
Copyright

by

Vatsal Nilesh Shah

2020

The Dissertation Committee for Vatsal Nilesh Shah
certifies that this is the approved version of the following dissertation:

On Variants of Stochastic Gradient Descent

Committee:

Sujay Sanghavi, Supervisor

Constantine Caramanis

Sanjay Shakkottai

Aryan Mokhtari

Anastasios Kyrillidis

On Variants of Stochastic Gradient Descent

by

Vatsal Nilesh Shah

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2020

Dedicated to Mummy, Papa and Dada

In loving memory of Dadi

Acknowledgments

As I embarked upon the journey to pursue PhD from the familiar sur-

roundings of Mumbai to a new country and a new city with almost no ac-

quaintances, I was quite skeptical about whether it was the right choice. The

future is scary, but you can’t just run back to the past because it’s familiar 1.

While this quote provided me with a temporary respite during the unfamiliar,

uncomfortable start at UT, I have come to not only enjoy my time here but

also grown as a person and a researcher. None of this would have been possi-

ble without the never-ending support of my family, friends, collaborators, and

colleagues.

Prof. Sujay Sanghavi has been an amazing advisor who has provided

me with the right mix of guidance and independence during the course of my

PhD. Sujay’s unique analytical approach to problem-solving, ability to always

ask the right questions, focusing on the bigger picture while ensuring rigor in

theoretical guarantees are some of the many many things that have immensely

helped me during the course of my PhD. My PhD journey has had its fair share

of ups and downs and I would like to especially thank Sujay for always making

a point to talk about both my academic as well as personal well-being.

Without the constant guidance, support, and encouragement provided

1From How I Met Your Mother, Season 6 Episode 24: Challenge Accepted

v

by Prof. Anastasios Kyrillidis (Tasos), my thesis would have been non-existent.

I first met Tasos when he was a post-doc at UT and I feel incredibly lucky that

Sujay paired us to work together. He has been an amazing mentor, friend, and

collaborator ever since. I am indebted to him for his immense influence on my

writing style, critical thinking, time management, multi-tasking and so much

more.

I have taken two classes under Prof. Sanjay Shakkottai and the en-

thusiasm he shows in both teaching and research inevitably rubs off onto you.

Sanjay’s easy approachablility and expertise in a wide variety of fields implies

that I have had numerous discussions about different research topics in the cor-

ridors of EER and UTA. Prof. Constantine Caramanis’ structured approach

to both research and teaching means that there are numerous insights to be

gained in every discussion I have had with him. I also enjoyed interacting with

Constantine outside the academic environment especially at WNCG socials.

Prof. Aryan Mokhtari has been an exciting addition to WNCG and his exper-

tise in optimization has allowed me to discuss various research problems with

him which has contributed invaluably to my research.

I would like to thank all my collaborators for their invaluable contri-

butions to my thesis. During the course of our collaborations, I have really

admired the numerous insights I have gained via technical discussions with

Xiaoxia (Shirley) Wu, Soumya Basu, Erik Lindgren, Yanyao Shen, Ashish

Katiyar, John Chen, and Megasthenis Asteris. Shirley, in particular, has been

an inspiration to collaborate with due to her work ethic and ability to find

vi

a way to prove even the most challenging problems I have run into. I have

also learned tremendously while collaborating with Prof. Alex Dimakis, Prof.

Adam Klivans, and Prof. Rachel Ward. The numerous discussions I had

with students from Sujay’s lab group: Shanshan, Srinadh, Dohyung, Yanyao,

Ashish, Shuo, Anish, and Rudrajit have been quite instrumental towards the

completion of my thesis.

My three internships at Technicolor Research, Amazon, and Amazon

Web Services (AWS) have broadened my horizons and provided a diverse

glimpse of life in industry. I would like to thank my mentors at Technicolor,

Nikhil Rao, and Weicong Ding for the countless discussions and invaluable

guidance towards my first project in recommender systems. At Amazon, I

had the opportunity to work with a project in production for the Homepage

Personalization team. Ali Jalali’s mentorship was pivotal in helping me navi-

gate a steep learning curve that came with handling extremely large datasets.

At AWS, I had the opportunity to work under Anima Anandkumar, where

I had the learned about deep learning and computer vision, which came in

handy in the latter part of my thesis. During the course of these internships, I

had the amazing opportunity to have technical and non-technical discussions

with Farhad, Julian, Tan, Rushil, Teja, Shijia, Shaozhe, Kamyar, Michael,

Jeremy, Ben, Fanny, Thom, Yifan and many others.

I would also like to thank Karen, Melanie, Melody, Barry, Jaymie,

and Apipol for helping me resolve all the academic formalities with minimal

hassles. The efforts by Karen, Jaymie, and Apipol, in particular, have played

vii

an important part in fostering a sense of togetherness in WNCG by organizing

socials, potlucks, happy hours, and numerous other events.

The last six years at UT have been incredible thanks to some amazing

people I met in WNCG. Talking with Avradeep is like reading an encyclope-

dia; you will always get something new out of the conversation despite the

utility. Murat, thanks for being an amazing friend and more importantly in-

troducing me to the world of coffee shops, I don’t think I would have finished

my PhD without them. Shalmali has always played the role of a caring albeit

nosy guardian in WNCG and has been a source of inspiration throughout my

time here. I am thankful to Eirini for providing an incredible support system

both within and outside the walls of WNCG during some of my most difficult

moments. Soumya is always up for spontaneous plans from going to coffee

shops to live music events to taking last-minute road trips. My conversations

with him, about life, research, and everything else, have been fun, insightful,

and kept me grounded.

In the last three years, Ashish has helped me navigate all the ups

and downs in my life with utmost patience. I have had so many profound

conversations with him during our road trips, coffee shops, food trucks, Tous

Les Jours detours, and everything else. Mónica has introduced me to climbing,

exotic food trucks, Colombian delicacies, and often provided the best advice

to all my problems. Oddwood Ales was definitely a start of an exciting series

of nights with Ashish, Manan, Mónica and Soumya and I am hoping that the

tradition keeps on continuing albeit with more positive updates. Watching

viii

Champions League matches with Ajil and Manan, especially the legendary

Liverpool comeback against Barcelona, is something I will never forget. I

enjoyed hanging out with Mridula, Rajat, Ajil, Natasa, Erik, Sara, Derya,

Abhishek, Alan, Dave, Megha, amongst others in EER, at coffee shops, pubs,

dinners and over wine and trivia nights. I feel lucky to have met Divya,

Suriya, Ankit, Ethan, Karthikeyan, Avhishek who have all provided me with

invaluable guidance during my first few years at UT.

I would also like to thank my therapist Anita Stoll who has played a

significant role in helping me deal with trauma and the subsequent anxiety

during the course of my PhD. I have seen that graduate school can be a

pretty isolated environment especially for international students. In such cases,

asking for help is never easy and it took me a long time to recognize that.

There was also the initial skepticism about whether therapy is for me or the

usefulness of it, however I can confidently say that the benefits have heavily

outweighed the initial struggle. Since I started regular sessions with Anita, I

have been better equipped to deal with life and PhD.

In this terrifying world, all we have are the connections that we make2.

And I feel incredibly lucky to have met so many wonderful people during the

last six years. Pranav has been an amazing friend and I don’t think anything

I say here comes remotely close to doing justice to how much he has helped

me navigate the ups and downs of PhD life. It all started with random walks

2From Bojack Horseman: Season 3 Episode 4: Fish Out of Water

ix

and petty squabbles with Priyanka the chief-event planner, and with time

our friendship has continued to blossom over long talks, dinners, board game

nights, road trips and eventful bike rides. I hate Nitin for all the board games

he has won and all the keys he has ‘lost ’, but admire his kindhearted nature

along with his discipline and dedication in literally all his other endeavors. I

have admired Esha right from our first meeting∗ for her ambition, opinions,

providing the best sounding board for all my problems as well as bringing

much needed drama to my mundane life. Quarantining in 2020 would have

been way harder without Esha and Pranav’s improvised theatrics. I always

enjoyed having ambivalent conversations with Vikas.

Amongst my roommates, I have learned a lot from Venky (now Prof.

Venktesh) who also gets the title of nicest person to exist. I have grown

tremendously as a person just by observing how he conducts himself in diffi-

cult situations. I will always cherish the fun conversations, cooking escapades

and Netflix binging sessions with Bharath and I am grateful to him for taking

care of me through the toughest phase of my life. Long conversations and

countless road trips perfectly encapsulate my happening friendship with De-

vesh. Recreating the road trip through Spain in Zindagi Na Milegi Dobara

with Devesh and Venky remains a highlight of grad school.

I had a lot of fun with Surbhi during our late-night work sessions at cof-

fee shops, exploring tea places, dinners and board games primarily due to her

relentless energy and enthusiasm. In the last couple of years, I have enjoyed all

the spontaneous and non-spontaneous plans with Akanksha from long talks,

x

working at coffee shops, to dinners and board games. I had a lot of fun talk-

ing about life, Mumbai and life in Mumbai amongst many other things with

Prerana. It was quite memorable hanging out with Aastha, Kartik, Mad-

humitha, Manan, Nihal, Nithin over dinners, badminton, trivia nights, etc.

I will also cherish my countless interactions with Ankith, Anudhyan, Arjun,

Arun, Bhavin, Brinda, Eddy, Luca, Parshu, Pooja, Preeti, Priya, Roshan,

Shounak, Siddharth, and numerous other people who I have missed out on.

Akshay has been one of my closest confidantes for over 11 years as he

has helped me every step of the way during my PhD. In fact, without him, I

may not have begun this wonderful journey at UT. Long conversations with

Yatish and Sneha along with impromptu dinner plans, trips, and travelling

were a particular highlight of my Fall semester in the Bay area. Deeksha has

not only been a great friend but also an inspiration in how she continues to

have a social impact while pursuing her PhD. I have come to realize that I am

not that great at keeping in touch with long-distance friends and I would like

to thank Aakash, Adarsh, Ankush, Gurbaksh, Hiteshi, Jay, Jainik, Siddharth,

Tejas(es), Udit, Vidhya, Vivek and Yashasvi who have kept in touch with me

over the years.

I would like to thank Prof. Karandikar, who was my undergraduate

advisor, for igniting my interest in the field of optimization. Prof. Borkar

played an instrumental role in convincing me to pursue PhD at UT Austin

and is always a delight to talk with regarding both academic and non-academic

endeavors. I still cherish the publication of my first few papers with Prof. B.

xi

K. Mohan and Surendar Verma which ultimately provided an early motivation

in pursuing graduate school.

I feel extremely lucky to be blessed with the unconditional, unwavering

love, support and encouragement by my parents. Without their countless

sacrifices, hardships and struggles, none of this would have been possible. They

have supported me every step of the way on this journey and always allowed

me to express myself and I am really thankful for that. One of the last vivid

memory I have of my late grandmother Indira dadi is that when I was having

second thoughts about pursuing grad school, she was the one who provided

the final push that finally convinced me and there was no looking back after

that. I know that she would have been proud of what I have accomplished

and the person I have become in the last 6 years. Much to the annoyance

of my parents, my grandfather has always been my biggest defender and I

always enjoy goofing around with him at home, on video calls and during

trips. I would also like to thank Prakash fua, Sangeeta fai, Vrajesh mama,

Pinki mami, Paresh kaka, Smita kaki and Manju ba who have constantly

supported me throughout this journey. Special shoutout to my cousins Aarya,

Ashit jiju, Binita didi, Ishita, Utsav, Urvi (aka Urvashi), and for ensuring that

my India trips are always filled with memorable stories and adventures.

No matter how you get there or where you end up, human beings have

this miraculous gift to make that place home3. When I first came to Austin,

the weather was too hot and the food portions too big and everything miles

3From The Office (U.S.), Season 9 Episode 25: Finale

xii

apart. However, as time passed by, I have come around to enjoy the same

things which annoyed me at first. Austin has just been like a home away from

home and I will truly miss this stupid, wonderful, crazy, exciting city.

xiii

On Variants of Stochastic Gradient Descent

Vatsal Nilesh Shah, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Sujay Sanghavi

Stochastic Gradient Descent (SGD) has played a crucial role in the suc-

cess of modern machine learning methods. The popularity of SGD arises due

to its ease of implementation, low memory and computational requirements,

and applicability to a wide variety of optimization problems. However, SGD

suffers from numerous issues; chief amongst them are high variance, slow rate

of convergence, poor generalization, non-robustness to outliers, and poor per-

formance for imbalanced classification. In this thesis, we propose variants of

stochastic gradient descent, to tackle one or more of these issues for different

problem settings.

In the first chapter, we analyze the trade-off between variance and

complexity to improve the convergence rate of SGD. A common alternative

in the literature to SGD is Stochastic Variance Reduced Gradient (SVRG),

which achieves linear convergence. However, SVRG involves the computation

of a full gradient every few epochs, which is often intractable. We propose the

Cheap Stochastic Variance Reduced Gradient (CheapSVRG) algorithm that

xiv

attains linear convergence up to a neighborhood around the optimum without

requiring a full gradient computation step.

In the second chapter, we aim to compare the generalization capa-

bilities of adaptive and non-adaptive methods for over-parameterized linear

regression. Of the many possible solutions, SGD tends to gravitate towards

the solution with minimum `2-norm while adaptive methods do not. We pro-

vide specific conditions on the pre-conditioner matrices under which a subclass

of adaptive methods has the same generalization guarantees as SGD for over-

parameterized linear regression. With synthetic examples and real data, we

show that minimum norm solutions are not an excellent certificate to guarantee

better generalization.

In the third chapter, we propose a simple variant of SGD that guar-

antees robustness. Instead of considering SGD with one sample, we take a

mini-batch and choose the sample with the lowest loss. For the noiseless

framework with and without outliers, we provide conditions for the conver-

gence of MKL-SGD to a provably better solution than SGD in the worst case.

We also perform the standard rate of convergence analysis for both noiseless

and noisy settings.

In the final chapter, we tackle the challenges introduced by imbalanced

class distribution in SGD. In place of using all the samples to update the

parameter, our proposed Balancing SGD (B-SGD) algorithm rejects samples

with low loss as they are redundant and do not play a role in determining the

separating hyperplane. Imposing this label-dependent loss-based thresholding

xv

scheme on incoming samples allows us to improve the rate of convergence and

achieve better generalization.

xvi

Table of Contents

Acknowledgments v

Abstract xiv

List of Tables xxii

List of Figures xxv

Chapter 1. Introduction 1

1.1 Contributions and Organization 2

1.2 Chapter 2: Trading-off Variance and Complexity in Stochastic
Gradient Descent . 3

1.3 Chapter 3: On the Generalization of Adaptive Methods for
Over-parameterized Linear Regression 5

1.4 Chapter 4: Choosing the Sample with Lowest Loss makes
SGD Robust . 6

1.5 Chapter 5: Balancing SGD: Faster Optimization for Imbal-
anced Classification . 8

Chapter 2. Trading-off Variance and Complexity in Stochastic
Gradient Descent 10

2.1 Introduction . 11

2.2 Related work . 14

2.3 Our variance reduction scheme 16

2.4 Convergence analysis . 19

2.4.1 Convergence Guarantees 21

2.5 Experiments . 23

2.5.1 Properties of CheapSVRG 23

2.5.2 `2-regularized logistic regression 29

2.6 Conclusions . 30

xvii

Chapter 3. On the Generalization of Adaptive Methods 33

3.1 Introduction . 34

3.2 Problem Setup . 38

3.2.1 Non-adaptive Methods in Under-parameterized Lin-
ear Regression . 41

3.2.2 Adaptive Methods in Under-parameterized Linear Re-
gression . 42

3.3 Over-parameterized linear regression 43

3.3.1 Performance on Training Set for Non-Adaptive Methods 43

3.3.2 Performance on Training Set for Adaptive Methods . 44

3.4 Performance on Unseen Data 46

3.4.1 Spectral Representation 46

3.4.2 Closed Form Expression for the Iterates 47

3.4.3 `2-norm Regularized Linear Regression. 49

3.4.4 Unregularized Linear Regression. 50

3.5 Experiments . 54

3.5.1 Linear Regression 55

3.5.1.1 Counter Example 56

3.5.2 Deep Learning . 61

3.5.2.1 Hyperparameter tuning 68

3.5.2.2 Results . 68

3.6 Conclusions and Future Work 70

Chapter 4. Towards Improving the Robustness of SGD 72

4.1 Related Work . 75

4.2 Problem Setup . 77

4.3 Understanding MKL-SGD 80

4.3.1 Noiseless setting with no outliers 81

4.3.2 Outlier setting . 82

4.4 Convergence Rates . 90

4.5 Experiments . 92

4.5.1 Linear Regression 92

4.5.2 Neural Networks . 92

xviii

4.6 Discussion and Future Work 95

4.7 Conclusion . 97

Chapter 5. Balancing SGD: Faster Optimization for Imbalanced
Classification 98

5.1 Introduction . 98

5.2 Related Work . 102

5.3 Algorithm . 105

5.4 Theoretical Results for Logistic Regression 108

5.4.1 System Model . 108

5.4.2 Bias in imbalanced datasets 110

5.4.3 Finite Iteration Guarantees with Fixed Thresholding 114

5.4.4 Analysis of Variable Thresholding with Unknown r . 116

5.5 Experiments . 118

5.5.1 Synthetic experiments 118

5.5.2 Real Imbalanced datasets 119

Appendices 121

Appendix A. Cheap-SVRG 122

A.1 Proof of Theorem 2.4.2 . 122

A.2 Mini-batches in CheapSVRG 123

A.3 Proof of Theorem A.2.1 . 124

A.4 Coordinate updates in CheapSVRG 127

A.4.1 Proof of Theorem A.4.1 129

Appendix B. On the Generalization of Adaptive Methods 131

B.1 Folklore theorem on convergence of matrices 131

B.2 Proof of Proposition 3.3.1 131

B.3 Proof of Proposition 3.3.2 133

B.4 Proof of Proposition 3.4.1 134

B.5 Proof of Proposition 3.4.2 135

B.6 Proof of Proposition 3.4.3 136

B.7 Proof of Lemma B.7.1 . 136

xix

B.8 Proof of Theorem 3.4.5 . 140

B.9 Proof of Proposition B.9.1 142

B.10 Proof of Lemma 3.5.1 . 143

B.11 More details and experiments for the counter-example 144

B.12 Deep Learning . 147

B.12.0.1 Hyperparameter tuning 151

B.12.0.2 Results . 151

Appendix C. Appendix 154

C.1 Additional Results for Section 3 154

C.2 Proofs and supporting lemmas 155

C.2.1 Proof of Lemma 4.3.1 155

C.2.2 Proof of Theorem 4.3.2 155

C.2.3 Proof of Lemma 4.3.3 155

C.2.4 Proof of Lemma 4.3.4 159

C.2.5 Proof of Lemma 4.3.5 160

C.2.6 Proof of Theorem 4.3.6 161

C.2.7 Proof of Lemma C.1.1 161

C.3 Additional results and proofs for Section 4.4 162

C.4 More experimental results 168

C.4.1 Linear Regression 168

C.4.2 Deep Learning . 171

Appendix D. Balancing SGD 176

D.1 Proof of Proposition 5.4.2 176

D.2 Proof of bias convergence relation for the toy example 177

D.3 Convergence . 179

D.4 Proof of Proposition 5.4.4 182

D.5 Experiments . 184

D.5.1 Synthetic experiments 184

D.5.2 Real data from imblearn package 185

D.5.3 Artificially generated imbalanced datasets from real
data . 187

xx

D.5.3.1 Hyperparameter Tuning: 187

D.5.4 CIFAR-10 . 189

D.5.5 Early Stopping: . 189

D.5.6 Parameter Sensitivity of Threshold Parameter, c . . 190

Appendix E. Conclusions 192

Bibliography 193

Vita 222

xxi

List of Tables

2.1 Summary of datasets [1]. 30

3.1 Table illustrating differing generalization guarantees of three
distinct Adaptive Methods (AM) with SGD in over-parameterized
setting, i.e. d > n, where n: number of examples, d: dimension, 37

3.2 Notation in spectral domain 47

3.3 Illustrating the varying performances of adaptive methods for
over-parameterized linear regression. The final values are the
average of 5 runs. AM1: Diagonalized Adagrad, AM2: Adagrad
(AM1) Variant (where we square the diagonal terms instead
of taking the square root), AM3: Projected version of AM1

onto the span of X. For AM3, D̃2(t) = 0, ∀ t and consistent
with Theorem 3.4.5 it converges to the same point as SGD.
AM1 and AM2 satisfy the (α, β) convergence criterion leading
to convergence to a different point and different generalization
than SGD. 55

3.4 Prediction accuracy and distances from the minimum norm so-
lution for plain gradient descent and adaptive gradient descent
methods. We set p = 7/8 and J = 10, as in the main text. The
adaptive method uses Dk according to (3.9). The distances
shown are median values out of 100 different realizations for
each setting; the accuracies are obtained by testing 104 predic-
tions on unseen data. 60

3.5 Summary of the datasets and the architectures used for experi-
ments. CNN stands for convolutional neural network, FF stands
for feed forward network. More details are given in the main text. 62

4.1 Comparing the test accuracy of SGD and MKL-SGD (k = 5/3)
over MNIST dataset in presence of corruptions via directed label
noise. 94

4.2 Comparing the test accuracy of SGD and MKL-SGD (k = 5/3)
over CIFAR-10 dataset in presence of corruptions via directed
label noise. 95

xxii

5.1 Comparing training loss (TL), Test Loss (TEL), Test AUC
(TA), Top-1 Test Error (TE1), and Number of gradient com-
putations (GC) for SGD and B-SGD over different Imbalanced
datasets. The reported results for the first 6 datasets are an
average of 5 runs, and for the last 3 datasets are an average of
3 runs. Focal loss (Focal) is the state-of-the-art method pro-
posed in [2], which changes the loss function and so it is not
fair to compare the training and the test errors. Focal has the
same number of gradient computations as SGD. Hence, we only
report test accuracy for Focal. 120

B.1 Prediction accuracy and distances from the minimum norm so-
lution for plain gradient descent and adaptive gradient descent
methods. We set p = 7/8 and J = 10, as in the main text. The
adaptive method uses Dk according to (3.9). The distances
shown are median values out of 100 different realizations for
each setting; the accuracies are obtained by testing 104 predic-
tions on unseen data. 146

B.2 Summary of the datasets and the architectures used for experi-
ments. CNN stands for convolutional neural network, FF stands
for feed forward network. More details are given in the main text.148

C.1 In this experiments, we train a standard 2 layer CNN on sub-
sampled MNIST (5000 training samples with labels corrupted
using random label noise). We train over 80 epochs using an
initial learning rate of 0.05 with the decaying schedule of fac-
tor 5 after every 30 epochs. The reported accuracy is based on
the true validation set. The results of the MNIST dataset are
reported as the mean of 5 runs. For the MKL-SGD algorithm,
we introduce a more practical variant that evaluates k sample
losses and picks a batch of size αk where k = 10. 174

C.2 In this experiments, we train a standard 2 layer CNN on sub-
sampled MNIST (5000 training samples with labels corrupted
using random label noise). We train over 80 epochs using an
initial learning rate of 0.05 with the decaying schedule of fac-
tor 5 after every 30 epochs. The reported accuracy is based on
the true validation set. The results of the MNIST dataset are
reported as the mean of 5 runs. For the MKL-SGD algorithm,
we introduce a more practical variant that evaluates k sample
losses and picks a batch of size αk where k = 10. 174

xxiii

C.3 In this experiments, we train Resnet 18 on CIFAR-10 (50000
training samples with labels corrupted using directed label noise).
We train over 200 epochs using an initial learning rate of 0.05
with the decaying schedule of factor 5 after every 90 epochs.
The reported accuracy is based on the true validation set. The
results of the CIFAR-10 dataset are reported as the mean of 3
runs. For the MKL-SGD algorithm, we introduce a more prac-
tical variant that evaluates k sample losses and picks a batch of
size αk where k = 16. 175

D.1 Comparing training loss (TL), Test Loss (TEL), Test AUC
(TA), Top-1 Test Error (TE1), and Number of gradient com-
putations (GC) for SGD and B-SGD over different Imbalanced
datasets. The reported results for the first 6 datasets are an
average of 5 runs, and for the last 3 datasets are an average of
3 runs. Focal loss (Focal) is the state-of-the-art method pro-
posed in [2], which changes the loss function and so it is not
fair to compare the training and the test errors. Focal has the
same number of gradient computations as SGD. Hence, we only
report test accuracy for Focal. 185

D.2 Comparing training loss (TL), Test Loss (TEL), Test AUC
(TA), Top-1 Test Error (TE1), and Number of gradient com-
putations (GC) for SGD and B-SGD over different Imbalanced
datasets. The reported results artificially generated imbalanced
dataset for CIFAR-10. Focal loss (Focal) is the state-of-the-art
method proposed in [2], which changes the loss function and so
it is not fair to compare the training and the test errors. Focal
has the same number of gradient computations as SGD. Hence,
we only report test accuracy for Focal. 189

xxiv

List of Figures

2.1 Convergence performance w.r.t. 1
2
‖y−Xw̃t‖2

2 vs the number of
effective data passes – i.e., the number of times n data points
were accessed – for η = (100L)−1 (left), η = (300L)−1 (middle),
and η = (500L)−1 (right). In all experiments, we generate noise
such that ‖ε‖2 = 0.1. The plotted curves depict the median over
50 Monte Carlo iterations: 10 random independent instances
of (2.3), 5 executions/instance for each scheme. 24

2.2 Convergence performance w.r.t. 1
2
‖y−Xw̃t‖2

2 vs. effective num-
ber of passes over the data. We set an upper bound on total
atomic gradient calculations spent as ∇total = 60n = 12 · 104

and vary the percentage of these resources in the inner loop two-
stage SGD schemes. Left: perc = 60%. Middle : perc = 75%.
Right: perc = 90%. In all experiments, we set ‖ε‖2 = 0.1.
The plotted curves depict the median over 50 Monte Carlo it-
erations: 10 random independent instances of (2.3), 5 execu-
tions/instance for each scheme. 27

2.3 Distance from the optimum vs the number of effective data
passes for the linear regression problem. We generate 10 in-
dependent random instances of (2.3). From left to right, we
use noise noise ε with standard deviation ‖ε‖2 = 0 (noiseless),
‖ε‖2 = 10−2, ‖ε‖2 = 10−1, and ‖ε‖2 = 0.5. Each scheme is exe-
cuted 5 times/instance. We plot the median over the 50 Monte
Carlo iterations. 28

2.4 Convergence performance of algorithms for the `2-regularized
logistic regression objective. From left to right, we used the
marti0, reged0, and sido0 dataset; the description of the datasets
is given in Table 2.1. Plots depict F (w̃t) vs the number of effec-
tive data passes. We use step size η = 0.1/L for all algorithms,
as suggested by [3, 4]. The curves depict the median over 10
Monte Carlo iterations. 31

3.1 Evolution of upper bound dynamics for adaptive methods with
different rates of (α, β) convergence, with a = 1, b = 0.7, and
c = 0.1. 53

xxv

3.2 Synthetic example of over-parameterized linear regression where
adaptive methods show better test error performance. Notice
that adaptive method AM1 not only allows us to achieve faster
convergence but also better generalization. Estimation error,
‖‖w(t) − w∗‖‖ is in the semilog scale on the x axis (to high-
light the double descent like phenomena in AM2 as predicted
by the Remark at the end of Section 2). The reported results
are the average of 5 runs with different initializations for a given
realization of data. 57

3.3 Accuracy results on unseen data, for different NN architectures
and datasets for over-parameterized configurations. Left two
panels: Accuracy and training loss for MNIST; Right two pan-
els: Accuracy and training loss for CIFAR10. 63

3.4 Accuracy results on unseen data, for different NN architectures
on CIFAR100. Left panel: Accuracy and training loss for Pre-
ActResNet18 in [5]; Right panel: Accuracy and training loss
for MobileNet in [6] Top row: Weight vectors of the last layer,
Middle row: Training Loss, Last row: Test Accuracy. 65

3.5 Accuracy results on unseen data, for different NN architectures
on CIFAR100.Left: Accuracy and training loss for MobileNetV2
in [7], Right panel: Accuracy and training loss for GoogleNet
in [7]. Top row: Weight vectors of the last layer, Middle row:
Training Loss, Last row: Test Accuracy. 66

4.1 Non-convexity of the surface plot with three samples in the two-
dimensional noiseless linear regression setting 82

4.2 Illustration with conditions when bad local minima will or will
not exist. Here, we demonstrate that even if we start at an
initialization wB that assigns the highest probabilities to bad
samples (red), it is possible to avoid the existence of a bad
local minima if Condition 1 is satisfied. Recursively, we show
in Lemma 4.3.3 that it is possible to avoid all bad local minima
and reach a good local minima (where the good samples have
the highest probabilities) . 86

4.3 Comparing the performance of MKL-SGD (k = 2) and SGD
for different values of κ in noiseless and noisy linear regression
against varying fraction of outliers. 93

4.4 Comparing training loss, test loss and test accuracy of MKL-
SGD and SGD. Parameters: ε = 0.2, k = 2, b = 16. The
training loss is lower for SGD which means that SGD overfits
to the noisy data. The lower test loss and higher accuracy
demonstrates the robustness MKL-SGD provides for corrupted
data. 96

xxvi

5.1 Illustration of how a skewed data distribution introduces a bias
in classical estimation techniques. w∗ determines the direction
of the separating hyperplane in presence of balanced data, and ŵ
is the predicted estimator using SGD in presence of imbalanced
data. 99

5.2 Toy example for logistic regression in the separable data setting.
We plot the running average of the norm of the gradients vs.
the number of samples of that class observed when the imbal-
ance ratio is 0.01. The window size for the running average is
20. Samples from the majority class have insignificant gradient
updates using SGD. 100

5.3 Introducing a label-dependent loss-based thresholding approach
allows us to alleviate the issue of bias introduced by the skewed
label distribution . 107

5.4 Visualizing selection bias in imbalanced datasets using a toy ex-
ample. w∗ is defined in Definition 8 and ŵSGD is the estimator
running vanilla SGD safisfies (5.6). 111

5.5 Here, we compare the training error, test error and no. of gra-
dient computations for different values of fixed thresholds for
the majority class. As threshold, τ−1, increases from 0 to 50,
we observe that the no. of gradient computations continues
to decrease while both training and test loss initially decrease
and then increase. Advantage of fixed thresholding: B-SGD
[τ−1, τ1] = [0.75, 0] achieves 37.5% and 71.7% decrease in the
test error and gradient computations respectively over SGD (
τ−1 = τ1 = 0). 113

5.6 Comparing the rate of convergence vs the number of gradient
computations and time taken for SGD and Balancing SGD. The
reported results in the figure above are over an average of 3 runs.119

C.1 Comparing the performance of MKL-SGD , SGD and Median
loss SGD in the noiseless setting, d = 50. 169

C.2 Comparing the performance of MKL-SGD , SGD and Median
loss SGD in the noisy setting, d = 10, Noise variance=0.0001 . 170

C.3 Comparing the performance of MKL-SGD , SGD and Median
loss SGD in the noiseless setting, d = 25, Noise variance=0.01 171

C.4 Comparing the performance of MKL-SGD , SGD and Median
loss SGD in the noisy setting, d = 10, Noise variance=0.1 . . . 171

xxvii

C.5 Comparing training loss, test loss and test accuracy of MKL-
SGD and SGD. Parameters: ε = 0.1, k = 2, b = 16. The
training loss is lower for SGD which means that SGD overfits
to the noisy data. The lower test loss and higher accuracy
demonstrates the robustness MKL-SGD provides for corrupted
data. 172

C.6 Comparing training loss, test loss and test accuracy of MKL-
SGD and SGD. Parameters: ε = 0.3, k = 2, b = 16. The
training loss is lower for SGD which means that SGD overfits
to the noisy data. The lower test loss and higher accuracy
demonstrates the robustness MKL-SGD provides for corrupted
data. 173

D.1 Comparing the training loss and test loss vs the number of gra-
dient computations for SGD and Balancing SGD for synthetic
datasets across d = {10, 20, 50} 186

D.2 Comparing the training loss and test loss vs the number of gra-
dient computations for SGD and Balancing SGD for isolet, opti-
cal digits and pen digits dataset. Each experiment is an average
of 5 runs . 188

D.3 In this figure, we evaluate the parameter sensitivity of threshold
parameter c in Algorithm 3 with respect to the training error,
test error and number of gradient computations. We observe
that the number of gradient computations is inversely propor-
tional to threshold, while both training and test loss first de-
crease and then increase as c increases from 0 to 50 190

xxviii

Chapter 1

Introduction

The growing popularity of social networks, streaming services, and e-

commerce websites has led to the development of ranking, recommendation,

and personalization algorithms for customer retention. These algorithms often

rely on the availability of large datasets for their successful implementation.

