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Abstract 

Process Safety in the oil and gas industry is managed through a robust Process Safety Management 

(PSM) system that involves the assessment of the risks associated with a facility in all steps of its 

life cycle. Risk levels tend to fluctuate throughout the life cycle of many processes due to several 

time varying risk factors (performances of the safety barriers, equipment conditions, staff 

competence, incidents history, etc.). While current practices for quantitative risk assessments (e.g. 

Bow-tie analysis, LOPA, etc.) have brought significant improvements in the management of major 

hazards, they are static in nature and do not fully take into account the dynamic nature of risk and 

how it improves risk-based decision making 

In an attempt to continually enhance the risk management in process facilities, the oil and gas 

industry has put in very significant efforts over the last decade toward the development of process 

safety key performance indicators (KPI or parameters to be observed) to continuously measure or 

gauge the efficiency of safety management systems and reduce the risks of major incidents.  This 

has increased the sources of information that are used to assess risks in real-time. The use of such 

KPIs has proved to be a major step forward in the improvement of process safety in major hazards 

facilities. Looking toward the future, there appears to be an opportunity to use the multiple KPIs 

measured at a process plant to assess the quantitative measure of risk levels at the facility on a 

time-variant basis. 

ExxonMobil Research Qatar (EMRQ) has partnered with the Mary Kay O’Connor Process Safety 

Center – Qatar (MKOPSC-Q) to develop a methodology that establishes a framework for a tool 

that monitors in real time the potential increases in risk levels as a result of pre-identified risk 

factors that would include the use of KPIs (leading or lagging) as observations or evidence using 

Bayesian Belief Networks (BN). 
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In this context, the paper presents a case study of quantitative risk assessment of a process unit 

using BN. The different steps of the development of the BN are detailed, including: translation of 

a Bowtie into a skeletal BBN, modification of the skeletal BN to incorporate KPIs (loss of primary 

containment (LOPC), equipment, management and human related), and testing of the BBN with 

forward and backward inferences. The outcomes of the dynamic modeling of the BN with real 

time insertion of evidence are discussed and recommendation for the framework for a dynamic 

risk assessment tool are made. 

Keywords Bowtie analysis, Bayesian Networks Applications, Reliability, Process Safety 

Performance Metrics 

1 Introduction 

Chemical process industries are complex networks that involve various equipment and control 

loops, along with skilled operators all working together to harmonize production throughout the 

process lifecycle. In order to ensure smooth operation, it is necessary to understand the hazards 

and risks associated, as well as any possible accident scenarios and their mitigation. It follows that 

the dynamic nature of these chemical processes extend to their accompanying risks as seen in 

Figure 1. Risk levels in a process facility tend to fluctuate due to several time-varying factors 

including: variations in the integrity and vulnerability of safety barriers, equipment aging, planned 

activities and maintenance, shutdown, start-up, simultaneous operations, changes in the safety 

culture of the company, health and efficiency of the management system, commitment to safety of 

the leadership and process safety incidents (incidents or near misses). 

It is important to quantify these time-dependent factors and their relationships using engineering 

and mathematical techniques, in order to develop quantitative estimates of risk that are then 

compared to some defined risk criteria that translates a company’s risk tolerability. Traditional 

quantitative risk assessment (QRA) methods include HAZOP, What-if Analysis, Bow-Tie 

Analysis, Fault and Event Trees, Layer of Protection Analysis (LOPA). However, these methods 

are limited in that they tend to convey static values of risk at a given time and are simply not 

designed to capture the dynamic nature of risk. It is therefore important to focus research on this 

area of dynamic risk and its measure, as way forward for improving current risk assessment 

methodologies. 

 



 

Figure 1. Dynamic behavior of risk 

 

More recently, Bayesian Belief Networks (BNs) which are probabilistic graphical models that 

allow for the quantification of complex relational dependencies using Bayes’ theorem, have gained 

traction in various engineering fields, including the area of process safety. BNs represent a set of 

random variables and their relationship through a directed acyclic graph (DAG). Each node of the 

DAG represents a random variable. The directed arcs connect pairs of nodes which follow a cause-

effect relationship. A node is called a “parent node” if there is a directed arc connecting it to another 

node, the “child node”. Nodes which have no parent are known as “root nodes” as seen in Figure 

2 [1]. 

