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ABSTRACT

Improvements for Store-Collect and Atomic Snapshot Objects under Continuous Churn

Luis Pantin Mayaudon
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Jennifer L. Welch
Department of Computer Science and Engineering

Texas A&M University

The field of distributed computing has given rise to many algorithms to share data among

nodes in a network. This work focuses on the store-collect and the atomic snapshot objects in

an asynchronous, crash-prone message-passing dynamic system with nodes continuously entering

and leaving the system. We assume that the maximum number of nodes that enter, leave or crash

during some time interval is proportional to the size of the system.

A store-collect object is a distributed object that allows nodes to store data in the system in a

variable that can be read by all nodes, but only modified by the node that stored it. This is achieved

through two basic operations: the store operation, which stores information into the network, and

collect, which collects a copy of all the information stored by every node in the network at the

beginning of the time interval in which the operation is active.

The atomic snapshot object is quite similar. It provides two operations, scan and update, that

behave in a very similar fashion to the collect and store operations given by the store-collect object;

however the atomic snapshot object must satisfy the linearizability condition, which means that it

is always possible to arrange all the operations performed into an ordered sequence even if there

are operations that occur simultaneously.

This work improves upon the store-collect and atomic snapshot implementations given in At-
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tiya et al [SSS, 2020]. We developed a method for quantifying the churn of a network subject

to certain assumptions. This new method allows us to prove the correctness of the store-collect

algorithm under less restrictive conditions than those found in the original proof of Attiya et al.

Additionally, we developed an improved implementation of the atomic snapshot object based on a

store-collect object that requires fewer messages to complete a scan or an update operation.
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1. INTRODUCTION

Distributed computing is an important subfield of computer science. Distributed systems

can come in many forms, with the most typical example being a set of computers connected via the

internet. A distributed system is composed of distinct entities that communicate with each other to

achieve a common goal, unlike a classical centralized system where all the work is performed by

a central entity.

One classical problem studied in distributed computing is shared memory. Several processes

want to read and write information to the system so that the other processes in the system can access

this information to perform their work. However, shared memory is often hard to implement if the

system is not well-behaved. In this paper we will be working with a system where processes can

enter, leave, and crash at any time, with certain restrictions. The difficulty of working with such

environments is the primary motivation behind the two algorithms that we will study in this paper.

In this paper we will be looking at two different distributed objects that provide shared memory,

each implemented using message passing. The first object is called store-collect [1, 2], and the

second object is called atomic snapshot [3]. These objects act as building blocks for implementing

more complex algorithms by managing the changes and crashed of the system.

Store-collect is a distributed object that supports two basic operations: store and collect. When

a node performs a store operation, it writes a value into the system. If one value has already been

written by this node, the new value will overwrite the already existing one. When a node performs

a collect, it will fetch all the values stored by the other nodes in the system and return a set of

(node, value) pairs. We guarantee that if a store operation finishes before a collect operation starts,

then the collect will return the value of the store operation or a more recent value. Likewise, if a

collect finishes before another collect starts, then the latter view will contain the same values as the

former collect, or more recent values. However, we cannot say much about operations that happen

concurrently.
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Since store-collect object offer little information about concurrent operations, we will consider

the atomic snapshot object, which offers stronger restrictions. The atomic snapshot object is sim-

ilar to the store-collect object, it supports two operations: update and scan, which behave nearly

identically to the store and collect operations. However, atomic snapshot objects guarantee lin-

earizability [4]. Informally, an algorithm is linearizable if every sequence of events can be put in a

total order such that the time order of non-overlapping operations is respected, and each operation

behaves according to the sequential specification of the algorithm.

Chapter 2 contains the work done on the proof of correctness of store-collect. This includes the

background theory of the parametrization method based on bitonic sequences, and the application

of the method to derive new formulas for the constrains. Chapter 3 contains the new algorithm for

atomic snapshots, including a proof of the correctness and linearizability of the implementation.

Chapter 4 contains the conclusion of this work. It contains a high level discussion of the results

from the previous two chapters.
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2. ON THE CONSTRAINTS OF STORE-COLLECT OBJECTS

2.1 Background

2.1.1 Motivation

In the study of distributed algorithms, there are two main paradigms for communication be-

tween processes: shared memory and message passing. While message passing is more flexible

than shared memory, it is often more difficult to use, especially if we work on systems that con-

stantly change, or where crashes can occur.

The store-collect object [2] offers a solution to these difficulties. It acts as an intermediate

layer that provides a simple, yet flexible form of shared memory that is able to work in dynamic

and crash-prone systems. We still need to impose some limitations on the rate at which the system

composition changes and the ratio of crashed nodes with respect to the size of the system.

The original proof of correctness of the store-collect algorithm in [2] presents these limitations

as four inequalities that must be satisfied to ensure correctness. Experimental work done by [5] on

the closely related CCReg algorithm [6] suggests that CCReg might be correct for a wider variety

of cases than the proof guarantees. Given the similarities between CCReg and the store-collect

algorithm, this suggests that the constraints for store-collect objects might also be too conservative.

By introducing new mathematical tools into the analysis, we show that the constraints on the

churn rate and the failure fraction can be relaxed without significant changes to the structure of the

original proof.

The store-collect object supports two concurrent operations, store and collect, that can be per-

formed by a set of nodes. Informally speaking, nodes can share data with the other nodes by

storing a copy of the data into the store-collect object, then other nodes can access the data of all

the other nodes by collecting the most recent values from store-collect. Each node can store one

variable into the system or update the variable by calling store. Then, they can retrieve the most

recent values for each variable by calling collect. We guarantee that after a node finishes a store
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or a collect operation, every collect operation that is started afterward will contain the values of

the operation or more recent values. However, we do not guarantee that the operations behave

instantaneously, so the resulting execution is not always linearizable.

2.1.2 Model Description

The store collect object is implemented using a message passing system. The system consists

of a set of clients or nodes with unique identifiers that communicate with each other via messages.

The messages are assumed to be sent instantaneously, but take non-zero amount of time to reach

their destination. The maximum time to reach the destination is bounded by a fixed constantD that

is not known by the nodes. Additionally, the messages are processed on a first-in first out fashion

where all the messages from a node p to a node q are processed in the order that they are sent rather

than the order that they are received.

The system allows for nodes to enter and leave the system at any time with two restrictions.

The size of the system at any time cannot fall below a positive constant Nmin, which represents the

minimum system size. Additionally, we restrict the number of nodes that can enter or leave the

system during a time window of length D. If N(t) is the size of the system at time t, then at most

αN(t) nodes can enter or leave during [t, t + D], where α is a fixed constant known as the churn

rate of the system.

The system also allows nodes to crash, in which case they become unable to receive or respond

to any messages; additionally, we assume that crashed nodes do not recover from their crash. A

node can crash while sending a message, in which case there is no guarantee that the receiver will

get the message. We assume that at any given time t, no more than ∆N(t) nodes can be in a

crashed state, where N(t) is the total number of nodes in the system at time t (including crashed

nodes) and ∆ is a constant known as the churn the failure fraction of the system.

