustration

One distinction between discrete and Gaussian policies is that a discrete

policy can learn multi-modal and skewed distributions while a Gaussian policy

can only support uni-modal, symmetric, and bell-shaped distributions. This

intrinsic difference could lead to significantly difference on exploration, as

reflected by the toy example presented below, which will often lead to different

sub-optimal solutions in practice.

To help better understand the connections between multi-modal policy

and exploration, we take a brief review of RL objective function from an

energy-based distribution point of view. For a bandit problem with reward
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function r(a) : A → R, we denote the true reward induced distribution as

p(a) ∝ er(a). The objective function in (3.1) can be reformulated as

Ea∼πθ(a)[r(a)] = −KL(πθ(a)||p(a))−H(πθ).

The KL-divergence term matches the objective function of variational inference

(VI) [Blei et al., 2017] in approximating p(a) with distribution πθ(a), while the

second term is the entropy of policy πθ. Therefore, if we use maximum entropy

objective [Haarnoja et al., 2017], which is maximizing Ea∼πθ(a)[r(a)]+H(πθ), we

will get an VI approximate solution. Suppose p(a) is a multi-modal distribution,

due to the inherent property of VI [Blei et al., 2017], if πθ is a Guassian

distribution, it will often underestimate the variance of p(a) and capture only

one density mode. By contrast, if πθ is a discrete distribution, it can capture

the multi-modal property of p(a), which will lead to more exploration before

converging to a more deterministic policy.

We design a simple toy example to reflect these differences. We restrict

the action space to [−1, 1], and the true reward function is a concatenation of

two quadratic functions (as shown in Figure B.1 left panel red curves) that

intersect at a middle point m. We fix the left sub-optimal point as the global

optimal one and control the position of m to get tasks with various difficulty

levels. More specifically, the closer m to −1, the more explorations needed to

converge to the global optimal. We defer the detailed experiment setting to

Appendix B.2.1. We run 100 trials of both Gaussian policy and discrete policy

and show their behaviors.

53



Figure 3.3: Performance curves on six benchmark tasks (all except the last
are MuJoCo tasks). Comparison between: continuous A2C (Gaussian policy),
discrete A2C, RELAX, and CARSM policy gradient. We show the cumulative
rewards during training, moving averaged across 100 epochs; The curves show
the mean± std performance across 5 random seeds.

We show, in Figure B.1 left panel, the learning process of both Gaussian

and discrete policies with a quadratic annealing coefficient for the entropy

term, and, in right panel, a heatmap where each entry indicates the average

density of each action at one iteration. In this case where m = −0.8, the

signal from the global optimal point has a limited range which requires more

explorations during the training process. Gaussian policy can only explore

with unimodal distribution and fail to capture the global optimal all the time.

By contrast, discrete policy can learn the bi-modal distribution in the early

stage, gradually concentrate on both the optimal and sub-optimal peaks before

collecting enough samples, and eventually converges to the optimal peak. More

explanations can be found in Appendix B.2.1.
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3.4.2 Comparing CARSM and ARSM-MC

One major difference between CARSM and ARSM-MC is the usage of

Q-Critic. It saves us from running MC rollouts to estimate the action-value

functions of all unique pseudo actions, the number of which can be enormous

under a multidimensional setting. This saving is at the expense of introducing

bias to gradient estimation (not by the gradient estimator per se but by how

Q is estimated). Similar to the argument between MC and TD, there is a

trade-off between bias and variance. In this set of experiments, we show that

the use of Critic in CARSM not only brings us accelerated training, but also

helps return good performance.

To make the results of CARSM directly comparable with those of ARSM-

MC shown in Yin et al. [2019], we evaluate the performances on an Episode

basis on discrete classical-control tasks: CartPole, Acrobot, and LunarLander.

We follow Yin et al. [2019] to limit the MC rollout sizes for ARSM-MC as 16,

64, and 1024, respectively. From Figure 3.2 top row, ARSM-MC has a better

performance than CARSM on both CartPole and LunarLander, while CARSM

outperforms the rest on Acrobot. The results are promising in the sense that

CARSM only uses one rollout for estimation while ARSM-MC uses up to 16,

64, and 1024, respectively, so CARSM largely improves the sample efficiency

of ARSM-MC while maintaining comparable performance. The action space is

uni-dimensional with 2, 3, and 4 discrete actions for CartPole, Acrobot, and

LunarLander, respectively. We also compare CARSM and ARSM-MC given

fixed number of timesteps. Under this setting, CARSM outperforms ARSM-
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MC by a large margin on both Acrobot and LunarLander. See Figure B.2 in

Appendix B.2.3 for more details.

Figure 3.4: Performance curves on six benchmark tasks (all except the last are
MuJoCo tasks). Comparison between: continuous TRPO (Gaussian policy),
discrete TRPO, and CARSM policy gradient combined with TRPO. We show
the cumulative rewards during training, moving averaged across 100 epochs;
the curves show the mean± std performance across 5 random seeds.

3.4.3 Large Discrete Action Space

We want to show that CARSM has better sample efficiency on cases

where the number of action C in one dimension is large. We test CARSM

along with A2C on a continuous CartPole task, which is a modified version of

discrete CartPole. In this continuous environment, we restrict the action space

to [−1, 1]. Here the action indicates the force applied to the Cart at any time.

The intuition of why CARSM is expected to perform well under a large

action space setting is because of the low-variance property. When C is large,

the distribution is more dispersed on each action compared with smaller case,
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Figure 3.5: Policy distribution on the Reacher task between discrete policy and
Gaussian policy for a given state (discrete action space has 11 actions on each
dimension).

which requires the algorithm captures the signal from best action accurately

to improve exploitation. In this case, a high-variance gradient estimator will

surpass the right signal, leading to a long exploration period or even divergence.

As shown in Figure 3.2 bottom row, CARSM outperforms A2C by a

large margin in all three large C settings. Though the CARSM curve exhibits

larger variations as C increases, it always learns much more rapidly at an early

stage compared with A2C. Note the naive ARSM-MC algorithm will not work

on this setting simply because it needs to run as many as tens of thousands

MC rollouts to get a single gradient estimate.
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3.4.4 OpenAI Gym Benchmark Tasks

In this set of experiments, we compare CARSM with A2C and RELAX,

which all share the same underlying idea of improving the sample efficiency by

reducing the variance of gradient estimation. For A2C, we compare with both

Gaussian and discrete policies to check the intuition presented in Section 3.4.1.

In all these tasks, following the results from Tang and Agrawal [2019], the

action space is equally divided into C = 11 discrete actions at each dimension.

Thus the discrete action space size becomes 11K , where K is the action-space

dimension that is 6 for HalfCheetah, 3 Hopper, 2 Reacher, 2 Swimmer, 6

Walker2D, and 2 LunarLander. More details on Appendix B.2.2.

As shown in Figure 3.3, CARSM outperforms the other algorithms by a

large margin except on HalfCheetah, demonstrating the high-sample efficiency

of CARSM. Moreover, the distinct behaviors of Gaussian and discrete policies

in the Reacher task, as shown in both Figures 3.3 and 3.4, are worth thinking,

motivating us to go deeper on this task to search for possible explanations. We

manually select a state that requires exploration on the early stage, and record

the policy evolvement along with training process at that specific state. We

show those transition phases in Figure 3.5 for both Gaussian policy (top row)

and discrete policy (bottom row).

For discrete policy, plots (e)-(g) in Figure 3.5 bottom row show interest-

ing property: at the early stage, the policy does not put heavy mass at all on

the final sub-optimal point (0, 0), but explores around multiple density modes;

then it gradually concentrates on several sup-optimal points on an intermediate
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phase, and converges to the final sub-optimal point. Plot (h) also conveys

the same message that during the training process, discrete action can transit

explorations around several density modes since the green lines can jump along

the iterations. (The heatmaps of (d) and (h) in Figure 3.5 are computed in the

same way as that in Figure B.1, and details can be found in Appendix B.2.1.)

By contrast, Gaussian policy does not have the flexibility of exploring

based on different density modes, therefore from plots (a)-(c) on the top row

of Figure 3.5, the policy moves with a large radius but one center, and on (d),

the green lines move consecutively which indicates a smooth but potentially

not comprehensive exploration.

3.4.5 Combining CARSM with TRPO

Below we show that CARSM can be readily applied under TRPO

to improves its performance. In the update step of TRPO shown in (3.4),

the default estimator for ∇θJ(θ) is A2C or its variant. We replace it with

CARSM estimator and run it on the same set of tasks. As shown in Figure 3.4,

Gaussian policy fails to find a good sub-optimal solution under TRPO for both

HalfCheetah and Reacher and performs similarly to its discrete counterpart on

the other tasks. Meanwhile, CARSM improves the performance of TRPO over

discrete policy setting on three tasks and maintains similar performance on

the others, which shows evidence that CARSM is an easy plug-in estimator

for ∇θJ(θ) and hence can potentially improve other algorithms, such as some

off-policy ones [Wang et al., 2016, Degris et al., 2012], that need this gradient
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estimation.

3.5 Conclusion

To solve RL tasks with multidimensional discrete action setting effi-

ciently, we propose Critic-ARSM policy gradient, which is a combination of

multidimensional sparse ARSM gradient estimator and an action-value critic,

to improve sample efficiency for on-policy algorithm. We show the good perfor-

mances of this algorithm from perspectives including stability on very large

action space cases and comparisons with other standard benchmark algorithms,

and show its potential to be combined with other standard algorithms. More-

over, we demonstrate the potential benefits of discretizing continuous control

tasks to obtain a better exploration based on multimodal property.
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Chapter 4

Implicit Distributional Reinforcement

Learning

To improve the sample efficiency of policy-gradient based reinforcement

learning algorithms, we propose implicit distributional actor critic (IDAC) that

consists of a distributional critic, built on two deep generator networks (DGNs),

and a semi-implicit actor (SIA), powered by a flexible policy distribution.

We adopt a distributional perspective on the discounted cumulative return

and model it with a state-action-dependent implicit distribution, which is

approximated by the DGNs that take state-action pairs and random noises

as their input. Moreover, we use the SIA to provide a semi-implicit policy

distribution, which mixes the policy parameters with a reparameterizable

distribution that is not constrained by an analytic density function. In this way,

the policy’s marginal distribution is implicit, providing the potential to model

complex properties such as covariance structure and skewness, but its parameter

and entropy can still be estimated. We incorporate these features with an

off-policy algorithm framework to solve problems with continuous action space,

The content in this chapter was published in Yue et al. [2020b]; I designed the SIA and
the twin delayed network parts, and brainstormed with the other coauthors to come up with
the DGN part. I was also in charge of the empirical evaluation section.
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and compare IDAC with the state-of-art algorithms on representative OpenAI

Gym environments. We observe that IDAC outperforms these baselines for

most tasks.

4.1 Introduction

There has been significant recent interest in using model-free reinforce-

ment learning (RL) to address complex real-world sequential decision making

tasks [MacAlpine and Stone, 2017, Silver et al., 2018, Pachocki et al., 2018].

With the help of deep neural networks, model-free deep RL algorithms have

been successfully implemented in a variety of tasks, including game playing

[Silver et al., 2016, Mnih et al., 2013] and robotic control [Levine et al., 2016].

Deep Q-network (DQN) [Mnih et al., 2015] enables RL agent with human level

performance on Atari games [Bellemare et al., 2013], motivating many follow-up

works with further improvements [Wang et al., 2016, Andrychowicz et al., 2017].

A novel idea, proposed by Bellemare et al. [2017a], is to take a distributional

perspective for deep RL problems, which models the full distribution of the

discounted cumulative return of a chosen action at a state rather than just the

expectation of it, so that the model can capture its intrinsic randomness instead

of just first-order moment. Specifically, the distributional Bellman operator can

help capture skewness and multimodality in state-action value distributions,

which could lead to a more stable learning process, and approximating the full

distribution may also mitigate the challenges of learning from a non-stationary

policy. Under this distributional framework, Bellemare et al. [2017a] propose
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the C51 algorithm that outperforms previous state-of-art classical Q-learning

based algorithms on a range of Atari games. However, some discrepancies

exist between the theory and implementation in C51, motivating Dabney et al.