 

Figure 2. Bayesian network – directed acyclic graph 

 

Probability values are assigned to each node of the BN. The main objective of BNs is to estimate 

and update the distribution probabilities of the random variables based on given evidence and prior 

knowledge. The calculation of the probabilities of the “child” nodes are based on a combination 

of the probability of the “parent” nodes and conditional probability tables according to the well-

known “Bayes rule” of conditional probability. The analysis of the probability associated to the 

nodes can follow two paths: 

 Predictive analysis or forward approach: Probability values are defined a priori for root 

nodes and calculated by inference for the other nodes. 



 Diagnostic analysis or backward approach: Probability values of the nodes are calculated 

a posteriori when observations become available. For example, BNs therefore provide a 

method to update our beliefs about the occurrence of an event “A” given the information 

of an observed event “B”. 

The way probability nodes are treated in a BN and its capability to represent dependencies between 

variables and provide updated probability values makes BNs a very interesting method to use real 

time data to update values of risks in process facilities. Hence, BNs have been applied for risk 

analysis and decision making and risk management. Weber et al. (2012) conducted a literature 

review over the application of Bayesian Networks to dependability, risk analysis, risk management 

and maintenance and showed a raising trend of the literature related to these domains [2]. This 

increasing trend is due to the advantages that Bayesian Networks provide in contrast to other static 

classical analysis methods such as fault trees, event trees and Bowties. BNs are also becoming one 

of the preferred tools for risk management applications [3]  

Currently, there has been significant work carried out on the use of BN to overcome the limitations 

of classical risk analysis. In this context, BNs have been applied for predicting the probability of 

occurrence of undesired consequences. This application involves the mapping of classical risk 

analysis techniques such as the Fault Tree (FT), Layer of Protection Analysis (LOPA) and Bowtie 

into a BN [4].  

Khakzad et al. (2011) presented a mapping algorithm to translate a FT into a BN, based on the 

algorithm developed by Bobbio et. al. (2001) [1]. The resulting BN was used to assess the 

performance of a feeding control system transferring propane from an evaporator to a scrubbing 

column [5]. Later, Khakzad et al. (2013) presented a dynamic approach where a bowtie was 

mapped into a BN. BNs were used to update the probability of occurrence of a vapor cloud 

explosion based on observed evidence. Evidence such as loss of containment events and near 

misses registered during 4 years were used to update the probability of a vapor cloud explosion 

[6]. 

Cai et. al. (2013) used BNs to perform a risk assessment that takes into account human factors in 

an offshore blowout scenario. Individual, organizational and group factors were represented in the 

bowtie that was mapped into a BN [7]. Ayello et. al (2014) applied BNs to assess the of different 

types of oil pipeline corrosion (Internal, external, stress induced). The variables included in the 

analysis were soil conditions, wetting and drying cycles, presence of organic decay products, 

coating types, pipe surface conditions, temperature, cathodic protection, chemistry under coating, 

etc. [8,10].  

Dynamic Bayesian Networks (DBNs) are an extension of BNs where variables are correlated to 

each other over time steps. DBNs often consist of two different time steps and are called two-time-

slice BNs. In a two-time slice BN the value of a variable can be calculated from the immediate 

prior value (time t-1) at any point in time “t. Lately, DBNs have been applied in risk assessment 

for estimating probabilities over different periods of time. Abimbola et al. (2014) mapped a Bowtie 

into a DBN in order to gain a real-time estimate of the probability of failure of barriers related to 

preventing a hydrocarbon blowout, thereby ensuring safe offshore drilling operations [11].  

Khakzad (2015) developed a DBN to estimate the propagation of heat radiation in a scenario where 

one of 3 atmospheric storage tanks containing acetone and benzene is under fire. The BN allowed 

for estimation of the most probable sequence of events that would result in a domino effect within 



the facility [12]. Barua et al. (2016) proposed a Bayesian Network model for dynamic operational 

risk assessment. The BN model was developed from a dynamic fault tree, where Boolean states 

(failure and success) were used to indicate the probability of failure of specific process equipment 

[13]. Later on, Wu et al. (2016) developed a Dynamic Bayesian Network Model (DBN) based on 

a Bowtie model for predicting the change of the probability potentially hazardous scenarios with 

time. Boolean states (Yes and No) were used for represent if and event or equipment failure 

occurs[14]. 

Current work in the literature demonstrates the capability of BNs for updating the values of risk 

based on observed evidence. Primarily, the random variables have Boolean states (i.e. failure or 

success of safety barriers). The type of evidence used for updating was either the observation of 

equipment failure or consequences over a certain period of time. However, in a process plant many 

other parameters or process safety indicators (PSIs) can be used as evidence. These indicators 

could be of different natures, and may include reliability related, operational indicators, human 

and organizational, demands on safety systems, etc.  