2.1.3 Algorithm Description

We will now give an informal overview of the store-collect algorithm. The full implementation

of the algorithm can be found in the appendix. To track the composition of the system, a node p
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maintains a set Changes of events concerning the nodes that have entered the system, a set LView

(local view) containing the values that each node has stored in the system, and an is_joined flag

that marks whether the node has joined the system. The joining process has two parts. The node

first enters the system, and then sends a request to join the system. Once enough joined nodes have

replied, the node joins the system. A node that has entered is considered part of the system, it can

send and receive messages, but only nodes that have joined can perform store or collect operations.

When a node enters the system, it adds enter(p) to its Changes set and broadcasts an enter mes-

sage informing other nodes about its entrance and requesting information about previous events.

When a node receives an enter message, it updates its Changes set and replies with an enter-echo

message with a copy of LView so that the process becomes aware of previous events in the system,

and the value of its is_joined variable. Once a node receives enough enter-echo responses from

joined nodes, it joins the system by setting its is_joined variable, adding the event join(p) to its

Changes set, and broadcasting a join message to inform the other nodes.

To calculate the number of needed responses, the node waits until it receives its first response

from a joined node. Then, it updates its Changes set with the information received and sets a

variable join_threshold to equal the number of active nodes (as seen by the node) multiplied by a

constant γ. The value of γ is constrained by the churn rate and failure fraction of the system in

question. If the value of γ is too high, the algorithm might not terminate, while if the value is too

small, the algorithm might not propagate information correctly.

Each node keeps a local copy of the current view in its LView variable. The local view consists

of a set of triples, {〈p, v, sqno〉, . . .}, where p is the (unique) node id, v is the value stored by the

node (or ⊥ if no value has been stored), and sqno is the sequence number associated with that

value. The sequence number allows us to merge two views by picking the latest value stored by

each node according to the highest sqno.

In a collect operation, a node requests the latest values by sending a collect-query message.

When a joined node p receives a collect-query message, it responds with its local view (LView)

through a collect-reply message. When the client receives a collect-reply message, it merges its
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LView with the received view (RView), to get the latest value corresponding to each node. Then the

client waits for sufficiently many collect-reply messages before broadcasting the current value of

its LView variable in a store message.

In a store operation, a client thread updates its local variable LView to reflect the new value by

doing a merge and broadcasts a store message. When node p receives a store message with view

RView, it merges RView with its local LView and, if p is joined, it broadcasts store-ack. The client

waits for sufficiently many store-ack messages before completing the store.

The threshold for collect and store operations is calculated in a similar fashion as the threshold

for joining the system. The number of responses required by an operation is equal to the number

of joined nodes (as seen by the node) multiplied by a constant β, which is also constrained by the

churn of the system. Setting β is a key challenge in the algorithm as setting it too small might not

return correct information from collect or store, whereas setting it too large might not guarantee

termination of the collect and store.

We will now formally state the system assumptions for this problem. If a sequence of events

respects these assumptions, we say that the sequence is valid.

Churn Assumption For all times t > 0, there are at most α · N(t) ENTER and LEAVE events in

[t, t+D].

Minimum System Size For all times t ≥ 0, N(t) ≥ Nmin.

Failure Fraction Assumption For all times t ≥ 0, at most ∆ ·N(t) nodes are crashed at time t.

2.1.4 Proof Outline

The original proof of the algorithm defines four constraints that bound the values that one can

choose for γ and β depending on the values of α, ∆, andNmin for the system. If there is no possible

value for γ or β, then the proof does not guarantee correctness. We will revisit the lemmas where

these constraints are applied, and use our new parametrization method to derive a new formula for

each one of the constraints that will satisfy the role that they play in the original proof.
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During the proof, we will make use of the following results from [2]. The original name of

each result is given enclosed in parentheses. Some of these results depend on the lemmas that we

are improving upon, however we only make use of results that were available at that step of the

proof in [2], which protects us from circular arguments.

We define active membership events as the membership events (enter or leave) where the node

experiencing the event did not crash during the event, and thus, any messages that the node sent in

during the event are guaranteed to be sent.

Lemma 1. (Lemma 4) For every node p and all times t ≥ tep+2D such that p is active at t, LViewt
p

contains all the active membership events for [0, t−D].

Lemma 2. (Theorem 3) Every node p that enters at some time t and is active for at least 2D time

joins by time t+ 2D.

Lemma 3. For every node p and all times t such that p is joined and active at t, Changestp contains

all the active membership events for [0,max{0, t− 2D}].

2.2 Bitonic Sequences

We say that a sequence of events is bitonic if every enter event happens before every leave

event. In other words, the system grows in size until reaching its maximum size, and then shrinks

to its final size. If the system starts with size N0, then reaches a maximum size of Nmax, and it

finishes with size Nf , then the number of nodes that entered is Nmax − N0, and the number of

nodes that left is Nmax −Nf .

We can parametrize the churn behavior of such systems with the help of the functions F (x, y) =

(1+α)x(1−α)y andM(x) = (1+α)x. Note thatM is an increasing function, while F is increasing

with respect to the variable x, but decreasing with respect to y. As we will see in the following

lemma, these functions are related to the final and maximum size of the system with x representing

the number of nodes that enter and y representing the number that leave.

Lemma 4. Let E be a valid bitonic sequence of events on some interval [0, i ·D] for integer i with

initial system size N0. There exist numbers x ∈ [0, i] and y ∈ [0, i− x] such that the system size at
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the end of the interval of length is N0F (x, y), and the maximum system size during the interval is

N0M(x).

Proof. Base case (i = 1): Let e be the number of nodes that enter during the interval, l be the

number of nodes that leave, and Nf be the final system size. Then, Nf = N0 + e− l.

By the churn assumption, the number of enter events is at most αN0, hence

N0 ≤ N0 + e ≤ N0(1 + α)

By the Intermediate Value Theorem, there exists an x ∈ [0, 1] such that Nmax = N0 + e =

N0(1 + α)x = N0M(x). We will now find a lower bound for Nf .

Nf = N0 + e− l = N0 + e+ (e− e)− l

= N0 + 2e− (e+ l) ≥ N0 + 2e− αN0 By the churn assumption

= N0(1− α) + 2(N0(1 + α)x −N0) = 2N0(1 + α)x −N0(1 + α)

= N0(1 + α)x[2− (1 + α)1−x]

≥ N0(1 + α)x(1− α)1−x

To justify the last inequality, we can just show that f(z) = 2−(1+α)z

(1−α)z
≥ 1 for z ∈ [0, 1]. Notice

that f(0) = f(1) = 1. Furthermore f ′′(z) ≤ 0 on [0, 1], so any critical point of f must be a local

maximum. Hence, the minimum of f is attained at the bounds of the interval, and thus f(z) ≥ 1

for z ∈ [0, 1]. Therefore, the last inequality holds.

This means that

N0(1 + α)x ≥ Nf ≥ N0(1 + α)x(1− α)1−x

And by the Intermediate Value Theorem, there exists a y ∈ [0, 1− x] such that Nf = N0F (x, y).

Induction (i > 1): Split the interval into a subinterval of length (i − 1) · D followed by

another subinterval of length D. Notice that subintervals of bitonic sequences are also bitonic.

Let N1 be the size of the system at the end of the first subinterval, and let Nf be the system size
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at the end of the second subinterval. By the inductive hypothesis, there exist x1 ∈ [0, i − 1] and

y1 ∈ [0, (i − 1) − x1] such that N1 = N0F (x1, y1), and the maximum size achieved during the

first subinterval is N0M(x1). Similarly, there exist x2 ∈ [0, 1] and y2 ∈ [0, 1 − x2] such that the

maximum size achieved during the second subinterval is N1M(x2) and Nf = N1F (x2, y2). Let

x = x1 + x2 and y = y1 + y2. It follows that x ∈ [0, i] and y ∈ [0, i− x], and that

Nf = N1(1 + α)x2(1− α)y2 = N0(1 + α)x1+x2(1− α)y1+y2 = N0F (x, y)

We consider two cases for the maximum size of the system: the first subinterval either contains

leaving nodes or it does not. If it contains leaving nodes, then the second subinterval can only

contain nodes that leave, forcing x2 to be zero since the maximum system size of the subinterval

is N1. This means that the maximum size of the whole interval is achieved on the first subinterval.

Hence the maximum size of the system is N0M(x1) = N0M(x).

Otherwise, the first subinterval only contains entering nodes, which forces y1 to be zero since

N1 is the maximum system size on the first subinterval, and the maximum is achieved on the

second subinterval. Then, the maximum system size is

N1M(x2) = N0(1 + α)x1(1 + α)x2 = N0M(x)

The following lemma gives us a method of converting any valid sequence of events into a

bitonic sequence with the same number of nodes leaving, entering and crashing.

Lemma 5. Let E be a valid sequence of events on some interval [0, i · D] for integer i. Suppose

that there is a leave event l and an enter event e such that l happens before e. The event sequence

E ′ resulting from swapping the times of the two events is also a valid sequence.

Proof. Let N(t) be the number of active nodes at time t for E and N ′(t) be the number of active

nodes at time t for E ′. Suppose that l happened at time tl and e happened at time te. If t < tl, then
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the swapped events have not happened, so N(t) = N ′(t). Likewise if t > te then the swapped

events have both happened, and changing the order the events happen does not change the overall

number of nodes, so N(t) = N ′(t). If tl ≤ t ≤ te, then N ′(t) = N(t) + 2 because l has not

happened for E ′, but e did. Hence N ′(t) ≥ N(t) for all t.

This means that at any time t, the size of the system is N ′(t) ≥ N(t) ≥ Nmin. Therefore,

the minimum size assumption is respected. For any interval [t, t+D] we have that at most αN(t)

events happened forE, and because the swap does not change the number of events on any interval,

the number of events in the interval for E ′ is at most αN(t) ≤ αN ′(t), so the churn assumption

is respected. By the same argument, ∆N(t) ≤ ∆N ′(t) so the failure fraction assumption is also

preserved. If a node crashes, the crash will still be its last operation because we do not change the

time when crashes happen. Therefore E ′ is a valid event sequence.

We can use the two lemmas to parametrize the churn of any event sequence

Theorem 1. Let E be a valid sequence of events on a time interval of length i · D for integer i.

Let the initial size of the system be N0. There exist real numbers x ∈ [0, i] and y ∈ [0, i − x]

such that the number of nodes that enter is N0(M(x) − 1), the number of nodes that leave is

N0(M(x) − F (x, y)), and the total number of crashed nodes at the end of the interval is at most

∆N0F (x, y).

Proof. We can convert E into a bitonic sequence E ′ by repeatedly apply Lemma 5. This trans-

formation preserves the number of enter, leave, and crash events. By Lemma 4, there exist real

numbers x ∈ [0, i] and y ∈ [0, i − x] such that the final system size is given by N0F (x, y),

and the maximum system size on the interval is N0M(x). Because E ′ is bitonic, the num-

ber of nodes that enter is Nmax − N0 = N0(M(x) − 1), and the number of nodes that leave

is Nmax − Nf = N0(M(x) − F (x, y)). Finally, the crash assumption tells us that at most

∆Nf = ∆F (x, y) nodes can be crashed at the end of the interval.
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2.3 Applying the Parametrization Method

The study of Bitonic sequences has granted us a powerful tool to analyze the behavior of the

algorithm. Now, we turn our attention towards the proof of correctness found in [2]. We will

reproduce the results involving the four constraints and show that they hold under less restrictive

conditions. First, we state a lemma that will be used to simplify several mathematical expressions.

Lemma 6. Let f(x) = ax+b
cx+d

be a function on a closed interval [α, β] with −d/c /∈ [α, β]. If

ad − bc ≥ 0 then the maximum value for f is attained at x = β and the minimum at x = α. If

ad− bc ≤ 0 then the maximum value for f is attained at x = α and the minimum at x = β.

Proof. Since −d/c /∈ [α, β], f is differentiable on [α, β]. From the definition of f we have that:

f ′(x) =
a(cx+ d)− (ax+ b)c

(cx+ d)2
=

ad− bc
(cx+ d)2

This means that if ad− bc ≥ 0 then f ′(x) ≥ 0, so f would be increasing, thus the maximum will

be attained at x = β and the minimum at x = α. The case when ad− bc ≤ 0 is similar but with f

being a decreasing function.

The following corollary follows directly from the previous lemma.

Corollary 1. Let f(x) = ax
cx+d

be a function on a closed interval [α, β] with −d/c /∈ [α, β]. If

ad ≥ 0 then the maximum value for f is attained at x = β and the minimum at x = α. If ad ≤ 0

then the maximum value for f is attained at x = α and the minimum at x = β.

2.3.1 Improvements for Constraint A

Constraint A has two roles in the proof of correctness. The first one is to ensure that at least

one node survives an interval of length 3D (Lemma 3 in [2]). The second one is to ensure that

when a node joins the system, it must receive an enter-echo response from a node active during

[max{0, t′ − 2D}, t′ + D] where t′ is the time when the node received its first enter-echo from a

joined node (Lemma 5 in [2]). We will focus on the second application and show that the resulting

bound is sufficient to prove the first application.
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The proof of the second application involves a node p who receives a response from a node

q sent at time t′ and received at time t′′ that contains all active membership events up to time

max{0, t′−2D}. We will divide the interval [max{0, t′−2D}, t′+D] into three subintervals. The

first one is [max{0, t′ − 2D}, t′], the second one is [t′, t′′], and the third one is [t′′, t′ + D]. Let N0

be the size of the system at time max{0, t′ − 2D}, let ei be the number of nodes that enter during

the ith subinterval, and li be the number of nodes that leave during the ith subinterval. Finally, let

c be the number of nodes that are crashed at time t′ +D.

Our objective is to show that at least one node that replied to p is active during [max{0, t′ −

2D}, t′ + D]. To do so, we first calculate the minimum number of responses to p that come from

nodes active at t′ and then subtract the maximum number of nodes that could leave or crash during

[max{0, t′ − 2D}, t′ +D].

The minimum value for the join threshold is based on p’s Present set at time t′′. Since p is

aware of all active membership events for [0,max{0, t′ − 2D}], its Present set contains at least all

the nodes in N0 minus those who crashed while sending their enter message, and those that left

between max{0, t′ − 2D} and t′′. Thus, the join threshold is at least γ(N0 − l1 − l2 − c).