[2018b] to introduce QR-DQN that borrows Wasserstein distance and quantile

regression related techniques to diminish the theory-practice gap. Later on, the

distributional view is also incorporated into the framework of deep deterministic

policy gradient (DDPG) [Lillicrap et al., 2015] for continuous control tasks,

yielding efficient algorithms such as distributed distributional DDPG (D4PG)

[Barth-Maron et al., 2018] and sample-based distributional policy gradient

(SDPG) [Singh et al., 2020]. Due to the deterministic nature of the policy,

these algorithms always manually add random noises to actions during the

training process to avoid getting stuck in poor local optimums. By contrast,

stochastic policy takes that randomness as part of the policy, learns it during

the training, and achieves state-of-art performance, with soft actor critic (SAC)

[Haarnoja et al., 2018a] being a successful case in point.

Motivated by the promising directions from distributional action-value

learning and stochastic policy, this paper integrates these two frameworks in

hopes of letting them strengthen each other. We model the distribution of the

discounted cumulative return of an action at a state with a deep generator

network (DGN), whose input consists of a state-action pair and random noise,

and applies the distributional Bellman equation to update its parameters. The

DGN plays the role of a distributional critic, whose output conditioning on a

state-action pair follows an implicit distribution. Intuitively, only modeling the
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expectation of the cumulative return is inevitably discarding useful information

readily available during the training, and modeling the full distribution of

it could capture more useful information to help better train and stabilize

a stochastic policy. In other words, there are considerable potential gains

in guiding the training of a distribution with a distribution rather than its

expectation.

For stochastic policy, the default distribution choice under continuous

control is diagonal Gaussian. However, having a unimodal and symmetric

density at each dimension and assumping independence between different

dimensions make it incapable of capturing complex distributional properties,

such as skewness, kurtosis, multimodality, and covariance structure. To fully

take advantage of the distributional return modeled by the DGN, we thereby

propose a semi-implicit actor (SIA) as the policy distribution, which adopts a

semi-implicit hierarchical construction [Yin and Zhou, 2018b] that can be made

as complex as needed while remaining amenable to optimization via stochastic

gradient descent (SGD).

We have now defined an implicit distributional critic, DGN, and a semi-

implicit actor, SIA. A naive combination of them within an actor-critic policy

gradient framework, however, only delivers mediocre performance, falling short

of the promise it holds. We attribute its underachievement to the overestimation

issue, commonly existing in classical value-based algorithms [Van Hasselt et al.,

2016], that does not automatically go away under the distributional setting.

Inspired by previous work in mitigating the over estimation issue in deep
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Q-learning [Fujimoto et al., 2018], we come up with a twin delayed DGNs based

critic, with which we provide a novel solution that takes the target values as

the element-wise minimums of the sorted output values of these two DGNs,

stabilizing the training process and boosting performance.

Contributions: The main contributions of this paper include: 1) we

incorporate the distributional idea with the stochastic policy setting, and

characterize the return distribution with the help of a DGN under a continuous

control setup; 2) we introduce the twin delayed structure on DGNs to mitigate

the overestimation issue; and 3) we improve the flexibility of the policy by using

a SIA instead of a Gaussian or mixture of Gaussian distribution to improve

exploration.

Related work: Since the successful implementation of RL problems

from a distributional perspective on Atari 2600 games [Bellemare et al., 2017a],

there is a number of follow-ups trying to boost existing deep RL algorithms

by directly characterizing the distribution of the random return instead of the

expectation [Dabney et al., 2018a,b, Barth-Maron et al., 2018, Singh et al.,

2020]. On the value-based side, C51 [Bellemare et al., 2017a] represents the

return distribution with a categorical distribution defined by attaching C = 51

variable parameterized probabilities at C = 51 fixed locations. QR-DQN

[Dabney et al., 2018b], on the other hand, does so by attaching N variable

parameterized locations at N equally-spaced fixed quantiles, and employs a

quantile regression loss for optimization. IQN [Dabney et al., 2018a] further

extends this idea by learning a full quantile function. On the policy-gradient-
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based side, D4PG [Barth-Maron et al., 2018] incorporates the distributional

perspective into DDPG [Lillicrap et al., 2015], with the return distribution

modeled similarly as in C51 [Bellemare et al., 2017a]. On top of that, SDPG

[Singh et al., 2020] is proposed to model the quantile function with a generator

to overcome the limitation of using variable probabilities at fixed locations,

and the same as D4PG, it models the policy as a deterministic transformation

of the state representation.

There is rich literature aiming to obtain a high-expressive policy to

encourage exploration during the training. When a deterministic policy is

applied, a random perturb is always added when choosing a continuous action

[Silver et al., 2014, Lillicrap et al., 2015]. In Haarnoja et al. [2017], the policy

is modeled proportional to its action-value function to guarantee flexibility. In

Haarnoja et al. [2018a], SAC is proposed to mitigate the policy’s expressiveness

issue while retaining tractable optimization; with the policy modeled with

either a Gaussian or a mixture of Gaussian, SAC adopts a maximum entropy

RL objective function to encourage exploration. The normalizing flow [Rezende

and Mohamed, 2015, Dinh et al., 2016] based techniques have been recently

applied to design a flexible policy in both on-policy [Tang and Agrawal, 2018]

and off-policy settings [Ward et al., 2019].

4.2 Implicit distributional actor critic

We present implicit distributional actor critic (IDAC) as a policy gradient

based actor-critic algorithm under the off-policy learning setting, with a semi-
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implicit actor (SIA) and two deep generator networks (DGNs) as critics. We

will start off with the introduction of distributional RL and DGN.

4.2.1 Implicit distributional RL with deep generator network (DGN)

We model the agent-environment interaction by a Markov decision

process (MDP) denoted by (S,A, R, P ), where S is the state space, A the

action space, R a random reward function, and P the dynamic of environment

describing P (s′ | s,a), where a ∈ A and s, s′ ∈ S. A policy is defined as a

map from the state space to action space π(· | s) : S→ A. Let us denote the

discounted cumulative return from state-action pair (s,a) following policy π

as Zπ(s,a) =
∑∞

t=0 γ
tR(st,at), where γ is the discount factor, s0 := s, and

a0 := a. Under a classic RL setting, an action value function Q is used to

represent the expected return as Qπ(s,a) = E[Zπ(s,a)], where the expectation

takes over all sources of intrinsic randomness [Goldstein et al., 1981]. While

under the distributional setup, it is the random return Zπ(s,a) itself rather

than its expectation that is being directly modeled. Similar to the classical

Bellman equation, we have the distributional Bellman equation [Dabney et al.,

2018b] as

Zπ(s,a)
D
= R(s,a) + γZπ(s′,a′). (4.1)

where
D
= denotes “equal in distribution” and a′ ∼ π(· | s′), s′ ∼ P (· | s,a).

We propose using a DGN to model the distribution of random return

Zπ as

Zπ(s,a)
D
≈ Gω(s,a, ε), ε ∼ p(ε), (4.2)
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where
D
≈ denotes “approximately equal in distribution,” p(ε) is a random noise

distribution, and Gω(s,a, ε) is a neural network based deterministic function

parameterized by ω, whose input consists of s, a, and ε. We can consider

Gω(s,a, ε) as a generator that transforms p(ε) into an implicit distribution,

from which random samples can be straightforwardly generated but the proba-

bility density function is in general not analytic (e.g., when Gω(s,a, ε) is not

invertible with respect to ε). If the distributional equality holds in (4.2), we can

approximate the distribution of Zπ(s,a) in a sample-based manner, which can

be empirically represented by K independent, and identically distributed (iid)

random samples as {Gω(s,a, ε1), · · · , Gω(s,a, εK)}, where ε1, . . . , εK
iid∼ p(ε).

4.2.2 Learning of DGN

Based on (4.1), we desire the DGN to also satisfy the distributional

matching that

Gω(s,a, ε)
D
= R(s,a) + γGω(s′,a′, ε′), where ε, ε′

iid∼ p(ε). (4.3)

This requires us to adopt a differential metric to measure the distance between

two distributions and use it to guide the learning of the generator parameter ω.

While there exist powerful methods to learn high-dimensional data generators,

such as generative adverserial nets [Goodfellow et al., 2014, Arjovsky et al.,

2017], there is no such need here since there exist simple and stable solutions

to estimate the distance between two one-dimensional distributions given iid

random samples from them.
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In particular, the p-Wasserstein distance [Villani, 2008] between the

distributions of univariate random variables X, Y ∈ R can be approximated by

that between their empirical distributions supported on K random samples,

which can be expressed as X̂ = 1
K

∑K
k=1 δxk and Ŷ = 1

K

∑K
k=1 δyk , and we have

Wp(X, Y )p ≈ Wp(X̂, Ŷ )p = 1
K

∑K
k=1 ||

−→x k −−→y k||p, (4.4)

where −→x 1:K and −→y 1:K are obtained by sorting x1:K and y1:K in increasing order,

respectively [Villani, 2008, Bernton et al., 2019, Deshpande et al., 2018, Kolouri

et al., 2019]. Though seems tempting to use Wp(X̂, Ŷ )p as the loss function, it

has been shown [Bellemare et al., 2017b, Dabney et al., 2018b] that such a loss

function may not be theoretically sound when optimized with SGD, motivating

the use of a quantile regression loss based on X̂ and Ŷ . In the same sprite

as Dabney et al. [2018b], we propose to measure the distributional distance

with a quantile regression Huber loss [Huber, 1992] based on empirical samples,

defined as

LQR(X, Y ) ≈ LQR(X̂, Ŷ ) = 1
K2

∑K
k=1

∑K
k′=1 ρ

κ
τk

(yk′ −−→x k), (4.5)

where −→x k that are arranged in increasing order are one-to-one mapped to K

equally-spaced increasing quantiles τk = (k− 0.5)/K, κ is a pre-fixed threshold

(set as κ = 1 unless specified otherwise), and

ρκτk(u) = |τk − 1[u<0]|Lκ(u)/κ, Lκ(u) =

{
1
2
u2, if |u| ≤ κ

κ(|u| − 1
2
κ), otherwise

. (4.6)

Note that the reason we map −→x k to quantile τk = (k−0.5)/K, for k = 1, . . . , K,

is because P (X ≤ −→x k) ≈ τk, an approximation that becomes increasingly more

accurate as K increases.
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Recall the distributional matching objective in (4.3). To train the DGN,

we first obtain an empirical distribution X̂ of the generator supported on K

iid random samples as

x1:K := {Gω(s,a, ε(k))}1:K , where ε(1), . . . , ε(K) iid∼ p(ε), (4.7)

and similarly an empirical target distribution Ŷ supported on

y1:K := {R(s,a) + γGω̃(s′,a′, ε′(k))}1:K , where ε′(1), . . . , ε′(K) iid∼ p(ε), (4.8)

where a′ ∼ π(· | s′), s′ ∼ P (· | s,a), and ω̃ is the delayed generator parameter,

a common practice to stabilize the learning process as used in Lillicrap et al.

[2015] and Fujimoto et al. [2018]. Since we use empirical samples to represent

the distributions, we first sort x1:K in increasing order, denoted as

(−→x 1, · · · ,−→x K) = sort(x1, · · · , xK),

and then map them to increasing quantiles ((k − 0.5)/K)1:K . The next step is

to minimize the quantile regression Huber loss as in (4.5), and the objective

function for DGN parameter ω becomes

J(ω) = LQR(X̂, StopGradient{Ŷ }) = 1
K2

∑K
k=1

∑K
k′=1 ρ

κ
τk

(StopGradient{yk′}−−→x k).

(4.9)

4.2.3 Twin delayed DGNs

Motivated by the significant improvement shown in Fujimoto et al.

[2018], we propose the use of twin DGNs to prevent overestimation of the
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return distribution. However, it cannot be applied directly. On value-based

algorithm, one can directly take the minimum of two estimated Q-values; on

the other hand, we have empirical samples from a distribution and we try

to avoid overestimation on that distribution which need to be taken care of.

Specifically, we design two DGNsGω1(s,a, ε) andGω2(s,a, ε) with independent

initialization of ω1 and ω2 and independent input noise. Therefore, we will

have two sets of target values as defined in (4.8), which are denoted as y1,1:K

and y2,1:K , respectively. Since they represent empirical distributions now and

each element of them is assigned to one specific quantile, we will need to

sort them before taking element-wise minimum so that the distribution is not

distorted before mitigating the overestimation issue. In detail, with

(−→y 1,1, · · · ,−→y 1,K) = sort(y1,1, · · · , y1,K), (−→y 2,1, · · · ,−→y 2,K) = sort(y2,1, · · · , y2,K),

the new target values for twin DGNs become

(−→y 1, · · · ,−→y K) = (min(−→y 1,1,
−→y 2,1), · · · ,min(−→y 1,K ,

−→y 2,K)) ,

and with ε(1), . . . , ε(K) iid∼ p(ε), the objective function for parameter ω1 of twin

DGNs becomes

J(ω1) = 1
K2

∑K
k=1

∑K
k′=1 ρ

κ
τk

(StopGradient{−→y k′}−−→x k), x1:K := {Gω1(s,a, ε(k))}1:K .