The purpose of this work is to develop a framework for a BN that calculates the dynamic risk with 

time based reliability data (failure rate, probability of failure on demand, time horizon until the 

next scheduled maintenance, and the characteristic life of equipment) and updates risk based on 

insertion of evidence such as equipment failures and time to failure (TTF) for continuous 

operation. The BN will also be used to demonstrate the effect of maintenance on the overall 

probability of consequences. The BN method used in this study incorporates the use of both 

Boolean and continuous random variables, as well as the Boolean and continuous causal 

relationships between them, which is one of the main differences between this work and others 

within this field. A proprietary Bayesian Networks software was used for the estimation of updated 

probabilities. This work is a collaborative effort between ExxonMobil Research Qatar and the 

Mary Kay O’Connor Process Safety Center at Texas A&M University in Qatar and aims to 

establish the framework for developing a dynamic risk assessment tool to determine the current 

risk level for a given process area or facility.  

2 Reliability Modeling 

Over the last decade the process industry put very significant efforts in the development of process 

safety key performance indicators (KPIs) (or parameters to be observed) to continuously monitor 

the health of safety management systems, the integrity of safety barriers and reduce the risk of 

major incidents [15,19]. However, there still seems to be no clear links between the multiple 

parameters measured at a process plant and the quantitative measure of risk levels (through a QRA) 

at the facility. 

Monitoring meaningful reliability indicators drive an increment in equipment and active safety 

barriers reliability. Reliability and risk are linked, increasing reliability can reduce the risk of 

undesired events in process facilities. The term reliability is associated to the probability that 

equipment or a system will perform as intended for a specific time horizon. Whereas, the 

probability that a piece of equipment or a system will fail at a given time is known as probability 

of failure. The probability of failure can be assessed through different parameters and functions 

such as the time to failure and the failure rate function. 

The time to failure (TTF) is the time elapsing from when a piece of equipment/safety barrier are 

put into operations until they fail for the first time [20]. TTF is a random variable that can be 



represented through probability distributions. The failure rate function is related to the time to 

failure probability distribution and it provides an estimate on how the probability of failure of 

equipment changes over time. The failure rate can be considered as constant or time dependent. 

The failure rate time-dependency is well represented by the so-called bathtub curve as seen in 

Figure 3. The bathtub curve profile represents the three stage of the life cycle of equipment or 

safety barriers: wear-in, useful life and wear-out modes. The wear-in mode has a decreasing failure 

rate and it well represents the early stages of the lifecycle of equipment (where it can fail mainly 

due to the manufacturing defects). The useful life accounts for failures caused by random events; 

in this mode, the failure rate is constant. The wear-out mode represent the failures caused by 

equipment aging. 

 

 

Figure 3. The bathtub curve 

Equipment and safety barriers in process plants are at different stages of their life cycle. Hence, 

when moving towards a dynamic risk assessment it is critical to address the characteristic stage of 

the lifecycle of these barriers. In system reliability, the Weibull distribution is widely used for 

modelling each one of the lifecycle stages of equipment. This probability distribution is a function 

of two different parameters: shape and scale. The shape parameter (β) indicates the stage of the 

lifecycle of equipment, where  < 1, represents the wear-in stage,  < 1 represents the useful life, 

1< < 4 represents the wear-out stage, and   4 represents the rapid wear-out stage. On the other 

hand, the scale parameter is an indicator of the failure rate per hour of equipment/safety barriers 

[20].  

3 Framework for Dynamic Risk Assessment 

The proposed methodology is comprised of different steps for the construction of a DBN with 

discrete-continuous variables as seen in Figure 4. The resulting BN is called a hybrid (discrete-

continuous nodes) DBN and it can be constructed from an existing bowtie diagram by mapping 

the fault tree (FT) and event tree (ET). 

 



 

Figure 4. Framework for performing a dynamic risk assessment using BN 

 

3.1 Development of the Skeletal BN 

In order to develop the skeletal BN, an algorithm exists to map a fault tree into a BN, including 

graphical and numerical translation of the fault tree. Graphically, the structure of the BN is 

developed from the fault tree such that the top event and the causes shown in the fault tree are 

represented by nodes and arcs in the BN. The relationships within the causes and the top event in 

the fault tree are modeled with two types of gates: OR Gate and AND Gate. According to the type 

of gate, conditional probabilities are assigned to each one of the nodes as seen in Figure 5.  

 

Figure 5. AND/OR gates conditional probability tables 

 



The procedure of mapping a FT into a BN consists of a nodal representation of each safety barrier 

of the FT in the BN. Each of the nodes will have two possible states: failure or success. A nodal 

representations of the consequences (from ET) was used as well. The consequence node has many 

states, each one of them representing the possible consequences shown in the ET. 

3.2 Modification of the BN to Incorporate Reliability Data 

For equipment that operates continuously, it is important to consider different parameters such as 

the probability of failure within a specified horizon “t” (i.e. the time before the next 

inspection/preventive maintenance) and the time to failure (TTF) for equipment under continuous 

operation. The TTF for equipment can be represented by continuous probability density functions 

such as the Exponential, Weibull or Gamma Distribution. In this work, nodes represented by 

continuous distributions are introduced into the BN. Therefore, the resulting BN is a hybrid type 

with a mixed of continuous- discrete nodes. 

For equipment still in the useful life stage, the time to failure can be calculated as the inverse of 

the constant failure rate of a system, equipment or safety barrier. On the other hand, for cases 

where the failure rate is time dependent (for equipment during the wear-in and wear-out stages its 

lifecycle), the Weibull distribution with appropriate shape parameters can be used. 

The simple mapping of a bowtie described earlier cannot be used when continuous nodes are 

introduced into the BN. In order to build the hybrid BN, deterministic functions are used as 

conditional node probability tables for translating the OR and AND gates. These functions are 

summarized in Table 1 [21]. After the continuous TTF distributions and the deterministic 

functions for the AND/OR gate are provided as inputs into the BN nodes, the probability of failure 

for each continuous node can be computed.  

  



Table 1. AND/OR gate functions for continuous TTF distributions 

Gate Output event TTF distribution 

function 

Probability of failure function 

AND All i-input 

components of the 

gate must fail. 

 
i

iAND TTFTTF max      tTTFPtTTFP i
i

AND  max  

OR At least one of the i-

input components of 

the gate must fail. 

 
i

iOR TTFTTF min      tTTFPtTTFP i
i

OR  min  

 

3.3 Creation of the DBN 

To transform the hybrid BN into a hybrid DBN, it is necessary to modify the structure of the BN 

for discrete nodes as follows: 

 Identification of the parent nodes in the BN 

 Creation of prior and posterior nodes for each parent nodes.  

Connected prior and posterior nodes associated to a given parent node are used to capture the 

change of probability with time. For each time step, evidence is first set and the posterior 

probability values of each node are calculated, given the inserted evidence and the prior probability 

value of the node.  

3.4 Evaluation of the Dynamic Risk Profile 

As a function of time 

Continuous probability distributions are used to represent the TTF of equipment under continuous 

operation can be included in the BN. The probability of the consequences is calculated for different 

specified time horizons t (i.e. the probability of the consequences if no inspection/maintenance are 

given in a period of 3 months, 6 months, etc.). The different specified time periods are 1, 3, 6, 9, 

12, 15 and 18 months.  

As a function of time and insertion of evidence 

Continuous probability distributions are used to represent the TTF of equipment under continuous 

operation, and can also be included in the BN. The probability of the consequences is calculated 

for different specified time horizons t (monthly time intervals can be used). In addition, evidence 

of failure of equipment is inserted every month for the sake of simplicity (other time units can be 

used). Thus, the risk profile is generated taking into account the effect of time and the observed 

evidence. 

4 Case Study 

This section presents a case study that applies the proposed framework for a dynamic risk 

assessment using Bayesian Networks. The scenario of choice is an extension of the case study 

performed by M. Tweeddale, Managing Risk and Reliability of Process Plants, Gulf Professional 

Publishing, 2003 [22], which focused on the heating oil section of a plant delivering hot oil to 



heating coils of bitumen tanks. The oil is returned to the bitumen tanks by the circulating pump 

through a gas-fired heater. 

The flow should be controlled through the heater, or the heater coils may overheat and rupture, 

resulting in a large fire. The flow control system is composed of a transducer (FE), a flow controller 

(FC) and a flow control valve (FCV). A manual bypass valve (MBV), which normally remains in 

a closed position, is used if FCV is down for routine maintenance. If the flow of the heating oil is 

below the desired level, the solenoid valve (SV) will be activated by the signal of the transducer 

FE and the temperature control valve (TCV) will be closed. The flow switch activates the low-

flow alarm (FAL), to alert the operator for opening the MBV or closing the manual gas isolation 

valve (GIV). In addition to the flow control system, a high-temperature switch (TSH) is placed in 

the oil delivery line. In case an increased temperature is measured by the TSH,  it will activate the 

solenoid valve SV and close the temperature control valve [22]. 

The corresponding bowtie diagram was constructed with the Heater Coils Burn Out as the Top 

Event, and is shown in Figure 6. In this example, the possible consequences, as seen in Table 2, 

depend on different factors: i) if the leaking oil finds an ignition source, the leak is isolated very 

quickly and ii) if the oil contacts operator. 

 

 

Figure 6. Heater coils burn-out scenario – Schematic Bowi 

 

Table 2. Possible Consequences 

Consequences Description 

C1 Operator burn, minor plant damage 

C2 and C6 Minor plant damage 

C3 Operator burnt, major plant damage 

C4 and C8 Major plant damage 

C5 Operator inconvenience, minor plant damage 

C7 Operator inconvenience, major plant damage 

C9 No consequences 



The probability of failure values mentioned in Table 3, which were used for constructing the BN, 

were taken from the original case study [22]. The BN obtained from mapping the bowtie is shown 

in Figure 7, while the estimated values of the probability consequences are summarized in Table 

4, and These results are the initial values of risk obtained by mapping the traditional bowtie in a 

BN and do not include any updates on probability values.  

 

Table 3. Probability of failure of equipment and safety barriers 

Node State Probability 

SV Failure 1.25×10-2 

 Success 9.87×10-1 

TCV Failure 6.26×10-3 

 Success 9.94×10-1 

FAL Failure 6.25×10-3 

 Success 9.94×10-1 

Operator Failure 1.00×10-1 

 Success 9.00 ×10-1 

 

 

 

Figure 7. Resulting BN from mapping the Bowtie 

  



Table 4. Initial values of the probability of the consequence 

Consequence Probability of the Consequence 

C1 8.08 × 10-5 

C2 3.96.6650 × 10-3 

C3 2.69 × 10-5  

C4 2.66 × 10-3 

C5 2.38 × 10-6 

C6 4.52 × 10-5 

C7 1.01 × 10-6 

C8 1.94 × 10-5 

C9 9.93 × 10-1 

 

4.1 Modification of the BN to Incorporate Reliability Data 

The following reliability data is incorporated into the BN:  

 The time to failure of equipment operating continuously  

 The horizon time until next maintenance is schedule t 

 Failure rate 

 The characteristic stage of equipment  

 Probability of failure for equipment which works upon demand 

The BN was modified to incorporate the use of TTF distribution. A Weibull distribution is used 

for representing the TTF distribution of the pump, FE and FS. The Weibull distribution parameters 

were taken from available literature data of equipment failure rates in the useful life as seen in 

Table 5 [23]. 

 

Table 5. Equipment/Safety barriers Weibull distribution parameters 

Equipment/Safety 

Barrier 

Shape parameter (useful 

life) 

Scale parameter (failure rate) 

Pump 1 9.18 × 10-5 

FE/FS 1 7.29 × 10-6 

 

When using TTF continuous distributions, the conditional probability tables (CPTs) are obtained 

as deterministic functions of the parents. The probability of failure of the system at a given time, 

t, can be obtained from the TTF distribution e.g. )()( tTTFPFailPumpP Pump  . The resulting 

BN will be hybrid with both continuous (time-dependent variables) and discrete variables 

(probability of success/failure) as seen in Figure 8. The TTF distribution functions for the 

AND/OR gates CPTs and the probability of failure functions are summarized in Table 1. 

 



 

Figure 8. Hybrid BN with continuous TTF distributions 

 

4.2 Evaluation of the Dynamic Risk Profile 

Evaluation of the risk increment as a function of time 

Continuous TTF distributions for the pump, FE and FS are included in the BN. The probability of 

the consequences if no inspection/maintenance was calculated for these specified intervals of time, 

t: 1, 3, 6, 9, 12, 15 and 18 months.  

Evaluation of the risk increment as a function of time and the insertion of evidence 

Continuous TTF distributions for the pump, FE and FS are included in the BN. The probability of 

the consequences was calculated for these specified intervals of time, t: 1, 2 and 3 months. In 

addition, evidence of equipment failure is inserted as described in Table 6. The modified BN with 

the insertion of evidence can be seen in Figure 9- Figure 11.  

 

Table 6. Observed evidence 

Month Evidence 

1 SV fail 

2 FE fails after 1440 hours of operation 

3 Pump fails after 2160 hours of operation 

 



 

Figure 9. BN with SV failure used as evidence 

 

 

 

Figure 10. BN with FE failure (after 1440 hours of operation) used as evidence 

 

 



 

Figure 11. BN with pump failure (after 2160 hours of operation) used as evidence 

 

To obtain the dynamic risk profile, the calculation of updated risk values, based on observation or 

evidence, over time is necessary. For equipment with discrete nodes, this requires a two-step 

process which includes:  

 The insertion of evidence in the BN and the recalculation of the probability of the nodes 

(variables) of the BN given equipment failure evidence. 

 The calculation of the probability of each node of the BN at a given time step given the 

probability of the node at the previous time step. The conditional probability values for 

posterior nodes are presented in Table 7 and were obtained from expert judgment. For the 

sake of simplicity, the same conditional probability table (CPT) was used for each one of 

the parent nodes. CPTs can be assigned based on expert opinion or literature data if 

available. 

 

Table 7. CPT for posterior nodes calculation 

Prior Node State Failure Success 

Failure 0.4 0.1 

Success 0.6 0.9 

 

Figure 12 shows how prior and posterior nodes are connected to capture the change of probability 

with time. For each time step, evidence is first set and the posterior probability values of each node 

is calculated given the evidence and the prior probability value of the node. 

 



 

Figure 12. Prior and posterior nodes associated to a given parent node 

 

For equipment, it was assumed that once a failure occurs, the equipment is repaired and it returns 

to an “as good as new” condition. 

5 Results 

For comparison purposes, the initial risk values (at time 0) were estimated using two modeling 

approaches: a discrete BN and a hybrid BN Figure 13. The obtained results show that when TTF 

continuous distributions (hybrid BN) are included into the BN, the initial predicted risk values are 

lower by three orders of magnitude for the consequences, when compared to values obtained by 

using just discrete nodes (discrete BN). The difference among the predicted values can be 

explained by the fact that the probability of failure of equipment/safety barriers increases as 

function of time and thus, lower probability values would be expected at early stages of a plant. 

The calculated values are summarized in Table 8. 

 

 

Figure 13. Probability of the consequences for discrete and hybrid BNs 

 



Table 8. Initial probability of the consequences for the Discrete and Hybrid BNs 

Consequence Discrete BN Hybrid BN 

C1 8.08 × 10-5 6.43 × 10-8 

C2 3.96 × 10-3 3.15× 10-6  

C3 2.69 × 10-5  2.12 × 10-6 

C4 2.66 × 10-3 2.14× 10-8 

C5 2.38× 10-6 1.89× 10-9 

C6 4.52 × 10-5 3.60 × 10-8 

C7 1.02 × 10-6 8.12 × 10-10 

C8 1.94× 10-5 1.54 × 10-8 

 

In addition, by incorporating TTF continuous distributions, risk can be calculated as a function of 

time for the case where no inspection or maintenance is provided as shown in Figure 14 and 

Figure 15. The calculated values are summarized in Table 9. For example, if no maintenance is 

scheduled in 3 months, the value of the probability of the consequences increases by almost three 

order of magnitudes for each one of the possible consequences. Thus, predicting the risk increase 

becomes highly important as this information can be used in decision-making to optimize the time 

intervals between inspection and preventive maintenance. 

 

 

Figure 14. Risk as a function of time 

 

 



.  

Figure 15. Probability of the consequences as a function of time  

 

 

Table 9. Probability of the consequence values as a function of time 

 Months 

 1 3 6 9 12 15 18 

C1 9.18×10-6 6.89×10-5 2.38×10-4 2.77×10-4 7.64×10-4 1.10×10-3 1.43×10-3 

C2 4.50×10-4 3.38×10-3 1.17×10-2 1.36×10-2 3.80×10-2 5.39×10-2 7.02×10-2 

C3 3.03×10-3 2.28×10-3 7.85×10-3 9.14×10-3 2.56×10-2 3.63×10-2 4.73×10-2 

C4 3.06×10-6 2.29×10-5 7.93×10-5 9.23×10-5 2.58×10-4 3.67×10-4 4.77×10-4 

C5 2.70×10-7 2.03×10-6 7.01×10-6 8.16×10-6 2.28×10-5 3.24×10-5 4.22×10-5 

C6 5.14×10-6 3.86×10-5 1.33×10-4 1.55×10-4 4.34×10-4 6.16×10-4 8.01×10-4 

C7 1.16×10-6 8.70×10-7 3.00×10-6 3.50×10-6 9.78×10-6 1.39×10-5 1.81×10-5 

C8 2.20×10-6 1.65×10-5 5.71×10-5 6.64×10-5 1.86×10-4 2.64×10-4 3.44×10-4 

C9 9.99×10-1 9.94×10-1 9.80×10-1 9.77×10-1 9.35×10-1 9.07×10-1 8.79×10-1 

 

 

When equipment failure information is inserted as evidence in addition to the effect of time, the 

predicted values of risk increase considerably in various order of magnitude. For example, the 

probability of the most severe consequence “C3-Operator burnt, major plant damage”, went from 

2.1236x10-6 to 1.9458x10-1, after the failure of the pump and the flow control components. The 

obtained dynamic profile is shown in Figure 16 and the increasing risk values can be observed in 

Figure 17. The obtained values for the probability of the consequences are summarized in Table 

10. 



 

Figure 16. Risk profile as a function of time and insertion of evidence 

 

 

 

Figure 17. Probability of the consequences as a function of time and the insertion of evidence 

 

 



Table 10. Probability of the consequences as a function of time and evidence 

 Month 0 Month 1 Month 2 Month 3 

C1 6.43×10-8 2.25×10-4 1.49×10-3 5.90×10-3 

C2 3.15×10-6 1.10×10-2 7.35×10-2 2.89×10-1 

C3 2.12×10-6 7.44×10-3 4.93×10-2 1.95×10-1 

C4 2.14×10-8 7.51×10-5 4.98×10-4 1.97×10-3 

C5 1.89×10-9 6.64×10-6 4.40×10-5 1.73×10-4 

C6 3.60×10-8 1.26×10-4 8.36×10-4 3.30×10-3 

C7 8.12×10-10 2.84×10-6 1.88×10-5 7.44×10-5 

C8 1.54×10-10 5.40×10-5 3.58×10-4 1.41×10-3 

 

6 Conclusions 

The application of Bayesian Networks provides several advantages towards the development of a 

tool for real-time risk assessment due to their capability for updating probability values given 

observations. This property of BN can be used to overcome the limitations of current QRA 

techniques which are static in nature and does not provide a real-time estimation of risk.  

Measuring meaningful reliability indicators improve the performance of equipment and active 

safety barriers. Reliability and risk are linked, increasing reliability can reduce the risk of undesired 

events in process plants. Nevertheless, there still seems to be no clear link between the reliability 

data measured at a process plant and the quantitative measure of risk. This work incorporates 

reliability related data such as failure rate, time to failure, life cycle stage of equipment and 

different time horizons for scheduled maintenance into the risk assessment.  

The increasing probability of failure of equipment as a function of time if no 

inspection/maintenance is provided, has an important effect in the estimated risk values. Risk can 

increase two or three orders of magnitude if a good maintenance program is not in place. The 

proposed approach provides a useful tool to support decision making, since it can be used to 

optimize the maintenance intervals. 

Results demonstrate the importance of updating the estimated risk values given real-time observed 

risk factors (equipment failure and effect of time) in the facility. The updated probability of the 

consequence values can be several order of magnitudes higher than the initial predicted values 

(obtained from the static analysis). When evidence of equipment failure is used to update the value 

of risk, this approach can be applied to identify equipment and safety barriers that are critical to 

maintain safe operations and to quantify the increment of risk in case their failure. The 

identification critical equipment and safety barrier in combination with the evaluation of risk over 

time can be used to support decision-makers to point out the equipment that will require continuous 

inspection and maintenance. 

Future research work includes the extension of this approach to repairable systems for including 

the time to repair (TTR). In addition, the approach must also be extended to include human factors 

KPIs.  



7 References 

[1] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving the analysis of 

dependable systems by mapping Fault Trees into Bayesian Networks,” Reliab. Eng. Syst. 

Saf., vol. 71, no. 3, pp. 249–260, 2001. 

[2] P. Weber, G. Medina-Oliva, C. Simon, and B. Iung, “Overview on Bayesian networks 

applications for dependability, risk analysis and maintenance areas,” Eng. Appl. Artif. 

Intell., vol. 25, no. 4, pp. 671–682, Jun. 2012. 

[3] H. Pasman and W. Rogers, “The bumpy road to better risk control: A Tour d’Horizon of 

new concepts and ideas,” J. Loss Prev. Process Ind., vol. 35, pp. 366–376, 2015. 

[4] H. J. Pasman and W. Rogers, “Bayesian networks make LOPA more effective, QRA more 

transparent and flexible, and thus safety more definable!,” J. Loss Prev. Process Ind., vol. 

26, no. 3, pp. 434–442, May 2013. 

[5] N. Khakzad, F. Khan, and P. Amyotte, “Safety analysis in process facilities: Comparison of 

fault tree and Bayesian network approaches,” Reliab. Eng. Syst. Saf., vol. 96, no. 8, pp. 925–

932, 2011. 

[6] N. Khakzad, F. Khan, and P. Amyotte, “Dynamic safety analysis of process systems by 

mapping bow-tie into Bayesian network,” Process Saf. Environ. Prot., vol. 91, no. 1–2, pp. 

46–53, 2013. 

[7] B. Cai, Y. Liu, Y. Zhang, Q. Fan, Z. Liu, and X. Tian, “A dynamic Bayesian networks 

modeling of human factors on offshore blowouts,” J. Loss Prev. Process Ind., vol. 26, no. 

4, pp. 639–649, 2013. 

[8] F. Ayello, N. Sridhar, G. Koch, V. Khare, A. W. Al-methen, and S. Safri, “Internal 

Corrosion Threat Assessment of Pipelines Using Bayesian Networks,” in Corrosion 2014, 

2014. 

[9] F. Ayello, S. Jain, N. Sridhar, and G. H. Koch, “Quantitive Assessment of Corrosion 

Probability — A Bayesian Network Approach,” Corrosion, vol. 70, no. 11, pp. 1128–1147, 

2014. 

[10] S. Jain, F. Ayello, V. Khane, and N. Sridhar, “Probabilistic Assessment of Stress Corrosion 

Cracking of Pipelins,” in Corrosion 2014, 2014. 

[11] M. Abimbola, F. Khan, and N. Khakzad, “Dynamic safety risk analysis of offshore drilling,” 

J. Loss Prev. Process Ind., vol. 30, pp. 74–85, 2014. 

[12] N. Khakzad, “Application of dynamic Bayesian network to risk analysis of domino effects 

in chemical infrastructures,” Reliab. Eng. Syst. Saf., vol. 138, pp. 263–272, 2015. 

[13] S. Barua, X. Gao, H. Pasman, and M. S. Mannan, “Journal of Loss Prevention in the Process 

Industries Bayesian network based dynamic operational risk assessment,” J. Loss Prev. 

Process Ind., vol. 41, pp. 399–410, 2016. 

[14] S. Wu, L. Zhang, W. Zheng, Y. Liu, and M. Ann, “Journal of Natural Gas Science and 

Engineering A DBN-based risk assessment model for prediction and diagnosis of offshore 



drilling incidents,” J. Nat. Gas Sci. Eng., vol. 34, pp. 139–158, 2016. 

[15] A. Groot, “Determination of Leading and Lagging Indicators Utilizing The BowTie 

Methodology,” in ADIPEC 2014, 2014. 

[16] H. J. Pasman and W. J. Rogers, “How can we use the information provided by process safety 

performance indicators? Possibilities and limitations,” J. Loss Prev. Process Ind., vol. 30, 

p. 10, 2013. 

[17] American Petroleum Institute, API Recommended Practice (RP) 754, Process Safety 

Performance Indicators for the Refining and Petrochemical Industries, no. April. 2010. 

[18] Qatar Petroleum Health Safety and Environment Regulations and Enforcement 

Directorate(DG), “Sustainability in the Qatar Energy and Industry Sector - Report 2013,” 

2013. 

[19] Health and Safety Executive, “Case study : Scottish Power - Power generation company 

gets to grips with process safety,” 2010. 

[20] R. Manzini, A. Regattieri, H. Pham, and E. Ferrari, Maintenance for Industrial Systems. 

Springer, 2010. 

[21] N. Fenton and Martin Neil, Risk Assessment and Decision Analysis with Bayesian Network. 

CRC Press, 2013. 

[22] M. Tweeddale, Managing Risk and Reliability of Process Plants. Gulf Professional 

Publishing, 2003. 

[23] SINTEF Industrial Management, OREDA: Offshore Reliability Data Handbook, 4th ed. 

2002. 

 