Next, we subtract the number of nodes not in N0 that could reply to the message, which are

those who join during [max{0, t′−2D}, t′+D]. This leaves us with at least γ(N0− l−c)−e1−e2

responses that come from nodes active at max{0, t′ − 2D}.

Finally, we subtract the nodes that could leave or crash during [max{0, t′ − 2D}, t′ +D]. This

number is at most l + c. Therefore the number of nodes that reply to p’s message and are active

during [max{0, t′− 2D}, t′+D] is at least γ(N0− l− c)− e− l− c. Since we want this quantity

to be at least one, we must satisfy the following inequality:

γ(N0 − l − c)− e− l − c ≥ 1 (Ineq. 1)

Solving for γ gives:

γ ≥ 1 + e+ l + c

N0 − l − c
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Our goal is to find a numberK such thatK ≥ RHS for any event sequence, then letting γ ≥ K

will ensure that Ineq. 1 holds. We use Theorem 1 to bound the RHS by

RHS ≤ sup
x∈[0,3]
y∈[0,3−x]

1 +N0[(M(x)− 1) + (M(x)− F (x, y)) + ∆F (x, y)]

N0[1− (M(x)− F (x, y))−∆F (x, y)]

= sup
x∈[0,3]
y∈[0,3−x]

N−1
0 + 2M(x)− (1−∆)F (x, y)− 1

1−M(x) + (1−∆)F (x, y))

= sup
x∈[0,3]

N−1
0 + 2M(x)− (1−∆)F (x, 3− x)− 1

1−M(x) + (1−∆)F (x, 3− x))
Because F (x, y) is decreasing for y

= sup
x∈[0,3]

N−1
0 + 2M(x)− (1−∆)F (x, 3− x)− 1

1−M(x) + (1−∆)F (x, 3− x))

≤ sup
x∈[0,3]

N−1
min + 2M(x)− (1−∆)F (x, 3− x)− 1

1−M(x) + (1−∆)F (x, 3− x))

To show that this bound implies that the number of nodes that do not crash or leave during an

interval of length 3D is at least 1, we go back to Ineq. 1. Since γ < 1 and e ≥ 0, we have that:

γ(N0 − l − c)− e− l − c ≥ 1

γN0 − e− (l + c)(1 + γ) ≥ 1

γN0 − (l + c) ≥ 1

Which proves the claim. Therefore, letting

γ ≤ sup
x∈[0,3]

N−1
min + 2M(x)− (1−∆)F (x, 3− x)− 1

1−M(x) + (1−∆)F (x, 3− x))

is enough to prove the lemmas where Constraint A is applied.

2.3.2 Improvements for Constraint B

The role of Constraint B is to ensure that there are enough joined nodes to answer the enter

message of a node p∗ that enters at some time te > 2D (Theorem 3 in [2]). The first joined node

that p hears from, which we will call q, receives the enter message at time t′, and p receives q’s
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reply at time t′′.

Let N0 be the size of the system at time t′ − 2D, let e, l be the number of nodes that enter and

leave respectively during the interval [t′ − 2D, t′ +D] and let c be the number of nodes that crash

before t′ +D. We can obtain an upper bound on the number of responses that p expects by taking

γ(N0 + e) because q knows about all active membership events prior to t′− 2D (due to Lemma 1)

and t′′ < t′ + D so p’s Present set cannot contain more than N0 + e nodes. There are N0 − l − c

nodes that are active during [t′ − 2D, t′ +D]. Any node that is active during [t′ − 2D, t′ +D] will

also be active during [te, te + D] and hence, it is guaranteed to reply to p’s message. This means

that if the following inequality holds for any valid event sequence, then p is guaranteed to receive

enough responses.

γ(N0 + e) ≤ N0 − l − c (Ineq. 2)

Solving for γ gives:

γ ≤ N0 − l − c
N0 + e

Our goal is to find a numberK such thatK ≤ RHS for any event sequence, then letting γ ≤ K

will ensure that Ineq. 2 holds, We use Theorem 1 to bound the RHS by

RHS ≥ inf
x∈[0,3]
y∈[0,3−x]

1− (M(x)− F (x, y))−∆F (x, y)

M(x)
= inf

x∈[0,3]
y∈[0,3−x]

1−M(x) + (1−∆)F (x, y)

M(x)

= inf
x∈[0,3]

1−M(x) + (1−∆)F (x, 3− x)

M(x)
Because F (x, y) is decreasing for y

Therefore, it is enough to let γ ≤ infx∈[0,3]
1−M(x)+(1−∆)F (x,3−x)

M(x)
to ensure that Ineq. 2 holds, and

thus replace the original Constraint B.

2.3.3 Improvements for Constraint C

In this case, we want to ensure that if a node p starts a phase at time t, there will be enough

joined nodes to respond to its request (Theorem 4 in [2]).

Let N0 be the size of the system at time t′ = max{0, t − 2D}, let e1, l1 be the number of
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nodes that enter and leave respectively during [t′, t], let l2 be the number of nodes that leave during

[t, t+D], and let c be the number of nodes that crash before t+D. The size of p’s Members set is

at most equal to the size of p’s Present set. By Lemma reflem:joined-changes, we know that p is

aware of all active membership events up to time t′, so at time t, the maximum size of p’s Present

set is at time t is N0 + e1. Hence, p expects at most γ(N0 + e1) responses.

There are N0 − l1 − l2 − c nodes that are active during [t′, t + D]. If t − t′ = 2D then by

Lemma 2, they will join by time t. If t − t′ < 2D then t′ = 0, and by assumption all the initial

nodes have already joined. Additionally, every node that is active during [t′, t + D] will be active

during [t, t+D]. This ensures that they will respond to p’s message. This means that the following

inequality for β guarantees that p will receive enough responses

β(N0 + e1) ≤ N0 − l1 − l2 − c (Ineq. 3)

Solving for β gives

β ≤ N0 − l1 − l2 − c
N0 + e1

Our goal is the same as in Constraint B: to find a number K such that K ≤ RHS for any event

sequence, then letting β ≤ K will ensure that Ineq. 3 holds. We use Theorem 1 on [t′, t] and

[t, t+D] separately.

RHS ≥ inf
x1∈[0,2];y1∈[0,2−x]
x2∈[0,1];y2∈[0,1−x2]

1− (M(x1)− F (x1, y1))− F (x1, y1)(M(x2)− F (x2, y2))−∆F (x1, y1)F (x2, y2)

M(x1)

= inf
x1∈[0,2];y1∈[0,2−x]
x2∈[0,1];y2∈[0,1−x2]

1−M(x1) + F (x1, y1)(1−M(x2) + (1−∆)F (x2, y2))

M(x1)

= inf
x1∈[0,2];y1∈[0,2−x]

x2∈[0,1]

1−M(x1) + F (x1, y1)(1−M(x2) + (1−∆)F (x2, 1− x2))

M(x1)

= inf
x1∈[0,2]
x2∈[0,1]

1−M(x1) + F (x1, 2− x1)(1−M(x2) + (1−∆)F (x2, 1− x2))

M(x1)
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Resulting in the following bound for β

β ≤ inf
x1∈[0,2]
x2∈[0,1]

1−M(x1) + F (x1, 2− x1)(1−M(x2) + (1−∆)F (x2, 1− x2))

M(x1)

2.3.4 Improvements for Constraint D

The role of Constraint D is to ensure that if a store operation begins at time ts and finishes

before some collect operation that starts at time tc such that tc − ts < 2D, then the store operation

will reflect the store operation on its output (Lemmas 9 and 10 in [2]). In this proof, we will

assume that ∆ ≤ (1 + α)/2. It has been proven that it is impossible to have ∆ > (1 + α)/2 for a

read-write register. Given the similarities between the specification of a read-write register and the

specification of the store-collect object, this is likely the case as well for store-collect objects.