(4.10)

The objective function for parameter ω2 is similarly defined under the same

set of target values.
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4.2.4 Semi-implicit actor (SIA)

Since the return distribution is modeled in a continuous action space, it

will be challenging to choose the action that maximizes the critic. We instead

turn to finding a flexible stochastic policy that captures the energy landscape

of Eε∼p(ε)[Gω(s,a, ε)]. The default parametric policy for continuous control

problems is modeled as a diagonal Gaussian distribution, where the means and

variances of all dimensions are obtained from some deterministic transformations

of state s. Due to the nature of the diagonal Gaussian distribution, it can

not capture the dependencies between different action dimensions and has a

unimodal and symmetric assumption on its density function at each dimension,

limiting its ability to encourage exploration. For example, it may easily get

stuck in a bad local mode simply because of its inability to accomodate multi-

modality [Yue et al., 2020a].

To this end, we consider a semi-implicit construction [Yin and Zhou,

2018b] that enriches the diagonal Gaussian distribution by randomizing its

parameters with another distribution, making the marginal of the semi-implicit

hierarchy, which in general has no analytic density function, become capable

of modeling much more complex distributional properties, such as skewness,

multi-modality, and dependencies between different action dimensions. In

addition, its parameters are amenable to SGD based optimization, making it

even more attractive as a plug-in replacement of diagonal Gaussian. Specifically,
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we construct a semi-implicit policy with a hierarchical structure as

πθ(a | s) =
∫
ξ
πθ(a | s, ξ)p(ξ)dξ, where πθ(a | s, ξ) = N(a;µθ(s, ξ), diag{σ2

θ(s, ξ)}),

(4.11)

where θ denotes the policy parameter and ξ ∼ p(ξ) denotes a random noise,

which concatenated with state s is transformed by a deep neural network

parameterized by θ to define both the mean and covariance of a diagonal

Gaussian policy distribution. Note while we choose πθ(a | s, ξ) to be diagonal

Gaussian, it can take any explicit reparameterizable distribution. There is no

constraint on p(ξ) as long as it is simple to sample from, and is reparameterizable

if it contains parameters to learn. This semi-implicit construction balances

the tractability and expressiveness of πθ(a | s), where we can get a powerful

implicit policy while still be capable of sampling from it and estimating its

entropy. Based on previous proofs [Yin and Zhou, 2018b, Molchanov et al.,

2019], we present the following Lemma for entropy estimation and defer its

proof to the Appendix. The ability of entropy estimation is crucial when solving

problems under the maximum entropy RL framework [Todorov, 2007, Ziebart,

2010, Ziebart et al., 2008], which we adopt below to encourage exploration.

Lemma 6. Assume πθ(a | s) is constructed as in Eq. (4.11), the following

expectation

HL := E
ξ(0),...,ξ(L)iid∼ p(ξ)

Ea∼πθ(a | s,ξ(0))[log 1
L+1

∑L
`=0 πθ(a | s, ξ

(`))] (4.12)

is an asymptotically tight upper bound of the negative entropy, expressed as

H` ≥ H`+1 ≥ H := Ea∼πθ(a | s)[log πθ(a | s)], ∀` ≥ 0.
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4.2.5 Learning of SIA

In IDAC, the action value function can be expressed as Eε[Gω(s,a, ε)].

Related to SAC [Haarnoja et al., 2018a], we learn the policy towards the

Boltzman distribution of the action-value function by minimizing a Kullback–

Leibler (KL) divergence between them as

πnew = argminπ′∈ΠEs∼ρ(s)

[
KL
(
πθ(a | s)

∥∥∥ exp(Eε∼p(ε)[G(s,a,ε)/α])∫
exp(Eε∼p(ε)[G(s,a,ε)/α])da

)]
, (4.13)

where ρ(s) denotes the state-visitation frequency, α > 0 is a reweard scaling

coefficient, and Π is the semi-implicit distribution family. Therefore, the loss

function for policy parameters is

J(θ) = −Es∼ρ(s)Ea∼πθ(· | s){Eε∼p(ε)[Gω(s,a, ε)]− α log πθ(a | s)}. (4.14)

We cannot optimize (4.14) directly since the semi-implicit policy πθ(a | s) does

not have an analytic density function and its entropy is not analytic. With the

help of Lemma 6, we turn to minimizing an asymptotic upper bound of (4.14)

as

J(θ) ≤ −Es∼ρ(s)Eξ(1),...,ξ(L)iid∼ p(ξ)
1
J

∑J
j=1 Eξ(0)

j ∼p(ξ)
E
a(j)∼πθ

(
· | s, ξ(0)

j

)Eε(j)∼p(ε)[J j(θ)]

J j(θ) :=
(

1
2

∑2
i=1Gωi(s,a

(j), ε(j))
)
− α log

(
πθ(a(j) | s, ξ(0)

j )+
∑L
`=1 πθ(a(j) | s, ξ(`))

L+1

)
,

(4.15)

where ω1,ω2 are the parameters of twin DGNs, J j(θ) is a Monte Carlo estimate

of this asymptotic upper bound given a single action, and J is the number of

actions that we will use to estimate the objective function. Note we could set
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J = 1, but then we will still need to sample multiple iid ε’s to estimate the

action-value function. An alternative choice is to sample J > 1 actions and sam-

ple multiple ε’s for each action, which, given the same amount of computational

budget, is in general found to be less efficient than simply increasing the number

of actions in (4.15). To estimate the gradient, each a(j) ∼ πθ(a | s, ξ(0)
j ) is sam-

pled via the reparametrization trick by letting a(j) = Tθ(s, ξ
(0)
j , ej), ej ∼ p(e)

to ensure low gradient estimation variance, which means it is deterministically

transformed from s, ξ
(0)
j , and random noise ej ∼ p(e) with a nueral network

parameterized by θ. To compute the gradient of J(θ) :=
∑J

j=1 J j(θ) with

respect to θ, we notice that ∇θ log

(
πθ(a(j) | s, ξ(0)

j )+
∑L
`=1 πθ(a(j) | s, ξ(`))

L+1

)
can be

rewritten as the summation of two terms: the first term is obtained by treating

a(j) in πθ(a
(j) | −) as constants, and the second term by treating θ in πθ(·) as

constants. Since Ea∼πθ(a | s)[∇θ logπθ(a | s)] = 0, the expectation of the first

term becomes zero when L→∞. For this reason, we omit its contribution to

the gradient when computing ∇θJ(θ), which can then be expressed as

∇θJ(θ) =
∑J

j=1

{[(
1

2J

∑2
i=1∇a(j)Gωi(s,a

(j), ε(j)))
)

− 1
J
α
∑L

`=0

πθ(a(j) | s,ξ(`)
j )∑L

`′=0 πθ(a(j) | s,ξ(`′)
j )
∇a(j) log πθ(a

(j) | s, ξ(`)
j )

]∣∣∣∣
a(j)=Tθ(s,ξ

(0)
j ,ej)

∇θTθ(s, ξ(0)
j , ej)

}
,

(4.16)

where with a slight abuse of notation, we denote ξ
(`)
j = ξ(`) when ` > 0.

We follow Haarnoja et al. [2018b] to adaptively adjust the reward scaling

coefficient α. Denote Htarget as a fixed target entropy, heuristically chosen as

Htarget = −dim(A). We update α by performing gradient descent on η := log(α)
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under the loss

J(η) = Es∼ρ(s)[η(− log πθ(a | s)−Htarget)], (4.17)

where the marginal log-likelihood is estimated by log πθ(a | s) = log
∑L
`=0 πθ(a | s,ξ(`))

L+1
,

where a ∼ πθ(· | s, ξ(0)) and ξ(0), ξ(1), . . . , ξ(L) iid∼ p(ξ).

4.2.6 Off policy learning with IDAC

We incorporate the proposed twin-delayed DGNs and SIA into the

off-policy framework. Specifically, the samples are gathered with a SIA based

behavior policy and stored in a replay buffer. In detail, for each state st, the

agent will first sample a random noise ξt ∼ p(ξ), then generate an action by

at ∼ πθ(at | st, ξt), and observe a reward rt and next state st+1 returned by

the environment.

We save the tuples (st,at, rt, st+1) in a replay buffer and sample them

uniformly when training the DGNs based implicit distributional critics and the

SIA based semi-implicit policy, therefore all the previous ρ(s) is the uniform

distribution from the replay buffer. We show an overview of the algorithm

here and provide a detailed pseudo code with all implementation details in

Appendix B.3.

4.3 Experiments

Our experiments serve to answer the following questions: (a) How

does IDAC perform when compared to state-of-art baselines, including SAC
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Algorithm 1 IDAC: Implicit Distributional Actor Critic (see Appendix B.3 for
more implementation details)

Require: Learning rate λ, smoothing factor τ . Initial policy network parameter θ,
distributional generator network parameters ω1,ω2, entropy coefficient η;
ω̃1 ← ω1, ω̃2 ← ω2, D← ∅
for Each iteration do

for Each environment step do
ξt ∼ p(ξ), at ∼ πθ(· | st, ξt) {Sample noise and then action}
st+1 ∼ p(· | st,at) {Observe next state}
D← D ∪ (st,at, rt, st+1) {Store transition tuples}

end for
Sample transitions from the replay buffer
ωi ← ωi − λ∇ωiJ(ωi) for i = 1, 2 {Update DGNs, Eq. (4.10)}
θ ← θ − λ∇θJ(θ) {Update SIA, Eq. (4.16)}
η ← η − λ∇ηJ(η), let α = exp(η) {Update entropy coefficient, Eq. (4.17)}
ω̃i ← τωi + (1− τ)ω̃i for i = 1, 2 {Soft update delayed networks}

end for

[Haarnoja et al., 2018a], TD3 [Fujimoto et al., 2018], and PPO [Schulman

et al., 2017]? (b) Can a semi-implicit policy capture complex distributional

properties such as skewness, multi-modality, and covariance structure? (c) How

well is the distributional matching when minimizing the quantile regression

Huber loss? (d) How important is the type of policy distribution, such as

a semi-implicit policy, a diagonal Gaussian policy, or a deterministic policy

under this framework? (e) How much improvement does distributional critics

bring? (f) How critical is the twin delayed network? (g) Will other baselines

(such as SAC) benefit from using multiple actions (J > 1) for policy gradient

estimation?

We will show two sets of experiments, one for evaluation study and

the other for ablation study, to answer the aforementioned questions. The
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evaluation study will be addressing questions (a)-(c) and ablation study will

be addressing (d)-(g).

As shown in Engstrom et al. [2019], the code-level implementation

of different RL algorithms can lead to significant differences in their empiri-

cal performances and hence a fair comparison needs to be run on the same

codebase. Thus all compared algorithms are either from, or built upon the

stable baselines codebase (https://github.com/hill-a/stable-baselines)

of Hill et al. [2018] to minimize the potential gaps caused by the differences of

code-level implementations.

IDAC is implemented with a uniform hyperparameter set to guarantee

fair comparisons. Specifically, we use three separate fully-connected multilayer

perceptrons (MLPs), which all have two 256-unit hidden layers and ReLU

nonlinearities, to define the proposed SIA and two DGNs, respectively. Both

p(ξ) and p(ε) are N(0, I5) and such a random noise, concatenated with the

state s, will be used as the input of its corresponding network. We fix for

all experiments the number of noise ξ(`) as L = 21. We set the number of

equally-spaced quantiles (the same as the number of ε(k)) as K = 51 and

number of auxiliary actions as J = 51 by default. A more detailed parameter

setting can be found in Appendix C.3. We conduct empirical comparisons on

the benchmark tasks provided by OpenAI Gym [Brockman et al., 2016] and

MuJoCo simulators [Todorov et al., 2012].
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Table 4.1: Comparison of average maximal returns ± 1 std over 4 different
random seeds.