Similarly, the availability of big data, such as the publicly available ImageNet

dataset [8] was one of the primary reasons behind the deep learning revolution.

These modern datasets often involve hundreds of thousands of examples with

thousand of features. The ImageNet dataset consists of more than a million

images for more than 20000 categories; the Netflix prize dataset consisted of a

training data set with 100, 480, 507 ratings that 480, 189 users gave to 17, 770

movies.

Classical optimization techniques rely on full gradient computations to

perform the parameter update step. These techniques may often be intractable

or impractical with increasing size of datasets due to their large memory and

computation requirements. Computing the gradient over all samples would

involve computing and storing the gradients of each of these million data sam-

ples either in conjunction or tracking their sum by computing the gradient per

1

data sample sequentially. The former would require a lot of memory, while

the latter will be slow and inefficient.

Stochastic gradient descent (SGD) arose as a logical alternative to full

gradient descent based optimization algorithms for large datasets. The idea

behind SGD is straightforward: in each epoch, randomly draw a sample from

the available training data, compute the gradient of that chosen sample, and

use that gradient to update the unknown underlying parameter. Nowadays,

SGD is one of the most widely used stochastic optimization techniques to

solve convex and non-convex optimization problems in machine learning. The

popularity of SGD arises from its ease of implementation as well as low com-

putational and memory requirements. The universal applicability to a large

class of problems ranging from linear regression, support vector machines, re-

inforcement learning to deep learning is another reason behind its widespread

utility. However, SGD suffers from many issues spanning from the high vari-

ance of the iterates, poor generalization, slow convergence, and non-robustness

to outliers.

1.1 Contributions and Organization

In this dissertation, we address the problems of high variance, conver-

gence, generalization, and robustness for SGD under different optimization

frameworks. In the introduction, we first discuss the issues with existing ap-

proaches in dealing with the problem in hand. We then suggest fast, practical

variants of stochastic gradient descent while providing theoretical guarantees

2

for convergence and generalization to alleviate the highlighted issues. The

second, fourth, and fifth chapters focus on the more standard stochastic opti-

mization setup; the emphasis in the third chapter is on understanding the be-

havior of stochastic and adaptive methods specifically for over-parameterized

problems.

1.2 Chapter 2: Trading-off Variance and Complexity in
Stochastic Gradient Descent

In the first chapter, we analyze the trade-off between variance and

complexity in stochastic gradient descent based methods. Running SGD on a

typical dataset, we observe that the gradients of a randomly chosen sample (or

mini-batch of random subset of samples) behave as perturbed estimates drawn

from a normal distribution centered around the full gradient. The variance

term necessitates the use of decreasing step-size for SGD, leading to sub-linear

convergence guarantees. In fact, higher the variance of the gradient of these

samples, slower is the rate of convergence of SGD. Consequently, under the

assumptions of strong convexity gradient descent enjoys linear convergence but

requires high computational complexity. On the others hand, SGD requires

low computational complexity but achieves slower convergence.

The popular Stochastic Variance-Reduced Gradient (SVRG) [3] method

mitigates this shortcoming, adding a new update rule which requires infrequent

passes over the entire input dataset to compute the full-gradient. SVRG con-

sists of an outer loop and an inner loop. The outer loop requires a full gradient

3

computation step, which makes the algorithm intractable for large datasets.

In the inner loop, there is O(b) gradient computations per epoch, where b is

the size of the mini-batch. SVRG allows us to achieve both linear convergence

and low computational complexity per epoch on an average. However, SVRG

involves the computation of a full gradient step in the outer loop, which makes

it intractable for large datasets. The high computational complexity of SVRG

is thus at odds against the primary motivation of using stochastic methods for

large datasets.

In this chapter, we propose the CheapSVRG algorithm that guaran-

tees linear convergence and has lower computational complexity requirements

than SVRG. The CheapSVRG algorithm consists of a simple tweak where we

replace the full gradient step in the outer loop with a large mini-batch. We

observe that CheapSVRG is tractable for large datasets and demonstrates lin-

ear convergence. The linear convergence shown by the CheapSVRG algorithm

is up to a neighborhood around the optimum. The radius of the neighborhood

depends on the size of the mini-batch in the outer loop. In this chapter, we

analyze the delicate trade-off between variance and the computational com-

plexity of the CheapSVRG algorithm. Lastly, we also back up our theoretical

guarantees with experiments on synthetic as well as real datasets.

4

1.3 Chapter 3: On the Generalization of Adaptive Meth-
ods for Over-parameterized Linear Regression

Over-parameterized linear regression possesses infinite global minima.

However, each of these minima generalizes differently. SGD has a propensity

to seek the solution with the minimum `2 norm amongst all these infinite

solutions. However, we show empirically and theoretically, that minimum `2

norm is not a good certificate to guarantee better generalization for over-

parameterized linear regression.

Adaptive methods, defined as any stochastic gradient descent method

multiplied by a (non-identity) pre-conditioner matrix, played a very critical

role in the success of deep learning. Traditionally, adaptive methods allow

us to eliminate the hyper-parameter tuning step and guarantee faster con-

vergence. However, it is not yet clear why adaptive methods generalize well.

We show that in addition to faster convergence, adaptive methods can poten-

tially provide better generalization performance than SGD depending on the

problem at hand.

In this chapter, we provide conditions on the pre-conditioner matrices

needed to ensure the convergence of adaptive methods to a stationary point.

Also, we propose an explicit criterion on the pre-conditioner matrix that can

determine if the adaptive methods will converge to the minimum ` − 2 norm

solution. We also prove and showcase the existence of a strange descent phe-

nomenon for adaptive methods in over-parameterized linear regression.

In the experimental section, we provide examples using both over-

5

parameterized linear regression with both continuous and discrete labels where

adaptive methods have better generalization than SGD. We also ran extensive

experiments using MNIST, CIFAR-10, and CIFAR-100 datasets on different

architectures to demonstrate the potential of adaptive approaches to guarantee

better generalization in over-parameterized frameworks.

1.4 Chapter 4: Choosing the Sample with Lowest Loss
makes SGD Robust

Annotating large datasets with correct labels is a time-consuming and

computationally expensive process. Despite the best precautions, these datasets

are often riddled with a few mislabeled samples or outliers caused due to hu-

man or instrumentation errors. In this chapter, we focus on corruption via

errors in labels. We assume that the data samples are left untouched and

uncorrupted. We also differentiate between the noiseless, noisy, and outlier

data-samples based on the distance of the true optimum of clean samples from

the optimal set of the given data sample.

With only clean samples, SGD converges to the unique optimum that

minimizes the average loss of the clean samples. In the presence of outliers,

SGD converges to a solution that may be arbitrarily far from the desired opti-

mum of clean samples. This occurs as SGD tends to treat all samples equally

irrespective of whether they belong to the set of uncorrupted or corrupted

samples.

In this chapter, we propose Min-k Loss SGD (MKL-SGD) Algorithm,

6

where we sample a batch of k samples, evaluate the losses of each of these

k samples. We then pick the sample with the smallest loss to perform the

gradient update step. We observe that this simple tweak to the classic SGD

algorithm makes SGD more robust.

However, the expected gradient using MKL-SGD is no longer biased.

The biasedness introduces complications in providing theoretical guarantees

for generalization and convergence for MKL-SGD. To avoid this issue, we

construct a surrogate objective function that is piece-wise, continuous, and

non-convex such that the expected MKL-SGD gradient is unbiased.

For the noiseless setting without outliers, we show using Restricted

Secant Inequality that MKL-SGD converges to the unique optimum of the

clean samples. We show that the surrogate loss landscape has many local

minima for the noiseless settings in the presence of outliers. However, we

show that if it is possible to avoid bad local minima when the functions satisfy

certain conditions depending on the condition number of the data matrix and

fraction of outliers. Moreover, we show that any solution attained by MKL-

SGD will be closer to the desired optimum of the clean samples than the unique

SGD solution irrespective of the initialization. To the best of our knowledge,

this is the first research that proposes worst-case guarantees in the stochastic

(SGD) setup.

Next, we show the in-expectation rate of convergence bounds for all

four frameworks described in the paper: noiseless without outliers, noiseless

with outliers, noisy without outliers, and noisy with outliers. We prove that

7

MKL-SGD has linear convergence around a neighborhood of the optimum

similar to SGD, albeit with slightly worse constants. Lastly, we bolster the

theoretical guarantees by demonstrating the superior performance of MKL-

SGD on synthetic linear regression as well as small scale neural networks.

1.5 Chapter 5: Balancing SGD: Faster Optimization for
Imbalanced Classification

Imbalanced datasets are quite common, especially in the fields of medicine,

finance, engineering, etc. While the real world is often characterized by sym-

metry, the process of data-collection can introduce asymmetries in the training

data distribution. Procuring balanced datasets requires significant efforts in

terms of cost and time. For example, the number of surviving marmosets and

pandas is identical in number. However, it is easier to obtain 1000 high-quality

images of pandas than marmosets. Taking additional pictures of marmoset

might be an expensive and time-consuming process.

In the presence of separable data with skewed empirical distribution

and balanced test distribution, classical optimization methods, including SGD,

suffer from extremely slow convergence and poor generalization. Most of the

popular state-of-the-art algorithms designed to address the problem of imbal-

ance rely on balancing the distributions using resampling, reweighting, cost-

based classification, or ensemble strategies. These methods need access to

either data distribution [9, 10, 11] or label distribution [12] or both. These

approaches suffer from many issues, such as catering to specific applications,

8

expensive pre-computations, access to label/data distribution, and slow con-

vergence in the stochastic setting.

In this chapter, we propose a simple, memory-efficient, computation-

ally inexpensive variant of SGD called Balancing SGD (B-SGD). B-SGD is

an ensemble approach that combines undersampling with a label-based loss

thresholding scheme. We provide a strong theoretical basis for designing the

B-SGD algorithm. Additionally, we guarantee an upper bound on the number

of gradient computation steps required by B-SGD, as well as a sound analysis

for loss threshold selection. Experiments on synthetic as well as real datasets

indicate that B-SGD outperforms traditional label-unaware methods in terms

of both gradient computations and generalization performance.

9

Chapter 2

Trading-off Variance and Complexity in

Stochastic Gradient Descent

Stochastic gradient descent is the method of choice for large-scale ma-

chine learning problems, by virtue of its low complexity per iteration. However,

it lags behind its non-stochastic counterparts with respect to the convergence

rate, due to the high variance introduced by the stochastic updates. The pop-

ular Stochastic Variance-Reduced Gradient (SVRG) method mitigates this

shortcoming, adding a new update rule which requires infrequent passes over

the entire input dataset to compute the full-gradient. Other popular methods

proposed to resolve the issue of high variance and slow convergence include

importance sampling-based gradient updates [14], Stochastic Average Gradi-

ent (SAG) [15], SAGA [16], Stochastic Dual Coordinate Ascent (SDCA) [17],

etc. However, these methods have either high memory or computational com-

plexity requirements or both. As highlighted previously, high complexity and

storage demands go against the primary motivation of using stochastic updates

for large datasets.

Parts of this chapter are available at [13]. The author was a part of formulating the
problem, designing and analyzing the algorithms, writing up the results, and performed the
simulations presented in the paper.

10

In this work, we propose CheapSVRG, a stochastic variance-reduction

optimization scheme. Our algorithm is similar to SVRG, but instead of the

full gradient, it uses a surrogate, which can be efficiently computed on a small

subset of the input data. It achieves a linear convergence rate --up to some

error level, depending on the nature of the optimization problem--and features

a trade-off between the computational complexity and the convergence rate.

Empirical evaluation shows that CheapSVRG performs at least competitively

compared to state of the art.

2.1 Introduction

Several machine learning and optimization problems involve the mini-

mization of a smooth, convex and separable cost function F : Rd → R:

min
w∈Rd

F (w) :=
1

n

n∑
i=1

fi(w), (2.1)

where the d-dimensional variable w represents model parameters, and each

of the functions fi(·) depends on a single data point. Linear regression is

such an example: given points {(xi, yi)}ni=1 in Rp+1, one seeks w ∈ Rd that

minimizes the sum of fi(w) = (yi −w>xi)
2, i = 1, . . . , n. Training of neural

networks [18, 3], multi-class logistic regression [3, 19], image classification [20],

matrix factorization [21] and many more tasks in machine learning entail an

optimization of similar form.

Batch gradient descent schemes can effectively solve small- or moderate-

scale instances of (2.1). Often though, the volume of input data outgrows our

11

computational capacity, posing major challenges. Classic batch optimization

methods [22, 23] perform several passes over the entire input dataset to com-

pute the full gradient, or even the Hessian1, in each iteration, incurring a

prohibitive cost for very large problems.

Stochastic optimization methods overcome this hurdle by computing

only a surrogate of the full gradient ∇F (w), based on a small subset of the

input data. For instance, the popular SGD [24] scheme in each iteration takes

a small step in a direction determined by a single, randomly selected data

point. This imperfect gradient step results in smaller progress per-iteration,

though manyfold in the time it would take for a batch gradient descent method

to compute a full gradient [25].

Nevertheless, the approximate ‘gradients’ of stochastic methods intro-

duce variance in the course of the optimization. Notably, vanilla SGD methods

can deviate from the optimum, even if the initialization point is the optimum

[3]. To ensure convergence, the learning rate has to decay to zero, which re-

sults to sublinear convergence rates [24], a significant degradation from the

linear rate achieved by batch gradient methods.

A recent line of work [19, 3, 26, 27] has made promising steps towards

the middle ground of these two extremes. A full gradient computation is oc-

casionally interleaved with the inexpensive steps of SGD, dividing the course

of the optimization in epochs. Within an epoch, descent directions are formed

1In this work, we will focus on first-order methods only. Extensions to higher-order
schemes is left for future work.

12

as a linear combination of an approximate gradient (as in vanilla SGD) and a

full gradient vector computed at the beginning of the epoch. Though not al-

ways up-to-date, the full gradient information reduces the variance of gradient

estimates and provably speeds up the convergence.

Yet, as the size of the problem grows, even an infrequent computation of

the full gradient may severely impede the progress of these variance-reduction

approaches. For instance, when training large neural networks [28, 29, 18]),

the volume of the input data rules out the possibility of computing a full gra-

dient within any reasonable time window. Moreover, in a distributed setting,

accessing the entire dataset may incur significant tail latencies [30]. On the

other hand, traditional stochastic methods exhibit low convergence rates and

in practice frequently fail to come close to the optimal solution in reasonable

amount of time.

Contributions. The above motivate the design algorithms that try to com-

promise the two extremes (i) circumventing the costly computation of the full

gradient, while (ii) admitting favorable convergence rate guarantees. In this

work, we reconsider the computational resource allocation problem in stochas-

tic variance-reduction schemes: given a limited budget of atomic gradient com-

putations, how can we utilize those resources in the course of the optimization

to achieve faster convergence? Our contributions can be summarized as fol-

lows:

(i) We propose CheapSVRG, a variant of the popular Svrg scheme [3].

13

Similarly to Svrg, our algorithm divides time into epochs, but at the

beginning of each epoch computes only a surrogate of the full gradient

using a subset of the input data. Then, it computes a sequence of esti-

mates using a modified version of SGD steps. Overall, CheapSVRG

can be seen as a family of stochastic optimization schemes encompassing

Svrg and vanilla SGD. It exposes a set of tuning knobs that control

trade-offs between the per-iteration computational complexity and the

convergence rate.

(ii) Our theoretical analysis shows that CheapSVRG achieves linear con-

vergence rate in expectation and up to a constant factor, that depends

on the problem at hand. Our analysis is along the lines of similar results

for both deterministic and stochastic schemes [31, 32].

(iii) We supplement our theoretical analysis with experiments on synthetic

and real data. Empirical evaluation supports our claims for linear con-

vergence and shows that CheapSVRG performs at least competitively

with the state of the art.

2.2 Related work

There is extensive literature on classic SGD approaches. We refer the

reader to [25, 33] and references therein for useful pointers. Here, we focus on

works related to variance reduction using gradients, and consider only primal

methods; see [17, 34, 35] for dual.

14

Roux et al. in [19] are among the first that considered variance re-

duction methods in stochastic optimization. Their proposed scheme, Sag,

achieves linear convergence under smoothness and strong convexity assump-

tions and is computationally efficient: it performs only one atomic gradient

calculation per iteration. However, it is not memory efficient2 as it requires

storing all intermediate atomic gradients to generate approximations of the

full gradient and, ultimately, achieve variance reduction.

In [3], Johnson and Zhang improve upon [19] with their Stochastic

Variance-Reduced Gradient (Svrg) method, which both achieves linear con-

vergence rates and does not require the storage of the full history of atomic

gradients. However, Svrg requires a full gradient computation per epoch. The

S2gd method of [26] follows similar steps with Svrg, with the main difference

lying in the number of iterations within each epoch, which is chosen according

to a specific geometric law. Both [3] and [26] rely on the assumptions that

F (·) is strongly convex and fi(·)’s are smooth.

Recently, Defazio et al. propose Saga [16], a fast incremental gradient

method in the spirit of Sag and Svrg. Saga works for both strongly and

plain convex objective functions, as well as in proximal settings. However,

similarly to its predecessor [19], it does not admit low storage cost.

Finally, we note that proximal [27, 16, 36, 4] and distributed [37, 38, 14]

variants have also been proposed for such stochastic settings. We leave these

2The authors show how to reduce memory requirements in the case where fi depends on
a linear combination of w.

15

variations out of comparison and consider similar extensions to our approach

as future work.

2.3 Our variance reduction scheme

We consider the minimization in (2.1). In the kth iteration, vanilla

SGD generates a new estimate

wk = wk−1 − ηk · ∇fik(wk−1),

based on the previous estimate wk−1 and the atomic gradient of a component

fik , where index ik is selected uniformly at random from {1, . . . , n}. The intu-

ition behind SGD is that in expectation its update direction aligns with the

gradient descent update. But, contrary to gradient descent, SGD is not guar-

anteed to move towards the optimum in each single iteration. To guarantee

convergence, it employs a decaying sequence of step sizes ηk, which in turn

impacts the rate at which convergence occurs.

Svrg [3] alleviates the need for decreasing step size by dividing time

into epochs and interleaving a computation of the full gradient between con-

secutive epochs. The full gradient information µ̃ = 1
n

∑n
i=1∇fi(w̃t), where w̃t

is the estimate available at the beginning of the tth epoch, is used to steer

the subsequent steps and counterbalance the variance introduced by the ran-

domness of the stochastic updates. Within the tth epoch, Svrg computes a

sequence of estimates wk = wk−1 − η · vk, where w0 = w̃t, and

vk = ∇fik(wk−1)−∇fik(w̃) + µ̃

16

Algorithm 1 CheapSVRG

1: Input: w̃0, η, s,K, T .
2: Output: w̃T .
3: for t = 1, 2, . . . , T do
4: Randomly select St ⊂ [n] with cardinality s.
5: Set w̃ = w̃t−1 and S = St.
6: µ̃S = 1

s

∑
i∈S ∇fi(w̃).

7: w0 = w̃.
8: for k = 1, . . . , K − 1 do
9: Randomly select ik ⊂ [n].

10: vk = ∇fik(wk−1)−∇fik(w̃) + µ̃S .
11: wk = wk−1 − η · vk.
12: end for
13: w̃t = 1

K

∑K−1
j=0 wj.

14: end for

is a linear combination of full and atomic gradient information. Based on this

sequence, it computes the next estimate w̃t+1, which is passed down to the

next epoch. Note that vk is an unbiased estimator of the gradient ∇F (wk−1),

i.e., Eik [vk] = ∇F (wk−1).

As the number of components fi(·) grows large, the computation of

the full gradient µ̃, at the beginning of each epoch, becomes a computational

bottleneck. A natural alternative is to compute a surrogate µ̃S , using only a

small subset S ⊂ [n] of the input data.

Our scheme. We propose CheapSVRG, a variance-reduction stochastic

optimization scheme. Our algorithm can be seen as a unifying scheme of

existing stochastic methods including Svrg and vanilla SGD. The steps are

outlined in Algorithm 1.

17

CheapSVRG divides time into epochs. The tth epoch begins at an

estimate w̃ = w̃t−1, inherited from the previous epoch. For the first epoch,

that estimate is given as input, w̃0 ∈ Rp. The algorithm selects a set St ⊆ [n]

uniformly at random, with cardinality s, for some parameter 0 ≤ s ≤ n. Using

only the components of F (·) indexed by S, it computes

µ̃S
def
=

1

s

∑
i∈S

∇fi(w̃), (2.2)

a surrogate of the full-gradient µ̃.

Within the tth epoch, the algorithm generates a sequence of K esti-

mates wk, k = 1, . . . , K, through an equal number of SGD-like iterations, us-

ing a modified, ‘biased’ update rule. Similarly to Svrg, starting fromw0 = w̃,

in the kth iteration, it computes

wk = wk−1 − η · vk,

where η > 0 is a constant step-size and

vk = ∇fik(wk−1)−∇fik(w̃) + µ̃S .

The index ik is selected uniformly at random from [n], independently across

iterations.3 The estimates obtained from the iterations of the inner loop (lines

8-12), are averaged to yield the estimate w̃t of the current epoch, and is used

to initialize the next.

3In the Appendix, we also consider the case where the inner loop uses a mini-batch Qk

instead of a single component ik. The cardinality q = |Qk| is a user parameter.

18

Note that during this SGD phase, the index set S is fixed. Taking the

expectation w.r.t. index ik, we have

Eik [vk] = ∇F (wk−1)−∇F (w̃) + µ̃S .

Unless S = [n], the update direction vk is a biased estimator of ∇F (wk−1).

This is a key difference from the update direction used by Svrg in [3]. Of

course, since S is selected uniformly at random in each epoch, then across

epochs ES [µ̃S] = ∇F (w̃), where the expectation is with respect to the random

choice of S. Hence, on expectation, the update direction vk can be considered

an unbiased surrogate of ∇F (wk−1).

Our algorithm can be seen as a unifying framework, encompassing ex-

isting stochastic optimization methods. If the tunning parameter s is set equal

to 0, the algorithm reduces to vanilla SGD, while for s = n, we recover Svrg.

Intuitively, s establishes a trade-off between the quality of the full-gradient

surrogate generated at the beginning of each epoch and the associated com-

putational cost.

2.4 Convergence analysis

In this section, we provide a theoretical analysis of our algorithm under

standard assumptions, along the lines of [31, 32]. We begin by defining those

assumptions and the notation used in the remainder of this section.

19

Notation. We use [n] to denote the set {1, . . . , n}. For an index i in [n],

∇fi(w) denotes the atomic gradient on the ith component fi. We use Ei [·]

to denote the expectation with respect the random variable i. With a slight

abuse of notation, we use E[i] [·] to denote the expectation with respect to

i1, . . . , iK−1.

Assumptions. Our analysis is based on the following assumptions, which

are common across several works in the stochastic optimization literature.

Assumption 1 (Lipschitz continuity of ∇fi). Each fi in (2.1) has L-Lipschitz

continuous gradients, i.e., there exists a constant L > 0 such that for any

w,w′ ∈ Rd,

fi(w) ≤ fi(w
′) +∇fi(w′)>(w −w′) + L

2
‖w −w′‖2

2.

Assumption 2 (Strong convexity of F). The function F (w) = 1
n

∑n
i=1 fi(w)

is γ-strongly convex for some constant γ > 0, i.e., for any w,w′ ∈ Rd,

F (w)− F (w′)−∇F (w′)>(w −w′) ≥ γ
2
‖w −w′‖2

2.

Assumption 3 (Component-wise bounded gradient). There exists ξ > 0 such

that ‖∇fi(w)‖2 ≤ ξ, ∀w in the domain of fi, for all i ∈ [n].

Observe that Asm. 3 is satisfied if the components fi(·) are ξ-Lipschitz

functions. Alternatively, Asm. 3 is satisfied when F (·) is ξ′-Lipschitz function

20

and maxi {‖∇fi(w)‖2} ≤ C · ‖∇F (w)‖2 ≤ C · ξ′ =: ξ. This is known as the

strong growth condition [15].4

Assumption 4 (Bounded Updates). For each of the estimates wk, k =

0, . . . , K − 1, we assume that the expected distance E [‖wk −w∗‖2] is upper

bounded by a constant. Equivalently, there exists ζ > 0 such that

K−1∑
j=0

E[i] [‖wj −w∗‖2] ≤ ζ.

We note that Asm. 4 is non-standard, but was required for our analysis.

An analysis without this assumption is an interesting open problem.

2.4.1 Convergence Guarantees

We show that, under Asm. 1-4, the algorithm will converge –in expectation–

with respect to the objective value, achieving a linear rate, up to a constant

neighborhood of the optimal, depending on the configuration parameters and

the problem at hand. Similar results have been reported for SGD [31], as well

as deterministic incremental gradient methods [32].

Theorem 2.4.1 (Convergence). Let w∗ be the optimal solution for minimiza-

tion (2.1). Further, let s, η, T and K be user defined parameters such that

ρ
def
=

1

η · (1− 4L · η) ·K · γ +
4L · η ·

(
1 + 1

s

)
(1− 4L · η)

< 1.

4This condition is rarely satisfied in many practical cases. However, similar assump-
tions have been used to show convergence of Gauss-Newton-based schemes [39], as well as
deterministic incremental gradient methods [40, 41].

21

Under Asm. 1-4, CheapSVRG outputs w̃T such that

E
[
F (w̃T)− F (w∗)

]
≤ ρT · (F (w̃0)− F (w∗)) + κ,

where κ
def
= 1

1−4Lη
·
(

2η
s

+ ζ
K

)
·max {ξ, ξ2} · 1

1−ρ .

We remark the following:

(i) The condition ρ < 1 ensures convergence up to a neighborhood aroundw?.
In turn, we require that

η <
1

4L
(
(1 + θ) + 1

s

) and K >
1

(1− θ)η (1− 4Lη) γ
,

for appropriate θ ∈ (0, 1).

(ii) The value of ρ in Thm. 2.4.1 is similar to that of [3]: for sufficiently large

K, there is a (1 + 1
s
)-factor deterioration in the convergence rate, due to

the parameter s. We note, however, that our result differs from [3] in that

Thm. 2.4.1 guarantees convergence up to a neighborhood around w?. To

achieve the same convergence rate with [3], we require κ = O(ρT), which

in turn implies that s = Ω(n). To see this, consider a case where the

condition number L is constant and L
γ

= n. Based on the above, we need

K = Ω(n). This further implies that, in order to bound the additive term

in Thm. 2.4.1, s = Ω(n) is required for O(ρT)� 1.

(iii) When ξ is sufficiently small, Thm. 2.4.1 implies that

E
[
F (w̃T)− F (w∗)

]
. ρT · (F (w̃0)− F (w∗)) ,

22

i.e., that even s = 1 leads to (linear) convergence; In Sec. 4.5, we em-

pirically show cases where even for s = 1, our algorithm works well in

practice.

The following theorem establishes the analytical complexity of CheapSVRG;

the proof is provided in the Appendix.

Theorem 2.4.2 (Complexity). For some accuracy parameter ε, if κ ≤ ε
2
, then

for suitable η, K, and

T ≥
(

log 1
ρ

)−1

· log
(

2(F (w̃0)−F (w∗))
ε

)
,

Alg. 1 outputs w̃T such that E [F (w̃T)− F (w∗)] ≤ ε. Moreover, the total

complexity is O
(
(2K + s) log 1

ε

)
atomic gradient computations.

2.5 Experiments

We empirically evaluate CheapSVRG on synthetic and real data and

compare mainly with Svrg [3]. We show that in some cases it improves upon

existing stochastic optimization methods, and discuss its properties, strengths

and weaknesses.

2.5.1 Properties of CheapSVRG

We consider a synthetic linear regression problem: given a set of train-

ing samples (x1, y1), . . . , (xn, yn), where xi ∈ Rd and yi ∈ R, we seek the

23

E,ective passes over data
0 10 20 30 40 50 60

1 2
ky
!

X
e w tk2 2

10-2

10-1

100

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

1 2
ky
!

X
e w tk2 2

10-2

10-1

100

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

1 2
ky
!

X
e w tk2 2

10-2

10-1

100

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

Figure 2.1: Convergence performance w.r.t. 1
2‖y − Xw̃t‖22 vs the number of ef-

fective data passes – i.e., the number of times n data points were accessed – for
η = (100L)−1 (left), η = (300L)−1 (middle), and η = (500L)−1 (right). In all ex-
periments, we generate noise such that ‖ε‖2 = 0.1. The plotted curves depict the
median over 50 Monte Carlo iterations: 10 random independent instances of (2.3),
5 executions/instance for each scheme.

24

solution to

min
w∈Rd

1

n

n∑
i=1

n

2

(
yi − x>i w

)2
. (2.3)

We generate an instance of the problem as follows. First, we randomly select

a point w? ∈ Rp from a spherical Gaussian distribution and rescale to unit

`2-norm; this point serves as our ‘ground truth’. Then, we randomly generate

a sequence of xi’s i.i.d. according to a Gaussian N
(
0, 1

n

)
distribution. Let

X be the p × n matrix formed by stacking the samples xi, i = 1, . . . , n. We

compute y = Xw? + ε, where ε ∈ Rn is a noise term drawn from N (0, I),

with `2-norm rescaled to a desired value controlling the noise level.

We set n = 2 · 103 and d = 500. Let L = σ2
max(X) where σmax denotes

the maximum singular value of X. We run (i) the classic SGD method with

decreasing step size ηk ∝ 1
k
, (ii) the Svrg method of Johnson and Zhang [3]

and, (iii) our CheapSVRG for parameter values s ∈ {1, 10,
√
n, 0.1n}, which

covers a wide spectrum of possible configurations for s.

Step size selection. We study the effect of the step size on the performance

of the algorithms; see Figure 2.1. The horizontal axis represents the number

effective passes over the data: evaluating n component gradients, or computing

a single full gradient is considered as one effective pass. The vertical axis

depicts the progress of the objective in (2.3).

We plot the performance for three step sizes: η = (cL)−1, for c =

100, 300 and 500. Observe that Svrg becomes slower if the step size is either

25

too big or too small, as also reported in [3, 4]. The middle value η = (300L)−1

was the best5 for Svrg in the range we considered. Note that each algorithm

achieves its peak performance for a different value of the step size. In subse-

quent experiments, however, we will use the above value which was best for

Svrg.

Overall, we observed that CheapSVRG is more ‘flexible’ in the choice

of the step size. In Figure 2.1 (right), with a suboptimal choice of step size,

Svrg oscillates and progresses slowly. On the contrary, CheapSVRG con-

verges nice even for s = 1. It is also worth noting CheapSVRG with s = 1,

i.e., effectively combining two datapoints in each stochastic update, achieves

a substantial improvement compared to vanilla SGD.

Resilience to noise. We study the behavior of the algorithms with respect

to the noise magnitude. We consider the cases ‖ε‖2 ∈ {0, 0.5, 10−2, 10−1}. In

Figure 2.3, we focus on four distinct noise levels and plot the distance of the

estimate from the ground truth w? vs the number of effective data passes. For

SGD, we use the sequence of step sizes ηk = 0.1 · L−1 · k−1.

We also note the following surprising result: in the noiseless case, it

appears that s = 1 is sufficient for linear convergence in practice; see Figure

2.3. In contrast, CheapSVRG is less resilient to noise than Svrg – however,

we can still get to a good solution with less computational complexity per

iteration.

5Determined via binary search.

26

E,ective passes over data
0 10 20 30 40 50 60

1 2
ky
!

X
e w tk2 2

10-3

10-2

10-1

100

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

1 2
ky
!

X
e w tk2 2

10-3

10-2

10-1

100

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

1 2
ky
!

X
e w tk2 2

10-20

100

1020

1040

1060

1080

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

Figure 2.2: Convergence performance w.r.t. 1
2‖y−Xw̃t‖22 vs. effective number of

passes over the data. We set an upper bound on total atomic gradient calculations
spent as ∇total = 60n = 12 · 104 and vary the percentage of these resources in the
inner loop two-stage SGD schemes. Left: perc = 60%. Middle : perc = 75%.
Right: perc = 90%. In all experiments, we set ‖ε‖2 = 0.1. The plotted curves
depict the median over 50 Monte Carlo iterations: 10 random independent instances
of (2.3), 5 executions/instance for each scheme.

27

E,ective passes over data
0 10 20 30 40 50 60

ke w t!
w

?
k 2

10-3

10-2

10-1

100

101

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

10-3

10-2

10-1

100

101

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

10-2

10-1

100

101

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

1.1
1.2

SGD

SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

Figure 2.3: Distance from the optimum vs the number of effective data passes
for the linear regression problem. We generate 10 independent random instances
of (2.3). From left to right, we use noise noise ε with standard deviation ‖ε‖2 = 0
(noiseless), ‖ε‖2 = 10−2, ‖ε‖2 = 10−1, and ‖ε‖2 = 0.5. Each scheme is executed 5
times/instance. We plot the median over the 50 Monte Carlo iterations.

28

Number of inner loop iterations. Let ∇total denote a budget of atomic

gradient computations. We study how the objective value decreases with re-

spect to percentage perc of the budget allocated to the inner loop. We first

run a classic gradient descent with step size η = 1
L

which converges within

∼ 60 iterations. Based on this, we choose our global budget to be ∇total =

60n = 12 · 104. We consider the following values for perc: 60%, 75%, 90%.

E.g., when perc = 90%, only 12000 atomic gradient calculations are spent in

outer loop iterations. The results are depicted in Fig. 2.2.

We observe that convergence is slower as fewer computations are spent

in outer iterations. Also, in contrast to Svrg, our algorithm appears to be

sensitive to the choice of perc: for perc = 90%, our scheme diverges, while

Svrg finds relatively good solution.

2.5.2 `2-regularized logistic regression

We consider the regularized logistic regression problem, i.e., the mini-

mization

min
w∈Rd

1

n

n∑
i=1

log
(

1 + e−yi·x
>
i w
)

+ λ · ‖w‖2
2. (2.4)

Here, (yi,xi) ∈ {−1, 1} × Rd, where yi indicates the binary label in a clas-

sification problem, w represents the predictor, and λ > 0 is a regularization

parameter.

We focus on the training loss in such a task. From [3], we already

know that such two-stage SGD schemes perform better than vanilla SGD.

29

Dataset n d

marti0 1024 500
reged0 999 500
sido0 12678 4932

Table 2.1: Summary of datasets [1].

We use the real datasets listed in Table 2.1. We pre-process the data so that

‖xi‖2 = 1,∀i, as in [4]. This leads to an upper bound on Lipschitz constants

for each fi such that Li ≤ L := 1
4
. We set η = 0.1/L for all algorithms under

consideration, according to [3, 4], perc = 75% and, λ = 10−6 for all problem

cases. Table 2.1 depicts the convergence results for the marti0, reged0 and

sido0 datasets. CheapSVRG achieves comparable performance to Svrg,

while requiring less computational ‘effort’ per epoch: though smaller values

of s, such that s = 1 or s = 10, lead to slower convergence, CheapSVRG

still performs steps towards the solution, while the complexity per epoch is

significantly diminished.

2.6 Conclusions

We proposed CheapSVRG, a new variance-reduction scheme for stochas-

tic optimization, based on [3]. The main difference is that instead of computing

a full gradient in each epoch, our scheme computes a surrogate utilizing only

part of the data, thus, reducing the per-epoch complexity. CheapSVRG

comes with convergence guarantees: under assumptions, it achieves a linear

convergence rate up to some constant neighborhood of the optimal. We em-

30

E,ective passes over data
0 10 20 30 40

F
(
e w t)

0.45

0.5

0.55

0.6

0.65

0.7 SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

E,ective passes over data
0 10 20 30 40

F
(
e w t)

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.55

0.6
0.65 SVRG

BeaverSGD ! s = 1

BeaverSGD ! s = 10

BeaverSGD ! s =
p

n

BeaverSGD ! s = 0:1n

E,ective passes over data
5 10 15 20 25 30 35

F
(
e w t)

0.05

0.06

0.07

0.08

0.09

0.1

0.11
SVRG

CheapSVRG ! s = 1

CheapSVRG ! s = 10

CheapSVRG ! s =
p

n

CheapSVRG ! s = 0:1n

Figure 2.4: Convergence performance of algorithms for the `2-regularized logistic
regression objective. From left to right, we used the marti0, reged0, and sido0

dataset; the description of the datasets is given in Table 2.1. Plots depict F (w̃t) vs
the number of effective data passes. We use step size η = 0.1/L for all algorithms,
as suggested by [3, 4]. The curves depict the median over 10 Monte Carlo iterations.

31

pirically evaluated our method and discussed its strengths and weaknesses.

There are several future directions. In the theory front, it would be

interesting to maintain similar convergence guarantees under fewer assump-

tions, extend our results beyond the smooth convex optimization, e.g., to the

proximal setting, or develop distributed variants. Finally, we seek to apply

our CheapSVRG to large-scale problems, e.g., for training large neural net-

works. We hope that this will help us better understand the properties of

CheapSVRG and the trade-offs associated with its various configuration pa-

rameters.

32

Chapter 3

On the Generalization of Adaptive Methods

Over-parameterization and adaptive methods have played a crucial role

in the success of deep learning in the last decade. The widespread use of

over-parameterization has forced us to rethink generalization by bringing forth

new phenomena, such as implicit regularization of optimization algorithms

and double descent with training progression. A series of recent works have

started to shed light on these areas in the quest to understand – why do neural

networks generalize well? The setting of over-parameterized linear regression

has provided key insights into understanding this mysterious behavior of neural

networks.

In this paper, we aim to characterize the performance of adaptive meth-

ods in the over-parameterized linear regression setting. First, we focus on

two sub-classes of adaptive methods depending on their generalization perfor-

mance. For the first class of adaptive methods, the parameter vector remains

in the span of the data and converges to the minimum norm solution like

Parts of this chapter was published in the Integration of Deep Learning Theories Work-
shop at Neurips, 2018 and is also available at [42]. The author was a part of formulating
the problem, analyzing the theory, designing the experiments, writing up the results, and
performing the simulations presented in the paper.

33

gradient descent (GD). On the other hand, for the second class of adaptive

methods, the gradient rotation caused by the pre-conditioner matrix results in

an in-span component of the parameter vector that converges to the minimum

norm solution and the out-of-span component that saturates. Our experiments

on over-parameterized linear regression and deep neural networks support this

theory.

3.1 Introduction

The success of deep learning has uncovered a new mystery of benign

overfitting [43, 44], i.e., systems with a large number of parameters can not

only achieve zero training error but are also able to generalize well. Also,

over-parameterized systems exhibit a double descent-behavior [43, 45]; as the

number of parameters/epochs increases, the test error first decreases, then in-

creases before falling again. This goes against the conventional wisdom of

overfitting in machine learning, which stems from the classical bias-variance

tradeoff [46, 47, 48].

In the absence of explicit regularization, a typical over-parameterized

setting possesses multiple global minima. Classical gradient descent based

methods can achieve one of these many global minima [49, 50, 51], however not

all optima generalize equally. [52, 53, 54] suggest many practical approaches

to improve generalization; however, there remains a considerable gap between

theory and practice [55, 49].

In this paper, we will focus on two categories of optimization algo-

34

rithms: pure gradient descent based (non-adaptive1) methods and adaptive

methods. The primary distinguishing factor between these two methods is

determined by the update step. For the class of non-adaptive methods, the

expected gradient update step is given as follows:

E [w(t+ 1)|w(t)] = w(t)− η∇f(w(t)), (3.1)

where w(t) indicates the estimate of the underlying parameter vector, η repre-

sents the learning rate and f(w(t)),∇f(w(t)) represent the loss function and

its gradient, respectively. Popular methods like gradient descent, stochastic

gradient descent (SGD), batch gradient descent fall under this class. Training

any model using non-adaptive methods involves tuning over many hyperpa-

rameters, of which step size is the most essential one [29, 56]. The step size

could be set as constant, or could be changing per iteration η(t) [53], usually

based on a predefined learning rate schedule [25, 57, 58].

During the past decade, we have also witnessed the rise of a family of

algorithms called adaptive methods that argue for automatic hyper-parameter

adaptation [59] during training (including step size). The list includes Ada-

Grad [60], Adam [61], AdaDelta [62], RMSProp [63], AdaMax [61], Nadam

[64], just to name a few. These algorithms utilize current and past gradi-

ent information {∇f(w(i))}ki=t, for t < k, to design preconditioning matrices

D(t) � 0 that better pinpoint the local curvature of the objective function as

1Now onwards, optimization methods that satisfy equation (3.1) will be referred to as
non-adaptive purposes.

35

follows:

E [w(t+ 1)|w(t)] = w(t)− ηD(t)∇f(w(t)) (3.2)

Usually, the main argument for using adaptive methods is that D(t) elimi-

nates pre-setting a learning rate schedule, or diminishes initial bad step size

choices, thus, detaching the time-consuming part of step size tuning from the

practitioner [65].

[66] was one of the first papers to discuss the implicit bias introduced

by optimization methods for over-parameterized systems and how the choice

of optimization algorithm affects the global minima it attains. However, the

generalization behavior of these optimization methods remains a mystery. As a

result, researchers have re-focussed their attention on understanding the most

straightforward over-parameterized setting of linear regression [43, 67, 68, 44]

as a first step in unraveling the mysterious behavior of neural networks.

Gradient descent-based methods converge to the minimum norm inter-

polated solution [44] for over-parameterized linear regression. Under certain

assumptions on the data distribution, the minimum norm solution achieves

near-optimal accuracy for unseen data [43]. Unlike SGD, the presence of D(t)

in adaptive methods can alter the span of the final converged solution in the

presence of any non-trivial initialization, which makes the task of commenting

on adaptive methods challenging.

Despite being a key reason behind the success of deep learning, the

convergence behavior of adaptive methods is not well understood. The con-

36

d = 50 GD AM1 AM2 AM3

n = 10
Training Error 1.27 · 10−28 1.42 · 10−29 8.64 · 10−4 8.64 · 10−29

Test Error 81.56 76.94 79.62 81.65
‖w −w∗‖ 9.08 8.92 9.03 9.08

n = 40
Training Error 4.77 · 10−5 6.07 · 10−7 3.31 · 10−3 8.64 · 10−4

Test Error 18.62 19.56 20.35 18.65
‖w −w∗‖ 4.31 4.37 4.51 4.31

Table 3.1: Table illustrating differing generalization guarantees of three distinct
Adaptive Methods (AM) with SGD in over-parameterized setting, i.e. d > n, where
n: number of examples, d: dimension,

vergence bounds for most adaptive methods hold for only a specific pre-

conditioner matrix [61, 69, 66]. Besides, theoretical guarantees for adaptive

methods often minimize regret [70, 60], which makes it further challenging to

comment on the generalization of adaptive methods. As a result, the gener-

alization of adaptive methods for a general D(t) remains an open problem

even for an over-parameterized linear regression setting. In this paper, we

aim to explicitly characterize the sub-class of adaptive methods that mimic

the convergence, and generalization behaviors seen in SGD and the sub-class

that does not. In addition, we observe a double descent like phenomena for a

sub-class of adaptive methods as the number of training epochs increases.

In this paper, we would like to understand how adaptive methods af-

fect generalization guarantees of over-parameterized problems. To motivate

this, we consider a toy example for simple linear regression in the under-

determined/over-parameterized framework in Table 3.1. As is evident, some

adaptive methods have the same generalization as SGD, while others can yield

37

quite different generalization guarantees.

Key Contributions: For the theoretical contribution, we focus on over-

parameterized linear regression. Here, plain gradient descent methods con-

verge to the minimum Euclidean norm solution, while adaptive methods may

or may not. In this paper, we provide explicit conditions on the structure

of pre-conditioner matrices, D(t), which allow us to distinguish between two

classes of adaptive methods, the ones which behave similarly to SGD and the

ones that do not. Based on these conditions, we compare the generalization

performance between adaptive and non-adaptive methods.

For the experimental component, we begin by revisiting the mystery

posed by Table 3.1, and demonstrate that the experimental results are in line

with our theoretical guarantees. Further, we show using a toy example that the

adaptive methods can have a superior generalization performance than SGD.

The discussion “which method is provably better”, however, is inconclusive and

ultimately depends on the problem/application at hand. Lastly, we empirically

demonstrate the validity of our claims for over-parameterized neural networks

as well and recommend exercising caution when proposing or choosing adaptive

methods for training, depending on the goal in hand.

3.2 Problem Setup

Notation: For any matrixA ∈ Rm×n, Apq indicates the element correspond-

ing to the p-th row and q-th column. The rank(A) denotes the rank of A.

38

For a sequence of matrices A0 to An, we have the definition
∏i

k=i+mAk =

A(i+m)A(i+m−1) . . .Ai. Note that, a(t) indicates the value of the the function

a(·) after the t-th update. Note that λ without any subscript indicates the

regularizer, and λi with a subscript denotes the ith eigenvalue. We consider

an over-parameterized noisy linear regression (possibly with regularization),

where the relationship between the data matrix X ∈ Rn×d, the noise vector

ζ ∈ Rn, and the labels y ∈ Rn is as follows:

y = Xw? + ζ. (3.3)

We are concerned with the following optimization problem:

f(w) = arg min
w

{
E
[
‖y −Xw‖2

]
+ λ

2
‖w‖2

2

}
. (3.4)

In particular, we study the convergence of the following iterative updates

w(t+ 1) = w(t)− ηD(t)∇f(w(t)), (3.5)

where the pre-conditioner matrices are bounded, positive definite and hence

full rank; i.e., inft rank(D(t)) = d.

There are two different settings, depending on the number of samples

and dimension:

• Over-parameterized case: The system is assumed over-parameterized;

if R = rank(X) < d or there are more parameters than the number of

effective samples: d ≥ n. In this case, assuming that X is in general

position, XX> is full rank.

39

• Under-parameterized case: Here, the effective number of samples is

larger than the number of parameters: n ≥ d. In this case, usuallyX>X

is full rank.

The most studied case is when n ≥ d: the problem has solution w∗ =

(X>X)−1X>y, under full rankness assumption on X. In the case where

the problem is over-parameterized d ≥ n, there is a solution of similar form

that has received significant attention, despite the infinite number of optimal

solutions: This is the so-called minimum `2 norm solution. The optimization

instance to obtain this solution is:

min
w∈Rd

‖w‖2
2 subject to y = Xw.

Let us denote its solution as wmn, which has the form wmn = X>(XX>)−1y.

Any other solution has to have equal or larger Euclidean norm than wmn.

Observe that the two solutions, w∗ and wmn, differ between the two

cases: in the under-parameterized case, the matrix X>X is well-defined (full-

rank) and has an inverse, while in the over-parameterized case, the matrix

XX> is full rank. Importantly, there are differences on how we obtain these

solutions in an iterative fashion. We next show how both simple and adaptive

gradient descent algorithms find w∗ for well-determined systems. This does

not hold for the over-parameterized case: there are infinite solutions, and the

question which one they select is central in the recent literature [71, 72, 66].

Studying iterative routines in simple tasks provides intuitions on how

they might perform in more complex problems, such as neural networks. Next,

40

we set the background with the well-known under-parameterized linear regres-

sion, before we move onto the over-parameterized case.

3.2.1 Non-adaptive Methods in Under-parameterized Linear Re-
gression

Here, n ≥ d and X>X is assumed to be full rank. Simple gradient

descent with step size η > 0 satisfies: w(t + 1) = w(t) − η · ∇f(w(t)) =

w(t)− ηX>(Xw(t)− y). Unfolding for T iterations, we get:

w(T) =

(
t∑
i=1

(−1)i−1 ·
(
t

i

)
· ηi · (X>X)i−1

)
X>y.

The expression in the parentheses satisfies:

T∑
i=1

(−1)i−1 ·
(
T

i

)
· ηi · (X>X)i−1 = (−X>X)−1 ·

(
(I − ηX>X)T − I

)
Therefore, we get the closed form solution:

w(T) = (−X>X)−1 ·
(
(I − ηX>X)T − I

)
X>y

. In order to prove that gradient descent converges to the minimum norm

solution, we need to prove that:

(I − ηX>X)T − I = −I ⇒ (I − ηX>X)T
n,T large−→ 0.

This is equivalent to showing that ‖(I − ηX>X)T‖2 → 0. From optimization

theory [73], we need η < 1
λ1(X>X)

for convergence, where λi(·) denotes the

eigenvalues of the argument. Then, H := I − ηX>X ∈ Rd×d has spectral

norm that is smaller than 1, i.e., ‖H‖ ≤ 1. Combining the above, we use the

following theorem.

41

Theorem 3.2.1 (Behavior of square matrix ‖MT‖2). [74, 75] Let M

is a d × d matrix. Let τ(M) = maxi |λi(M)| denote the spectral radius of

the matrix M . Then, there exists a sequence ε(t) ≥ 0 such that: ‖MT‖2 ≤

(τ(M) + ε(t))T , and limT→∞ ε(t) = 0.

Using the above theorem, H has τ(H) < 1. Further, for sufficiently

large t < T , ε(t) has a small value such that τ(H) + ε(t) < 1; i.e., after some

t1 < T , (τ(H) + εt1)
t1 , will be less than zero, converging to zero for increasing

t1. As T is going towards infinity, this concludes the proof, and leads to the

left inverse solution: w∞ = (−X>X)−1 · (−I)X>y = (X>X)−1X>y ≡ w∗,

as T →∞. This is identical to the closed for solution of linear regression.

3.2.2 Adaptive Methods in Under-parameterized Linear Regres-
sion

When D(t) is varying, we end up with the following proposition (folk-

lore); the proof is in Section B.3.:

Proposition 3.2.2. Consider the under-parameterized linear regression set-

ting with data matrix X, noise ζ, and regularizer λ > 0. Suppose for all t ≥ 0,

the pre-conditioner matrix D(t) is positive definite, i.e. D(t) � 0. Assume

the recursion w(t + 1) = w(t) − ηD(t)∇f(w(t)). Then, after T iterations,

w(t) satisfies:

w(t) =
(
−X>X

)−1 ·
(

0∏
i=T−1

(
I − ηX>XD(i)

)
− I

)
X>y.

42

Using Theorem 3.2.1, we can again infer that, for sufficiently large T

and for sufficiently small η < maxi
1

λ1(X>XDi)
, such that ‖I − ηX>XDi‖ <

1 ∀ i, we have:
∏0

i=T−1

(
I − ηX>XDi

)
→ 0. Thus, for sufficiently large T

and assuming η < maxi
1

λ1(X>XDi)
, ∀i: w∞ = (X>X)−1 ·X>y ≡ w∗, which

is the same as the plain gradient descent approach. Thus, in this case, under

proper η assumptions (which might seem stricter than plain gradient descent),

adaptive methods have the same generalization capabilities as gradient descent.

3.3 Over-parameterized linear regression

Over-parameterized systems possess more degrees of freedom than the

number of training samples. As a result, we know that standard gradient

descent based methods fit perfectly to the training set.

3.3.1 Performance on Training Set for Non-Adaptive Methods

For completeness, we briefly provide the analysis for the over-parameterized

setting, where d ≥ n and XX> is assumed to be full rank. By inspection,

unfolding gradient descent recursion gives after T iterations:

w(T) = X>

(
T∑
i=1

(−1)i−1 ·
(
T

i

)
· ηi · (XX>)i−1

)
y.

Similarly, the summation can be simplified to:

T∑
i=1

(−1)i−1 ·
(
T

i

)
· ηi · (XX>)i−1 = (−XX>)−1 ·

(
(I − ηXX>)K − I

)
,

and, therefore:

w(T) = X>(−XX>)−1 ·
(
(I − ηXX>)K − I

)
y.

43

Under similar assumption on the spectral norm of (I − ηXX>)K and using

Theorem 3.2.1, we obtain the right inverse solution: w∞ = X>(−XX>)−1 ·

(−I)y = X>(XX>)−1y ≡ wmn, as K → ∞. Bottomline, in both cases,

gradient descent converges to left and right inverse solutions, related to the

Moore-Penrose inverse.

Before we discuss the generalization of adaptive methods in over pa-

rameterized settings, let us first answer the following question: what is the

predictive power of adaptive methods within the training set?

3.3.2 Performance on Training Set for Adaptive Methods

For linear regression with `2 norm regularization, we observe that adap-

tive methods with any full rank pre-conditioner matrix D(t) will converge to

the same solution as its non-adaptive counterpart and thus mimic their per-

formance. However, for unregularized linear regression, adaptive methods can

converge to entirely different solutions than SGD. Before we discuss general-

ization, we will first show that both SGD and adaptive methods can achieve

zero training error despite attaining different stationary points.

Proposition 3.3.1. Consider the over-parameterized linear regression setting

with data matrix X, noise ζ, and regularizer λ > 0. Suppose for all t ≥ 0, the

pre-conditioner matrix D(t) is positive definite, i.e. D(t) � 0. Assume the

recursion w(t + 1) = w(t) − ηD(t)∇f(w(t)). If D(t) is positive definite for

44

all t and the regularizer λ = 0, then,

lim
t→∞

ŷ(t) = y.

where ŷ(t) = Xŵ and ŵ = limT→∞wt.

Proposition 3.3.1 implies that adaptive methods with full-rank positive

definite preconditioners perform as well as their pure gradient based counter

parts when it comes to fitting their training data. However, this proposition

gives no information regarding the distance between the converged w(t) and

w?.

Proposition 3.3.2. Consider the over-parameterized linear regression setting

with data matrix X, noise ζ, and regularizer λ > 0. Suppose for all t ≥ 0, the

pre-conditioner matrix D(t) is positive definite, i.e. D(t) � 0. Assume the

recursion w(t+ 1) = w(t)− ηDt∇f(w(t)). If D(t) is positive definite for all

t and the regularizer satisfies λ > 0, then,

lim
t→∞

w(t) =
(
X>X + λI

)−1
X>y.

Proposition 3.3.2 implies that for the regularized case, the problem be-

comes strongly convex and the adaptive methods converge to the same solution

as their SGD counterparts under certain conditions.

To summarize, for linear regression with `2-norm regularization, we ob-

serve that adaptive methods with any full rank pre-conditioner matrix D(t)

will converge to the same solution as its non-adaptive counterpart and thus

45

mimic their performance. However, for unregularized linear regression, adap-

tive methods can converge to entirely different solutions than SGD. Both SGD

and adaptive methods can achieve zero training error despite attaining differ-

ent stationary points. This leads us to the following question: What is the

predictive power of adaptive methods on unseen data for over-parameterized

linear regression?

3.4 Performance on Unseen Data

Our primary focus in this chapter is to understand the generalization

capabilities of adaptive methods. We observe that the generalization depends

on two key factors: i) Does w? lie in the span of the data matrix, X? ii)

How does pre-multiplying with the pre-conditioner matrix alter the span of final

converged w?

3.4.1 Spectral Representation

The switch to the spectral domain allows us to simplify and under-

stand the relationship between the final converged solution with the span

of data matrix X, pre-conditioner matrix D̃(t) and the initialization w(0).

We express the data matrix using its singular value decomposition (SVD):

X =
∑R

r=1 λrurv
T
r , λr 6= 0 for all r where λr,ur,vr represent the rth largest

eigenvalue and the corresponding right and left eigenvectors respectively. We

complete the basis using the left eigenvectors of the data matrix to form a com-

plete orthogonal spectral basis of Rd, {vr : r = 1 . . . , d} form the basis vectors

46

and denote it by V . Similarly, U forms the complete orthogonal spectral basis

of Rn using the right eigenvectors of the data matrix as {ur : r = 1 . . . , n}.

The eigenvalue matrix is Λ where Λrr = λr if 1 ≤ r ≤ R and 0 otherwise. We

next express useful quantities in the above bases in Table 3.2.

Data matrix X = UΛV T

True parameter w? = V w̃?

Noise vector ζ = Uζ̃

Adaptive pre-conditioner matrices
D(t) =

∑d
r=1

∑d
s=1 D̃rs(t)vrv

T
s ,

D̃(t) = V TD(t)V , D̃(t) ∈ Rd×d

Weight vectors w(t) = V w̃(t)

Table 3.2: Notation in spectral domain

The definition of adaptive pre-conditioner matrices in the above table

holds since V represents a complete orthogonal spectral basis of Rd. Addi-

tionally, we also have the following property, where we show that pre- and

post-multiplication by an orthogonal matrix V does not alter the eigenvalues

of the original matrix. In other words, we have the following proposition:

Proposition 3.4.1. The set of eigenvalues for D̃(t) is identical to the set of

eigenvalues of D(t).

The proof of Proposition 3.4.1 is available in Appendix.

3.4.2 Closed Form Expression for the Iterates

Our objective is to understand how the iterates evolve depending on the

space spanned by the data matrix. First, we establish a closed-form expression

47

for the updates of the vector w̃(t).

Proposition 3.4.2. Consider the over-parameterized linear regression setting

with data matrix X, noise ζ, and regularizer λ > 0. If the pre-conditioner

matrix D(t) � 0 for all t ≥ 0, then, for any T ≥ 0, the iterate w̃(T) admits

the following closed form expression:

w̃(T) =
T−1∏
i=0

(
I − ηD̃(i)(Λ2 + λI)

)
w̃(0)

+
T−1∑
i=0

T−1∏
j=(i+1)

(
I − ηD̃(j)(Λ2 + λI)

)
ηD̃(i)(Λ2w̃? + Λζ) (3.6)

The final expression of w(T) implies that the final solution depends on the

initialization point, the span of the data matrix in Rd space, and the pre-

conditioner matrix. Further, the closed-form indicates that the presence of

pre-conditioning matrices D̃(j) may cause w(t) to lie outside of the span of

the data in the complete Rd space.

We observe that the presence or absence of regularizer can significantly

alter the stationary points to which adaptive methods converge. In the pres-

ence of `2-norm regularization, we observe that the adaptive methods converge

to the same solution independent of the initialization or the step-size. How-

ever, in the absence of regularization, things are not as straight-forward. Here,

we will try to capture the convergence of over parameterized linear regression

using dynamics described by equation (3.5).

48

3.4.3 `2-norm Regularized Linear Regression.

In presence of `2-norm regularization, the over-parameterized linear

regression problem becomes strongly convex and possesses a unique global

optima. Proposition 2 serves a sanity check; where we show the convergence

to this unique optima for any positive definite pre-conditioner matrix D(t) in

the spectral domain.

Proposition 3.4.3. Consider the over-parameterized linear regression setting

with data matrix X, noise ζ, and regularizer λ > 0. Assume the recursion

w(t + 1) = w(t) − ηDt∇f(w(t)). Suppose for all t ≥ 0, the pre-conditioner

matrix D(t) � 0, and the learning rate satisfies

η ∈
(

0, 2
(
λmax(D(t))(λ2

max(X) + λ)
)−1
)

where λmax(·) indicates the maximum eigenvalue. Then, w̃(t) converges to the

following fixed point

lim
t→∞

w̃(t) = (Λ2 + λI)−1(Λ2w̃? + Λζ). (3.7)

Proposition 3.4.3 states that like the gradient descent based methods,

the adaptive methods will perfectly capture the component of the generative

w∗ that lies in the subspace formed by the data matrix. In other words, with

regularization the parameter vector converges in the span of X.

In the proof of the proposition presented in the Appendix, we use con-

traction properties to show convergence where λ > 0 plays a significant role.

49

Further, as inft rank(D(t)), a simple fixed-point analysis provides us with the

in-span component and shows that for λ > 0 there is no out-of-span compo-

nent of the solution. Note that this proposition acts as a proof of concept

for the well-known result that adaptive methods and non-adaptive methods

converge to the same solution in the presence of `2-norm regularization.

Lastly, different regularization techniques alter the implicit bias of the

final converged solution differently. The claims made in this sub-section are

only valid for `2-norm regularization.

3.4.4 Unregularized Linear Regression.

Next, we focus on the problem of unregularized linear regression in the

over-parameterized regime. The optimization problem with squared loss is no

longer strongly convex, and there are infinite solutions that can achieve zero

training error. In this case, the convergence of unregularized linear regression

depends on the initialization w̃(0). Further, as λmin(D̃(t)Λ2) = 0 we cannot

directly prove (using contraction mapping) convergence for general unregular-

ized over-parameterized linear regression. However, when the pre-conditioner

matrices satisfy a block matrix structure, then we can say something about

the converged solution. Note that most of the popular adaptive algorithms

[60, 61, 70, 76] satisfy the block matrix structure.

The out-of-span component behavior depends subtly on the interplay of

the pre-conditioner matrices and the span of data. Now, we establish sufficient

conditions on the class of pre-conditioner matrices for which the convergence

50

is guaranteed (for more details refer Appendix).

We define some notations useful to state our main theorems. We use

w̃(1)(∞) = lim
t→∞

w̃(1)(t) to denote the in-span component, and w̃(2)(∞) =

lim
t→∞

w̃(2)(t) to denote the in-span component of the stationary point.2 Let,

e(1)(t) = ‖w̃(1)(∞) − w̃(1)(i)‖2 = O
(

1

tβ

)
be the `2-norm distance of in-span

component of the iterate from the in-span stationary point at time t ≥ 1. We

further define:

Definition 3.4.4. For a data matrix X and an adaptive method, with pre-

conditioning matrices {D(t) : t ≥ 1}, we call the adaptive method (α, β)-

converging on data, for any α, β ≥ 0, if and only if: i) the out-of-span com-

ponent of the pre-condition matrices decays as |λmax(D̃2(t))| = O
(

1

tα

)
; ii)

the in in-span component of the iterates converges as, e(1)(t) = O
(

1
tβ

)
(under

Eq. (3.5)).

Any adaptive method with a pre-conditioner matrix that lies entirely

in the span of the matrix will have α set to∞. Full-matrix Adagrad, GD, and

Newton all fall under this class of adaptive methods. Popular adaptive meth-

ods, such as diagonalized Adagrad, RMSProp, and methods with a diagonal

pre-conditioner matrix with non-zero entries, the convergence depends on the

rate of decay of both the D̃2(t) as well as the rate of decay of the error of the

in-span component.

2Note that w̃(2)(∞) ∈ (R ∪ {∞})d for i = 1, 2, as we can not assume convergence of the
iterates a pirori.

51

Theorem 3.4.5. Consider the problem of over-parameterized linear regression

with data matrix X and noise ζ in the absence of regularization λ = 0. Assume

the recursion w(t + 1) = w(t) − ηDt∇f(w(t)). If the preconditioner matrix

D(t) � 0 ∀t ≥ 0, and η ∈
(

0,
2

λmax(D(t))λ2
max(X)

)
, then in-span component

of w̃(t) converges as follows

w̃(1)(∞) = (w̃∗(1) + Λ−1
(1)ζ(1)).

Furthermore, for an adaptive method (in Eq. (3.5)) which is (α, β)-converging

on data, if α + β > 1 the out-of-span component converges to a stationary

point that satisfies

‖w̃(2)(∞)− w̃(2)(0)‖2 ≤ O
(
‖w̃(1)(0)‖2 +

1

α + β − 1

)
.

Remark on Theorem 3.4.5: Let us deconstruct the claims made in

Theorem 3.4.5. Theorem 1 says that if η is set appropriately, then adaptive

methods will perfectly fit the noisy training data. This is consistent with the

claims in [44]. The convergence of out-of-span component depends on the de-

cay rate of the pre-conditioner matrix D̃2(t) as well as the decay rate of the

error term in the in-span component e(1)(t) = ‖(w∗(1)+Λ−1
(1)ζ(1))−w̃(1)(i)‖2. For

the simple case, when β ≥ 1 and D̃(2)(t) = 0 for all t, we have that the out-of-

span component converges to w̃(2)(0). Next, if limT→∞
∑T

t=0 max |λ(D̃(2)(t))| <

∞ and α + β ≥ 1, then the out-of-span component converge. For all other

cases, it is difficult to comment whether the out-of-span component will con-

verge or diverge. Specifically, for α + β < 1, we may not have divergence as

the pre-conditioner matrices may align cancel the cumulative errors.

52

100 101 102 103 104

Number of iterations

100

9 × 10 1

Up
pe

r b
ou

nd
 o

n
es

tim
at

io
n

er
ro

r

Evolution of the Upper bound
A3:[,] = [1.5, 0.5]
A4:[,] = [0.25, 1]
A1:[,] = [0.5, 1]
A2:[,] = [1.5, 1]

Figure 3.1: Evolution of upper bound dynamics for adaptive methods with differ-
ent rates of (α, β) convergence, with a = 1, b = 0.7, and c = 0.1.

53

Remark on Dynamics: It is also interesting to note that the error in the

in-span component converges to 0 and the error in the out-of-span component

increases and saturates to a particular value. Our derived upper bound on the

training error at time T for an adaptive method that is (α, β) converging on

data is given as :

a+
b

(T + 1)β

(
1− c

α + β − 1

1

(T + 1)α−1

)
for appropriate constants a, b, c > 0. The dynamics is shown in the Figure 5.6.

Depending on the values of the constants, α, and β, adaptive methods demon-

strate variable convergence dynamics.

3.5 Experiments

In this section, we focus on replicating the theoretical claims made in

the previous parts using synthetic experiments for over-parameterized linear

regression. Next, we show that these observations can be extended to the deep

learning setup as well. We empirically compare two classes of algorithms:

• Plain gradient descent algorithms, including the mini-batch stochastic gra-

dient descent and the accelerated stochastic gradient descent, with constant

momentum.

• Adaptive methods like AdaGrad [60], RMSProp [63], and Adam [61], and

the AdaGrad variant. Adaptive methods can include anything with a time-

varying pre-conditioner matrix.

54

d = 50 GD AM1 AM2 AM3

D(t) I D̄1(t) D2(t) PX(D̄1(t))

n = 10
Training Error 1.27 · 10−28 1.42 · 10−29 8.64 · 10−4 8.64 · 10−29

Test Error 81.56 76.94 79.62 81.65
‖w −w∗‖ 9.08 8.92 9.03 9.08

n = 40
Training Error 4.77 · 10−5 6.07 · 10−7 3.31 · 10−3 8.64 · 10−4

Test Error 18.62 19.56 20.35 18.65
‖w −w∗‖ 4.31 4.37 4.51 4.31

Table 3.3: Illustrating the varying performances of adaptive methods for over-
parameterized linear regression. The final values are the average of 5 runs. AM1:
Diagonalized Adagrad, AM2: Adagrad (AM1) Variant (where we square the di-
agonal terms instead of taking the square root), AM3: Projected version of AM1
onto the span of X. For AM3, D̃2(t) = 0, ∀ t and consistent with Theorem 3.4.5 it
converges to the same point as SGD. AM1 and AM2 satisfy the (α, β) convergence
criterion leading to convergence to a different point and different generalization than
SGD.

3.5.1 Linear Regression

In the first part, we consider a simple linear regression example gener-

ated where the elements of both X and ζ are generated from N (0, 1) distri-

bution in an i.i.d. manner. First, we revisit Table 3.1 and demonstrate the

varying performances of different adaptive methods.

In the first set of experiments, we showed how adaptive methods con-

verging to a different solution might lead to solutions farther from w∗b , i.e.

with higher L2-norm . Thus, the pre-conditioner matrices satisfying Dij(t) =

0,D(t) � 0 have different generalization than their gradient based counter-

parts. In this section, we empirically demonstrate that pre-conditioner ma-

trices of the form: Dij(t) = 0,D(t) � 0 can guarantee better generalization

than gradient based methods depending on the problem in hand. As a direct

55

consequence of this, we show that solutions with a minimum norm should not

be used as a yardstick to guarantee good generalization.

Here, we show in Table 3.3 and Figure 3.2 that different adaptive meth-

ods can yield better performance in terms of test error.

3.5.1.1 Counter Example

Next, we consider a linear regression problem with binary outputs,

which is a variant of the example proposed in [71]. In this section, we show

that even in terms of test accuracy, adaptive algorithms can yield better gen-

eralization performance than SGD. This supports the claim made recently in

[77] for non-adaptive methods; the testing criterion can play a crucial role in

determining the generalization performance. We observe that this claim holds

for adaptive methods as well.

Toy example illustrating how to achieve different generalization from

gradient descent based methods: To prove otherwise, we could either

find a completely different counterexample (since adaptive methods do not

perform well in the one in [71]), or we find an alternative adaptive method

that performs well in that counter-example.

Here, we follow the second path and alter the previous counterexample

in [71] by slightly changing the problem setting: at first, we reduce the margin

between the two classes; the case where we increase the margin is provided

in the Appendix. We empirically show that gradient-descent methods fail

56

0 1000 2000 3000 4000 5000
Number of iterations

0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 E
rro

r

Training Error vs no. of iterations
SGD
AM1
AM2
AM3

0 1000 2000 3000 4000 5000
Number of iterations

80

85

90

95

100

Te
st

 E
rro

r

Test Error vs no. of iterations
SGD
AM1
AM2
AM3

100 101 102 103

Number of iterations

9.0

9.2

9.4

9.6

9.8

10.0

10.2

Es
tim

at
io

n
Er

ro
r

Estimation Error vs no. of iterations
SGD
AM1
AM2
AM3

Figure 3.2: Synthetic example of over-parameterized linear regression where adap-
tive methods show better test error performance. Notice that adaptive method AM1
not only allows us to achieve faster convergence but also better generalization. Es-
timation error, ‖‖w(t)−w∗‖‖ is in the semilog scale on the x axis (to highlight the
double descent like phenomena in AM2 as predicted by the Remark at the end of
Section 2). The reported results are the average of 5 runs with different initializa-
tions for a given realization of data.

57

to generalize as well as adaptive methods –with a slightly different Dk than

AdaGrad. In particular, for the responses, we consider two classes yi ∈ {±`}

for some ` ∈ (0, 1); i.e., we consider a smaller margin between the two classes.

One can consider classes in {±1}, but the rest of the problem settings need

to be weighted accordingly. We selected to weight the classes differently in

order not to drift much from the couterexample from [71]. ` can take different

values, and still we get the same performance, as we show in the experiments

below.

(xi)j =

yi`, j = 1,

1, j = 2, 3,

1, j = 4 + 5(i− 1),

0, otherwise.

if yi = 1,

(xi)j =

yi`, j = 1,

1, j = 2, 3,

1, j = 4 + 5(i− 1),

· · · , 8 + 5(i− 1),

0, otherwise.

if yi = −1. (3.8)

Given this generative model, we construct n samples {yi, xi}ni=1, and

set d = 6n, for different n values. We compare two simple algorithms: i)i)i)

the plain gradient descent, for η =
1

λ1(X>X)
; ii)ii)ii) the recursion w(t + 1) =

w(t)− ηD(t)X> (Xw(t)− y), where η is set as above, and D(t) follows the

rule:

D(t) = diag

1/

(
t∑

j=t−J

∇f(w(j))�∇f(w(j)) + ε

)2

� 0, for some ε > 0, and J < t ∈ N+ (3.9)

58

Observe that D(t) uses the dot product of gradients, squared. A variant of

this preconditioner is found in [78]; however our purpose is not to recommend

a particular preconditioner but to show that there are Dk that lead to better

performance than the minimum norm solution. We denote as wada, wadam and

wGD the estimates of the ADAM, Adagrad Variant (ADAVAR) and simple

gradient descent (GD), respectively.

The experiment obeys the following steps: i)i)i) we train both gradient

and adaptive gradient methods on the same training set, ii)ii)ii) we test models on

new data {ytest
i , xtest

i }Qi=1. We define performance in terms of the classification

error: for a new sample {ytest
i , xtest

i } and given wada, wadam and wGD, the only

features that are non-zeros in both xtest
i and w’s are the first 3 entries [71, pp.

5]. This is due to the fact that, for gradient descent and given the structure

in X, only these 3 features affects the performance of gradient descent. Thus,

the decision rules for both algorithms are:

ŷ ada
i = quant`

(
wada

1 · ytest
i + wada

2 + wada
3

)
,

ŷ GD
i = quant`

(
wGD

1 · ytest
i + wGD

2 + wGD
3

)
,

ŷ adam
i = quant`

(
wadam

1 · ytest
i + wadam

2 + wadam
3

)
,

where quant`(α) finds the nearest point w.r.t. {±`}. With this example,

our aim is to show that adaptive methods lead to models that have better

generalization than gradient descent.

Table 3.4 summarizes the empirical findings. In order to cover a wider

range of settings, we consider n = [10, 50, 100] and set d = 6n, as dictated by

59

[71]. We generate X as above, where instances in the positive class, yi ∈ +`,

are generated with probability p = 7/8; the cases where p = 5/8 and p = 3/8

are provided in the appendix, and also convey the same message as in Table

3.4. Further details on the experiments are provided in the Appendix.

Algorithm GD ADAVAR ADAM

n = 10

` = 1/32
Acc. (%) 63 100 91
‖ŵ −wmn‖2 1.015 · 10−16 4.6924 · 104 0.1007

` = 1/16
Acc. (%) 53 100 87
‖ŵ −wmn‖2 1.7401 · 10−16 1.1504 · 103 0.0864

` = 1/8
Acc. (%) 58 99 84
‖ŵ −wmn‖2 4.08 · 10−16 112.03 0.0764

n = 50

` = 1/32
Acc. (%) 77 100 88
‖ŵ −wmn‖2 4.729 · 10−15 3.574 · 103 0.0271

` = 1/16
Acc. (%) 80 100 89
‖ŵ −wmn‖2 6.9197 · 10−15 4.44 · 102 0.06281

` = 1/8
Acc. (%) 91 100 89
‖ŵ −wmn‖2 9.7170 · 10−15 54.93 0.1767

Table 3.4: Prediction accuracy and distances from the minimum norm solution for
plain gradient descent and adaptive gradient descent methods. We set p = 7/8 and
J = 10, as in the main text. The adaptive method uses Dk according to (3.9). The
distances shown are median values out of 100 different realizations for each setting;
the accuracies are obtained by testing 104 predictions on unseen data.

The proposed AdaGrad variant described in equation (3.9) falls under

the broad class of adaptive algorithms with Dk. However, for the counter

example in the AdaGrad variant neither satisfies the convergence guarantees

of Lemma 3.1 in [71, pp. 5], nor does it converge to the minimum norm solution

evidenced by its norm in Table 3.4.

Proposition 3.5.1. Suppose X>y has no zero components. Define D =

diag(|X>y|3) and assume there exists a scalar c such thatXD−1sign(X>y) =

60

cy. Then, when initialized at 0, the AdaGrad variant in (3.9) converges to the

unique solution w ∝D−1sign(X>y).

To buttress our claim that the AdaGrad variant in (3.9) converges to

a solution different than that of minimum norm (which is the case for plain

gradient descent), we provide the following proposition for a specific class of

problems3; the proof is provided in Appendix Section B.10.

3.5.2 Deep Learning

Next, we observe that the theoretical claims made for the generaliza-

tion of adaptive methods for over-parameterized linear regression extend over

to over-parameterized neural networks. We perform extensive experiments

on CIFAR-100 for CIFAR-100 datasets we explore four different architectures;

PreActResNet18 [5], MobileNet [6], MobileNetV2 [7], GoogleNet [7]. Comput-

ing weight norms of all layers is memory intensive and computationally expen-

sive typically, we use the weight vector norms on the last layer. We observe

that, like linear regression, here also adaptive methods can be clubbed into

different categories based on the evolution of their pre-conditioner matrices,

D(t). For deep learning experiments, we do not have a generative parameter.

We used the norm of the weights of the last layer as a surrogate for estima-

tion error to comment on the convergence of optimization algorithms. It is

evident that algorithms that have similar weight norms have similar training

loss performance; however the other side of the claim need not be true.

3Not the problem proposed in the counter-example 1 on pg 5.

61

We empirically compare two classes of algorithms:

• Plain gradient descent algorithms, including the mini-batch stochastic gra-

dient descent and the accelerated stochastic gradient descent, with constant

momentum.

• Adaptive methods like AdaGrad [60], RMSProp [63], and Adam [61], and

the AdaGrad variant. Adaptive methods can include anything with a vary-

ing pre-conditioning matrix.

In this section, we will extend the experiments to over-parameterized

and under-parameterized neural networks without regularization. We begin

with a detailed description of the datasets and the architectures we use along

with comprehensive set of experiments with hyperparameter tuning.

Name Network type Dataset
M1-UP Shallow CNN + FFN MNIST
M1-OP Shallow CNN + FFN MNIST
C1-UP Shallow CNN + FFN CIFAR-10
C1-OP ResNet18 CIFAR-10
C2-OP PreActResNet18 CIFAR-100
C3-OP MobileNet CIFAR-100
C4-OP MobileNetV2 CIFAR-100
C5-OP GoogleNet CIFAR-100

Table 3.5: Summary of the datasets and the architectures used for experiments.
CNN stands for convolutional neural network, FF stands for feed forward network.
More details are given in the main text.

MNIST dataset and the M1 architecture. Each experiment for M1 is

simulated over 50 epochs and 10 runs for both under- and over-parameterized

62

settings. The MNIST architectures consisted of two convolutional layers (the

second one with dropouts [79]) followed by two fully connected layers. M1-OP

had ∼ 73K parameters. Top row corresponds row to the M1-OP case. We plot

training errors and the test accuracy results on unseen data. For the M1-OP

case, SGD momentum performs less favorably compared to plain SGD, and

we conjecture that this is due to non-optimal tuning. In this case, all adaptive

methods perform similarly to SGD.

0 10 20 30 40 50
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Training loss
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 10 20 30 40 50
Epochs

92

93

94

95

96

97

98

99

Ac
cu

ra
cy

Accuracy

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training loss
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175 200
Epochs

40

50

60

70

80

90

Ac
cu

ra
cy

Accuracy

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

Figure 3.3: Accuracy results on unseen data, for different NN architectures and
datasets for over-parameterized configurations. Left two panels: Accuracy and train-
ing loss for MNIST; Right two panels: Accuracy and training loss for CIFAR10.

63

CIFAR10 dataset and the C1 architecture. The over-parameterized

CIFAR-10 setting, C1-OP was trained over 200 epochs. Here, we implement a

Resnet [80] + dropout architecture (∼ 0.25 million parameters) 4 and obtained

top-1 accuracy of ∼ 93%. Adam and RMSProp achieves the best performance

than their non-adaptive counterparts for both the under-parameterized and

over-parameterized settings.

Figure 3.3, right panel, follows the same pattern with the MNIST data;

it reports the results over 10 Monte-Carlo realizations. Again, we observe

that AdaGrad methods do not perform as well as the rest of the algorithms.

Nevertheless, adaptive methods (such as Adam and RMSProp) perform simi-

larly to simple SGD variants. Further experiments on CIFAR-100 for different

architecture are provided in the Appendix.

CIFAR100 and other deep architectures (C{2-5}-OP). In this ex-

periment, we focus only on the over-parameterized case: DNNs are usually

designed over-parameterized in practice, with ever growing number of layers,

and, eventually, a larger number of parameters [81]. We again completed

10 runs for each of the set up we considered. C2-OP corresponds to Pre-

ActResNet18 from [5], C3-OP corresponds to MobileNet from [6], C4-OP is

MobileNetV2 from [7], and C5-OP is GoogleNet from [82]. The results are

depicted in Figure 3.4. After a similar hyper-parameter tuning phase, we se-

4Some parts of the code are from the following github repository was used for experi-
ments: https://github.com/kuangliu/pytorch-cifar

64

0 20 40 60 80 100 120 140
Epochs

0

50

100

150

200

250

300

W
ei

gh
ts

 n
or

m

Weights norm

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 20 40 60 80 100 120 140
Epochs

0

20

40

60

80

100

120

140

160

W
ei

gh
t n

or
m

Weight norm

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

0

5

10

15

20

25

30

Lo
ss

Training loss
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

0

1

2

3

4
Lo

ss

Training loss
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Accuracy

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

Accuracy

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

Figure 3.4: Accuracy results on unseen data, for different NN architectures on
CIFAR100. Left panel: Accuracy and training loss for PreActResNet18 in [5]; Right
panel: Accuracy and training loss for MobileNet in [6] Top row: Weight vectors of
the last layer, Middle row: Training Loss, Last row: Test Accuracy.

65

0 20 40 60 80 100 120 140
Epochs

0

25

50

75

100

125

150

175

W
ei

gh
t n

or
m

Weight norm

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 20 40 60 80 100 120 140
Epochs

0

50

100

150

200

250

300

W
ei

gh
t n

or
m

Weight norm
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

0

1

2

3

4

Lo
ss

Training loss
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

0

1

2

3

4
Lo

ss

Training loss
SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Accuracy

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

0 25 50 75 100 125 150 175
Epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

Accuracy

SGD
SGD momentum
Adagrad
Adagrad var.
Adam
RMSProp

Figure 3.5: Accuracy results on unseen data, for different NN architectures on
CIFAR100.Left: Accuracy and training loss for MobileNetV2 in [7], Right panel:
Accuracy and training loss for GoogleNet in [7]. Top row: Weight vectors of the
last layer, Middle row: Training Loss, Last row: Test Accuracy.

66

lected the best choices among the parameters tested. The results show no

clear winner once again, which overall support our claims: the superiority de-

pends on the problem/data at hand; also, all algorithms require fine tuning to

achieve their best performance. We note that a more comprehensive reasoning

requires multiple runs for each network, as other hyper-parameters (such as

initialization) might play significant role in closing the gap between different

algorithms.

An important observation of Figure 3.4 comes from the bottom row

of the panel. There, we plot the Euclidean norm ‖ · ‖2 of all the trainable

parameters of the corresponding neural network. While such a norm could be

considered arbitrary (e.g., someone could argue other types of norms to make

more sense, like the spectral norm of layer), we use the Euclidean norm as i)i)i)

it follows the narrative of algorithms in linear regression, where plain gradient

descent algorithms choose minimum `2-norm solutions, and ii)ii)ii) there is recent

work that purposely regularizes training algorithms towards minimum norm

solutions [83].

Our findings support our claims: in particular, for the case of MobileNet

and MobileNetV2, Adam, an adaptive method, converges to a solution that

has at least as good generalization as plain gradient methods, while having 2×

larger `2-norm weights. However, this may not always be the trend: in Figure

3.4, left panel, the plain gradient descent models for the PreActResNet18

architecture [5] show slightly better performance, while preserving low weight

norm. The same holds also for the case of GoogleNet; see Figure 3.5, right

67

panel.

3.5.2.1 Hyperparameter tuning

Both for adaptive and non-adaptive methods, the step size and mo-

mentum parameters are key for favorable performance, as also concluded in

[71]. Default values were used for the remaining parameters. The step size was

tuned over an exponentially-spaced set {0.0001, 0.001, 0.01, 0.1, 1}, while the

momentum parameter was tuned over the values of {0, 0.1, 0.25, 0.5, 0.75, 0.9}.

We observed that step sizes and momentum values smaller/bigger than these

sets gave worse results. Yet, we note that a better step size could be found be-

tween the values of the exponentially-spaced set. The decay models were similar

to the ones used in [71]: no decay and fixed decay. We used fixed decay in the

over-parameterized cases, using the StepLR implementation in pytorch. We

experimented with both the decay rate and the decay step in order to ensure

fair comparisons with results in [71].

3.5.2.2 Results

Our main observation is that in over-parameterized cases adaptive and

non-adaptive methods converge to solutions with similar testing accuracy: the

superiority of simple or adaptive methods depends on the problem/data at

hand. Further, as already pointed in [71], adaptive methods often require sim-

ilar parameter tuning. Most of the experiments involve using readily available

code from GitHub repositories. Since increasing/decreasing batch-size affects

68

the convergence [84], all the experiments were simulated on identical batch-

sizes. Finally, our goal is to show performance results in the purest algorithmic

setups: often, our tests did not achieve state of the art performance.

Overall, despite not necessarily converging to the same solution as gra-

dient descent, adaptive methods generalize as well as their non-adaptive coun-

terparts. We compute standard deviations from all Monte Carlo instances, and

plot them with the learning curves (shown in shaded colors is the one-apart

standard deviation plots; best illustrated in electronic form). For the cases of

C{1-5}-OP, we also show the weight norms of the solutions (as in Euclidean

distance ‖ · ‖2 of all the trainable weights in the network). Such measure has

been in used in practice [83], as a regularization to find minimum Euclidean

norm solutions, inspired by the results from support vector machines [45].

We observe that adaptive methods (such as Adam and RMSProp) per-

form similarly to simple SGD variants, supporting our conjecture that each

algorithm requires a different configuration, but still can converge to a good

local point; also that adaptive methods require the same (if not more) tun-

ing. Again, we observe that AdaGrad methods do not perform as well as the

rest of the algorithms. Nevertheless, adaptive methods (such as Adam and

RMSProp) perform similarly to simple SGD variants. Further experiments on

CIFAR-100 for different architecture are provided in the Appendix.

This result, combined with our experiments, indicate that the minimum

norm solution does not guarantee better generalization performance for over-

parameterized settings, even in cases of linear regression. Thus, it is unclear

69

why that should be the case for deep neural networks. A detailed analysis

about the class of counter-examples is available in Appendix Section B.11.

Details about extensive hyperparameter tuning, dataset descriptions,

practical issues in implementation, and more experiments, are available in the

Appendix.

3.6 Conclusions and Future Work

In this paper, we consider two class of methods described: non-adaptive

methods (Eq. (3.1)) and adaptive methods (Eq. (3.2)). Switching to a spectral

domain allows us to divide adaptive methods into two further categories based

on if they will have the same generalization as SGD or not (assuming the same

initialization point). We obtain that the convergence of adaptive methods

completely depends on the structure of pre-conditioner matrices D(t) along

with the initialization point and the given data. Our theoretical analysis allows

us to obtain useful insights into the convergence of adaptive methods, which

can be useful while designing new adaptive methods. If the aim while designing

an adaptive method is faster convergence and similar generalization as SGD,

then it is important to ensure that the pre-conditioner matrix lies in the span of

the data matrixD(t) = PX(·). Examples of suchD(t) include {I, (X>X)−1}.

However, if the aim is to hope for a different generalization than SGD (if SGD

gets stuck on specific bad minima), then it is essential to ensure that the

conditions in Theorem 3.4.5 are satisfied to ensure that w̃(t) converges to a

different solution. Our experimental results on over-parameterized settings for

70

both linear regression and deep learning back our theoretical claims. We also

note the small superiority of non-adaptive methods on a few DNN simulations

is not fully understood and needs further investigation, beyond the simple

linear regression model. What was clear though from our experiments is that

adaptive methods may converge to a model that has better generalization

properties, where the `2-norm of the weights is more substantial, but often

require no less fine-tuning than non-adaptive methods.

A preliminary analysis of regularization for over-parameterized linear

regression reveals that it can act as an equalizer over the set of adaptive and

non-adaptive optimization methods, i.e., force all optimizers to converge to

the same solution. However, more work is needed to analyze its effect on

the overall generalization guarantees both theoretically and experimentally as

compared to the non-regularized versions of these algorithms.

71

Chapter 4

Towards Improving the Robustness of SGD

This paper focuses on machine learning problems that can be formu-

lated as optimizing the sum of n convex loss functions:

min
w

F (w) where F (w) =
1

n

n∑
i=1

fi(w) (4.1)

Stochastic gradient descent (SGD) is a popular way to solve such problems

when n is large; the simplest SGD update is:

SGD: wt+1 = wt − ηt∇fit(wt) (4.2)

where the sample it is typically chosen uniformly at random from [n].

However, as is well known, the performance of SGD and most other

stochastic optimization methods is highly sensitive to the quality of the avail-

able training data. A small fraction of outliers can cause SGD to converge far

away from the true optimum. While there has been a significant amount of

work on more robust algorithms for special problem classes (e.g. linear regres-

sion, PCA etc.) in this paper our objective is to make a modification to the

Parts of this chapter are available at: Shah, V., Wu, X. & Sanghavi, S.. (2020). Choos-
ing the Sample with Lowest Loss makes SGD Robust. Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, in PMLR 108:2120-2130
[85]. The author was a part of formulating the problem, analyzing the theory, designing the
experiments and writing up the results presented in the paper.

72

basic SGD method itself; one that can be easily applied to the many settings

where vanilla SGD is already used in the training of machine learning models.

We call our method Min-k Loss SGD (MKL-SGD), given below. In

each iteration, we first choose a set of k samples and then select the sample

with the smallest current loss in that set; this sample is then used for the

update step.

Algorithm 2 MKL-SGD

1: Initialize w0

2: Given samples D = (xt, yt)
∞
t=1

3: for t = 1, . . . do
4: Choose a set St of k samples
5: Select it = arg mini∈St fi(wt)
6: Update wt+1 = wt − η∇fit(wt)
7: end for
8: Return wt

The effectiveness of our algorithm relies on a simple observation: in a

situation where most samples adhere to a model but a few are outliers skewing

the output, the outlier points that contribute the most to the skew are often

those with high loss. In this paper, our focus is on the stochastic setting

for standard convex functions. We show that it provides a certain degree of

robustness against outliers/bad training samples that may otherwise skew the

estimate.

Our Contributions

• To keep the analysis simple yet insightful, we define three natural and

73

deterministic problem settings - noiseless with no outliers, noiseless with

outliers, and noisy with outliers - in which we study the performance of

MKL-SGD . In all of these settings the individual losses are assumed to

be convex, and the overall loss is additionally strongly convex. We are

interested in finding the optimum w∗ of the “good” samples, but we do

not a-priori know which samples are good and which are outliers.

• The expected MKL-SGD update (over the randomness of sample choice)

is not the gradient of the original loss function (as would have been the

case with vanilla SGD); it is instead the gradient of a different non-

convex surrogate loss, even for the simplest and friendliest setting of

noiseless with no outliers. Our first result establishes that this non-

convexity however does not yield any bad local minima or fixed points

for MKL-SGD in this particular setting, ensuring its success.

• We next turn to the setting of noiseless with outliers, where the surrogate

loss can now potentially have many spurious local minima. We show that

by picking a value of k high enough (depending on a condition number of

the loss functions that we define) the local minima of MKL-SGD closest

to w∗ is better than the (unique) fixed point of SGD.

• We establish the convergence rates of MKL-SGD - with and without

outliers - for both the noiseless and noisy settings .

• We back up our theoretical results with both synthetic linear regression

experiments that provide insight, as well as encouraging results on the

74

MNIST and CIFAR-10 datasets.

4.1 Related Work

The related work can be divided into the following four main subparts:

Stochastic optimization and weighted sampling The proposed MKL-

SGD algorithm inherently implements a weighted sampling strategy to pick

samples. Weighted sampling is one of the popular variants of SGD that can

be used for matching one distribution to another (importance sampling), im-

proving the rate of convergence, variance reduction or all of them and has

been considered in [86, 87, 88, 89]. Other popular weighted sampling tech-

niques include [90, 91, 92]. Without the assumption of strong convexity for

each fi(.), the weighted sampling techniques often lead to biased estimators

which are difficult to analyze. Another idea that is analogous to weighted sam-

pling includes boosting [93] where harder samples are used to train subsequent

classifiers. However, in presence of outliers and label noise, learning the hard

samples may often lead to over-fitting the solution to these bad samples. This

serves as a motivation for picking samples with the lowest loss in MKL-SGD .

Robust linear regression Learning with bad training samples is challeng-

ing and often intractable even for simple convex optimization problems. For

example, OLS is quite susceptible to arbitrary corruptions by even a small frac-

tion of outliers. Least Median Squares (LMS) and least trimmed squares (LTS)

75

estimator proposed in [94, 95, 96] are both sample efficient, have a relatively

high break-down point, but require exponential running time to converge. [97]

provides a detailed survey on some of these robust estimators for OLS prob-

lem. Recently, [98, 99, 100] have proposed robust learning algorithms for linear

regression which require the computation of gradient over the entire dataset.

In this version, our focus is on stochastic optimization in presence of outliers.

Robust optimization Robust optimization has received a renewed impetus

following the works in [101, 102, 103]. In most modern machine learning prob-

lems, however, simultaneous access to gradients over the entire dataset is time

consuming and often, infeasible. [104, 105] provides robust meta-algorithms

for stochastic optimization under adversarial corruptions. However, both these

algorithms require the computation of one or many principal components per

epoch which requires atleast O(p2) computation ([106]). In contrast, MKL-

SGD algorithm runs in O(k) computations per iteration where k is the number

of loss evaluations per epoch. In this paper, we don’t consider the adversarial

model, our focus is on the simpler corruption model where we consider outliers

as defined in the next section.

Label noise in deep learning [107, 108, 109] describe different techniques

to learn in presence of label noise and outliers. [110] showed that deep neural

networks are robust to random label noise especially for datasets like MNIST

and CIFAR10. [111, 112] propose optimization methods based on re-weighting

76

samples that often require significant pre-processing. In this paper, our aim

is to propose a computationally inexpensive optimization approach that can

also provide a degree of robustness.

4.2 Problem Setup

We make the following assumptions about our problem setting ((4.1)).

Let O be the set of outlier samples; this set is of course unknown to the

algorithm. We denote the optimum of the non-outlier samples by w∗, i.e.

w∗ := arg min
w

∑
i/∈O

fi(w)

In this paper we show that MKL-SGD allows us to estimate w∗ without a-

priori knowledge of the set O, under certain conditions. We now spell these

conditions out.

Assumption 5 (Individual losses). Each fi(w) is convex in w, with Lips-

chitz continuous gradients with constant Li.

‖∇fi(w1)−∇fi(w2)‖ ≤ Li‖w1 −w2‖

and define L := maxiLi

It is common to also assume strong convexity of the overall loss function F (·).

Here, since we are dropping samples, we need a very slightly stronger assump-

tion.

77

Assumption 6 (Overall loss). For any n − k size subset S of the samples,

we assume the loss function
∑

i∈S fi(w) is strongly convex in w. Recall that

here k is the size of the sample set in the MKL-SGD algorithm.

Lastly, we also assume that all the functions share the same minimum value.

Assumption 3 is often satisfied by most standard loss functions with a finite

unique minima [66] such as squared loss, hinge loss, etc.

Assumption 7 (Equal minimum values). Each of the functions fi(.) shares

the same minimum value minw fi(w) = minw fj(w) ∀ i, j.

We are now in a position to formally define three problem settings we

will consider in this paper. For each i let Ci := {ŵ : ŵ = arg minw fi(w)}

denote the set of optimal solutions (there can be more than one because fi(·) is

only convex but not strongly convex). Let d(a, S) denote the shortest distance

between point a and set S.

Noiseless setting with no outliers: As a first step and sanity check, we

consider what happens in the easiest case: where there are no outliers. There

is also no “noise”, by which we mean that the optimum w∗ we seek is also in

the optimal set of every one of the individual sample losses, i.e.

w∗ ∈ Ci for all i

Of course in this case vanilla SGD (and many other methods) will converge to

w∗ as well; we just study this setting as a first step and also to build insight.

78

Noiseless setting with outliers: Finally, we consider the case where a

subset O of the samples are outliers. Specifically, we assume that for outlier

samples the w∗ we seek lies far from their optimal sets, while for the others it

is in the optimal sets:

d(w∗, Ci) ≥ 2δ for all i ∈ O

w∗ ∈ Ci for all i /∈ O

Note that now vanilla SGD on the entire loss function will not converge to w∗.

Noisy setting: As a second step, we consider the case when samples are

noisy but there are no outliers. In particular, we model noise by allowing w∗

to now be outside of individual optimal sets Ci, but not too far; specifically,

No outliers

d(w∗, Ci) ≤ δ for all i

With outliers

d(w∗, Ci) ≤ δ for all i ∈ O

d(w∗, Ci) > 2δ for all i /∈ O

For the noisy setting, we will focus only on the convergence guarantees.

We will show that MKL-SGD gets close to w∗ in this setting; again in this

case vanilla SGD will do so as well for the no outliers setting of course.

79

4.3 Understanding MKL-SGD

We now build some intuition for MKL-SGD by building some simple

notation and looking at some simple settings. Recall MKL-SGD takes k sam-

ples and then retains the one with lowest current loss; this means it is sampling

non-uniformly. For any w, let m1(w),m2(w),m3(w), . . .mn(w) be the sorted

order w.r.t. the loss at that w, i.e.

fm1(w)(w) ≤ fm2(w)(w) ≤ · · · ≤ fmn(w)(w)

Recall that for a sample to be the one picked by MKL-SGD for updating w,

it needs to first be part of the set of k samples, and then have the lowest loss

among them. A simple calculation shows that probability that the ith best

sample mi(w) is the one picked by MKL-SGD is given by

pmi(w)(w) =

(
n−i
k−1

)(
n
k

) without replacement

(n− (i− 1))k − (n− i)k
nk

with replacement

(4.3)

In the rest of the paper, we will focus on the “with replacement” scenario for

ease of presentation; this choice does not change our main ideas or results.

With this notation, we can rewrite the expected update step of MKL-SGD as

E[w+|w] = w − η
∑
i

pmi(w)∇fmi(w)(w)

For simplicity of notation in the rest of the paper, we will relabel the update

term in the above by defining as follows:

∇F̃ (w) :=
∑
i

pmi(w)∇fmi(w)(w)

80

Underlying this notation is the idea that, in expectation, MKL-SGD is akin

to gradient descent on a surrogate loss function F̃ (·) which is different from

the original loss function F (·); indeed if needed this surrogate loss can be

found (upto a constant shift) from the above gradient. We will not do that

explicitly here, but instead note that even with all our assumptions, indeed

even without any outliers or noise, this surrogate loss can be non-convex. It

is thus important to see that MKL-SGD does the right thing in all of our

settings, which is what we build to now.

4.3.1 Noiseless setting with no outliers

As a first step (and for the purposes of sanity check), we look at MKL-

SGD in the simplest setting when there are no outliers and no noise. Recall

from above that this means thatw∗ is in the optimal set of every single individ-

ual loss fi(·). However as mentioned above, even in this case the surrogate loss

can be non-convex, as seen e.g. in Figure 4.1 for a simple example. However,

in the following lemma we show that even though the overall surrogate loss

F̃ (·) is non-convex, in this no-noise no-outlier setting it has a special property

with regards to the point w∗.

Lemma 4.3.1. In the noiseless setting, for any w there exists a λw > 0 such

that

∇F̃ (w)>(w −w∗) ≥ λw‖w −w∗‖2.

In words, what this lemma says is that on the line between any point

w and the point w∗, the surrogate loss function F̃ is convex from any point –

81

Figure 4.1: Non-convexity of the surface plot with three samples in the two-
dimensional noiseless linear regression setting

even thought it is not convex overall. The following uses this to establish our

first result: that in the noiseless setting with no outliers, w∗ is the only fixed

point (in expectation) of MKL-SGD .

Theorem 4.3.2 (Unique stationary point). For the noiseless setting with

no outliers, and under assumptions 1− 3, the expected MKL-SGD update sat-

isfies ∇F̃ (w) = 0 if and only if w = w∗.

4.3.2 Outlier setting

In presence of outliers, the surrogate loss can have multiple local minima

that are far from w∗ and indeed potentially even worse than what we could

have obtained with vanilla SGD on the original loss function. We now analyze

MKL-SGD in the simple setting of symmetric squared loss functions and try to

gain useful insights into the landscape of loss function. We would like to point

out that the analysis in the next part serves as a clean template and can be

82

extended for many other standard loss functions used in convex optimization.

Squared loss in the vector setting The loss functions are redefined as

follows:

fi(w) =

{
li‖w −w∗‖2 ∀ i /∈ O
li‖w −wbi‖2 ∀ i ∈ O,

(4.4)

Without loss of generality, assume that 2δ < ‖wb1 − w∗‖ ≤ ‖wb2 −

w∗‖ ≤ · · · ≤ ‖wb|O| − w∗‖ and γ = 2δ
‖wb|O|−w

∗‖ . Let w̄ be any stationary

attained by MKL-SGD . Suppose θM,w̄ be the angle between the line passing

through wbM and w∗ and the line connecting w̄ and w∗ and κ =
maxi∈[n] li
mini∈[n] li

.

Let p̂(w0) =
∑

j∈O pj(w0) represent the total probability of picking outliers at

the starting point w0. The maximum possible value that can be attained p̂ is

given as:

p̂max = max
w

p̂(w) =

|O|∑
i=1

pmi(w)(w) (4.5)

where for any w, pmi(w)(w) are ordered i.e. pm1(w)(w) > pm2(w)(w) > · · · >

pmn(w)(w).

At w∗, by definition, we know that ∀ i /∈ O, fi(w
∗) = 0 and ∀ j ∈ O,

fj(w
∗) > 0. By continuity arguments, there exists a ball of radius r > 0

around w∗, Br(w∗), defined as follows:

Br(w∗) =

{
w | fi(w) < fj(w) ∀ i /∈ O, j ∈ O,

‖w −w∗‖ ≤ r

}
(4.6)

83

In the subsequent lemma, we show that that it is possible to drift into the

ball Br(w∗) where the clean samples have the highest probability or the lowest

loss.

Lemma 4.3.3. Consider the loss function and Br(w∗) as defined in equations

(4.4) and (4.6) respectively. Suppose q =
cos θM,w̄

γ
− 1 +

√
κ cos θM,w̄

γ
> 0 and

p̂max as defined in Equation (4.5) satisfies p̂max ≤
1

1 + κq
. Starting from any

initialization w0, for any stationary point w̄ attained by MKL-SGD , we have

that w̄ ∈ Br(w∗).

In other words, initializing at any point in the landscape, the final

stationary point attained by MKL-SGD will inevitably assign the largest n−

|O| probabilities to the clean samples.

Note that, the above lemma leads to a very strong worst-case guaran-

tee. It states that the farthest optimum will always be within a bowl of dis-

tance r from w∗ no matter where we initialize. However, when the necessary

conditions for its convergence are violated, the guarantees are initialization

dependent. Thus, all the discussions in the rest of this section will be with

respect to these worst case guarantees. However, as we see in the experimental

section for both neural networks and linear regression, random initialization

also seems to perform better than SGD.

Effect of κ A direct result of Lemma 4.3.3 is that higher the condition

number of the set of quadratic loss functions, lower is the fraction ε of outliers

84

the MKL-SGD can tolerate. This is because large κ results in a small value

of 1
1+κq

. This implies that p̂ has to be small which in turn requires smaller

fractions fo corruptions, ε.

Effect of γ: The relative distance of the outliers from w∗ plays a critical

role in the condition for Lemma 4.3.3. We know that γ ∈ (0, 1]. γ = 1 implies

the outliers are equidistant from the optimum w∗. Low values of γ lead to

a large q leading to the violation of the condition with p̂ (since RHS in the

condition is very small), which implies that one bad outlier can guarantee

that the condition in Lemma 4.3.3 are violated. The guarantees in the above

lemma are only when the outliers are not adversarially chosen to lie at very

high relative distances from w∗. One way to avoid the set of outliers far far

away from the optimum is to have a filtering step at the start of the algorithm

like the one in [104]. We will refer to this in Experiments.

Effect of cos θj,w̄: At first glance, it may seem that cos θj,w̄ = 0 may cause

1 + κq < 0 and since p̂(w) > 0, the condition in Lemma 4.3.3 may never

be satisfied. Since, the term cos θj,w̄ shows up in the denominator of the loss

associated with outlier centered at wbj . Thus, low values of cos θj,w̄ implies

high value of loss associated with the function centered at wbj which in turn

implies the maximum probability attained by that sample can never be in the

top-|O| probabilities for that w̄.

85

Figure 4.2: Illustration with conditions when bad local minima will or will not
exist. Here, we demonstrate that even if we start at an initialization wB that assigns
the highest probabilities to bad samples (red), it is possible to avoid the existence
of a bad local minima if Condition 1 is satisfied. Recursively, we show in Lemma
4.3.3 that it is possible to avoid all bad local minima and reach a good local minima
(where the good samples have the highest probabilities)

Visualizing Lemma 4.3.3: To illustrate the effect of Lemma 4.3.3 we will

go to the scalar setting. For the scalar case, d = 1, we have θj,w̄ = 0 ∀ j. Let us

also assume for the sake of effective visualization that γ = 1, which in the scalar

setting reduces to all the points being at the same distance from w∗. Since

we are concerned with the worst case analysis, we assume that all the outliers

are centered on the same side of the optimum. The conditions in Lemma 2

are reduced to q =
√
κ > 0 (which is trivially true) and p̂max ≤

1

1 + κ
√
κ

. A

key takeaway from the above condition is that for a fixed n as κ increases, we

can tolerate smaller p̂ and consequently smaller fraction of corruptions ε. For

a fixed ε and n, increasing the parameter k in MKL-SGD leads to an increase

in p̂ and thus increasing k can lead to the violation of the above condition.

This happens because samples with lower loss will be picked with increasing

86

probability as k increases.

Let w̄MKL be the stationary point of MKL-SGD for this scalar case. If

the above condition is satisfied, then the existence of the first bad MKL-SGD

stationary point w̄MKL can be avoided as illustrated in Figure 4.2.

To further elaborate on this, let us initialize MKL-SGD at w0 = wB,

a point where the losses of outlier samples are 0 and all the clean samples

have non-zero losses. If C1 holds true, then we are in Case 1 (Figure 4.2),

the stationary point attained by MKL-SGD will be such that it is possible

to avoid the existence of the first bad local minima which occurs when the

top-|O| highest probabilities are assigned to the bad samples.

Not only that all other subsequent local minimas are avoided as well,

until we reach the local minima which assigns the largest (n−|O|) probabilities

to the clean samples1. This indicates that irrespective of where we initialize in

the 1D landscape, we are bound to end up at a local minima with the highest

probabilities assigned to the clean samples. In the latter part of this section,

we will show that MKL-SGD solution attained when Case 1 holds is provably

better than the SGD solution. However, if condition 1 is false (Case 2, Figure

4.2), then it is possible that MKL-SGD gets stuck at any one of the many local

minimas that exist close to the outlier center wB and we cannot say anything

about the relative distance from w∗.

1Refer to Appendix section ?? for further details on this discussion

87

Analysis for the general outlier setting: In this part, we analyze the

fixed point equations associated with MKL-SGD and SGD and try to under-

stand the behavior in a ball Br(w∗) around the optimum? For the sake of

simplicity, we will assume that ‖∇fi(w)‖ ≤ G ∀ i ∈ O. Next, we analyze the

following two quantities: i) distance of w̄SGD from w∗ and distance of the any

of the solutions attained by w̄MKL from w∗.

Lemma 4.3.4. Let w̄SGD indicate the solution attained SGD. Under assump-

tions 1-3, there exists an ε′ such that for all ε ≤ ε′,

εG ≤ (1− ε)L‖w̄SGD −w∗‖

Using Lemma 4.3.1, we will define λ as follows:

λ := min
w

λw (4.7)

Assumption 2 ensures that λ > 0, however the lower bounds for this λ are

loss function dependent.

Lemma 4.3.5. Let w̄MKL be any first order stationary point attained by

MKL-SGD . Under assumptions 1-3, for a given ε < 1 and λ as defined in

equation (4.7), there exists a k′ such that for all k ≥ k′,

‖w̄MKL −w∗‖ ≤
εkG

λ

Finally, we show that any solution attained by MKL-SGD is provably

better than the solution attained by SGD. We would like to emphasize that this

88

is a very strong result. The MKL-SGD has numerous local minima and here

we show that even the worst2 solution attained by MKL-SGD is closer to w∗

than the solution attained by SGD. Let us define α(ε, L, k, λ) =
(1− ε)Lεk−1

λ

Theorem 4.3.6. Let w̄SGD and w̄MKL be the the stationary points attained

by SGD and MKL-SGD algorithms respectively for the noiseless setting with

outliers. Under assumptions 1-3, for any w̄MKL ∈ Br(w∗) and λ defined in

equation (4.7), there exists an ε′ and k′ such that for all ε ≤ ε′ and k ≥ k′, we

have α(ε, L, k, λ) < 1 and,

‖w̄MKL −w∗‖ < α(ε, L, k, λ)‖w̄SGD −w∗‖ (4.8)

For squared loss in scalar setting, we claimed that for a fixed n and ε,

using a large k may not be a good idea. Here, however once we are in the ball,

Br(w∗), using larger k (any k < n
2
), reduces α(ε, L, k, λ) and allows MKL-SGD

to get closer to w∗.

The conditions required in Lemma 4.3.3 and Theorem 4.3.6 enable us

to provide guarantees for only a subset of relatively well-conditioned problems.

We would like to emphasize that the bounds we obtain are worst case bounds

and not in expectation. As we will note in the Section 4.5 and the Appendix,

however these bounds may not be necessary, for standard convex optimization

problems MKL-SGD easily outperforms SGD.

2farthest solution from w∗

89

4.4 Convergence Rates

In this section, we go back to the usual in expectation convergence

analysis for the stochastic setting. For smooth functions with strong convex-

ity, [91, 90] provided guarantees for linear rate of convergence. We restate

the theorem here and show that the theorem still holds for the non-convex

landscape obtained by MKL-SGD in noiseless setting.

Lemma 4.4.1 (Linear Convergence [90]). Let F (w) = E[fi(w)] be λ-

strongly convex. Set σ2 = E[‖∇fi(w∗)‖2] with w∗ := argminF (w). Suppose

η ≤ 1
supi Li

. Let ∆t = wt −w∗. After T iterations, SGD satisfies:

E
[
‖∆T‖2

]
≤ (1− 2ηĈ)T‖∆0‖2 +Rσ (4.9)

where Ĉ = λ(1− η supi Li) and Rσ = ησ2

Ĉ
.

In the noiseless setting, we have ‖∇fi(w∗)‖ = 0 and so σ := 0. w∗ in

(4.9) is the same as w∗ stated in Theorem 4.3.2. Even though above theorem

is for SGD, it still can be applied to our algorithm 2. At each iteration there

exists a parameter λwt that could be seen as the strong convexity parameter

(c.f. Lemma 4.3.1). For MKL-SGD, the parameter λ in (4.9) should be λ =

mint λwt . Thus, MKL-SGD algorithm still guarantees linear convergence result

but with an implication of slower speed of convergence than standard SGD.

However, Lemma 4.4.1 will not hold for MKL-SGD in noisy setting

since there exists no strong convexity parameter. Even for noiseless setting,

the rate of convergence for MKL-SGD given in Lemma 4.4.1 is not tight.

90

The upper bound in (4.9) is loosely set to the constant λ := mint λwt for

all the iterations. We fix it by concretely looking at each iteration using the

following notation. Denote the strong convexity parameter λgood for all the

good samples. Let

ψ = 2ηtλgood(1− ηt sup
i
Li)

n− |O|
ψn

.

Next, we give a general bound for the any stochastic algorithm (c.f. Theorem

4.4.2) for both noiseless and noisy setting in absence and presence of outliers.

Theorem 4.4.2 (Distance to w∗). Let ∆t = wt − w∗. Suppose at tth

iteration, the stepsize is set as ηt, then conditioned on the current parameter

wt, the expectation of the distance between the wt+1 and w∗ can be upper

bounded as:

Ei
[
‖∆t+1‖2|wt

]
≤ (1− ψ) ‖∆t‖2 + ηtRt (4.10)

where

Rt =− ψ
∑
i/∈O

Npi(wt)− 1

N − |O| 〈∆t,∇fi(wt)−∇fi(w∗)〉

+ 2
∑
i/∈O

pi(wt)
(
ηt‖∇fi(w∗)‖2 − 〈∆t,∇fi(w∗)〉

)
+
∑
i∈O

pi(wt)
(
ηt‖∇fi(wt)‖2 + (fi(w

∗)− fi(wt))
)

Theorem 4.4.2 implies that for any stochastic algorithm in the both

noisy and noiseless setting, outliers can make the upper bound (Rt) much

worse as it produces an extra term (the third term in Rt). The third term

in Rt has a lower bound that is an increasing function of |O|. However, its

91

impact can be reduced by appropriately setting pi(wt), for instance using a

larger k in MKL-SGD . In the appendix, we also provide a sufficient condition

(Corollary 1 in the Appendix) when MKL-SGD is always better than standard

SGD (in terms of its distance from w∗ in expectation).

4.5 Experiments

In this section, we compare the performance of MKL-SGD and SGD

for synthetic datasets for linear regression and small-scale neural networks.

4.5.1 Linear Regression

For simple linear regression, we assume that Xi are sampled from nor-

mal distribution with different condition numbers. Xi ∼ N (0,D) where D

is a diagonal matrix such that D11 = κ and Dii = 1 for all i). We compare

the performance of MKL-SGD and SGD for different values of κ (Fig. 4.3)

under noiseless and noisy settings against varying levels of corruption ε. It

is important to note that different κ values correspond to different rates of

convergence. To ensure fair comparison, we run the algorithms till the error

values stop decaying and take the distance of w∗ from the exponential moving

average of the iterates.

4.5.2 Neural Networks

For deep learning experiments, our results are in presence of corruptions

via the directed noise model. In this corruption model, all the samples of class

92

0.1 0.2 0.3 0.4
ε

10−4

10−3

10−2

10−1

100

||w
−

w
∗ ||

2

Noiseless linear regression with outliers, d = 25

MKL (κ=15)
MKL (κ=10)
MKL (κ=5)
MKL (κ=1)
SGD (κ=15)
SGD (κ=10)
SGD (κ=5)
SGD (κ=1)

0.1 0.2 0.3 0.4
ε

1

2

3

4

5

6

7

||w
−

w
∗ ||

2

Noisy linear regression with outliers, d = 25, σnoise = 1

MKL (κ=15)
MKL (κ=10)
MKL (κ=5)
MKL (κ=1)
SGD (κ=15)
SGD (κ=10)
SGD (κ=5)
SGD (κ=1)

Figure 4.3: Comparing the performance of MKL-SGD (k = 2) and SGD for
different values of κ in noiseless and noisy linear regression against varying fraction
of outliers.

93

a that are in error are assigned the same wrong label b. This is a stronger

corruption model than corruption by random noise (results in Appendix). For

the MKL-SGD algorithm, we run a more practical batched (size b) variant such

that if k = 2 the algorithm picks b/2 samples out of b sample loss evaluations.

The oracle contains results obtained by running SGD over only non-corrupted

samples.

MNIST: We train standard 2 layer convolutional network on subsampled

MNIST (5000 samples with labels). We train over 80 epochs using an initial

learning rate of 0.05 with the decaying schedule of factor 5 after every 30

epochs. The results of the MNIST dataset are averaged over 5 runs.

Dataset MNIST
ε\ Optimizer SGD MKL-SGD Oracle
0.1 96.76 96.49 98.52
0.2 92.54 95.76 98.33
0.3 85.77 95.96 98.16
0.4 71.95 94.20 97.98

Table 4.1: Comparing the test accuracy of SGD and MKL-SGD (k = 5/3) over
MNIST dataset in presence of corruptions via directed label noise.

CIFAR10: We train Resnet-18 [113] on CIFAR-10 (50000 training samples

with labels) for over 200 epochs using an initial learning rate of 0.05 with the

decaying schedule of factor 5 after every 90 epochs. The reported accuracy

94

is based on the true validation set. The results of the CIFAR-10 dataset are

averaged over 3 runs.

Dataset CIFAR10
ε\ Optimizer SGD MKL-SGD Oracle
0.1 79.1 81.94 84.56
0.2 72.29 77.77 84.40
0.3 63.96 66.49 84.66
0.4 52.4 53.57 84.42

Table 4.2: Comparing the test accuracy of SGD and MKL-SGD (k = 5/3) over
CIFAR-10 dataset in presence of corruptions via directed label noise.

Further experimental results on random noise as well as directed noise

are available in the Appendix.

4.6 Discussion and Future Work

To ensure consistency, i.e. ‖w̄MKL − w∗‖ → 0, we require that

k ≥ nε + 1. In all other cases, there will be a non-zero contribution from

the outliers which keeps the MKL-SGD solution from exactly converging to

w∗. In this paper, we consider unknown ε and thus k should be a hyperparam-

eter. For neural network experiments in the Appendix, we show that tuning k

as a hyperparameter can lead to significant improvements in performance in

presence of outliers.

The obvious question is if it is possible to provide worst case guarantees

for a larger subset of problems using smarter initialization techniques. It will

95

0 50 100 150
Epochs

10−5

10−4

10−3

10−2

10−1

100

Lo
ss

Training loss

Min-2 Loss SGD
SGD

0 50 100 150
Epochs

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Test loss

Min-2 Loss SGD
SGD

0 50 100 150
Epochs

40

50

60

70

80

A
cc

ur
ac

y

Test Accuracy

Min-2 Loss SGD
SGD

Figure 4.4: Comparing training loss, test loss and test accuracy of MKL-SGD and
SGD. Parameters: ε = 0.2, k = 2, b = 16. The training loss is lower for SGD which
means that SGD overfits to the noisy data. The lower test loss and higher accuracy
demonstrates the robustness MKL-SGD provides for corrupted data.

be interesting to analyze the tradeoff between better generalization guarantees

offered by large k and rates of convergence. The worst case analysis in the

noisy setting for standard convex optimization losses remains an open problem.

As we show in the previous set of experiments, in presence of noise, tuning the

hyperparameter k can provide significant boosts to the performance.

96

4.7 Conclusion

In this paper, we propose MKL-SGD that is computationally inex-

pensive, has linear convergence (upto a certain neighborhood) and is robust

against outliers. We analyze MKL-SGD algorithm under noiseless and noisy

settings with and without outliers. MKL-SGD outperforms SGD in terms

of generalization for both linear regression and neural network experiments.

MKL-SGD opens up a plethora of challenging questions with respect to un-

derstanding convex optimization in a non-convex landscape which will be dis-

cussed in the Appendix.

97

Chapter 5

Balancing SGD: Faster Optimization for

Imbalanced Classification

A classification dataset is imbalanced if the number of training samples

in each class varies widely. In such a setup, vanilla SGD quickly reaches a

point where many samples from the majority class have small gradients and

low loss, leading to insignificant gradients, which in turn leads to both slow

convergence and poor generalization. In this paper, we propose a simple yet

efficient variant of SGD that rejects samples from the majority class unless

their current loss exceeds a threshold. We prove that this algorithm converges

at a faster rate than vanilla SGD and has better generalization performance.

Finally, we also illustrate these performance improvements via experiments on

synthetic as well as real datasets.

5.1 Introduction

This paper focuses on multi-class classification settings where the train-

ing data is imbalanced (i.e., it has many more samples from some classes than

from others). For a classification model trained by an algorithm like SGD,

imbalanced datasets result in two issues: slow convergence during training,

98

and final classifiers that are biased against minority classes. As we will see,

slow convergence arises because, when SGD samples are chosen uniformly at

random, most samples from the majority class have relatively small gradients

and contribute minimally to the magnitude of the update – effectively wasting

computation. On the other hand, bias – which results in poor generalization

if the test set is not imbalanced – is a result of the majority class being over-

represented in the loss function, if such a function is built naively from the

training data.

Figure 5.1: Illustration of how a skewed data distribution introduces a bias in
classical estimation techniques. w∗ determines the direction of the separating hy-
perplane in presence of balanced data, and ŵ is the predicted estimator using SGD
in presence of imbalanced data.

Our primary contribution is a simple modification of SGD, which alle-

viates both issues. Our main idea is to have class-dependent thresholds on

the (current) loss of a sample – such that any randomly drawn sample not

99

meeting the threshold corresponding to its class is not used for the gradient

update.

In Figure 5.1, we highlight how the presence of imbalancedness leads

to a biased estimation using a toy example for binary classification under the

separable data regime. As the level of imbalancedness increases, the naive

optimization algorithm converges to a point farther from the desired solution

[114, 115]. A-priori knowledge of the label/data distribution can reduce the

bias and ameliorate the generalization performance [11]. Label-distribution

aware variants of SGD are quite popular [116, 12]. However, for massive

datasets, knowledge of label distribution knowledge is often unavailable, and

estimates for label distribution can be computationally challenging and in-

tractable in the stochastic setting.

Figure 5.2: Toy example for logistic regression in the separable data setting. We
plot the running average of the norm of the gradients vs. the number of samples
of that class observed when the imbalance ratio is 0.01. The window size for the
running average is 20. Samples from the majority class have insignificant gradient
updates using SGD.

100

In Figure 5.2, we use a toy example for logistic regression to draw

a comparison between the gradient contributions by the majority class and

minority class. The presence of imbalancedness (as depicted in Figure 5.1)

often biases the estimator ŵ away from w∗. It is well known that the loss and

the norm of the gradient of a data sample i are inversely proportional to its

distance from ŵ. Thus, for any classical method such as SGD, most samples

from the majority class have small gradients leading to many insignificant

gradient update steps, even though the optimization is far from complete.

Thus, the presence of bias not only contributes to poor generalization on the

test set but also to slow convergence. For the separable regime, under certain

assumptions, [117, 118] explicitly characterize this slow rate of convergence to

be O (1/log t) for the bias term and O (1/(log t)2) for the direction.

In recent years, some papers have systematically studied the theory

behind optimization algorithms, where samples from different classes have

different relative importance. Amongst the ones that are closely related to

our paper are Perceptron Algorithm with Uneven Margins (PAUM) in [114],

DM-SGD in [119] and Instance Shrinking in [120]. However, [114] holds for

the deterministic setting, and [119, 120] have to be significantly altered in

the presence of imbalancedness. We aim to bridge the gap between theory

and practice by providing a faster algorithm for stochastic optimization in

imbalanced classification.

101

Main Contributions

i) We propose a simple, efficient, practical variant of SGD, called Balancing

SGD (B-SGD) algorithm. This algorithm performs a gradient update step if

the loss of an incoming data sample exceeds a class-dependent threshold. This

allows B-SGD to handle the trade-off between overfitting to the majority and

overfitting to the minority class in a principled manner.

ii) We provide two main theoretical results. In Theorem 1, we provide a thresh-

old dependent upper bound on the number of gradient updates performed by

B-SGD. Next, we propose a technique to choose the class-dependent threshold

in the absence of the knowledge of label/data distributions.

iii) Lastly, we support our theoretical results with both synthetic logistic re-

gression experiments that provide insight, as well as encouraging results on real

imbalanced logistic regression and artificially generated imbalanced CIFAR-10.

5.2 Related Work

In the last few years, imbalanced learning has received considerable

interest in the machine learning community [121, 116, 122, 123, 124]. The

algorithms designed to cater to imbalanced data have one underlying theme:

design a proxy distribution that is closer in expectation to the test-set distri-

bution. These algorithms fall into the following categories:

Oversampling. Oversampling is one of the most popular choices within

the family of resampling strategies. Here, the main idea is simple: reuse the

samples of the minority class by resampling them. Naive over-sampling of the

102

minority class does not lead to improvements in performance [125, 126, 9].

Popular variants of over-sampling include either reweighting the existing ex-

amples based on some criteria [10] or creating synthetic examples [9]. However,

over-sampling variants often suffer from overfitting to minority class [127, 128]

and so require regularization methods [129], which might result in significant

memory requirements, poor performance on high-dimensional data [130] and

slow convergence. The last point arises from the fact that as the number of

samples increases, it lowers the relative importance of each sample [131].

Undersampling. Undersampling relies on the idea of removing the sam-

ples of the majority class to balance the distribution. Under-sampling meth-

ods [132, 127, 122] can often lead to the loss of crucial information about

the estimator [11] if performed arbitrarily. Moreover, without knowing the

data-distribution [12], determining the extent of resampling further affects the

final performance. For large datasets, it becomes crucial as it is expensive to

compute and store these statistics.

Loss-based classification. Loss-based classification (or Cost-sensitive

learning) is another widely used approach to balance the distributions. Over

the years, variants of cost-sensitive algorithms have been proposed such as

MFE and MSFE loss [133], Focal Loss [2, 134], CSDNN [135], CoSen CNN

[136], CSDBN-DE [137], Threshold moving [138, 116] and many others [139,

140, 141, 131, 142].

Ensemble methods. In ensemble learning, a combination of the above

methods can be tailored to improve the performance for specific applications

103

[138, 143, 144, 145, 146]. [147, 148] provide a detailed comparison of various

methods for imbalanced learning. However, most of the techniques require the

knowledge of label distribution, limiting their applicability in the stochastic

setting.

To alleviate these issues in imbalanced learning, we propose an algo-

rithm called Balancing SGD (B-SGD), which decides on the fly whether to

compute a gradient update according to the estimated imbalance ratio, as

well as the label and loss value of the incoming data sample. We observe

that by combining resampling strategies with cost-sensitive learning, we can

improve the convergence rates on imbalanced datasets than SGD and other

methods that are agnostic of the label distribution.

Algorithm 3 Balancing SGD (B-SGD)

1: Number of classes k; Threshold parameter c > 0; Threshold values τ =
[τi], i ∈ [k].

2: Initialize w0, τi(0) = τi, nyi = 0 ∀ i ∈ [k]
3: Given samples S = (xi, yi)

∞
i=1

4: for t = 1, 2, 3, . . . T do
5: Choose a sample i uniformly from S
6: if fi(wt) ≥ τyi(t) then
7: wt+1 = wt − η∇fi(wt)
8: nyi = nyi + 1

9: τyi(t+ 1) = c

(
k−1
k
−

∑
j∈{j∈[k]|yj 6=yi}

nyj∑
j∈[k] nyj

)
10: else
11: wt+1 = wt, τyi(t+ 1) = τyi(t)
12: end if
13: τyj(t+ 1) = τyj(t) ∀ j 6= i
14: end for
15: Return wT

104

5.3 Algorithm

We propose a simple variant of SGD, known as the Balancing-SGD (B-

SGD) algorithm to improve both the generalization and convergence behavior

of SGD: in each step, calculate the loss of the incoming sample fi(wt), and

perform a gradient update step for that sample if it exceeds the label-dependent

loss threshold, τyi(t). In other words, let Tt ∈ S indicate the set of samples

in the training set S that satisfy the label-dependent loss threshold condition,

i.e., Tt := {i ∈ S|fi(wt) ≥ τyi(t)}.

The effective gradient update for B-SGD is then given as follows:

E [wt+1|wt] = wt − η∇fi(wt)Ii∈Tt

Here, Tt is a dynamic set that can contain anywhere from 0 data samples to

all data samples in S depending on the value of wt and τyi(t). The rejection

of samples that have a low loss with a time-varying label-dependent threshold

result in a dynamically changing loss function similar to [149].

Line 9 is the critical part of Algorithm 3, which describes the loss

threshold selection process. While we elaborate on how threshold selection

happens later in Section 5.4.4, let us motivate why Line 9 is helpful. i) If

the number of gradient updates for all the classes is the same, then the loss

threshold is zero for all classes. Thus, in the presence of a balanced training set,

B-SGD mimics SGD. ii) The loss threshold should be inversely proportional

to the number of gradient updates for samples of that class, i.e., larger the

number of gradient updates for that class, higher should be the loss threshold.

105

iii) Let nm and nM be the number of gradient update steps taken for classes

1 and 2, respectively. For a simple setting with k = 2 classes and n1 < n2,

we have τ1 = c(0.5 − n2

n1
) > 0, τm = c(0.5 − n2

n1
) < 0 which passes the sanity

check of selectively choosing samples from the majority class. iv) Note, that

the threshold expression acts as a self-adjusting function, i.e. if fewer samples

from a class i are selected, it leads to a reduction in the value of τyi which in

turn decreases the probability of rejection for a sample belonging to class i in

future updates.

Thus, B-SGD takes gradient update steps more frugally than SGD. In

practice, this is particularly important as computing gradients are usually more

expensive than computing the loss functions for a given sample. For example,

in deep learning, loss calculations often involve just forward propagation, while

gradient computations involve both forward and backward propagation.

The algorithm exhibits two key features:

i. Boosting-like updates [150]: Update samples with higher loss more fre-

quently than corresponding samples with the lower loss

ii. Passive-aggressive updates [151, 152, 153]: τyi(t) is inversely proportional

to the frequency of the gradient update step taken for each class, i.e.,

majority class will have a higher loss threshold τyi(t) than the minority

class

The B-SGD algorithm requires O(k) extra memory, where k is the

106

Figure 5.3: Introducing a label-dependent loss-based thresholding approach allows
us to alleviate the issue of bias introduced by the skewed label distribution

number of classes. The computational complexity of the B-SGD algorithm is

the same as SGD; O(1) gradient/loss computations per incoming sample.

B-SGD belongs to the class of ensemble methods that combine under-

sampling and loss-based classification. It is important to note that while the

undersampling for the majority class can include any subset of points, i.e., the

ones with high loss, those with low loss, or those within some range of loss

values. Here, the choice of the subset with high loss has twofold advantages: i)

fewer gradient computations, ii) the information about support vectors which

determine the separating hyper-plane is not lost.

We reiterate that similar approaches have been utilized in literature

with limited success. These approaches suffer from many issues, such as cater-

ing to specific applications, expensive pre-computations, access to label dis-

107

tribution, and slow convergence in the stochastic setting. With B-SGD, we

propose a systematic approach to alleviate these issues in imbalanced classifi-

cation.

5.4 Theoretical Results for Logistic Regression

Notation: Throughout, ‖ · ‖ denotes the Euclidean `2 norm. D is the

unknown distribution of the data set and S is the training data such that

|S| = n. Bold-faced lowercase letters will be used to denote vectors while plain

lowercase letters indicate scalars. Without loss of generality, we also assume

that the data is imbalanced with y = 1 denoting the minority class. S−1 and

S1 represent the training data for majority class (y = −1) and minority class

(y = 1) respectively. Let the imbalance ratio be denoted by r = # of (+1)′s
n

.

The function h(s) : R → R is an decreasing function of s. σ(q) = 1
1+exp(−q)

denotes the sigmoid function. w∗ is the optimal solution for LD(w).

5.4.1 System Model

For any dataset S := {xi, yi}ni=1 with features xi ∈ Rd and labels yi ∈

R, the corresponding empirical risk S minimization problem can be formulated

as:

min
w

LS(w) where LS(w) =
1

n

n∑
i∈S

fi(w) (5.1)

Here, fi(w) := f(w; (xi, yi)) represent convex, continuously differentiable loss

functions for the sample (xi, yi). Similarly, the population risk minimization

108

is expressed as follows:

min
w
LD(w) where LD(w) := Ei∼D[fi(w)] (5.2)

Our aim is to use S to find an estimator that minimizes the population risk

in equation (5.2). In the rest of this section, we focus on binary classification

of imbalanced datasets using logistic regression.

Definition 5.4.1 (Linearly separable). For the generative logistic model, the

underlying parameter w∗ ∈ Rd+1 determines the separating hyperplane where

w∗ is defined as:

w∗ = [(w∗
(d))> b∗]

> ∈ Rd+1, where w∗
(d)/‖w∗(d)‖ is direction and b∗is bias.

(5.3)

The class for the input feature x(d) in D is determined as follows:

x = [(x(d))> 1]> ∈ Rd+1, y = 1{σ(w∗
>x) ≥ 0.5} − 1{σ(w∗

>x) < 0.5}
(5.4)

where (d+ 1)th dimension is for the constant term and σ(x) = 1/(1 + e−x).

The deterministic generative process in equation (5.4) ensures that our

training samples S = {xi, yi}ni=1 are linearly separable.

The logistic loss for data sample (xi, yi) at w is given as:

fi(w) = f(w; (xi, yi)) = log
(
1 + exp

(
−yi(w>xi)

))
SGD treats all the samples in the training set equally and minimizes

the empirical objective function:

LS(w) =
1

n

n∑
i=1

log
(
1 + exp

(
−yi(w>xi)

))
(5.5)

109

Note that w∗
> = [w∗

(d), b∗] determines the unique separating hyper-

plane of the population loss LD(w∗) where the uniqueness is limited to a con-

stant scaling of the direction vector w∗
(d)/‖w∗(d)‖. For more detailed analysis,

we refer to [118, 66].

Assumption 8. The hyperplane determined by w∗ divides D into symmetric

regions

Assumption 8 implies that if the data collection process were uniform,

then we would have a balanced distribution. However, in this paper, we assume

that the skewed distribution of the two classes arises from anomalies in the

data-collection process.

5.4.2 Bias in imbalanced datasets

As we discussed previously, in the separable data setting, the first order

stationary points i.e. those points w such that ∇LS(w) = 0 are attained only

when w =∞. However, this is infeasible and in most practical scenarios, SGD

is stopped when the gradient at point w satisfies the following approximate

first order stationary point condition (defined in [154]):

‖∇LS(w)‖ ≤ ε (5.6)

Note that there are an infinite number of points that satisfy Equation

(5.6) in the separable data setting. As we will show in Proposition 5.4.2, run-

ning SGD incurs a bias that not only generalizes poorly on the test distribution

110

Figure 5.4: Visualizing selection bias in imbalanced datasets using a toy example.
w∗ is defined in Definition 8 and ŵSGD is the estimator running vanilla SGD safisfies
(5.6).

D but also converges at an extremely slow rate to the maximum margin sep-

arating hyperplane of S as O (1/log t) for bias and O (1/(log t)2) for direction

[117, 118]. In the rest of this section, we will first establish the relationship be-

tween r and b (Proposition 5.4.2), and using a toy example (Fig. 5.4) establish

how high bias leads to poor convergence and generalization guarantees.

Proposition 5.4.2. Consider the loss function defined in equation (5.5) and

assume ŵ> = [ŵ(d), b̂] is an approximate stationary point satisfying equa-

tion (5.6). That is, for some |b̂| < ∞ and ε > 0 such that ∀i, yix>i ŵ(d) ≥

log (1/ε) and exp
(
−yi(x>i ŵ(d) + b̂)

)
< 1. Then ∂L(w)

∂b
|[
]
w = ŵ = 0 implies

111

that

b̂ ∝ log

(∑
i∈S1 e

−yix>i ŵ
(d)∑

i∈S−1
e−yix

>
i ŵ

(d)

)
. (5.7)

Note that for Proposition 5.4.2, we do not make any specific assump-

tions and thus the bias expression holds for any ŵ that satisfies equation (5.6).

We will utilize the toy example in Figure 5.4 to quantify the bias term. Here,

the data lies in 1-D space and satisfies Assumption 8. Let w∗ = [1, 0] and

D = {(xi, yi)|xi ∈ U(−1, 1), yi = sign(xi)}. Consistent with our motivation

in Section 5.1, the data collection process is skewed and in the toy example

we consider an extreme case where there is only one sample in the minority

class, i.e. rn = 1, given by x̄1 = [x̄
(d)
1 , 1]>. Then, the number of samples in

the majority class is (1− r)n = 1−r
r

where we assume that r is small (1e−3 or

less). ŵ satisfies equation (5.6) iff b̂ ∈ [x̄
(d)
1 , 0] where x̄

(d)
1 < 0. Combining this

setup with equation (5.7), the bias for the toy example in Figure 5.4 can be

reduced to:

b̂ ∝ log

(
e−x̄

(d)
i ŵ(d)∫ 1

0
ex

(d)
i ŵ(d)

dx
(d)
i

)
≈ log

(
ŵ(d)e−x̄

(d)
i ŵ(d)

eŵ(d) − 1

)
.

For large values of |ŵ(d)|, the bias tends to 0. However, for small values of |ŵ(d)|,

however, the bias is significant. Since the test set follows the same distribution

as D i.e. is balanced, 0.5|b̂| fraction of samples are incorrectly classified. Thus,

larger the magnitude of |b̂|, higher is the generalization error of the estimator.

Further, we also show in appendix section D.2 that the bias has an impact on

the rate of convergence as well. This in turn implies that not all samples are

112

equally useful especially at low values of |ŵ| and it can be worthwhile omitting

certain samples from the majority class S−1 in the gradient update steps to

improve both generalization and the rate of convergence.

10 2 10 1 100 101

Threshold 1

10 1

100

101 car_eval_4 dataset with r=0.037
Training Loss
Test Loss
Gradient computations (× 104)

Figure 5.5: Here, we compare the training error, test error and no. of gradi-
ent computations for different values of fixed thresholds for the majority class. As
threshold, τ−1, increases from 0 to 50, we observe that the no. of gradient compu-
tations continues to decrease while both training and test loss initially decrease and
then increase. Advantage of fixed thresholding: B-SGD [τ−1, τ1] = [0.75, 0] achieves
37.5% and 71.7% decrease in the test error and gradient computations respectively
over SGD (τ−1 = τ1 = 0).

113

5.4.3 Finite Iteration Guarantees with Fixed Thresholding

For the sake of simplicity, in this sub-section, we assume that the loss

threshold is fixed at its initial value, i.e. τyi(t) = τyi ∀ t. For constant loss

thresholds, Fig. 5.5 shows that as the loss threshold increases, the number

of iterations required to attain an estimation error ‖w − w∗‖ < ε decreases

(Regime A) initially until it increases and saturates at the maximum value

(Regime B). The latter behavior is observed because for large thresholds, it is

no longer possible to satisfy ‖w−w∗‖ < ε no matter how may steps we take.

Let Sy = {i ∈ S|yi = y},

Theorem 5.4.3. Consider the B-SGD algorithm with fixed thresholds (over

time) τ−1 and τ1 for the majority and minority class, respectively. The expected

gradient update step for B-SGD is as follows:

E [wt+1|wt] = wt − η∇fi(wt)Ifi(wt)≥τyi (5.8)

Suppose the data is normalized (i.e., ‖xi‖ = 1). Define the margin γ(w,S−1,S1) :=

mini
yi(〈w,xi〉)
‖w‖ . Suppose there exists w∗ ∈ Rd+1 such that ‖w∗‖ = 1 and γ(w∗,S−1,S1) ≥

Γ. Then the number of gradient updates performed by Algorithm 3 is bounded

w.h.p. by

Tτ =
1

Γ2(1− r)β−1 + rβ1

+
2(1− r)C−1 + 2rC1

η (Γ2(1− r)β−1 + rβ1)
(5.9)

where βyi = (exp(τyi)− 1) exp(−τyi) and Cyi = − log (exp(τyi)− 1).

The proof of Theorem 5.4.3 is deferred to the appendix. The proof

is similar to the analysis for the perceptron algorithm [114, 155, 156]. We

114

adopt their ideas to our logistic regression in stochastic gradient descent for

imbalanced data and significantly improve the bounds in terms of imbalance

ratio r with high probability.

One of the main takeaways from Theorem 5.4.3 is that the number of

updates Tτ is directly determined by r. If the classes are highly imbalanced

satisfying r = O (1/ log (1/ε))), then for some ε setting τ1 = ε and τ−1 > ε

results in:

C1 = (− log(exp(ε)− 1) = O (log (1/ε)) and β1 = (exp(ε)− 1) exp(−ε) = O (ε)

which means rC1 = O(1) and rβ1 = O(ε/(log(1/ε)) have little effect on the

bound. In other words, taking all samples from highly-imbalanced minority

class will have similar sample complexity as taking a subset of samples from

the minority class with a small (constant) loss threshold. This serves as an

inspiration for our proposed Algorithm 3 in Section 5.4.4. On the other hand,

when the thresholds of both majority and minority are small (i.e., τyi → ε),

the update in (D.7) reduces to vanilla SGD, which means the bound Tτ in

Theorem 5.4.3 is: Tε = O (1/ε log (1/ε)) . The complexity Tε matches the

bound in [117]. Comparing with this vanilla SGD, Algorithm 3 with τ1 = ε

and constant τ−1 clearly achieves a smaller bound than vanilla SGD in terms of

number of gradient updates performed. In this sense, we claim Algorithm 3 has

faster optimization. Figure 5.3 provides further evidence that our algorithm

is able to achieve both good generalization as well as faster convergence over

SGD.

115

However, the B-SGD algorithm with fixed thresholds would require a

good initial estimate of r which is difficult since we do not have access to

any label or data distribution. With that in mind, in the next section, we

propose a variable thresholding approach that allows us to apply B-SGD with

an estimate Rt for imbalance ratio r based on the samples for which gradient

update steps are taken.

5.4.4 Analysis of Variable Thresholding with Unknown r

To describe the variable thresholding approach, we first delve deeper

into the analysis of stationary points for the binary classification problem. For

the separable data case, we know that there can be many separating hyper-

planes for a given set of data points, and all of them perform equally well on

the training set. However, in order to guarantee good generalization, we need

to understand why a specific solution will have better generalization. This,

in turn, motivates how we tune the threshold as we perform an increasing

number of updates.

As shown in Section 5.4.2, SGD will lead to biased estimation. However,

if we know r in advance, we minimize re-weighted empirical loss leads to an

estimator ŵRW that is closer to w∗ than wSGD.

ŵRW = arg min
w

(∑
i∈S1

log
(
1 + exp

(
−w>x

))
+
∑
i∈S−1

r

1− r log
(
1 + exp

(
w>x

)))
(5.10)

The alternative is to under-sample the majority class by removing samples to

116

have ŵUS as

ŵUS = arg min
w

(∑
i∈S1∩Aw

log
(

1 + exp
(
−w>x

))
+

∑
i∈S−1∩Aw

log
(

1 + exp
(
w>x

)))
(5.11)

where Aw := {i ∈ S| log
(
1 + exp

(
−yiw>x

))
> τyi} and τ(.) is a function of

r. We wish to find the ŵ that satisfies equations (5.10) and (5.11), which
implies: ∑

i∈S−1

(
r

1− r − 1i∈Aŵ

)
∇fi(w)|[

]
w = ŵ = 0 (5.12)

There exists some constant τ−1 that satisfies the equality in equation (5.12).

However, to write down the closed-form expression of τ−1 is not straightfor-

ward.

Proposition 5.4.4. Suppose the data is normalized (i.e., ‖xi‖ = 1). Suppose

ŵ minimizes both equations (5.10) and (5.11), then without loss of generality

ŵ>xi < 0,∀i ∈ S−1. Set τ−1 ≥ 0 for the set Aŵ. Solving for τ−1 given some

r in equation (5.12), we observe that τ−1 > 0 is monotonically decreasing

function with respect to r ∈ [0, 0.5]. In addition,

if r → 0.5 or r
1−r → 1, then τ−1 → 0; if r → 0 or r

1−r → 0, then

τ−1 → log(1 + exp(‖ŵ‖)).

The proof is available in the appendix. Thus, based on the Proposition

5.4.4, we propose a criteria to accept a sample from this majority class by

linearly interpolating τ−1 at r = 0 to r = 0.5:

τ−1 ≈ log(1 + exp(‖ŵ‖))) (0.5− r) (5.13)

117

B-SGD Algorithm with unknown r: Let nmin(t) and nmaj(t) denote the

number of gradient updates for the minority and majority class respectively

at time t. Since we assume that we are not aware of the label distribution

at the start, let the running update of the parameter r denoted by Rt every

time a gradient update is performed, i.e., Rt =
n̂min,t

n̂min,t+n̂maj,t
which represents

an empirical estimate of the imbalance ratio observed so far (w.r.t. gradient

update steps). The loss threshold vector, τ , in Line 9 of Algorithm 3 becomes:

τ−1(t) = log(1 + exp(‖ŵ‖))) (0.5−Rt)

τ1(t) = log(1 + exp(‖ŵ‖))) (Rt − 0.5)

where Rt = n̂min,t/(n̂min,t + n̂maj,t). This implies that for any binary classifi-

cation problem, at any point of time exactly one class can have a positive loss

threshold.

5.5 Experiments

In this section, we compare B-SGD and SGD for two different scenarios:

5.5.1 Synthetic experiments

For this subsection, we consider a generative model in the separable

setting as described in Definition 5.4.1. We compare the performance of SGD

and B-SGD, where we plot both estimation error vs. the number of gradient

computations and estimation error, ‖w − w∗‖ vs. time taken. We observe

that B-SGD outperforms SGD in the number of gradient computations and

118

the time taken to achieve the same estimation error.

0 20000 40000 60000 80000
Number of gradient computations

10
1

10
0

E
st

im
at

io
n

E
rr

or
, |

|w
w

* |
|

Imbalanced Labels (frac = 0.0126, d = 20)

SGD
Balancing SGD

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time taken (in seconds)

10
1

10
0

E
st

im
at

io
n

E
rr

or
, |

|w
w

* |
|

Imbalanced Labels (frac = 0.0126, d = 20)

SGD
Balancing SGD

Figure 5.6: Comparing the rate of convergence vs the number of gradient compu-
tations and time taken for SGD and Balancing SGD. The reported results in the
figure above are over an average of 3 runs.

5.5.2 Real Imbalanced datasets

In this section, we compare the performance of B-SGD and SGD for

various imbalanced datasets defined in the imblearn package [157]. We observe

that using B-SGD allows us to achieve not only better test loss (test accu-

racy) but also requires significantly fewer gradient computations than SGD.

Consistent with our motivation, the training dataset was imbalanced, while

the evaluation was on a balanced test set. Table ?? illustrates that B-SGD

achieves significant performance gains in terms of both test loss, test accuracy

(AUC), and the number of gradient computations over its SGD counterpart

as well as the Focal Loss method [2]. The presence of higher training errors

but lower test errors provides glaring evidence that B-SGD has better gener-

119

Algorithm SGD B-SGD Focal

Dataset TL TEL TA GC TL TEL TA GC TA

car eval 4 0.031 0.247 88.1 8.64 · e4 0.278 0.249 89.3 9.98 · e3 89.2
optical digits 0.054 0.387 89.0 1.41 · e5 1.479 0.367 89.6 8.11 · e3 88.0
isolet 0.035 0.649 87.0 1.94 · e5 0.485 0.585 88.5 8.80 · e3 88.4
letter img 0.061 0.66 83.8 2.00 · e5 1.81 0.612 83.8 3.34 · e3 84.3
pen digits 0.097 0.388 83.8 2.74 · e5 0.711 0.364 85.1 3.33 · e4 85.1
mammography 0.051 0.901 70.9 5.59 · e4 0.144 0.873 70.5 2.12 · e3 71.1

TL TEL TE1 Epochs TL TEL TE1 Epochs TE1

CIFAR-10 0.021 1.43 28.5 200 0.163 0.90 26.2 88 28.7

Table 5.1: Comparing training loss (TL), Test Loss (TEL), Test AUC (TA), Top-1
Test Error (TE1), and Number of gradient computations (GC) for SGD and B-SGD
over different Imbalanced datasets. The reported results for the first 6 datasets are
an average of 5 runs, and for the last 3 datasets are an average of 3 runs. Focal
loss (Focal) is the state-of-the-art method proposed in [2], which changes the loss
function and so it is not fair to compare the training and the test errors. Focal
has the same number of gradient computations as SGD. Hence, we only report test
accuracy for Focal.

alization than SGD.

Lastly, we also ran experiments on CIFAR-10 with imbalanced classes

with long-tailed imbalance ratio r = 0.01 using Resnet-32 architecture the

codebase provided in [12] and reported the results in Table ??. Details about

the experimental setup, as well as more experiments for both synthetic and

real datasets, along with a discussion on practical aspects of implementation

including the effect of early stopping and parameter sensitivity, can be found

in the appendix.

120

Appendices

121

Appendix A

Cheap-SVRG

A.1 Proof of Theorem 2.4.2

By assumptions of the theorem, we have:

η <
1

4L
(
(1 + θ) + 1

s

) and K >
1

(1− θ)η (1− 4Lη) γ
,

As mentioned in the remarks of Section 2.4, the above conditions are sufficient

to guarantee ρ < 1, for some θ ∈ (0, 1). Further, for given accuracy parameter

ε, we assume κ ≤ ε
2
.

Let us define

ϕt := E
[
F (w̃t)− F (w∗)

]
,

as in the proof of Theorem 2.4.1. In order to satisfy varphiT ≤ ε, it is sufficient

to find the required number of iterations such that ρTϕ0 ≤ ε
2
. In particular:

ρTϕ0 ≤
ε

2
⇒ − (T log ρ+ logϕ0) ≥ − log

ε

2

⇒ T · log
(
ρ−1
)
≥ log

2

ε
+ logϕ0

⇒ T ≥
(

log
1

ρ

)−1

· log

(
2 (F (w̃0)− F (w∗))

ε

)

122

Moreover, each epoch involves K iterations in the inner loop. Each inner loop

iteration involves two atomic gradient calculations. Combining the above, we

conclude that the total number of gradient computations required to ensure

that ϕT ≤ ε is O
(
(2K + s) log 1

ε

)
.

A.2 Mini-batches in CheapSVRG

In the sequel, we show how Alg. 1 can also accommodate mini-batches

in the inner loops and maintain similar convergence guarantees, under As-

sumptions 1-4. The resulting algorithm is described in Alg. 4. In particular:

Algorithm 4 CheapSVRG with mini batches

1: Input: w̃0, η, s, q,K, T .
2: Output: w̃T .
3: for t = 1, 2, . . . , T do
4: Randomly select St ⊂ [n] with cardinality s.
5: Set w̃ = w̃t−1 and S = St.
6: µ̃S = 1

s

∑
i∈S ∇fi(w̃).

7: w0 = w̃.
8: for k = 1, . . . , K − 1 do
9: Randomly select Qk ⊂ [n] with cardinality q.

10: Set Q = Qk.
11: vk = ∇fQ(wk−1)−∇fQ(w̃) + µ̃S .
12: wk = wk−1 − η · vk.
13: end for
14: w̃t = 1

K

∑K−1
j=0 wj.

15: end for

Theorem A.2.1 (Iteration invariant). Let w∗ be the optimal solution for

minimization (2.1). Further, let s, q, η, T and K be user defined parameters

123

such that

ρ
def
=

q

η · (q − 4L · η) ·K · γ +
4L · η · (s+ q)

(q − 4L · η) · s < 1.

Under Asm. 1-4, CheapSVRG satisfies the following:

E
[
F (w̃T)− F (w∗)

]
≤ ρT · (F (w̃0)− F (w∗))

+
q

q − 4Lη
·
(

2η

s
+

ζ

K

)
·max

{
ξ, ξ2

}
· 1

1− ρ.

A.3 Proof of Theorem A.2.1

To prove A.2.1, we analyze CheapSVRG starting from its core inner

loop (Lines 9-14). We consider a fixed subset S ⊆ [n] and show that in

expectation, the steps of the inner loop make progress towards the optimum

point. Then, we move outwords to the ‘wrapping’ loop that defines consecutive

epochs to incorporate the randomness in selecting the set S.

We consider the kth iteration of the inner loop, during the tth iteration

of the outer loop; we consider a fixed set S ⊆ [n], starting point w0 ∈ Rp and

(partial) gradient information µ̃S ∈ Rp as defined in Steps 6−8 of Alg. 1. The

set Qk is randomly selected from [n] with cardinality |Qk| = q. Similarly to

the proof of Thm. 2.4.1, we have:

EQk
[
‖wk −w∗‖2

2

]
= ‖wk−1 −w∗‖2

2 − 2η · (wk−1 −w∗)> EQk [vk]

+ η2EQk
[
‖vk‖2

2

]
. (A.1)

where the expectation is with respect to the random variable Qk. By the

124

definition of vk in Line 12,

EQk [vk] = EQk [∇fQk(wk−1)−∇fQk(w̃) + µ̃S]

= ∇F (wk−1)−∇F (w̃) + µ̃S , (A.2)

where the second step follows from the fact that Qk is selected uniformly at

random from [n]. Similarly,

EQk
[
‖vk‖2

2

]
= EQk

[
‖∇fQk(wk−1)−∇fQk(w̃) + µ̃S‖2

2

]
(i)

≤ 4 · EQk
[
‖∇fQk(wk−1)−∇fQk(w∗)‖2

2

]
+ 4 · EQk

[
‖∇fQk(w̃)−∇fQk(w∗)‖2

2

]
+ 2 · ‖µ̃S‖2

2

(ii)

≤ 8L

q
· (F (wk−1)− F (w∗) + F (w̃)− F (w∗)) + 2 · ‖µ̃S‖2

2.

(A.3)

Inequality (i) is follows by applying ‖x − y‖2
2 ≤ 2‖x‖2

2 + 2‖y‖2
2 on all atomic

gradients indexed by Qk, while (ii) is due to the following lemma.

Lemma A.3.1. Given putative solution wk−1 and mini-batch Qk with cardi-

nality |Qk| = q, the following holds true on expectation:

EQk
[
‖∇fQk(wk−1)−∇fQk(w∗)‖2

2

]
≤ q−1 · 2L · (F (wk−1)− F (w∗)) .

Proof. let

Q =
{
Qi : |Qi| = |Q|, Qi ⊂ [n], Qi 6= Qj,∀i 6= j

}
,

i.e., Q contains all different index sets of cardinality |Q| = q. Observe that

|Q| =
(
n
|Q|

)
.Note that the set Qk randomly selected in the inner loop of Alg. 1

125

is a member of Q. Then:

EQk
[
‖∇fQk(wk−1)−∇fQk(w∗)‖2

2

]
= E

[∥∥|Qk|−1 ·
∑
i∈Qk

(∇fi(wk−1)−∇fi(w∗))
∥∥2

2

]
=
∑
Qj∈Q

P[Qj] ·
∥∥∥q−1 ·

∑
i∈Qj

(∇fi(wk−1)−∇fi(w∗))
∥∥∥2

2

(i)
=
∑
Qj∈Q

(
n

q

)−1

·
∥∥∥q−1 ·

∑
i∈Qj

(∇fi(wk−1)−∇fi(w∗))
∥∥∥2

2

(ii)
=

(
n

q

)−1

· q−2 ·
∑
Qj∈Q

∥∥∥∑
i∈Qj

(∇fi(wk−1)−∇fi(w∗))
∥∥∥2

2

≤
(
n

q

)−1

· q−2 ·
∑
Qj∈Q

∑
i∈Qj

∥∥(∇fi(wk−1)−∇fi(w∗))
∥∥2

2
.

Here, equality (i) is follows from the fact that each Qj is selected equiprobably

from the set Q. Equality (ii) is due to the fact that |Qj| = q, ∀i.

Since each set in Q has cardinality q, each data sample i ∈ [n] con-

tributes exactly
(
n−1
q−1

)
summands in the double summation above. This further

leads to:

EQk
[
‖∇fQk(wk−1)−∇fQk(w∗)‖2

2

]
≤
(
n

q

)−1

· 1

q2
·
(
n− 1

q − 1

) n∑
i=1

‖∇fi(wk−1)−∇fi(w∗)‖2
2

≤ q−1 · n−1 ·
n∑
i=1

‖∇fi(wk−1)−∇fi(w∗)‖2
2

(i)

≤ q−1 · 2L · (F (wk−1)− F (w∗)) .

126

Inequality (i) follows from the the fact that for any w ∈ Rp [3],

1

n
·

n∑
i=1

‖∇fi(w)−∇fi(w∗)‖2
2 ≤ 2L · (F (w)− F (w∗)) . (A.4)

Similarly, for w̃,

EQk
[
‖∇fQk(wk−1)−∇fQk(w∗)‖2

2

]
≤ q−1 · 2L · (F (w̃)− F (w∗)) . (A.5)

Using the above lemma in (A.3), the remainder of the proof follows

that of Theorem 2.4.1.

A.4 Coordinate updates in CheapSVRG

In large-scale settings, even computing estimates of the gradient, as in

stochastic gradient variants where∇fi(w) ∈ Rd, requires a lot of computations

when d is large. Under such circumstances, it might be desirable to compute

partially the estimate ∇fi(w) by focusing only on a selected subset of its

entries. This idea leads to Coordinate Descent (CD) algorithms, where even

only a single component of ∇fi(w) is updated per iteration. We refer the

reader to [] and the excellent recent survey by Stephen Wright [] for more

information about the history of CD variants.

In this section, we describe CheaperSVRG, a coordinate-descent vari-

ant of CheapSVRG. The description of CheaperSVRG is provided in Al-

gorithm 5. The only difference with CheapSVRG is that, in every inner

127

iteration, CheaperSVRG updates exclusively a randomly selected coordi-

nate of the gradient of the selected component ∇fi(·).

In this section, we introduce the following notation. Given a set B ⊂ [d],

∇Bfi(w) ∈ Rd denotes the gradient of the i-th component of f , supported on

the set B: i.e., (∇Bfi(w))Bc = 0 for Bc := [d] \ B. With a slight abuse of

notation, we will use the same notation ∇Bfi(w) to denote the information of

∇fi(w) in Rd and R|B|; the distinction will be apparent from the context. We

also use µ̃BkS ∈ Rd to denote the restriction of µ̃S only on indices from Bk.

Given the above, anti-gradient direction −vk is only supported on Bk.

In the special case where S ≡ [n], we have:

Eik,Bk [vk] = d
b
· Eik

[
EBk

[
∇Bkfik(wk−1)−∇Bkfik(w̃) + µ̃Bk | ik

]]
(i)
= d

b
· Eik

[∑
Bj∈B

P[Bj] ·
(
∇Bkfik(wk−1)−∇Bkfik(w̃) + µ̃Bk

)]

= d
b
· Eik

[(
d

b

)−1

·
∑
Bj∈B

∑
`∈Bj

(
∇`fik(wk−1)−∇`fik(w̃) + µ̃`

)]

(ii)
= d

b
· Eik

(d
b

)−1

·
(
d− 1

b− 1

)
·
∑
`∈[d]

(
∇`fik(wk−1)−∇`fik(w̃) + µ̃`

)
= Eik [∇fik(wk−1)−∇fik(w̃) + µ̃] = ∇f(wk−1)

where in (i) we assume fixed ik in the expression of the expectation and B

denotes the set of all possible Bk selections and (ii) follows from similar argu-

ments in Section A.2. This justifies the weighting factor d
b

in front of vk.

The next theorem contains the iteration invariant for CheaperSVRG.

128

Algorithm 5 CheaperSVRG

1: Input: w̃0, η, s, b,K, T .
2: Output: w̃T .
3: for t = 1, 2, . . . , T do
4: Randomly select St ⊂ [n] with cardinality s.
5: Set w̃ = w̃t−1 and S = St.
6: µ̃S = 1

s

∑
i∈S ∇fi(w̃).

7: w0 = w̃.
8: for k = 1, . . . , K − 1 do
9: Randomly select ik ⊂ [n].

10: Randomly select Bk ⊂ [d] with cardinality b.

11: vk = d
b
·
(
∇Bkfik(wk−1)−∇Bkfik(w̃) + µ̃BkS

)
.

12: wk = wk−1 − η · vk.
13: end for
14: w̃t = 1

K

∑K−1
j=0 wj.

15: end for

Theorem A.4.1 (Iteration invariant). Let w∗ be the optimal solution for

minimization (2.1). Further, let s, b, η, T and K be user defined parameters

such that

ρ
def
=

1

η ·
(
q − 4L · η · p

b

)
·K · γ +

4L · η ·
(
p
b

+ 1
s

)(
1− 4L · η p

b

) < 1.

Under Asm. 1-4, CheapSVRG satisfies the following:

E
[
F (w̃T)− F (w∗)

]
≤ ρT · (F (w̃0)− F (w∗))

+
1

1− 4Lη p
b

·
(

2η

s
+

ζ

K

)
·max

{
ξ, ξ2

}
· 1

1− ρ.

A.4.1 Proof of Theorem A.4.1

In our case, where we use µ̃S , one can easily derive:

Eik,Bk [vk] = ∇F (wk−1)−∇F (w̃) + µ̃S

129

and

Eik,Bk
[
‖vk‖2

2

]
= Eik

[
EBk

[∥∥∥pb · (∇Bkfik(wk−1)−∇Bkfik(w̃) + µ̃BkS

)∥∥∥2

2
| ik
]]

(
d
b

)2 · Eik

[∑
Bj∈B

P[Bj] ·
∥∥∥∇Bkfik(wk−1)−∇Bkfik(w̃) + µ̃BkS

∥∥∥2

2

]
= p

b
· Eik

[
‖∇fik(wk−1)−∇fik(w̃) + µ̃S‖2

2

]
≤ p

b
·
(
8L (F (wk−1)− F (w∗) + F (w̃)− F (w∗)) + 2‖µ̃S‖2

2

)
Using the above quantities in CheapSVRG proof and making changes ac-

cordingly, we get the desired result.

130

Appendix B

On the Generalization of Adaptive Methods

B.1 Folklore theorem on convergence of matrices

We will first present a folklore theorem

Theorem B.1.1 (Behavior of square matrix ‖MK‖2). [74, 75] Let M

is a d × d matrix. Let τ(M) = maxi |λi(M)| denote the spectral radius of

the matrix M . Then, there exists a sequence εK ≥ 0 such that: ‖MK‖2 ≤

(τ(M) + εK)K , and limK→∞ εK = 0.

Using the above theorem, H has τ(H) < 1. Further, for sufficiently

large k < K, εK has a small value such that τ(H) + εK < 1; i.e., after some

k1 < K, (τ(H)+εk1)
k1 , will be less than zero, converging to zero for increasing

k1. As K is going towards infinity, this concludes the proof, and leads to the

left inverse solution: w∞ = (−X>X)−1 · (−I)X>y = (X>X)−1X>y ≡ w?, as

K →∞.

B.2 Proof of Proposition 3.3.1

Proposition 3.3.1 implies that adaptive methods with full-rank positive

definite preconditioners perform as well as their pure gradient based counter

131

parts when it comes to fitting their training data. However, this proposition

gives no information regarding the converged w?.

We will prove this proposition using induction.

Base case: Here, we compute the first iteration, K = 1:

ŷ1 = −
(

0∏
i=0

(
I − ηXDiX

>)− I) y = −
(
I − ηXD0X

> − I
)
y = ηXD0X

>y

where, once again, we abuse the notation
∏0

i=0Ai = A0. This is the same

result as in unfolding the recursion for k = 0 above, and assuming w0 = 0.

Inductive case: Assume the following is true

ŷK−1 = −
(

0∏
i=K−2

(
I − ηXDiX

>)− I) y = XwK−1

Then,

ŷK = XwK = XwK−1 − ηXDK−1X
>(XwK−1 − y)

= (I − ηXDK−1X
>)XwK−1 + ηXDK−1X

>y

= −(I − ηXDK−1X
>)

(
0∏

i=K−2

(
I − ηXDiX

>)− I) y
+ ηXDK−1X

>y

= −
(

0∏
i=K−1

(
I − ηXDiX

>)− I) y
= y

Using Theorem 3.2.1, we observe that, for sufficiently large K and for suffi-

ciently small step size η < maxi
1

λ1(XDiX>)
, ‖I − ηXDiX

>‖ < 1 ∀ i. Thus,∏0
i=K−1

(
I − ηXDiX

>) → 0.

132

B.3 Proof of Proposition 3.3.2

We will prove this proposition by induction.

Base case: Here, we compute the first iteration, K = 1:

w1 = (−X>X)−1 ·
(

0∏
i=0

(
I − ηX>XDi

)
− I
)
X>y

= (−X>X)−1 ·
((
I − ηX>XD0

)
− I
)
X>y = ηD0X

>y

where we abuse the notation
∏0

i=0Ai = A0. This is the same result as in

unfolding the recursion for k = 0, and assuming w0 = 0.

Inductive case: Now, assume that, the above statement holds for
K − 1,

wK−1 =
(
−X>X

)−1
·
(

0∏
i=K−2

(
I − ηX>XDi

)
− I
)
X>y.

Here, we use the convention
∏β

i=αAi = Aα · Aα−1 · · ·Aβ+1 · Aβ, for integers
α > β. Then, the expression at the K-iteration satisfies:

wK = wK−1 − ηDK−1∇f(wK−1) = wK−1 − ηDK−1X
>(XwK−1 − y)

=
(
I − ηDK−1X

>X
)
wK−1 + ηDK−1X

>y

(i)
=
(
I − ηDK−1X

>X
)(
−X>X

)−1
·
(

0∏
i=K−2

(
I − ηX>XDi

)
− I
)
X>y

+ ηDK−1X
>y

=

((
−X>X

)−1
+ ηDK−1

)
·
(

0∏
i=K−2

(
I − ηX>XDi

)
− I
)
X>y

+ ηDK−1X
>y

133

=

((
−X>X

)−1
+ ηDK−1

)(0∏
i=K−2

(
I − ηX>XDi

))
X>y

−
((
−X>X

)−1
+ ηDK−1

)
X>y + ηDK−1X

>y

=

((
−X>X

)−1
+ ηDK−1

)(0∏
i=K−2

(
I − ηX>XDi

))
X>y −

(
−X>X

)−1
X>y

=
(
−X>X

)−1 (
I − ηX>XDK−1

)(0∏
i=K−2

(
I − ηX>XDi

))
X>y

−
(
−X>X

)−1
X>y

=
(
−X>X

)−1
(

0∏
i=K−1

(
I − ηX>XDi

))
X>y −

(
−X>X

)−1
X>y

=
(
−X>X

)−1
(

0∏
i=K−1

(
I − ηX>XDi

)
− I
)
X>y

where (i)(i)(i) is due to the inductive assumption. This completes the proof.

B.4 Proof of Proposition 3.4.1

Proposition B.4.1. The set of eigenvalues for D̃(t) is identical to the set of

eigenvalues of D(t).

Proof. We know for each t ≥ 0 that D̃(t) = V TD(t)V . As the matrix D(t) is

full rank for any t ≥ 0 we can write its SVD as D(t) = V D(t)ΛD(t)V
T
D(t). Sub-

stituting the SVD form in the expression we obtain D̃(t) = V TV D(t)ΛD(t)V
T
D(t)V .

But as both V D(t) and V forms basis of Rd we have V D(t)V as another ba-

sis. Therefore, V T
D(t)V is the matrix of eigenvectors and ΛD(t) the eigenvalue

matrix for D̃(t). This proves our claim.

134

B.5 Proof of Proposition 3.4.2

The adaptive updates in (3.5) can be expressed in the spectral bases as

(w̃(t+ 1)− w̃(t))− ηλD̃(t)w̃(t)

= −ηV TV D̃(t)V TXT (XV (w̃(t)− w̃∗) +Uζ̃)

= −ηD̃(t)V TV ΛUT (UΛV TV (w̃(t)− w̃∗) +Uζ̃)

= −ηD̃(t)(Λ2(w̃(t)− w̃∗) + Λζ̃)

Therefore, the update in the spectral domain is represented as

w̃(t+ 1) =
(
I − ηD̃(t)(Λ2 + λI)

)
w̃(t) + ηD̃(t)(Λ2w̃∗ + Λζ̃)

Using induction the closed form of the update in spectral domain can

be obtained as

w̃(T) =
T−1∏
i=0

(
I − ηD̃(i)(Λ2 + λI)

)
w̃(0)

+
T−1∑
i=0

T−1∏
j=(i+1)

(
I − ηD̃(j)(Λ2 + λI)

)
ηD̃(i)(Λ2w̃∗ + Λζ) (B.1)

The base case is true trivially. Given the expression is true for all the iterations
upto (T − 1) we have

w̃(T) =
(
I − ηD̃(T − 1)(Λ2 + λI)

)
w̃(T − 1) + ηD̃(T − 1)(Λ2w̃∗ + Λζ̃)

=
(
I − ηD̃(T − 1)(Λ2 + λI)

) T−1∏
i=0

(
I − ηD̃(i)(Λ2 + λI)

)
w̃(0)

+

T−2∑
i=0

(
I − ηD̃(T − 1)(Λ2 + λI)

) T−2∏
j=(i+1)

(
I − ηD̃(j)(Λ2 + λI)

)
ηD̃(i)(Λ2w̃∗ + Λζ)

+ ηD̃(T − 1)(Λ2w̃∗ + Λζ̃).

This completes the proof.

135

B.6 Proof of Proposition 3.4.3

From Theorem 3.2.1, we know that a sufficient condition for the con-

vergence under update (3.5) is

sup
t≥1
|λ
(
I − ηD̃(t)(Λ2 + λI)

)
| < 1.

Thus, for λ > 0, the dynamics converges to a bounded weight vector for any

η ∈
(

0, 2 (λmax(D(t))(λ2
max(X) + λ))

−1
)
.

We now characterize the fixed point of the dynamics in (3.5). When

the convergence happens, for any fixed point ŵ of the updates in (3.5)

D(t)
(
λŵ +XTX(ŵ −w∗)−XTw

)
= 0.

Because, inft rank(D(t)) = d (full rank) we must have

λŵ +XTX(ŵ −w∗)−XTw = 0

. Expanding the L.H.S. in terms of the SVD of the data matrix we obtain,

d∑
r=1

λw̃rvr +
R∑
r=1

(
λ2
rw̃r − λ2

rw̃
∗
r − λrζ̃r

)
vr = 0.

Therefore, for λ ≥ 0 (holds for both regularized and unregularized) we have

vr
T ŵ = λ2rw̃

∗
r+λr ζ̃r
λ+λ2r

for r ≤ R. Further, for λ > 0, vr
T ŵ = 0 for r ≥ (R + 1).

B.7 Proof of Lemma B.7.1

Using the above structure we obtain the following lemma concerning the

closed form expression of the iterates. Let us define for any matrix A ∈ Rd×d

136

and any vector b ∈ Rd:

A(1) = {Aij : 1 ≤ i, j ≤ R},

A(2) = {Aij : R + 1 ≤ i ≤ d, 1 ≤ j ≤ R},

b(1) = {bi : 1 ≤ i ≤ R},

b(2) = {bi : R + 1 ≤ i ≤ d},

where R is the rank of the data matrix D and d is the dimension of the data.

Lemma B.7.1. If D(t) is full rank for all t ≥ 0 and regularizer λ = 0,

then for any T ≥ 0, the closed form of the iterate w̃(T) admits the following

expression:

w̃(1)(T) = A(T−1, 0)w̃1(0)

+
T−1∑
i=0

A(T−1, i+1)ηD̃(1)(i)Λ
2
(1)(w

∗
(1) + Λ−1

(1)ζ(1)),

w̃(2)(T) = B(T−1, 0)w̃(1)(0) + w̃(2)(0)

+
T−1∑
i=0

η
(
B(T−1, i+1)D̃(1)(i)+D̃(2)(i)

)
×

×Λ2
(1)(w

∗
(1) + Λ−1

(1)ζ(1)),

where for all t2 ≥ t1 ≥ 0,

A(t2, t1) =

t2∏
i=t1

(
I − ηD̃(1)(i)Λ

2
(1)

)
B(t2, t1)=− ηD̃(2)(t1)Λ2

(1)

−η
t2∑

i=t1+1

D̃(2)(i)Λ
2
(1)A(i−1, t1)

137

In the above lemma, the vector w̃(1)(T) represents the in-span compo-

nent of the iterate, where as w̃(2)(T) represents the out-of-span component of

the iterate. We make an important observation in the complex expression in

Lemma B.7.1 that for appropriate choice of η, we have max |λ(A(t2, t1))| < 1

for all t2 ≥ t1 ≥ 0. This is true because, even though λmin(Λ2) = 0, when

only the R × R submatrix Λ(1) is considered, we have λmin(Λ2
(1)) > 0. Using

this result we prove the convergence of in-span component. We will use the

following equations regarding the product two specific block matrices.[
A1 0
B1 I

] [
A2 0
B2 I

]
=

[
A1A2 0

B1A2 +B2 I

]
,

[
A1 0
B1 C1

] [
A2 0
0 0

]
=

[
A1A2 0
B1A2 0

]
(B.2)

Firstly, we obtain the block structure shown in the paper.(
I − ηD̃(i)Λ2

)
= I − η

[
D̃(1)(i) D̃(2)(i)

D̃(2)(i) D̃(3)(i)

] [
Λ2

(1) 0

0 0

]
=

[(
I − ηD̃(1)(i)Λ

2[1]
)

0R×(d−R)

−ηD̃(2)(i)Λ
2[1] I(d−R)×(d−R)

]

The block structure is maintained for the product of these matrices,

i.e. for all t2 ≥ t1 ≥ 0,

t2∏
i=t1

(
I − ηD̃(i)Λ2

)
=

[
A(t2, t1) 0R×(d−R)

B(t2, t1) I(d−R)×(d−R)

]
,

A(t2, t1) =

t2∏
i=t1

(
I − ηD̃(1)(i)Λ

2
(1)

)
,B(t2, t1)

=− ηD̃(2)(t1)Λ2
(1)−η

t2∑
i=t1+1

D̃(2)(i)Λ
2
(1)A(i−1, t1)

This can be shown easily using induction and using Equation (B.2).

138

Substituting these results in the closed form of the iterates in proposi-

tion 3.4.2 we obtain

w̃(T) =

[
A(T−1, 0)w̃1(0)

B(T−1, 0)w̃1(0) + w̃(2)(0)

]
+

T−1∑
i=0

[
A(T−1, i+1) 0
B(T−1, i+1) I

] [
ηD̃1(i)Λ2

1(w∗1 + Λ−1
1 ζ1)

ηD̃(2)(i)Λ
2
1(w∗1 + Λ−1

1 ζ1)

]

In-span Component: Therefore, the component of in the span of data is

w̃(T)

w̃(1)(T) = A(T−1, 0)w̃1(0) +
T−1∑
i=0

A(T−1, i+1)ηD̃1(i)Λ2
(1)(w

∗
(1) + Λ−1

(1)ζ(1)),

Similar to the regularized case, we have for any

η ∈
(

0, 2
(
λmax(D(t))(λ2

max(X))
)−1
)

the in-span component converges. Further, from the fixed point argument we

know that vTr ŵ = w̃∗r + λ−1
r ζ̃r.

Out-of-span Component: The component outside the span of the data is

w̃(2)(T) = B(T−1, 0)w̃(1)(0) + w̃(2)(0)

+
T−1∑
i=0

η
(
B(T−1, i+1)D̃(1)(i)+D̃(2)(i)

)
Λ2

(1)(w
∗
(1) + Λ−1

(1)ζ(1)).

139

B.8 Proof of Theorem 3.4.5

The convergence of the in-span component follows similar to the regu-

larized case. In particular, we observe

λmax(I − ηD̃(1)(t)Λ
2
(1)) ≤ 1− ηλmin(D̃(1)(t))λmin(Λ2

(1)) < 1.

The last inequality is true as 1) λmin(D̃(1)(t)) > 0 due to the positive definite-

ness of the matrix D̃(t), and 2) λmin(Λ2
(1)) > 0 as it considers only the in-span

component (i.e. the top-left R × R sub-matrix of Λ). On the other hand, we

have λmin(I−ηD̃(1)(t)Λ
2
(1)) ≥ 1−ηλmax(D̃(1)(t))λmax(Λ

2
(1)). Therefore, we ob-

tain λmin(I−ηD̃(1)(t)Λ
2
(1)) > −1 for any 0 < η < 2/(λmax(D̃(1)(t))λmax(Λ

2
(1))).

As D̃(1)(t) is a principal sub-matrix of D̃(t) for each t ≥ 0, we have

from Cauchy Interlacing Theorem λmax(D̃(1)(t)) ≤ λmax(D̃(t)) = λmax(D(t)).

The last equality is due to Proposition 3.4.1. The characterization of the fixed

point follows the same argument as Proposition 3.4.3.

To prove the second part, we further simplify the out-of-span compo-

nent using exchange of summation (for finite T). Here, we use the convention

140

A(t1, t2) = I for any t1 < t2.

w̃(2)(T)−
(
B(T−1, 0)w̃(1)(0) + w̃(2)(0)

)
=

T−1∑
i=0

η
(
D̃(2)(i)− ηD̃(2)(i+ 1)Λ2

(1)D̃(1)(i)−

η
T−1∑
j=i+2

D̃(2)(i)Λ
2
(1)A(j−1, i+ 1)D̃(1)(i)

)
Λ2

(1)(w
∗
(1) + Λ−1

(1)ζ(1)).

=

(
T−1∑
i=0

ηD̃(2)(i)− η2

T−1∑
i=0

T−1∑
j=i+1

D̃(2)(j)Λ
2
(1)A(j−1, i+ 1)D̃(1)(i)

)
Λ2

(1)(w
∗
(1) + Λ−1

(1)ζ(1)).

=

(
T−1∑
i=0

ηD̃(2)(i)

(
I − ηΛ2

(1)

i−1∑
j=0

A(i−1, j + 1)D̃(1)(j)

))
Λ2

(1)(w
∗
(1) + Λ−1

(1)ζ(1)),

=

(
T−1∑
i=0

ηD̃(2)(i)
(
Λ2

(1)(w
∗
(1) + Λ−1

(1)ζ(1))−Λ2
(1)w̃(1)(i) + Λ2

(1)A(i−1, 0)w̃1(0)
))

,

=
T−1∑
i=0

ηD̃(2)(i)Λ
2
(1)

(
(w∗(1) + Λ−1

(1)ζ(1))− w̃(1)(i)
)

+
T−1∑
i=0

ηD̃(2)(i)Λ
2
(1)A(i−1, 0)w̃1(0).

Therefore, we have

‖w̃(2)(T)− w̃(2)(0)‖2

≤
T−1∑
i=0

ηD̃(2)(i)Λ
2
(1)

(
(w∗(1) + Λ−1

(1)ζ(1))− w̃(1)(i)
)

+

(
B(T−1, 0) +

T−1∑
i=0

ηD̃(2)(i)Λ
2
(1)A(i−1, 0)

)
w̃1(0)

=
T−1∑
i=0

ηD̃(2)(i)Λ
2
(1)

(
(w∗(1) + Λ−1

(1)ζ(1))− w̃(1)(i)
)
− ηD̃(2)(0)Λ2

(1)w̃1(0)

We have |λ|max = supt |λmax(I − η ˜D1(t)Λ2
(1))| < 1 due to appropriate

choice of η. Also, by assumption of the theorem we have for some α ≥ 0,

141

β ≥ 0, α + β > 1, for some universal constants 0 < cconv, cλ < ∞, and for all

t ≥ 0:

(i) the out-of-span pre-conditioner matrix decaying as O(1/tα) for some

α ≥ 0, i.e. |λmax(D̃(2)(i))| = cλ
(t+1)α

, and

(ii) the convergence rate of the in-span component is O(1/tβ) with

iteration t for some β > 0, i.e. ‖(w∗(1) + Λ−1
(1)ζ(1))− w̃(1)(i)‖2 ≤ cconv

(t+1)β
.

For the first term we have,

‖
T−1∑
i=0

ηD̃(2)(i)Λ
2
(1)

(
(w∗(1) + Λ−1

(1)ζ(1))− w̃(1)(i)
)
‖2

≤ cλ

T−1∑
i=0

λmax(D̃(2)(i))‖(w∗(1) + Λ−1
(1)ζ(1))− w̃(1)(i)‖2

≤ cλcconv

T−1∑
i=1

1
(i+1)(α+β)

≤ cλcconv
α+β−1

(
1− 1

(i+1)(α+β−1)

)
.

Therefore, the first term saturates to a value at most cλcconv
α+β−1

.

For the second term we have,

‖ηD̃(2)(0)Λ2
(1)w̃1(0)‖2 ≤ ηλmax(D̃(2)(0))λ2

max(Λ(1))‖w̃1(0)‖2

B.9 Proof of Proposition B.9.1

Proposition B.9.1. The following pre-conditioner matrices have D̃(2)(t) = 0.

1. D(t) = I, i.e. gradient descent,

2. D(t) = (XTX + εI)−1 for all t ≥ 0.

142

We have (XTX + εI)−1 =
∑R

r=1(λ2
r + ε)−1vrv

T
r +

∑d
r=R+1 ε

−1vrv
T
r .

Further, I =
∑d

r=1 bsvrv
T
r . So the proposition is true.

B.10 Proof of Lemma 3.5.1

Proposition B.10.1. Suppose X>y has no zero components. Define D =

diag(|X>y|3) and assume there exists a scalar c such thatXD−1sign(X>y) =

cy. Then, when initialized at 0, the AdaGrad variant in (3.9) converges to the

unique solution w ∝D−1sign(X>y).

We will prove this using induction. Let Q = diag(|XTy|) We will show

that

wk = λkQ
−1sign(XTy)

for some λk. w0 = 0 is satsified for λ0 = 0 and so the base case is trivially

true.

gk = XT (Xwk − y)

= λkX
TXQ−1sign(XTy)−XTy

= (λkc− 1)XTy

where the last inequality follows from wk = λkQ
−1sign(XTy).3

Hk = diag(
n∑
s=1

gs · gs) = νkdiag(|XTy|2) = νkQ
2

143

wk+1 = wk − αkH−1
k XT (Xwk − y)

= wk − αkH−1
k XTXwk + αkH

−1
k XTy

= λkQ
−1sign(XTy)− λkαkH−1

k XTXQ−1XTy + αkH
−1
k XTy

= λkQ
−1sign(XTy)− λkαkcH−1

k XTy + αkH
−1
k XTy

=

(
λk −

λkαkc

νk
+
αk
νk

)
Q−1sign(XTy)

= λk+1Q
−1sign(XTy)

B.11 More details and experiments for the counter-
example

The simulation is completed as follows: For each setting (n, p, J), we

generate 100 different instances for (X, y), and for each instance we compute

the solutions from gradient descent, AdaGrad variant and Adam (RMSprop

is included in the Appendix) and the minimum norm solution wmn. In the

appendix, we have the above table with the Adagrad variant that normalizes

the final solution ŵ (Table ??) before calculating the distance w.r.t. the mini-

mum norm solution: we observed that this step did not improve or worsen the

performance, compared to the unnormalized solution. This further indicates

that there is an infinite collection of solutions –with different magnitudes– that

lead to better performance than plain gradient descent; thus our findings are

not a pathological example where adaptive methods work better.

We record ‖ŵ−wmn‖2, where ŵ represents the corresponding solutions

obtained by the algorithms in the comparison list. For each (X, y) instance,

144

we further generate {ytest
i , xtest

i }100
i=1, and we evaluate the performance of both

models on predicting ytest
i , ∀i.

Table 3.4 shows that gradient descent converges to the minimum norm

solution, in contrast to the adaptive methods. This justifies the fact that the

adaptive gradient methods (including the proposed adagrad variant) converge

to a different solution than the minimum norm solution. Nevertheless, the ac-

curacy on unseen data is higher in the adaptive methods (both our proposed

AdaGrad variant and in most instances, Adam), than the plain gradient de-

scent, when ` is small: the adaptive method successfully identifies the correct

class, while gradient descent only predicts one class (the positive class; this

is justified by the fact that the accuracy obtained is approximately close to

p, as n increases). We first provide the same table in Table 3.4 but with

unnormalized values for distances with respect to Adagrad variant.

Here, we provide further results on the counterexample in Subsubsec-

tion 3.5.1.1. Tables ?? and B.1 contains results for J = 10: the purpose of

these tables is to show that even if we change the memory use footprint of

the AdaGrad variant—by storing fewer or more gradients to compute Dk in

(3.9)—the results are the same: the AdaGrad variant consistently converges

to a solution different than the minimum norm solution, while being more

accurate than the latter for small values of ` (i.e., smaller margin between the

two classes).

Plain gradient descent methods provably need to rely on the first ele-

145

GD ADAVAR ADAM

n = 10

` = 1/32
Acc. (%) 63 100 91
‖ŵ − wmn‖2 1.015 · 10−16 0.9911 0.1007

` = 1/16
Acc. (%) 53 100 87
‖ŵ − wmn‖2 1.7401 · 10−16 0.9263 0.0864

` = 1/8
Acc. (%) 58 99 84
‖ŵ − wmn‖2 4.08 · 10−16 0.8179 0.0764

n = 50

` = 1/32
Acc. (%) 77 100 88
‖ŵ − wmn‖2 4.729 · 10−15 0.8893 0.0271

` = 1/16
Acc. (%) 80 100 89
‖ŵ − wmn‖2 6.9197 · 10−15 0.7929 0.06281

` = 1/8
Acc. (%) 91 100 89
‖ŵ − wmn‖2 9.7170 · 10−15 0.6639 0.1767

n = 100

` = 1/32
Acc. (%) 85 100 95
‖ŵ − wmn‖2 4.975 · 10−9 0.8463 0.0344

` = 1/16
Acc. (%) 83 100 76
‖ŵ − wmn‖2 2.5420 · 10−9 0.7217 0.1020

` = 1/8
Acc. (%) 100 100 90
‖ŵ − wmn‖2 1.5572 · 10−11 0.6289 0.3306

Table B.1: Prediction accuracy and distances from the minimum norm solution for
plain gradient descent and adaptive gradient descent methods. We set p = 7/8 and
J = 10, as in the main text. The adaptive method uses Dk according to (3.9). The
distances shown are median values out of 100 different realizations for each setting;
the accuracies are obtained by testing 104 predictions on unseen data.

146

ments to decide; using the same rule for adaptive methods1. The remaining

subsection considers the case where we decide based on the y = sign(x>w)

rule, where w is the complete learned model. As we show empirically, more

often than not adaptive methods outperform plain gradient methods.

Observing the performance of various optimization techniques for dif-

ferent values of n, p and `, we observed that the best performances are obtained

when the dataset is highly imbalanced irrespective of the optimization algo-

rithm chosen. When the data is (almost) balanced, it is difficult to comment

on how the performance of these algorithms is affected by variations in the

levels ` and probability p.

B.12 Deep Learning

In this section, we will extend the experiments to over-parameterized

and under-parameterized neural networks without regularization. We begin

with a detailed description of the datasets and the architectures we use along

with comprehensive set of experiments with hyperparameter tuning.

MNIST dataset and the M1 architecture. Each experiment for M1 is

simulated over 50 epochs and 10 runs for both under- and over-parameterized

settings. Both the MNIST architectures consisted of two convolutional layers

1We note that using only the three elements in adaptive methods is not backed up by
theory since it assumes that the training and test datasets have no overlap. We include this
in comparison for completeness.

147

Name Network type Dataset

M1-UP Shallow CNN + FFN MNIST
M1-OP Shallow CNN + FFN MNIST
C1-UP Shallow CNN + FFN CIFAR-10
C1-OP ResNet18 CIFAR-10
C2-OP PreActResNet18 CIFAR-100
C3-OP MobileNet CIFAR-100
C4-OP MobileNetV2 CIFAR-100
C5-OP GoogleNet CIFAR-100

Table B.2: Summary of the datasets and the architectures used for experiments.
CNN stands for convolutional neural network, FF stands for feed forward network.
More details are given in the main text.

(the second one with dropouts [79]) followed by two fully connected layers. The

primary difference between the M1-OP (∼ 73K parameters) and M1-UP (∼

21K parameters) architectures was the number of channels in the convolutional

networks and # of nodes in the last fully connected hidden layer.

Figure 3.3, left two columns, reports the results over 10 Monte-Carlo

realizations. Top row corresponds to the M1-UP case; bottom row to the M1-

OP case. We plot both training errors and the accuracy results on unseen

data. For the M1-UP case, despite the grid search, observe that AdaGrad

(and its variant) do not perform as well as the rest of the algorithms. Never-

theless, adaptive methods (such as Adam and RMSProp) perform similarly to

simple SGD variants, supporting our conjecture that each algorithm requires

a different configuration, but still can converge to a good local point; also

that adaptive methods require the same (if not more) tuning. For the M1-OP

case, SGD momentum performs less favorably compared to plain SGD, and

148

we conjecture that this is due to non-optimal tuning. In this case, all adaptive

methods perform similarly to SGD.

CIFAR10 dataset and the C1 architecture. For C1, C1-UP is trained

over 350 epochs, while C1-OP was trained over 200 epochs. The under-

parameterized setting is on-purpose tweaked to ensure that we have fewer pa-

rameters than examples (∼ 43K parameters), and slightly deviates from [158];

our generalization guarantees (∼ 76%) are in conjunction with the attained

test accuracy levels. Similarly, for the C1-OP case, we implement a Resnet

[80] + dropout architecture (∼ 0.25 million parameters) Adam and RMSProp

achieves the best performance than their non-adaptive counterparts for both

the under-parameterized and over-parameterized settings.

Figure 3.3, right panel, follows the same pattern with the MNIST data;

it reports the results over 10 Monte-Carlo realizations. Again, we observe

that AdaGrad methods do not perform as well as the rest of the algorithms.

Nevertheless, adaptive methods (such as Adam and RMSProp) perform simi-

larly to simple SGD variants. Further experiments on CIFAR-100 for different

architecture are provided in the Appendix.

CIFAR100 and other deep architectures (C{2-5}-OP). In this ex-

periment, we focus only on the over-parameterized case: DNNs are usually

designed over-parameterized in practice, with ever growing number of layers,

and, eventually, a larger number of parameters [81]. We again completed

149

10 runs for each of the set up we considered. C2-OP corresponds to Pre-

ActResNet18 from [5], C3-OP corresponds to MobileNet from [6], C4-OP is

MobileNetV2 from [7], and C5-OP is GoogleNet from [82]. The results are

depicted in Figure 3.4. After a similar hyper-parameter tuning phase, we se-

lected the best choices among the parameters tested. The results show no

clear winner once again, which overall support our claims: the superiority de-

pends on the problem/data at hand; also, all algorithms require fine tuning to

achieve their best performance. We note that a more comprehensive reasoning

requires multiple runs for each network, as other hyper-parameters (such as

initialization) might play significant role in closing the gap between different

algorithms.

An important observation of Figure 3.4 comes from the bottom row

of the panel. There, we plot the Euclidean norm ‖ · ‖2 of all the trainable

parameters of the corresponding neural network. While such a norm could be

considered arbitrary (e.g., someone could argue other types of norms to make

more sense, like the spectral norm of layer), we use the Euclidean norm as i)i)i)

it follows the narrative of algorithms in linear regression, where plain gradient

descent algorithms choose minimum `2-norm solutions, and ii)ii)ii) there is recent

work that purposely regularizes training algorithms towards minimum norm

solutions [83].

Our findings support our claims: in particular, for the case of MobileNet

and MobileNetV2, Adam, an adaptive method, converges to a solution that

has at least as good generalization as plain gradient methods, while having 2×

150

larger `2-norm weights. However, this may not always be the trend: in Figure

3.4, left panel, the plain gradient descent models for the PreActResNet18

architecture [5] show slightly better performance, while preserving low weight

norm. The same holds also for the case of GoogleNet; see Figure 3.4, right

panel.

B.12.0.1 Hyperparameter tuning

Both for adaptive and non-adaptive methods, the step size and mo-

mentum parameters are key for favorable performance, as also concluded in

[71]. Default values were used for the remaining parameters. The step size was

tuned over an exponentially-spaced set {0.0001, 0.001, 0.01, 0.1, 1}, while the

momentum parameter was tuned over the values of {0, 0.1, 0.25, 0.5, 0.75, 0.9}.

We observed that step sizes and momentum values smaller/bigger than these

sets gave worse results. Yet, we note that a better step size could be found be-

tween the values of the exponentially-spaced set. The decay models were similar

to the ones used in [71]: no decay and fixed decay. We used fixed decay in the

over-parameterized cases, using the StepLR implementation in pytorch. We

experimented with both the decay rate and the decay step in order to ensure

fair comparisons with results in [71].

B.12.0.2 Results

Our main observation is that, both in under- or over-parameterized

cases, adaptive and non-adaptive methods converge to solutions with similar

151

testing accuracy: the superiority of simple or adaptive methods depends on the

problem/data at hand. Further, as already pointed in [71], adaptive methods

often require similar parameter tuning. Most of the experiments involve using

readily available code from GitHub repositories. Since increasing/decreasing

batch-size affects the convergence [84], all the experiments were simulated on

identical batch-sizes. Finally, our goal is to show performance results in the

purest algorithmic setups: often, our tests did not achieve state of the art

performance.

Overall, despite not necessarily converging to the same solution as gra-

dient descent, adaptive methods generalize as well as their non-adaptive coun-

terparts. In M1 and C1-UP settings, we compute standard deviations from

all Monte Carlo instances, and plot them with the learning curves (shown

in shaded colors is the one-apart standard deviation plots; best illustrated in

electronic form). For the cases of C{1-5}-OP, we also show the weight norms

of the solutions (as in Euclidean distance ‖ · ‖2 of all the trainable weights in

the network). Such measure has been in used in practice [83], as a regulariza-

tion to find minimum Euclidean norm solutions, inspired by the results from

support vector machines [45].

We observe that adaptive methods (such as Adam and RMSProp) per-

form similarly to simple SGD variants, supporting our conjecture that each

algorithm requires a different configuration, but still can converge to a good

local point; also that adaptive methods require the same (if not more) tun-

ing. Again, we observe that AdaGrad methods do not perform as well as the

152

rest of the algorithms. Nevertheless, adaptive methods (such as Adam and

RMSProp) perform similarly to simple SGD variants. Further experiments on

CIFAR-100 for different architecture are provided in the Appendix.

153

Appendix C

Appendix

C.1 Additional Results for Section 3

The following lemma provides upper bounds on the expected gradient

of the worst-possible MKL-SGD solution that lies in a ball around w∗. Simul-

taneously satisfying the following bound with the one in Lemma 4.3.4 may lead

to an infeasible set of ε and N ′. And thus we use Lemma 4.3.5 in conjunction

with 4.3.4.

Lemma C.1.1. Let us assume that MKL-SGD converges to w̄MKL. For any

w̄MKL ∈ Br(w∗) that satisfies assumptions N1, N2, A4 and A5, there exists

N ′ ≥ N and ε′ ≤ ε such that,

‖
∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL)‖

≤ min
{

(1− εk)L‖w̄MKL −w∗‖, εkG(w)
}

The proof for lemma 2 can be found in the Appendix Section C.2.7

154

C.2 Proofs and supporting lemmas

C.2.1 Proof of Lemma 4.3.1

Proof. F̃ (w) =
∑

i pmi(w)(w). Let us fix a w such that pi = pi(w). We know

that for any pi,
∑

i pifi(w) is strongly convex in w with parameter λw. This

implies

∇F̃ (w)>(w −w∗) ≥ λ‖w −w∗‖2

C.2.2 Proof of Theorem 4.3.2

Proof. By the definition of the noiseless framework, w∗ is the unique optimum

of F (w) and lies in the optimal set of each fi(.). We will prove this theorem by

contradiction. Assume there exists some ŵ 6= w∗ that also satisfies optimum

of ∇F̃ (ŵ) = 0. At ŵ, we have 0 =< ∇F̃ (ŵ), ŵ −w∗ >= λ‖ŵ −w∗‖2. This

implies ŵ = w∗.

C.2.3 Proof of Lemma 4.3.3

Let w̄ be a stationary point of MKL-SGD . Now, we analyze the loss

landscape on the line joining w∗ and wC where wC = Cw̄ is any arbitrary

point 1 in the landscape at a distance as far as the farthest outlier from w∗.

Let C be a very large number.

1Note that we just needwC for the purpose of landscape analysis and it is not a parameter
of the algorithm

155

The loss functions and w̃ are redefined as follows:

fi(w) =

{
li‖w −w∗‖2 ∀ i ∈ O
li‖w −wbi‖2 ∀ i /∈ O,

w̃ :=

w
∣∣∣∣ w = min

α∈(0,1)
αw∗ + (1− α)wC ,

flm(w) = flM (w)

where |O| = b such that n = g + b. Let lm = mini/∈O li and Let

lM = maxi∈O li and lmax = mini∈[n] li, lmin = mini∈[n] li. Let us define κ =

lmax
lmin

≥ lM
lm

.

Now at w̄, we have ∇F̃ (w̄) = 0. Let us assume that the outliers are

chosen in such a way that atwC , all the outliers have the lowest loss. As stated

in the previous lemma, the results hold irrespective of that. This implies:

∑
i/∈O

pi(wC)∇fi(w̄) = −
∑
j∈O

pj(wC)∇fj(w̄)∑
i/∈O

pi(wC)li(w̄ −w∗) = −
∑
j∈O

pj(wC)lj(w̄ −wbj)

w̄ =

∑
i/∈O pi(wC)liw

∗ +
∑

j∈O pj(wC)ljwbj∑
i/∈O pi(wC)li +

∑
j∈O pj(wC)lj

By triangle inequality, ‖w̄ −w∗‖ ≤
∑

j∈O pj(wC)lj‖wbj −w∗‖∑
i/∈O pi(wC)li +

∑
j∈O pj(wC)lj

Without loss of generality assume that the outliers are ordered as fol-

lows: ‖wb1 −w∗‖ ≤ ‖wb2 −w∗‖ ≤ · · · ≤ ‖wb|O| −w∗‖.

Now w̃ be some point of intersection of function in the set of clean

samples and a function in the set of outliers tow∗. Let θj be the angle between

156

the line connecting wbj and w∗ to the line connecting wC to w∗. For any two

curves with Lipschitz constants li and lj, the halfspaces passing through the

weighted mean are also the region where both functions have equal values.

Thus,

w̃ =

√
liw
∗ +

√
ljwbj√

li +
√
lj

.

‖w̃ −w∗‖ =

√
lj‖wbj −w∗‖√
lj +
√
li

Let γ denote the following ratio:

γ =
minj∈O ‖wbj −w∗‖
maxj∈O ‖wbj −w∗‖

=
2δ

δmax

Now, we want:∑
j∈O pj(wC)lj‖wbj −w∗‖∑

i/∈O pi(wC)li +
∑

j∈O pj(wC)lj
≤

√
ltj√

ltj +
√
lg

‖wbj −w∗‖
cos θj

=
‖w̃ −w∗‖

cos θj∑
j∈O pj(wC)lj‖wbj −w∗‖∑

i/∈O pi(wC)li +
∑

j∈O pj(wC)lj
≤

∑
j∈O pj(wC)lj‖wb|O| −w∗‖∑

i/∈O pi(wC)li +
∑

j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

‖wbj −w∗‖
cos θj

⇒
∑

j∈O pj(wC)lj∑
i/∈O pi(wC)li +

∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

‖wbj −w∗‖
cos θj‖wb|O| −w∗‖∑

j∈O pj(wC)lj∑
i/∈O pi(wC)li +

∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

γ

cos θj

157

For simplicity, Γ =
γ

cos θj
, then we have:

∑
j∈O pj(wC)lj∑

i/∈O pi(wC)li +
∑

j∈O pj(wC)lj
≤

√
ltj√

ltj +
√
lg

Γ

1

Γ

(√
lg√
ltj

+ 1

)
− 1 ≤ (1− p̂)lm

p̂lM
≤
∑

i/∈O pi(wC)li∑
j∈O pj(wC)lj

p̂

1− p̂ ≤
lm
lM

1
Γ
− 1 + 1

Γ

√
lg√
ltj

p̂ ≤ 1

1 + κ
(

1
Γ
− 1 +

√
κ

Γ

)
≤ 1

1 + lM
lm

(
1
Γ
− 1 + 1

Γ

√
lg√
ltj

)

Replacing Γ =
γ

cos θj
, and let q =

cos θj
γ
− 1 +

cos θj
√
κ

γ
the condition to

guarantee that bad local minima do no exist is p̂ ≤ 1

1 + κq
and q > 0.

Note: In the vector case, for example there exists a fine tradeoff be-

tween how large θj can be and if for large θj, the loss corresponding to the

outlier will be one of the lowest. Understanding that tradeoff is beyond the

scope of this paper.

158

C.2.4 Proof of Lemma 4.3.4

Proof. At w̄SGD, ∇F̃ (w̄SGD) = 0. Then,

∑
i/∈O

∇fi(w̄SGD) = −
∑
i∈O

∇fi(w̄SGD)

‖
∑
i/∈O

∇fi(w̄SGD)‖ = ‖
∑
i∈O

∇fi(w̄SGD)‖

‖
∑
i/∈O

∇fi(w̄SGD)‖ ≤
∑
i

‖∇fi(w̄SGD)‖

≤
∑
i

L‖w̄SGD −w∗‖

= (1− ε)nL‖w̄SGD −w∗‖ (C.1)

‖
∑
i∈O

∇fi(w̄SGD)‖ ≤
∑
i∈O

‖∇fi(w̄SGD)‖

≤
∑
i∈O

G(w̄SGD)

≤ εG(w̄SGD) (C.2)

‖
∑
i∈O

∇fi(w̄SGD)‖ = min (εnG(w̄SGD), (1− ε)nL‖w̄SGD −w∗‖)

159

C.2.5 Proof of Lemma 4.3.5

Proof. At w̄MKL, ∇F̃ (w̄MKL) = 0. This implies

∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL) = −
∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)

Multiplying both sides by (w̄MKL −w∗)∑
i/∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ >

= −
∑
i∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ >

< ∇F̃G(w̄MKL), w̄MKL −w∗ >

= −
∑
i∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ >

Lower bounding the LHS using Lemma 4.3.1 and m = m(w̄MKL)2 ,

m‖w̄MKL −w∗‖2 ≤ ‖ < ∇F̃G(w̄MKL), w̄MKL −w∗ > ‖ = LHS

RHS ≤ ‖ −
∑
i∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ > ‖

m‖w̄MKL −w∗‖2 ≤
∑
i∈O

pi(w̄MKL)‖ < ∇fi(w̄MKL), w̄MKL −w∗ > ‖

m‖w̄MKL −w∗‖2 ≤
∑
i∈O

pi(w̄MKL)‖∇fi(w̄MKL)‖‖w̄MKL −w∗‖

m‖w̄MKL −w∗‖2 ≤
∑
i∈O

pi(w̄MKL)‖w̄MKL −w∗‖G(w̄SGD)

m‖w̄MKL −w∗‖ ≤ εkG(w̄SGD)

160

C.2.6 Proof of Theorem 4.3.6

Proof. There exists an ε′ ≤ ε such that in Lemma 4.3.4, we have

(1− ε)L‖w̄SGD −w∗‖ ≥ εG(w̄SGD)

Combining above equation with Lemma 4.3.5, we get

(1− ε)L‖w̄SGD −w∗‖ ≥ εG(w̄SGD) ≥ ε
λ

ε2
‖w̄MKL −w∗‖

⇒ ‖w̄MKL −w∗‖ ≤
(1− ε)Lεk−1

λ
‖w̄SGD −w∗‖

Picking a large enough k, we can guarantee that
(1− ε)Lεk−1

λ
< 1

C.2.7 Proof of Lemma C.1.1

Proof. From the definition of good samples in the noiseless setting, we know

that fi(w
∗) = 0 ∀ i /∈ O. Similarly, for samples belonging to the outlier set,

fi(w
∗) > 0 ∀ i ∈ O. There exists a ball around the optimum of radius r such

that fi(w) ≤ fj(w) ∀i /∈ O, j ∈ O,w ∈ Or(w
∗). Assume that N ′ ≥ N and

ε′ ≤ ε, such that ‖w̄MKL −w∗‖ ≤ r.

161

At w̄MKL, ∇F̃ (w̄MKL) = 0. This implies

∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL) = −
∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)

‖
∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL)‖ = ‖
∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)‖

‖
∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL)‖ ≤
∑
i

pi(w̄MKL)‖∇fi(w̄MKL)‖

≤
∑
i

pi(w̄MKL)L‖w̄MKL −w∗‖

= (1− εk)L‖w̄MKL −w∗‖ (C.3)

(C.4)

‖
∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)‖ ≤
∑
i∈O

pi(w̄MKL)‖∇fi(w̄MKL)‖

≤
∑
i∈O

pi(w̄MKL)G(w̄MKL)

≤ εkG(w̄MKL) (C.5)

C.3 Additional results and proofs for Section 4.4

Consider the sample size n with bad set(outlier) O and good set G such

that |G| = n− |O|. Define

Fgood(w) =
1

|G|
∑
i∈G

fi(w).

We assume:

(1) (Stationary point) Assume w∗ is the solution for the average loss function

162

of good sample such that

∇Fgood(w∗) = 0 but ∇fi(w∗) 6= 0,∀i

(2) (Strong Convexity) Fgood(w) is strongly convex with parameters λgood i.e.,

〈∇Fgood(w)−∇Fgood(w∗),w −w∗〉 ≥ λgood‖w −w∗‖2

(3) (Gradient Lipschitz) fi(w) has Li Liptchitz gradient i.e.,

‖∇fi(w)−∇fi(w∗)‖ ≤ Li‖w −w∗‖

Theorem C.3.1. (Distance to w∗)

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2 +Rt

(C.6)

where

Rt =− 2ηt(1− ηt sup
i
Li))

∑
i∈G

(
pi(wt)−

1

n

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

− 2ηt
∑
i∈G

pi(wt)〈wt −w∗,∇fi(w∗)〉+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2

+ η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2 + 2ηt
∑
i∈O

pi(wt) (fi(w
∗)− fi(wt))

Proof. Observe first that for each component function i.e. ,

〈w − v,∇fi(w)−∇fi(v)〉 ≥ 1

Li
‖fi(w)− fi(v)‖2

For detailed proof, see Lemma A.1 in [90].

163

For each individual component function fi(w), we have

‖wt+1 −w∗‖2 =‖wt −w∗‖2 + η2
t ‖∇fi(wt)‖2 − 2ηt〈wt −w∗,∇fi(wt)〉

≤‖wt −w∗‖2 + 2η2
t ‖∇fi(wt)−∇fi(w∗)‖2 + 2η2

t ‖∇fi(w∗)‖2

≤‖wt −w∗‖2 + 2η2
tLi〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

+ 2η2
t ‖∇fi(w∗)‖2 − 2ηt〈wt −w∗,∇fi(wt)〉

=‖wt −w∗‖2

− 2ηt(1− ηt sup
i
Li)〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

+ 2η2
t ‖∇fi(w∗)‖2 − 2ηt〈wt −w∗,∇fi(w∗)〉

We next take an expectation with respect to the choice of i conditional on wt

Ei
[
‖wt+1 −w∗‖2|wt

]
≤ ‖wt −w∗‖2 − 2ηt(1− ηt sup

i
Li)

〈
wt −w∗,

∑
i∈G

pi(wt) (∇fi(wt)−∇fi(w∗))
〉

︸ ