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Two theories are being presented and advanced. While the theory of 

Philosophical processualism is general and aims at supporting the application of 

mathematics to guide action with precision, the computational theory of Decision 

Entropy is specific and aims at establishing a set of objective rules for assigning Bayesian 

priors, that are non-informative regarding the decision at hand. Besides, the concept of 

probability is being analyzed from a process-centered perspective, and three types of 

probability are being introduces: propensity, possibility, and credibility. The highlighted 

distinction is hoped to settle a number of long-standing disputes regarding the 

interpretation of probabilities. Also, three properties of objectivity, transparency, and 

defensibility are offered to characterize inductive systems. To evaluate defensibility, a set 

of seven theoretical principles are being offered including the principle of “unbiased 

evaluation,” which can be interpreted as the informativeness of priors for the case of 

Bayesian inductions.  
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Philosophical processualism is an original perspective advanced as the foundation 

for an epistemic machinery called pragmatic mathematics; a system of linguistically 

manifested mental constructs aimed at guiding purposive actions with precision. 

Philosophical processualism relies upon a process-centered interpretation of causality, 

which sees an event as a constellation of changes made by a process in certain states of 

the world and/or the mind. By taking concept as the fundamental constituent of the 

purposive agents’ evaluation processes, the view presents its ontological account of 

concepts and elaborate on how concepts could look like, where they could be present, and 

how they could come to realization. Philosophical processualism opposes Platonism by 

asserting that every concept is the outcomes of cognitive processes unfolding in time and 

space and is not an abstract entity in the so-called third realm, to which mind can gain 

access through unknown metaphysical processes. 

Probability concept is being analyzed from a process-centered perspective, and it 

is being divided into three types of propensity, possibility, and credibility. Propensity 

values are relative repetitions of processual outcomes, as they have come to realization. 

Possibility values for the outputs of a more-to-less process are the relative contributions 

of inputs; i.e. the relative number of inputs associated to every output. Credibilities are 

imaginary relative weights assigned to (the parameters of) the processes, who are 

hypothesized to deliver the intended outcomes. Credibilities are only means to the end of 

assessing propensities and/or possibilities, whose exact values are unknown. Bayesian 

priors are prime examples of credibilities. While the imaginary nature of credibilities 

allows subjects to assign credibilies of their own preference, their assignment might not 
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be justifiable to others. Alternatively, it is possible to establish a set of theoretical 

assignment rules on purely logical grounds, and to justify the designations based on their 

effects, or lack thereof, on the assessed propensities and/or possibilities. Due to their rule 

abidance, theoretically constructed credibilities may be described as objective, even 

though imaginary and only existing in subjects’ minds. The class of credibilities called 

non-informative are the ones, whose assignment are aimed at not informing (certain 

aspects of) the assessed propensities and/or possibilities.  

A set of properties including objectivity, transparency, and defensibility are 

defined to characterize an inductive assessment procedure. Objectivity is concluded to be 

the result of transparency and community acceptance. Although every communal rule is 

contractual by nature, its justification makes the procedures defensible, especially when a 

community is deciding whether to adopt it as the rule. A set of seven theoretical 

principles are proposed to evaluate the defensibility of an inductive system, namely (I) 

Evaluative Orientation, (II) Investigative Prioritization, (III) Explicative Sufficiency, (IV) 

Evaluative Inclusion, (V) Credibility Conception, (VI) Artifact-Reality Division, and 

(VII) Unbiased Evaluation. 

Decision Entropy Theory (DET) offers an original method for assessing credible 

outcomes of uncertain processes by incorporating Bayesian probabilities. Since DET is 

aimed at guiding purposive action with precision and through the use of mathematical 

measures, it falls under the category of pragmatic mathematics. DET aims at representing 

uncertainty in an objective and defensible way. The motivation to develop the theory is to 

account for the possibility of events occurring that are beyond our range of experience. 
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The theory characterizes uncertainty in the context of making a decision; the case of 

maximum uncertainty corresponds to the maximum entropy for the possible outcomes of 

the decision. Therefore, the starting point for assessing probabilities, i.e., the non-

informative prior probabilities of possibilities before information is included, depends on 

the decision at hand. Decision Entropy Theory is developed from the following principles 

that describe the case of no information or maximum uncertainty in making a decision 

between various alternatives. 

1. If no information is available about the probabilities of decision outcomes, 

then a selected alternative is equally probable to be or not to be the preferred alternative. 

2. If no information is available about the probabilities of decision outcomes, 

then the possible differences in preference between a selected alternative and the 

preferred alternative are equally probable. 

3. If no information is available about the probabilities of decision outcomes, 

then the possibilities of learning with new information about the selected alternative 

compared to the preferred alternative are equally probable. 

To illustrate the theory, two examples from engineering are being worked out:  

(a) selecting the appropriate design wave height for offshore structures, and  

(b) assessing the value of test wells before committing to developing a 

hydrocarbon resource play.  

The examples highlight the following points: 
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• The prior sample space depends on the decision, meaning that the importance 

of extreme uncertainty depends on its consequences to the decision and the 

availability of feasible decision alternatives to compensate for these 

consequences. 

• The prior sample space emphasizes the possibilities that distinguish two 

alternatives from one another. 

• The prior sample space can affect the final decision, even when substantive 

data are available to inform (update) this sample space.  

• It is unreasonable to assume that the probability distribution for the 

frequencies can be established based entirely on experience because that 

precludes the possibility of events beyond our experience. Such events can be 

particularly important where experience tends to be limited. 

• The value of information is enhanced when leaving open the possibilities for 

making excessive gains and losses. 

• It is possible to rationally balance between relying entirely on historical data 

versus not relying on them at all. Within this balance, direct information can 

be combined with information from analogous cases of the past to inform the 

decision. 
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 Introduction 

 

1.1 ACQUIRING KNOWLEDGE BY EXPERIENCING AND REASONING 

There are things that we do know and there are (many) other things that we do not 

know. Learning is the process through which, by observing specific aspects of the reality, 

data, and by using our human reasoning faculties, we manage to add more to what we 

already knew. Two central questions regarding learning are determining how we can use 

what we already know to inform what we currently do not know, as well as determining 

the (relative) weights we have to give to evidence and reasoning in order to conclude a 

new learning. To answer the aforementioned questions, we can adopt any of the 

following approaches. 

In the first approach, we assert that until we make new observations, we take the 

set of our past observations, as of today, as the (sole) representation of the reality. The 

approach relies on a philosophy whereby (empirical) evidence is the only source of 

knowledge and results in (implicitly) ignoring unknowns, as they are yet to be observed 

and, at the moment, the only way to their existence is to hypothesize them by the aid of 

human faculties. Thus, the only way to learn new things is to wait until we observe them. 

This approach is mainly pursued in empirical science including experimental physics. 

In the second approach, most of our knowledge, is taken to be the logical 

consequence of what we already know. This approach heavily relies on imposing/ 

postulating (logical) structures/ orders on the reality, where (states of) certain aspects of 

the world are (deemed) to be in a particular type of relationship. It is such a relationship 
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between knowns and unknowns that makes the later a logical consequence of the former, 

i.e. by considering our current knowledge, we can deduct the existence and the character 

of what we are yet to observe. The approach relies on a philosophy whereby the real-

world is deemed to follow the (logical) orders/ structures devised by human minds and 

takes observation as a (sometimes secondary) support to demonstrate the validity of 

postulated orders. This mode of learning is mainly pursued in theoretical science 

including theoretical physics and philosophy. 

Following the second approach to learn unknowns, if one believes in the truth of 

these (imposed) orders, prediction/ characterization of unknowns look logical, 

reasonable, and natural. By the same token, an easy way to fool oneself into taking a 

(unobserved) character as real, is to postulate a certain structure on the reality and deduct 

that character accordingly.     

1.2 BACKGROUND 

 A Random Act/ Process and the Propensity Values for its Outcomes  

An Act is taken by an agent in order to achieve a desirable outcome. While a 

deterministic act/ process always results in the same outcome, a random act/ process 

sometimes result in one outcome and other times in different outcomes such that the 

agent is unable to foresee the (exact) outcome every time he takes the random act. The 

lack of knowledge and the possibility of not achieving the intended consequence make 

random acts risky. The significance of the risk depends on the undesirability of 

unintended outcomes as well as the natural tendency of the process to result in such 
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outcomes, which can be quantified by the measure termed (physical) probability. The 

(physical) probability/ (natural) propensity/ relative frequency, PP, for a given outcome, 

Ei, of a (repeatable) random act/ process, AR, triggered under specified conditions/ 

circumstances, C, is “defined” as the proportion of the times that taking the act results in 

the outcome, nEi, relative to the total number of (possible) repetitions (for the act), nT , 

Eq. (1-1).  

 

𝑃𝑃(𝐸𝑖|𝐴𝑅 , 𝐶) =
n𝐸𝑖
n𝑇

 
(1-1) 

If the random process may result in any of the m possible outcomes/ events, 

contained in the set E = {E1, … , Em}, the set of propensity values for these outcomes 

defines the (propensity) distribution (function) of the random act, DAR = {PP1, … , PPm}. 

Propensity values for a desirable and an undesirable outcomes of a random act are 

respectively called the reliability and the risk of the random act. 

 Estimation/ Approximation of Propensity Values based on Statistical 

Observations 

To make the decision whether to take the risky act, the agent needs to assess the 

significance of its risk and for that, he needs to know the propensity values for various 

outcomes of the process. Propensity calculations, Eq. (1-1), require the knowledge of the 

outcome of the process in all (possible) instances/ repetitions of the act. In many cases, 

however, available data is limited to the outcomes of a few instances; thus, (true) 

propensity values have to be estimated/ approximated with the aid of the propensities 

observed in the (small) set of instances, a sample.  
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Sampling is the act of observing/ learning about the outcome of a random process, 

as it is being produced or as it was. Thus, observational outcomes are also random and 

sampling itself is being considered a random process, a statistical experiment. A random 

sample is a sequence/ series/ collection, where each member/ element is an outcome of 

the random process. The set enclosing all possible observations of a statistical 

experiment, random samples, is called the “sample space” (for the act of sampling). If we 

denote a possible observational outcome, a sample, as Ij, the sample space of the 

statistical experiment composed of a sequence of n observations can be denoted as SSn = 

{I1, … , Im
n}. 

The (sequential) outcomes of sampling, as a random act, also do realize with a 

(natural) propensity if the act of sampling is being repeated, with the same number of 

observations and under the same conditions.  

The (physical) probability/ (natural) propensity/ relative frequency, PP, for a 

given observational sequence, Ij, of a (repeatable) sampling from the outcomes of a 

random act, SAR, performed under specified observational conditions/ circumstances, CS, 

is “defined” as the proportion of the times the act of sampling results in the observation 

of the sequence of interest, nIj, relative to the total number times a sample of such length 

could be observed, nTs, Eq. (1-2). Since an observational sequence is made up of single 

observations (of the outcomes of an underlying random act), the propensity of each 

sequential (sampling) outcome is related to the propensity values for its constituent 

outcomes. In other words, propensity of a sample data, PP (Ij), is a function of the 

propensity distribution for the (underlying) random act, DAR.  
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𝑃𝑃(𝐼𝑗|𝑆𝐴𝑅 , 𝐶𝑆) =
n𝐼𝑗
n𝑇𝑆

= 𝑃𝑃(𝐼𝑗|𝐷𝐴𝑅) 
(1-2) 

The connection established in Eq. (1-2) between the propensity of a given 

(sequential sample) observation and the propensity distribution of the random act allows 

one to compare various sampling outcomes in terms of the chance for their realization. 

This ability is quite helpful when the propensity distribution of the random act is known 

and a comparison between sampling outcome is needed, e.g. calculating the (physical) 

probability for the realization of a winning combination in a (well-defined) game of 

chance. However, in many applications, the (underlying) propensity distribution is 

unknown; thus, the main challenge for the acting agent is to hypothesize all possible 

distributions for the random process, enclosed in the set of statistical hypotheses HD = 

{DAR1, … , DARt}, and to estimate the propensity distribution of the random act based on 

the only concrete evidence in hand, a (sample) observation.  

Since the chance of observing a given piece of (statistical) information, PP (Ij), 

depends on the (underlying) propensity distribution, DAR, it is possible to define a 

measure that allows a comparison between possible distributions based on the level of 

support provided by the observed sample. The measure, named “likelihood” by R.A. 

Fisher (1922), is the output of an (algebraic) function that associates each possible 

propensity distribution, DARk, with the probability of the realization of the (observed 

sample) information, if that distribution is the true/ real/ natural propensity distribution of 

the (underlying) random process, PP (Ij|DARk), Eq. (1-3).  
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𝐿𝑗(𝐷𝐴𝑅𝑘) = 𝐿(𝐷𝐴𝑅𝑘|𝐼𝑗) = 𝑃𝑃(𝐼𝑗|𝐷𝐴𝑅𝑘) (1-3) 

 Bayesian Approach to Estimation/ Approximation of Propensity Values  

The existing methods of propensity estimation can be broadly categorized into 

Frequentist and Bayesian, which are different in terms of their methods, results, features, 

abilities, and essentially their foundations. While both approaches use (statistical) 

observations as the essential component of their methods and may even use the same 

measures to characterize observations, e.g. Likelihood, they differ in terms of the 

assumptions they have to make, beyond data, in order to reach conclusions. The need to 

assume (beyond data) arises from the insufficiency of data for propensity calculations. 

While frequentist (propensity estimation) methods have a data-centered approach and 

focus on finding a propensity distribution that best fits the data, e.g. the distribution 

whose likelihood (given the observed sample data) is maximum, the Bayesian approach 

to estimation (of propensities) tries to offset the (influence of) data based on the amount, 

and consequently the sufficiency, of the data at hand. 

A main feature of the Bayesian approach is the incorporation of all possible 

propensity distributions in its estimation procedures, i.e. the set of statistical hypotheses 

HD = {DAR1, … , DARt}. The incorporation materializes by assigning a degree of 

credibility/ plausibility, CR, to each credible/ plausible propensity distributions, DARk, and 

to adjust (the propensities of) each distribution by its credibility. The final result of the 

procedure is a set of all-inclusive propensity estimates, “credible propensity” values, for 

various outcomes of the random act, and subsequently any sequential sample of the 
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realizations. Eq. (1-4) presents the formal relationship for calculating the credible 

propensity for the outcome, Ei, of the random process, AR, under condition C, where the 

credible propensity is being calculated as the average of the propensity values suggested 

by various plausible distribution, PP(Ei|DARk), weighted by the credibility values of the 

distributions, CR(DARk). 

  

𝑃𝐵(𝐸𝑖|𝐴𝑅 , 𝐶) = 𝑃𝑃
𝑇(𝐸𝑖|𝐴𝑅 , 𝐶) = 𝐸[𝑃𝑃(𝐸𝑖|𝐴𝑅 , 𝐶)]

= ∑𝑃𝑃(𝐸𝑖|𝐷𝐴𝑅𝑘) × 𝐶𝑅(𝐷𝐴𝑅𝑘)

𝑘

 

(1-4) 

Since Eq. (1-4) is a variant form of the theorem/ law of total probability, “credible 

propensity” is as well called “total propensity,” PP
T. Also, Eq. (1-4) has a form similar to 

the definition of the mathematical expectation of a random set. Because it is possible to 

show that the same algebra governing (physical) probabilities (of the outcomes of a 

random process), contained in the set PAR = {PP1, … , PPm}, can be applied to the degrees 

of credibility, contained in the set CH = {CR1, … , CRt}, Cox (1946) and (1961), credible 

propensity can also be called “expected propensity,” E(PP). Because credibility/ 

plausibility values are exclusive to Bayesian approach, credible propensity can also be 

called “Bayesian propensity,” PB. 

Bayesian estimation of propensities, as presented in Eq. (1-4), requires credibility 

values, CH = {CR1, … , CRt}, for various credible propensity distributions, HD = {DAR1, … 

, DARt}. This entails a (mathematical) definition of credibility, according to which a 

specific credibility value is assigned to each propensity distribution.  Such a rule, Eq. 

(1-5), was first introduced by Thomas Bayes (1763), where an initial/ starting/ prior 
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credibility value for a propensity distribution, CR(DARk), is being revised/ adjusted/ 

updated by multiplying it with a factor of the likelihood of the distribution given a 

specific (sample) observation, Lj (DARk). The factor is the inverse of the Bayesian/ total/ 

expected/ credible propensity of the observed sample, PB(Ij), Eq. (1-6). 

 

𝐶𝑅(𝐷𝐴𝑅𝑘|𝐼𝑗) = [
1

𝑃𝐵(𝐼𝑗)
] × 𝐿𝑗(𝐷𝐴𝑅𝑘) × 𝐶𝑅(𝐷𝐴𝑅𝑘) 

(1-5) 

 

𝑃𝐵(𝐼𝑗) = ∑𝑃𝑃(𝐼𝑗|𝐷𝐴𝑅𝑘) × 𝐶𝑅(𝐷𝐴𝑅𝑘)

𝑘

 
(1-6) 

Bayesian multiplication, as defined in Bayes’ theorem, Eq. (1-5), provides a direct 

and transparent way to assign a revised (degree of) credibility to each credible propensity 

distribution such that it reflects the (relative) level of support given to the distribution by 

statistical data, Lj (DARk). The theorem, however, requires a starting/ initial/ prior (degree 

of) plausibility for each propensity distribution to begin with, CR(DARk). The collection of 

starting credibility values for all plausible propensity distributions, HD = {DAR1, … , 

DARt}, is called the prior credibility distribution, CH = {CR1, … , CRt}, which follows the 

laws of probability theory and can be manipulated accordingly.  

Since Bayes’ theorem does not help in establishing the prior credibility 

distribution, a separate (mathematical) rule is needed in order to define/ assign a 

credibility distribution. Defining the prior credibility distribution, however, has turn out 

to be extremely challenging and the definitions/ assignments introduced, to the point, 

have remained controversial. So, the questions are why the assignments of the past were 
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challenging and controversial. Since our goal is to help the cause of an agent, who is 

considering whether to take a risky act, we have to (1) interpret the answers we may find 

for the aforementioned questions and (2) to assign/ define prior probabilities within the 

context of making risky choices. 

1.3 MOTIVATION 

This research is motivated by (1) the importance and the influence of assigned 

credibility values on the analysis of risky decisions and (2) the shortcomings of the 

existing methods in establishing credibility values objectively, yet wisely. The 

differences between various methods and schools of thoughts matter most when data 

available is limited and inductions about propensities are more guided by the assumptions 

made rather than the few relevant observations. When data are abundant, on the contrary, 

the inductions made by various methods are heavily influenced by data and the 

assessments made by various methods are similar. The imposing challenge is that in 

many practical situations, where we must make a risky decision, relevant data are limited 

and assumptions make huge impacts on the analysis performed and the recommendations 

made. 

 Black Swans; Rare (Low Propensity) Events with Significant Impacts 

Often times we have to make our choices in the face of extremely limited 

information. In reference to the realization of such unperceived possibilities, Taleb 

(2007) reminds us the observation of “Black Swans” upon westerners’ discovery of the 

Australian continent, which invalidated the (perceived) fact that all swans are white. 
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Examples of the realization of Black Swan events are numerous in engineering. For the 

first half a century of offshore hydrocarbon production in the Gulf of Mexico, the largest 

hurricane wave heights impacting production facilities were all less than 26 m. Then, out 

of the five major hurricanes occurred between 2004 and 2008, four experienced wave 

heights greater than 26 m and as a result, many platforms designed based on 

improbability of wave heights greater than 26 m were destroyed (e.g., Energo 2010). In 

another recent example, a 2014 landslide in Oso, Washington caused a debris run-out ten 

times further than the estimated maximum distance based on historical data (GEER, 

2014). The result, was the destruction of an entire community, including 43 lives, who 

could have remained alive if we had not perceived such run-out improbable.  

Another historical Black Swan in the field of petroleum exploration occurred in 

1968, when operators began the exploration of Santa Barbara Channel offshore 

California. While there was a consensus within the oil industry that these potential 

reserves were certain and even greater than those of Los Angeles basin (OGJ, 1967), the 

outcome of the exploration turned out to be disastrous as only two of the thirteen tracts 

drilled had commercial oil (OGJ, 1968). The main reason for the failure was the 

extension of the existing knowledge from the geologic structures and trends of onshore 

basin to the federal lands in the offshore channel (Newendorp and Schuyler, 2000). If 

experts, had not taken for granted the relevance of the historical data from the (perceived) 

onshore analogue, they may not have incurred such great losses. 
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 Deficiencies of Existing Method for Estimation of the Propensity Values of 

Rare Events 

Existing approaches for estimating physical probabilities/ propensities with 

limited information are lacking, especially when propensity values of interest are small. 

Frequentists estimate propensities of physical events that occur repeatedly given specific 

observational/ sampling circumstances mainly based on the available data. When data is 

limited, which is essentially the case for small-propensity events, frequentist estimates 

are expected to be far from reality; i.e. they do have a large standard error, in frequentist 

terminology. On the other side, the methodology of Bayesians allows for offsetting the 

influence of the data on estimates by introduction of the concept of “credibility” for a 

given set of propensity values, a statistical hypothesis. Credibility makes it possible to 

also consider (many other statistical) hypotheses that are less supported by the data, but 

still credible, to be considered in propensity estimation.  

The inferential procedures used by Bayesians for incorporating observations into 

credibility values rely on the use of Bayes’ theorem, which takes an (assumed) set of 

prior/starting probabilities and gives a revised/updated/final set of probabilities. Since 

Bayes’ theorem does not provide any guidance on the choice of the starting credibility 

values, Bayesians are divided on the choice of prior and its meaning into roughly two 

camps of subjectivists and objectivists.  

Subjective Bayesians believe that individuals are implicitly able to assign prior 

probabilities given their background information and the implicit assumptions they do 

make. Nonetheless, (1) the assignment, (2) the application, and (3) the (theoretical and 

real) justification of the priors set in the subjective Bayesian approach faces a number of 
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challenges. The challenge with subjective assignments of prior credibility values, is the 

vagueness and obscurity of its assignment process, where a given set of priors is being 

postulated without informing the process through which the analyst has reached it.  

The challenge with the application of subjective assignments, in analyses aimed at 

guiding a non-personal acts, arises from the inability to examine the assignment and to 

verify its accordance with the (technical) conventions of a field. This leaves the “faith” in 

the analyst himself, and not the work itself, as the sole source for the legitimacy of the 

analysis and its recommendations (see section 4.6.1 for further details). Thus, in many 

applications, which demand the analysis process and its starting points to be examinable, 

subjective priors are set aside (Kass and Wasserman, 1996). 

Finally, the deeper challenge with subjective priors are their justification, both in 

regards to the theoretical position they may occupy within the framework of the Bayesian 

inference and in regards to the reality they may represent. As I will argue (section 4.3), 

prior credibility is a theoretical term/ construct and is only meaningful within the context 

of a Bayesian theory aimed at inducting/ estimating propensities, i.e. they are not 

observable/ measurable in the real-world (independent of the theory). Thus, the only way 

to set (prior and posterior) credibility values is to use a theoretical assignment rule/ law/ 

definition and no amount of real-world observation/ information, in itself and without 

pertinent theoretical definitions, can either set credibility values or make assignments 

existent in the real world. 
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 Deficiencies of Existing Objective Methods for Establishing Bayesian 

Credibilities 

 In contrast to subjectivists, objective Bayesians intend to provide the process of 

establishing prior probabilities with objectivity and transparency. The application of 

objective methods to establish non-informative priors for a decision, however, is not free 

of challenges. The most important difficulty arises from the fundamental difference 

between the context for which existing objective procedures have been developed and the 

context of making a risky decision. 

As an example to illustrate the challenges with existing Objective Bayesian 

approaches, consider assessing/ estimating the propensities for different possible 

occurrence rates of waves exceeding 20 m at an offshore location. A common Objective 

Bayesian approach is to establish the prior credibilities by maximizing the entropy of 

information, which produces a uniform probability distribution over the range of possible 

values.  

Figure 1.1 shows two possible interpretations of this approach: a uniform 

credibility distribution for the mean occurrence rate or a uniform credibility distribution 

for the logarithm of the mean occurrence rate (since it can vary over many orders of 

magnitude). 

Figure 1.2 then shows the updated credibility distribution (the one used for 

making decisions about developing infrastructure at the site) for each prior probability 

distribution given the available information about historical hurricanes at this location; 

there is a significant difference in these two distributions and they very well could lead to 

different decisions. For example, there is a 50-percent probability that the 100-year wave 
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height is 30 m for one distribution and more than a 95-percent probability for the other 

distribution (Figure 1.2). 

 

Figure 1.1. Alternative prior credibility density functions for mean occurrence rate of maximum 

wave height exceeding 30 m (from Gilbert, Habibi and Min, 2012) 

 

Figure 1.2. Alternative updated cumulative credibility distribution functions for mean occurrence 

rate of maximum wave height exceeding 30 m given no occurrences in 60 years (from Gilbert, 

Habibi and Min 2012) 
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Making decisions rationally requires considering possibilities with considerable 

uncertainties and assessing/ estimating their propensities based on limited information. 

An Objective Bayesian approach is being developed with the intent to establish prior 

probabilities by maximizing entropy of the information in the context of making a 

decision. This theory, named Decision Entropy Theory, is described in Appendix B. 

Advancing the development of Decision Entropy Theory is the goal of this research.  

1.4 OBJECTIVES 

The goals I have tried to achieve in my research are as follows 

- Review, analyze, and synthesize the background on prior probability and 

utility 

- Establish a philosophical and logical foundation to define an “objective, 

transparent and defensible” method for establishing non-informative prior 

propensities 

- Describe and illustrate the principles of a theory that establishes non-

informative decision-based prior probabilities (Decision Entropy Theory) 

- Identify the practical consequences of applying a theory that establishes non-

informative decision-based prior credibilities  

- Evaluate whether a theory that establishes non-informative decision-based 

prior probabilities is “objective, transparent and defensible” 
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1.5 METHODOLOGY 

To achieve each of four objectives set for this research, I have provided with a list 

of tasks I have performed and a short description of each task. 

 Review, analyze, and synthesize the background on prior probability and 

utility 

- Task 1-1: to review and analyze the cause of controversies in statistics 

- Task 1-2: to review and analyze the background on the concept of probability 

- Task 1-3: to review and analyze the background on the Bayesian probabilities, 

in general, and prior probabilities in specific 

- Task 1-4: to review and analyze the background on Bayesian inference 

- Task 1-5: to synthesize the unite the reviews and analyses I performed in 

Tasks 1 to 4 

 Establish a philosophical and logical foundation to define an “objective, 

transparent and defensible” method for establishing non-informative prior 

propensities 

- Task 2-1: to distinguish between the role of assumptions and information in 

statistical inductions 

- Task 2-2: to define various types of probability including an objective 

Bayesian probability 

- Task 2-3: to scrutinize the concept of information within the framework of 

statistical inference and to define the state of no-information/ignorance 

- Task 2-4: to incorporate the concept of the “Bayesian robot” in the doctrine of 

objective probabilities  
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- Task 2-5: to emphasize on context-dependency of all types of probabilities 

- Task 2-6: to incorporate the concept of “consensus” in the foundations of 

objective Bayesian approach  

- Task 2-7: to establish the concepts specific to the theory of decision entropy 

 Describe and illustrate the principles of a theory that establishes non-

informative decision-based prior probabilities (Decision Entropy Theory) 

- Task 3-1: to present the principles and mathematical axioms 

- Task 3-2: to investigate the uniqueness and consistency of the proposed 

approach 

- Task 3-3 to develop a framework for accommodating multiple decision 

alternatives. 

- Task 3-4 to create and present simple, illustrative examples 

- Task 3-5 to evaluate the theory in the context of “objective, transparent and 

defensible” 

 Identify the practical consequences of applying a theory that establishes 

non-informative decision-based prior credibilities  

- Task 4-1: to formulate a set of simplified decisions, including those involving 

the value of obtaining additional information to support making a decision 

- Task 4-2: to develop general analytical and/or non-dimensional numerical 

solutions to these problems.  

- Task 4-3: to explore numerical approaches to solve complicated problems 
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1.6 OVERVIEW 

This research tackles the task of assessing the outcome of a process, when we are 

extremely uncertain about the processual tendencies due to the limitations of “relevant” 

observations. I have tried to offer answers to the questions of “when” we may face 

extreme uncertainty, “how” we can assess it, and “what” is the interpretation of the made 

assessment. Answering the three questions required different kinds of investigations, 

which is evident in the diversity of the contents presented in the dissertation. While 

answering to the question of “when to expect” was (partly) done through examining 

historical cases and inductively extending the lessons to the cases in the future, answering 

to the question of “how to assess” was done by developing mathematical formulae on the 

foundation of theoretically-postulated principles. Finally, answering to the question of 

“what interpretation” was done through analyzing existing concepts and developing new 

ones.  

The question of “when to expect” is being addressed in this Chapter, Section 

1.3.1, as well as early parts of Chapter 4, Sections 4.1 and 4.2. By refereeing to the 

concept of “Black Swan,” I have proposed that we must “always” consider the possibility 

for the realization of unprecedented events and take their extreme consequences into 

account, if we are facing a non-trivial decision. The claim regarding the potential for the 

realization of Black Swans is justified by citing historical cases and by reasoning 

inductively, that if such a phenomenon has been repeatedly taking humans by surprise, it 

is likely to do so in the future, and we need to have the foresight of considering yet-to-

come Black Swans in our simulations of future.  
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To review the historical cases of Black Swans, I have mainly referred to the 

literature, including the well-known book by Taleb (2007); however, I have highlighted a 

number of cases as I see them both humbling and enlightening. One case, described in 

Section 1.3.1, was the 1968 hydrocarbon exploration in Santa Barbara Channel offshore 

California, where spatial proximity of the prospect with a highly productive area mislead 

oil companies about the profitably of the venture and cause them to lose a huge fortune 

with little return. The other case, described in Section 4.1.1, was the 1998 colossal 

collapse of the hedge fund LTCM, in the aftermath of a series of economic turmoil 

abroad, which was assessed as improbable by Nobel prize-winning frequency models that 

LTCM was using to valuate financial options.  

The question of “how to assess” is being investigated in Chapters 4, 5, 6, where 

Chapter 4 offers the principles of a method developed to address the question, Decision 

Entropy Theory (DET), and Chapters 5 and 6 illustrate the application of the theory to 

two practical problems. Also, an extensive description of DET including its mathematical 

formulation is being presented in Appendix B. 

It is being suggested that a way to quantitatively address Black Swan outcomes is 

to first consider the set of every possible outcome of significant consequence, and then to 

assign Bayesian prior probabilities to possibilities, before incorporating any empirical 

observation. After adopting a measure of information to precisely quantify the degree of 

non-informativeness for any set of theoretically-assigned Bayesian priors, DET offers a 

hierarchy of “significant variables” within the context of rational decisions, whose 

theoretically-assigned Bayesian priors must be minimally informative. The significant 
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variables, as postulated by the principles of DET, are (I) “decision outcome,” (II) 

“difference in preference,” and (III) “learning potential/information value.” Nevertheless, 

minimally informing significant variables does not guarantee the non-informativeness of 

other variables, and on the contrary, it may dictate an informed distribution for another 

insignificant variable, if the variable depends on significant variables. The level of such 

informativeness is determined by the specifics of the relation between insignificant and 

significant variables, including the linearity of their relation.  

The question of “what interpretation” is being approached in Chapters 2, 3, and in 

Appendix A. In Chapter 3, I have suggested that three concepts of propensity, 

possibility/potentiality, and credibility, encompass all senses of probability; thus, all 

probabilistic assessments are of observational, and/or potential, and/or credential nature. 

 By defining credibilities as imaginary relative weights assigned to a set of 

possibilities, I have argued that credibility values cannot be obtained from empirical 

observations and must be assigned without resorting to empirical justifications. After 

declaring Bayesian probabilities as credibilities, I have defined non-informative priors as 

theoretically-established credibilities, whose assignment are aimed at not informing 

(certain aspects of) the assessment. As so, the assessments made by non-informative 

Bayesian probabilities are of potential-credential nature, and those based on partially-

informed probabilities, are of observational-potential-credential nature. 

The suggested interpretations of probability are coming from a more fundamental 

process-centered worldview, Philosophical Processualism, which I have presented in 

Chapter 2. This theoretical account puts “concepts” at the center of human understanding 
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and suggests ways in which we can come to share, not only perceivable concepts, but 

also imaginary concepts, such as credibilities, with precision.  

Also, to increase the precision and the clarity of the concepts used throughout the 

research, a glossary of terms is being offered in Appendix A. The compendium is better 

understood as the outcome of my efforts to analyze various concepts, rather than to 

collect a dictionary of technical terms. Since I have developed the definitions across a 

rather long timespan, there is considerable variation in the definitions’ tone and format, 

as well as in their generality and complexity. 
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 Philosophical Processualism; Foundations of Pragmatic 

Mathematics 

 

2.1 INTRODUCTION 

The chapter introduces a philosophical perspective, I have labeled “Philosophical 

Processualism” due to the centrality of the concept of process in its tenets. While it seems 

to me that the perspective is of immense potential and may become the basis for the 

development of a rather extensive philosophy of science, currently, the view is at its 

infancy. The philosophical nature of perspective is due to its focus on the logical and 

critical examination of the rational grounds for the concepts we do use in mathematics, as 

well as natural and social sciences. While the intended application of Philosophical 

Processualism, makes its metaphysical concerns narrower than a general philosophical 

theory, establishing its position regarding a number of metaphysical issues are necessary 

and unavoidable. 

2.2 THE CONCEPT OF PROCESS 

The concept of process is central to the philosophy of probability I am proposing 

here. The concept is closely associated with the belief in causality, where each object has 

somehow come to existence. The “how” of realization is being captured by the concept of 

process, in which the outcome is conceived to be generated by a mechanism taking some 

inputs, and delivering output under specific circumstances.  

In continue, I will introduce processes by giving a definition, elaborating on the 

significance of conceiving processes to our cognition and action, and by stating the 
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objectives we may achieve by such conception. I will then elaborate on our two 

fundamental ways of understanding concepts including the concept of process. I will also 

present the (general) types of processes we deal with, and finally, enlist and describe the 

cognitive operations we employ to theoretically organize processes. The term operation is 

used as an equivalent to the term process. The use of interchangeable names is aimed at 

avoiding terminological monotony, which occur if we label every realization mechanism 

a process. 

 Introducing Processes 

A process is a set of mechanisms that cause changes in a set of attributes of the 

objects involved. The definition of a process includes reference to a number of other 

concepts with labels such as object, attribute, change, and mechanism. Although I 

elaborate on these terms in the next section, I do recommend to take them as primitive 

concepts, meaning that defining them in terms of other concepts adds little clarity, and 

the audience must ultimately rely on their (default) cognitive apparatus for understanding. 

The concept of process is significant for both cognition and action, and its 

significance is due to the embedment of “change” in the fabric of the existence. In terms 

of cognition, there are few worldly phenomena not involving changes of some sort, and 

in terms of action, its objective almost involves bringing a change to the worldly affairs 

or preventing such changes from realization (status quo). Existence, from a more broad 

and general perspective, has started and continued with unexpected changes, revolutions, 

as well as gradual changes, evolutions. The study of change enables man both to 
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understand the worlds he encounters, and to act in accordance with his understanding. 

For such a study, I argue, the concept of process is essential. 

The main achievement of forward-looking studies is predicting the changes due to 

be realized in the future. The forecasts may then be used to verify the accuracy of the 

predictive machinery, in pure cognitive studies, or as the basis for purposive actions, in 

applied studies. In either case, contemplating the concept of process enriches the 

developed predictive machinery by considering the causal grounds of the predicted 

changes. Besides, the contemplation emphasizes the fact that a predictive machinery, 

similar to a physical machinery, relies on a set of processes to deliver its output. If the 

machinery is intended to be copied and different copies are expected to yield consistent 

output, the implanted processes ought to be known and to be imitable; otherwise, the 

apparatus remains isolated and the goal of duplication becomes unfulfilled.  

 Cognizing Processes 

Our ability to cognize processes stems from our wide-ranging ability to 

comprehend things, and it is this ability that makes our experiences meaningful and 

sensible. Since cognition and the resulting sense of meaningfulness occur inside the mind 

and are hidden from direct sensory observations, theorizing about cognitive mechanisms 

partly relies on external manifestation of our cognition. The appearances are in the form 

of behavior including linguistic utterances, as well as our reflections on the conscious 

part of mental processes. 
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  Perception and Conception 

Humans can understand things through a variety of methods including the 

processing of their sensory experiences to create percepts of things outside their minds. 

Perception, as a process resulting in meaningful mental experiences, must be 

differentiated with sensation, which only results in the reception of stimuli from one’s 

external environment by internal sensors. Figure 2.1 presents a schematic diagram 

depicting the complexity of perception process, where external stimuli is being received 

and processed by a sensor and the outcome is being reprocessed by a modeler to deliver a 

percept. The meaningfulness of the sensory experience, in contrast to the customary 

assumption, does not come from the work of the sensors, but mostly from the work done 

by the modelers. Meaning, generally speaking, has more to do with (the output of) 

models than data.  

 

Figure 2.1. A sketch of perception process, characterized by processing of sensation by a 

modeler to yield a meaningful sensory experience   

   Humans can also expand their understanding by processing of the things inside 

their minds, including externally-triggered percepts, to form concepts. Figure 2.2 presents 

a schematic diagram depicting the sub-processes of perception including simplification 

and modeling processes. There are a number of similarities and differences between the 
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two processes of perception, portrayed in Figure 2.1, and conception, portrayed in Figure 

2.2. One major difference between the two is the input to the processes, where perception 

takes stimuli generated in the outside environment, whereas conception takes the (already 

processed) entities existing inside the mind. Apart from different input sources, the output 

for both processes have the shared feature of being formed inside the mind. The 

similarity in features, can also be reflected by similarity in names, where we relabel 

percepts as “perceptual concepts.” The new labeling unites all meaningful things for the 

mind under a group, whose name include the term “concept.” 

 

Figure 2.2. A sketch of conception process, characterized by simplifying a set of mental 

objects and processing them by a modeler to new meaningful mental objects   

Another similarity between the processes of perception and conception is the 

involvement of the sub-process of modeling, that going through which seems to bring 

meaning to mental entities. The significant semantic role of the model can be explained 

by its function. A model’s job is not just to combine or rearrange components, but to add 

things not present in input. In a geometric analogy, a model connects some dots, not just 

by associating them, but by creating and adding many more points of specific spatial 

position to the few points presented to the model. Thus, the sub-process of modeling 
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along with the sub-process of simplification, depicted in Figure 2.2, may not be 

considered equivalents of the two processes of analysis and synthesis.  

A modeling process, when it results in the development of concepts expressible in 

human language, may be also be called an interpretation process, and its outcome an 

interpretation. An example interpretation, is the process-oriented philosophy such as the 

one I am presenting here for the case of cognition, which could not be produced simply 

by analyzing and synthesizing the current knowledge. My interpretation, as a new 

coherent conception, has come to realization by creating new entities and by using them 

to connect existing data, in the forms of empirical observations and theoretical 

conceptions made by other researchers. In a broader perspective, if I had followed a 

heavily empirical approach and overly relied on observations, I would have possibly 

obtained semantically-deficient conceptions. The meaning has come more from 

(internally postulated) models than (externally received) data. 

2.3 ONTOLOGY OF CONCEPTS 

The account of cognitive processes I put forward in the previous section, 

introduces concepts as things in the mind, without elaborating on how they do look like. 

The answer to the later question clarifies the ontology of concepts within the framework a 

process-centered philosophy I am advocating. Below, I will discuss how concepts could 

look like, where they could be present, and how they could come to realization. Besides, 

the offered ontology establishes the foundations of the processual philosophy and will be 

used in developing pertinent views toward a range of issues including mind, language, 
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and an epistemic machinery, which I do label as “pragmatic mathematics;” a system of 

linguistically manifested mental constructs aimed at guiding action with precision.  

 Mental Representations 

Mental representation is one of the common phrases used to label objects of the 

mind. The term representation not only distinguishes between what concept refers to, the 

referent, but also indicates the existence of a difference between the form of the concept 

and its referent. The difference in the appearance depends on the way representation may 

look like. Although it is tempting to hypothesize about THE appearance of the concepts, 

as many philosophers have done, I think it is more realistic to introduce an open set of 

possible appearances for the concepts. My pluralist approach roots in my belief in (1) 

multi-modality of human cognition, and (2) cross-populational modal variabilities. While 

cognitive multi-modality of humans enables them to form their mental representations in 

a variety of ways, modal variability across human populations results in differences in 

individual tendencies to use various modes of representation. 

Visual representation seems to be the most common way of forming concepts, in 

which the referent is being represented in a seeable format. For percepts, the 

representation could be a mental image of the referent, similar to what mind experiences 

when it really sees the object. In a more sophisticated method, pictorial images can be 

substituted with visual symbols and enable the mind to conduct various kinds of symbolic 

manipulations. Examples include representation of (a) a referent by a word, or (b) the 
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non-perceptual concept of number with a numeral, or (c) the concept of process with an 

arrowed box, such as one I have used throughout this chapter! 

 Abstract Objects 

It is also possible not to specify the form of mental entities and simply regard 

them as abstract objects. The approach may be warranted as we can only learn about a 

very small part of our mental objects and processes, which is accessible to our 

consciousness. However, I suspect the main motivation of the advocates of the approach, 

from Plato in antiquity to Gottlob Frege in 19th century to prominent contemporary 

philosophers, is to endow humans with the ability to directly access absolute and timeless 

truth. Such a privilege, would be endangered if one has to address the potential 

differences between individuals’ mental representations of the same referent. By evading 

the question of the appearance of concepts, it is possible to overlook individual 

differences and assert the accessibility of the truth. Nevertheless, to ignore potential 

variations in individual conceptions, the theorist needs to deny mind as the place for the 

concepts, and to introduce another place, both outside physical world and human minds; 

the third realm. 

I see the Platonist view of cognition, where concepts are outside time and space, 

as inconsistent with the process-oriented account of cognition, in which every object is 

the outcome of a process unfolding in time and space. While we may not know the exact 

process underlying an outcome, our ignorance does not strip the process out of its 

spatiotemporal medium. However, by rejecting the Platonist theory of concepts, an 
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alternative theory needs to explicate the phenomena the Platonist view was suited to 

explain, albeit with minimum recourse to metaphysical constructs such as the third realm. 

Among other things, we must explain the exemplification of universal properties; the 

seemingly eternal recurrence of the same properties in seemingly infinite number of 

instances. For example, it must be clarified whether there physically exist a property of 

redness, as we do perceive it, apart from the instances of red objects; and if so, how? 

 Universals as Outcomes of Typical Processes 

I propose a two-step strategy for addressing the problem of universals. The first 

step involves the use of the familiar philosophical distinction of type vs token, and 

regrading a universal property as a type and its realized instances as tokens. The second, 

and more important, step involves the introduction of a generative process with the ability 

to produce tokens of a type. The introduction will not be merely nominal, but aspectual, 

where a number of aspects of the token-generation process are being explored. The 

reason for the significance of the second step is its reliance on a materially tangible 

process, as a means of explication. The lack material hypotheses of the kind, I believe, is 

one of the reasons for non-ending disputes in philosophy; whereas in science, the 

combination of the hypotheses with the empirical investigations regarding the feasibility 

and the specifics of the hypothesized processes, results in further discrimination among 

the contending explanations and fewer argumentation. 

I offer the concept of “code” to refer to the means through which a process 

executes its mechanism in the way it does. In an analogy with cooking, a code is like the 
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recipe for preparing a meal, containing the information regarding the participant objects 

in the process and their properties, as well as their levels of participation and the changes 

required for triggering and maintaining the process. The analogy is not perfect, as 

cooking is a process guided by a purposive agent, whereas many token-generation 

processes advance without the involvement of biological agents and the recipe is being 

activated and read in an automatic fashion. 

The code of a process is embedded in the material participants of the process in 

the form of their physicochemical arrangements. The code needs not to be in a single 

objects and parts of which could be distributed among all participants. Once all objects of 

certain character take the appropriate spaciotemporal position relative to each other, the 

process commences according to the specifics of the objects’ physicochemical 

arrangements. Even though the recent description of the code closely fits our 

understanding of chemical reactions, it can be used to comprehend not chemical 

processes, as well. 

 Example Processual Codes 

For instance, one may ask about the code for the process of the gravitation of 

heavenly bodies and wonder about the way spatially remote objects may participate in the 

process. One answer is that the mere possession of the mass by two spaced objects 

triggers a gravitational process, in which objects move to close the gap. While many 

readers may be doubtful of the description and find it somehow unbelievable, it is 

noteworthy that these readers share the same doubts with the developer of an influential 
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theory of gravitation, Isaac Newton, regarding his own discoveries. Based on some 

accounts, it was Newton’s skepticism about the feasibility of such simple code that 

motivated him to introduce force, as an intermediate theoretical construct, which did 

provide a more believable code for the process. Either way, the code for the process of 

gravitation is stored in each and every particle of both celestial bodies in the form of the 

physicochemical arrangements we may simply come to label as mass.  

In another example, we may inquire about the code, according to which some 

objects look red-colored to us.  While one may be content with a general description of 

the code for the color property and attribute it to the specifics of the physicochemical 

arrangements of the particles of the colored object, another may remain skeptical of the 

description and enquires about the details of the arrangement. To find the details, we need 

to learn about the underlying process resulting in the overlying feature. The learning, 

among other things, requires the development of novel hard means enabling us to sense 

the participating objects and to conceive their attributes. Such process, may result in 

characterizing the arrangement in terms of the wavelength and the intensity of the lights 

emanating from the colored-object.  

The skeptic may accept the presence of the delineated arrangement, but ask why 

the light coming from the object has such wavelength. Even though the skeptic’s inquiry 

may seem to be about the “why” of the influencing features, further explanation may be 

provided by answering “how” the influencing features come to possess their current 

arrangements. In other words, we need to undercover one more layer and learn about a 

deeper process resulting in the target intensity and wavelength of the light. By conducting 
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more research, we may find out that light’s features are determined in a process, where 

emission spectra and light absorption of the surface of the colored object come to play. 

The unimpressed skeptic, can pose another why question and send us to conduct 

another inquiry resulting in the discovery of subatomic particles termed quarks and in the 

introduction of quark’s properties as determinants of the deeper arrangements within the 

colored object. In any case, the code of the process is partly captured by the 

physicochemical arrangements of the object we may simply come to label as color 

properties. 

 Tower of Physical Processes  

The chain of investigations we conducted to find the code for colored appearing 

process can be used as a prototype for framing other enquiries aimed at discovering the 

code for other attributes of the objects. One lesson we learned is the endless nature of 

such enquiries, where each discovery can entice us to ask another why question and 

motivates us to find another how answer; though, at a deeper level. To capture this 

endless nature, I sketched a visual schema (Figure 2.3), in which a series of processes 

stack up to eventually produce the target attribute perceivable to us. The processual 

tower, as an imagery of the concept, differs from a physical tower in that the first is being 

developed from top to bottom and the second is being constructed from the bottom up.  
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Figure 2.3. A sketch of non-ending tower of physical process, resulting in an apparent 

feature perceivable to humans 

A pragmatist, after conceiving the notion depicted by non-ending tower of 

processes, may seek to find where, if any, she/he can abort the investigation and declare 

sufficiency for her/his practical purposes. Fortunately, the answer could be positive, 

depending on (1) the precision of our processual knowledge at levels above a specific 

height along the tower, and on (2) our sensory access to the state of the objects 
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participating in processes higher than the specific height. The two conditions for 

investigative sufficiency are the resultants of the goals the pragmatists may possibly 

pursue. The goals could either be (a) the prediction of the appearance of overlying 

objects, as they might influence the outcome of another process, or (b) the alteration of 

the overlying appearance by manipulation of the features of the intermediate objects.  

The degree to which the pragmatist could achieve her/his aims depends on the 

degree to which her/his processual and sensual knowledge is available and precise. If the 

current knowledge above a specific level enables determination of the overlying feature 

for any to-be-generated token, the pragmatist is good to go and can stop further inquiry; 

otherwise, she/he needs to go deeper. The level of determinacy of processual and sensual 

knowledge can be analogically described as the tightness of the grasp over the tower. As 

soon as one could hold a tight grip on the tower, she/he gains predictive and (potentially) 

manipulative power over the process. The tight grip, in statistical language, translates into 

a perfect correlation between the features of the intermediate object, at a given level of 

the tower, and the features of the appearing objects. 

 Processual Interpretation of Tokens and Types 

My answer to the philosophical question regarding the ontology of universal 

categories; e.g. objects, properties, or relationships; can also be used to give an account of 

the distinction between a type and its tokens. If so, the claim that every universal 

category is out there in the world in the form of a processual code, can be used to 

elucidate the type-token distinction.  
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Tokens, can be defined in terms of the process generating them. At every 

occasion, when the code of a process is being activated, the same token does come to 

realization. The term “same” exclusively refers to common non-spaciotemporal aspects 

of instances; otherwise, each token is a distinct, at least because of the difference between 

the time (and potentially the location) of its generation, compared to other instances. 

Thus, in a more precise labeling approach toward the inter-relation among tokens, we 

may label tokens “similar” and correspond the similarity with the “same” non-

spaciotemporal features, which they share.    

While the concept of type can be similarly elucidated in terms of a generative 

process, we may first discuss an alternative definition of a type, based on its tokens. The 

discussion matters not only because of practical concerns, as the extensional account of 

types are commonly employed in science and engineering, but because of 

epistemological concerns, as many theories in mathematics including mathematical 

statistics are founded on such conception.     

A type, in an extensional account, is defined as the set of its tokens. It is possible 

to use the shared feature as the basis of relating a number of tokens, and to form an 

extensionally defined set, i.e. by enlisting its members and specifying the extent of the 

set. However, such a finite set, my not be labeled as the type of the tokens and could only 

be considered a finite sample of tokens. A set that could be more intimately associated 

with the concept of the type, is the imaginary set containing each and every token 

generated in the past, along with the ones, yet to-be-generated in the future. The 

challenge with such an infinite set is its abstractness, as we can only access a finite subset 
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of already-generated tokens, which have become accessible to us. Nevertheless, one 

wonders how accepting an abstract set as the definition of a type differs from considering 

type as an abstract entity inaccessible to us. In other words, gathering tokens in a set, 

either a finite sample or an infinite unavailable population, does little in explaining how 

the tokens are related to the type.  

To identify a type, I suggest that we forgo the temptation of giving an extensive 

definition and instead, identify it with the “typical code,” according to which tokens 

come to realization. After discovering the code, the type is completely defined and the 

record of the realized tokens could be considered as a mere tally of historical events, 

differing only in terms of their spaciotemporal positions. 

 Processual Codes; General vs Detailed Descriptions 

A philosophical theory of type may only marginally help in offering the details of 

the code for a specific type. In fact, any general philosophical theory, including the one I 

have put forward, can only present the nature of types from a very broad and general 

perspective. The code for every specific type is initially hidden and can only be 

discovered through contextual inquiries, where we use all sorts of material and mental 

means, to form a body of knowledge termed natural philosophy, in earlier times, or 

science, in modern times. In fact, the constant expansion of scientific knowledge is the 

result of mankind’s effort to decode more of specific types. 

A processual code for a certain type (of object, property, or relation), at any point 

in time, may only be partially available, regardless of the amount of efforts made to 
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develop the natural philosophy of that type. For many contextual types, our collective 

knowledge is partial and imprecise and can yield correct predictions of the state of a 

fraction of to-be-generated tokens. Besides, we have the tendency of trying to establish 

meaningful connection among an ever-larger number of contextual types, and to form 

more comprehensive and less contextual types. Due to the desire and will for perfecting 

and generalizing the natural philosophy, the descriptions of the typical codes we see as 

plausible changes along the time; mostly in an evolutionary fashion and sometimes in a 

revolutionary manner. Since my aim here is not to develop a philosophy of science, I 

leave it here by emphasizing that postulating a universal code for types, which follows a 

metaphysical belief in causality, does not imply that we do or will have the code for a 

certain type. 

 Philosophical Processualism; A Pluralist Perspective 

    My proposal that every universal property is out there in the world in the form 

of a processual code enabling the generation of its tokens, may seem inconsistent with 

my main thesis that concepts are inside the mind and not out there in the world. The 

apparent inconsistency, may also be perceived due to the contentions of the philosophical 

schools of thoughts historically advocating various elements of my position. While the 

claim that universals and types do exist makes me a realist, the assertion of universals’ 

being out there in the world and not in an abstract realm, makes me an Aristotelian realist 

and in opposition to Platonist realists; however, the assertion that we understand the 

worlds available to us only by means of our concepts, seems to make me a conceptualist. 
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Nonetheless, I will demonstrate how it is possible to hold the mentalistic thesis without 

compromising the conception of the processual code. In fact, I will use the concept of the 

generative code, not only to support the mentalism of concepts, but also to elaborate on 

necessary conditions for a shared perception, when an external referent may result in the 

formation of similar perceptions across a population of minds.   

A process-centered perspective can be employed to further support the idea of 

taking concepts as mental entities. The support may be more if we first clarify the case 

for perceptual concepts, which are meant to represent things in the physical world rather 

than the worlds of human imagination. The elaboration strategy will be similar to the 2-

step analysis I gave for the age-old philosophical conundrum of universals. In the first 

step, I use the type vs token distinction and consider a percept generated in an 

individual’s mind as a token of the corresponding perceptual type; and in the second step, 

I introduce the generative process with the ability to produce the target perceptual tokens. 

My take on tokens can be used to explain the realized objects of cognition. Taking 

an instance perception as a token means that at every occasion, when the person is being 

exposed to the same external stimuli, the same mental representation is being formed in 

her/his mind. The term “same,” as I clarified before, refers to the aspects of 

representation associated with non-spaciotemporal features shared among the external 

stimuli.    

Likewise, my account of types can be employed to elucidate the concept of 

cognitive universals. The goal is to explain what makes humans to have the same 

perception of the same external stimuli emanated at a variety of spaciotemporal positions, 
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assuming the phenomenon does occur. While a universal sensory experience can be 

ascribed to the presence of a typical code, the challenge is to introduce the generative 

process, which uses the typical code to generate the experiences. More specifically, we 

must clarify whether the generative process is out in the world, as Aristotelian realists 

claim, or is inside the mind of the experiencer, as conceptualists claim; and if the latter 

one, we must answer whose mind is the place for the process. 

 Universals as Outcomes of Multi-World Processes 

I propose that the process resulting in the realization of percepts is a two-world 

serial process, the first one in the physical world outside human mind and the second 

inside human mind. It follows that the percept’s processual code is a composition of two 

codes, one for the tower of physical processes and the other for perception process. 

Figure 2.4  illustrates the sequence of processes, which eventually yield a percept at one’s 

mind. 

 

Figure 2.4. A sketch of the sequences of multi-world processes involved in formation of a 

perception 

The multi-world account of universal percepts is in contrast with the positions of 

both Aristotelian realists, who believe that types are out there in the world independent of 
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our minds, and conceptualists, who believed that universals do not exist outside of the 

perceiving mind. The position of the multi-world account is that even though we may 

hypothesize the existence of universals without perceiving them, both existence of 

universals and their qualitative specifics, as percepts, depend on our minds. Every 

universal does exist because of the uniformity of its pertinent typical codes, one in the 

non-mental world and the other in the mental world; without each, the universal would 

cease to exist.  

The feasibility and the utility of developing perspectives that exclude human mind 

from their accounts of universals, is questionable. Such theories, may need to explain the 

feasibility of their imaginary conditions, and to elaborate who and how has come to be 

aware of the existence of universals. Is development of a form of awareness regarding 

universals possible, without the presence of a subject? If not, and the existence of a 

subject is necessary for obtaining the information concerning the presence of the 

property, how the subject can obtain such information? Until we answer the how-

questions about the feasibility and the specifics, the imaginary scenarios and their 

potential answers may negligibly expand our understanding. Responding to the later 

questions requires theoretical development of the kind we are pursuing in our process-

centered account, and may possibly result in constructs similar to ours.  

Ignoring the role of the mind by philosophical theories may root in some implicit 

assumptions the theorists are making. It appears that the development of such 

perspectives; which are very common across a wide range of human inquiries; is only 

possible because (1) we, in the first place, have come to be aware of our environment the 
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way we do, and (2) we implicitly assume that our way of perceiving the world is the 

default and is ubiquitous. To me, the label “made in human universe” is invisibly 

stamped all over our hypotheses, and I see it impossible to form any understanding, let 

alone a hypothesis, outside “human universe.”  

 Dependence of Universals on Cognitive Processes 

The dependence of the universals on our minds, both in terms of their existence 

and their qualitative specifics, can be illustrated by an example. Let’s consider the 

conceptual category of properties (of objects) and focus on the much-discussed property 

of color. A textbook introduction to the philosophical problem of universals goes like 

this: we see distinct and different objects, who are all red-colored.  Is there any such thing 

as redness aside from red-colored objects?  To answer this question and other questions 

of the kind, philosophers have developed their opposing theories of universals, including 

the process-centered account I elaborated above. Since we have already provided a 

number of answers to the question, I suggest we put the assumptions implicit in the 

framing of the problem under scrutiny, and ask whether it is possible for a red-colored 

object not to be red, at all? And if so, how? My answer, is a surprising yes!   

In general, every entity (either an object, a property, or a relation) does only exist 

FOR subjects, who are able to recognize the entity as such. For the case of the color 

property, an object could only be red-colored TO the subject with the abilities of (a) 

sensing the color property, in general, and (b) the red color, in specific; for subjects 

without the ability (a) the object is not colored at all, and for subjects with the ability (a), 



 

43 
 

 

but without the ability (b) the object is colored, but not red. The proposal, can be further 

demonstrated with a review of color-perception abilities of a number of other animals. 

While a kind of fish named skate lacks ability (a) and only sees in black and white, dogs 

do have abilities (a) and (b), but with a limited extent compared to those of humans; for 

dogs, a red-colored object may look like what humans perceive as greyish brown to light 

black. In contrast, most birds not only have the ability (a), but have a stronger ability (b), 

and unlike humans, are able to differentiate between various shades of red, rather than 

bunching a wide red spectrum into a single type. 

Characterizing alternative perception mechanisms and the resulting differences 

between their generated percepts, may turn out to be a difficult task, if not impossible. In 

the above example, we reviewed how dogs may see a red-colored object like what we see 

as greyish brown to light black. One may ask about the reason for our imprecise 

knowledge of the doggy perception and for ascribing a spectrum of colors to the outcome 

of a perceptive process, less discriminating than ours.  

A simple explanation, could be given by reviewing the visual schemas in Figure 

2.1 and Figure 2.4, illustrating the two sub-processes involved in perception, namely 

sensing and modeling. Since sensing abilities are closely related to the physical construct 

of sensors; hard devices used to receive external stimuli; it is possible to analyze sensors 

at the service of dogs, and to compare them with those of humans. The comparison 

reveals that in contrast to humans whose eyes are equipped with three types of cones to 

sense the three colors of blue, green, and red, dogs’ eyes are only equipped with two 

types of cones to sense the colors of blue and green. The observed hard difference, 
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however, is not sufficient in answering the posed question, as percepts are the product of 

a joint process between hard sensors and soft modelers. Eventually, it is the specifics of 

the soft modeler, i.e. its typical code, that determines how the outcoming percept would 

looks like to the perceiving mind. So, to find out how an object, perceived by humans as 

red-colored, looks like to a dog, you have to be a dog! 

 Processual Uniformity Hypothesis 

    Considering an entity (either an object, a property, or a relation) as a universal, 

relies on two processual uniformity assumptions, one non-mental and the other mental. 

While uniformity of a non-mental process captures the belief that numerous activations of 

a process under similar non-spaciotemporal conditions, consistently yields the same 

outcome, uniformity of a mental process captures the belief that when the subjects are 

being exposed to the same signals, they interpret them in a similar fashion. 

The universality of percepts among humans, must not to be considered a natural 

law, but a physical hypothesis, whose validity ultimately depends on the (potential) 

existence and the specifics of the differences among percepts formed in the minds of 

humans. When perceptual universality is being used as a postulate in theories aimed at 

predicting perception-dependent changes in the behavior of subjects, the outcoming 

predictions must be examined and adjusted for deviations from the universality. 

However, the more realistic theories are those, who allow deviations from the 

universality and take effect of the deviations on predictions into account. 
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 Worldviews; a Cognitive Explanation  

Every philosophical account of universals, including ours, depends on the 

perspective, according to which it has been developed. The term perspective is used to 

indicate that the differences among the answers provided by various accounts, is not only 

due to methodical differences, but mainly due to their diverging worldviews. The 

simplest approach to worldviews is a descriptive one, either by giving an exclusive 

portrayal of one view; such as one I have presented for the processual perspective; or by 

comparing diverging views and highlighting the similarities and differences among their 

positions; such as one presented in philosophy textbooks, handbooks, and encyclopedic 

entries. Nevertheless, the main scholarly challenge may not be in giving descriptions, but 

in developing explanations about the reason for the divergence of worldviews among the 

brightest human minds, who have tried to make a broad sense of the world they are living 

in. Below, I try to take a small step and offer a hypothesis aimed at explaining some of 

the underlying reasonings for divergence among views toward universals.  

I suggest that we take each worldview as a distinct cognitive perspective. If so, a 

process-oriented account of realizations may be able to explain the divergence of 

worldviews by hypothesizing the cognitive processes underlying various worldviews. In 

other words, different takes on universals is due to differences in the conceptions of the 

mental processes, whose outcomes are types.  
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 Example Explanation: Nominalism 

To illustrate the method, I take the nominalist position toward universals and I 

hypothesize a kind of cognitive process, which may result in development of the 

perspective. The reason for choosing nominalism is its striking position toward 

universals, which looks bizarre and preposterous to our common-sense minds. 

Nominalists, deny the existence of universals, neither in human minds, nor in the material 

world (outside human mind), or in the metaphysical realm of the abstract entities. A 

universal, nominalists assert, only exists as a name given by our minds to a set of 

empirically-observed tokens, and informs nothing typical beyond the similarity of tokens’ 

appearances. 

A nominalist position, I propose, may be the result of conceiving the types as the 

output of cognitive processes generated by, what I do label as, an “experiencing-

organizing mind,” which is able to process bodily experiences into percepts, and to 

organize the generated percepts into sets. When the mind is exposed to tokens with 

different appearances, its organizing abilities allows it to separate and group them into 

sets. Besides, an experiencing-organizing mind is capable of externally manifesting its 

internally created divisions by naming the sets and revealing them to other minds. The 

formation and the presentation of named groups is the basis of the nominalists’ claim that 

universals do not have an existence beyond those names. Figure 2.5 schematically 

illustrates the chain of processes resulting in the formation and presentation of a named 

group to the world apparent to humans. 
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Figure 2.5. A sketch of a possible nominalist conception of the processes generating a 

nominal type 

The nominalist denial of universals is possibly not due to their recognition of 

“experiencing-organizing mind,” but due to their lack of recognition of, what I do label 

as, “questioning-hypothesizing” mind. While the focus of an experiencing-organizing 
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mind is on forming organized description of observations, the focus of a questioning-

hypothesizing mind is on inquiring about the reasons for the similarity of the grouped 

tokens. By inquiring, the mind introduces the possibility for the existence of something 

beyond or beneath the observations, that is making the appearances similar. To find an 

answer to the inquiry, the mind needs not only to imagine the things beyond or beneath 

the observations, but also to hypothesize how the imagined objects and/or their properties 

are related to the appeared tokens. 

 Explaining Specific Types 

Nominalists may not supplant a general explicative-associative account of 

universals to their descriptive-collective account, due to the imaginary nature of general 

hypotheses. Even our processual account of universals and the concept of typical code 

may not sway nominalists in our direction, as it fails to provide what matters to 

nominalists. Since the nominalist position is being developed by focusing on the non-

hidden world of appearances, what may change their position is observations of different 

kinds than the ones provided by similar tokens. Such observations may be provided by a 

different kind of philosophy, natural philosophy, which focuses his resources to explain 

specific types and tries to supplements the soft means of a questioning-hypothesizing 

minds with the hard means of new devices. 

The new hard devices enable natural philosophers to look beyond or beneath the 

apparent tokens and to observe entities hidden to man’s default hard sensors. Observing 

previously hidden object and/or their properties, not only makes plausible the idea that 
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there is something beyond or beneath the apparent tokens, it also helps the hypothesizing 

mind to explain the realization of the apparent tokens by associating them with the 

previously hidden entities. While new experiences make it difficult for the nominalists to 

shrug the proposed association off as a mere imagination, he may soon come back to 

repeat his nominalist assertion, this time for the newly observed types, and claim that 

there is nothing beyond what has been observed to the point. To react, the natural 

philosopher has to embark on another inquiry and uncover one more level of the hidden 

tower of physical processes, with the hope of satiating the nominalist. However, one may 

wonder about the possibility of a positional change under any amount of new 

observations. Maybe, the nominalist is averse to believing in anything beneath or beyond 

observables!  

 Non-observed Entities 

My examination of the nominalist position on universals had motivations beyond 

offering a new analysis of the opposing positions on one the oldest and most abstract 

problems in philosophy. Such abstract debates, to me, are ubiquitous and are very similar 

to disputes on many unsettled foundational issues across a wide spectrum of fields in 

physical and social sciences, as if the “disagreement” itself is a (higher order) universal, 

relative to the (lower order) field-specific disputed universals. If such disagreements are 

taken to be instances of a universal, uncovering its typical code will illuminate the 

circumstances under which a token dispute will be introduced to a scholarly exchange.    
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I suggest that any hypothesis involving unobserved entities will generate a 

dispute, whose settlement would only be possible either by observing entities (or their 

associates), or by taking them as primitive entities. Thus, it might be tempting to remove 

all non-observed or non-postulated entities from our proposals and to make them 

undisputable. In fact, there was a movement among logical positivists in the 20th century 

to cleanse theoretical science and philosophy of such terms, which eventually faded with 

limited success.  

The inability to eliminate non-observed entities from hypothesized relationships 

could have a variety of reasons. For one thing, science and humanities contain so many 

proposals that include unobserved entities and reconstructing them needs enormous 

efforts beyond anyone’s abilities. For the other, there might not be an easy and clear way 

for the reconstruction of many theories, and if it were, each field’s experts would 

probably have done it before philosophers. Even when it is possible to drop non-

observables from the relationships among entities, their preservation is an indication of 

the theoretician’s belief regarding their existence and the role of the entities in making the 

relationship meaningful. While the hypothesis may turn out to false upon further 

discoveries, it is such works of imagination that may guide us to discover more about 

beneath or beyond! If we had limited ourselves to experiences, we would all be 

nominalists! 
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 Cognitive Explanation of Perspectival Opposition  

The cognitive approach we followed for analyzing the nominalist perspective can 

also be used to analyze other positions, including our processual perspective (Table 2.1). 

In the approach, the positions taken by the perspective are seen as the outcomes of a 

cognitive process, where the mind is conceived to plays a certain role due to the abilities 

ascribed to it. For the case of nominalism, the recognized mental faculties include 

experiencing, organizing, and labeling, and as a result, a nominalist-envisioned mind acts 

as a classifier and namer of the outside world. 

Orientation, I propose, is another property that, in combination with the perceived 

mental abilities, causes perspectives to have different positions toward universals. 

Orientation can be evaluated relative to either of the two references of (a) human mind, 

and/or (b) the apparent world, where (a) can be described as outward, inward, or both, 

and (b) can be described as within, beneath, and beyond. While orientation (a) reveals the 

theoretician’s awareness and recognition of the influence of cognitive processes on our 

knowledge, orientation (b) reveals theoretician’s psychological predispositions toward a 

suite of fundamental concepts including order, law, uniformity and truth.  

An outwardly orientation toward human mind indicates that the philosopher is 

either unaware of the relationship between one’s cognitive processes on her/his 

knowledge, or discounts it. In contrast, an inwardly orientation reveals the philosopher’s 

emphasize on the role of the mind in shaping human knowledge; in an analogy, she/he 

sees knowledge as a participant of an internal theater, directed by the mind. In between 

the two extreme positions, an inward-outward orientation recognizes (1) the significant 
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role of human cognition on the nature and the character of knowledge, as well as the role 

of the differences among individual cognitive processes on diversity of knowledge 

perspectives across human population.  

Most prominent perspectives including Aristotelian realism, Platonist realism, and 

even nominalism, embrace a mentally-outward orientation. Aristotelian realists see things 

as out there in the world and believes that humans can discover those things “as they 

are.” By not elaborating on the mechanisms enabling humans to understand things as they 

are, Aristotelian realists implicitly take the claimed epistemological ability as a 

metaphysical postulate.  

Also, the other major group of realists, the Platonists, see things as instances of 

the forms existing outside human mind, but also outside of the material world, and in a 

3rd non-spaciotemporal world. Platonists take even more metaphysical postulates than 

Aristotelian realists; not only they postulate the existence of a 3rd abstract realm, they also 

take connections between each of the two physical and mental worlds and the abstract 

world, as granted.  

Although the nominalists’ position that universals are only names in the mind and 

they do not exist in the physical or in the mental worlds, may appear to be mentally-

inward, their real position might be as mentally-outward as those of the realists’. While 

nominalist do not set the mind aside and ascribe minimal capabilities of organizing and 

naming it, their focus is all on observables in the material world. By denying anything 

beyond observables in the outside word, nominalists reveal their mentally-outward 

orientation, as well as their minimum reliance on implicit metaphysical postulates. 
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On the other side, conceptualists’ position is mentally-inward, as they see nothing 

but the mind and its processes, and as such, it leaves little to be justified by metaphysical 

postulates. While the full commitment of conceptualism to the mind, makes it an ideal 

foundation for fields such as cognitive science, social sciences, and humanities, where the 

phenomena are mainly shaped by the workings of the minds of humans. However, its 

mentalistic perspective hinders its contribution to physical sciences and engineering, 

where phenomena are commonly perceived to be shaped independently from the 

workings of the minds of humans. 

In between, is Philosophical Processualism, which does not focus on physical or 

mental worlds at the expense of the other, and sees them jointly from a more 

comprehensive perspective. Philosophical Processualism also resorts to few metaphysical 

postulates in establishing the relation between the two worlds, as it introduces a specific 

physical process through which, features of the outside world can be sensed and 

interpreted by the mind. Philosophical Processualism’s explicative sufficiency, one may 

argue, has become feasible due to contemporary advances in physical and cognitive 

sciences, which were unavailable to philosophers of the past. Regardless, the processual 

perspective, as we demonstrated, has more explicative power than perspectives of the 

past and can even explicate the conception of each past perspective, using known 

cognitive processes. Table 2.1 summarizes the features of Philosophical Processualism, 

in comparison with existing perspectives. 
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Table 2.1. Characteristics of Processual Perspective in comparison with other 

perspectives, in terms of perspectives’ prioritization of worlds, mind, and mental abilities   

 

Orientation toward the apparent world, is another kind of orientation causing 

mentally-outward perspectives to take different positions regarding universals. The 

orientation determines the perspective’s answer to the question whether there are hidden 

things connected to the apparent things, and if so, where are the hidden things? Since the 

only way to consider non-observed entities and their relationships is through human 

imagination, the answer to both questions require taking a metaphysical stance regarding 

the legitimacy and the quality of relating objects of human imagination to observed 

entities. 

I suggest, we interpret each stance in the light of its advocates psychological 

predispositions toward fundamental concepts including order, law, uniformity and truth. 

Perspective

Position on 

Existence of 

Universals

Place of 

Universals

Significant 

Worlds

Role of the 

mind

Emphasized Mental 

Abilities

Aristotelian 

Realism
Acceptance

External 

(material)

External 

(material)

Neutral 

Discoverer 

(of Outside)

Experiencing, Reasoning, 

Revisioning

Platonist Realism Acceptance

Third Realm 

(non-material 

and non-mental)

Third Realm 

(non-material 

and non-mental)

Connector to 

Third Realm

Reasoning, Accessing the 

third realm metaphysically

Conceptualism Acceptance Mental Mental

Director of a 

Mental 

Theater

Conceiving, Reasoning

Nominalism Denial

Nowhere    

(only as mental 

Names)

External and 

Mental

Classifier & 

Namer of 

Outside

Experiencing, Organizing, 

Labeling

Processualism Acceptance

Joint worlds 

(both external 

and mental)

External and 

Mental

Observer & 

Hypothesizer 

(of Outside 

& Inside)

Experiencing, Organizing, 

Questioning, 

Hypothesizing, Revisioning
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Without getting into the details of the suggestions, its general scheme can be constructed 

based on the following opposing ideas.  

Idea1: The only way for two ordered systems of associated entities, one inside 

human mind, and the other in the physical world, to exactly correspond each other is for 

both to correspond a model system, unaffected by each. In other words, both physical and 

mental systems must be copies of a source. 

Idea 2: The how of the correspondence between two systems does not matter. 

What it does matter is whether we can (someday) observe the correspondence between 

imagined and observed entities. 

Idea 3: We have to declare whatever, which has not been observed, as imaginary 

and unreal, at least for the time being.  

2.4 CONCEPTS; MANIFESTATION 

An external manifestation of the contents of one’s mind provides a way for others 

to become aware of the contents and act upon their awareness. The efficacy of the 

process in making other agents cognizant depends on their ability to perceive the external 

manifestation and to interpret the percept by associating it to a concept in their minds. 

Manifestation of the concepts can also be studies in terms of their effects on 

others’ conception of an individual action, where the act is a process that the purposive 

agent triggers and/or maintains to create new or to modify existing entities inside 

her/his/its mind or outside in the environment. If other cognizant agents assume that an 

individual’s action is dependent on the presence and the specifics of a set of concepts 

inside her/his/its mind, they can then associate the perceptual aspects of the action to 
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individual’s mental contents. In other words, the (manifested aspects of the) action 

becomes a symbol of the (hidden) concepts. The mental concepts associated with the 

action, can also assist others in providing an alternative account of the individual’s 

purpose, in which the motivation is explained in terms of the mental contents rather than 

the apparent environmental changes caused by the action.  

Manifestation of concepts in a community of agents can also become a means for 

collective actions aimed at pursuing common goals among the participants. Whether the 

goals be mental or environmental, the role of the manifestation is to facilitate the division 

of labor. When the common goal is to advance a cognitive process, the division is 

(entirely) cognitive, and when the goal is to advance a physical process, the division is 

partly physical and partly cognitive, as any action taken by purposive agents requires 

pertinent cognitive support.    

 Linguistic Manifestation 

The ability of community members to associate actions with concepts can be used 

by them to take certain actions for the pure purpose of sharing mental contents. Since in 

communicative processes, the taken acts are symbolic and provide nothing beyond 

perceivable manifestation of the concepts, the community members can come to develop 

a system of communication by entirely relying on a set of symbols; a language. 

A language can be defined as a conventional system of perceivable symbols used 

by community members as a means of communication. Since percepts can be created 

through external stimuli of various kinds, linguistic symbols can be in auditory, visual, or 
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kinesthetic formats. For example, natural human languages, which are by default in 

auditory format, have also been presented in other formats, e.g. visual form of written 

languages and sign languages, or kinesthetic form of braille language. 

Development of a language adds a third world of linguistic expressions to the two 

worlds of physical entities outside human mind and of cognitive entities inside human 

mind, whose relationships could be investigated. Since some aspects of the relationship 

between physical and mental entities were being studied before, I focus the attention on 

the connection between mental entities and their linguistic expressions, and examine how 

they can be translated into another. The term “translation” indicates the directionality of 

the relationship, where the processes involved in converting meaning into a linguistic 

form have to do the opposite of the processes converting the linguistic expressions into 

entities comprehensible for the mind. Figure 2.6 gives a visual depiction of the 

manifestation processes, where a mind reveals its meaningful contents by encoding it into 

linguistic expressions, and the interpretation process, in which a mind converts linguistic 

forms into comprehensible concepts. 

 

Figure 2.6. Processes involved in the translation of mental entities to/from linguistic 

expressions   
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The translation processes illustrated in Figure 2.6, could be studied in a systematic 

fashion to provide detailed answers to two different “how questions;” (1) how to form 

linguistic expressions, and (2) how to interpret meaning. Table 2.2 summarizes a 

comparison between the two, in which the contents of the mind is labeled as thought and 

eternalized expressions as language. The distinguishing features of the two worlds, 

according to Table 2.2, is the latency of mental contents and the symbolism of linguistic 

manifestations. While different labels may be used for the unit of mental contents, my 

preference for the word “concept” is to emphasize the cognitive dimension of knowledge 

in processualism, and to contrast it with other perspectives, where one may choose the 

label “referent” to ignore the role of the mind when denoting things in the outside world, 

for the case of Aristotelian realists, or when denoting imaginary things inside the mind, 

for the case of Platonists. 

Table 2.2. Characteristics of mental contents in comparison with their linguistic 

manifestations  

 

I propose to take conventional acquaintance as a necessary condition for the 

translation of cognitive contents to and from linguistic expressions. The necessity can be 

explained based on the latency of mental contents and the symbolism of linguistic 

Feature Unit

Other 

Unit 

Labels

Linguistic 

Study 

Discipline

Study Subject

Thought Hidden Concept Referent
Semantics, 

Pragmatics
Meaning

Language Apparent Symbol

Signifier, 

Denotation, 

Name

Phonology, 

Morphology, 

Syntax

(Apppearance 

of) Formation
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manifestations. The only way for the use of a purely symbolic form as a means for 

communicating a concept among individuals is for the participants to agree on the 

representativeness of the symbol. If so, for a new member of a linguistic community to 

generate expressions understandable to other members, she/he has to embark on a 

convention learning process and to learn how others linguistically refer to a concept.  

Being exposed to a linguistic community may also assists the individual to use 

her/his mental faculties to acquire new concepts, which were otherwise unavailable to 

him/her. Although the mental faculties of an experiencing-organizing mind suffice for the 

purpose of learning the name of the concepts already present in her/his mind, developing 

new concepts by reliance on linguistic expressions requires additional faculties available 

to questioning-hypothesizing mind. Upon encountering a new symbolic form, a 

questioning mind wonders whether the form is content-less or is a lexical concept, i.e. a 

linguistic expression of a concept; and to find an answer, the mind enters an investigation 

process to form a hypothesis regarding the meaning of the term. 

Concept acquisition may be facilitated and accelerated through the use of 

language. Generally, a new concept may be acquired through a set of processes, 

collectively labeled as thinking, where the mind defines the new concept in terms of other 

(already existing) concepts and the specific way they are connected to each other. In 

other words, the new concept becomes a member of a conceptual system composed of 

concepts associated in certain ways. The development process can be enhanced by the 

use of language in two ways: (1) by associating labels rather than the concepts 

themselves, and (2) by using linguistic association rules that are partially content-
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independent, e.g. apply to all concepts of a conceptual category. The gained efficiency 

can be analogically explained by the ease of moving a set of handled containers, in 

comparison to those without handles. 

A conceptual system, as the outcome of a conceptual development process, can be 

visually imagined as a network of various connected entities, organized based on their 

types. Independent of the use of language in system’s formation process, the language 

can be used to name the imagined entities and to facilitate the communication. In an 

example system, whose concepts are of the fundamental categories of objects, properties, 

and relationships, the system can be defined based on two sets of organized associations; 

(1) objects related to each other in a hierarchical fashion based on their types, and (2) 

properties of each object related to properties of a subset of other objects. 

 Figure 2.7 gives a visual illustration of such exemplary conceptual system, in 

which the sketch on the left depicts the hierarchical relation between objects, and the 

sketch on the right depicts the relation between the attributes of the objects. One apparent 

difference between the right and the left depictions is the larger number of connections 

between properties of the objects than those between the objects. The intuitive reason I 

may offer for the presence of direct relation among properties of indirectly connected 

objects is that direct connection between objects not only cause some of their properties 

to depend on each other, but also cause the properties of other objects connected through 

them to depend. While it could be the case that the relation between properties of directly 

connected objects might capture the relation between attributes of indirectly connected 
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objects, the emphasis on depicting the relation may be due to the need for defining one 

attribute based on the other.         

 

Figure 2.7. A visual representation of a linguistic system; Left: associations between 

token objects of three different types, Right: associations between objects’ properties   

A natural human language can be used to express meaningful systems of various 

degrees of perceivability, in which the degree indicates the relation between the number 

of perceivable entities to the imaginary ones. The meaningfulness of the system does not 

depend on its degree of perceivability and on the presence of the imaginary entities, but 

on the mind’s ability to associate every entity with a mental content; e.g. when the mind 

can imagine an imaginary entity, it feels as if the linguistic expression is meaningful. In 

other words, meaningful entities could be perceivable and/or conceivable, depending on 

the degree to which the mind relies on sensory means for comprehending them.  

Since meanings are in the minds of individuals, a fundamental question is whether 

the conceived meaning of an entity in a subject’s mind is the same as the meaning 

conceived in another subject’s mind. The question, reframed within the modern context 

of objectivity and subjectivity, is whether a subjectively conceived entity can be 
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objective, or at least possess some objective aspects? And if so, how can we assess the 

objectiveness of the subjectively imagined concepts? 

I propose a communal verification-based account of conceptual objectivity, in 

which a conceived entity by members of a community is considered to be objective, if the 

subjects consistently deliver similar manifestations of the concept in any number of 

agreed-upon verification processes. While the stated operational definition gives a way 

for assessing conceptual objectivity, it does not offer a method to community members 

for ensuring the objectivity of their conceptions. The assurance can be provided by 

processual homogeneity, where using the same processual codes for (a) the conception 

and (b) the manifestation results in the similarity of the generated concepts and their 

manifestations. However, due to the frequent observations of natural variabilities among 

biological agents, it is realistic to assume conceptual heterogeneity across a community 

and to focus on finding ways for facilitating processual assimilation. 

Processual assimilation can be pursued by capitalization on the learning abilities 

of the subjects and by providing them with instructions on how to to create and/or with 

feedbacks on how to modify their concepts. The nature and the extent of instructions 

and/or feedbacks depend on the degree of perceivability of the target entity, where less 

perceivable entities are in need of more extensive training. To simplify exemplification, I 

offer two distinct cases: (a) an entity of high perceivability, and (b) an entity of low 

perceivability, and demonstrate the differences between the extents of the instruction and 

the verification process for each case. 
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Consider (a); the process of imagining a red-colored entity by subjects across a 

community, and the task of assimilating the imagined perceptual concepts by conforming 

them to an agreed-upon perception, in which the color has a certain hue. The instruction 

and verification programs could be as simple as training subjects by presenting them with 

different shades of red and specifying the target hue, and verifying the correctness of the 

subjects’ imagination by asking them to identify the agreed-upon hue among the shades 

in a color wheel. Further instructions in the form of offering distinct names for varying 

shades of red may assist subjects to sharpen and expand their visual imagination and 

linguistic manifestation capabilities. 

Consider (b); the process of conceiving an imaginary entity, e.g. the number three 

hundred twenty-seven billion, by subjects across a community, and the task of 

assimilating the imagined concepts by conforming them to an agreed-upon conception, 

who possess certain properties. An instructional program can provide subjects with 

recipes on how to construct such an imaginary object, and the objects of the same kind, as 

well as recipes on how to relate such imaginary objects to each other. As a result of 

participating in the program, the subjects become able to consider the intended imaginary 

entity in their minds and reveal the compliance of their conception by manifesting it 

through a certain linguistic description, e.g. “327,000,000,000.” 

The above example, may cause a nominalist to raise the objection that conceiving 

an imaginary entity is nothing but introducing a name without any contents, and such 

entity is essentially meaningless. In specific, the nominalist can claim that manifestation 

of the number “three hundred twenty-seven billion” as “327,000,000,000” is just a formal 
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transformation, where a symbolic form, defined in a natural human language, is 

translated to another form, defined in a numeral system such as Hindu-Arabic. In fact, the 

nominalists’ claim is likely to be true, when the imaginary object is property-less or 

isolated! 

I assert that the significance of an imaginary entity is not due to its name, but due 

(a) to its properties, (b) to its relations with other entities and/or their properties, and (c) 

to its participation in certain processes. Similar to physical objects, who have multitude 

of properties and are related to each other, imaginary objects can also possess different 

properties and be associated with other non-physical objects. In either case, the 

conceptions of a system, either of physical or of imaginary entities, can be linguistically 

described, such the example visually illustrated in Figure 2.7.  

While conceiving a property-less or isolated imaginary entity might be nothing 

but a name assignment, conceiving a property-possessing, and/or other-connecting, 

and/or process-participating is about exploration of properties, relations, and processes. 

Nevertheless, the name of an imaginary entities could be assigned based on properties it 

possesses, the relations it does have, or the processes it participates. I claim that 

imaginary entities called numbers are single-property beings, i.e. their values, and are 

named accordingly. However, each number is connected to infinite other numbers 

through their values; for instance, the natural number (with the value of) 327,000,000,000 

is related to both its preceding natural number, 326,999,999,999 and the number 1, and 

their relationship can be expressed as 327,000,000,000 = 326, 999,999,999 + 1.  
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The systemic nature of an imaginary entity not only makes the entity 

multifaceted, but also does the evaluation of the objectivity for its conception by subjects, 

as the entity can be described and assessed in terms of its relation with many other 

entities in the system. As a result, the accordance of the linguistic manifestation of the 

conception by a subject with an agreed-upon form, may only provide a partial verification 

of the concept’s normal compliance. For instance, a multifaceted verification program 

may reveal the objectivity of a subject’s conception of the number 327,000,000,000 in 

some regards, e.g. the name or the value property, and its non-compliance in other 

aspects, e.g. value relations.  

I suggest that an imaginary entity may have a meaning beyond what is bestowed 

by the systems it belongs to, and that imaginary systems are not semantically self-reliant. 

The idea is that in every imaginary development project, the properties its imaginary 

entities do possess, the relationships they are in, and the processes they participate in, can 

be traced back to a set of percepts and/or to cognitive processes, who have perceptive 

roots. In another words, imaginary properties, relationships, and processes are all 

“grounded,” and are either abstracted from or analogous to perceivable realities; and so, a 

subject who cannot perceive, would not conceive! 

The thesis of the perceptual roots of imaginary constructs can be illustrated 

through an example. Consider the imaginary number 327,000,000,000, and see if we can 

uncover some of its perceptual origins through investigating the number’s properties 

and/or the relationships it does have with other numbers and their properties. Since 

numbers are single-property imaginary entities and are named according to their value 
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property, an uncovering strategy could be tracking the relationship between property 

value of 327,000,000,000 and the property values of other numbers associated with it. A 

promising association to investigate is the recursive relationship between the value of a 

number, its preceding natural number, and the number one; here 327,000,000,000 = 326, 

999,999,999 + 1. Since the preceding number is also in a recursive relation with its own 

preceding number, and so on, the value of the number 327,000,000,000 is in relation 

(2-1) with so many repetitions of the number valued as one. 

  

327,000,000,000 = ∑ 𝟏

327,000,000,000

𝒊=𝟏

 
(2-1) 

The meaning of any other natural number, following an analogous approach, can 

be tied to the meaning of the three concepts of (a) the number with value property one, 

(b) the equality (of an apparent feature), and (c) repetition (of the objects with the same 

feature). The number one, I propose, is grounded in our ability to perceive objects as 

distinct wholes, who are separate from other objects. The concept of equality is grounded 

in our ability to perceive a certain property in a variety of objects and our inability to 

further differentiate between the specifics of our perceptions; e.g. perceiving two red-

colored objects as having the same red shade. The concept of repetition, which is closely 

associated to the concept of equality, is rooted in both our ability to compare objects in 

terms of their certain properties, and our life experiences of finding objects with similar 

appearances, whom we cannot differentiate; e.g. identical twins. 

Set is another fundamental imaginary concept, whose perceptual roots may be 

simply explained by our ability to distinguish entities from another. However, further 
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grounding must be presented for the formation of two distinct types of sets: finite, and 

infinite. While the concept of finite set is grounded in the limits of our perceptual abilities 

and opportunities, including our attentional resources, the concept of infinite set is rooted 

in the limitless ability of typical codes in generating tokens.  

Finite sets can be easily understood from an empirical perspective and be 

attributed to one’s simultaneous awareness and ignorance of the things outside her/his 

mind. Both awareness and ignorance can have a natural character, due to the presence (or 

lack thereof) of our abilities to cognize certain types of things and our opportunities to 

conceive tokens of the types within our spaciotemporal limits. Besides, the ignorance 

could also be intentional and a result of the willful choice of allocating our attentional 

resources, where we deliberately ignore entities possessing or lacking certain properties.   

In contrast to finite sets, who we can be understood intuitively and on the basis of 

material limitations, infinite sets are anathema to any empirical tenet and can only be 

understood from a processual perspective. I propose to take an infinite set as the 

collection of all entities that can be potentially generated by a certain processual code, 

where the realization of the potential does not depend on the code itself, but on the 

material requirements necessary for the implementation of the code. Consequently, when 

the code for an imaginary process is available to us, we can generate any of its outcomes 

(almost) at will, given that we have provided enough material power to keep our code-

containing minds up and running.  

For example, by having the recursive code for the generation of natural numbers, 

we can imagine 327,000,000,000, as the number whose property value is 326, 
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999,999,999 more than the number valued as one. Our ability to imagine the target entity 

has little to do with the fact that we may have never conceived it before, and is due to our 

access to the processual code that can generate the entity. To generalize from the 

example, we can interpret the claim that the set of natural numbers is infinite as a 

statement about the recursive code, which allows the generation of any imaginary number 

based on its value difference with the number one. 

 The generation of the (conception of) outcomes can be extended to physical 

processes, whose codes we have imagined and translated into one of our imaginary 

languages. In fact, a prediction of a future event in the outside world seems to be the 

result of us running a mental simulation of the corresponding processual code under some 

presumed conditions. For example, by having the codes for the orbital movements of the 

planets in the solar system, and assuming that the codes remains unchanged into the 

future, we may predict the relative positions of the planets in 327,000,000,000 years from 

now. Again, what seems to be limitless is not the reality itself, but is our ability to 

imagine the reality to be such! 

2.5 CONCEPTUAL CATEGORIES 

Concepts may be distinguished by their features and those with common features 

can be grouped into common concept types. The process of typification can be continued 

to form hierarchies of more general types, which include more concepts but are 

characterized by less common features. The set of most general distinct types of concepts 

can be labeled as conceptual/semantic categories, where a category specifies the broadest 

feature type for cognizable things under the category. Since antiquity, when Aristotle first 
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introduced categories; though for the contents of the linguistic expressions rather than the 

thoughts (behind them); prominent philosophers including Kant and Husserl, have come 

to introduce their list of semantic and/or syntactic categories. Because my goal here is to 

provide just enough of background knowledge needed to support the fundamental 

categories I intend to present, especially the category of processes, I abstain from going 

through the details of the categories conceived by other philosophers. The interested 

readers can consult the wealth of reviews and analysis presented by modern scholars of 

philosophy. A number of such discussions are cited in the reference section of the script. 

The set of categories I conceive as fundamental include the three categories of (1) 

objects, (2) properties, and (3) relationships. A number of concrete examples for each 

conceptual category includes a celestial body or a biological species as objects, color or 

mass as properties of objects, and mutual gravitation of masses or dependence of buyers’ 

demand on the market price of a commodity as relationships (among properties of 

objects).  

While defining either of the three categories in terms of the other two may seem 

feasible, I, as a principle, do suggest to take these categories as both primitive and 

distinct. Humans, I postulate, are able to cognize things as wholes, and in addition, are 

able to understand attributes objects may have, as “aspects” of the whole. The distinction 

between an object and its properties implicitly assume that we may not be able to present 

a precise definition of an object by enlisting those of its properties, which we have come 

to be aware of them. My assumption is in line with the fundamental postulate of Gestalt 

psychology, asserting that the totality of an object is different and more than the sum of 
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its parts. The postulate is empirically supported for the case of perceptual concepts by 

observations indicating organisms’ tendency to perceive entire patterns and 

configurations rather than pieces.  

The totality postulate, nevertheless, seems somehow unreasonable. The counter 

intuitiveness of the postulate, I believe, arises from an implicit comparison of mental 

processes with physical ones, where belief in causality entails that things cannot come to 

existence out of nowhere and the components of a whole must come from somewhere.  In 

other words, physical generative processes are of analytics and/or synthetic nature, and 

are governed by the laws of conservation.  

To solve the puzzle, we must explain how it is possible for the mind to insert 

things not sensed by bodily sensors. An explanation, I claim, lies in the complexity of 

perception process, where external stimuli must first be transformed to a readable format 

for the mind, Figure 2.1. Once transformed, any other format-compatible internal mental 

process, such as one labeled in Figure 2.1 as modeling process, can manipulate the 

intermediate representation to yield a new one. This way, a new object, e.g. a curve, can 

be superposed upon a set of existing objects, e.g. some points, to form a coherent whole 

containing starting objects.  

2.6 PHYSICAL PROCESSES 

An outcome of a physical process, as well as other components of the process 

including its trigger and circumstances, can be described by a number of aspects/ 

characteristics, where each aspect may take any of the possible states/ conditions. The 

(mechanics) of the process can be represented by the relationship between the 
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components of the process, summarized in a (set of postulated/ hypothesized) 

relationships between the characteristics describing these components. When the states, at 

which the initial and circumstantial aspects are, remain unchanged in subsequent runs of 

the process, it is expected that the states of the aspects characterizing the outcome also 

remain static. On the contrary, fluctuation in certain initial and circumstantial aspects of 

the process results in the variation in particular characteristics of the outcomes of the 

process. When the mechanics of the process and/or the pattern governing the fluctuations 

(in subsequent runs of the process) is unknown, the process is called a “random process.” 

 

Figure 2.8. A schematic diagram depicting a physical process, characterized by the 

trigger, circumstances, the process, and the outcome   

Material objects of the world can be characterized by the state of their various 

attributes and both, the objects and their attributes, are the outcomes of the physical 

process the objects have gone through. A physical process, in its general forms, can be 

described by the relationship governing the attributes characterizing the (the initial, the 

circumstantial, and the final) components of the process. A change in the process occurs 

when one (or more) aspect(s) of the (components of the) process shifts its current state to 
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another possible state. While a change in some aspects of the initial and circumstantial 

components may influence some aspects of the final outcome, it may not influence other 

aspects. 

Although knowing the (structural) relationships governing a process enables 

prediction of the changes caused in the attributes of the outcome given a change in initial 

and circumstantial attributes, it neither inform (1) the possible states each attribute can 

take, nor (2) the (natural) tendency to take some states more than the others in various 

runs of the process. However, if we know the answers to questions (1) and (2) for all 

attributes of the initial and circumstantial components of the process, in a quantitative 

format, we can answer the questions for the attributes of the final outcome. 

Quantitatively, the (structural) relationships governing the process are represented by a 

set of algebraic equations, and the (natural) tendency to discriminate among the states of 

the initial and circumstantial attributes is represented by the joint propensity distribution 

for the attributes. These two sets of equations, if combined, result in a (specific) joint 

propensity distribution for the attributes of the (final) outcome of the process. 

 

Figure 2.9. The multi-faceted nature of physical objects 
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An outcome of a physical process, as well as other components of the process 

including its trigger and circumstances, can be described by a number of aspects/ 

characteristics, where each aspect may take any of the possible states/ conditions. The 

(mechanics) of the process can be represented by the relationship between the 

components of the process, summarized in a (set of postulated/ hypothesized) 

relationships between the characteristics describing these components. When the states, at 

which the initial and circumstantial aspects are, remain unchanged in subsequent runs of 

the process, it is expected that the states of the aspects characterizing the outcome also 

remain static. On the contrary, fluctuation in certain initial and circumstantial aspects of 

the process results in the variation in particular characteristics of the outcomes of the 

process. When the mechanics of the process and/or the pattern governing the fluctuations 

(in subsequent runs of the process) is unknown, the process is called a “random process.” 

The outcomes of a physical process can have different characteristics, where each 

(character) can take a number of states.  

The real-world outcomes of a physical process can have different characteristics, 

where each (character) can take a number of states. If the realization of the various states 

of a character in the products of the subsequent runs of the process are unpredictable (in 

advance), given the existing level of knowledge, that aspect/ character of the process is 

random/ stochastic and the process can be called a random/ stochastic process. 

Describing (and labeling) the process as random only corresponds to the characters, 

whose states we are unable to predict. 
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 Quantitative Models of Physical Processes 

Material objects of the world can be characterized by the state of their various 

attributes and both, the objects and their attributes, are the outcomes of the physical 

process the objects have gone through. A physical process, in its general forms, can be 

described by the relationship governing the attributes characterizing the (the initial, the 

circumstantial, and the final) components of the process. A change in the process occurs 

when one (or more) aspect(s) of the (components of the) process shifts its current state to 

another possible state. While a change in some aspects of the initial and circumstantial 

components may influence some aspects of the final outcome, it may not influence other 

aspects. 

2.7 SUMMARY AND CONCLUSIONS 

 Brief Summary 

Philosophical Processualism is an original perspective advanced as the 

foundation for an epistemic machinery called pragmatic mathematics; a system of 

linguistically manifested mental constructs aimed at guiding purposive actions with 

precision. Philosophical Processualism relies upon a process-centered interpretation of 

causality, which sees an event as a constellation of changes made by a process in certain 

states of the world and/or the mind. By taking concept as the fundamental constituent of 

the purposive agents’ evaluation processes, the view presents its ontological account of 

concepts and elaborate on how concepts could look like, where they could be present, and 

how they could come to realization. Philosophical Processualism opposes Platonism by 
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asserting that every concept is the outcomes of cognitive processes unfolding in time and 

space and is not an abstract entity in the so-called third realm, to which mind can gain 

access through unknown metaphysical processes.  

 Conclusions 

The following conclusions can be made based on the contents of this chapter: 

• Philosophical Processualism is an original perspective advanced as the 

foundation for pragmatic mathematics; a system of linguistically 

manifested mental constructs aimed at guiding purposive actions with 

precision. 

• A process is a set of mechanisms that cause changes in a set of attributes 

of the objects involved. 

• If a machinery is intended to be copied and different copies are expected 

to yield consistent output, the implanted processes ought to be known and 

to be imitable. 

• Theorizing about cognitive mechanisms partly relies its external 

manifestations, as cognition and the resulting sense of meaningfulness 

occur inside the mind and are hidden from direct sensory observations. 

• The meaningfulness of a sensory experience does not come from the work 

of the sensors, but mostly from the work of the modelers, who do not only 

combine or rearrange sensory input, but also add things not present in 

input. 
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• The meaning has more to do with the output of (internally postulated) 

models than (externally received) data. 

• An Interpretation is the outcomes of a model. 

• Every concept is the outcomes of cognitive processes unfolding in time 

and space and is not an abstract entity in the so-called third realm, to 

which mind can gain access through unknown metaphysical processes. 

• Investigation of universals from an observational view yields a 

nominalists account, where a universal is seen as merely a name for the set 

of instances, who all share a common feature. 

• Each universal can be explained by a processual code containing the 

information on the specifics of objects and their properties, whose 

presence trigger and advance the process resulting in the exemplification 

of the universal phenomena. 

• Every exemplification of a universal property is the result of a single 

implementation of the pertinent processual code. 

• A processual tower is a visualization of a series of processes stack up to 

eventually produce a target attribute that is perceivable to us. 

• The code of a process is embedded in the material participants of the 

process and in the form of their physicochemical arrangements. Once all 

objects of certain characters take the appropriate spaciotemporal position 

relative to each other, the process commences according to the specifics of 

the objects’ physicochemical arrangements. 
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• Processual inquiries are potentially endless, as every observable event is 

the output of a (macro) process, whose input may come to be the output of 

another (micro) process, and so on.  

• The complete knowledge of the code for the macro process along with the 

ability to sense its input allows for the precise prediction of the observable 

event and makes the consideration of micro processes unnecessary for 

prediction purposes.  

• While the processual knowledge of the micro processes may not be of 

predictive value, it may facilitate processual manipulation such that a 

process delivers a desirable event.         

• The Processual inquiry can be visually depicted as going down a tower of 

physical processes, in which a series of processes stack up to eventually 

produce the observable attributes. Also, complete processual knowledge 

above a processual level, can be depicted as a tight grip around the tower, 

from that level above. 

• The extensional definition of a type, as the set of its tokens, is imprecise. 

While the finite set of observed tokens lacks sufficiency and can only be 

accepted as the definition for a sample (of tokens), the infinite set 

containing yet-to-be-generated tokens lacks accessibility due to the 

inclusion of entities without spaciotemporal specification.   

• Processual ontology of universals can be extended to elucidate type-token 

distinction, where a universal property can be taken as a type and its 
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realized instances as tokens. In other words, the type is being defined as a 

typical code. 

• A philosophical theory of types offers little about the specifics of certain 

processual codes, and the details can only be discovered through 

contextual scientific inquiries.  

• The availability of many detailed codes, at any point in time, is at best 

partial.  

• By applying the concept of processual code to the domain of the mind, 

cognitive universals and their cognitive exemplifications are being 

defined.  

• A process-centered perspective can demonstrate the consistency of the 

mentalism of concepts with the realism of universal physical phenomena. 

• Perception is a two-world serial process, the first one in the physical world 

outside human mind and the second inside human mind; thus, a percept’s 

processual code is the composition of two codes, one for the tower of 

physical processes and the other for the perception process. 

• The multi-world account of universal percepts is in contrast with the 

positions of both Aristotelian realists, who believe that types are out there 

in the world independent of our minds, and conceptualists, who believed 

that universals do not exist outside of the perceiving mind. 
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• The belief in the existence of every universal relies on the implicit 

assumption of the uniformity of its two non-mental and mental typical 

codes.  

• The universality of percepts among humans, must not to be considered a 

natural law, but a physical hypothesis, whose validity ultimately depends 

on the (potential) existence and the specifics of the differences among 

percepts formed in the minds of humans. 

• The divergence of positions among philosophical worldviews, may be 

explained by the differences in the cognitive processes they implicitly 

assume and rely upon. 

• Nominalists’ denial of universals is possibly not due to their recognition of 

the “experiencing-organizing mind,” but due to their lack of recognition 

of, “questioning-hypothesizing” mind 

• By remaining at the level of observations, nominalists ignore the 

possibility for the existence of entities beyond or beneath the perceived 

appearances. 

• Any hypothesis involving unobserved entities, is likely to generate a 

dispute, whose settlement would only be possible either by observing 

entities (or their associates), or by taking them as primitive entities. 

• The tempting idea of making scientific proposals undisputable by 

removing all non-observed or non-postulated entities is elusive; not only 

because of the limitations of resources for running such a huge project, but 
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due to losing the potential contribution of hypothetical entities to the 

advancement of human knowledge.  

• The orientation toward (a) human mind, and/or (b) the apparent world is 

also causing philosophical perspectives to diverge. (a) can be described as 

outward, inward, or both, and (b) can be described as within, beneath, and 

beyond. 

• Most prominent perspectives including Aristotelian realism, Platonist 

realism, and even nominalism, embrace a mentally-outward orientation, 

and only conceptualists’ position is mentally-inward. Philosophical 

Processualism is in-between, as it does not focus on physical or mental 

worlds at the expense of the other, and sees them jointly from a more 

comprehensive perspective. 

• A language adds a third world of linguistic expressions to the two worlds 

of physical entities outside human mind and of cognitive entities inside 

human mind, whose entities could be related by directional acts of 

translation. 

• Conventional acquaintance is a necessary condition for the translation of 

cognitive contents to and from linguistic expressions. 

• The proliferating role of language in development of conceptual systems 

are attributed to (1) the association of labels rather than the concepts 

themselves, and to (2) the application of linguistic association rules that 

are partially content-independent. The gained efficiency is being 
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analogically depicted by the ease of moving a set of handled containers, in 

comparison to those without handles. 

• The meaningfulness of a mixed system composed of perceivable and 

imaginary entities is not being influenced by its degree of perceivability, 

but by mind’s ability to associate every entity, either perceivable or 

imaginary, with a mental content. 

• In a communal verification-based account of conceptual objectivity, a 

conceived entity by members of a community is considered to be 

objective, if the subjects consistently deliver similar manifestations of the 

concept in any number of agreed-upon verification processes.  

• Processual assimilation can be pursued by capitalization on the learning 

abilities of the subjects and by providing them with instructions on how to 

create and/or with feedbacks on how to modify their concepts. 

• The significance of an imaginary entity is not due to its name, but due (a) 

to its properties, (b) to its relations with other entities and/or their 

properties, and (c) to its participation in certain processes. 

• The common nominal misinterpretation of numbers may be due to dual 

nature of numerals, as manifestations of both the name and the value 

property of numbers, whose relations give a systemic meaning to numbers.  

• An imaginary entity may have a meaning beyond what is bestowed by the 

systems it belongs to, and that imaginary systems are not semantically 

self-reliant. 
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• Imaginary properties, relationships, and processes are all “grounded,” and 

are either abstracted from or analogous to perceivable realities.  

• The meaning of a natural number, is tied to the meaning of the three 

concepts of (a) the number with value property one, (b) the equality (of an 

apparent feature), and (c) the repetition (of the objects with the same 

feature). The grounds for each of the three concepts can be traced back to 

a certain set of perceptual cognitive processes. 

• While the concept of finite set is grounded in the limits of our perceptual 

abilities and opportunities, including our attentional resources, the concept 

of infinite set is rooted in the limitless ability of typical codes in 

generating tokens. 

• An infinite set can be interpreted as the collection of all entities that can be 

potentially generated by a certain processual code. 

• In processual interpretation of the concept of prediction, whenever the 

code for the physical process is being translated into one of our imaginary 

languages, running a mental simulation of the code yields a prediction. 
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 Principles for Objective Assignment of Credibilities 

 

3.1 INTRODUCTION 

In the following, I pose the philosophical challenge I intend to tackle, namely 

interpretational/perspectival reconciliation regarding the concept of probability. I will then 

elaborate on the merits of my inquiry and present a schema of the fruits of the investigation.  

 Problem Statement 

The fundamental philosophical challenge about the concept of probability regards 

its ontology; i.e. answering the questions what probability “is,” where does it exist, and 

how to define it. The answers to these questions are co-related such that a specific answer 

to what questions is expected to guide the answer to when and how questions. Each set of 

answers, can be labeled as an “interpretation” of probability. 

Probability, as historical investigations reveal, e.g. (Fienberg, 2006a), has had a 

dual nature in the mind of pioneers, who were first to conceive the notion. From one side, 

probability was thought as having an epistemic nature, representing the uncertainty man 

does have regarding the reality of (the reference of) a linguistic construct, whether stated 

in human common language or in a more abstract language such as formal logic. 

Probability, as an epistemic measure, gives the degree by which man has knowledge, 

episteme in Greek, about truth/falsity of the statement, assuming man knows how truth can 

be eventually revealed. From the other side, probability was thought as having a physical 
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nature, giving a ratio that can be calculated based on the measurements made in the 

physical/phenomenal world. 

The categorization of probability interpretations into epistemological and physical, 

is intended to characterize all the varieties of probability interpretations conceived by many 

intellectuals, based on their most fundamental differentiator. In reality, within the past three 

hundred years, probability as interpreted by each scholar who has focused on the topic, has 

differences relative to the notion conceived by the others. For example, the British 

statistician Irving Good (1972) titled one of his papers “46,656 varieties of Bayesians,” to 

indicate the vast differences between the views of scholars whose work rely on a specific 

kind of probabilities, namely Bayesian probabilities. Nevertheless, the twofold 

classification of probability interpretation, seems to succeed in highlighting the 

fundamental feature that distinguishes conceptions, all other differences aside. 

    The duality of probability interpretation, seems to be the main reason for 

probability to be a contentious notion, giving rise to many different treatises, arguments, 

and debates on the nature of probabilities. These vast differences, as assessed by modern 

philosophers of science, e.g. (Galavotti, 2005), seems irreconcilable, and has resulted in 

compartmentalization of acceptance and the use of each interpretation given the field of 

study, e.g. (Gillies, 2000). The compartmentalization not only has resulted in the technical 

developments of each field wholly relying on a single interpretation, but also in the 

vehement rejection of the other interpretation by some scholars of each field, who are most 

ideologically invested in the interpretation founding their technical work. The battle is not 
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unlike of those apologists embarking on an intellectual crusade to prove the righteousness 

of the religious believes they are advocating.  

The most fundamental challenge regarding probability interpretations regards their 

reconciliation. While current assessments testify on irreconcilability of the two notions, 

one may question the assessment and ask whether the two interpretational perspectives 

could become compatible, and if so, how?  Answering reconcilability questions, may 

become easier by answering the following simpler questions. Could the interpretational 

variations only be nominal and caused by varying labels? If not, and the differences are 

substantial rather than nominal, are there also substantial commonalities between the 

interpretations? If so, how the interpretations could be associated with each other? Could 

these associations indicate a reference to a bigger whole; the elephant in the room? 

 Significance 

My inquiry into the philosophical foundations of probability is expected to make 

advancements along the two directions of cognition and application. In terms of cognition, 

by pursuing the goal of interpretational/perspectival reconciliation, it is expected to provide 

a more coherent interpretational system for the concept of probability. In terms of 

application, by pursuing the goal of expanding the application of epistemic probability, it 

is expected to close the application divide among practitioners of different fields of study. 

Currently, the application of each interpretation of probability is limited to certain fields of 

study. The physical interpretation of probability is more of the interest of physical sciences, 

where the goal is to inquire about community-verifiable characterization of the world. The 
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epistemological interpretation of probability is more of the interest of social sciences, 

especially economics, where the goal is to inquire about the behavior and the evaluation of 

subjects.   

 Objectives 

The philosophical development I am putting forward pursues two objectives: 

(1) Providing a wholistic view comprising of different interpretations of 

probability. This view is founded on a process-centered notion of causality and 

insists on procedural transparency in evaluating probabilities. 

(2) Introducing a fundamental character common among all interpretation of 

probability. The character, I claim, is the more-to-less nature of relationships, 

and I try to propose ways to account for various such relationships.  

3.2 OBSERVATION, THEORETICAL REASONING, AND LEARNING UNKNOWNS 

 Possible Approaches to Learn Unknowns  

There are things that we do know and there are (many) other things that we do not 

know. Learning is the process through which, by observing specific aspects of the reality, 

condensed in data, and by using our (human) reasoning faculties, we manage to add more 

to what we already knew.  

Two central questions regarding learning are determining how we can use what we 

already know to inform what we currently do not know, as well as determining the 

(relative) weights we have to give to evidence and reasoning in order to conclude a new 
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learning. To answer the aforementioned questions, we can adopt any of the following 

approaches. 

3.2.1.1 Observation 

Observation is the act/ process of sensing a specific character/ aspect of the material 

world and being able to distinguish the state at which the character is. Thus, carrying an 

observation out requires two sets of means; (1) a set of means for sensing the (target) 

character and (2) a set of means to interpret the sensed character by mapping it to a state, 

among all states that character can take. For example, to observe the color (character) of 

an object, a human needs a set of means to receive the sensory signals pertinent to the color, 

as well as a set of means to interpret received signals and to map it to a (mental) 

representation for the state of the character. If the light emitted from an object has a 

wavelength in the range 620 to 740 nanometers, a specific representation (of the color) is 

being formed inside human mind. This mental representation, in the spoken language 

English, is labeled “red.” In the example, the color is a material character/ aspect of the 

world and specific colors, e.g. red, are the (possible) states for that character.  

The observational approach, it seems, is the primary mode of learning among 

biological agent, whereby the agents uses its (sensory) observations to characterize the 

outside world. Humans, along the time, have succeeded in taking the approach beyond the 

levels other biological agents practice it, in terms of (1) the scope, (2) the precision, and 

(3) the communication of the observations. 

In terms of the extent, humans have managed to build a variety of devices that can 

sense/observe aspects of the real-world, which are not sensible by human (built-in) sensory 
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means; thus hugely expand the scope of experimental learning. In terms of the precision, 

humans have managed to standardize the characterization of specific aspects of the world 

such that every human can have the same understanding of the states at which a 

(standardized) characteristics is. Attributes such as length, mass, and time are prime 

examples of aspect, for which humans have managed to establish standards to precisely 

map a specific state of the character to an indicator, (mostly) a number. Standardization of 

observable characters are examples of the application of applied reasoning to mathematical 

modeling. 

In terms of communication, humans have managed to develop new means, other 

than means available to biological agents, for recording and/or communicating their 

observations to other fellow humans. These means can generally be called languages, of 

which spoken and written languages are certain sub-classes. For example, a numerical 

indicator is a description comprehendible for the agents who know pertinent parts of 

elementary mathematical langue. The advent of precise languages, combined with the 

precise (standardized) characterization, enables humans to record and inform the state of 

certain (worldly) character in a system in an “observationally objective” fashion. 

In the (pure) observational/experimental approach to learning, we assert that until 

we make new observations, we take the set of our past observations, as of today, as the 

(sole) representation of the reality. The approach relies on a philosophy whereby 

(empirical) evidence is the only source of knowledge and results in (implicitly) ignoring 

unknowns, as they are yet to be observed and, at the moment, the only way to (humanly) 

perceive their existence is to hypothesize them by the aid of human faculties, other than his 
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observational faculties. Thus, the only way to learn new things is to wait until we observe 

them.  

The observational approach to acquiring (new) knowledge is the method used in 

experimental science. An (epistemological) philosophy that is obsessed with the 

observational mode of learning is called empiricism, in which experience is the (only) 

source of new knowledge. In other words, whatever that is not being observed is not 

considered as knowledge. 

3.2.1.2 Theoretical Reasoning 

Reasoning is the mental process humans consciously use to expand their 

comprehension. Reasoning, it seems, is exclusive to humans and is one of the factors that 

has caused humans to accelerate differentiating themselves from other biological agents 

and to ascend to their superior position on the planet earth. A number of definitions in 

Appendix A.1, provide with further details of my views on various aspects of reasoning, 

as a special mode of thinking, and its symbiotic relation with human civilization. 

In reasoning, an agent manipulates a number of mental constructs/ objects, as input, 

to obtain a number of different constructs, as output. An object of the mind, in its most 

basic form, can represent (some aspect of) a concrete (worldly) object as perceived by 

human senses. In contrast, an abstract (mental) construct represents a thing that does not 

have a physical referent, i.e. it does not refer to an object existing in any specific time 

and/or space. Purely abstract objects are created in thought processes, where worldly 

aspects of a simple abstract object is taken away to create a mental object independent of 
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the world (outside human mind). Prime examples of such abstract constructs are 

mathematical objects, e.g. numbers. 

I separate reasoning into the two class of “abstract” and “applied” reasoning. In an 

abstract reasoning, the mind operates on a set of (pure) abstract objects, arranged in a 

certain way, in order to find the outcomes of that arrangement, themselves other abstract 

objects. The process, can be conducted by any set of (self-consistent) rules including the 

general rules established in symbolic logic, as well as any specific set of rules, called 

axioms, established for an abstract theory. Mathematics is mainly the result of the 

application of (pure) abstract reasoning to (arrangements) of mathematical objects. A 

mathematical arrangement is a structure, in which mathematical objects of different 

groups/set are associated in a certain way; thus, resulting in characteristics of the 

arrangement to take certain states. The processes required for finding the resulting 

characteristics is often referred as “deductive reasoning.” 

While mental constructs subject to (pure) abstract reasoning, as designed, have little 

relationship with the objects of the material world, the aim of applied reasoning is to 

establish analogies between (1) the concrete (aspects of interest) and certain (pure) abstract 

objects, and more importantly between (2) the arrangements of the concrete characteristics 

of interest and the arrangements of abstract objects associated with those concrete objects. 

The process to establish such relationships is generally called (abstract) “modeling” and in 

specific, when the mental representations are mathematical objects, it is called 

“mathematical modeling.” The biggest advantage of, and the motivation for, abstract 
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modeling is that it allows the characteristics of a specific abstract structure to be extended 

to the concrete associates of pertinent abstract objects.  

The first step to mathematical modeling is to associate the (characters of) concrete 

objects of interest to a set of mathematical objects. When mathematical objects are 

numbers, or algebraic variables as an extension of numbers, this step only requires the 

(states of the) concrete characters to be associable/mappable to numbers. While 

(standardized) observable characters, by their design, meet the requirement, e.g. time and 

distance, other characters, as long as they remain observable, can be associated with 

numbers according to any (arbitrary) scheme. 

The second step to mathematical modeling is to associate the arrangements between 

concrete (characters of the) objects of interest to a set of (theoretical) arrangements 

connecting mathematical objects. In contrast to the first step to mathematical modeling, 

which could be resolved by adoption of any assignment scheme, as long as it remains 

unique, the arrangements sought for in the second step are not optional. Adoption of any 

(theoretical) structure among abstract objects as the model of reality can only be true if 

observations made on observable characters exhibit the adopted relationship. The 

processes required for taking this (second) step is often referred as “inductive reasoning.” 

A number of terms defined in Appendix A.1 further elaborate the differences between 

mathematics and mathematical modeling 

The learning through (theoretical) reasoning occurs when both steps of 

(mathematical) modeling, (1) mapping observable (states of) characteristics to (numerical) 

variables and (2) adopting/ inducting functional relationships among variables, observables 
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as well as non-observables, have been taken. New knowledge then comes as a logical/ 

deductive consequence of what we already know, i.e. the adopted functional relationships.  

The theoretical approach to learning relies on a philosophy whereby the real-world 

is deemed to follow the (logical) orders/ structures devised by human minds and takes 

observation as a (sometimes secondary) support to justify the validity of postulated orders. 

This mode of learning is mainly pursued in theoretical science including mathematical 

physics as well as philosophy. 

3.2.1.3 Authoritative Inquiry 

Following the theoretical approach to learn unknowns, if one believes in the truth 

of these (imposed) orders, prediction/ characterization of unknowns look logical, 

reasonable, and natural. By the same token, an easy way to fool oneself into taking a 

(unobserved) character as real, is to postulate a certain structure on the reality and deduct 

that character accordingly.     

This approach heavily relies on imposing/ postulating (logical) structures/ orders 

on the reality, where (states of) certain aspects of the world are (deemed) to be in a 

particular type of relationship. It is such a relationship between knowns and unknowns that 

makes the later a logical consequence of the former, i.e. by considering our current 

knowledge, we can deduct the existence and the character of what we are yet to observe. 

 Challenges for Approaches to Learn Unknowns  

Following the second approach to learn unknowns, if one believes in the truth of 

these (imposed) orders, prediction/ characterization of unknowns looks logical, reasonable, 
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and natural. By the same token, an easy way to fool oneself into taking a (unobserved) 

character as real, is to postulate a certain structure on the reality and deduct that character 

accordingly.     

3.3 PROBABILITY AND ITS INTERPRETATIONS 

The controversies about the concept of probability, is rooted in different 

interpretations of the notion. While the two broad interpretations can be labeled physical 

and epistemological, various combinations of interpretation, function, and structure can 

become the basis for further nominal distinction. Each assigned name, can be perceived as 

the label for a probability kind/type. The distinguished concepts, in relation to the two 

broad interpretations, that may be considered as physical, epistemological, or both. 

Nominal distinction, in addition to functional differentiation, is also aimed at 

conceptual precision; an essential means for preventing cognitive confusion.  Besides, the 

distinction could facilitate conceptual and functional association, elaborating the 

conditions under which, various types may be related, as well as the properties of the 

relationships. Such associations constitute the building blocks of a wholistic 

interpretational perspective, which I aim at developing here. 

The classification of probabilities into types has a long history and scholars have 

proposed diverse kinds and have labeled them according to the functionality or the property 

of the type, or they have used the same label as those of scholars before them. In fact, the 

act of classifying different types of probability is so central to a philosophy of probability 

that Good (1959) believes that probability typology addresses half of the problems in 

philosophy of probability. 
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I introduce three fundamental kinds of probabilities, namely propensity, possibility, 

and credibility. The types, given the long history of probability classifications, are expected 

to be found in the works of past scholars, potentially, each under a variety of names. The 

reason for emphasizing on these types is the belief that the three have the power to explicate 

and include all other types of probability, e.g. Frequentist and Bayesian probabilities. In 

other words, propensity, possibility, and credibility are necessary and sufficient types in 

the process-oriented philosophy of probability, which I am putting forward. 

 Probability as a Means of Representation 

The introduction of the probability types based on a combination of interpretation, 

function, and structure, and distinguishing them by distinct labels, raises the question 

whether we do need the label probability for a purpose other than a reference to a collection 

of more specific concepts? And if we do, what could be the purpose? My suggestion is that 

we define a probability solely as a member of a numeric set, whose values are between 

zero and one and collectively, add up to one. 

My definition portraits probability as an abstract mathematical measure, 

constrained by limitations imposes by a set of axioms such as those suggested by 

Kolmogorov (1933). The definition positions probability as a means of mathematical 

representation, which can be used to represent the specifics of the relationship between an 

object with other objects in any non-mathematical world, e.g. the world of physio-chemical 

processes. In other words, probability can be used to describe mathematical constructs 

build to model non-mathematical phenomena. The concepts that make a probability 
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meaningful within the context it is being applied, have labels such as propensity and 

credibility.  

 Possibility 

The possibility, 𝑷𝒃(𝒚∗⃗⃗⃗⃗ ), of a specific character such as 𝒚∗⃗⃗⃗⃗ , as an outcome of the 

characterization process taking a character such as 𝒙∗⃗⃗⃗⃗ , specified based on criteria 𝑪𝒊, and 

assigning a (different) character based on criteria 𝑪𝒐, is defined as the proportion of the 

number of states, characterized according to criteria  𝑪𝒊, whose character based on criteria 

𝑪𝒐 is 𝒚∗⃗⃗⃗⃗ , relative to the total number of input characters that the process is defined to take, 

Eq. (3-1).  

 

𝑷𝒃(𝒚
∗⃗⃗⃗⃗ ) =

𝒏(�⃗⃗� |𝒚∗⃗⃗⃗⃗ )

𝒏(�⃗⃗� )
 

(3-1) 

Figure 3.1 presents a visual schema of such characterization process. To further 

illustrate the definition of possibility, I provide some examples. Consider a characterization 

process which takes the outcomes of a cartesian production process orderly joining the 

members of the numeric set {𝟎, 𝟏}  with the numeric set {𝟐, 𝟑}, and assigning the sum of 

the values of the two numeric components, as 𝒚. The possibility of output character being 

3 is 
𝟐

𝟒
, as in two of the four input states 𝒚 = 𝟑. In another example, consider a 

(re)characterization process which takes the temperature of objects between 50℉ to 77℉ 

, and delivers their temperature in Celsius. The possibility that the temperature be between 

20℃ to 25℃ is 
𝟏

𝟑
, as only the last third of the total domain maps to the specified range. 
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Figure 3.1. a schematic diagram illustrating the process of (re)characterization 

    While the definition of possibility presented in (3-1) has similarities with the 

classic definition of probability, there are also differences between the two measures. The 

most important difference is the directionality of the definition of possibility, which is only 

defined for the output of the characterization process. 

Possibility values for the outputs of a more-to-less process are the relative 

contributions of inputs; i.e. the relative number of inputs associated to every output. 

Possibilities are named such as they only depend on the processual code, i.e. the specifics 

of input-output relation, and are independent of empirical observations. Possibilities may 

also be called logical or structural probabilities, contrasting propensities, which may be 

called physical probabilities or relative frequencies. Propensities for the outcomes of a 

process are due to the combined effects of (a) the propensities for corresponding 

conditions, and (b) the possibilities imposed by the specifics of condition-outcome relation. 

 Propensity 

Propensity of an outcome of a physical process gives the preferential tendency of 

the process to generate the outcome relative to other outcomes of the process. Since the 

quantity characterizes a physical process, its measurement requires empirical observations. 
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The way to measure such tendency is to observe the outcomes of numerous runs of the 

process and to find the proportion of the runs resulting in the target outcome. The number 

of runs that is sufficient for propensity measurements is the number beyond which the 

quotient is less sensitive to variations in the observations. Eq. (3-2) presents the quotient, 

resulting from dividing two observed values, where 𝒏(𝒚∗⃗⃗⃗⃗ ) is the number of outcomes with 

the target character, 𝒚∗⃗⃗⃗⃗ , and 𝒏(�⃗⃗� ) is the total number of outcomes generated by the outcome 

through the observation.   

 

𝑷𝒑(𝒚
∗⃗⃗⃗⃗ ) =

𝒏(𝒚∗⃗⃗⃗⃗ )

𝒏(�⃗⃗� )
 

(3-2) 

Figure 3.1 presents a schematic diagram illustrating the concept of propensity of an 

outcome of the process. As it can be seen, the propensity of a process to generate a specific 

outcome is related to the propensity of the realization of the input characters, 𝑷𝒑(𝒙∗⃗⃗⃗⃗ ) and 

𝑷𝒑(𝒆∗⃗⃗  ⃗), as well as the possibility of the outcome to be generated by the mathematical 

representation of the process. 

 

Figure 3.2. a schematic diagram illustrating the concept of propensity within the context 

of a physical process 
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 Credibility 

Credibility is the degree an evaluating agent assigns to its evaluation. Figure 3.3 

presents a schematic diagram illustrating the two types of credibility evaluation processes, 

where the top diagram depicts a propensity evaluation process, and the bottom a possibility 

evaluation process. 

 

Figure 3.3. a schematic diagram illustrating the two types of credibility evaluation 

processes; top: propensity evaluation process, down: possibility evaluation process 

Credibilities are imaginary relative weights assigned to (the parameters of) the 

processes, who are hypothesized to deliver the intended outcomes. The parameters of a 

process are the (structural) values that specify the propensity values for the input or the 

output and/or the input-output relation, which determine the possibilities. Credibilities are 

only means to the end of assessing propensities and/or possibilities, whose exact values are 

unknown. The motivation for the use of credibilities are the desire to account for a more 

comprehensive set of possible processes, who might be otherwise ignored in 



99 
 

propensity/possibility assessments, due to the lower level of support provided by available 

knowledge (for them). Bayesian priors are prime examples of credibilities. 

3.4 EVALUATING PROBABILITIES 

Evaluating probabilities is centered around using credibilities to evaluate 

propensities and possibilities. 

Since credibilities are imaginary, their values cannot be obtained from empirical 

observations and must be assigned without resorting to empirical justifications. While the 

imaginary nature of credibilities allows subjects to assign credibilies of their own 

preference, their assignment might not be justifiable to others. Alternatively, it is possible 

to establish a set of theoretical assignment rules on purely logical grounds, and to justify 

the designations based on their effects, or lack thereof, on the assessed propensities and/or 

possibilities. Due to their rule abidance, theoretically constructed credibilities may be 

described as objective, even though imaginary and only existing in subjects’ minds. The 

class of credibilities called non-informative are the ones, whose assignment are aimed at 

not informing (certain aspects of) the assessed propensities and/or possibilities. Decision 

Entropy is one such theory, whose aim is not to inform the assessments made within the 

framework of analyzing decisions. The principles of the theory precisely specify the 

assessments, regarding which the credibility assignments must remain neutral. 

 Learning; Conceptual and Perceptual 

My conjecture is that learning (of an agent) can be categorized into two classes of 

perceptual and conceptual. While perceptual learning solely relies on empirical 
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observations, conceptual learning involves both empirical observation and 

conceptualization of structural relationships between neighboring states. Figure 3.4 

presents a schematic diagram, which can assist in illustrating the two types of learning. The 

perceptual learning involves making observations on concurrent values of �⃗⃗�  and �⃗⃗� , whose 

results can be tabulated. However, the conceptual learning requires going beyond 

observations and imagining how a specific change in stimuli may result in a change in 

response. 

 

Figure 3.4. a schematic diagram illustrating the two types of learning 

3.5 BAYESIAN ROBOT 

 Historical Background 

The idea of an inferential robot/computer program, which could do Bayesian 

inference by itself, was first put forward by Jaynes (1957) and then refined by himself and 

his followers along the time, e.g. (Tribus, 1969) and (Jaynes, 2003). The robot receives the 

information in the possession of subjects as an input and gives its Bayesian estimate as an 

output, based on the algorithm embedded in its program. The algorithm is written based on 
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a set of desiderata developed to ensure the rationality and the consistency of the inference. 

An example of such desiderata for plausible/probable inference was proposed by the Cox 

(1946 and 1961). 

A consequence of the development of an objective approach to statistical induction 

is that the procedure developed has the potential to be automated and to be run with 

minimal involvement of subjects. Although such objective inference relies on the 

information elicited from subjects, the process of assigning probabilities is done with no 

on-the-fly guidance from the subject. This is sharp contrast with the way most humans 

form their probability judgements when questioned about uncertain quantities (O’Hagan et 

al, 2006). We believe the idea of robot is worthy to be included in the foundations of 

objective Bayesian approaches and we will do so. In addition to existing developments 

regarding the robot, which mainly focuses on the role of information (Tofolli, 2004), we 

will also emphasize on the role of the assumptions required for making an induction. 

 Evaluating Robots; Type A vs Type B 

Robot/machine A is a complex robot with the ability to both perceive the external 

signals, as well as imagining variety of relationships between them. However, the 

mechanics of the evaluation of the robot is murky, and as a result, cannot be 

taught/transferred to other fellow machines of the same type. In the following we aim at 

elaborating on the potential mechanisms, through which this robot may learn.  

Robot/machine B, is a simple robot with as good as of an ability to perceive the 

external signals, relative to robot A, but a simpler imagining apparatus, mainly consisting 
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of mechanically constructed model available to its memory. Although simple, evaluation 

processes used by robot B has the opposite character of robot A, i.e. transparency. This 

allows the robot to transfer the mechanics of its evaluation to other fellow machines of the 

same type. In the following we aim at elaborating on the potential mechanisms, through 

which this robot may learn.    

3.6 PRINCIPLES OF RATIONAL INDUCTION 

In the following, I introduce a number of principles, which I deem essential for a 

rational, consistent, and transparent inductive reasoning. Together, the principles form a 

flexible framework that can act as the conceptual foundation of any axiomatic system to 

be developed upon the framework. 

 Evaluative Orientation Principle 

The orientation principle can be stated as follows: 

• Inductive analysis is a goal-oriented act and must be directed toward 

answering a set of target questions 

A goal-oriented act involves triggering and sustaining a physical process to obtain 

an outcome of certain characteristics. However, the focus of a study aimed at assisting a 

goal-oriented act is on the (set of) characteristics of the outcomes (of the process) that are 

of interest to the purposive agent. 

 Investigative Prioritization Principle 

The prioritization principle can be stated as follows: 
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• Target questions must be prioritized in order to direct the inductive analysis 

to approach questions according to their importance 

The principle insists on theoretical and pragmatical necessity of ordering the 

variables of interest. The ordering becomes important as the unbiased inductive approach 

toward variables higher in the hierarchy inevitable results in informing the variables lower 

in the hierarchy, given the structural/deterministic relationships between the higher and 

lower variables.  

 Explicative Sufficiency Principle 

The explanation principle can be stated as follows: 

• A (limited) number of distinct explanations/ hypotheses must be formulated 

such that each provide definitive answers to target questions   

The explanation principle is aimed at setting the determinacy of the mathematical 

system representing the problem, such that the system does not become indeterminate. 

 Evaluative Inclusion Principle 

The inclusion principle can be stated as follows: 

• When data is limited such that an explanation/hypothesis does not stand out, 

assessments based on (the validity of) different hypotheses must be 

combined in order to form an inclusive/ collective assessment.   

The inclusion principles is a form of adaptation to demands from the inductive 

investigation. When the objectives of inquiry demands the singling out of a possible 

answer, a means must be devised to distinguish such answer from others. 
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 Credibility Conception Principle 

The credibility conception principle can be stated as follows: 

• To form an inclusive assessment, each explanation/ hypothesis must be 

differentiated with a degree of credibility/ plausibility relative to other 

explanations.  

Credibility is a theoretical construct devised to compensate for the lack of 

information. Since credibility does not exist in the real world, (1) there is no true value, for 

a credibility (to be estimated), and (2) no amounts of information, in itself, can give its 

value. Credibility value has to be established given an (arbitrary) definition. 

 Artifact-Reality Division Principle 

The artifact-reality division principle can be stated as follows: 

• Credibility must be defined to explicitly account for (1) what we know, 

observations, and (2) what we arbitrarily devise to reason beyond what we 

know, explanation/ hypothesis, such that the contribution of (1) and (2) in 

the collective assessment be tractable.  

The principle aims at providing methodical transparency and justifiability, such that 

each step of the evaluation be transparent and justifiable. 

 Unbiased Evaluation Principle 

The unbiased evaluation principle can be stated as follows: 
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• Credibility values must not be established such that the inclusive assessment 

favors any of the possible answers to the target questions before 

incorporation of observations. 

The principle aims at highlighting the fact that only observation is allowed to tip 

the outcome of the inductive evaluation toward any of the potential answers. In other 

words, before incorporation of the observations, it is rational not to distribute credence to 

any answer, more than the other. 

 Applications of the Principles 

The following is a list of the application of the aforementioned seven principles 

within the context of a decision, where the following variables are paramount. 

• Right Decision 

• Consequence of an Action (Prospect of an Act) 

• Consequence of an Exploration (Prospect of Learning) 

Inductive analysis will be conducted such that the evaluation does not favor 

possible values of the objective variable, before inclusion of the observations. 

3.7 SUMMARY AND CONCLUSIONS 

 Brief Summary 

The concept of probability from a process-centered perspective is being divided 

into three types of propensity, possibility, and credibility. Credibilities are imaginary 

relative weights assigned to (the parameters of) the processes, who are hypothesized to 

deliver the intended outcomes. Since credibilities are imaginary, their values cannot be 
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obtained from empirical observations and must be assigned without resorting to empirical 

justifications. The class of theoretically-established credibilities called non-informative are 

the ones, whose assignment are aimed at not informing (certain aspects of) the assessed 

propensities and/or possibilities. Decision Entropy is one such theory, whose aim is not to 

inform the assessments made within the framework of analyzing decisions. The principles 

of the theory precisely specify the assessments, regarding which the credibility assignments 

must remain neutral. 

 Conclusions 

The following conclusions can be made based on the contents of this chapter: 

• Unsettled conceptual debates on the nature of probability are due to the 

agglomeration of various quantitative measures, who all share a number of 

mathematical properties, but do have different natures and functionalities. 

• From a process-centered perspective, probability can be divided into three 

types of propensity, possibility, and credibility.  

• Propensity values are relative repetitions of processual outcomes, as they 

have come to realization.  

• Possibility values for the outputs of a more-to-less process are the relative 

contributions of inputs; i.e. the relative number of inputs associated to every 

output.  
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• Possibilities are named such as they only depend on the processual code, 

i.e. the specifics of input-output relation, and are independent of empirical 

observations.  

• Possibilities may also be called logical or structural probabilities, 

contrasting propensities, which may be called physical probabilities or 

relative frequencies.  

• Propensities for the outcomes of a process are due to the combined effects 

of (a) the propensities for corresponding conditions, and (b) the possibilities 

imposed by the specifics of condition-outcome relation. 

• Credibilities are imaginary relative weights assigned to (the parameters of) 

the processes, who are hypothesized to deliver the intended outcomes. The 

parameters of a process are the (structural) values that specify the propensity 

values for the input or the output and/or the input-output relation, which 

determine the possibilities.  

• Credibilities are only means to the end of assessing propensities and/or 

possibilities, whose exact values are unknown.  

• The motivation for the use of credibilities are the desire to account for a 

more comprehensive set of possible processes, who might be otherwise 

ignored in propensity/possibility assessments, due to the lower level of 

support provided by available knowledge (for them).  

• Bayesian priors are prime examples of credibilities. 
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• Since credibilities are imaginary, their values cannot be obtained from 

empirical observations and must be assigned without resorting to empirical 

justifications.  

• While the imaginary nature of credibilities allows subjects to assign 

credibilies of their own preference, their assignment might not be justifiable 

to others.  

• It is possible to establish a set of theoretical assignment rules on purely 

logical grounds, and to justify the designations based on their effects, or 

lack thereof, on the assessed propensities and/or possibilities.  

• Theoretically constructed credibilities may be described as objective due to 

their rule abidance, even though they remain imaginary and only existing in 

subjects’ minds.  

• The class of credibilities called non-informative are the ones, whose 

assignment are aimed at not informing (certain aspects of) the assessed 

propensities and/or possibilities.  

• Decision Entropy is a non-informative theory, whose aim is not to inform 

the assessments made within the framework of analyzing decisions. The 

principles of the theory precisely specify the assessments, regarding which 

the credibility assignments must remain neutral. 
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 Theoretical Decision-Based Assignment of Bayesian 

Probabilities 

 

4.1 INTRODUCTION 

In the following, I introduce a number of concepts and methods central to the 

development of a theory aimed at objective assessment of uncertainties through the 

assignment of non-informative Bayesian priors.  

 Black Swan Outcomes 

Black Swan is a metaphorical character label for rare but consequential processual 

outcomes, whose occurrence takes humans by surprise as they were deemed impossible. 

The three attributes of a Black Swan Outcome (BSO), according to Taleb (2007), are (a) 

extremely low frequency, (b) extremely high impact, and (c) retrospective predictability 

by humans, where combined extremity of the first two attributes make the BSO 

unpredictable but significant. While lying beyond the range of common experiences make 

rare events unforeseeable, the ensuing unpreparedness makes their occurrence of a BSO 

much more impactful that what it would, if humans had not failed to predict the outcome. 

Taleb (2007) claims that while history is directed and shaped by extreme outliers much 

more than by frequent but expected outcomes, their historical significances are toned down 

due to the human tendency to explain BSOs after their realizations and incorporate their 

records in our predictive machinery, as if BSOs were both destined and expected to occur.   
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Among many BSOs throughout history of the world, a number of contemporary 

extreme outliers with significant impacts on society, economy, and politics in the United 

States include (a) deliberate plane crashes into the twin towers of World Trade Center of 

New York city in Sep 11 2001, (b) the early 2000’s stock market devaluations, collectively 

known as (the burst of) dot-com bubble, resulting from excessive speculative trading of the 

stocks of companies who were offering internet-related products and services, and (c) the 

global financial crisis of 2007-8 due to bursting of housing bubble in the U.S.  

A more enlightening contemporary BSO in the U.S., though less significant in 

terms of its socio-economic impact, was the 1998 collapse of the hedge fund named Long-

Term Capital Management (LTCM), which the winners of 1997 Nobel prize in Economics, 

Robert Merton and Myron Scholes, had helped to create. The firm was trading financial 

products called derivatives based on the assessed prices calculated by the mathematical 

model named after the Nobel laureates Black-Scholes-Merton; a model that its developers 

claimed to had reduced, or even eliminated, risk from financial markets by calculating risks 

of losses with decimal place precision. After four years of astonishing returns up to 40%, 

in 1997 LTCM started to make losses due to the effects of Asian financial crisis. A month 

after 1998 default of Russian government on its bonds, LTCM lost about half of its $4 

billion capital; an outcome whose risk was assessed to be (almost) zero by the same model 

that had brought the Nobel prize for the laureates less than a year before. LTCM, whose 

founders were not considering it a hedge fund but a financial technology company, was 

eventually bailed out by the US Federal Reserve to prevent the spread of its collapse across 

the whole financial market. The arrogant intellectuals who had claimed to tamed the risk, 
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were financially and reputationally destroyed by a BSO, deemed improbable by their own 

model!  

The prominence of the term Black Swan in the minds of western intellectuals is 

partly due to the dramatic change in its modern application, compared to its ancient uses. 

Since every observed swan in the old world was white, the assertion “all swans are white” 

was frequently used in illustrative examples of categorial syllogism, to the extent that even 

Aristotle took the color property of white as the necessary condition for swans; i.e. the 

color of a swan’s feathers must be white. Later, the term black swan came to become widely 

cited in ancient philosophical discussions of the concept of impossibility. Nevertheless, the 

observation of black-feathered swans in the newly-discovered continent of Australia in the 

17th century, caused the term black swan to refer to a logical fallacy resulted from the use 

of empirical observations to form a general rule. Since Scottish philosopher David Hume 

(1748) had questioned the rationality of inferring such rules based on uniform past 

experiences, later philosophers including John Stuart Mill (1843) used the term black swan 

within the context of philosophical justification of Induction. In recent times, the term was 

revived by Levantine scholar Nicholas Nasim Taleb (2007), and in reference to the 

realization of a specific subset of the outcomes that violate the uniformity of past 

observations; the seemingly improbable outcomes, whose monstrosity hugely impacts our 

lives. 

4.2 MOTIVATION 

In the following, I declare accounting of Black Swan Outcomes as the main 

practical motivation for the research and propose that theoretically-assigned non-
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informative Bayesian credibilities can be a means of such accounting. So, I declare the 

development of a defensible method for the assignment of Bayesian priors as a theoretical 

motivation for the research. 

 Accounting for Black Swan Outcomes 

The main practical motivation for the theory we are advancing here is to be able to 

account for yet-to-be-realized Black Swan Outcomes (BSO) in the theoretical assessments 

of processual uncertainties. The seemingly non-ending surprise of human kind by a wide 

variety of BSOs throughout history may be explained by the innate tendency to heavily 

rely on our memorable experiences to form cognitions and actions. Our naïve empiricism 

seems to makes us either negligent and/or ignorant; negligent as we may not track and 

accumulate further historical records, and ignorant as we may not account for our 

knowledge deficiencies whether in terms of its extent or its relevance. 

The approach chosen to account for BSO in the assessments of uncertainties must 

relieve us from our natural negligence and ignorance. While tracking historical records and 

accumulating past records ensures that no past observation is ignored, there will be a point 

where all available data is exhausted and the limits of experience is being reached. We 

must note that the only means to go beyond the experience is to use logical reasoning such 

that the resulting assessment be defensible. If so, the assessed probabilities must not be 

taken as empirically-grounded predictions of to-be-observed frequencies, but as rational 

assessments made with the aim of moderating empirically-based expectations by 

accounting for unknowns.  
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 Directing Credible Proportional Induction 

The theoretical motivation for the research is to develop a defensible method for 

directing the assignment of non-informative Bayesian credibilities, in the sense described 

in the previous chapter. Also, the offered method provides with a theoretical means needed 

to fulfil the practical desire of accounting for yet-to-be-realized Black Swan Outcomes. In 

other words, when it comes to extreme outcomes beyond the range of observations, the 

credible proportions assessed by theoretically-established non-informative Bayesian priors 

reflect the consideration of unobserved possibilities. 

Philosophically, the theory we are advancing takes Hume’s (1748) position 

regarding the legitimacy of inductive inference (from observed to unobserved) as a 

principle, and views the assumption that future will be the same as the past (processual 

uniformity along the time), as rationally unjustified. Besides, we propose that the so-called 

uniformity assumption is likely to result in neglecting or ignoring Black Swan Outcomes, 

which are often non-existent in historical records. 

To relax the blinding uniformity assumption, two limiting cases of stationary and 

evolving processes are conceivable regarding the specifics of the processual knowledge we 

are lacking. While the parameters of a stationary process remain unchanged along the time, 

available observations only inform the parameters within the range of historical records 

and beyond, the (values of the) parameters must be assessed without reliance on 

observations. In contrast, we may have a process whose past parameters are completely 

known to us, but we do not know whether the process has started to evolve and to take 

different parameters after a certain time. The scenario is similar to the case, where we need 
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assess a target process and we have a complete knowledge of an analogous process, whose 

similarities makes the existence of a relation between processes plausible.    

4.3 DECISION ENTROPY THEORY 

 General Description of the Theory 

Decision Entropy Theory (DET) is a computational machinery aimed at assessing 

unknown aspects of a process in the light of the available information, where sought-for 

aspects depend on the processual parameters; (structural) values specifying collective or 

relative individual features of processual input and/or output and/or the (deterministic) 

input-output relation. The theory is intended to be objective and defensible in the sense 

described in Chapters 2, and 3, meaning that (a) its assessment procedures are transparent 

and imitable and (b) the constraints specifying the process are set in compliance with a set 

of intuitively logical guiding principles.  

The theory assigns non-informative Bayesian priors to sets of possibilities, 

representing the aspects of the process that are unknown to us. The priors are assigned to 

possibilities by considering a hierarchy of variables and such that prior credibilities 

minimally inform the variables, whose exact values are the subjects of the inductive 

inquiry. The adopted measure for the information contained in a distribution is Shannon’s 

entropy, where the minimally informative distribution is the one with the maximum 

entropy. In the simplest case of the hierarchy composed of a single variable, whose only 

constraint is its boundaries, the uniform distribution is the one with the maximum entropy. 
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 Principles of the Theory 

The following three principles specify the hierarchy of variables, as the targets of 

the inquiry, and elaborate the distributions that are minimally informative:   

1. If no information is available about the probabilities of decision outcomes, 

then a selected alternative is equally probable to be or not to be the preferred alternative. 

2. If no information is available about the probabilities of decision outcomes, 

then the possible differences in preference between a selected alternative and the preferred 

alternative are equally probable. 

3. If no information is available about the probabilities of decision outcomes, 

then the possibilities of learning with new information about the selected alternative 

compared to the preferred alternative are equally probable. 

The mathematical formulations of the axioms corresponding the three principles 

are presented in Eqs. (4-1), (4-2), and (4-3), respectively. A complete description of the 

theory including its mathematical formulation is being presented in Appendix B. 

 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙 (𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒| 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= −𝑃(𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

× 𝑙𝑛[𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)]

− 𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

× 𝑙𝑛[𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)] − ln(2)

= − {𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]

× 𝑙𝑛{2𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

+ {1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

× 𝑙𝑛 {2{1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}}} 

 (4-1) 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙 (𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙| 𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= ∑
−𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× 𝑙𝑛{𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

nΔ𝑢i<0

𝑝=1

− 𝑙𝑛(nΔ𝑢i<0
)

= − ∑
𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× 𝑙𝑛{nΔ𝑢i<0
𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

nΔ𝑢i<0

𝑝=1

 
(4-2) 

 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙 (𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛|𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) =

= − {𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× ln {2𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

+ {1 − 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

× ln {2 {1 − 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}}}

+ {− ∑
𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴

= (vi)𝑞| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]

× ln {nvi>0𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= (vi)𝑞| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

nvi>0

𝑞=1

}

× {1 − 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]} 

 

 (4-3) 

4.3.2.1 Evolutions of DET 

While the general objectives and the fundamental measures underlying the theory 

of Decision Entropy have remained unchanged, its principles, which specify the hierarchy 

of variables, have evolved along the time. For example, the applications presented in 

Chapters 5 and 6 were conducted at the time when theoretical principles were defined in 

terms of the concept of utility difference and the decisions between multiple alternatives 

were made based on the exhaustive collection of pair-wise decisions. The current version 

of the theory relies on the conception of information potential, which was first introduced 

by Mostofi (2018), and is defined as a quantitative measure of the maximum potential 
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effect of information for each decision outcome is the difference between the utility value 

of selected alternative and the maximum utility value. The mathematical formulation of 

information potential, labeled as ∆𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) by (Mostofi, 2018), is presented in 

Eq. (4-4): 

 ∆𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 𝑢(�⃑�𝑘 , 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) − max [∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖] (4-4) 

Where 

∆𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0     𝑖𝑓  𝐴𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 

∆𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) < 0     𝑖𝑓  𝐴𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 

 Implementations of DET 

The theory of decision entropy has been implemented to assess the uncertainties in 

a variety of practical engineering problems within the past years. Min (2008) applied the 

theory to a number of petroleum engineering problems, where parameters characterizing 

production, transmissibility, and spatial variability of an oil reservoir were uncertain.  

Figure 4.1 compares the Value of Perfect Information for a production unit obtained from 

assessments made by the proposed theory with those from a generic assessment. 

Decision Entropy Theory has also been applied to assess the risk of a number of 

natural hazards. While Mostofi (2018) provided a general assessment of uncertainties for 

landslides, as complicated multi-hazard processes, Mostofi et al. (2019) conducted a case 

study for the catastrophic landslide of March 2014 in Oso, Washington and concluded that 

if the cost of prohibiting the development in the region for the next century becomes less 

than about 1/6 the cost of another massive landslide, the preferred decision is to avoid the 
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risk and to prohibit civil developments.  For the case, when the alternative decision of 

accepting the risk is preferred, Figure 4.2 presents the updated assessments of the 

parameters of renewal model describing the occurrence of characteristic landslides 

(Mostofi et al., 2019) 

 

Figure 4.1. Variation of the value of perfect information (VPI) with well cost for an 

example production unit (Min, 2008) 

 

Figure 4.2. Informed assessments of the parameters describing the occurrence of 

characteristic landslides at Oso if one chooses to accept the risk (Mostofi et al., 2019) 
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Decision Entropy Theory has also been used to assess the effect of natural hazards 

on engineering structures. Feng et al. (2019) have evaluated the rehabilitation decision for 

a rockfill dam in Norway, where the overtopping of water in the dam reservoir is uncertain. 

It has been demonstrated that a decrease in the amount of available information and/or an 

increase in the cost of failure relative to the cost of rehabilitation results in an increase in 

the value of perfect information about the hazard curve increases (Feng et al. 2019).   Figure 

4.3 demonstrates the changes in expected normalized information potential for different 

normalized rockfill dam failure cost.  

 

Figure 4.3. Expected normalized information potential for different normalized rockfill 

dam failure cost (Feng et al., 2019) 
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4.4 EVALUATING THE OBJECTIVITY, TRANSPARENCY, AND DEFENSIBILITY OF 

DET 

An objective of the research was to evaluate whether the assessments of DET can 

be characterized as objective, transparent, and defensible. The comparison between the 

three principles of DET, as stated in 4.3.2, with the seven general principles, stated in 

Chapter 3, reveals that DET is in compliance with the more fundamental principles for 

objective assessment of probabilities. Thus, we can conclude that DET leads to assessments 

that are objective, transparent, and defensible. The details of the compliance are as follows: 

 Evaluative Orientation Principle 

By considering the following statement of the principle of evaluative orientation: 

• Inductive analysis is a goal-oriented act and must be directed toward 

answering a set of target questions 

We can conclude that DET satisfies “Evaluative Orientation,” as it takes inductive 

analysis to be a goal-oriented act and directs the assessment toward answering a set of 

target questions. 

 Investigative Prioritization Principle 

By considering the following statement of the principle of investigative 

prioritization: 

• Target questions must be prioritized in order to direct the inductive analysis 

to approach questions according to their importance 
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We may conclude that DET performs “Investigative Prioritization,” as it prioritized 

the questions according to their importance to the investigation..  

 Explicative Sufficiency Principle 

Based on the following explanation of the principle: 

• A (limited) number of distinct explanations/ hypotheses must be formulated 

such that each provide definitive answers to target questions   

We may conclude that DET is Explicatively Sufficient, as it designates a number 

of distinct processual explanations, such that each provide definitive answers to the target 

questions. 

 Evaluative Inclusion Principle 

By considering the statement of the inclusion principle as below: 

• When data is limited such that an explanation/hypothesis does not stand out, 

assessments based on (the validity of) different hypotheses must be 

combined in order to form an inclusive/ collective assessment.   

We may conclude that DET is evaluatively inclusive, as it allows the formation of 

a hybrid and inclusive explanation by considering and combining collection of 

explanations. 

 Credibility Conception Principle 

According the following description of credibility conception principle: 
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• To form an inclusive assessment, each explanation/ hypothesis must be 

differentiated with a degree of credibility/ plausibility relative to other 

explanations.  

DET is based on credibility conception, as it uses credibility values to form an 

inclusive assessment, and to differentiates various explanations with a degree of 

plausibility relative to other explanations. 

 Artifact-Reality Division Principle 

By taking into account the statement of the artifact-reality division principle: 

• Credibility must be defined to explicitly account for (1) what we know, 

observations, and (2) what we arbitrarily devise to reason beyond what we 

know, explanation/ hypothesis, such that the contribution of (1) and (2) in 

the collective assessment be tractable.  

We may conclude that DET divides artifacts from reality, as its assigned 

credibilities explicitly account for (1) what we know, observations, and (2) what we 

arbitrarily devise to reason beyond what we know, explanation/ hypothesis, such that the 

contribution of (1) and (2) in the collective assessment is tractable. 

 Unbiased Evaluation Principle 

According to the following statement of the unbiased evaluation principle: 

• Credibility values must not be established such that the inclusive assessment 

favors any of the possible answers to the target questions before 

incorporation of observations. 
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We may conclude that DET provides with unbiased evaluations, as its assigned 

credibility values are not such that the inclusive assessment favors any of the possible 

answers to the target questions, before incorporation of observations. 

4.5 SUMMARY 

A Black Swan is an infrequent but consequential processual outcome, whose 

realization may even become more impactful due to the lack of preparation for a deemed 

improbable event. The study of an example Black Swan, the 1998 failure of the financial 

derivative trading firm named Long-Term Capital Management (LTCM), reveals that (a) 

how our most elaborate and highly praised frequency models, which are devised to describe 

and predict processual variations, can fail to account for unprecedented outcomes, and (b) 

how our confidence and reliance on such models, often justified by their success in 

addressing frequent outcomes, can result in unforeseen colossal consequences. 

Accounting for Black Swan Outcomes (BSO) is declared to be the practical 

motivation of the research and offering a defensible procedure for assigning non-

informative Bayesian credebilities is declared to be the theoretical motivation, which 

ultimately serves the practical motivation. The failure to contemplate Black Swan 

Outcomes (BSO) is attributed to our naïve empirical approach in making processual 

assessments, resulting in us neglecting extreme events of the past by not conducting 

through historical investigations, or ignoring the realization of unprecedented events in the 

future by (completely) matching the assessment with historical records. While the former 

deficiency can be covered by collecting a more exhaustive dataset, the later can only be 
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addressed by conceiving a future (trend) different from the past and justifying the 

conception on (purely) theoretical grounds. 

A (set of) theoretical means with the potential to account for yet-to-be-realized 

BSOs are non-informative Bayesian priors, which provide with assessments of processual 

tendencies before incorporating (past) realizations. Nevertheless, using Bayesian approach 

faces conceptual and methodical challenges. Conceptually, the fact that fundamental 

questions of “what Bayesian probabilities are” and “whether they represented 

(observationally) measurable quantities” still do not have satisfactory answers, have given 

the opponents reasons to question and reject the Bayesian approach. Methodically, the fact 

that there is no consensus on the assignment of Bayesian probabilities for a specific 

problem given certain observations, has forced analysts to make an uncomfortable choice 

among priors and to legitimize their choice either by portraying it as a (direct) 

representation of the (historical) data, or by downplaying its effects on the final assessment. 

This research tries to address both conceptual and methodical challenges facing the 

Bayesian approach. While Chapters 2 and 3 are aimed at developing a philosophical 

framework to provide with conceptual clarity and precision, this chapter is aimed at 

introducing a computational theory to defensibly and transparently assign exact values to 

Bayesian probabilities for specific problems with certain available information. 

A computational apparatus, Decision Entropy Theory (DET), is being introduced 

to assess unknown aspects of a process in an objective and defensible manner, in the sense 

described in Chapters 2 and 3, meaning that (a) its assessment procedures are transparent 

and imitable and (b) the constraints specifying the process are set in compliance with a set 
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of intuitively logical guiding principles. DET considers a hierarchy of variables and assigns 

non-informative Bayesian priors to minimally inform the variables, whose exact values are 

the subjects of the inductive inquiry. Since Shannon’s entropy is the adopted measure of 

information, the least informative set of distributions are those with the highest entropy 

values. According to the three principles of DET, (I) “decision outcome,” (II) “difference 

in preference,” and (III) “learning potential/information value,” constitute the hierarchy of 

variables, which assigned priors must minimally inform. For risky decisions among a 

number of distinct alternatives, decision outcome is a categorial variable. 

To evaluate objectivity, transparency, and defensibility of DET assessments, a 

comparison is being made between the three principles of DET, stated in this chapter and 

the seven general principles, stated in Chapter 3, namely (I) Evaluative Orientation, (II) 

Investigative Prioritization, (III) Explicative Sufficiency, (IV) Evaluative Inclusion, (V) 

Credibility Conception, (VI) Artifact-Reality Division, (VII) Unbiased Evaluation. Since 

we found DET is in compliance with the more fundamental principles for objective 

assessment of probabilities, we can conclude that DET delivers assessments that are 

objective, transparent, and defensible. 
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 Assessing Value of Test Wells in Developing an 

Unconventional Play 

 

This chapter presents the research material published in the article (Habibi et al, 2014), 

which aims at providing inductive answers to questions related to proportion of object 

with certain characteristics, namely economic profitability.  

5.1 INTRODUCTION 

Unconventional plays are production opportunities with the potential for 

considerable uncertainty in production and economics. While trying to reduce production 

uncertainty with well tests may be valuable, there is a tradeoff between the quantity and 

quality of the information and its potential to improve development decisions. This paper 

proposes a new approach to represent uncertainty in an objective and defensible way, 

such that rare but important possibilities are not neglected in making decisions. This 

approach is called Decision Entropy Theory. 

The motivation to develop Decision Entropy Theory is to account for the 

possibility of events outside our range of experience. Probabilities for possibilities 

beyond our experience cannot be assessed via statistics. Taleb (2007) refers to these 

possibilities as “Black Swan” events: “Before the discovery of Australia, people in the 

Old World were convinced that all swans were white, an unassailable belief as it seemed 

completely confirmed by empirical evidence… [The sighting of the first black swan] 

illustrates a severe limitation to our learning from observations or experience and the 

fragility of our knowledge. One single observation can invalidate a general statement 
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derived from millennia of confirmatory sightings of millions of white swans.” The United 

States Secretary of Defense, Donald Rumsfeld, referred to these possibilities “unknown 

unknowns” in a famous press conference (DOD 2002): “There are known knowns. These 

are things we know that we know. There are known unknowns. That is to say, there are 

things that we know we don't know. But there are also unknown unknowns. There are 

things we don't know we don't know.” Ten years ago, no one would have predicted that 

the United States would be contemplating exporting oil in 2014 because this possibility 

was beyond our range of experience at that time. 

In the following, we will describe Decision Entropy Theory and illustrate its 

application and what can be learned from this theory in assessing the value of test wells 

in an unconventional play.  

5.2 DECISION ENTROPY THEORY 

Decision Entropy Theory is developed from three premises (axioms) that describe 

the case of no information or maximum uncertainty in making a decision between two 

alternatives. 

Axiom 1: An alternative compared to another alternative is equally probable to be 

preferred or not to be preferred. 

Axiom 2: The possible gains or losses for one alternative compared to another 

alternative are equally probable. 

Axiom 3: The possibilities of learning about the preference of one alternative 

compared to another with new information are equally probable. 
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This theory characterizes uncertainty in making a decision; the case of maximum 

uncertainty corresponds to the maximum entropy for the possible outcomes of the 

decision. Therefore, the starting point for assessing probabilities, i.e., the non-informative 

prior probabilities of possibilities before information is included, depends on the decision 

at hand. Mathematical details laying out the development of the theory can be found in 

Gilbert et al. (2012). This paper will focus on the practical implications of this theory to 

the development of unconventional resources. 

5.3 GO - NO GO DECISION 

Consider a generic decision about whether or not to develop a play with unconventional 

resources (Figure 5.1). The profit for the play (p) can be calculated using Eq. (5-1) where 

c is the cost of developing the play, f is the frequency of productive (“good”) wells in the 

development, r/c is the return on investment ratio for a good well, and there is no return 

on investment for bad wells. The frequency of good wells in the play is uncertain and 

denoted as a random variable, F. 

 
𝑝 = −𝑐 + 𝑓𝑟 = 𝑟[−𝑐/𝑟 + 𝑓] + 𝑐[−1 + (𝑟/𝑐)𝑓] (5-1) 
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Figure 5.1. Decision tree for a development decision 

Figure 5.2 shows how the non-informative prior probability distribution for the 

frequency of good wells is established based on Axioms 1 and 2 of Decision Entropy 

Theory. The probabilities that different outcomes of the decision will be realized are set 

such that there is a probability of 50 percent that the decision to develop the play will be 

correct and an equal probability for different possible net profits if the decision is or is 

not correct (Figure 5.2). This probability distribution is then mapped onto the probability 

distribution for the frequency of good wells (Figure 5.3). 
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Figure 5.2. non-informative prior probability distribution for profit (p) using Decision 

Entropy Theory; Top: Applying axiom (1) to decision alternatives, Bottom: Applying 

axiom (2) to possible gains/losses 
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Figure 5.3. Establishing non-informative prior for frequency of good wells using 

Decision Entropy Theory; Top: relating profit (p) to frequency of good wells, Bottom: 

resulting non-informative prior for frequency of good wells 
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The non-informative prior probability distribution for the frequency of good wells 

depends on the specifics of the decision, specifically the return-on-investment ratio r/c 

for good wells since the break-even frequency of good wells for the play is equal to 𝑓 ∗=

1/(𝑟/𝑐). Figure 5.4 illustrates non-informative prior probability distributions for 

different break-even frequencies of good wells. 

 

Figure 5.4. Establishing non-informative prior for frequency of good wells 

The non-informative prior probability distribution can be used to make a decision 

about whether or not to develop the play in the event that no information is available on 

the frequency of good wells. While having no information is not necessarily a practical 

case (i.e. in most cases some information is available), it provides a limiting case as 

guidance. Figure 5.5 shows the expected profit of developing the play, 𝐸[𝑝]/𝑐 =
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[(𝑟/𝑐)𝐸(𝑓) − 1], versus the return-on-investment ratio for good wells for the case of no 

information about the frequency of good wells.  

 

Figure 5.5. Establishing non-informative prior for frequency of good wells 

Several alternatives for establishing non-informative prior probability 

distributions have been proposed over the years. Information theorists, such as Jaynes 

(1957) and Tribus (1967), propose that a uniform distribution for the frequency of good 

wells is a non-informative probability distribution because it maximizes the entropy for 

this variable. The challenge with this approach is that there is no consistent or defensible 
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definition of the “variable” for which to maximize the entropy. For example, the non-

informative prior probability distribution is different if you maximize the entropy of the 

logarithm of the frequency or the inverse of the frequency. Since Decision Entropy 

Theory maximizes the entropy in the decision rather than that in individual variables that 

affect the decision in different ways, it provides a consistent result for a particular 

decision. Bayesian decision analysts, such as Luce and Raiffa (1957), propose that there 

is always some information and therefore not a practical need for a non-informative prior 

probability distribution. The challenge with this approach is that it does not address most 

realistic situations where the available information is limited (as it always is) and does 

not allow for possibilities that have not been observed (i.e.  the possibility of “Black 

Swans.”) Classical statisticians, such as Fisher (1935), propose that there is no defensible 

basis for establishing a non-informative prior probability distribution, meaning that 

probabilities can only be assessed when data are available. The challenge with this 

approach is that it is not practical; there is constantly a need to make decisions where we 

do not have “enough” relevant data because we are doing something new, such as with 

unconventional resources. 

For comparison, Figure 5.5 includes the resulting expected profit of developing 

the play if a uniform distribution is assumed for the non-informative prior probability 

distribution of the frequency of good wells, regardless of the decision (i.e., regardless of 

the return-on-investment ratio for a good well). The threshold for obtaining a positive 

expected profit is the same with both approaches; a return-on-investment ratio greater 

than 2 leads to a positive expected profit. However, the rate of increase of the expected 
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profit with increasing return-on-investment ratio is smaller when applying Decision 

Entropy Theory (Figure 5.5). For example, if the cost of developing the play is 

$100,000,000 and the return-on-investment ratio for good wells is 2.5, then the expected 

profit for the play is $12,500,000 with Decision Entropy Theory and $25,000,000 with a 

uniform prior distribution assumed for the frequency of good wells.  Decision Entropy 

Theory pulls the expected profit toward zero by maintaining a 50-50 probability that the 

play alternative will be preferred with any return-on-investment ratio for good wells 

(Figure 5.4). 

5.4 VALUE OF TEST WELLS 

A decision tree to assess the value of test wells is shown in Figure 5.6. We will 

assume that the test wells are representative of the wells in the play and that results 

between test wells are independent. The outcome of a test well program with n wells will 

be the number of good wells, x. The likelihood of such outcome can be calculated using 

binomial theorem. For any possible outcome (value of x) with a test program of n wells, 

the probability distribution for the frequency of good wells is updated with Bayes’ 

Theorem: 

 

𝑃(𝐹 = 𝑓𝑖|𝑥 𝑜𝑢𝑡 𝑜𝑓 𝑛 𝑔𝑜𝑜𝑑 𝑤𝑒𝑙𝑙𝑠)

=
{[

𝑛!
𝑥! (𝑛 − 𝑥)!

] 𝑓𝑖
𝑥(1 − 𝑓𝑖)

𝑛−𝑥} 𝑃(𝐹 = 𝑓𝑖)

∑ {[
𝑛!

𝑥! (𝑛 − 𝑥)!
] 𝑓𝑖

𝑥(1 − 𝑓𝑖)𝑛−𝑥} 𝑃(𝐹 = 𝑓𝑖)𝑎𝑙𝑙 𝑖

 

(5-2) 
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Where 𝑃(𝐹 = 𝑓𝑖|𝑥 out of 𝑛 good wells) is the updated probability that the 

frequency is equal to a particular value and 𝑃(𝐹 = 𝑓𝑖) is the prior probability for the 

frequency. An example of the prior and updated probability distributions for the 

frequency of good wells is shown in Figure 5.7 for one possible outcome of a well test 

program. 

 

Figure 5.6. Decision tree for evaluating the value of test wells before deciding to develop 

the play 
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Figure 5.7. Probability distributions of frequency of good wells in a play with r/c = 5; 

Top: Prior distribution, Bottom: Posterior distribution from Decision Entropy Theory 

based on one result for test wells from the play 
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A limiting case for information is perfect information or an infinite number of test 

wells. The value of perfect information about the frequency of good wells is shown in 

Figure 8 as a function of the return-on-investment ratio for good wells in Figure 8. To 

facilitate showing a range of possibilities, the inverse of the return-on-investment ratio 

1/(𝑟/𝑐), which is the break-even frequency for good wells, is used. To generalize the 

results, the value of perfect information is normalized by the maximum possible revenue 

for all good wells, 𝑟𝑚𝑎𝑥. The value of perfect information is the greatest when the break-

even frequency is near 0.5 or the return-on-investment ratio is near 2. Information about 

the frequency of good wells is of greatest value in this case because the decision 

alternatives are balanced (the expected profit for developing the play equals zero – Figure 

5.5) and there is the greatest potential for information to tip the decision either way. 

 

Figure 5.8. Value of perfect information for non-informative prior probability 

distributions for frequency of good wells in play based on Decision Entropy Theory 

compared with a uniform prior probability distribution for frequency of good wells 
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For comparison purposes, Figure 5.8 also shows the value of perfect information 

if a uniform distribution is assumed for the non-informative prior probability distribution 

of the frequency of good wells. The value of perfect information can be significantly 

greater when applying Decision Entropy Theory than when assuming a uniform prior 

probability distribution for the frequency of good wells. For example, if the return-on-

investment ratio for good wells is equal to three (or the break-even frequency is 1/3) for a 

development costing $100,000,000, then the value of perfect information from a well test 

program is $24,000,000 with Decision Entropy Theory and $16,000,000 with a uniform 

prior probability distribution. This result reflects maximizing the entropy in the decision 

outcomes with Decision Entropy Theory; there is more potential to learn with 

information when entropy in the decision outcomes is greatest at the outset. 

 

Figure 5.9. Value of information versus number of test wells for plays with different 

return-on-investment ratios 
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The value of information for a test program with a finite number of wells is 

shown in Figure 5.9. In some cases, multiple test wells are needed before any value is 

realized because too few wells will not be enough to change the preferred decision 

alternative even if all of them produce the same outcome. These results further highlight 

how the value of information is affected by the prior probability distribution for the 

frequency of good wells. For example, if the return-on-investment ratio for good wells is 

equal to 1.05, there is a positive value associated with drilling 10 test wells with Decision 

Entropy Theory but no value with a uniform prior probability distribution for the 

frequency of good wells (Figure 5.9). The difference between the two approaches is most 

pronounced in the extremes where the break-even frequency is either very small (a high 

return-on-investment ratio) or very large (a small return-on-investment ratio). These 

cases represent the “Black Swan” types of events, such as a play with a small return-on-

investment ratio that turns out to be profitable because there is a high frequency of good 

wells or a play with a large return-on-investment ratio that turns out to be not profitable 

because there is a small frequency of good wells. Therefore, this example demonstrates 

how Decision Entropy Theory might change the perspective of a decision-maker to 

obtain more information before walking away from a play or committing to a play. 

5.5 RELEVANCY OF INFORMATION FROM ANALOGOUS FIELDS 

The decision about whether or not to develop a new play will typically be 

informed by historical information from analogous plays. Consider a case where there is 

a Field A that may have the same frequency of good wells as in the play that is being 

considered, Field B. The use of the word “may” is significant; we will not know if the 
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frequencies are the same until Field B is completely developed. A decision tree to assess 

the value of test wells in the new play is shown in Figure 10. 

 

Figure 5.10. Decision tree for evaluating the value of information obtained from play B 

The prior probability distribution for the frequency of wells in Field B without 

any information is the same (Figure 5.2 and 4.3). This prior probability distribution will 

be updated based on the information from Field A through Bayes’ Theorem as follows: 

 

𝑃(𝐹𝐵 = 𝑓𝐵𝑖|x𝐴 out of n𝐴 good wells in Field A)

=

{
[P(x𝐴/n𝐴|f𝐵𝑖 ∩ 𝐴 = 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 = 𝐵)] +

[P(x𝐴/n𝐴|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 ≠ 𝐵)]
}

∑ {
[P(x𝐴/n𝐴|f𝐵𝑖 ∩ 𝐴 = 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 = 𝐵)] +

[P(x𝐴/n𝐴|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 ≠ 𝐵)]
}𝑎𝑙𝑙 𝑓𝐵𝑖

 

(5-3) 

where 𝑥𝐴 is the number of good wells out of 𝑛𝐴 total wells in Field A, 𝑃(𝐴 = 𝐵) 

is the prior probability that the new field is the same as the old field meaning the 
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frequencies of good wells in the two fields are the same, and 𝑃(𝐴 ≠ 𝐵) = 1 − 𝑃(𝐴 = 𝐵) 

is the prior probability that the new field is different than the old field. If we assume the 

results between wells in each play are independent, then the likelihood of obtaining the 

set of data from Field A is 

 

𝑃(x𝐴 / n𝐴|f𝐵𝑖 ∩ 𝐴 = 𝐵) = 𝑃(x𝐴 / n𝐴|f𝐴 = f𝐵𝑖)

= {[
n!

𝑥! (𝑛 − 𝑥!)
] f𝐵𝑖

𝑥𝐴(1 − 𝑓𝐵𝑖)𝑛−𝑥𝐴} 
(5-4) 

and 

 

𝑃(x𝐴 / n𝐴|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)

= ∑ {[
n𝐴!

x𝐴! (n𝐴 − x𝐴!)
] f𝐴𝑗

𝑥𝐴  (1 − 𝑓𝐴𝑗)
𝑛𝐴−𝑥𝐴

𝑎𝑙𝑙 𝑓𝐴𝑗≠𝑓𝐵𝑖

×  𝑃(𝐹𝐴 = 𝑓𝐴𝑗|𝐴 ≠ 𝐵)} (5-5) 

Where 𝑃(𝐹𝐴 = 𝑓𝐴𝑗|𝐴 ≠ 𝐵) = 𝑃(𝐹𝐴 = 𝑓𝐴𝑗|𝐴 = 𝐵) = 𝑃(𝐹𝐴 = 𝑓𝐴𝑗) since the prior 

probability for the frequency in Field A does not depend on whether Fields A and B are 

the same (i.e., the prior probability of obtaining a particular set of data from Field A is the 

same whether or not Fields A and B are the same and the probability of obtaining a 

particular set of data from Field A does not depend on the frequency in Field B if the two 

fields are different). 

The prior probability that the two fields are the same is established based on 

Axiom 3 of Decision Entropy Theory. If the two fields are the same, then we can learn 
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from Field A; if the two fields are different, then we cannot learn from Field A. Setting 

𝑃(𝐴 = 𝐵) = 1/2  makes these two possibilities equally probable. 

If 𝑛𝐵 test wells are drilled in Field B, then the updated probability for the 

frequency of good wells in Field B is obtained from Bayes’ Theorem as follows: 

 

𝑃 (𝐹𝐵 = 𝑓𝐵𝑖|
x𝐴 out of n𝐴 good wells in Field A
x𝐵 out of n𝐵 good wells in Field B

)

=

{
[P(x𝐴/n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 = 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 = 𝐵)] +
[P(x𝐴 / n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 ≠ 𝐵)]

}

∑ {
[P(x𝐴 / n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 = 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 = 𝐵)] +

[P(x𝐴 / n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 ≠ 𝐵)]
}𝑎𝑙𝑙 𝑓𝐵𝑖

 

(5-6) 

where the likelihood of obtaining the combined set of data if the two fields are the 

same is 

 

𝑃(x𝐴/n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 = 𝐵)

= {[
n𝐴!

x𝐴! (n𝐴 − x𝐴!)
] f𝐴𝑗

𝑥𝐴  (1 − 𝑓𝐴𝑗)
𝑛𝐴−𝑥𝐴

 }

× {[
n𝐵!

x𝐵! (n𝐵 − x𝐵!)
] f𝐵𝑖

𝑥𝐵  (1 − 𝑓𝐵𝑖)𝑛𝐵−𝑥𝐵  } 
(5-7) 

and the likelihood of obtaining the individual data sets for each field if the two 

fields are different is 

 

𝑃(x𝐴/n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)

= P(x𝐴/n𝐴|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)

× {[
n𝐵!

x𝐵! (n𝐵 − x𝐵!)
] f𝐵𝑖

𝑥𝐵  (1 − 𝑓𝐵𝑖)𝑛𝐵−𝑥𝐵  } 
(5-8) 



 

144 
 

 

Figure 5.11 shows the value of perfect information about the frequency of good 

wells in the new play (Field B) versus the break-even frequency for an example case with 

a large quantity of data from an analogous field (Field A). The data from Field A 

comprise 25 good wells in a field of 100 total wells. 

 

Figure 5.11. Value of perfect information about frequency for new play Field B versus 

the break-even frequency for Field B for different degrees of relevancy of data from 

analog Field A 

If the data from analogous Field A are relevant, or 𝑃(𝐴 = 𝐵) = 1, then frequency 

of good wells in the new play Field B is very unlikely to be significantly different than 

25/100 or 0.25 and there is essentially no value from additional information in the new 

play because the new data re not likely to change the development decision. Decision 

Entropy Theory, 𝑃(𝐴 = 𝐵) = 1/2 , strikes a balance between relying entirely on the 

historical data, 𝑃(𝐴 = 𝐵) = 1, versus not relying on it at all, 𝑃(𝐴 = 𝐵) = 0 (Figure 
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5.11). This balance is particularly significant for cases where the new data from Field B 

contradict the analogous data with frequencies that are significantly greater than that from 

Field A (0.25). Decision Entropy Theory incorporates the previous experience while 

keeping the door open for possibilities that the new field will be something different than 

previous experience. 

Figure 5.13 shows examples of the prior and updated probability distributions for 

the frequency of good wells in Field B after a number of test wells have been drilled in 

Field B for different results. These results demonstrate how the information from the 

analogous Field A takes on greater weight when the information from play Field B is 

consistent, while it takes on less weight when the information from Field B is 

inconsistent. To emphasize this point, the updated probability that the two fields are the 

same is included in Figure 5.13; this probability is obtained from Bayes’ Theorem as 

follows 

 

𝑃 (𝐴 = 𝐵|
x𝐴 out of n𝐴 good wells in Field A
x𝐵 out of n𝐵 good wells in Field B

)

=
∑ P(x𝐴/n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 = 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 = 𝐵)𝑎𝑙𝑙 𝑓𝐵𝑖

∑ {
[P(x𝐴 / n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 = 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 = 𝐵)] +

[P(x𝐴 / n𝐴, x𝐵/n𝐵|f𝐵𝑖 ∩ 𝐴 ≠ 𝐵)𝑃(𝐹𝐵 = 𝑓𝐵𝑖)𝑃(𝐴 ≠ 𝐵)]
}𝑎𝑙𝑙 𝑓𝐵𝑖

 

(5-9) 

In the case when there are numerous data from Field B that are inconsistent with 

those from Field A (e.g., the lower left plot in Figure 5.13 where 50 of 100 wells in Field 

B are good but 25 of 100 wells in Field A were good), the updated probability that the 

fields are the same is reduced significantly and the data from Field A play very little role 

in the updated probability distribution for the frequency of good wells in Field B. 
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Figure 5.12. Distribution for frequency of good wells updated with data from analog 

Field A and from play Field B; Top: Prior distribution from analog data alone; Bottom: 

Posterior distribution with small number of test wells from play and results that are 

consistent with the analog 
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Figure 5.13. Distribution for frequency of good wells updated with data from analog 

Field A and from play Field B; Top: Posterior distribution with larger number of test 

wells from play and results that are not consistent with the analog; Bottom: Posterior 

distribution with equal number of wells from play as from analog and results that are not 

consistent with the analog 
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Figure 5.14 shows examples of the value of information versus the number of test 

wells in Field B. This value depends on the break-even frequency of good wells for Field 

B and the available data from Field A. 

 

Figure 5.14. Value of information versus number of test wells in plays with different 

return-on-investment ratios 

5.6 DISCUSSION 

A practical principle arising from Decision Entropy Theory is that it is helpful to 

consider a decision from the top-down concerning the possibilities of preferring one 

decision alternative to another, also the possible gains or losses associated with each 

alternative. In this way, the set of possibilities in a decision is well defined and not 

constrained by experience. We will either prefer one alternative to another or not. It is not 

necessary to develop from the bottom up all the possible scenarios of variables affecting 
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the decision that lead to one alternative being preferred. In this way, we can 

accommodate possibilities that are beyond our experience. 

The value of a top-down perspective is illustrated in Figure 5.15. The profit for an 

unconventional play with gas wells is shown in Figure 5.15 as a function of the median 

value for the initial well production and a normalized metric for the commodity price of 

natural gas. The combinations of well performance and gas price leading to a profitable 

play are colored green, while those leading to an unprofitable play are colored red. Figure 

14b shows the joint prior probability distribution for initial production and normalized 

gas price obtained from Decision Entropy Theory. The ridge in this joint distribution 

corresponds to the break-even combinations of these variables. The non-uniform shape of 

the prior joint probability distribution for initial well production and gas price reflects the 

non-linear relationship between these variables and the decision outcome. For example, 

the profit for the play reaches an asymptote as the median initial production rate increases 

because the potential profits become constrained by the distribution system and market 

demand. Possibilities for relatively high gas prices beyond experience are captured in this 

prior probability distribution without having to develop and assess probabilities for 

unprecedented scenarios that lead to those high prices. 
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Figure 5.15. Example of establishing non-informative prior probability distribution with 

Decision Entropy Theory for unconventional play with gas wells 
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Another practical principle arising from Decision Entropy Theory is to be careful 

with the starting point in assessing probabilities for the input variables in a decision. In 

theory, the prior state should represent the case of having no information; information can 

then be used to update this prior state via Bayes’ theorem. One reasonably common 

approach of maximizing uncertainty in the input variables, i.e., maximizing the entropy 

of their probability distribution, is not rational, consistent or even practical. It is not 

rational because different variables affect a decision in different ways. Journel and 

Deutsch (1993) demonstrate the lack of rationality very clearly with the spatial variability 

of permeability in a reservoir: the maximum entropy in the probability distribution for the 

permeability field (i.e., lots of randomness with very little spatial structure or correlation 

in extreme high or low permeabilities) produces relatively small variation and therefore 

uncertainty in well production across the field, while little entropy in the probability 

distribution for the permeability field (i.e., lots of structure with channels of high 

permeabilties and zones of low permeabilities) produces relatively large uncertainty in 

well production. This approach of uniform prior probability distributions for input 

variables is inconsistent; a uniform probability distribution for the permeability is 

different than one for the logarithm of permeability. This approach also is not practical 

when dealing with multiple input variables; if we extended the example in this paper to 

include three possible outcomes for the wells, “good, mediocre and bad,” then a uniform 

probability distribution for one of these frequencies precludes a uniform probability 

distribution for the other two frequencies. Finally, the example in this paper illustrates 
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how a uniform prior probability distribution can undervalue information (e.g., Figure 5.8 

and Figure 5.9). 

The examples presented in this paper were highly simplified to be clear. The 

examples would be more realistic if there were: 

• More than two possible outcomes for each well, such as a range of 

cumulative production rates; 

• Uncertainty in the investment cost and return; 

• Different and multiple types of information about reservoir productivity, 

such as exploration data and short-term and localized well tests as well as production well 

data; 

• Spatial and temporal correlations between wells, such as sweet spots or 

learning curves; and 

• More than two possible cases of analog data being relevant or not, such as 

accommodating different correlative strengths between the analog data and the new field. 

5.7 CONCLUSIONS 

Unconventional plays have considerable uncertainty in production and 

economics. This paper proposes Decision Entropy Theory to represent uncertainty in an 

objective and defensible way, such that rare but important possibilities are not neglected 

in making decisions. This theory characterizes uncertainty in the context of making a 
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decision; the case of maximum uncertainty corresponds to the maximum entropy for the 

possible outcomes of the decision. 

The theory is applied to assessing the value of information from test wells for an 

unconventional play. The decision to develop a play is posed in terms of the the cost of 

development, the ratio of the return-on-investment for productive (“good”) wells in the 

play, and the uncertain frequency of good wells in the play. Results for the value of tests 

wells are obtained and provided graphically in non-dimensional relationships for a 

variety of cases, including a finite and infinite number of test wells and incorporating 

data from an analogous play. The following conclusions are drawn from this application: 

1. The probability distribution for the uncertain frequency of productive 

wells is important both for deciding whether or not to develop a play and for the value of 

information from test wells.  

2. It is unreasonable to assume that the probability distribution for the 

frequency of productive wells can be established based entirely on experience because 

that precludes the possibility of events beyond our experience, which can be particularly 

important with unconventional plays. 

3. The value of test wells is enhanced when leaving open the possibilities for 

profit on a play with a small return-on-investment ratio and the possibility for loss on a 

play with a large return-on-investment ratio.  
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4. There is a balance between relying entirely on historical data from 

analogous plays versus not relying on them at all. Within this balance, information for 

test wells at a new play can be combined with information from analogous plays to 

inform the decision about developing the new play. 

5. The value test of wells at a new play depends on the break-even frequency 

of good wells in the play; in the case of no information, this value is a maximum when 

the break-even frequency is 50 percent. 

There is significant room to extend this simplified example to more realistic 

cases. 
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 Achieving Reliability in the Face of Extreme Uncertainty 

 

This chapter presents the research material published in 5APSSRA, Symposium on 

Structural Reliability and its Applications, which aims at providing a theoretical approach 

for recommending a rate of occurrence of a natural hazard for designing a structure to 

reliably withstand the recommended magnitude of the hazard. The article is the first 

published document, in which we label the collection of axioms we have used in our 

analysis “Decision Entropy Theory.”   

6.1 INTRODUCTION 

Extreme uncertainty is the possibility of events that are beyond the range of 

experience. In probabilistic terms, it is the possibility of an event that is considered 

extremely unlikely or even impossible in establishing the sample space of possibilities. 

In the popular literature, Taleb (2007) refers to possibilities of extreme 

uncertainty as “Black Swan” events: “Before the discovery of Australia, people in the Old 

World were convinced that all swans were white, an unassailable belief as it seemed 

completely confirmed by empirical evidence… [The sighting of the first black swan] 

illustrates a severe limitation to our learning from observations or experience and the 

fragility of our knowledge. One single observation can invalidate a general statement 

derived from millennia of confirmatory sightings of millions of white swans.” The United 

States Secretary of Defense, Donald Rumsfeld, referred to extreme uncertainty as 

“unknown unknowns” in a famous press conference during the lead up to the invasion of 
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Iraq (DOD 2002): “There are known knowns. These are things we know that we know. 

There are known unknowns. That is to say, there are things that we know we don't know. 

But there are also unknown unknowns. There are things we don't know we don't know.” 

The world is filled with recent examples of extreme uncertainty. The storm surge 

in 2005 during Hurricane Katrina was almost 50-percent larger than the maximum storm 

surge that had ever been recorded along the Gulf Coast of the United States, it was well 

above the “extreme” conditions that were used to design the levee system, and it resulted 

in nearly 2,000 deaths. The magnitude of the 2011 Japanese earthquake was larger than 

anything in the historical record for that region, it was larger than what was expected to 

be the maximum possible, and it resulted in nearly 20,000 deaths. The 2008 banking 

crisis in the United States was unprecedented, it was well outside the range of 

possibilities considered in public policy, and it resulted in the worst economic conditions 

in the United States since the 1930’s. 

A specific example of extreme uncertainty is illustrated in Figure 6.1. For the first 

50 years of offshore energy production in the Gulf of Mexico, from approximately 1950 

to 2003, the largest hurricane waves impacting the offshore facilities were less than 26 m. 

Based on these data, the “100-year” design wave height was about 22 m. Then, five 

major hurricanes occurred between 2004 and 2008, and four of them had wave heights 

greater than the largest height that had ever occurred before (Figure 6.1). The impact of 

these unprecedented hurricanes was extensive. Figure 6.2 shows how five times as many 

offshore structures were destroyed in the past five years as in the entire previous history 

of operations. Based on a simple extrapolation of these new data for wave heights, the 
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new “100-year” wave height is now over 26 m (Figure 6.1). Since the force on a fixed 

offshore structure is approximately proportional to the square of the wave height, the new 

“100-year” loads are nearly 50-percent greater than before based on just five years-worth 

of data. 

 

Figure 6.1. Data for wave heights from hurricanes in the central Gulf of Mexico 

0.001

0.01

0.1

1

0 10 20 30 40

A
nn

ua
l F

re
q

ue
n

cy
 o

f 
Ex

ce
ed

an
ce

 p
er

 S
to

rm
 W

id
th

Maximum Wave Height (m)

1950-2008

1950-2003



158 
 

 

 

Figure 6.2. Impact of hurricanes on energy production facilities in Gulf of Mexico 

The purpose of this paper is to propose a mathematical theory, Decision Entropy 

Theory, as a logical and defensible means to address extreme uncertainty. The basis for 

the theory is first described, and then an illustrative example is presented to demonstrate 

its use and significance. 

plays are production opportunities with the potential for considerable uncertainty 

in production and economics. While trying to reduce production uncertainty with well 

tests may be valuable, there is a tradeoff between the quantity and quality of the 

information and its potential to improve development decisions. This paper proposes a 

new approach to represent uncertainty in an objective and defensible way, such that rare 

but important possibilities are not neglected in making decisions. This approach is called 

Decision Entropy Theory. 
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6.2 DEFINITION OF PROBLEM 

The motivation for developing Decision Entropy Theory is that it is impossible to 

construct a sample space (the set of all possibilities) without knowing the set of all 

possibilities. That is, we cannot explicitly account for a black swan if we do not know it 

is possible. To demonstrate mathematically, consider an event of interest, F = failure of a 

civil engineering system, and an initial or prior sample space S that contains the set of all 

possible loading conditions on our system based on our experience. Let’s say that 

subsequently a loading condition, E, occurs that is outside our prior sample space because 

it was outside our base of experience (Figure 6.3). There are two implications of this 

situation. First, the updated probability of E given that it has occurred is not defined since 

𝑃(𝐸|𝐸𝑆) =
𝑃(𝐸|𝐸𝑆)𝑃(𝐸|𝑆)

𝑃(𝐸|𝑆)
=

0

0
, which is nonsensical since E has occurred. Second, the 

probability of failure would have been under assessed if 𝑃(𝐹|𝑆) < 𝑃(𝐹|𝐸) (Figure 6.3). 

 

Figure 6.3. Example Venn diagram for sample space, S, that neglects the possibility of 

event E. 

 
S E 

F 
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The prior sample space can be updated with available information, denoted the 

event I, using Bayes’ Theorem: 

 

𝑃(𝐸|𝐼𝑆) =
𝑃(𝐼|𝐸𝑆)𝑃(𝐸|𝑆)

𝑃(𝐼|𝑆)
 

(6-1) 

where 𝑃(𝐼|𝐸𝑆) is the likelihood of observing the available information given E 

and 𝑃(𝐸|𝑆) is the prior probability of the event E. The prior probability of the event E is 

not conditioned on information. While these probabilities are non-informative, they are 

important because they affect the updated probabilities as information is incorporated. 

To demonstrate the significance of prior probabilities, consider assessing the 

annual frequency that the wave height will exceed 30 m based on the data in Figure 6.1. 

If wave height exceedances follow a Poisson Process, then the likelihood of observing the 

available information (no exceedances in the past 60 years) is shown as a function of the 

mean rate of occurrence, 30, in Figure 6.4. Two alternative prior probability distributions 

for 30 are shown in Figure 6.5: a uniform distribution for 30 from zero to infinity (a 

diffuse prior) and a uniform distribution for log (30) from zero to infinity. Figure 6.6 

shows the significance of the prior probability distribution in the updated or posterior 

probability distribution; two very different decisions might result from one versus the 

other updated probability distribution. 
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Figure 6.4. Likelihood function for mean occurrence rate of maximum wave height 

exceeding 30 m given no occurrences in 60 years 

 

Figure 6.5. Alternative prior probability density functions for mean occurrence rate of 

maximum wave height exceeding 30 m 
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There is no theoretical, consistent and rational basis for either of the assumed 

prior probability distributions in Fig. 5 (e.g., Keynes 1921). Information theorists, such as 

Jaynes (1957), argue that the uniform distribution for 30 maximizes the entropy for this 

variable. However, that argument does not address why we would maximize the entropy 

of 30 versus log(30), since the mean occurrence rate varies over many orders of 

magnitude and the probability of no occurrences in an interval t is 𝑒−𝜈30𝑡. Bayesian 

decision analysts, such as Luce and Raiffa (1957), argue that there is always some 

information, so the starting point in Bayes’ theorem is a subjective prior probability 

distribution that implicitly contains some information. However, that argument does not 

address that our “information” is limited and may inadvertently neglect the Black Swan. 

Classical statisticians, such as Fisher (1935), argue that there is no defensible basis for a 

non-informative prior, that Bayes’ theorem is not of practical use, and that we can only 

establish the likelihood function and not the updated probability distribution for 30. 

However, that argument is not helpful because information about the probabilities for 

different values of the mean occurrence rate is needed to make design decisions. 
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Figure 6.6. Alternative updated cumulative distribution functions for mean occurrence 

rate of maximum wave height exceeding 30 m given no occurrences in 60 years 

6.3 DECISION ENTROPY THEORY 
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1) The decision can be right or it can be wrong. If decision alternative A1 is selected 

and compared to another alternative that could have been selected, A2, then there 

are two possibilities: either A1 is preferred to A2 (𝐴1  ≻  𝐴2) or A1 is not preferred 

to A2 (𝐴1  ≼  𝐴2). 

2) If a decision alternative is selected, a particular value of utility can be gained or 

lost in comparison to having selected another alternative. If A1 is selected and 

preferred to A2, then all possible positive values of utility difference between A1 

and A2, Δ𝑢1,2 where Δ𝑢1,2 > 0, characterize the set of possibilities in this subset 

of the sample space. Likewise, if A1 is selected and not preferred to A2, then all 

possible non-positive values of utility difference between A1 and A2, Δ𝑢1,2 where 

Δ𝑢1,2 ≤ 0, characterize the set of possibilities in this subset of the sample space. 

 Non-Informative Probabilities 

Non-informative probabilities for a decision comparing two alternatives, A1 and 

A2, are established in Decision Entropy Theory from two axioms that characterize the 

case of “no information:” 

1) The selected alternative is equally probable to be preferred or not compared to 

another alternative: 𝑃(𝐴1 ≻ 𝐴2) = 𝑃(𝐴𝑖 ≼ 𝐴𝑗) = 1 2⁄ . 

2) If the selected alternative is preferred to another alternative, the possible gains in 

utility are equally probable: 𝑃(Δ𝑢1,2|𝐴1  ≻  𝐴2) = 1 nΔ𝑢1,2|𝐴1≻𝐴2
⁄ , where 

nΔ𝑢1,2|𝐴1≻𝐴2
 are the number of possible values for Δ𝑢1,2 where Δ𝑢1,2 > 0.   
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Likewise, if the selected alternative is not preferred to another alternative, the 

possible non-gains in utility are equally probable: 

𝑃(Δ𝑢1,2|𝐴1  ≼  𝐴2) = 1 nΔ𝑢1,2|𝐴1≼𝐴2
⁄   where nΔ𝑢1,2|𝐴1≼𝐴2

 are the number of 

possible values for Δ𝑢1,2 where Δ𝑢1,2 ≤ 0. 

These axioms maximize the entropy for the possible states of a decision, meaning 

that a lack of information is equivalent to an equal or uniform probability of realizing any 

possible decision outcome. 

 Implementation of Utility Theory  

Decision Entropy Theory establishes non-informative prior probabilities for 

differences in utility between possible decision alternatives, 𝑃(Δ𝑢1,2). The expected 

utility difference between the alternatives is calculated as follows: 

 

𝐸(Δ𝑢1,2) =    ∑ Δ𝑢1,2𝑃(Δ𝑢1,2)

nΔ𝑢i,j

 

(6-2) 

where nΔ𝑢1,2
= nΔ𝑢1,2|𝐴1≻𝐴𝑗2

+nΔ𝑢1,2|𝐴1≼𝐴2
. Following Utility Theory, the decision 

alternative that is preferred will have the largest expected utility difference [note that 

𝐸(Δ𝑢1,2) =  −𝐸(Δ𝑢2,1). For a decision with nA alternatives, preference is measured by 

the expected utility difference between each alternative and all other possible 

alternatives: 

 

𝐸(Δ𝑢i,all j) =    ∑ 𝐸(Δ𝑢i,j)(1 𝑛𝐴⁄ )

𝑛𝐴

𝑗=1

 

(6-3) 
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where 𝐸(Δ𝑢i,i) =  0. The preferred Alternative i has the largest value of 

𝐸(Δ𝑢i,all j). 

6.4 RELIABILITY-BASED DESIGN EXAMPLE 

The current design basis for offshore platforms in the Gulf of Mexico is in 

question given the recent data from hurricanes (Figure 6.1). The maximum wave height 

used for design is designated hD. The platforms are designed with a factor of safety of 

1.5. Since the load is approximately proportional to the square of the wave height, the 

capacity of the platform corresponds to a wave height that is √1.5 times the design value. 

For simplicity, it will be assumed that failure will occur if the maximum wave height 

exceeds the ultimate design capacity, ℎ > √1.5ℎ𝐷, where √1.5ℎ𝐷 will be referred to as 

the ultimate design capacity wave height. The average annual cost for operating a 

platform, 𝐶(ℎ𝐷), is simplistically given by the following: 

 
𝐶(ℎ𝐷) = 𝐶𝐼(ℎ𝐷) + (1 − 𝑒−𝜈𝐷)𝐶𝐹 (6-4) 

where 𝐶𝐼(ℎ𝐷) is the annualized implementation cost, 𝐶𝐹 is the cost if the 

maximum wave height exceeds the capacity, and 𝜈𝐷 is the annual rate that the wave 

height will exceed the ultimate design capacity, i.e., the annual rate for ℎ > √1.5ℎ𝐷. 

A decision tree for this problem is shown in Figure 6.7. The annualized 

implementation cost is assumed proportional to the design load or to the square of the 

design wave height, 𝐶𝐼(ℎ𝐷) ∝ ℎ𝐷
2 . The existing state of practice corresponds to a design 

maximum wave height of 22 m, which will be designated ℎ𝐷∗ where ℎ𝐷∗ = 22 𝑚. The 
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cost of any alternative design capacity wave height can then be normalized by the 

annualized implementation cost for the existing state of practice: 

 

𝐶(ℎ𝐷)

𝐶𝐼(ℎ𝐷∗)
= (

ℎ𝐷

ℎ𝐷∗
)

2

+ (1 − 𝑒−𝜈𝐷)
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
 

(6-5) 

The utility for each alternative ultimate design capacity wave height is set equal to 

the negative of the normalized annualized cost, −
𝐶(ℎ𝐷)

𝐶𝐼(ℎ𝐷∗)
. 

 

Figure 6.7. Decision tree comparing alternatives for design wave heights 

 Non-Informative Sample Space for Wave Heights 

The non-informative sample space for wave heights, specifically the annual rate 

that the ultimate capacity wave height will be exceeded or 𝜈𝐷, will depend on the 

decision alternatives being compared. Consider a comparison between maintaining the 

existing practice, ℎ𝐷1 = ℎ𝐷∗ = 22 𝑚, versus increasing the design wave height to 26 m, 

ℎ𝐷2 = 26 𝑚. The difference in utility values between these two alternatives, 
−𝐶(ℎ𝐷1)

𝐶𝐼(ℎ𝐷∗)
−

 A1: hD1 

A2: hD2 

D1  

D2  



168 
 

 

−𝐶(ℎ𝐷2)

𝐶𝐼(ℎ𝐷∗)
, is plotted versus 𝜈𝐷1 and 𝜈𝐷2 in Figure 6.8 for a normalized failure cost of 

𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 20. 

 

Figure 6.8. Difference in utility values for two alternative design wave heights, hD1 = 22 

m and hD2 = 26 m, versus the annual frequencies that the platform capacity is exceeded 

for each design wave height 

There are several important features in Figure 6.8. First, combinations where 𝜈𝐷2 

is greater than 𝜈𝐷1 are not possible since ℎ𝐷2 > ℎ𝐷1. Second, the combinations of 

(𝜈𝐷1, 𝜈𝐷2) where the utility difference is greater than zero are combinations for which 

design wave height ℎ𝐷1 is preferred to ℎ𝐷2, while combinations of (𝜈𝐷1, 𝜈𝐷2) where the 

utility difference is less than or equal to zero are combinations for which  ℎ𝐷1 is not 

preferred to ℎ𝐷2. Third, the utility difference approaches asymptotic values at the corners: 

the utility difference approaches − (
ℎ𝐷1

ℎ𝐷∗
)

2

+ (
ℎ𝐷2

ℎ𝐷∗
)

2

 when 𝜈𝐷1 = 𝜈𝐷2, while it approaches 

− (
ℎ𝐷1

ℎ𝐷∗
)

2

+ (
ℎ𝐷2

ℎ𝐷∗
)

2

−
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
 when 𝜈𝐷1 approaches infinity and 𝜈𝐷2 approaches zero. 
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Figure 6.9. Non-informative sample space for utility differences in decision between two 

alternative design wave heights, hD1 = 22 m and hD2 = 26 m 

The non-informative sample space for all possible combinations of (𝜈𝐷1, 𝜈𝐷2) is 

constructed following the axioms of Decision Entropy Theory such that the probability 

that an alternative will be preferred is equal (50 percent for each alternative) and the 

possible values for the utility differences are equally probable (Figure 6.9). The resulting 

sample space is shown in Figure 10. Due to the complexity of the relationship between 

utility difference and (𝜈𝐷1, 𝜈𝐷2), the non-informative prior probabilities were calculated 

by discretizing (𝜈𝐷1, 𝜈𝐷2) into small areas. This non-informative sample space reflects 

the joint utility function versus (𝜈𝐷1, 𝜈𝐷2) (Figure 6.8) in that there is a ridge dividing the 

combinations of (𝜈𝐷1, 𝜈𝐷2) where one alternative would be preferred over the other 

(Figure 6.10) and the slope of the prior is inversely proportional to the slope of the utility 

difference versus (𝜈𝐷1, 𝜈𝐷2), leading to spikes in the prior probability distribution where 
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there are plateaus in the utility difference versus (𝜈𝐷1, 𝜈𝐷2) (Figure 6.10). The non-

informative prior probability distribution is not uniform and it contains complex, high-

order relationships between 𝜈𝐷1 and 𝜈𝐷2. 

 

Figure 6.10. Non-informative sample space (prior probability distribution) for annual 

frequencies that the platform capacity is exceeded, (𝜈𝐷1, 𝜈𝐷2), in decision between two 

alternative design wave heights, hD1 = 22 m and hD2 = 26 m 

 Updated Sample Space with Historical Wave Height Data 

The likelihood function for combinations of (𝜈𝐷1, 𝜈𝐷2) is shown in Figure 6.11 

based on the 60-year long historical record (Figure 6.1). This likelihood function is 

developed assuming that exceedances of ℎ𝐷1 and ℎ𝐷2 each follow a Poisson process with 
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a mean occurrence rate of 𝜈𝐷1 and 𝜈𝐷2, respectively, and that the events of exceeding ℎ𝐷2 

given that ℎ𝐷1 has been exceeded are independent: 

 

𝑃(𝑥1 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 ℎ𝐷1 𝑎𝑛𝑑 𝑥2 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 ℎ𝐷2 𝑖𝑛 60 𝑦𝑒𝑎𝑟𝑠)

≅ [
60!

𝑥1! (60 − 𝑥1)!
𝜈𝐷1

𝑥1(1 − 𝜈𝐷1)60−𝑥1]

× [
𝑥1!

𝑥2! (𝑥1 − 𝑥2)!
𝜈2

𝑥2(1 − 𝜈𝐷2)𝑥1−𝑥2]        𝑓𝑜𝑟 ℎ𝐷1

< ℎ𝐷2 𝑎𝑛𝑑  𝜈𝐷2 ≤ 𝜈𝐷1 

(6-6) 

where this approximation is most reasonable for small values of 𝜈𝐷1 and 𝜈𝐷2, less 

than about 0.1 per year. 

 

Figure 6.11. Likelihood function for combinations of (𝜈𝐷1, 𝜈𝐷2) based on historical 

record for the number of exceedances of hD1 = 22 m and hD2 = 26 m in the past 60 years. 
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Figure 6.12. Updated sample space (posterior probability distribution) for annual 

frequencies that the platform capacity is exceeded, (𝜈𝐷1, 𝜈𝐷2), given historical data in 

decision between two alternative design wave heights, hD1 = 22 m and hD2 = 26 m. 

The updated sample space (posterior probability distribution) for all possible 

combinations of (𝜈𝐷1, 𝜈𝐷2) given the historical data, obtained through Bayes’ theorem, 

Eq. (6-1), is shown in Figure 6.12. This updated distribution reflects both the non-

informative prior sample space (Figure 6.10) as well as the historical data (Figure 6.11). 

The ridge in the prior probability distribution dividing the regions where one alternative 

is preferred over the other is still clearly visible in the posterior probability distribution 

(Figure 6.12). In addition, the posterior probability distribution emphasizes the 

possibilities where the rate of exceedance for the conventional design, 𝜈𝐷1, is similar to 

that for the alternative design, 𝜈𝐷2, (in which case the conventional design is preferred) 
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and possibilities where 𝜈𝐷1 is substantially larger than 𝜈𝐷2 (in which case the alternative 

design is preferred).  

For the updated sample space (Figure 6.12), the expected utility difference 

between hD1 = 22 m and hD2 = 26 m is +0.05, indicating that the ultimate design capacity 

wave height of 22 m is preferred compared to the ultimate design capacity wave height of 

26 m for this normalized failure cost of  
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 20. 

 Results of Decision Analysis for Design Wave Height 

The expected utility differences between the standard of practice, hD1 = 22 m, and 

a variety of alternatives for hD2 are shown for different normalized failure costs in Figure 

6.13. Note that each possible combination of a failure cost and an alternative design wave 

height corresponds to a different prior sample space for of 𝜈𝐷1 and 𝜈𝐷2 (e.g., Figure 6.10 

shows it for 
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 20 and hD2=26 m). When the expected utility difference between 

the standard of practice and an alternative design is positive, the standard of practice is 

preferred; when the expected utility difference is negative, the alternative is preferred. 

The shapes of the curves for expected utility difference versus the alternative design 

wave height reflect the effect of the historical data; the numbers of historical events 

where different design ultimate capacity wave heights have been exceeded, , ℎ >

√1.5hD, are identified in Figure 6.13. 
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Figure 6.13. Expected utility difference for standard of practice (hD1 = 22 m) compared to 

a range of alternative values for the ultimate design capacity wave height, hD2. 

For a small failure cost, 
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 0.01, the alternative with the lower 

implementation cost is always preferred because the expected cost of failure is negligible 

for all alternatives (i.e., the expected utility difference is negative for ℎ𝐷2 < ℎ𝐷1 and 

positive for ℎ𝐷2 > ℎ𝐷1 in  Figure 6.13). For the larger costs of failure, 
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 20 and 

𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 40, the standard of practice is preferred to alternatives with lower design wave 

heights from 20 to 22 m, while the alternative design wave heights greater than the 

standard are preferred up to a point (Figure 6.13) due to the contribution of the risk of 

failure to the expected utility. However, as the alternative design wave height continues 

to increase, the expected utility difference eventually crosses zero and the standard of 
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practice is preferred to the alternative due to the increasing cost of implementation for 

higher design wave heights. This threshold corresponds to an alternative design wave 

height of about 25 m for 
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 20 and to an alternative of about 28 m for 

𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 40 

(Figure 6.13). 

 

Figure 6.14. Comparison of results from Decision Entropy theory with those from a 

statistical extrapolation of the historical data. 

The results from Decision Entropy Theory are compared in Figure 6.14 with those 

from a statistical extrapolation of the historical data (i.e., estimating 𝜈𝐷 as a function of 

√1.5ℎ𝐷 from the trend-line in Figure 6.1). The two approaches give significantly 

different results for this cost ratio, 
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
= 20. Decision Entropy Theory leads to using a 

more conservative design wave height (i.e., ℎ𝐷1 is preferred for ℎ𝐷1 > ℎ𝐷2 and ℎ𝐷2 is 
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preferred for 22 𝑚 < ℎ𝐷2 < 25 𝑚), while a statistical extrapolation of the data leads to 

the opposite conclusion (Figure 6.14). Therefore, in this particular example, the 

establishment of a non-informative prior probability distribution for the mean occurrence 

rates of wave heights using Decision Entropy Theory puts greater emphasis on the 

possibility of large waves (e.g., see Figure 6.10 and Figure 6.12) that have not (yet) 

occurred in the historical record and results in a more conservative design decision. Note 

that the two approaches will ultimately lead the same result when an infinite amount of 

data is available to estimate wave height frequencies. 

In order to identify the optimal value for the ultimate design capacity wave height, 

all of the various alternatives (including and excluding the standard of practice) are 

compared in a pair-wise fashion, see Eq. (6-3). The results for this design example 

indicate that for large costs of failure, 
𝐶𝐹

𝐶𝐼(ℎ𝐷∗)
 greater than about 50, the preferred value for 

the ultimate design wave height is just above 24 m or about 2 m greater than the standard 

of practice. The significance of 24 m is that it corresponds to an ultimate capacity wave 

height of √1.5(24 𝑚) = 29.5 𝑚, which is the largest event that has occurred in the 

historical record (see Figure 6.1). This result highlights the importance of an adaptable 

design approach in the face of extreme uncertainty. The preferred design wave height is 

sensitive to the historical data because it is governed by the largest observed wave height, 

meaning that the preferred design wave height will change with time and should not be 

considered as a static value in design codes. In addition, existing structures designed 

using lower wave heights may need to be upgraded over their design lives to increase 

their capacity based on new information. 
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6.5 CONCLUSIONS 

Decision Entropy Theory is proposed here as a logical and defensible means to 

address extreme uncertainty, the possibility of events that are beyond the range of 

experience. The proposed theory provides a basis to establish a non-informative prior 

sample space for uncertain variables in a decision. In the non-informative prior sample 

space, there is an equal probability of being right or wrong in making a decision, and 

there is an equal probability of realizing the range of possible losses or gains from that 

decision. This non-informative sample space is then updated with any available 

information through Bayes’ theorem. 

An illustrative example for selecting the appropriate design wave height for 

offshore structures highlights the following points: 

• The prior sample space depends on the decision, meaning that the importance of 

extreme uncertainty depends on its consequences to the decision and the 

availability of feasible decision alternatives to compensate for these 

consequences. 

• The prior sample space emphasizes the possibilities that distinguish two 

alternatives from one another, such as differences in the mean occurrence rates for 

the wave heights that will cause failure for different design alternatives. 

• The prior sample space can affect a design decision, even when substantive data 

are available to inform (update) this sample space. In this example, a statistical 

extrapolation from 60 years of data for wave heights would lead to a less 
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conservative decision than is obtained by incorporating these data within the 

context provided by Decision Entropy Theory. 

• Adaptability is a key principle in achieving reliability in the face of extreme 

uncertainty. This example demonstrates that the optimal value for the design wave 

height can be sensitive to the available data, meaning that design codes and design 

products that can be readily adapted based on new information or data are needed. 
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 Conclusions and Suggestions 

 

After presenting the conclusions from the work, a set of suggestions are being 

offered to further develop the investigated topics in the future. 

7.1 CONCLUSIONS  

The following summarizes the outcomes of the study in relation to the intended 

objectives of the investigation, as described in the introduction to the dissertation. 

 Philosophical Foundations of Probability 

The first objective of the study was to establish the philosophical grounds for the 

probabilistic computational theory under development, and to provide the theory with 

clear and precise conceptual foundations. The importance of conceptual foundations is 

due to the irreconcilable divergences among opposing assessment methods, who all use 

measures termed as probability, but in different senses. Clarifying the sense of probability 

in a procedure not only makes the method more meaningful to its users, but more relevant 

and beneficial to theoreticians of other procedures, who may then see the method as 

plausible and incorporate the procedure and/or its technical innovations in their own 

developments. 

The review and the evaluation of the existing philosophical positions regarding 

probability revealed that while philosophers have been able to develop a number of 

senses for the term probability, they have not succeeded in presenting a comprehensive 

account of probability and in assisting others to benefit from the assortment of 
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probabilistic methods without compromising consistency and meaningfulness. Since 

various probability interpretations, including classic, frequency, propensity, logical, and 

subjective, have remained unconnected, many users who apply procedures developed by 

various schools of thought, usually do so in an instrumentalist approach and without 

considerations for the consistency of the senses implicit in those methods. 

To present a comprehensive sense for the concept of probability, I embarked in a 

philosophical inquiry aimed at finding a more fundamental concept that can connect the 

diverging senses. While the sought-for concept may not yield a univocal definition of 

probability, it may clarify the commonalities and the differences among various senses in 

its own terms. As a result of the inquiry, I came to find “process” as the most 

fundamental concept, which can play the desired role of conceptual integration by seeing 

the senses of probability from a process-centered perspective.  

I divided probability senses into three types of propensity, possibility, and 

credibility, and gave a process-centered definition for each type. While propensity and 

possibility values make empirically-refutable assertions about certain natures of a 

process, as observed or postulated to be so, credibility values are (means for) assessment 

of the first two, and result from a humanly devised inductive process, established to 

reflect our lack of knowledge. I distinguished Bayesian priors as prime examples of 

credibilities. 

As the focus of the probabilistic computational theory under development is 

Bayesian priors, I directed the investigation toward the nature and the character of 

credibilities. By declaring credibility values to be the outcomes of human imagination 
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and non-perceivable, I concluded that no subjective credibility assignment can be refuted 

by empirical observations. Nevertheless, I warned that credibilities assigned by a subject 

might not be acceptable to others and if the aim of the induction is to provide with 

admissible assessments, the subject must use an agreed-upon assessment process 

including approved credibilities. 

 Philosophical Foundations of Objective Mathematical Assessment of Actions 

While the study was not originally aimed at developing a general epistemological 

theory that elaborates on the subjects of human understanding, along the natural 

progression of my inquiry, I came to the conclusion that it is very difficult to establish 

clear and precise philosophical foundations for probability without addressing a suite of 

concepts more fundamental to human understanding. To explain the philosophers’ failure 

to clarify the concept of probability, attested by declarations such as Bertrand Russell’s 

“Probability is the most important concept in modern science, especially as nobody has 

the slightest notion what it means,” I entertained the possibility that the failure might be 

due to the absence of a more general philosophical theory. If philosophers could see the 

subjects of human knowledge from a different perspective, they could also see specific 

concepts such is probability differently. 

My efforts to develop a new epistemological perspective was centered around the 

concept of process, which I had found to be of immense explanatory power but not much 

of recognition among philosophers. The explicative reliance on the process concept 

resulted in the gradual development of a number of positions on fundamental issues in 
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philosophy, and provided support for my hypothesis that process can be the central pillar 

of a philosophical perspective. Due to the role of the process, I labeled the perspective 

Philosophical processualism, and I aimed it at advancing the foundations of mathematics, 

as it is being applied to assist human cognition and action. To highlight the role of math 

in action, and to distinguish it from its general application to non-mathematical problems, 

I collectively labeled such uses as pragmatic mathematics, and I defined the collection as 

a system of linguistically manifested mental constructs aimed at guiding purposive 

actions with precision. 

By analyzing the fundamental contents of human mind, percepts and concepts, 

through the lenses of processes, I came to oppose the common Platonist position in 

cognition and in the philosophy of mathematics, which takes concepts in general, and 

mathematical concepts in specific, to be abstract non-spaciotemporal entities that are 

directly accessible to human minds in an objective and absolute manner. I proposed that a 

process-centered ontology of concepts puts them inside the mind and sees their formation 

only attainable through earthly spaciotemporal processes. 

I developed a processual answer toward the metaphysical problem of universals, 

as I see it central to both science and mathematics, where science aims at finding 

relationships among universal entities (in either categories of objects and properties), and 

math aims at describing the presumed relationships in terms of imaginary mental entities. 

I explained the relationship between the instances of a universal, by introducing the 

concept of processual code, as the container of information on the specifics of objects 

and their properties, whose presence trigger and advance the process resulting in the 
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exemplification of the universal phenomena. I also declared that ignoring the process 

underlying a universal and taking instances as mere observations results in a nominalist 

account, where the universal is just a name to a set. I attributed the nominalist denial of 

universals on their exclusive reliance on experiencing-organizing mind rather than 

questioning-hypothesizing mind. By highlighting the role of the mind in recognition of 

universals, I extended the concept of the code to percepts and saw them as outcomes of a 

joint two-world process, one outside the mind in the world and the other inside the mind. 

The processual perspective on percepts turned out to be in opposition of both Aristotelian 

realists, who believe that types are out there in the world independent of our minds, and 

conceptualists, who believed that universals do not exist outside of the perceiving mind. 

Since the processual ontology of concepts, including the mathematical ones, takes 

them to be spaciotemporal, it cannot take conceptual objectivity as default and has to 

elaborate if and when the objectivity is present. To specify the conditions, I developed the 

processual perspective toward the manifestation of concepts, especially through linguistic 

descriptions. On the platform of manifestation, I offered a communal verification-based 

account of conceptual objectivity, in which a conceived entity by members of a 

community is considered to be objective, if the subjects consistently deliver similar 

manifestations of the concept in any number of agreed-upon verification processes. 

Last but not least, I presented a processual account of a few fundamental 

mathematical concepts including numbers, sets, and infinity, and also presented and 

discussed the hypothesis that mathematical entities are grounded in both human percepts 

and cognitive processes. For the concept of infinite set, which is also central to 
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probability as applied to processes, I declared the extensional definition, as the collection 

of its tokens, imprecise. Since the infinite set containing yet-to-be-generated tokens lacks 

accessibility due to the inclusion of entities without spaciotemporal specification, I 

suggested that tie define an infinite set to the processual code that can generate its tokens.    

 Principles for Objective Assessment of Unknown Probabilities 

Another objective for the research was to define the philosophical and logical 

foundations within which, the characters “objective, transparent, and defensible” can be 

clarified or even defined for Bayesian priors. Based on the results of the inquiry 

presented in 7.1.1, I classified Bayesian probabilities as credibilties; a set of imaginary 

values assigned by the evaluating subject as a means of coming up with an assessment of 

the unknown outcome of a process. Due to imaginary nature of Bayesian priors, I 

declared that subjects can assign any set of self-consistent values as priors without being 

refuted by experiments. Nevertheless, feasibility does not bring legitimacy, and when the 

subject’s goal from assessing the uncertainty is to deliver evaluations that are admissible 

to others, he must use an agreed-upon assessment process using authorized credibility 

values. 

The concept of objectivity for imaginary entities were investigated in 7.1.2, and 

resulted in a general definition, where objectivity is tied to the verifiability of the entity’s 

manifestation in accordance with a set of established processes. So, objectivity can be 

considered to be transparency plus community acceptance. In mathematical terms, 

objectivity translates into having a perceivable mathematical form as the code for the 
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assignment process. Simply put, an objective set of credibility values is the one assigned 

with a perceptually transparent formulation.  

Defensibility is another characteristic that along with transparency, can assist an 

imaginary entity to be considered objective by a community. While transparency is a 

necessary condition for the objectivity of an imaginary entity, it is not sufficient and must 

be accompanied with community acceptance. Although any agreed-upon communal rule 

does have a contractual nature, which is independent of the justifications supporting it, 

the presence of justification is a crucial factor in making the procedure defensible, if the 

community is deciding to adopt any of proposed process as the rule. 

I proposed a set of theoretical principles to evaluate the defensibility of an 

inductive system. While the assertions are presented as principles and are accepted 

without relying on other assertions, they are consistent with a presumably common 

reasoning system among humans, which way may come to label as intuitive logic. The 

seven principles are named as (I) Evaluative Orientation, (II) Investigative Prioritization, 

(III) Explicative Sufficiency, (IV) Evaluative Inclusion, (V) Credibility Conception, (VI) 

Artifact-Reality Division, and (VII) Unbiased Evaluation. 

 Theoretical Decision-Based Assignment of Bayesian Probabilities 

Decision Entropy Theory (DET) is being offered as a computational machinery 

aimed at assessing unknown aspects of a process in the light of the available information, 

where sought-for aspects depend on the processual parameters; (structural) values 

specifying collective or relative individual features of processual input and/or output 
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and/or the (deterministic) input-output relation. The theory is intended to be objective and 

defensible in the sense described in 7.1.2 and 7.1.3, meaning that (a) its assessment 

procedures are transparent and imitable and (b) the constraints specifying the process are 

set in compliance with a set of intuitively logical guiding principles.  

The theory assigns non-informative Bayesian priors to sets of possibilities, 

representing the aspects of the process that are unknown to us. The priors are assigned to 

possibilities by considering a hierarchy of variables and such that prior credibilities 

minimally inform the variables, whose exact values are the subjects of the inductive 

inquiry. The adopted measure for the information contained in a distribution is Shannon’s 

entropy, where the minimally informative distribution is the one with the maximum 

entropy. In the simplest case of the hierarchy composed of a single variable, whose only 

constraint is its boundaries, the uniform distribution is the one with the maximum 

entropy. 

The following principles specify the hierarchy of variables, as the targets of the 

inquiry, and elaborate the distributions that are minimally informative:   

1. If no information is available about the probabilities of decision outcomes, 

then a selected alternative is equally probable to be or not to be the preferred alternative. 

2. If no information is available about the probabilities of decision outcomes, 

then the possible differences in preference between a selected alternative and the 

preferred alternative are equally probable. 
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3. If no information is available about the probabilities of decision outcomes, 

then the possibilities of learning with new information about the selected alternative 

compared to the preferred alternative are equally probable. 

 Implications for the Application of the Theory to Practical Problems 

Another objective for the research was to identify the practical consequences of 

applying the theory of Decision Entropy. To do so, the following two examples from 

engineering practice were being worked out:  

(a) selecting the appropriate design wave height for offshore structures, and  

(b) assessing the value of test wells before committing to developing a 

hydrocarbon resource play.  

Application of DET to example problems highlighted that the theory results in a 

rational design, as it prioritizes answering to the questions that matter more to the 

engineering design. Since the main goal of the design is to find the specifics of the 

engineering system that can provide the intended service with the minimum life-cycle 

cost under the to-be-encountered environmental conditions, systemic variables are the 

most important ones, followed by cost variables, and eventually the environmental 

variables. By considering design objectives, DET prioritizes learning about the systemic 

variables over the cost variables over the environmental variables, and tries to inform the 

systemic variables the least, and then the cost variables, and the last the environmental 

variables. DET’s approach is in contrast to the inadvertently irrational approach that 
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starts with a biased design recommendation due to prioritizing the environmental 

conditions that matter least to the design. 

The example applications also illustrated the adaptability of credibility-based 

inductive methods and the justifiability of DET, in accounting for the situations, in which 

the available information is not only partial, but also dubious. For example, when the 

information is gathered from the analogous processes who share some features with the 

target process, but also have some irreconcilable differences, the assessment procedure 

must determine whether and how to consider the data from analogs. While Credibility-

based procedures are able to incorporate the dubious date into the assessment by 

assigning a degree of credence, they face the obstacle of defending their assigned value, 

as credibilities are imaginary by nature and cannot be justified on empirical ground. 

Nonetheless, DET can both assign a degree of credence, as well as defending its 

assignment based on principles grounded in intuitive logic.  

 Evaluation of the Compliance of the Decision-Based Theory with Established 

Principles 

The final objective of the research was to evaluate whether the assessments of 

DET can be characterized as objective, transparent, and defensible. The comparison 

between the three principles of DET, stated in 7.1.3, with the seven general principles, 

stated in 7.1.4, reveals that DET is in compliance with the more fundamental principles 

for objective assessment of probabilities. Thus, we can conclude that DET leads to 

assessments that are objective, transparent, and defensible.  
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The details of the compliance are as follows: (I) DET satisfies “Evaluative 

Orientation,” as it takes inductive analysis to be a goal-oriented act and directs the 

assessment toward answering a set of target questions. (II) DET performs “Investigative 

Prioritization,” as it prioritized the questions according to their importance to the 

investigation. (III) DET is Explicatively Sufficient, as it designates a number of distinct 

processual explanations, such that each provide definitive answers to the target questions. 

(IV) DET is evaluatively inclusive, as it allows the formation of a hybrid and inclusive 

explanation by considering and combining collection of explanations. (V) DET is based 

on credibility conception, as it uses credibility values to form an inclusive assessment, 

and to differentiates various explanations with a degree of plausibility relative to other 

explanations. (VI) DET divides artifacts from reality, as its assigned credibilities 

explicitly account for (1) what we know, observations, and (2) what we arbitrarily devise 

to reason beyond what we know, explanation/ hypothesis, such that the contribution of 

(1) and (2) in the collective assessment is tractable. (VII) Finally, DET provides with 

unbiased evaluations, as its assigned credibility values are not such that the inclusive 

assessment favors any of the possible answers to the target questions, before 

incorporation of observations. 

7.2 SUGGESTIONS 

The following suggestions are being offered to advance the developments 

presented in the dissertation. 
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 Developing Objective Methods to Incorporate Subjective Experts’ Opinion   

An objective method, in the sense described in the dissertation, can be developed 

to capture the subjective opinion of experts regarding the variability of the outcome of a 

process, within the framework of the Bayesian approach. Since we have already reserved 

one of the two components of the framework, namely Bayesian priors, to account for our 

ignorance regarding the hierarchy of variables we intend to assess, we must use the 

remaining component, namely the likelihood function, to capture all kinds of information 

including opinions expressed by experts. While the information obtained from empirical 

observations can be represented by means of standard frequency functions, no standard 

method currently exists for reflecting experts’ opinion in likelihood function. The 

challenge will be to develop norms to grant precision to subjective opinions, which by 

nature are vague and imprecise.     

 Illustrating Probability Interpretations by Examples 

The proposed collective sufficiency of the three interpretations of probability, 

namely possibility, propensity, and credibility can be illustrated through a number of 

examples. The exemplary works not only demonstrates the practicality of the developed 

theoretical methods in accounting for all available knowledge in every possible format, 

but also the sufficiency of the offered set of interpretations in making sense of the 

quantities incoming to and outcoming from the assessment process. In addition, examples 

of the use of methods other than the ones advocated here can be reworked to pinpoint the 
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fact that all numeric measures of uncertainty can be interpreted based on the highlighted 

types. 

 Reevaluating the Multi-alternative Decisions using Information Potential 

Since Decision Entropy Theory has evolved since the time the examples in the 

dissertation has been worked out, especially in regards to analyzing multiple alternative 

decisions and assessing the value of information, it is desirable to evaluate whether the 

theoretical evolutions do influence the results of the analyses. In specific, it is 

recommended that the assessments presented in Chapters 5 and 6 of the dissertation, 

which are based on the concept of the utility difference and the method of integrating 

pairwise assessments, reworked based on the new concept of information potential and 

the method of reference alternative. 

 Evaluating the Conditions for Increasing the Community Acceptance of DET 

It is recommended to find out the conditions under which the theory of decision 

entropy may gain communitywide acceptance. A reason for the latency of the acceptance 

conditions is the fundamental nature of DET, which places it beyond the territory of 

applied statistics and at the core of every discipline where consequential risky decisions 

ought to be made based on limited data. In other words, since there is no established 

community for the kind of discourse Decision Entropy Theory presents, a strategy must 

to develop to select and to prioritize communities, among which DET can be introduced 

and popularized. 
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APPENDIX A: DEFINITIONS 

 

1. INTRODUCTION 

Definition of a term provides a description elaborating the meaning, nature, and scope for 

the word/phrase in a formal fashion. Since the use of technical terms are inevitable in any 

theoretical development, providing with a glossary of relevant terms immensely facilitates the 

communication of arguments and results. Below, are a number of fundamental definitions that I 

believe are essential to the developments in this dissertation. 

The importance of definitions to philosophy is such that some philosophers believe that the 

core of a subjects ought to be found in its definitions (Baggini and Fossi, 2010). Historically, many 

significant philosophical questions in the form of “what is concept x?” were posed due to the lack 

of a clear definition and it has been the quest to find answers to such questions that eventually has 

resulted in providing a definition for that concept. Such processes imply that a definition for a 

(core) concept of a subject matter can only be written after (a full) investigation of the subject, 

when the investigator has reached the level of mastery. 

The glossary is arranged in two section. While the first section gives definitions of various 

terms, independent of their pertinent topics, the second section provide definitions of terms given 

specific topics. The order of appearance for the terms in the first section is alphabetic.  
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2. NON-CATEGORIZED DEFINITIONS 

Action: is a physical process, triggered and/or sustained by an agent. 

Action, (Purposeful) Human: is a planned/thoughtful action taken by man in order to 

achieve a certain outcome. 

Actor/Agent, Purposeful: is an agent, who initiates some physical processes in order for 

agent’s desired objects/states to be realized. 

Algebraic Process: an arithmetic process, where some of the numbers involved are 

variables, representing specific numerical sets. The numerical outcome of an algebraic process can 

itself be represented by a variable as, each combination of the values for numerical variables in the 

algebraic process yield a different outcome. 

Algebraic Parameter: a numerical component of an algebraic process that is 

fixed/constant; in contrast to a variable, which can be any of the members of a specific numerical 

set. 

Algebraic Expression/Form: a visual representation of an algebraic process composed of 

different symbols as visual representations of variables, parameters, and numerical operations. 

Algebraic Function: another term for an algebraic process or its outcome. 

The set of numerical values, which involving (input) variables of the process can take their 

values from, are called the “domain” of the function of the set of output values are called the 

“range.” 

Asset: is a resource owned/possessed by an agent. The most immediate asset of a biological 

agent is his body and its organs. 
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Characteristic/Specification: is a distinguished trait, quality, or property of an object. The 

reliance of the given definition on synonyms coveys that the term is a primitive notion; i.e. humans, 

given their innate abilities, are able to distinguish certain aspects/features of worldly objects 

around them and are able to make distinction between different features. For example, humans can 

recognize color, as a visual feature of objects. 

(Characteristic) Value: is the condition/state/level/magnitude/amount a characteristic 

may take. Variation of a characteristic can be described by the change in its value. 

Characteristic, Erratic (Final): is an unpredictable (final) attribute of the outcome of a 

process. While some (final) aspects of a process may be erratic, others could be predictable. 

Characteristic, Random (Final): is a (set of final) attribute(s) of an outcome whose state 

is unpredictable in run by run operations of the process, but (collectively) predictable in the long 

run. 

Choice (in a Uncertain Choice) , Right: is the act/process that the agent would choose, if 

it had access to a perfectly informative program. 

Classification: is the act of fragmenting/partitioning/organizing/subdividing/classifying a 

population into a number of fragments/partitions/groups/divisions/classes, based on the value of a 

characteristics/specification. Classification can be done based on either qualitative or quantitative 

measures. 

The roughest/coarsest/crudest classification/distinction can be made in a binary/ 

dichotomous fashion by evaluating whether objects possess or lack thereof a characteristics. If no 

characteristics is being used for the purpose of classification, each member can be considered as a 

class.  
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The act of classification, is an organizer mind’s effort to systematically capture and make 

sense of the variation (of the characteristics) inherent in the population. 

Classification, Joint: is the act of classifying a population based on more than one 

characteristics/specification. A joint class represents the fraction of the population that jointly 

possess certain/specific degrees of each of the polarizing characteristics. 

Class size: is the number of members belonging to that class. 

Class Size, Relative: is the ratio/quotient of the number of members belonging to that class 

to the population size. 

Counting: is the process of assigning a number to a set of distinct objects as the set’s size 

by establishing a one-to-one correspondence between each member (of the set) and the number 

“one,” the unit for counting, and then using the arithmetic operation of addition to calculate the 

sum (of units). 

Device/Means/Tool: is a (material) agent, with the ability to make/prevent changes in its 

surrounding world/environment. A device needs to types of ability, serviceability and 

survivability. 

Distribution, Propensity/ Relative Frequency: for a random (set of) attribute(s) of a 

process, is a function informing the rate at which each possible (set of) state(s) is being adopted if 

the process is being run many times.  

Event/outcome: is the result of a physical process in a system, characterized by the set of 

all the objects of the physical system and their corresponding states. 
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Function, Deterministic: is a relation between a set of input (algebraic) variables and a 

set of output (algebraic) variables, in which each (possible) input value(s) is associated with only 

one (of the possible) output value(s). 

Function, Expression of: is the algebraic form/formula for the function, where input 

variables and parameters are combined through mathematical operations. 

Function, Argument: is any of the input variables for the function. 

Function, Parameter: is any of non-variable quantities present in the (algebraic) 

expression of a function. 

Hypothesis: is a proposed, i.e. yet to be accepted, explanation for a phenomenon. 

Hypothesis, Quantitative: is a plausible/likely value (number) for a (physical) quantity or 

a (mathematical) function for a quantitative regularity/ structure. 

Hypothesis, Statistical: is a plausible/likely value (number) for a relative frequency or a 

(mathematical) function for a quantitative regularity/ structure. 

A statistical hypothesis is one of the possible probability distribution functions, 

characterized by its functional family and a set of values for the parameters of the functional form, 

which informs the probabilities (either relative frequencies or degrees of plausibility/ credibility) 

for each possibility in the space of possibilities (either a sample space or a hypothesis space).  

The relative frequency of event informed by a (statistical) hypothesis is also called the 

Likelihood of the event. From the standpoint of the mechanics of  A Likelihood is a physical 

probability  
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Indexing: is the act of classification without consideration of any specific 

characteristic/specification. The purpose of indexing is differentiation among various members of 

a population. 

Informative Program (regarding an Uncertain Process), A Perfectly/Completely: is a 

program providing with the information that enables (a previously ignorant) agent to (positively) 

predict the (future) outcome of every run of an uncertain process.  

An informative program itself is an uncertain process, as the agent does not know the 

outcome foreseen by the program until he/she runs the informative procedure for each run of the 

(original) physical process, he/she was uncertain about. The same credibility values assigned by 

the agent to the outcomes of the (original) physical process extends to the outcomes of 

corresponding perfectly informative process. 

Informative Program (regarding an Uncertain Choice), A Perfectly/Completely: is a 

program providing with the information that enables (a previously ignorant) agent to (positively) 

predict (a) the “right choice,” as well as (b) the (future) outcome of every run of each of the 

uncertain processes, if that process is being taken.  

Interaction: between two objects is their mutual effects on certain physical states of the 

objects. 

Language: is a means of creating and communicating information composed of a 

collection of symbols and a set of rules/ structures that can be used to connect symbols and to 

create complex constructs. Linguistic descriptions can be communicated by physical means, 

including visual signs, sound waves and electrical signals. Spoken and written languages as well 

as mathematics, are example of languages.  
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Among other functions, a language can be used to create constructs in order to represent 

certain objects/states of the world and their connections. Linguistic representations/ descriptions 

may vary in terms of their preciseness/perfection. The assertion that a specific (linguistic) 

description precisely/ perfectly represents the real-world is a postulation, whose validity relies on 

the premise that the objects/states of the world and their changes follow the (arbitrary) forms and 

the rules of that language. The premise implies that the God/nature has been creating/changing the 

(preceding) objects/states of the world according to the (arbitrary) rules of that language, which 

have organically evolved and developed later in the minds of humans. 

Load/Demand: an abstract concept as a representation of what is imposed on a device by 

external environment, due to device’s existence and service, as well as its interaction with the 

environment. 

Machine: is a complex object, composed of multiple components, with the ability to sense 

and/or to change some physical states of the world. 

Machine, Biological: is a machine, whose components are living organisms. Humans are 

examples of advanced biological machines. 

Machine/Observer, Sensing: is a machine with the ability to sense/observe and 

differentiate some physical states of physical systems. 

Machine, Preferring: is a sensing machine that prefers some states of the world to the 

others, if given the option. 

Machine/Agent, Acting: is a machine with the ability to trigger/initiate a physical process 

in a system and to provide with what is necessary for the completion of the process. 
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Mathematics: is a collection of branches of knowledge, each studying a specific group of 

(abstract/mental) mathematical objects/constructs and the structures/patterns relating them.  

For example, arithmetic studies mathematical objects termed numbers and the operations 

for their manipulation, or algebra studies unknown (numerical) quantities, represented by symbols, 

the relationships between these quantities, and the rules for manipulating them. 

The most essential tool for development of mathematical knowledge is logical reasoning, 

in which conclusions (end points/results) can be drawn from premises (starting points) in a ruled-

governed (mental) process. 

Measurement: is the process in which a number is being assigned to the level of a certain 

characteristic of an object by comparing it with the unit level at a designated reference object. 

Measurement unit: for a certain characteristic, of continuous nature, is the level of the 

characteristic in a reference object. 

Model: is an entity in representation relation with another entity, i.e. either representing or 

represented by the other, where the relation is being established due to perceivable similarities, 

possibly created by partial imitation, or due to conceivable meanings, possibly created by 

symbolization or signification.  

An entity can be purposefully used as a model by (1) finding an existing or creating a new 

entity with some similarities with another entity, or/and by (2) attributing a meaning to an entity 

in relation to another entity. In (1), what differentiates the representation from the represented 

(composite) object is the specifics of the set of objects, their properties, and the “pattern of 

relations” between the attributes of the (parts of the composite) object; namely the different  

“systemic characteristics” of the two. 



 

200 
 

A model is an (system of/compound) object of certain attributes and relations, either 

internally and/or externally, with the potential to be partially copied/imitated in “forming” another 

object of similar attributes and relations; a replica. The specifics of to-be-copied attributes and the 

relations of a model system of objects, may be called the “pattern” of the system; thus, a model 

can be characterized based on its distinct pattern. Due to the similarity of patterns between a model 

and a replica, the latter me be seen as a representation of the former, at least in terms of the copied 

attributes. For an object perceivable to humans, an example feature is the visual look and an 

example internal relation is the dimensional proportions of various parts of the object. 

A model is an example embodiment of the kind of objects a certain processual code can 

generate; i.e. is a token of a type.  The code of the modeling process determines the specifics of 

the attributes and the relations to be imitated. An example code for a natural modeling process is 

the genetic code used by biological agents in reproduction, and an example (partial) code for a 

purposive modeling process by humans is the blueprint used in construction of an artefact. Within 

the philosophical framework of universals and/or types, a model can provide a concrete 

replacement for the abstract notion of the pertaining universal or type, where all instances or tokens 

can be seen as copies of a model instance or token. In other words, the concept of model grounds 

the concept of universal or type. In regard to the concept of representation, a model can be seen as 

a representation of either the processual/typical code and/or all the tokens the code can generate. 

What distinguishes a model from another are the same things distinguishing a system of 

objects from another, namely the member objects and their individual attributes, as well as the 

systemic relations between them. Models whose systemic specifics are close, can be conceived to 

form a “model family,” where common (systemic) attributes characterize the family and the 

specifics of differentiating (Systemic) attributes characterize family members. While the 
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proposition that a system “follows” a certain model means that we take the specifics of the system 

to be identical to those of the model system, the proposition that a system “follows” a model family 

means that we take a certain subset of the specifics of the system to be identical to common 

attributes of the system. By associating a system to a model or a model family, we take the system 

to be a complete copy of the model, or a partial copy of the members of the model family. 

Model, cognitive: is a subject’s mental representation of an entity that was originally 

outside one’s mind. All understandings of things are formed by relying on cognitive models and 

to some degrees are representations of entities from outside one’s mind. 

While a model is imitable, itself could be a representation of or modeled/imitated from 

another entity. This is specially the case for a mental understanding, as it is being formed (in the 

mind) to cognize an outside entity; thus, a (mental) representation of the entity, but can also be 

used as a model for understanding another outside entities, where the features of the mental 

understanding are being projected onto the other outside entity. In other words, a mental 

representation of an object is also a model to see other objects in its lights. If we denote the 

original/first outside entity as O1, the mental understanding as M, and any other outside entity as 

OX, the directional relation between the three can be denoted by O1 → M → OX, where M is 

modeled from and a (mental) representation of O1 , as well as a (cognitive) model for OX. In this 

sense, a mental construct being a model, can be attributed to either of the two representation 

processes it participates in, the one where the construct represents an outside entity or the other 

where another outside entity is seen alike the (previously formed) mental representation. 

Model, perceptual: is a mental entity, partially constructed from sensory input, whose 

specifics determine the way in which mind cognizes a certain object. Putting it differently, a 

perceptual model is a mental representation of a perceivable entity and will be consistently evoked 
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upon receiving the same sensory stimuli. For example, the color red is the perceptual model human 

minds forms based on sensory signals from lights with the wavelength between 620 and 750 

nanometers and the frequency between 400 and 484 THz.  

The reason for naming an output of perceptual construction processes as a “model” is that 

(a) the features of the output are the essence what we understand as a “form,” i.e. a cognizable 

object of certain attributes and relations and (2) upon receiving sensory inputs of the same 

character at different times, the mind consistently generates mental output of the same character, 

as if the mind uses a token output as a prototype/model to imitate from and to “form” similar 

output.  

Model, conceptual: is a mental entity, formed by relating specific attributes of a number 

of conceived objects, which provides a kind of way for seeing similar conceptual instances; i.e. a 

model for understanding.  

While examples of conceptual models are omnipresent, an example from physical science 

is Newton’s model for the gravitation of heavenly bodies, which associates the specifics of bodies’ 

movements with a number of (inherent) attributes of the bodies, in a certain way.  A conceptual 

model can also be taken as a man-made idealization/simplification of a real-world 

object/phenomenon constructed in order to imitate/ simulate/ demonstrate/ describe/ explain/ 

elaborate/ predict certain aspects/ characteristics of the reality. 

Model, Mathematical: is a mental/ cognitive/ intellectual model, where certain aspects of 

an object/ phenomenon (or its behavior) are represented by (abstract) mathematical objects. 
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Model, Quantitative: is a mathematical model, where certain aspects of an object/ 

phenomenon (or its behavior) are represented by interrelated quantities (that are in a state of 

equilibrium). 

Motivation: factors that internally, inside biological agent’s mind, arouse and direct 

agent’s action to preserve/change certain (external) states/objects of the world.  

The ultimate motivation of a biological agent can be synthetized as the “satisfaction of its 

needs.” Very complex (sustained) needs, such as a constant need to achievement or the (extreme) 

need to control one’s living environment, may be inferred from behavior exhibited from some 

humans. Success in meeting a need, might internally, inside biological agent’s brain, result in a 

state of pleasure/comfort or failure to do so in a state of pain/discomfort. 

Number: is a mathematical object, an abstract construct, developed (by humans) as a 

(mental) representation of a characteristic of a collection/ set of (physically) existing or imaginary 

objects/ states. When used regarding the physical world, numbers are the essential component for 

quantification processes, e.g. by counting, measuring, or calculating. Numbers can also be used as 

labels, which facilitates organizing processes such as sorting.    

Numbers were originally developed to represent the size/ magnitude of a set of discrete/ 

distinct objects (natural numbers). The concept was later extended to establish a representation, 

where units could be partitioned into smaller fractions (rational numbers). Further extensions 

resulted in development of new categories of numbers such as negative, irrational, and complex 

numbers. 

Number is a fundamental mathematical object, invented as a means for precisely 

differentiating between the size/largeness of the sets containing similar members.  
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The first (type of) numbers created (by humans) were “natural numbers,” as (mental) 

representations of the size of the sets of discrete objects obtained by the (simple) act of counting. 

In other words, there has been close relationship between the development of natural numbers and 

the basic arithmetic operation of addition. Later, the concept of number were (mentally) expanded 

to create more abstract types of numbers, such as integers, rational numbers, real numbers, and 

imaginary numbers. Some types of numbers are without a real-world analog/map and remain only 

as (abstract) objects (of the mind) suited for (mental) manipulations, according to (humanly) 

defined rules for manipulating such abstract entities. 

Numerical/Arithmetic Operation: any (mental) operation (on numbers), where a set of 

numbers interact, according to the rules of that operation, and yield a numerical result. Four basic 

arithmetic operations are addition, subtraction, multiplication, and division. 

Numerical/Arithmetic Process: a process composed of a set of arithmetic operations, 

arranged in series and/or in parallel, which (eventually) results in a numerical output. 

(Numerical) Variable: a representative for every member of a heterogeneous set (of 

numbers).  

The term “variable” reflects the variation of the numerical character/value of members of 

a (heterogeneous) set of numbers. Oftentimes, a variable is visually represented by a symbol such 

as an alphabetic letter, e.g. x, y in English, ,  in Greek. 

Numeral: is a symbol invented to represent a number, as a mathematical object, in a non-

verbal mode of (human) communication, i.e. written/ pictorial. 

Observation: is the act of learning/receiving information regarding the pertaining class of 

a member of the population. 
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Operation, Mathematical: is a basic/ core component of a mathematical process that takes 

a number of input mathematical objects, arguments, and delivers some output mathematical object. 

For example, the main mathematical processes in arithmetic are numerical calculations, which can 

use the basic (arithmetic) operations of addition, subtraction, multiplication, and division.  

Operation, Cartesian Production: is a mathematical operation that takes two sets and 

return a (product) set composed of all possible ordered pairs resulting from the association of each 

members of the first of two sets with every member of the second set. It is possible to extend the 

operation to take more than two input sets and return a n-fold/ n-dimensional product set. 

Physical Process: is a group of steps/ tasks/ stages, triggered/initiated by a change in 

certain aspects of (a number of) worldly objects, that results in either the preservation of the old 

status, the creation of new objects or a change in characteristics of (the same or different) worldly 

objects. The new reality, in either form, is the outcome of the process. 

Physical process is a set of interactions in a physical system, where the initial physical 

states of the objects change and results in the creation of new objects or the alteration of the 

physical state of the system. 

Physical Process, Repeatable: is a physical process that if be triggered and completed at 

a different time and/or space results in the same outcomes. 

(Physical Process) Realization Reference Set: for a physical process is the imaginary set 

containing all possible realizations of the process (past, present, and future). 

Physical Object: is any being that its existence, at any instance of time, can be further 

described by its physical characteristics, e.g. location, mass, volume, chemical composition, etc. 



 

206 
 

Physical quantity: is the magnitude of a physical characteristics (mentally) mapped to the 

mathematical object, variable. The value of a physical quantity can be directly measured using a 

(standard) measurement device or be estimated/predicted using some (idealized) 

mathematical/algebraic formulas/expressions. 

Physical State: is the level of any physical characteristic of an object, at any instance of 

time, which can be described qualitatively using a linguistic descriptor or quantitatively by 

assigning a number that quantifies the level in comparison with a (standard) unit of measurement.  

While the perception of a certain qualitative descriptor may differ across the human 

population, the perception of the quantitative measure for the same level of the characteristic is the 

same as it relies on a (arbitrarily set) external measurement unit. In other words, qualitative 

assessments are subjective, i.e. depends on the subject who evaluates, and quantitative assessments 

are objective, i.e. depends on an external reference object. For example, the length of an x-foot 

long object can be qualitatively described by a subject as long and by another subject very long, 

however, the quantitative description of the length characteristics remains the same, x, and is 

independent of both subjects. The uniqueness of the quantitative description is the result of human 

invention of two different set of tools. First, is the development of a precise language, in human 

mind, for expressing, manipulating, and relating abstract/mental objects termed numbers. Second, 

is the designation of a specific level of the characteristic, embodied in an externally existing 

reference object, as the measurement unit. The set unit, a real-world existence, can then be mapped 

to the number “one”, an abstract/mental existence, which allows for a description of the reality in 

a precise language. 
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Physical System: is any set of physical objects that may get involved in interactions 

resulting in changes in their initial states of the objects. The state of a physical system is the set of 

the physical states of all its objects. 

Prediction, Structural: is the forecast of a (set of) attribute(s) of an outcome of the process 

by using the process’ structural relationship and the (knowledge of the) states adopted by the initial 

and circumstantial attributes of the process. 

Prediction, Eventual: is the forecast of a (set of) attribute(s) of an outcome of the process 

by using the process’ eventual relationship and the (knowledge of the) states adopted by (other) 

final attributes of the process, other than the final attribute(s) we aspire to predict. 

Eventual prediction may not introduce a single state as eventual relationships may associate 

a specific set of states of (the rest of) final attributes to more than a single state for the (final) 

attribute of interest. 

Probability, Objective: a consensual relative degree of plausibility/credibility for the 

occurrence of an event or the validity/truth of a hypothesis with a given set of information and a 

given set of presuppositions. 

One reasonable rule for assigning probabilities to possible outcomes of a simple random 

sampling process is to equally divide the total probability of 1.0 among members of the population. 

As a result, the probability for the (compound) event/possibility that a random sample realization 

be associated with a given class is equal to the relative size of that class. This is the earliest 

assignment rule historically used in mathematical probability and is referred as classical 

interpretation of probability, where probability for a possibility is proportional to the number of 
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ways through which the possibility may occur. Classical interpretation of probability is closely 

connected with the act of sampling with/without replacement. 

To physically verify the assumption that a given sampling process is random, we have to 

sample using the process to see if all members of the population are being selected with the same 

frequency. It is only after this physical experimentation that we can make an assertion regarding 

the legitimacy of the nondiscriminatory assumption for a random sampling process. 

An answer to a fundamental question regarding how to find the (joint) class an object 

belongs to before examining it, is that while we cannot say with certainty, but given the information 

at hand, we can differentiate a number of classes that the object is more likely to be associated 

with. 

Probability, Physical: is the degree by which a repeatable (random) sampling/selection/ 

realization process/procedure/mechanism differentiates a possibility relative to other possibilities. 

The relative degree of differentiation can be measured by repeating the action infinite 

number of times and counting the number/frequency of realizations for each possibility and 

calculating the relative frequency/proportion of occurrences for each possibility. The given 

definition makes physical probability an attribute of the random act/realization mechanism, rather 

than the outcomes.  

Physical probability of an outcome is the degree by which the (underlying) physical process 

tends to generate the outcome, relative to all other outcomes of the process. 

Physical probability distribution is being measured by running the process many times and 

finding the proportion of replications, where each outcome does occur. Such proportions are also 

called stable/long-run relative frequencies. 



 

209 
 

Probability Distribution: is a function/rule that associates a probability to each (possible) 

value of a random variable. The domain for a distribution is the range of the random variable and 

the range for the distribution is the set of assigned probabilities.  

A probability distribution, when associated with the outcomes of a (physical) random 

process, represents an assessment/estimate of the relative frequencies/ propensities of the process, 

i.e. becomes an estimate of a frequency distribution. 

Probability (of an Event/ Outcome), Bayesian: is the Bayesian estimate of the physical 

probability of the event calculated by averaging the likelihood values of the event, given various 

(statistical) hypotheses, weighted by the plausibility/ credibility of each hypothesis. This Bayesian 

estimate can also be called credible physical probability. Also, because a Bayesian estimate is the 

result of an averaging (arithmetic) procedure, some has named it a Total Probability of the event. 

Plausibility/ Credibility of a Hypothesis, (Non-Informative) Prior: is a degree of 

plausibility/ credibility defined/ assigned/ established for a statistical hypothesis relative to other 

(competing) hypotheses, before incorporating the existing data on the outcome realized on various 

repetitions of the random act.  

Plausibility/ Credibility of an Event/ Outcome, Prior: is the average of likelihood values 

of the event, given various (statistical) hypotheses, weighted by the prior plausibility/ credibility 

value for each hypothesis. 

Uninformed prior credibility values for a statistical hypothesis relative to other (competing) 

hypotheses, are defined/ assigned/ established before incorporating the existing data on the 

outcome realized on various repetitions of the random act. 
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Prevalence of a risky act: is the degree to which a risky act is credible as the preferred 

choice, relative to (all other) alternative acts. Mathematically, is the sum of the credibilities for 

every outcomes of the act, where the act is preferred to all other alternative acts. 

Prevalence of an act, in the light of a (perceived) perfectly informative program is the 

credibility of an event, in which the act turns out to be the “right choice.” Probability of an events, 

is the sum of the probabilities for the (basic/simple mutually exclusive) outcomes defining the 

event. 

Propensity: of a generating process toward an outcome is the physical probability of the 

outcome. 

Population: is the real (i.e. physically existing) set of a specific number of objects, each a 

realization of a physical process. 

Population/Reference set: is a set/group comprising all objects of interest with a number 

of common/shared characteristics/features. 

(Population) Variable: is the codomain/range/output of a function/rule associating a 

number/value to each of the members/classes resulting from an act of classification (of a 

population). The domain for a (population) variable could be the population, the set of all members, 

or a set of population classes. Any function of a (population) variable is also a (population) 

variable. 

I coined the term “population variable” to distinguish a variable used to describe the 

variation across a population from a variable used in mathematics or theoretical physics. 
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Population Class Size Distribution: is a function/rule that maps each class in the 

population to its size/relative size, the ratio of the number of members in that class to total 

population members. 

Process, Known: is a physical process that is completely known to an observer, i.e the 

underlying system, its initial state, and the outcomes of the process. 

Process, Controlled: is a purposefully triggered process that its advancement and its final 

outcomes are controlled by the agent. 

Process, Deterministic: is a physical process that if being run consecutively under the 

same initial and circumstantial states, it consistently delivers the same outcome. Every physical 

process is deterministic as long as humans keep their deep seated believes in causality.  

Process, Random: is a repeatable process that has more than a single set of outcomes. The 

initial state of the system and its evolution are such that the observer does not know the exact set 

of outcome to be realized before the commencement of each repetition. The randomness of a 

purposefully triggered process indicates that the agent is not in full control of the process, i.e. there 

are aspects of the process, which he cannot influence. 

Process, Independent Random: is a random process, where the realization of a set of 

outcomes in one repetition does not change the observer’s ability to predict the outcome of the 

process in coming realizations. 

Process, Stationary: is a physical process whose structural relationship does not change 

along the time. Since the available knowledge of the physical world is constructed upon the past 

events, any prediction of the realizations in the future requires the assumption that processes 

remain stationary along the time. 
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Process, Predictable: in respect to a (set of) attribute(s) of its outcomes, is a label for a 

physical process, for which the changes in the state of the corresponding (set of) attribute(s) in 

consecutive runs of the process is predictable. 

Process, Erratic: in respect to a (set of) attribute(s) of its outcomes, is the label for a 

physical process, for which the changes in the state of the corresponding (set of) attribute(s) in 

consecutive runs of the process are not predictable, either structurally or eventually. 

Predictability and erraticism are not inherent characteristics of a physical process, but of 

the (level of) knowledge available to the agent who is interested in the outcome of the process. 

Also, a physical process may be labeled erratic in respect to a specific (final) attribute, but it may 

be partially erratic in respect to another (final) attribute, and be predictable in respect to other 

(final) attributes. 

Process, Random/ Stochastic: in respect to a (set of) attribute(s) of its outcomes, is an 

erratic process that if being repeated many times, it exhibits a deterministic/ certain/ stable 

tendency/ propensity to adopt various states (relative to each other). 

A natural random process is yet to be discovered, but it is possible to develop a man-made 

process that (almost) exhibit predictability requirements, namely, (1) a (limited) state space, and 

(2) stable long-run behavior, but still remains unpredictable to an agent observing the realization 

of the subsequent outcome (of the process). However, if the observer learns the (hidden) pattern 

according to which outcomes are generated, it can rename the process from random to predictable. 

Process, Uncertain: is a (member of a class of) process, with some shared features, that 

(1) (collectively) yield different outcomes in various runs of the process, and (2) the agent, who 
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intends to assess to the process, is unable to predict the outcome to-be-realized in each run of the 

process.  

Relation/Association: is a connection between a number variables. Relation/association is 

a primitive notion. In a relation, one variable is the reference/original variable and another is 

associate variable. 

Relation/Association rule: is a way by which (values of) a number of variables, are 

connected/ associated. In a relation, one variable is the reference/original variable and another is 

associate variable. 

Relationship, Structural: is a group of relationships connecting/ associating/ mapping/ 

corresponding the adoption of the each possible set of states for the initial and the circumstantial 

attributes of a physical process to the realization of a specific set of states (of the various attributes) 

of the outcome of a physical process. 

Relationship, Eventual: is a subset of structural relationships connecting/ associating/ 

mapping/ corresponding the adoption of an attribute of an outcome of a process with the set of all 

possible states for the other attributes of the outcome that may concurrently realize in the final 

outcome of the process. Eventual relationships can be obtained deductively by canceling out the 

(states of) initial and circumstantial attributes from the structural relationships 

Resistance/Supply: the ability of the device to withstand an imposed load. 

Resource: an agent’s means/tool to preserve/change certain (external) states/objects of the 

world.  

Sample: is a limited-size subset of the (real/ imaginary) set containing all possible 

members/ realizations of a mixed population/ physical process. 
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Sampling Process: is process through which a member of the population/ reference set, is 

being chosen to be included in a sample set. Sampling is a “selective observational process,” where 

the observer can only learn the character of a select number of objects rather than every object. 

Sample, Random: is a sample collected such that the observer/ conductor of the sampling 

process is ignorant regarding the outcome to be observed before the completion of the process (i.e. 

he/she cannot predict the outcome in advance). 

Sample, Simple Random: is the product of an unbiased sampling process, where each 

member of the population/ reference is equally likely to be chosen relative to all other members. 

In such an unbiased selective observational procedure, if the process is being repeated many times, 

relative to the size of the population, each member (of the population) is being observed as many 

times as every other member.  

Sampling/Experimentation: is the act of selecting and inspecting/evaluating a member of 

the population in order to learn its class. 

Sampling/Experimentation, Simple Random: is sampling from a population in a way 

that the member to be selected is not predetermined and each member is equally likely to be 

selected. 

In other words, the process of simple random sampling does not discriminate across the 

population and each member is a possible selectee. The indiscrimination, however, creates 

uncertainty regarding the outcome of the selection. To quantify the uncertainty, probability 

measure is being introduced to numerically differentiate among various possibilities that may be 

selected. 
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Sample Space: is the set of all concrete outcomes for a random act, among which is being 

realized every time the act is being taken. A concrete outcome is the one that has a direct 

manifestation/ representation in the real-world; thus, its realization can (temporally and spatially) 

be verified. A frequency distribution function characterizes the sample space by informing the 

relative frequencies for all its outcomes, as they do realize in the real-world. 

Space, (Statistical) Hypothesis: is the set of all frequency distribution functions 

(hypothesized by the analyst) that one of which may give the true/ real relative frequencies of a 

specific sample space. A plausibility/ credibility distribution function characterizes the hypothesis 

space by defining/ assigning/ establishing the relative degrees of plausibility/ credibility for all its 

hypotheses. A plausibility value does not exist in the real-world, and is an artifact of human 

analysis resulting from an approach, Bayesian, man has developed to systematically address his 

lack of knowledge regarding (the true/ real) relative frequencies in a sample space. Since prior 

plausibility/ credibility values are arbitrary they do not have truth values, i.e. being true or false, 

and they cannot be compared/checked against an (externally) measurable quantity. 

Selector: is an agent/ device/ machine, either biological or non-biological that is able to 

sense and differentiate between certain (natural) objects/ states and favor some over the other. 

The (observation of the) behavior of the agent reveals its preference among a set of 

available objects/ states. Many organisms, including plants and animals, can sense, differentiate, 

and select among certain objects/ states available to them. 

Serviceability/Usability/Employability: the ability of a device to maintain its function, as 

an agent of change/preservation. 
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Survivability/Durability/Reliability: the ability of a device to maintain its integrity, as a 

prerequisite for its serviceability, in the face of various sources of threat; external threats such as 

(gradual or sudden) changes in environment, as well as internal threats such as wear and 

depreciation. 

Set, Mathematical: a well-defined/ described collection of distinct (mathematical) objects, 

called members. A set can be defined/ described either by intention, i.e. by using a rule or semantic 

description, or by extension, i.e. by listing/ enumerating every member of the set. 

Set (of two), Ordered: a pair of two mathematical object, where the order of the 

appearance of object does matter. An ordered pair is also called a sequence of length two, or a 2-

dimensional vector is the mathematical objects are numbers.  

State /Object of interest/desire: is a subset of the outcome of a process that a preferring 

machine wants to be realized.  

Theory, Probability: a branch of mathematical study aimed at quantitative analysis of 

uncertainty/risk/randomness. 

Theory, Mathematical: a collection of axioms/principles and theorems/propositions 

aimed at a systematic study of combinations of certain (mathematical) objects. 

In the case of probability theory, objects of interest include simple random experiments/ 

trials and their outcomes, simple events, as well as compound events/outcomes in the form of 

sequences/n-tuples recording/capturing (simple) outcomes realized in consecutive repetitions of a 

simple random trial.   

Variable: is an abstract algebraic object, represented by a symbol/alphabetic character, 

constructed to refer to an unknown/ unspecified number, the “value” of the variable. 
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Variables allow for formation of algebraic calculations, which are generalizations/ 

extensions of arithmetic calculations on a set of specific numbers to a situation, where the numbers 

are unknown/ unspecified. 

Variable is a theoretical construct, denoted by a symbol, e.g. X, in reference to the value 

of a characteristic. Variable is a surrogate/substitute for all possible conditions/states/levels/ 

magnitudes/amounts a characteristic may take. The concept of variable significantly simplifies and 

facilitates description and analysis of changes in a characteristics. 

Variable, Index: is an (integer) variable resulting from the act of indexing population 

members. 

Variable, Numerical/quantitative: is a variable whose possible values are number 

representing the degree to which a characteristic is possessed. 

Variable, Random/stochastic/aleatory: is any variable, associated with the population, 

whose values stochastically realize due to aleatory realization of population members in a random 

sample. Any random variable is described by probabilities assigned to its values.  

Variation: is a change/difference in condition, level, or amount. Closely related to the 

concept of characteristic/specification, variation is also a primitive notion; i.e. humans are innately 

able to comprehend changes in a certain characters of objects. For example, humans can recognize 

variation in color of objects. 
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3. CATEGORIZED DEFINITIONS 

Topic A: Naming: 

Name/Label: is (one or more) words designating an individual entity. 

Address: is the description of particulars of a location. 

Nominal Address: is an address (created) based on the name of the object. 

Characteristic Address: is an address (created) based on the (particular) character of the 

object. 

Index: is an indicator for a member of a set in an ordered sequence of set members. An 

object’s index can act as its address in a sequence. 

Character-based Naming: is a naming method, where objects are being named according 

to the degree/intensity/type, by which they possess a character. 

Character-based Sorting: is a sequencing method, where members of a set are being 

ordered according to the degree/intensity/type, by which they possess a character. 

Position-based Indexing: is an indicating method, where sequence members are being 

indexed according to their position/address in the sequence. 

Combinatorial Process: is a process involving two (or more) sets, where every member 

of one set is being combined with every member of other set(s), producing a new object of multiple 

components, an n-tuple. 

The results of a combinatorial process are called combinatorial outcomes, which each are 

composed of various components, each a member of the (original) comprising sets.  
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Sequential Combinatorial Process: is a combinatorial process that combines members of 

a number of sequences, rather than unordered sets. 

Multi-Attribute Indexing: is method for indicating at outcomes of a combinatorial 

process, where members of a multitude of ordered/sequenced sets are being combined. 

The method requires establishment of a sorting criterion as a means of prioritizing one 

combinatorial outcome over the others. 

Directional Index: is the index specifying the rank of members in one of the sequences 

combined through a combinatorial process. 

Sorting Variable: is a function of all attributes/dimensions characterizing members of a 

combinatorial space and is defined to assess the priority of each combinatorial outcome over 

others.  

The definition of a sorting variable can be based on a real or an arbitrary preference among 

characters characterizing components of combinatorial outcomes. Geometrically, a sorting 

variable provides a preferred movement path in the multi-dimensional combinatorial space, where 

each dimension is the characters, or a character-based index, characterizing one of the source 

sequences. 

Combinatorial/Collective/Integrative Index: is an index specifying the position of a 

combinatorial outcome in a sequence of the members of a combinatorial space, ordered based on 

a sorting variable. 

Arbitrary Combinatorial Index: is a combinatorial index, whose sorting variable does 

not reflect any real preference among combinatorial outcomes and is just a way of systematically 

sorting multi-dimensional outcomes.   
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Topic B: Discretization and Numerical Calculations: 

Domain: is a (continuous) collection of points, an analogy for members of the domain, 

defined by one or more (quantitative) characteristics, the number of which specifies the dimension 

of the domain 

Boundary: is a (continuous) collection of points, which divide the domain into two distinct 

subsets. A boundary is usually of one dimension less than that the number of dimensions defining 

a domain. 

Non-intersecting Boundaries: are a number of boundaries, which do not intersect inside 

a specific domain. 

Layer: is a subset of a domain bounded by a number of boundaries. 

(Discretized) Element: is a small subset of a (numerical) domain, with the same 

characteristics/ dimensions defining the domain. 

A discretized element in a continuous domain is specified by a range of values for each of 

the characters/dimensions of the domain. 

Single-Layer Element: is an element not crossed with any boundary; thus, only confined 

with external boundaries of the element.  

Multi-Layer Element: is an element crossed with one or more boundaries. 

Cross-Boundary Element: is a multi-layer element, in which two or more boundaries 

cross each other.  
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Topic C: Calculus: 

Number: is a mathematical object abstracted by human mind from its perception of the 

size of a crowd of discrete (similar) physical objects or the volume/ heft of a bulk matter or the 

magnitude/ intensity of a sensible quality, such as ambient heat or humidity.  

Numbers provides a means for quantifying various aspects of the physical world, where a 

number specifies the (precise) size/ magnitude of a certain aspect of a physical object. In other 

words, a quantified size/ magnitude of a physical aspect provides a concrete representation for the 

pertinent number, which is an abstract construct of the human mind.   

Number one, which is abstracted from human observation of a single physical object (of a 

kind), is central to the development of other numbers by using arithmetic operations. 

Quantification: is the process of assigning a number as the size/ magnitude/ intensity of 

certain physical aspect of a target object, by using a (standard) means of quantification. 

Quantification requires a physical representation for the number “one” as the unit of the 

physical attribute to be quantified. When the target physical attribute is the size of a crowd of 

discrete objects (who share certain features), each object is being mapped to number one and the 

size of the crowd is being found by the act of counting. When the target physical attribute is not 

comprised of discrete (countable) units, the process of quantification requires defining/ 

establishing a (standard) unit (amount) for the target (physical) aspect and a measurement device/ 

procedure to determine the magnitude of the aspect for a specific object. 

Character/Aspect/Property/Quality: is a feature of an object as perceivable by sensors 

capable of sensing the feature.  
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State (of a character): is one of the possible distinct forms/variations of a specific 

character. For example, the character “color,” as perceived by human senses, can take various 

states such as red, green, and blue. 

Category/Class/Type: is the label for a set of objects, who share a number of (states of) 

specific characters.  

The most basic categories are the ones encompassing every object that shares a specific 

state of a character. For example, the category “red” includes every (real and imaginary) object, 

whose color is red.   

(Non-numeric) Variable: is a concept, constructed by human mind, as a means of 

reference to every possible state of a character, where the label for the state, that is realized (in an 

object), is set as the “value” of the variable. For example, if an object is sensed as red by a color 

detection sensor, the value of the color variable becomes “red.” 

(Numeric) Variable: is a mathematical object with the ability to take/ adopt any 

(numerical) value from a set of numbers.  

The concept of variable is being abstracted by human mind from the capacity of physical 

objects for evolution/ adoption, characterized by change in the magnitude/ intensity of some of 

their (physical) characters.  A variable provides a means for capturing every possible quantity a 

physical attribute may take. In other words, the (changing) quantity of a physical character 

provides a concrete representation for the pertinent variable, which is an abstract construct of 

human mind. 

Associated Variables: are a number of variables, who are tied together such that each 

value of one of the variables is being associated with specific values of other variables.  
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Rule of Association: is a pattern, according to which variables become associated.  

The rule informs the “how” of association by specifying that each value of one variable is 

associated with what values of other variables. The specification requires an exhaustive list of 

induvial associations between values, provided either by a (detailed) description/enumeration or 

by a (general) formulation with the ability to generate the detailed list at will. 

Addition/ summation: is an arithmetic operation on two numbers resulting on a third 

number, larger than both input numbers.  

The mathematical operation of addition is being abstracted from the situations of physical 

growth in the size/ magnitude of a physical attribute. The growth in the size of a crowd of objects 

occurs due to arrival/joining of new masses to the crowd, either through the process of birth from 

within or through inflow from outside. The growth in the magnitude of a physical attribute results 

from the evolution of the object in response to changes in other attributes of the object and/or of 

object’s environment. Thus, physical processes such as birth/ generation, inflow, and evolution 

provide concrete representations for the abstract mathematical operation of addition. 

Deduction/ subtraction: is an arithmetic operation on two numbers resulting on a third 

number.  

The mathematical operation of addition is being abstracted from the situations of physical 

shrinkage/ decline in the size/ magnitude of a physical attribute. The decline in the size of a crowd 

of objects occurs due to departure/leaving of existing masses (from the crowd), either through the 

process of death (from within) or through outflow (from inside). The decline in the magnitude of 

a physical attribute results from the evolution of the object in response to changes in other attributes 

of the object and/or of object’s environment. Thus, physical processes such as death/ decay, 
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outflow, and evolution provide concrete representations for the abstract mathematical operation of 

addition. 

Algebraic Expression: is a mathematical object composed of a set of constant numbers 

and variables combined through numeral operations.  

The outcome of an algebraic expression is a variable whose value is determined by the 

numerical process delineated by the algebraic expression. An algebraic expression, as an abstract 

object, can be concretely represented a physical process where a series of growth/ decline, arrival/ 

departure, and evolution processes occur in series or in parallel. Thus, the value of the variable 

defined by the expression can be concretely represented by the magnitude of the target attribute at 

the end of the pertinent physical process. 

Algebraic Equation: is a mathematical object informing the equality (of the values) of 

two (variables defined by) algebraic expressions.  

An algebraic equation, as an abstract object, can be concretely represented by a physical 

event, which only occurs when the magnitudes of two physical attributes balance each other, i.e. 

be at equilibrium. 

Function: is a mathematical device/machine, which uses a numerical process/rule to 

assign/map to each possible (numeric) value of a (independent) set, another value from a 

(dependent) set.  

The (independent) set (of values), which the function takes/maps from/assigns to, is called 

the “domain” of the function, and the (dependent) set (of values), which the function gives/maps 

to/assigns, is called the “range” of the function. Every/all possible (numeric) member of domain, 

and range as two sets, can be represented by (numeric) variables and denoted by symbols such as 
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x and y, respectively. In a different terminology, x-values are “assignee” and y-values are 

“assigned.” 

The terms “independent” and “dependent” used to label variables, as mathematical objects, 

are not in reference to a concrete physical reality. A justification for the use character 

“dependency” for differentiating input and output variables is that in any process, it is (the state of 

the) input that determines (the state of) the output, not the other way around; thus, the output 

variable is “dependent” on the input variable.  

While my definition classifies a function as a (mathematical) device capable of the act of 

assignment/mapping, it is more common to see definitions, where a function is classified as the 

rule/ process underlying its act of assigning/mapping. It is also common to see definitions of a 

function that drop any reference to the underlying process or the device employing that process, 

and simply define a function based on associated variables. In such definitions, the dependent 

variable, y, is simply a function of the independent variable, x.  

Beyond immediate differences among these definitions, the mere existence of these 

variants, reveals more facts about the varying nature of “thinking processes” across human 

population. These variations become more evident, when human mind needs to apply fundamental 

abstract concepts such as device/machine, process/mechanism/rule, input, and outcome, to the 

abstract world of mathematics. In the absence of a “standard thought process,” thinkers may fail 

to distinguish between a mathematical device/machine, in this case a function, the process that the 

(man-made) device employs in its operation, and the outcome of applying the device.   

Rule of a Function: is the numeric operation used by the function, in which numeric 

operators act on an input (number) along with (other) constant numbers, to produce a (numeric) 

output.  
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A rule can be symbolically represented by a mathematical expression, where the (numeric) 

value of the input/independent variable is denoted by variable’s symbol, e.g. x. Rule of a function, 

written in (symbolic) algebraic language, is the only way to inform the “how” of the corresponding 

association process. Other means of representing a function including (1) spoken/written human 

language, (2) numerical tabulation, and (3) graphics, only inform the associations made by the 

function, without informing “how” the associations have come to the realization; i.e. why x* is 

associated with y* and not y**.  

The rule of a function informs the “type” of the (numerical) process the function uses for 

associating members of domain with members of the range. Replacing the symbol representing 

the independent variable with the (numeric) value of a specific member of the domain, yields a 

“token” of that type of process. The specific numeric value differentiates corresponding token of 

that type of a numerical (association) process from other token of that process. 

Inverse function: is another function whose direction of assignment is inverse of an 

original function such that it assigns to each member of range a member of domain. 

An inverse function can only be formed if the original function is one-to-one such that no 

two distinct members of domain are being mapped to a single member of range. The inversion (of 

the direction of the assignment process) results in a switch in the positions of the domain and the 

range as well as independent and dependent variables. The domain of the original function 

becomes the range of the inverse function and the dependent variable of the original function 

becomes the independent variable of the inverse function. The switch between the positions of 

dependent and independent variables are consistent with the fact that (the state of) “dependency” 

character of variables is determined by the direction of the (mathematical) process connecting 

variables, than a (physical) precedent between (the realizations of) the concrete representations of 
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the two variables. So, it is more accurate to perceive input and output variables as two 

mathematical objects connected through a mathematical process and call each (variable) an 

“associate variable” and take dependency-based labels as an indicator of the direction of 

association. 

Variable Transformation: is a mathematic process that takes a variable and gives an 

associate variable as its transform.  

Transformation process relies on feeding the variable as an input to a function (of choice) 

and receiving a dependent variable as a transform of the (dependent) variable. There are infinite 

number of transforms for a variable as there are many functions that can take the (independent) 

variable as their input. Common functions used for transforming variables include first and second 

order polynomials, as well as logarithm. Variables are being transformed for a variety of reasons 

including making algebraic manipulations easier, or providing a more familiar visual 

representation of the relationship between variables.  

Derivative of a function: is another function, which takes the independent variable of the 

original function as input and gives the “rate of change” in the magnitude of the dependent variable 

in response to a (infinitesimally small) change of the magnitude of the independent variable. 

In addition to the term the (instantaneous) “rate of changes,” the output of the derivative 

function can be labeled by terms including “interval width ratio,” “ratio of the differences” (at the 

limit), “sensitivity of output to input,” or simply the “derivative.” Although the use of the label 

“derivative” for the output variable of the “derivative function” might be confusing, it is in line 

with similar confusing labels such as the use of the label “function” for both the (mathematical) 

device/process and its output. 



 

228 
 

The rule for the derivative function, in its explicit algebraic representation as an equation, 

can be found through the process of “differentiation” and by manipulating the formula for the 

original function. The process involves development of the “difference quotient,” in an algebraic 

form, which is a function of two variables, the independent variable, x, and another variable, called 

the increment of x, denoted by x. When the increment of x approaches zero, it is possible to 

calculate the “limit” of the difference quotient, by manipulating its formula and by canceling out 

the variable x in the numerator and the denominator, and to obtain the rule for the derivative 

function.  

Rate of Change: (of two associated variables) is the ratio of the (induced) change in the 

magnitude of the dependent variable to the (inducing) change in the magnitude of the independent 

variable. Rate of change is the output of the derivative function. 

The simplest concrete representation of the rate of change is the magnitude of the change 

realized in one of the characters of an evolving system in a unit time. For example, when the 

evolving system is comprised of an object moving toward a target, the character required for 

precise/ quantitative description of the evolution is the spatial position of the moving object at each 

instance of time. The rate of change in the position of the object in respect to time, called the 

“speed” of movement, gives the magnitude of displacement realized in a time unit.    

The rate of change can also be used to mathematically describe a physical production/ 

consumption process over time, where by providing the required input, the process delivers its 

output. Since the generation/degeneration process occurs along the time, it is possible to describe 

the magnitude of (various aspects of) input or output in respect with time. While the rate of 

consumption gives the magnitude of (a certain character of) the input taken by the process during 

a unit time, the rate of production gives the magnitude of (a certain character of) the output given 
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by the process. It is also possible to bypass the timeframe and directly associate the input and the 

output of the process. For example, in economics, the marginal cost of production is the cost, of 

input to a production process, for delivering a unit of the output. 

Anti-derivative of a function: is a function, whose derivative is the original function. 

Thus, the output of the original function gives the rate of the change for the anti-derivative 

function. 

The process to find the rule of anti-derivative function is called “integration,” which is the 

inverse of the algebraic process of “differentiation.” The input of the process of integration, i.e. 

the original function whose anti-derivative is sought for, is called the “integrand” function. A 

mistake similar to   

A consequence of the inverse relationship between differentiation and integration 

processes is the non-existence of a unique anti-derivative for an original (integrand) function, 

where adding a (constant) number to the rule of an anti-derivative results in the rule for another 

anti-derivative of the original function. The reason is that any original function can be perceived 

as the function plus the number zero, and the anti-derivative of zero could be any other (constant) 

number.  

A concrete representation of the output of an anti-derivative function is the total amount of 

input/output being generated/degenerated in a production/consumption process, after a specific 

time. To label the mathematical objects consistent with the physical analog, the output of the 

original function gives the “rate of generation” of the process and the output of the anti-derivative 

gives the “cumulative amount” of the input/output being taken/given by the process.    
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Derivative of a function: is another function, which takes the independent variable of the 

original function as input and gives the “rate of change” in the magnitude of the dependent variable 

in response to a (infinitesimally small) change of the magnitude of the independent variable. 

The rule for the derivative function, in its explicit algebraic representation as an equation, 

can be found through the process of “differentiation” and by manipulating the formula for the 

original function. 
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Topic D: Philosophy: 

Type/ Category/ Class: is an abstract construct developed to label groups of objects based 

on their common characters. Based on the defining character of a type, all members of a class are 

the “same.” 

Token: any of the members of a class of objects, who share a number of features. A token 

acts as a concrete representation of an abstract type. Tokens of the same type are “type-identical.” 

A Priori: is the (theoretical) knowledge obtained by means of deduction rather than 

empirical observation. 

A Posteriori: is the knowledge obtained by using empirical observations as the basis for 

reasoning. 
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Topic E: Mathematics: 

Formal: presented in an arranged/ordered fashion according to specific rules pertaining 

the appearance (of an object) 

Recipe: is a set of instructions developed to inform “how to” take certain acts including 

the act of creating/building a new system, or a token/instance of an (already known) system. 

Formula: is a statement informing the relationship between (various) characters of a 

(typical) system. 

Law/Rule: is a statement developed to inform the acceptability/legitimacy of an object, 

act, or a recipe, in a system of thought. 

Form: the appearance of a system or of a (linguistic) statement about the system, including 

pertinent rules and formulas. 

Formal/Axiomatic system: is a system of thought consisting of forms/symbols 

representing (1) a number of objects with certain characteristics, (2) rules for (acceptable) 

interactions between the objects, and (3) formulas relating (various) characters of (basic and 

compound) objects after certain interactions. 

Objects of a formal system are either basic/primitive or compound. While primitive objects 

are accepted (by users of the formal system) without a definition, compound objects are well-

defined in terms of the outcomes of interactions involving primitive objects. Formulas of a formal 

system are either axioms or theorems/propositions. While axioms are the result of an (initial) 

establishment/assignment (by developers of a formal system) and are accepted as they are, 

theorems are the result of applying a set of accepted rules of reasoning, as means of an analytical 

process, to (already established) axioms. 
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Examples of formal mathematical systems include Euclidean geometry, algebra, and set 

theory. In Euclidean geometry, primitive/basic/undefined objects include point, line, and plane. 

The first of the five axioms of Euclid asserts that it is possible to connect two points by a straight 

line-segment, which postulates formation of another object, a line-segment, as a consequence of 

the arrangement of other objects, namely the mere existence of two points. The first axiom also 

introduces a property/character for an arrangement consisting of two points, namely the length of 

the line-segment connecting two points. An exemplification of the interaction between objects is 

the crossing of three lines, which results in the formation of a new object; a triangle. An example 

of a proposition, is “triangle angle sum” theorem, which gives the magnitude of the sum of the 

three angles of a triangle as 180 degrees. 
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Topic F: Physics: 

Random Physical Process: is a process, whose outcome changes in subsequent runs of 

the process and its observer cannot predict the (exact) outcome, before its realization. A random 

process may be (simply) selective or generative. 

An observer’s predictive inability is due to her/his lack of knowledge about the attributes 

influencing the outcome of the process; either by not knowing the exact input-output relationship 

or by not knowing the exact state of the influencing attributes due to unavailability of means of 

detection/sensation. 

Selective Random Process: is a process, in which an agent selects a subset from a 

reference/source set of already produced objects.  

A Selective process, by itself, does not result in generation of new objects or in 

modification of the (physical) attributes of existing objects, other than the objects’ (physical or 

conventional) address. If an observer knows the “how of selection” by knowing the address of 

every object in the reference set and the address to which the selective agent reaches out, she/he 

can predict the outcome of the process. For such knowledgeable observer, the selection process is 

predictable and not random, even as the outcome varies along subsequent runs/trials. For example, 

if an observer knows (1) the entire sequence of (varying/mixed) numbers a “random function” uses 

to generate a random number, and (2) the address (of the position), where the function reaches, at 

the beginning of a new (selective) run, she/he can predict the sequence to be selected and exposed 

by the process. 

Generative Random Process: (to an observer) is a process, whose exact outcome, in each 

run of the process, is not predictable by the observer.  



 

235 
 

A generative process results in the production of new physical objects or modification of 

physical attributes of existing objects.  
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Topic G: Modeling (of Reality): 

Class: is a collection of objects, who are grouped based on affinities between a number of 

their features; the defining characteristics of the class. 

Class members can be distinguished by slight differences in their defining characters, as 

well as (potential) differences in their non-defining attributes. 

Unit Magnitude: (of a defining attribute) is the (numeric) amount of the physical character 

defined as one, usually based on an agreed standard measurement system. The magnitude of the 

character in a class member informs the intensity of the attribute relative to the unit (of the 

measurement).  

Attribute Range: (in a class) is the difference between the highest and lowest magnitudes 

across the class. There is no unique range for a class as range is attribute dependent and class 

members can be (potentially) described with reference to (either of their) attributes.  

Class Size: is the number of the members of a class, which is different than the range of 

the magnitudes for class characteristics. While class size is an integer (number), the range can be 

a real number. 

Indexing: (of a class) is labeling class members by assigning numbers.  

While numerical labels can be assigned arbitrarily and without any physical basis, it is also 

possible to use defining physical attributes of a class, either individually or jointly, as a basis for 

indexing. An attribute-based indexing does not differentiate between the members with the same 

magnitude of the defining attribute(s).  
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Law of the Class Size Conservation: is the rule asserting that the attribute(s) chosen for 

indexing a class must not influence the total size of the class. In other words, while a change in the 

indexing attribute(s) changes the member indices, the total class size remains attribute indifferent. 

Abstract Class: is a class, whose defining characters do not include spatial and/or temporal 

attributes. An abstract class is a “type” (of a class) with an unspecified size, which can be assumed 

as infinite. 

Concrete Class: is a class, whose defining characters do include spatial and/or temporal 

attributes. A concrete class is a “token” of a class type and has a finite size, due to its spatiotemporal 

constraints. 

Neighboring Class: is a class, in which the magnitudes of the defining characteristics of 

the class members are within a bounded range, a neighborhood (of numeric values). 

Concentrated Neighboring Class: is a neighboring class, whose neighborhood (of the 

magnitudes of the defining characters) is very narrow.  

In a visual representation of the magnitudes of the class, members are concentrated within 

an infinitesimal (numeric) range. 

Spread Neighboring Class: is a neighboring class, whose neighborhood (of the 

magnitudes of the defining characters) is not narrow. 

 In a visual representation of the magnitudes of the class, members are not concentrated 

around a single point. A spread class can be parted into a (finite) sequence of concentrated 

neighboring classes. The sequence members inform the “composition” of the spread class. 

Prevalence: (of a concentrated neighboring class in a spread class) is the proportion of the 

concentrated class size to the size of the spread class encompassing that concentrated class. The 
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term prevalence can be substituted with terms such as relative frequency and (class) size 

proportion. 

Prevalence Distribution: (of a spread neighboring class) is the sequence of the prevalence 

values for the concentrated neighboring classes composing a spread class. 

Prevalence Density: (of a concentrated neighboring class in a spread class) is the 

prevalence of the class relative to the class range, i.e. the width of the neighborhood. Prevalence 

density at a point, defined by a specific magnitude of an indexing attribute, gives the prevalence 

of a concentrated neighboring class of unit width encompassing the point.  
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Topic H: Fundamental Concepts (of Thought): 

Arrangement/Organization: is a way, in which a number of objects are positioned 

relative to each other. The position of a physical object can be spatial and/or temporal. Example 

arrangements include serial/ sequential/ chain-wise/ back-to-back/ in-succession and parallel/ 

concurrent/ side-by-side/ coexistent. 

Plan: is an arrangement of the components/parts making a whole. 

Plan of an action: is a (spatiotemporal) arrangement of the tasks (smaller actions) needed 

to be done, to achieve the end of the (purposive) action. The plan specifies the “what” and the 

“when” of the designated set of tasks. 

Method of an action: is (the general and the specifics) of the process needed to be initiated 

and maintained, to achieve the intended end of an action. The method details the “how” of an 

action/task. 

Planning: is the mental process/activity aimed at developing a plan. 
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APPENDIX B: FRAMEWORK FOR THE THEORY OF DECISION ENTROPY 

 

1. INTRODUCTION 

The Theory of Decision Entropy is intended to provide a basis to establish a non-

informative sample space for the purpose of making decisions. The desired characteristics for this 

non-informative sample space are that it be rational and logical, consistent, and incorporate the 

deterministic properties of a decision (the set of alternatives, possible outcomes and associated 

consequences) but no information about the probabilities of outcomes. The Theory of Decision 

Entropy is derived from three principles that describe a non-informative sample space: 

1. If no information is available about the probabilities of decision outcomes, then a 

selected alternative is equally probable to be or not to be the preferred alternative. 

2. If no information is available about the probabilities of decision outcomes, then the 

possible differences in preference between a selected alternative and the preferred alternative are 

equally probable. 

3. If no information is available about the probabilities of decision outcomes, then the 

possibilities of learning with new information about the selected alternative compared to the 

preferred alternative are equally probable. 
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2. FORMULATION OF DECISION AND UTILITY THEORY USING INFORMATION 

POTENTIAL 

The Theory of Decision Entropy is derived from classical Decision Analysis and Utility 

Theory. This section summarizes Decision Analysis and Utility Theory and formulates it in a 

manner that provides the basis for the Theory of Decision Entropy.  

 

The following notation will be used (Figure B.1): 

• Ai is decision alternative i among 𝑛𝐴 alternatives; 

• �⃑�𝑘 is a set of possible decision outcomes that affect the preference or utility 

associated with the decision alternatives amongst 𝑛𝜃 sets; 

• 𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) is the utility value that will be realized given that alternative 𝐴𝑖 

has been selected; and 

• 𝑃(�⃑�𝑘|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) is the probability that decision outcome �⃑�𝑘 will occur 

given that alternative 𝐴𝑖 has been selected and 𝑆𝑛𝐴
 is the sample space (the subscript 

𝑛𝐴 is included with the sample space to denote that it is the sample space for making 

a decision between these 𝑛𝐴 alternatives. 



 

242 
 

 

Figure B.1. Prior Decision Tree 

In accordance with Utility Theory, the selected alternative with the maximum expected 

utility value is the preferred alternative: 

𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐴𝑗  𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸𝜃(𝑢|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= 𝑚𝑎𝑥[𝐸𝜃(𝑢|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖] 

where 

𝐸𝜃(𝑢|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) = ∑ 𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑)𝑃(�⃑�𝑘|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

)

all nx

 

and 𝐸𝜃(𝑢|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) is the expected utility value given that alternative Ai has 

been selected. Note that multiple alternatives are preferred if they all have the same expected utility 

value equal to the maximum expected utility value. 

The maximum potential effect of information on the decision for each decision outcome is 

related to which alternative would be preferred if �⃑�𝑘 occurred (Figure B.2): 

  

𝐺𝑖𝑣𝑒𝑛 𝑒𝑎𝑐ℎ �⃑�𝑘 , 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐴𝑗|�⃑⃑⃑�𝑘
 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑)

= 𝑚𝑎𝑥[𝑢(�⃑�𝑘 , 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖] 
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Figure B.2. Posterior Decision Tree 

A quantitative measure of the maximum potential effect of information for each decision 

outcome is the difference between the utility value if alternative 𝐴𝑖 is selected, 𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑), 

and the maximum utility value, 𝑚𝑎𝑥[𝑢(�⃑�𝑘 , 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖]: 

∆𝑢(�⃑�𝑘 , 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) − 𝑚𝑎𝑥[𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖] 

where  ∆𝑢(�⃑�𝑘 , 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) will be designated the information potential. The information 

potential is less than or equal to zero: ∆𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 if 𝐴𝑗 is the preferred alternative 

and ∆𝑢(�⃑�𝑘 , 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) < 0 if 𝐴𝑗 is not the preferred alternative. The more negative the value of 

∆𝑢(�⃑�𝑘, 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑), the greater the difference in utility values between the selected alternative 

and the preferred alternative for that decision outcome. 

In conventional terms, the preferred alternative in the prior decision where �⃑�𝑘 is uncertain 

is equivalent to the alternative with the maximum expected value of the information potential since 
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subtracting the same value, 𝑚𝑎𝑥[𝑢(�⃑�𝑘 , 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖], from the utility values for all 

alternatives, 𝑢(�⃑�𝑘 , 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, does not change the ordering of the utility values:  

𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐴𝑗  𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸𝜃(∆𝑢|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= 𝑚𝑎𝑥[𝐸𝜃(∆𝑢|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖] 

where 

𝐸𝜃(∆𝑢|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) = ∑ ∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑)𝑃(�⃑�𝑘|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

)

all nθ

 

In addition, the value of perfect information about �⃑� given that alternative 𝐴𝑗 has been 

selected (Figure B.3) is equal to the negative of 𝐸𝜃(∆𝑢|𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
): 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 �⃑� 𝑖𝑓 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = −𝐸𝜃(∆𝑢|𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= ∑ {𝑚𝑎𝑥[𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖]

all nθ

− 𝑢(�⃑�𝑘 , 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑)}𝑃(�⃑�𝑘|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) 

 

 

Figure B.3. Pre-Posterior Decision Tree for Perfect Information 
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When information is available, represented by 𝜀𝑟, the probabilities for different decision 

outcomes are updated through Bayes’ Theorem: 

𝑃(�⃑�𝑘|𝜀𝑟 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) =

𝑃(𝜀𝑟|�⃑�𝑘 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) × 𝑃(�⃑�𝑘|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

)

𝑃(𝜀𝑟|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

 

where 

𝑃(𝜀𝑟|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) = ∑ 𝑃(𝜀𝑟|�⃑�𝑘 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

) × 𝑃(�⃑�𝑘|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

all nθ

 

Again, the selected alternative with the maximum expected value for the information 

potential is the preferred alternative: 

𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐴𝑘 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑘  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= 𝑚𝑎𝑥[𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖] 

where 𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) is the expected value of the information potential 

𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) = ∑ ∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑)𝑃(�⃑�𝑘|𝜀𝑟 ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

)

all nθ

 

 

The conventional value of information for an information scheme 𝑬 = (𝜀1, 𝜀2, … , 𝜀𝑛𝜀
) 

given that alternative 𝐴𝑗 is selected in the initial sample space 𝑆𝑛𝐴
 (Figure B.4) is related to the 

expected information potential as follows: 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑆𝑒𝑡 𝑜𝑓 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑬 𝑖𝑓 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑

= ∑ {
𝑚𝑎𝑥[𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖]

−𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

}

all nε

× 𝑃(𝜀𝑟|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) 

Note that while the probability for each possible information outcome, 𝑃(𝜀𝑟|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩

𝑆𝑛𝐴
), depends on the decision alternative selected amongst the 𝑛𝐴 alternatives, the probability for 

each possible information outcome in assessing the value of information, 𝑃(𝜀𝑟|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩
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𝑆𝑛𝐴
), corresponds to having selected alternative 𝐴𝑗 in the initial sample space. In other words, the 

value of information depends the information scheme, 𝑬 = (𝜀1, 𝜀2, … , 𝜀𝑛𝜀
), the effect of 

information on each of the decision alternatives being considered, 𝑃(�⃑�𝑘|𝜀𝑟 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
), 

and the alternative that is preferred in the original sample space, alternative 𝐴𝑗 such that 

𝐸𝜃(∆𝑢|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) = 𝑚𝑎𝑥[𝐸𝜃(∆𝑢|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖]. 

 

 

  

Figure B.4. Pre-Posterior Decision Tree for Imperfect Information 
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3. BASIS FOR NON-INFORMATIVE SAMPLE SPACE FOR A DECISION ALTERNATIVE 

The objective of the Theory of Decision Entropy is to establish a non-informative sample 

space for the decision outcomes, i.e., the n𝜃 values of 𝑃(�⃑�𝑘|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) for each of the 

nA alternatives. The theory is developed from the following three principles to establish the 

maximum lack of information about the probabilities of decision outcomes in a decision: 

1. If no information is available about the probabilities of decision outcomes, then a selected 

alternative is equally probable to be or not to be the preferred alternative. 

2. If no information is available about the probabilities of decision outcomes, then the 

possible differences in preference between a selected alternative and the preferred 

alternative are equally probable. 

3. If no information is available about the probabilities of decision outcomes, then the 

possibilities of learning with new information about the selected alternative compared to 

the preferred alternative are equally probable. 

These principles can be expressed mathematically using three axioms that establish a non-

informative sample space for the decision outcomes. 
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Principle Number 1: If no information is available about the probabilities of decision 

outcomes, then a selected alternative is equally probable to be or not to be the preferred alternative. 

Axiom Number 1: Given that alternative 𝐴𝑖 is selected, the probabilities for possible 

decision outcomes are those that maximize the relative entropy (see Appendix I for a description 

of relative entropy) for the events that this alternative is and is not preferred: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙(𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒| 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= −𝑃(𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

× 𝑙𝑛[𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)]

− 𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

× 𝑙𝑛[𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)] − ln(2)

= − {𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]

× 𝑙𝑛{2𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

+ {1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

× 𝑙𝑛 {2{1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}}} 

where 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the complement of 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑, or that 𝐴𝑖 is not preferred. 

For two states, 𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 and 𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the relative entropy 

𝐻𝑟𝑒𝑙(𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒| 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) is maximized in the ideal case where 

𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) = 𝑃(𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

) = 1/2 

or 

𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
] 

= 1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
] = 1/2  

If there are no possible decision outcomes, i.e., sets of �⃑�𝑘, in which 𝐴𝑖 is preferred or in 

which 𝐴𝑖 is not preferred, then the probabilities for 𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑|𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) are 0 or 

1 and the probabilities for 𝑃(𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) are 1 or 0 and the relative entropy 
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becomes equal to its minimum possible value, −ln (2), because there is no uncertainty in the 

preference [i.e., 𝑝 ln(𝑝) → 0 𝑎𝑠 𝑝 → 0 𝑜𝑟 𝑝 → 1]. 
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Principle Number 2: If no information is available about the probabilities of decision 

outcomes, then the possible differences in preference between a selected alternative and the 

preferred alternative are equally probable. 

Axiom Number 2: Given that alternative 𝐴𝑖 is selected and not preferred, the probabilities 

for possible decision outcomes are those that maximize the conditional relative entropy for the 

possible non-zero values of the information potential, ∆𝑢(�⃑�𝑘|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑): 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙(𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙| 𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= ∑
−𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× 𝑙𝑛{𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴
𝑖
 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

nΔ𝑢i<0

𝑝=1

− 𝑙𝑛(nΔ𝑢i<0
)

= − ∑
𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× 𝑙𝑛{nΔ𝑢i<0
𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴

𝑖
 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

nΔ𝑢i<0

𝑝=1

 

where the set of possibilities for ∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) < 0 are divided into nΔ𝑢i<0 possible 

values, each designated (Δ𝑢i)𝑝. 

The maximum value for 𝐻𝑟𝑒𝑙(𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙| 𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩

𝑆𝑛𝐴
) is zero and it is realized when the possible values of ∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) < 0 are uniformly 

distributed between the minimum and the maximum possible values. Note that the number of sub-

states for values or intervals of (Δ𝑢i)𝑝, nΔ𝑢i<0
, is not important in maximizing the relative entropy; 

the entropy is maximized when the possible intervals (however many there are) are as equally 

probable as possible. 
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The first and second axioms can be combined using the joint relative entropy of 

information where (𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑) and (𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) are the two main states and 

[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝] are the nΔ𝑢i<0
 sub-states within the state (𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). Given 

that alternative 𝐴𝑖  is selected, the probabilities for all possible decision outcomes are those that 

maximize the total relative entropy for possible preferences and information potentials: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙(𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑂𝑢𝑡𝑐𝑜𝑚𝑒| 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= 𝐻𝑟𝑒𝑙(𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒| 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

+ 𝐻𝑟𝑒𝑙(𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙| 𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

× 𝑃(𝐴𝑖  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

= − {𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]

× ln{2𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0|𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

+ {1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}

× ln {2{1 − 𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]}}}

+ {− ∑
𝑃[∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× ln{nΔ𝑢i<0
𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = (Δ𝑢i)𝑝|𝐴𝑖 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐴

𝑖
 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

nΔ𝑢i<0

𝑝=1

}

× {1 − 𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]} 

 

The maximum value for 𝐻𝑟𝑒𝑙(𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑂𝑢𝑡𝑐𝑜𝑚𝑒| 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) is zero and it is 

realized when it is equally probable that the selected alternative will be preferred, i.e., 

𝑃[∆𝑢(�⃑�𝑘, 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 0 |𝐴𝑖 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
] = 1/2, and the possible values of information 

potential when the selected alternative is not preferred, ∆𝑢(�⃑�𝑘 , 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) < 0, are uniformly 

distributed between the minimum and the maximum possible values. 
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Principle Number 3: If no information is available about the probabilities of decision 

outcomes, then the possibilities of learning with new information about the selected alternative 

compared to the preferred alternative are equally probable. 

Mathematical Formulation: Given that alternative 𝐴𝑗  is selected in the initial sample space 

and the set of possible information outcomes is 𝑬 = (𝜀1, 𝜀2, … , 𝜀𝑛𝜀
), the probabilities for possible 

information outcomes are those that maximize the relative entropy for the possible Values of 

Information, 

 𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= ∑ {

𝑚𝑎𝑥[𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑖  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖]

−𝐸𝜃(∆𝑢|𝜀𝑟 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
)

} ×all nε

𝑃(𝜀𝑟|𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
): 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐻𝑟𝑒𝑙(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛|𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) =

= − {𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]

× ln {2𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

+ {1 − 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

× ln {2 {1 − 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}}}

+ {− ∑
𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴

= (vi)𝑞| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
]

× ln {nvi>0𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= (vi)𝑞| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]}

nvi>0

𝑞=1

}

× {1 − 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

]} 

 

where the set of possibilities for 𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
> 0 are divided into n𝑉𝐼>0 possible values, each 

designated (vi)𝑞. 
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The maximum value for 𝐻𝑟𝑒𝑙(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛|𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴
) is zero 

and it is realized when it is equally probable that the information will or will not have value, i.e., 

𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
= 0| 𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

] = 𝑃 [𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
> 0| 𝑬 ∩ 𝐴𝑗  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∩ 𝑆𝑛𝐴

] = 1/2, 

and the possible values of the value of information when it has value, 𝑉𝐼𝑬,𝐴𝑗,𝑆𝑛𝐴
> 0, are uniformly 

distributed between the minimum and maximum possible values. 

Note that in the case in which the set of information outcomes is equivalent to perfect 

information about the decision outcomes, Principles 1 and 2 are consistent with Principle 3. When 

no information is available, Principle 1 means that there is an equal probability that the selected 

alternative will or will not be the preferred alternative (i.e., there is an equal probability that perfect 

information will nor will not lead to changing the selected alternative and therefore realizing 

information potential). Furthermore when no information is available, Principle 2 means that the 

possible values of information potential are uniformly distributed outcomes in which the selected 

alternative is not preferred (i.e., the possible changes in utility when the selected alternative is not 

preferred are uniformly distributed between the minimum and maximum values). 
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