ENV PPO TD3 SAC IDAC

BipedalWalker-v2 241.79 ± 36.7 182.80 ± 135.76 312.48 ± 2.81 328.44 ± 1.23
Walker2d-v2 1679.39 ± 942.49 3689.48 ± 434.03 4328.95 ± 249.27 5107.07 ± 351.37
Hopper-v2 1380.68 ± 899.70 1799.78 ± 1242.63 3138.93 ± 299.62 3497.86 ± 93.30
HalfCheetah-v2 1350.37 ± 128.79 10209.65 ± 548.14 10626.34 ± 73.78 12222.80 ± 157.15
Ant-v2 141.79 ± 451.10 4905.74 ± 203.09 3732.23 ± 602.83 4930.73 ± 242.78
Humanoid-v2 498.88 ± 20.10 105.76 ± 53.65 5055.64 ± 62.96 5233.43 ± 85.87

4.3.1 Evaluation study to answer questions (a)-(c)

(a): We compare IDAC with SAC, TD3, and PPO on challenging

continuous control tasks; each task is evaluated across 4 random seeds and the

evaluation is done per 2000 steps with 5 independent rollouts using the most

recent policy (to evaluate IDAC, we first sample ξ ∼ p(ξ) and then use the

mean of πθ(a | s, ξ) as action output). As shown in Fig. 4.1, IDAC outperforms

all baseline algorithms with a clear margin across almost all tasks. More

detailed numerical comparisons can be found in Table 4.1. For all baselines,

we use their default hyperparameter settings from the original papers. Notice

that J , K, and L are hyperparameters to set, and making them too small

might lead to clearly degraded performance for some tasks. In this paper, to

balance performance and computational complexity, we choose moderate values

of J = 51, K = 51, and L = 21 for all evaluations.

(b): We also check how well is semi-implicit policy and whether it can

capture complex distributional properties. We defer the empirical improvement

that semi-implicit policy brings to the ablation study part and only show the
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Figure 4.1: Training curves on continuous control benchmarks. The solid line is the
average performance over seeds with ± 1 std shaded, and with a smoothing window
of length 100.
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Figure 4.2: Visualization of Gaussian policy, SIA, and distributional matching
for critic generators under SIA. Panels (a) and (b) show the density contour of
1000 random sampled actions at an early training stage, where x-axis and y-axis
correspond to dimensions 1 and 4, respectively; Panel (c) shows the empirical density
of 10000 DGN samples at an early training stage and the final one, where (target) G
samples are in (red) blue.
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flexible distribution it supports here. Specifically, we generate this plot by

sampling ai ∼ πθ(· | s) for i = 1, . . . , 1000, and use these 1000 random actions

samples (where θ is the policy parameters at 104 timestep while the total

training steps is 106), generated given a state s, to visualize the empirical

joint distribution of two selected dimensions of the action, and the marginal

distributions at both dimensions. As shown in the left two panels of Fig. 4.2,

the semi-implicit policy is capable of capturing multi-modality, sknewness, and

dependencies between different dimensions, none of which are captured by

the diagonal Gaussian policy. This flexible policy of SIA can be beneficial to

exploration especially during the early training stages. Furthermore, capturing

the correlation between action dimensions intuitively will lead to a better policy,

e.g., a robot learning to move needs to coordinate the movements of different

legs.

(c): Similar to Singh et al. [2020], we check the matching situation

of minimizing the quantile regression Huber loss. In detail, we generate

10000 random noises εk ∼ p(ε) to obtain {Gω̃1(s,a, εk)}10000
k=1 and {r(s,a) +

γGω̃1(s′,a′, εk)}10000
k=1 , and then compare their histograms to check if the empir-

ical distributions are similar to each other. We list the distributions on both

early and late stages to demonstrate the evolvement of the DGN. On an early

stage, both the magnitude and shape of two distributions are very different,

while their differences diminish at a fast pace along with the training process.

It illustrates that the DGN is able to represent the distribution well defined by

the distributional Bellman equation.
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Figure 4.3: Training Curves of Ablation study.

4.3.2 Ablation study to answer questions (d)-(g)

We run a comprehensive set of ablation study to demonstrate the

effectiveness of the SIA and DGNs have on the performance. In general, there

are three parts that we can control to see the differences they contribute: (i):

policy distribution {deterministic policy, Gaussian policy, semi-implicit policy,

implicit policy}; (ii): distributional aspect {no: action-value function, yes:

distributional critic generator}; (iii): prevent overestimation bias trick {single

delayed network, twin delayed network}. Among those possible combinations,

we choose a representative subset of them to show that the structure of IDAC is

reasonable and bring significant improvement. They also answer the questions

(d)-(g) as we proposed in the beginning. An implicit policy is constructed by

concatenating a random variable with state, and obtain an action from the

deterministic transformation. In this way, the policy itself is still stochastic, but

the log-likelihood is intractable and thus cannot use any entropy regularization

trick.

We list all the 8 representative variants in Table 4.2, and evaluate
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Table 4.2: Variants for ablation study

Ablations policy distribution distributional approach estimation trick

IDAC semi-implicit yes twin
SAC Gaussian no twin
SAC-J1 Gaussian no twin
SDPG2 deterministic yes single
SDPG-twin deterministic yes twin
IDAC-Gaussian Gaussian yes twin
IDAC-Implicit implicit yes twin
IDAC-single semi-implicit yes single

their performances on HalfCheetah and Walker2d environments with the same

evaluation process described in Section 4.3.1.
[

1 SAC-J refers to SAC with J

actions to estimate its objective function. 2 Note that the SDPG paper [Singh

et al., 2020] is using a different codebase; the implementation-level differences

make their reported results not directly comparable; we use this variant to

illustrate how each component works.
]

(d): We make comparisons between IDAC, SDPG-twin, IDAC-Gaussian,

and IDAC-Implicit to demonstrate the superiority of using a semi-implicit policy.

As shown in Fig. 4.3, we have IDAC ¿ IDAC-Gaussian ¿ SDPG-twin ¿ IDAC-

Implicit, which not only demonstrates the improvement from semi-implicit

policy, but also implies the importance of using a stochastic policy with entropy

regularization as shown in Haarnoja et al. [2018a].

(e): The effect of the DGNs can be directly observed by comparing

between IDAC-Gaussian and SAC, where IDAC-Gaussian is better than SAC

on both tasks as shown in Fig. 4.3.

(f): To understand the importance of twin delayed network structure,

we make comparisons between SDPG with SDPG-twin, and IDAC with IDAC-

83



single. As shown in Fig. 4.3, the one with the twin structure significantly

outperform its counterpart without the twin structure in both cases, which

demonstrate the effectiveness of the twin delayed networks.

(g): Eventually, we want to demonstrate that the improvement of IDAC

is not simply by sampling multiple actions for objective function estimation.

As shown in the right panel of Fig. 4.3, the implementation of multiple actions

on SAC does not boost the performance of SAC.

4.4 Conclusion

In this paper, we present implicit distributional actor-critic (IDAC), an

off-policy based actor-critic algorithm incorporated with distributional learning.

We model the return distribution with a deep generative network (DGN) and

the policy with a semi-implicit actor (SIA), and mitigate the overestimation

issue with a twin DGNs structure. We validate the critical roles of these

components with a detailed ablation study, and demonstrate that IDAC is

capable of state-of-the-art performances on a number of challenging continuous

control problems.
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Chapter 5

Conclusions and future directions

5.1 Conclusions

In this thesis, we propose methodologies that boost deep RL algorithms

with deep probabilistic models and demonstrate the great potential that prob-

abilistic models can contribute to deep RL area. Moreover, most deep RL

algorithms cannot work without some heuristic techniques; we hope that by

viewing from a statistical way, we can not only improve the empirical perfor-

mance, but also understand those techniques more deeply so that we can use

them in a more systematic way.

5.2 Future directions

5.2.1 Diverse proposal policy for DQN based algorithm

As mentioned in Chapter 1, one feasible way to apply DQN based

algorithm in the continuous-action domain is training a proposal policy that

can propose candidate actions which are likely to contain the best action.

Denote the proposal policy as π(a|s), we hope that Q(s,a) can be large when

a ∼ π(a|s) and also be diverse so that it will not degenerate to a deterministic

policy. We characterize the policy as π(a|s) = fθ(s) � ε, ε ∼ pφ(s) which
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is the dot product of a deterministic policy and a contexual dropout mask

[Fan et al., 2021]. In this way, we can control the diversity of π(a|s) to avoid

degeneration. The update of θ is similar to that in DDPG [Lillicrap et al.,

2015], and the update of φ is composed of two parts: 1). Qπ(s, ε) should be

large; 2). pφ(ε|s) should be close to a prior to prevent overfitting. We thereby

optimize the following objective function to update φ:

J(φ) = Qπ(s, πφ(ε))− λKL(pφ(ε|s)||p(ε)));

this objective function is similar to the Evidence Lower Bound (ELBO) of p(ε|s)

where the likelihood is proportional to eQ
π(s,ε). This approach is promising

since it enforces the proposal policy π(a|s) to be diverse as long as pφ(ε|s)

does not degenerate; and it also has the capability of proposing actions with

large action values.

5.2.2 Offline reinforcement learning

Offline RL has become a popular topic recently [Fujimoto et al., 2019,

Kumar et al., 2019], which aims to train a policy with few or no interactions

with the environment [Levine et al., 2020]. One major challenge in offline

RL is the “distributional shift”, which describe the mismatch between the

offline environment and online environment. Due to this mismatch, training an

offline RL task requires more conservative distributional constraints on policy

updates compared with classical RL tasks [Kumar et al., 2020], and makes it a

promising direction to apply probabilistic models to make a difference.
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Appendix A

Appendix for ARSM:

Augment-REINFORCE-Swap-Merge Gradient

for Categorical Variables and Policy

Optimization

A.1 Derivation of AR, ARS, and ARSM

A.1.1 Augmentation of a Categorical Variable

Let us denote τ ∼ Exp(λ) as the exponential distribution, with prob-

ability density function p(τ |λ) = λe−λτ , where λ > 0 and τ > 0. Its mean

and variance are E[τ ] = λ−1 and var[τ ] = λ−2, respectively. It is well known

that, e.g. in Ross [2006], if τi ∼ Exp(λi) are independent exponential random

variables for i = 1, . . . , C, then the probability that τz, where z ∈ {1, . . . , C},

is the smallest can be expressed as

P
(
z = arg mini∈{1,...,C} τi

)
= P (τz < τi, ∀ i 6= z) = λz∑C

i=1 λi
. (A.1)

Note this property, referred to as “exponential racing” in Zhang and Zhou

[2018], is closely related to the Gumbel distribution (also known as Type-I

extreme-value distribution) based latent-utility-maximization representation

of multinomial logistic regression [McFadden, 1974, Train, 2009], as well as

the Gumbel-softmax trick [Maddison et al., 2017, Jang et al., 2017]. This is
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because the exponential random variable τ ∼ Exp(λ) can be reparameterized

as τ = ε/λ, ε ∼ Exp(1), where ε ∼ Exp(1) can be equivalently generated as

ε = − log u, u ∼ Uniform(0, 1), and hence we have

arg mini τi
d
= arg mini{− log ui/λi} = arg maxi{log λi − log(− log ui)},

where τi ∼ Exp(λi), “
d
=” denotes “equal in distribution,” and ui

iid∼ Uniform(0, 1);

note that if u ∼ Uniform(0, 1), then − log(− log u) follows the Gumbel distri-

bution [Train, 2009].

From (A.1) we know that if

z = arg mini∈{1,...,C} τi ,where τi ∼ Exp(eφi), (A.2)

then P (z |φ) = eφz/
∑C

i=1 e
φi , and hence (A.2) is an augmented representa-

tion of the categorical distribution z ∼ Cat(σ(φ)); one may consider τi ∼

Exp(eφi) as augmented latent variables, the marginalization of which from

z = arg mini∈{1,...,C} τi leads to P (z |φ). Consequently, the expectation with

respect to the categorical variable of C categories can be rewritten as one with

respect to C augmented exponential random variables as

E(φ) = Ez∼Cat(σ(φ))[f(z)] = Eτ1∼Exp(eφ1 ),...,τC∼Exp(eφC )[f(arg mini τi)]. (A.3)

Since the exponential random variable τ ∼ Exp(eφ) can be reparameterized as

τ = εe−φ, ε ∼ Exp(1), we also have

E(φ) = E
ε1,...,εC

iid∼ Exp(1)
[f(arg mini εie

−φi)]. (A.4)
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Note as the arg min operator is non-differentiable, the widely used reparameter-

ization trick [Kingma and Welling, 2013, Rezende et al., 2014] is not applicable

to computing the gradient of E(φ) via the reparameterized representation in

(A.4).

A.1.2 REINFORCE Estimator in the Augmented Space

Using REINFORCE [Williams, 1992b] on (A.3), we have ∇φE(φ) =

[∇φ1E(φ), . . . ,∇φCE(φ)]′, where

∇φcE(φ) = Eτ1∼Exp(eφ1 ),...,τC∼Exp(eφC )

[
f(arg mini τi)∇φc log

∏C
i=1 Exp(τi; e

φi)
]

= Eτ1∼Exp(eφ1 ),...,τC∼Exp(eφC )[f(arg mini τi)∇φc log Exp(τc; e
φc)]

= Eτ1∼Exp(eφ1 ),...,τC∼Exp(eφC )[f(arg mini τi)(1− τceφc)]. (A.5)

Below we show how to merge ∇φcE(φ) and −∇φjE(φ) by first re-

expressing (A.5) into an expectation with respect to iid exponential random

variables, swapping the indices of these random variables, and then sharing

common random numbers [Owen, 2013] to well control the variance of Monte

Carlo integration.

A.1.3 Merge of Augment-REINFORCE Gradients

A key observation of the paper is we can re-express the expectation in

(A.5) as

∇φcE(φ) = E
ε1,...,εC

iid∼ Exp(1)
[f(arg mini εie

−φi)(1− εc)] (A.6)

90



Furthermore, we note that Exp(1)
d
= Gamma(1, 1), letting ε1, . . . , εC

iid∼ Exp(1)

is the same (e.g., as proved in Lemma IV.3 of Zhou and Carin [2012]) in

distribution as letting

εi = πiε, for i = 1, . . . , C, where π ∼ Dirichlet (1C), ε ∼ Gamma(C, 1),

and arg mini πie
−φi = arg mini επie

−φi . Thus using Rao-Blackwellization [Casella

and Robert, 1996], we can re-express the gradient in (A.5) as

∇φcE(φ) = Eε∼Gamma(C,1), π∼Dirichlet(1C)[f(arg mini επie
−φi)(1− επc)]

= Eπ∼Dirichlet(1C)[f(arg mini πie
−φi)(1− Cπc)].

= Eπ∼Dirichlet(1C)[f(arg mini π
c�j
i e−φi)(1− Cπj)], (A.7)

where j ∈ {1, . . . , C} is an arbitrarily selected reference category, whose selec-

tion does not depends on π and φ.

Another useful observation of the paper is that the function

b(π,φ, j) =
1

C

C∑
m=1

f(arg mini π
m�j
i e−φi)(1− Cπj)

has zero expectation, as

Eπ∼Dirichlet(1C)[b(π,φ, j)] = Eπ∼Dirichlet(1C)

[
f(arg mini πie

−φi)
C∑

m=1

(
1

C
− πm

)]
= 0.

(A.8)

Using E[b(π,φ, j)] as the baseline function and subtracting it from (A.7) leads

to (2.8). We now conclude the proof of Theorem 1 for the AR estimator,

and Equation 2.8 for the ARS estimator. Once the ARS estimator is proved,

Theorem 2 for the ARSM estimator directly follows.
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Proof of Corollary 3. Note that letting (u, 1 − u) ∼ Dir(1, 1) is the same as

letting u ∼ Uniform(0, 1). Thus regardless of whether we choose Category 1 or

Category 2 for as the reference category, we have

∇φ1
E(φ) = Eu∼Uniform(0,1)[f(arg min(u, σ(φ1 − φ2))− f(arg min(1− u, σ(φ1 − φ2))](1/2− u)

(A.9)

and ∇φ2
E(φ) = −∇φ1

E(φ). Denote φ = φ1 − φ2 and η = φ1 + φ2, we have

∇φE(φ) = ∇φ1E(φ)
∂φ1

∂φ
+∇φ2E(φ)

∂φ2

∂φ
= ∇φ1

E(φ).

A.2 Fast Computation for the Swap Step

Computing the pseudo actions zc�j = arg mini π
c�j
i e−φi due to the

swap operations can be efficiently realized: we first compute oij = lnπi − φj,

z = arg mini(lnπi − φi), and omin = lnπz − φz; then for m = 1 . . . , C, j < m,

compute

zm�j =


m, if z /∈ {m, j}, min{omj, ojm} < omin, omj ≤ ojm;

j, if z /∈ {m, j}, min{omj, ojm} < omin, omj > ojm;

arg mini(lnπ
m�j
i −φi), if z ∈ {m, j};

z, otherwise;

and let zj�j = z for all j, and zm�j = zj�m for all j > m.
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A.3 ARSM for Multivariate, Hierarchical, and Sequen-
tial Categorical Variables

A.3.1 ARSM for Multivariate Categorical Variables

Proposition 7 (AR, ARS, and ARSM for multivariate categorical). De-

note z = (z1, . . . , zK), where zk ∈ {1, . . . , C}, as a K dimensional vector of

C-way categorical variables. Denote Π = (π1, . . . ,πK) ∈ RC×K as a ma-

trix obtained by concatenating K column vectors πk = (πk1, . . . , πkC)′, and

Φ = (φ1, . . . ,φK) ∈ RC×K by concatenating φk = (φk1, . . . , φkC)′. With the

multivariate AR estimator, the gradient of

E(Φ) = Ez∼∏K
k=1 Cat(zk;σ(φk))[f(z)] (A.10)

with respect to φkc is expressed as

∇φkcE(Φ) = EΠ∼
∏K
k=1 Dir(πk;1C)[f(z)(1− Cπkc)],

zk : = arg mini∈{1,...,C} πkie
−φki . (A.11)

Denoting j = (j1, . . . , jK), where jk ∈ {1, . . . , C} is a randomly selected refer-

ence category for dimension k, the multivariate ARS estimator is expressed as

∇φkcE(Φ) = EΠ∼
∏K
k=1 Dir(πk;1C)[f

c�j

∆ (Π)(1− Cπkjk)],

f c�j∆ (Π) : = f(zc�j )− 1
C

∑C
m=1 f(zm�j ),

zc�j : = (zc�j11 , zc�j22 , . . . , z
c�jK
K ),

z
c�jk
k : = arg mini∈{1,...,C} π

c�jk
ki e−φki .

(A.12)
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Setting j = j1K and averaging over all j ∈ {1, . . . , C}, the multivariate ARSM

estimator is expressed as

∇φkcE(Φ) = EΠ∼
∏K
k=1 Dir(πk;1C)

[∑C
j=1 f

c�(j1K )

∆ (Π)( 1
C
− πkj)

]
. (A.13)

Note to obtain ∇φkcE(Φ) for all k and c based on the ARS estimator

in (A.12), we only need to evaluate f(z1�j), . . . , f(zC�j). Thus regardless of

how large K is, to obtain a single Monte Carlo sample estimate of the true

gradient, one needs to evaluate the reward function f(·) as few as zero time,

which happens when the number of unique vectors in {zc�j}c=1,C is one, and

as many as C times, which happens when all zc�j are different from each other.

Similarly, if the ARSM estimator in (A.13) is used, the number of times one

needs to evaluate f(·) is between zero and C(C − 1)/2 + 1. In the multivariate

setting where z ∈ {1, . . . , C}K , we often choose a relatively small C, such as

C = 10, but allows K to be as large as necessary, such as K = 100. Thus even

CK , the number of unique z’s, could be enormous when K is large, both the

ARS and ARSM estimators remain computationally efficient; this differs them

from estimators, such as the one in Titsias and Lázaro-Gredilla [2015], that

are not scalable in the dimension K.

A.3.2 ARSM for Categorical Stochastic Networks

Let us construct a T -categorical-stochastic-layer network as

qΦ1:T
(z1:T |x) =

∏T
t=1 q(zt |Φt), Φt := Twt(z1:t−1),

q(zt |Φt) :=
∏Kt
k=1 Cat(ztk;σ(φtk)), (A.14)
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where z0 := x, zt := (zt1, . . . , ztKt)
′ ∈ {1, . . . , C}Kt is a Kt-dimensional C-way

categorical vector at layer t, φtk := (φtk1, . . . , φtkC)′ ∈ RC is the parameter

vector for dimension k at layer t, Φt :=
(
φt1, . . . ,φtKt

)
∈ RC×Kt , and Twt(·)

represents a function parameterized by wt that deterministically transforms

zt−1 to Φt. In this paper, we will define Twt(·) with a neural network.

Proposition 8. For the categorical stochastic network defined in (A.14), the

ARSM gradient of the objective

E(Φ1:T ) = Ez1:T∼qΦ1:T
(z1:T |x) [f(z1:T )] (A.15)

with respect to wt can be expressed as ∇wtE(Φ1:T ) = ∇wt
(∑Kt

k=1

∑C
c=1(∇φtkcE(Φ1:T ))φtkc

)
,

where

∇φtkcE(Φ1:T ) = E
Πt∼

∏Kt
k=1 Dir(πtk;1C)

[∑C
j=1 f

c�j

t∆ (Πt)
(

1
C
− πtkj

)]
, (A.16)

where πtk = (πtk1, . . . , πtkC)′ is the Dirichlet distributed probability vector for

dimension k at layer t and

f c�jt∆ (Πt) : = f(Zc�j
t )− 1

C

∑C
m=1 f(Zm�j

t ),

Zc�j
t : = {z1:t−1, z

c�j

t:T }, z1:t−1 ∼ qΦ1:t−1(z1:t−1 |x),

zc�jt : = (zc�jt1 , . . . , zc�jtKt
)′,

zc�jtk : = arg mini∈{1,...,C} π
c�j

tki e
−φtki ,

zc�jt+1:T ∼ qΦt+1:T
(zt+1:T | z1:t−1, z

c�j
t ).
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A.3.3 Proofs

Below we show how to generalize Theorem 2 for a univariate categorical

variable to Proposition 7 for multivariate categorical variables, and Proposition

8 for hierarchical multivariate categorical variables.

Proof of Proposition 7. For the expectation in (A.10), since zk are conditionally

independent given φk, we have

∇φkcE(Φ) = Ez\k∼∏k′ 6=k Discrete(zk′ ;σ(φk′ ))

[
∇φkcEzk∼Cat(σ(φk))[f(z)]

]
. (A.17)

Using Theorem 2 to compute the gradient in the above equation directly leads

to

∇φkcE(Φ) =Ez\k∼∏k′ 6=k Discrete(zk′ ;σ(φk′ ))

{
Eπk∼Dirichlet(1C)

[
(f(z\k, z

c�j
k )−

(A.18)

1

C

C∑
m=1

f(z\k, z
m�j
k ))(1− Cπkj)

]}
, (A.19)

The term inside [·] of (A.19) can already be used to estimate the gradient,

however, in the worst case scenario that all the elements of {zc�jk }j=1,C are

different, it needs to evaluate the function f(z\k, z
c�j
k ) for j = 1, . . . , C, and

hence C times for each k and KC times in total. To reduce computation

and simplify implementation, exchanging the order of the two expectations in

(A.19), we have

∇φkcE(Φ) = Eπk∼Dirichlet(1C)

{
(1− Cπkj)Ez\k∼∏k′ 6=k Discrete(zk′ ;σ(φk′ ))

[
(A.20)
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f(z\k, z
c�j
k )− 1

C

C∑
m=1

f(z\k, z
m�j
k )

]}
Note that

Ez\k∼∏k′ 6=k Discrete(zk′ ;σ(φk′ ))
[f(z\k, z

c�j
k )]

= Eε\k∼∏k′ 6=k
∏C
i=1 Exp(εk′i;e

φk′i )

[
f
(
(zk′ = arg mini∈{1,...,C} εk′ie

−φk′i)k′ 6=k, z
c�j
k

)]
= Eε\k∼∏k′ 6=k

∏C
i=1 Exp(εk′i;e

φk′i )

[
f
(
(zk′ = arg mini∈{1,...,C} ε

(c�j)

k′i e−φk′i)k′ 6=k, z
c�j
k

)]
= EΠ\k∼

∏
k′ 6=k Dirichlet(πk′ ;1C)

[
f
(
(zk′ = arg mini∈{1,...,C} π

(c�j)

k′i e−φk′i)k′ 6=k, z
c�j
k

)]
= EΠ\k∼

∏
k′ 6=k Dirichlet(πk′ ;1C)

[
f
(
zc�j1 , . . . ,zc�jK

)]
Plugging the above equation into (A.20) leads to a simplified representation as

(A.13) shown in Proposition 7, with which, regardless of the dimensions C, we

draw Π = {π1, . . . ,πK} once to produce correlated zc�j’s, and evaluate the

function f(·) at most C times.

Proof of Proposition 8. For multi-layer stochastic network qΦ1:T
(z1:T |x) =

qΦ1(z1 |x)
[∏T−1

t=1 qΦt+1(zt+1 | zt)
]
, the gradient of the t-th layer parameter Φt

is

∇ΦtE(Φ1:T ) = Ez1:t−1∼q(z1:t−1|x)∇ΦtEq(zt|zt−1)ft(z1:t)

where ft(z1:t) = Eq(zt+1:T |zt)[f(z1:T )]. To compute the ARSM gradient estima-

tor, first draw a single sample z1:t−1 ∼ q(z1:t−1 |x) if t > 1 and compute the

pseudo action vector for the t-th layer according to Proposition 7 as

zc�jtk : = arg mini∈{1,...,C} π
c�j

tki e
−φtki
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for c, j ∈ {1, . . . , C}. For each pseudo action vector zc�jt , sample zc�jt+1:T ∼

q(zt+1:T | zc�jt ) and compute ft(z
c�j) = f(z1:t−1, z

c�j
t:T ). Replacing f(zc�j) in

Proposition 7 with the ft(z
c�j) leads to the gradient estimator in Proposition 8.

Proof of Proposition 4. We first write the objective function J(θ) in terms of

the intermediate parameters φt = Tθ(st), and then apply the chain rule to

obtain the policy gradient ∇θJ(θ). Since

J(φ0:∞) = EP(s0)
∏∞
t=0 P(st+1 | st,at)Cat(at;σ(φt))

[
∞∑
t=0

γtr(st, at)

]

we have

J(φ0:∞) = E
P(s0)[

∏t−1
t′=0

P(st′+1 | st′ ,at′ )Cat(at′ ;σ(φt′ ))]

{
Eat∼Cat(σ(φt))

[
t−1∑
t′=0

γt
′
r(st′ , at′) + γtQ(st, at)

]}

= E
P(s0)[

∏t−1
t′=0

P(st′+1 | st′ ,at′ )Cat(at′ ;σ(φt′ ))]

{
Eat∼Cat(σ(φt))

[
t−1∑
t′=0

γt
′
r(st′ , at′)

]}
+ E

P(s0)[
∏t−1
t′=0

P(st′+1 | st′ ,at′ )Cat(at′ ;σ(φt′ ))]
{
Eat∼Cat(σ(φt))

[
γtQ(st, at)

]}
,

(A.21)

where Q(st, at) is the discounted action-value function defined as

Q(st, at) := E∏∞
t′=t Cat(at′+1;σ(φt′+1))P(st′+1 | st′ ,at′ )

[
∞∑
t′=t

γt
′−tr(st′ , at′)

]
.

The first summation term in (A.21) can be ignored for computing ∇φtJ(φ0:∞),

and the second one can be re-expressed as

EP(st | s0,πθ)P(s0)

{
Eat∼Cat(σ(φt))

[
γtQ(st, at)

]}
, (A.22)
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where P(st | s0, πθ) is the marginal form of the joint distribution∏t−1
t′=0 P(st′+1 | st′ , at′)Cat(at′ ;σ(φt′)). Applying Theorem 2 to (A.22), we have

∇φtcJ(φ0:∞) = EP(st | s0,πθ)P(s0)

{
γt∇φtcEat∼Cat(σ(φt)) [Q(st, at)]

}
= EP(st | s0,πθ)P(s0)

{
γtE$t∼Dir(1C) [gtc]

}
, (A.23)

where

gtc : =
C∑
j=1

f c�jt∆ ($t)

(
1

C
−$tj

)
,

f c�jt∆ ($t) : = Q(st, a
c�j
t )− 1

C

C∑
m=1

Q(st, a
m�j
t ),

ac�jt : = arg mini∈{1,...,C}$
c�j
ti e−φti .

Applying the chain rule, we obtain the gradient as

∇θJ(θ) =
∞∑
t=0

C∑
c=1

∂J(φ0:∞)

∂φtc

∂φtc
∂θ

=
∞∑
t=0

C∑
c=1

EP(s0)P(st | s0,πθ)

{
γtE$t∼Dir(1C) [gtc]∇θφtc

}
=
∞∑
t=0

EP(s0)P(st | s0,πθ)

{
γtE$t∼Dir(1C)

[
∇θ

C∑
c=1

gtcφtc

]}

= Est∼ρπ(s)

{
E$t∼Dir(1C)

[
∇θ

C∑
c=1

gtcφtc

]}
, (A.24)

where ρπ(s) :=
∑∞

t=0 γ
tP(st = s | s0, πθ) is the unnormalized discounted state

visitation frequency. This concludes the proof of the ARSM policy gradient

estimator. The proof of the ARS policy gradient estimator can be similarly

derived, omitted here for brevity.
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A.4 Additional Figures and Tables

Table A.1: The constructions of variational auto-encoders. The following
symbols “→”, “]”, )”, and “ ” represent deterministic linear transform, leaky
rectified linear units (LeakyReLU) [Maas et al., 2013] nonlinear activation,
softmax nonlinear activation, and discrete stochastic activation, respectively,
in the encoder; their reversed versions are used in the decoder.

One layer Two layers

Encoder 784→512]→256]→200) 200 784→512]→256]→200) 200 → 200)  200
Decoder 784  (784←[512←[256←200 784  (784←[512←[256←200  (200 ← 200
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Figure A.1: Analogous plots to these in Figure 2.1, obtained with C = 1, 000.
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Figure A.2: Analogous plots to these in Figure 2.1, obtained with C = 10, 000.
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Figure A.4: The entropy of latent categorical distributions and the number of
distinct pseudo actions, which differ from their corresponding true actions, both
decrease as the training progresses. We plot the average entropy for {ztk} for all
t = 1 : T and k = 1 : K. The pseudo action proportion for the k-th categorical
random variable at the t-th stochastic layer is calculated as the number of unique
values in {zc�jtk }c=1:C,j=1:C\ztk divided by C − 1, the maximum number of distinct
pseudo actions that differ from the true action ztk. We plot the average pseudo
action proportion for {ztk} for all t = 1 : T and k = 1 : K. Subplots (a), (b), and
(c) correspond to the Toy data (T = K = 1, C = 30), VAE with a single stochastic
layer (T = 1, K = 20, C = 10), and Acrobot RL task (0 ≤ T ≤ 500, K = 1, C = 3);
other settings yield similar trace plots.
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A.5 Algorithm
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Algorithm 2 ARS/ARSM gradient for K-dimensional C-way categorical
vector z = (z1, · · · , zK), where zk ∈ {1, . . . , C}.
input : Reward function f(z;θ) parameterized by θ;
output : Distribution parameter Φ = (φ1, · · · ,φK) ∈ RC×K and reward func-

tion parameter θ that maximize the expected reward as E(Φ,θ) :=
Ez∼∏K

k=1 Cat(zk;σ(φk))[f(z;θ)];

1 Initialize Φ and θ randomly;
2 while not converged do
3 Sample πk ∼ Dirichlet(1C) for k = 1, . . . ,K;
4 Let zk = arg mini∈{1,...,C}(lnπki− φki) for k = 1, . . . ,K to obtain the true action

vector z = (z1, . . . , zk);
5 if Using the ARS estimator then
6 Using a single reference vector j = (j1, . . . , jK) for the variable-swapping

operations, where all jk are uniformly at random selected from {1, . . . , C};
7 for c = 1, . . . , C (in parallel) do

8 Let z
c�jk
k = arg mini∈{1,...,C}(lnπ

c�jk
ki − φki) for k = 1, . . . ,K;

9 Denote zc�j = (z
c�j1
1 , . . . , z

c�jK
K ) as the cth pseudo action vector;

10 end

11 Let f̄ = 1
C

∑C
c=1 f(zc�j )

12 Let gφkc =
(
f(zc�j )− f̄

)
(1− Cπkjk) for all (k, c) ∈ {(k, c)}k=1:K, c=1:C ;

13 end
14 if Using the ARSM estimator then
15 Initialize the diagonal of reward matrix F ∈ RC×C with f(z), which means

letting Fcc = f(z) for c = 1, . . . , C;
16 for (c, j) ∈ {(c, j)}c=1:C, j<c (in parallel) do
17 Let j = j1K , which means jk ≡ j for all k ∈ {1, . . . ,K};
18 Let zc�jk = arg mini∈{1,...,C}(lnπ

c�j
ki − φki) for t = 1, . . . ,K;

19 Denote zc�j = (zc�j1 , . . . , zc�jK ) as the (c, j)th pseudo action vector;
20 Let Fcj = Fjc = f(zc�j );

21 end

22 Let F̄·j = 1
C

∑C
c=1 Fcj for j = 1, . . . , C;

23 Let gφkc =
∑C

j=1(Fcj − F̄·j)(
1
C − πkj) for all (t, c) ∈ {(t, c)}k=1:K, c=1:C ;

24 end
25 Φ = Φ + ρφ{gφkc}k=1:T, c=1:C , with step-size ρφ;
26 θ = θ + ηθ∇θf(z;θ), with step-size ηθ
27 end
28 *Note if the categorical distribution parameter Φ itself is defined by neural networks

with parameterw, standard backpropagation can be applied to compute the gradient
with ∂E(Φ,θ)

∂w = ∂E(Φ,θ)
∂Φ

∂Φ
∂w ≈ ∇w

(∑K
k=1

∑C
c=1 gφkcφkc

)
.
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Algorithm 3 ARS/ARSM gradient for T layer K-dimensional C-way categor-
ical vector zt = (zt1, · · · , ztK), where t ∈ {1, . . . , T}, ztk ∈ {1, . . . , C}.
input : Reward function f(z1:T ;θ) parameterized by θ;
output : Distribution parameter Φt = (φt1, · · · ,φtK)′ ∈ RK×C

and parameter θ that maximize the expected reward as
E(Φ1:T ,θ) := Ez∼qΦ1

(z1 |x)[
∏T−1
t=1 qΦt+1

(zt+1 | zt)])[f(z;θ)]; qΦt(zt | zt−1) =∏K
k=1 Categorical(ztk|σ(φtk(zt−1)));

29 Initialize Φ1:T and θ randomly;
30 while not converged do
31 for t = 1 : T do
32 Sample πtk ∼ Dirichlet(1C) for k = 1, . . . ,K; Let ztk = arg mini∈{1,...,C}(lnπtki −

φtki) for k = 1, . . . ,K to obtain the true action vector zt = (zt1, . . . , ztK);
33 if Using the ARS estimator then
34 Let jt = (jt1, . . . , jtK), where jtk ∈ {1, . . . , C} is a randomly selected reference

category for dimension k at layer t.
35 for c = 1, . . . , C (in parallel) do

36 Let zc�jtk
tk := arg mini∈{1,...,C} π

c�jtk

tki e−φtki for k = 1, . . . ,K;

37 Denote z
c�jt
t = (zc�jt1

t1 , . . . , zc�jtK
tK ) as the cth pseudo action vector;

38 end

39 Let f̄t = 1
C

∑C
c=1 f(z

c�jt
t )

40 Let gφtkc =
(
f(z

c�jt
t )− f̄t

)
(1− Cπkjtk) for all (k, c) ∈ {(k, c)}k=1:K, c=1:C ;

41 end
42 if Using the ARSM estimator then
43 Let F (t) ∈ RC×C
44 If t > 1, sample z1:t−1 ∼ q(z1:t−1|x) ;
45 for (c, j) ∈ {(c, j)}c=1:C, j≤c (in parallel) do
46 Let j = j1K , which means jk ≡ j for all k ∈ {1, . . . ,K};
47 Let zc�j

tk := arg mini∈{1,...,C} π
c�j

tki e
−φtki for all k ∈ {1, . . . ,K};

48 Denote zc�j
t = (zc�j

t1 , . . . , zc�j
tK ) as the (c, j)th pseudo action vector;

49 If t < T , sample zc�j
t+1:T ∼ q(zt+1:T |zc�j

t );

50 Let F
(t)
cj = F

(t)
jc = f(z1:t−1, z

c�j
t:T );

51 Let F̄
(t)
·j = 1

C

∑C
c=1 F

(t)
cj for j = 1, . . . , C;

52 Let gφtkc =
∑C
j=1(F

(t)
cj − F̄

(t)
·j )( 1

C − πkj) for all (k, c) ∈ {(k, c)}k=1:K, c=1:C ;

53 end

54 end
55 Φt = Φt + ρΦt{gφtkc}k=1:K, c=1:C , with step-size ρΦt ;

56 end
57 θ = θ + ηθ∇θf(z;θ), with step-size ηθ
58 end
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Algorithm 4 ARSM policy gradient for reinforcement learning with a discrete-
action space of C actions.
input : Maximum number of state-pseudo-action rollouts Smax allowed in a single iteration;
output : Optimized policy parameter θ;

59 while not converged do
60 Given a random state s0 and environment dynamics P(st+1 | at, st), we run an episode till

its termination (or a predefined number of steps) by sampling a true-action trajectory
(a0, s1, a1, s2, . . .) given policy πθ(at | st) := Cat(at;σ(φt)), φt := Tθ(st), where we
sample each at by first sampling ($t1, . . . , $tc) ∼ Dir(1C) and then letting at =
arg mini∈{1,...,C}(ln$ti − φti);

61 Record the termination time step of the episode as T , and set the rollout set as H = []
and S0 = 0;

62 for t ∈ RandomPermute(0, . . . , T ) do
63 Let At = {(c, j)}c=1:C, j<c

64 Initialize ac�j

t = at for all c and j;
65 for (c, j) ∈ At (in parallel) do
66 Let ac�j

t = aj�c

t = arg mini∈{1,...,C}(ln$
c�j

ti −φti)
67 end
68 Let St = unique({ac�j

t }c,j)\at, which means St is the set of all unique values in
{ac�j

t }c,j that are different from the true action at; Denote the cardinality of St as
|St|, where 0 ≤ |St| ≤ C − 1 ;

69 if S0 + |St| ≤ Smax then
70 S0 = S0 + |St|
71 Append t to H

72 else
73 break
74 end

75 end
76 for t ∈ H (in parallel) do

77 Initialize Rtmj = Q̂(st, at) =
∑T
t′=t γ

t′−tr(st′ , at′) for all m, j ∈ {1, . . . , C} for
k ∈ {1, . . . , |St|} (in parallel) do

78 Let ãtk = St(k) be the kth unique pseudo action at time t;

79 Evaluate Q̂(st, ãtk), which in this paper is set as r(st, ãtk) +

γ
∑∞
t′=t+1 γ

t′−(t+1)r(s̃t′ , ãt′), where (st, ãtk, s̃t+1, ãt+1, . . .) is a state-
pseudo-action rollout generated by taking pseudo action ãtk at state st and
then following the environment dynamics and policy πθ;

80 Let Rtmj = Q̂(st, ãtk) for all (m, j) in {(m, j) : am�jt
t = ãtk};

81 end

82 end
83 Esimate the ARSM policy gradient as
84

∇θJ(θ) ≈ ∇θ

∑
t∈H

C∑
c=1

 C∑
j=1

(
Rtcj −

1

C

C∑
m=1

Rtmj

)(
1

C
−$tj

)φtc
 ,

θ = θ + ηθJ(θ), with step-size ηθ;
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Appendix B

Appendix for Discrete Action On-Policy

Learning with Action-Value Critic

Discrete Action On-Policy Learning with Action-Value
Critic:

Supplementary Material

B.1 Proof of Theorem 5

We first show the sparse ARSM for multidimensional action space case

at one specific time point, then generalize it to stochastic setting. Since ak

are conditionally independent given φk, the gradient of φkc at one time point

would be (we omit the subscript t for simplicity here)

∇φkcJ(φ) = Ea\k∼∏k′ 6=k Discrete(ak′ ;σ(φk′ ))

[
∇φkcEak∼Cat(σ(φk))[Q(a, s)]

]
,
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and we apply the ARSM gradient estimator on the inner expectation part,

which gives us

∇φkcJ(φ) = Ea\k∼
∏
k′ 6=k Discrete(ak′ ;σ(φk′ ))

{
E$k∼Dir(1C)

[
(Q([a\k, a

c�j
k ], s)−

1

C

C∑
m=1

Q([a\k, a
m�j
k ], s))(1− C$kj)

]}

= E$k∼Dir(1C)

{
Ea\k∼

∏
k′ 6=k Discrete(ak′ ;σ(φk′ ))

[
(Q([a\k, a

c�j
k ], s)−

1

C

C∑
m=1

Q([a\k, a
m�j
k ], s))(1− C$kj)

]}
(B.1)

= E$k∼Dir(1C)

{
E∏

k′ 6=k Dir($k′ ;1C)

[
(Q(ac�j , s)−

1

C

C∑
m=1

Q(am�j , s))(1− C$kj)
]}
,

(B.2)

where (B.1) is derived by changing the order of two expectations and (B.2)

can be derived by following the proof of Proposition 5 in Yin et al. [2019].

Therefore, if given $k ∼ Dir(1C), it is true that ac�jk = ak for all (c, j) pairs,

then the inner expectation term in (B.1) will be zero and consequently we have

gkc = 0

as an unbiased single sample estimate of ∇φkcJ(φ); If given $k ∼ Dir(1C),

there exist (c, j) that ac�jk 6= ak, we can use (B.2) to provide

gkc =
C∑
j=1

[
Q(s,ac�j)− 1

C

C∑
m=1

Q(s,am�j)

](
1

C
−$kj

)
(B.3)

as an unbiased single sample estimate of ∇φkcJ(φ).

For a specific time point t, the objective function can be decomposed as

J(φ0:∞) = E
P(s0)[

∏t−1
t′=0

P(st′+1 | st′ ,at′ )Cat(at′ ;σ(φt′ ))]

{
Eat∼Cat(σ(φt))

[
t−1∑
t′=0

γt
′
r(st′ ,at′) + γtQ(st,at)

]}

= E
P(s0)[

∏t−1
t′=0

P(st′+1 | st′ ,at′ )Cat(at′ ;σ(φt′ ))]

{
Eat∼Cat(σ(φt))

[
t−1∑
t′=0

γt
′
r(st′ ,at′)

]}
+ E

P(s0)[
∏t−1
t′=0

P(st′+1 | st′ ,at′ )Cat(at′ ;σ(φt′ ))]
{
Eat∼Cat(σ(φt))

[
γtQ(st,at)

]}
,
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where the first part has nothing to do with φt, we therefore have

∇φtkcJ(φ0:∞) = EP(st | s0,πθ)P(s0)

{
γt∇φtkcEat∼Cat(σ(φt)) [Q(st,at)]

}
.

With the result from (B.3), the statements in Theorem5 follow.
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Figure B.1: left panel: Change of policy over iterations between Gaussian
policy (left) and discrete policy (right) on toy example setting. right panel:
Average density on each action along with the training iterations between
Gaussian policy and discrete policy for 100 experiments.(The Gaussian policy
converges to the inferior optimal solution 12 times out of 100 times, and discrete
policy converges to the global optimum all the time).

B.2 Experiment setup

B.2.1 Toy example setup

Assume the true reward is a bi-modal distribution (as shown in Figure

B.1 left panel red curves) with a difference between its two peaks:

r(a) =

{
−c1(a− 1)(a−m) + ε1 for a ∈ [m, 1]
−c2(a+ 1)(a−m) + ε2 for a ∈ [−1,m],

where the values of c1, c2, and m determine the heights and widths of these

two peaks, and ε1 ∼N(0, 2) and ε2 ∼N(0, 1) are noise terms. It is clear that

a∗left = (m− 1)/2 and a∗right = (1 + m)/2 are two local-optimal solutions and

corresponding to rleft := E[r((a∗left)] = c2(1 +m)2/4 and rright := E[r(a∗right)] =

c1(1−m)2/4. Here we always choose c1 and c2 such that rleft is slightly bigger

than rright which makes a∗left a better local-optimal solution. It is clear that the

more closer a∗left to −1, the more explorations a policy will need to converge

to a∗left. Moreover, the noise terms can give wrong signals and may lead to
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bad update directions, and exploration will play an essential role in preventing

the algorithm from acting too greedily. The results shown on Section 3.4.1

has m = −0.8, c1 = 40/(1.82) and c2 = 41/(0.22), which makes rleft = 10.25

and rright = 10. We also show a simple example at Figure B.1 with m = 0,

c1 = 40/(0.52) and c2 = 41/(0.52), which maintains the same peak values.

The experiment setting is as follows: for each episode, we collect 100

samples and update the corresponding parameters ([µ, σ] for Gaussian policy

and φ ∈ R21 for discrete policy where the action space is discretized to 21

actions), and iterate until N samples are collected. We add a quadratic decaying

coefficient for the entropy term for both policies to encourage explorations on

an early stage. The Gaussian policy is updated using reparametrization trick

[Kingma and Welling, 2013], which can be applied to this example since we

know the derivative of the reward function (note this is often not the case for

RL tasks). The discrete policy is updated using ARSM gradient estimator

described in Section 3.2.

On the heatmap, the horizontal axis is the iterations, and vertical axis

denotes the actions. For each entry corresponding to a at iteration i, its value

is calculated by v(i, a) = 1
U

∑U
u=1 pu(a | i), where pu(a | i) is the probability of

taking action a at iteration i for that policy in uth trial.

We run the same setting with different seeds for Gaussian policy and

discrete policy for 100 times, where the initial parameters for Gaussian Policy

is µ0 = m,σ = 1 and for discrete policy is φi = 0 for any i to eliminate the

effects of initialization.
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In those 100 trials, when m = −0.8, N = 1e6, Gaussian policy fails to

find the true global optimal solution (0/100) while discrete policy can always

find that optimal one (100/100). When m = 0, N = 5e5, the setting is easier

and Gaussian policy performs better in this case with only 12/100 percentage

converging to the inferior sub-optimal point 0.5, and the rest 88/100 chances

getting to global optimal solution. On the other hand, discrete policy always

converges to the global optimum (100/100). The similar plots are shown on

Figure B.1. The p-value for this proportion test is 0.001056, which shows strong

evidence that discrete policy outperforms Gaussian policy on this example.

B.2.2 Baselines and CARSM setup

Our experiments aim to answer the following questions: (a) How does

the proposed CARSM algorithm perform when compared with ARSM-MC

(when ARSM-MC is not too expensive to run). (b) Is CARSM able to efficiently

solve tasks with large discrete action spaces (i.e., C is large). (c) Does CARSM

have better sample efficiency than the algorithms, such as A2C and RELAX,

that have the same idea of using baselines for variance reduction. (d) Can

CARSM combined with other standard algorithms such as TRPO to achieve a

better performance.

Baselines and Benchmark Tasks. We evaluate our algorithm on bench-

mark tasks on OpenAI Gym classic-control and MuJoCo tasks [Todorov et al.,

2012]. We compare the proposed CARSM with ARSM-MC [Yin et al., 2019],
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A2C [Mnih et al., 2016], and RELAX [Grathwohl et al., 2018]; all of them

rely on introducing baseline functions to reduce gradient variance, making it

fair to compare them against each other. We then integrate CARSM into

TRPO by replacing the A2C gradient estimator for ∇θJ(θ), and evaluate the

performances on MuJoCo tasks to show that a simple plug-in of the CARSM

estimator can bring the improvement.

Hyper-parameters: Here we detail the hyper-parameter settings for all

algorithms. Denote βpolicy and βcritic as the learning rates for policy parameters

and Q critic parameters, respectively, ncritic as the number of training time

for Q critic, and α as the coefficient for entropy term. For CARSM, we

select the best learning rates βpolicy, βcritic ∈ {1, 3} × 10−2, and ncritic ∈

{50, 150}; For A2C and RELAX, we select the best learning rates βpolicy ∈

{3, 30} × 10−5. In practice, the loss function consists of a policy loss Lpolicy

and value function loss Lvalue. The policy/value function are optimized jointly

by optimizing the aggregate objective at the same time L = Lpolicy + cLvalue,

where c = 0.5. Such joint optimization is popular in practice and might be

helpful in cases where policy/value function share parameters. For A2C, we

apply a batched optimization procedure: at iteration t, we collect data using

a previous policy iterate πt−1. The data is used for the construction of a

differentiable loss function L. We then take viter gradient updates over the

loss function objective to update the parameters, arriving at πt. In practice,

we set viter = 10. For TRPO and TRPO combined with CARSM, we use
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max KL-divergence of 0.01 all the time without tuning. All algorithms use a

initial α of 0.01 and decrease α exponentially, and target network parameter

τ is 0.01. To guarantee fair comparison, we only apply the tricks that are

related to each algorithm and didn’t use any general ones such as normalizing

observation. More specifically, we replace Advantage function with normalized

Generalized Advantage Estimation (GAE) [Schulman et al., 2015b] on A2C,

apply normalized Advantage on RELAX.

Structure of Q critic networks: There are two common ways to

construct a Q network. The first one is to model the network as Q : RnS → R|A|,

where nS is the state dimension and |A| = CK is the number of unique actions.

The other structure is Q : RnS+K → R, which means we need to concatenate

the state vector s with action vector a and feed that into the network. The

advantage of first structure is that it doesn’t involve the issue that action

vector and state vector are different in terms of scale, which may slow down the

learning process or make it unstable. However, the first option is not feasible

under most multidimensional discrete action situations because the number of

actions grow exponentially along with the number of dimension K. Therefore,

we apply the second kind of structure for Q network, and update Q network

multiple times before using it to obtain the CARSM estimator to stabilize the

learning process.

Structure of policy network: The policy network will be a function

of Tθ : RnS → RK×C , which feed in state vector s and generate K × C logits

φkc. Then the action is obtained for each dimension k by π(ak | s,θ) = σ(φk),
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Figure B.2: Performance curves for comparison between ARSM-MC and
CARSM given fix timesteps

where φk = (φk1, . . . , φkC)′. For both the policy and Q critic networks, we use

a two-hidden-layer multilayer perceptron with 64 nodes per layer and tanh

activation.

Environment setup

• HalfCheetah (S ⊂ R17,A ⊂ R6)

• Hopper (S ⊂ R11,A ⊂ R3)

• Reacher (S ⊂ R11,A ⊂ R2)

• Swimmer (S ⊂ R8,A ⊂ R2)

• Walker2D (S ⊂ R17,A ⊂ R6)

• LunarLander Continuous (S ⊂

R8,A ⊂ R2)

B.2.3 Comparison between CARSM and ARSM-MC for fixed timestep

We compare ARSM-MC and CARSM for fixed timestep setting, with

their performances shown in Figure B.2
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B.3 Pseudo Code

We provide detailed pseudo code to help understand the implementation

of CARSM policy gradient. There are four major steps for each update iteration:

(1) Collecting samples using augmented Dirichlet variables $t; (2) Update

the Q critic network using both on-policy samples and off-policy samples;

(3) Calculating the CARSM gradient estimator; (4) soft updating the target

networks for both the policy and critic. The (1) and (3) steps are different

from other existing algorithms and we show their pseudo codes in Algorithms

5 and 6, respectively.

Algorithm 5 Collecting samples from environment

Input: Policy network π(a | s,θ), initial state s0, sampled step T , replay buffer
R

Output: Intermediate variable matrix $1:T , logit variables φ1:T , rewards
vector r1:T , state vectors s1:T , action vectors a1:T , replay buffer R

for t = 1 · · ·T do
Generate Dirichlet random variable $tk ∼ Dir(1C) for each dimension k;
Calculate logits φt = Tθ(st) which is a K × C length vector
Select action atk = argmini∈{1,··· ,C}(ln$tki−φtki) for each dimension k;
Obtain next state values st+1 and reward rt based actions at =
(at1, . . . , atK)′ and current state st.
Store the transition {st,at, rt, st+1} to replay buffer R

Assign st ← st+1.
end
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Algorithm 6 CARSM policy gradient for a K-dimensional C-way categorical
action space.
Input: Critic network Qω, policy network πθ, on-policy samples including states s1:T ,
actions a1:T , intermediate Dirichlet random variables $1:T , logits vectors φ1:T , discounted
cumulative rewards y1:T .
Output: an updated policy network

Initialize g ∈ RT×K×C ;
for t = 1· · · T (in parallel) do

for k = 1· · · K (in parallel) do
Let Atk = {(c, j)}c=1:C, j<c , and initialize P tk ∈ RC×C with all element equals to
atk (true action).
for (c, j) ∈ Atk (in parallel) do

Let ac�j

tk = arg mini∈{1,...,Ck}(ln$
c�j

tki −φtki)
if ac�j

tk not equals to atk then
Assign ac�j

tk to P tk(c, j)
end

end

end

Let St = unique(P t1⊗P t2 · · · ⊗P tK)\{at1⊗ at2 · · · ⊗ atK}, which means St is the set of
all unique values across K dimensions except for true action at = {at1 ⊗ at2 · · · ⊗ atK};
denote pseudo action of swapping between coordinate c and j as St(c, j) = (P t1(c, j)⊗
P t1(c, j) · · · ⊗ P tK(c, j)), and define It as unique pairs contained in St.

Initialize matrix F t ∈ RC×C with all elements equal to yt;
for (c̃, j̃) ∈ It (in parallel) do

F t(c̃, j̃) = Qω(st, St(c̃, j̃))
end

Plug in number for matrix gtkc =
∑C
j=1(F tc − F̄ tc )( 1

C −$tkj), where F tkc denotes the cth

row of matrix F t and F̄ tc is the mean of that row;
for k = 1 · · ·K do

if every element in P tk is atk then
gtkc = 0

end

end

end
Update the parameter for θ for policy network by maximize the function

J =
1

TKC

T∑
t=1

K∑
k=1

C∑
c=1

gtkcφtkc

where φtkc are logits and gtkc are placeholders that stop any gradients, and use auto-

differentiation on φtkc to obtain gradient with respect to θ.
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Appendix C

Appendix for Implicit Distributional

Reinforcement Learning

Implicit Distributional Reinforcement Learning:

Appendix

C.1 Proof of Lemma 6

Denote

H = Ea∼πθ(a|s) log πθ(a|s),

and

HL = Eξ(0),..,(L)∼p(ξ)Ea∼πθ(a | s,ξ(0)) log
1

L+ 1

L∑
`=0

πθ(a | s, ξ(`)),

and

πθ(a|s, ξ(0):(L)) =
1

L+ 1

L∑
`=0

πθ(a | s, ξ(`)).

Notice that ξs are from the same distribution, so we have

HL =
1

L+ 1

L∑
i=0

Eξ(0),..,(L)∼p(ξ)Ea∼πθ(a | s,ξ(i)) log
1

L+ 1

L∑
`=0

πθ(a | s, ξ(`))

= Eξ(0),..,(L)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L)) log πθ(a|s, ξ(0):(L)).
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Use the identity that Ea∼πθ(a|s) = Eξ(0),..,(L)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L)), we can rewrite

H as

H = Eξ(0),..,(L)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L)) log πθ(a|s).

Therefore, we have

HL −H = Eξ(0),..,(L)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L)) log
πθ(a|s, ξ(0):(L))

πθ(a|s)

= KL(πθ(a|s, ξ(0):(L))||πθ(a|s)) ≥ 0.

To compare between HL and HL+1, rewrite HL as

HL = Eξ(0),..,(L),(L+1)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L)) log πθ(a|s, ξ(0):(L))

and HL+1 as

HL+1 = Eξ(0),..,(L),(L+1)∼p(ξ)Ea∼πθ(a | s,ξ(0)) log πθ(a|s, ξ(0):(L+1))

= Eξ(0),..,(L),(L+1)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L)) log πθ(a|s, ξ(0):(L+1))

and the difference will be

HL −HL+1 = Eξ(0),..,(L),(L+1)∼p(ξ)Ea∼πθ(a | s,ξ(0):(L))

[
log πθ(a|s, ξ(0):(L))− log πθ(a|s, ξ(0):(L+1))

]
= Eξ(0),..,(L),(L+1)∼p(ξ)KL(πθ(a|s, ξ(0):(L))||πθ(a|s, ξ(0):(L+1))) ≥ 0.

Finally, we arrive at the conclusion that for any `, we have

H ≤ H`+1 ≤ H`.

C.2 Detailed pseudo code
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Algorithm 7 Implicit Distributional Actor Critic (IDAC)
Require: Learning rate λ, batch size M , quantile number K, action number J and noise number L, target entropy Ht.

Initial policy network parameter θ, action-value function network parameter ω1,ω2, entropy parameter η. Initial target
network parameter ω̃1 = ω1,ω̃2 = ω2.
for the number of environment steps do

Sample M number of transitions {sit,a
i
t, r

i
t, s

i
t+1}

M
i=1 from the replay buffer

Sample ε
i,(k)
t , ε

i,(k)
t+1 , ξ

i,(`)
t+1 from N(0, I) for i = 1 · · ·M and k = 1 · · ·K and ` = 0 · · ·L.

Sample ait+1 ∼ πθ(· | sit+1, ξ
i,(0)
t+1 ) = N(T1

θ(sit+1, ξ
i,(0)
t+1 ),T2

θ(sit+1, ξ
i,(0)
t+1 )) for i = 1 · · ·M .

Apply Bellman update to create samples (of return distribution)

y1,i,k = r
i
t + γGω̃1

(s
i
t+1,a

i
t+1, ε

i,(k)
t+1 )

y2,i,k = r
i
t + γGω̃2

(s
i
t+1,a

i
t+1, ε

i,(k)
t+1 )

and let

(−→y 1,i,1, . . . ,
−→y 1,i,K) = StopGradient(sort(y1,i,1, . . . , y1,i,K)

(−→y 2,i,1, . . . ,
−→y 2,i,K) = StopGradient(sort(y2,i,1, . . . , y2,i,K)

−→y i,k = min(−→y 1,i,k,
−→y 2,i,k), for i = 1 · · ·M ; k = 1 · · ·K

Generate samples x1,i,k = Gω1
(sit,a

i
t, ε

i,(k)
t ) and x2,i,k = Gω2

(sit,a
i
t, ε

i,(k)
t ), and let

(−→x 1,i,1, . . . ,
−→x 1,i,K) = sort(x1,i,1, . . . , x1,i,K)

(−→x 2,i,1, . . . ,
−→x 2,i,K) = sort(x2,i,1, . . . , x2,i,K)

Update action-value function parameter ω1 and ω2 by minimizing the quantile loss

J(ω1,ω2) =
1

M

M∑
i=1

1

K2

K∑
k=1

K∑
k′=1

ρ
κ
τk

(−→y i,k −−→x 1,i,k′ ) +
1

M

M∑
i=1

1

K2

K∑
k=1

K∑
k′=1

ρ
κ
τk

(−→y i,k −−→x 2,i,k′ ).

Sample Ξ
i,h
t , ε

i,(j)
t from N(0, I), for i = 1 · · ·M, j = 1 · · · J and h = 0 · · ·L + J, and form ξ

i,(j,`)
t from Ξ

i,h
t by

concatenating L of them to the rest of Js. Sample a
i,(j)
t ∼ πθ(· | sit, ξ

i,(j,0)
t ) = N(T1

θ(sit, ξ
i,(j,0)
t ),T2

θ(sit, ξ
i,(j,0)
t ))

using

a
i,(j)
t = Tθ(s

i
t, ξ

i,(j,0)
t , e

i
t) = T

1
θ(s

i
t, ξ

i,(j,0)
t ) + e

i
t � T

2
θ(s

i
t, ξ

i,(j,0)
t ), e

i
t ∼ N(0, I)

for i = 1, · · · ,M .
Update the policy function parameter θ by minimizing

J(θ) = −
1

M

M∑
i=1

 1

2J

2∑
z=1

J∑
j=1

Gωz (s
i
t,a

i,(j)
t , ε

i,(j)
t )− exp(η)

J∑
j=1

1

J

[
log

∑L
`=0 πθ(a

i,(j)
t |sit, ξ

i,(j,`)
t )

L + 1

] .

We also use stop gradient on (T1
θ(sit, ξ

i,(j)
t ),T2

θ(sit, ξ
i,(j)
t )) to reduce variance on gradient as mentioned in Eq (4.16).

Update the log entropy parameter η by minimizing

J(η) =
1

M

M∑
i=1

[StopGradient(− log

∑L
`=0 πθ(a

i,(0)
t |sit, ξ

i,(`)
t )

L + 1
−Ht)η]

end for
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C.3 Hyperparameters of IDAC

Parameter Value
Optimizer Adam
learning rate 3e-4
discount 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
entropy target -dim(A) (e.g. , -6 for HalfCheetah-v2)
nonlinearity ReLU
target smoothing coefficient 0.005
target update interval 1
gradient steps 1
distribution of ξ N(0, I5)
distribution of ε N(0, I5)
J 51
K 51
L 21

Table C.1: IDAC hyperparameters
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