LetQs be the set of nodes that replied to the store operation and stay active until ts+3D, letQc

be the set of nodes that replied to the collect operation, and let J be the set of nodes active at some

time during [tc, tc +D]. To show that the collect reflects the store operation, we will show that one

of the nodes that responded to the collect also responded to the store. In other words Qs ∩Qc 6= ∅,

which we will prove by showing that |Qs|+ |Qc| > |J | since Qs and Qc are both subsets of J .

Let N0 be the number of nodes at time max{0, ts − 2D}, l1, e1 be the number of nodes that

leave or enter during [max{0, ts − 2D}, ts], l2, e2 be the number of nodes that leave or enter on

[ts, ts + 2D], l3, e3 be the number of nodes that leave or enter on [ts + 2D, ts + 3D], c1 be the

number of nodes that crash before ts, c2 be the number of nodes that crash before ts + 2D, and c3

the number of nodes that crash before ts + 3D.

We first calculate a lower bound for |Qs|. By a similar argument to the one used in Constraint

A, at least β(N0 − l1 − c1) nodes reply to the store message, hence at least β(N0 − l1 − c1)− l2 −

l3− (c3− c1) nodes reply to the store and remain active until ts+3D. Next, we give a lower bound

for |Qc|. Since tc ≤ ts + 2D, at least β(N0 − l1 − l2 − c2) nodes reply to the store operation.

Finally, we give an upper bound for |J |. If a node is active during [tc, tc + D] then it must

be active at time ts, or enter at some point in [ts, ts + 3D] because ts ≤ tc ≤ ts + 2D. Hence
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|J | ≤ N0 + e1 − l1 − c1 + e2 + e3. Putting it all together gives

β(N0− l1− c1)+β(N0− l1− l2− c2)− l2− l3− (c3− c1) > N0 +e1− l1− c1 +e2 +e3 (Ineq. 4)

Solving for β gives:

β >
N0 + e1 − l1 − c1 + e2 + l2 + l3 + e3 + (c3 − c1)

2(N0 − l1)− c1 − l2 − c2

We will find a number K such that K > RHS for any event sequence, then letting β > K will

ensure that Ineq. 4 holds. Since the third interval has length D, we use the churn assumption to

bound above the quantity l3 + e3.

RHS =
N0 + e1 − l1 − c1 + e2 + l2 + (l3 + e3) + (c3 − c1)

2(N0 − l1)− c1 − l2 − c2

≤ N0 + e1 − l1 + e2 + l2 + α(N0 + e1 − l1 + e2 − l2) + c3 − 2c1

2(N0 − l1)− c1 − l2 − c2

By the churn assumption

=
(1 + α)(N0 + e1 − l1) + (1 + α)e2 + (1− α)l2 + c3 − 2c1

2(N0 − l1)− c1 − l2 − c2

Now, we can apply Theorem 1 with one extra addition. Since Theorem 1 only gives us a maximum

value for the number of nodes that can crash, we will add a new parameter z ∈ [0, 1] that we

multiply to this value to represent the exact number of nodes that crash for the case of c1. Given
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the length of the formula, we will abbreviate F (xi, yi) as Fi and M(xi) as Mi for integers i.

≤ sup
x1∈[0,2];y1∈[0,2−x]
x2∈[0,2];y2∈[0,2−x2]
x3∈[0,1];y3∈[0,1−x2]

z∈[0,1]

(1 + α)F1 + F1((1 + α)(M2 − 1) + (1− α)(M2 − F2)) + ∆F1F2F3 − 2z∆F1

2(1− (M1 − F1))−∆zF1 − F1(M2 − F2)−∆F1F2

= sup
x1∈[0,2];y1∈[0,2−x]
x2∈[0,2];y2∈[0,2−x2]
x3∈[0,1];y3∈[0,1−x2]

z∈[0,1]

F1[1 + α + (1 + α)(M2 − 1) + (1− α)(M2 − F2) + ∆F2F3 − 2z∆]

2(1−M1) + F1[2− z∆−M2 + (1−∆)F2]

= sup
x1∈[0,2];y1∈[0,2−x]
x2∈[0,2];y2∈[0,2−x2]

z∈[0,1]

F1[(1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)]

2(1−M1) + F1[2− z∆−M2 + (1−∆)F2]
Because F3 ≤ (1 + α)

Next, we apply Corollary 1 with

x = F1

a = (1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)

c = 2− z∆−M2 + (1−∆)F2

d = 2(1−M1)

Our assumption that ∆ < (1 + α)/2 ensures that a is positive because the only negative term is

−2z∆ and (1 + α)M2 ≥ 1 + α > 2∆ ≥ 2z∆. Since d is negative, a ∗ d ≤ 0, and Corollary

1 tells us that the function is maximized when F1 is minimized (assuming all the other terms are

constant). Since the term M1 is also dependent on the value of x1, we can only safely minimize F1

by maximizing y1, in other words, y1 = 2−x1, and hence F1 = F (x1, 2−x1) = M(x1)(1−α)2−x1 .
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We then we get:

= sup
x1∈[0,2];

x2∈[0,2];y2∈[0,2−x2]
z∈[0,1]

M1(1− α)2−x1 [(1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)]

2(1−M1) +M1(1− α)2−x1 [2− z∆−M2 + (1−∆)F2]

= sup
x1∈[0,2];

x2∈[0,2];y2∈[0,2−x2]
z∈[0,1]

M1(1− α)2−x1 [(1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)]

2 +M1[−2 + (1− α)2−x1 [2− z∆−M2 + (1−∆)F2]]

We once again apply Corollary 1, this time with

x = M1

a = (1− α)2−x1 [(1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)]

c = −2 + (1− α)2−x1 [2− z∆−M2 + (1−∆)F2]

d = 2

Since a and d are positive, the expression is maximized when M1 is maximized. Hence x1 = 2,

and thus M1 = (1 + α)2.We now have

= sup
x2∈[0,2];y2∈[0,2−x2]

z∈[0,1]

(1 + α)2[(1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)]

2 + (1 + α)2[−2 + 2− z∆−M2 + (1−∆)F2]

= sup
x2∈[0,2];y2∈[0,2−x2]

z∈[0,1]

(1 + α)2[(1 + α)M2 + (1− α)(M2 − F2)− 2z∆ + ∆F2(1 + α)]

2 + (1 + α)2[−z∆−M2 + (1−∆)F2]

= sup
x2∈[0,2];y2∈[0,2−x2]

z∈[0,1]

(1 + α)2[2M2 + F2[∆(1 + α)− (1− α)]− 2z∆]

2 + (1 + α)2[−z∆−M2 + (1−∆)F2]

= sup
x2∈[0,2];y2∈[0,2−x2]

z∈[0,1]

2M2 + F2[∆(1 + α)− (1− α)]− 2z∆

2(1 + α)−2 − z∆−M2 + (1−∆)F2
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Which is our final value for K. Hence, it suffices to set

β > sup
x2∈[0,2];y2∈[0,2−x2]

z∈[0,1]

2M2 + F2[∆(1 + α)− (1− α)]− 2z∆

2(1 + α)−2 − z∆−M2 + (1−∆)F2

to ensure that Ineq. 4 holds.

2.4 Discussion of Results

The new replacements for the constraints result in significant improvements in all cases, except

for constraint A, where the new formula is only better than the original when α is large. To compare

the two sets of constraints, we calculated the maximum value of ∆ that is permissible for a given

value of α. Constraints A and B provide a lower and upper bound for γ, while Constraints C and D

provide an upper and lower bound for β. We can find the maximum permissible value by using the

bisection method to find the largest number such that the constraint intervals for γ and β are both

non-empty. The figure below shows a comparison of three different constraint sets with Nmin = 2:

the original constraints from [2], the new constraints, and the new constraints but with the old

version of constraint A.

Part of the reason why constraint A was more difficult to improve than the others is that the

method we used requires us to set a reference point and divide the time interval into blocks of

length D, which is not able to properly manage events that do not occur at an integer multiple of

D with respect to the reference point.

Future work should focus on formulating more careful versions of the churn inequalities, with a

special focus on constraint A. Additionally, the parametrization might be modified to obtain better

bounds, or to work under different model assumptions.
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Figure 2.1: Comparison of the maximum values of α and ∆ for different sets of constraints.
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3. AN EFFICIENT ATOMIC SNAPSHOT IMPLEMENTATION

3.1 Background

Atomic snapshots [3] are distributed objects that are closely related to store-collect objects.

They support two basic operations, update and scan, which are direct equivalents of the store and

collect operations of store-collect. However, atomic snapshots guarantee that any execution must

be linearizable.

The linearizability of the atomic snapshot object makes it a useful building block for more

complex algorithms. Atomic snapshots have been used to implement algorithms for elections,

mutual exclusion, consensus, collect, snapshot, and renaming on dynamic systems [7, 8, 9].

A simple implementation of atomic snapshots based on store-collect can be found in [2, 1].

By adapting optimizations from [10], in addition to new ideas from our own work, we can give a

more efficient implementation of atomic snapshots using store-collect.

The two main improvements of this version of the algorithm over the version found in [2] are

the removal of a collect operation inside the update function, and reducing the number of collects

required for a store operation in the best case from 2 to 1. In order to remove the collect operation

inside update, we modified the conditions of a borrowed scan. We argue that this change in the

borrow system does not result in any significant penalty, if any, to the time to complete a scan

operation.

3.2 Algorithm Description

Formally, an atomic snapshot provides two operations: SCAN(), which has no arguments and

returns a snapshot view, and UPDATE(v), which takes a value v from some set V alAS as an argu-

ment and returns ACK. Its sequential specification consists of all sequences of updates and scans

where the snapshot view returned by a SCAN contains the value of the last UPDATE performed

by each node p, if such an UPDATE exists. We do not include in the view the nodes who have

performed no update at the time.
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Unlike store-collect, an implementation of an atomic snapshot should be linearizable [4]. This

means that for any execution α, there must exist an order for the operations in α that respects the

real time ordering of non-overlapping operations and the sequential specification for an atomic

snapshot.

For the scan function, the algorithm performs repeated collects until finding a pair of collects

with the same values (not counting uninitialized entries). Such a scan is called a direct scan. Addi-

tionally, a scan may ’borrow’ the view returned by another direct scan and return that view without

having to wait for two equal collects. Such a scan is called a borrowed scan. An improvement

upon the implementation found in [2] is that the algorithm can now use the result from its last

collect, allowing the algorithm to finish a scan with only one collect in the best case.

For the update function, each update call executes a scan, which we call an embedded scan,

to allow the node to synchronize, followed by a store that adds the new value into the system. We

managed to reduce the amount of work done compare to the original implementation, which uses

a collect in addition to the scan.

The set from which the values to be stored in the snapshot object are taken is denoted ValAS . A

snapshot view is a set of (node id, value) pairs without duplicate node ids, or more formally, it is a

subset of Π× ValAS , where Π is the set of node ids.

Our algorithm to implement an atomic snapshot uses an unnamed store-collect object. The

values stored in the store-collect object contain additional information besides the stored elements.

The values we store are taken from the following set (P indicates the power set of its argument):

ValSC = ValAS × N× N× P(Π× ValAS)× P(Π× N)× Z2

The first component (val) holds the argument of the most recent update invoked at p. The second

component (usqno) holds the number of updates performed by p. The third component (ssqno)

holds the number of scans performed by p. The fourth component (sview) holds a snapshot view

that is the result of a recent scan done by p; it is used to help other nodes complete their scans. The
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Algorithm 1 Atomic snapshot: code for node p.
Local Variables:
ssqno: int, initially 0 // counts how many scans p has invoked so far
scounts: set of (node id, integer) pairs with no duplicate node ids; initially ∅
val: an element of ValAS , initially ⊥ // the argument to the most recent update invoked by p
usqno: int, initially 0 // number of updates p has invoked so far
sview: a snapshot view, initially ∅ // the result of the most recent embedded scan by p
isDirect: a boolean, initially true // True iff the most recent embedded scan by p was direct
currV, oldV: store-collect views, both initially ∅

When SCANp() occurs:
1: ssqno++
2: STOREp(〈−,−, ssqno,−,−,−〉)
3: if (currV == ∅ ) then
4: currV = COLLECTp();
5: while true do
6: oldV = currV
7: currV = COLLECTp()
8: if (r(currV).usqno= r(oldV).usqno) then
9: isDirect = true;

10: return r(currV).val // direct scan
11: if ∃q s.t. 〈p, ssqno〉 ∈ currV(q).scounts

and currV(q).isDirect == true then
12: isDirect = false;
13: return currV(q).sview // borrowed scan

When UPDATEp(v) occurs:
14: sview = SCANp() // embedded scan
15: scounts = currV.ssqno
16: val = v
17: usqno++
18: STOREp(〈 val, usqno, -, sview, scounts, isDirect〉)

19: return ACK

fifth component (scounts) holds a set of counts of how many scans have been done by the other

nodes, as observed by p. The sixth component (isDirect) holds a boolean that is true if and only

if the embedded scan in the last update performed by this node was a direct scan. We denote the

components of an element v in ValSC respectively as: v.val, v.usqno, v.ssqno, v.sview, v.scounts,

and v.isDirect.

For any store-collect view V , we define V.comp as the result of replacing each pair 〈p, v〉 with

〈p, v.comp〉 where comp is one of the components of v. For any view V and node p, we define

V (p) as the second component of the pair whose first component is p (⊥ if there is no such pair),

and r(V ) as the subset of V containing only the pairs where the value is not null.

To execute a SCAN, Algorithm 1 increments the scan sequence number (ssqno) (Line 1) and

stores it in the embedded store-collect object with all the other components unchanged (which we

denote with the − notation). Then, if no view is stored in the variable currV, a view is collected

(Line 3). In a while loop, the last collected view is saved and a new view is collected (Line 7). If
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the two most recently collected views have the same non-null entries (Line 8), the variable isDirect

is set to true and the latest collected view is returned (Lines 8 and 9). We call this a successful

double collect, and say that this is a direct scan. Otherwise, the algorithm checks whether the last

collected view contains a node q that has observed the node’s ssqno in a direct scan by checking

the scounts and isDirect components (Line 11). If this condition holds, the variable isDirect is set

to false (Line 12), and the snapshot view of q is returned (Line 13); we call this a borrowed scan.

An UPDATE first saves the value of an embedded scan in a local variable sview (Line 14).

Then it obtains all scan sequence numbers from the last collected view (which was updated by the

aforementioned scan), and assigns them to a local variable scounts (Line 15).

Then it sets its val variable to the argument value and increments its update sequence number

(Lines 16 and 17). Finally the new value, update sequence number, collected view, and set of scan

sequence numbers are stored; the node’s own scan sequence number is unchanged (Line 18).

3.3 Proof of Correctness

This proof is based on the proof from [2] with some modifications. Most of the steps in the

proof are very similar to the original, except that Lemma 8 (Lemma 12 in the original) and the

proof of termination have been modified to match the new conditions for borrowing scans.

To prove linearizability, we consider an execution and define an ordering of all the completed

scans and all the updates whose store on Line 18 takes effect. The ordering must preserve the

time order of non-overlapping operations and respect the sequential specification for the atomic

snapshot object.

We start by defining the following order for snapshot views: let W1 be the snapshot view

returned by a direct scan based on the collect view V1 (cf. Line 10) and W2 be the snapshot view

returned by a direct scan based on the collect view V2 (cf. Line 10). We define W1 � W2 if for

every 〈p, v〉 ∈ W1 , there exists 〈p, v′〉 ∈ W2 where the usqno associated with v in V1 is less than

or equal to the usqno associated with v′ in V2.

Lemma 7. If a direct scan by node p returns W1 and a direct scan by node q returns W2, then

either W1 � W2 or W2 � W1.
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Proof. Let cop1
p, returning V ′1 , followed by cop2

p, returning V1, be the successful double collect

at the end of p’s direct scan and let cop1
q , returning V ′2 , followed by cop2

q , returning V2, be the

successful double collect at the end of q’s direct scan. Note that W1 = r(V1).val = r(V ′1).val, and

similarly W2 = r(V2).val = r(V ′2).val.

Case 1: cop2
p starts before cop2

q starts. This means that cop1
p finishes before cop2

q starts. Let

〈p, v〉 ∈ W1; then 〈p, v〉 ∈ V ′1 with v.usqno > 0. By the regularity of store-collect, V ′1 � V2. Thus,

there is an entry 〈p, v′〉 ∈ V2 such that v = v′ or a more recent value. Since the usqno variable

takes on increasing values, 0 < v.usqno ≤ v′.usqno. Thus, 〈p, v′〉 ∈ W2 and therefore W1 � W2.

Case 2: cop2
p starts after cop2

q starts. An analogous argument shows that W2 � W1.

If a direct scan returning snapshot view W1, obtained from collect view V1, completes before

another direct scan starts, which returns snapshot view W2, obtained from collect view V2, then the

regularity of store-collect ensures V1 � V2, and thus W1 � W2. Hence, the ordering � preserves

the real-time order of non-overlapping direct scans.

We now extend the rule � for ordering scans to also include borrowed scans. Consider all

scans that borrow from a given direct scan sop. Place the borrowed scans immediately after sop in

the order in which they complete. The following lemma implies that any borrowed scan overlaps

with the scan it borrows from. Hence, the real-time order of any two non-overlapping scans, at

least one of which is borrowed, is preserved by our ordering rule since direct scans have already

been shown to be ordered properly.

Lemma 8. If a scan sopp by node p borrows from a direct scan sopq by node q, then sopq completes

before sopp completes and sopp starts before sopq completes. Hence the two scans overlap.

Proof. Let uopq be the update in which sopq is embedded. Since the collect of p must wait until q

stores the updated ssqno for p (Line 18), sopq completes before sopp completes.

Furthermore, since sopp borrows the snapshot view of sopq, its ssqno appears in q’s scounts

variable and hence, p’s store (Line 2) starts before q’s store (Line 18). Hence, sopq starts before

sopp completes.
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Finally, we consider all updates in the order their stores (Line 18) start. Place each update, say

uop by node p with argument v, immediately before the first scan whose returned view includes

〈p, v〉, or a later value. Note that every scan after this scan contains 〈p, v〉, or a later value. If

there is no such scan, then place uop at the end of the ordering. It is clear that this rule for placing

updates preserves the sequential specification of atomic snapshots. Additionally, it preserves the

real-time order between non-overlapping updates and scans because if a scan completes before an

update starts, then the view returned by the scan cannot include the update’s value. Similarly, if

an update completes before a scan starts, then the scan’s returned view must include the update’s

value or a later one. The next lemma deals with non-overlapping updates.

Lemma 9. Let V be the snapshot view returned by a scan sop. If V (p) is the value of an update

uopp by node p and an update uopq by node q precedes uopp, then V (q) is the value of uopq or a

later update by q.

Proof. Let sop′ be sop if sop is a direct scan and otherwise the direct scan from which sop borrows.

Let W be the (store-collect) view returned by the last collect, cop1 of node p, and let cop2 be the

collect preceding cop1.

We now show that V = r(W ).val. If sop′ = sop, then V = r(W ).val by Line 10, since sop

is a direct scan. Otherwise, V = r(W ).val because r(W ).val is returned by the scan sop borrows

from, assigned to sview, and then stored (cf. Lines 14 and 18) and returned by sop as V .

Since V includes the value of uopp, so does W . It follows that the last two stores of uopp start

before cop2 completes and thus before cop1 starts. Since uopq precedes uopp, the store of uopq at

Line 18 completes before either store of uopp starts. Thus the store of uopq completes before cop1

starts, and by the store-collect property, the view W returned by cop1 must include the value of

uopq or a later update by q. Since V = r(W ).val, the same is true for V .

Consider an update uopp, by node p, that follows an update uopq, by node q, in the execution.

If uopp is placed at the end of the (current) ordering because there is no scan that observes its value

or a later update by p, then it is ordered after uopq. If uopp is placed before a scan, then the same
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must be true of uopq. By construction, the next scan after uopp in the ordering, call it sop, returns

view V with V (p) equal to the value of uopp or a later update by p. By Lemma 9, V (q) must equal

the value of uopq or a later update by q. Thus uopq cannot be placed after sop, and thus it is placed

before uopp.

We now consider the termination property of the algorithm. Assume for contradiction that

there is a scan operation sopq by node q that does not terminate. Let t be the time the initial store

operation of the scan (Line 1) finishes. At this time there are at most N(t) updates pending. Notice

that the only operations that can affect the update sequence number are updates that terminate since

the usqno is modified at the end of the update operation (Line 18).

Let t′ be the time all terminating updates pending at time t finish. If there are no terminating

updates after time t′, then the collect will terminate after the next pair of collects by q. Otherwise,

there must exist a node p that successfully performs an update. Let sopp be the embedded scan of

such update. If sopp is direct, then q can borrow its scan because sopp started after time t. If sopp is

a borrowed scan, the update it borrows from must have started after time t, and hence be borrowed

by q, because if it started before t, then it must have finished before time t′, but sopp starts after

t′ so the two don’t overlap, contradicting Lemma 8. Hence sopq terminates. Putting the pieces

together, we have:

Theorem 2. Algorithm 1 is a linearizable implementation of an atomic snapshot object.

3.4 Discussion of Results

This improved algorithm retains the simplicity of the original while providing a more efficient

implementation. Our proof of termination does not provide an upper bound in the number of

communication rounds in a SCAN or an UPDATE operation, however we presume that it is at most

linear in the number of nodes present in the system when the operation starts based on the original

proof of termination. It might be possible to adapt the original proof of termination to the new

conditions for borrowing, and show that the bound is still linear in the number of nodes in the

system at the start of the operation.
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The store-collect object simplified the work required to implement the atomic snapshot object

since we can now use shared memory and ignore any aspects related to the churn of the system or

crashing nodes. However, this layer of abstraction introduces redundant or unnecessary operations.

For example, each collect operation performs an embedded store to enure that any subsequent

collects will return a view with more recent values for all nodes, but this property is not necessary

for this algorithm (we only need sequencial consistency between stores and collects, not collects

and collects).

Another example is that the variable currV is only updated when a node performs a scan,

but currV could also use the the view of the embedded store-collect object at that time, which is

more updated and thus increases the chances of performing a successful scan with only one call to

collect.

A potential direction for future work is to improve the performance of this algorithm by re-

moving the intermediary layer and work directly using messages.
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4. CONCLUSION

In the first part of the thesis, we successfully developed and applied our new method for

analyzing the behavior of a distributed system that experiences ongoing churn. This method pro-

vides a new way of reasoning about the proof of correctness of the algorithm in [1], leading to

less restrictive constraints on the system parameters. To prove a certain property, we express this

property using inequalities involving the churn events of the system; then, we parametrize those

inequalities and apply mathematical optimization to find the desired constraint.

Future work may concentrate on developing an alternative method of parametrizing the churn

of the system, which could lead to further improvements on the constraints without substantial

modification of the setup. Alternatively, it may concentrate on using the same parametrization

method, but with a more careful construction of the churn inequalities, particularly for constraint A,

which was the only constraint that was not a total improvement compared to the original constraint.

In the second part of the thesis, we developed a more efficient implementation of the atomic

snapshot object with the store-collect algorithm while retaining the simplicity of the algorithm

found in [1]. Future work focusing on atomic snapshot objects may try to improve the efficiency

of the presented algorithm by removing the layer of abstraction provided by store-collect. Alterna-

tively, future work may concentrate on finding other algorithms beyond atomic snapshot that could

be implemented using store-collect.
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APPENDIX: Implementation of Store-Collect

Algorithm 2 CCC—Common code managing churn, for node p.
Local Variables:
LView: set of (node id, value, sequence number) triples, initially ∅ // local view
is_joined: Boolean, initially false // true iff p has joined the system
join_threshold: int, initially 0 // number of enter-echo messages needed for joining
join_counter: int, initially 0 // number of enter-echo messages received so far
Changes: set of enter(q), leave(q), and join(q) // active membership events known to p

initially {enter(q)|q ∈ S0} ∪ {join(q)|q ∈ S0} if p ∈ S0, and ∅ otherwise
Derived Variable:
Present = {q | enter(q) ∈ Changes∧ leave(q) 6∈ Changes}

When ENTERp occurs:
1: add enter(p) to Changes
2: broadcast 〈enter, p〉

When RECEIVEp〈enter, q〉 occurs:
3: add enter(q) to Changes
4: broadcast〈enter-echo,Changes, LView,

is_joined, q〉

When RECEIVEp〈enter-echo, C, RView, j, q〉
occurs:
5: LView = merge(LView, RView)
6: Changes = Changes ∪ C
7: if ¬is_joined ∧ (p == q) then
8: if (j ==true)∧(join_threshold == 0)

then
9: join_threshold = γ · |Present|

10: join_counter++
11: if join_counter ≥ join_threshold > 0

then
12: is_joined = true
13: add join(p) to Changes

14: broadcast 〈join, p〉
15: return JOINEDp

When RECEIVEp〈join, q〉 occurs:
16: add join(q) to Changes
17: add enter(q) to Changes
18: broadcast 〈join-echo, q〉

When RECEIVEp〈join-echo, q〉 occurs:
19: add join(q) to Changes
20: add enter(q) to Changes

When LEAVEp occurs:
21: broadcast 〈leave, p〉
22: halt

When RECEIVEp〈leave, q〉 occurs:
23: add leave(q) to Changes
24: broadcast 〈leave-echo, q〉

When RECEIVEp〈leave-echo, q〉 occurs:
25: add leave(q) to Changes
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Algorithm 3 CCC—Client code, for node p.
Local Variables:
optype: string, initially ⊥ // indicates which type of operation (collect or store) is pending
tag: int, initially 0 // counter to identify currently pending operation by p
threshold: int, initially 0 // number of replies/acks needed for current phase
counter: int, initially 0 // number of replies/acks received so far for current phase
sqno: int, initially 0 // sequence number for values stored by p
Derived Variable:
Members = {q| join(q) ∈ Changes ∧ leave(q) 6∈ Changes}

When COLLECTp occurs:
26: optype = collect; tag++
27: threshold = β · |Members|
28: counter = 0
29: broadcast 〈collect-query, tag, p〉

When RECEIVEp〈collect-reply, RView, t, q〉
occurs:
30: if (t == tag) ∧(q == p) then
31: LView = merge(LView, RView)
32: counter++
33: if (counter ≥ threshold) then
34: threshold = β · |Members|
35: counter = 0
36: broadcast 〈store, LView, tag, p〉

When STOREp(v) occurs:
37: optype = store; tag++
38: sqno++
39: LView = merge(LView,{〈p, v, sqno〉})
40: threshold = β · |Members|
41: counter = 0
42: broadcast 〈store, LView, tag, p〉

When RECEIVEp〈store-ack, t, q〉 occurs:
43: if (t == tag) ∧(q == p) then
44: counter++
45: if (counter ≥ threshold) then
46: if (optype==store) then return ACK
47: else return LView

Algorithm 4 CCC—Server code, for node p.

When RECEIVEp〈store, RView,tag, q〉 occurs:
48: LView = merge(LView, RView)
49: if is_joined then
50: broadcast 〈store-ack, tag, q〉
51: broadcast 〈store-echo, LView〉

When RECEIVEp〈collect-query, tag, q〉 occurs:
52: if is_joined then
53: broadcast 〈collect-reply, LView, tag, q〉

When RECEIVEp〈store-echo, RView〉 occurs:
54: LView = merge(LView, RView)
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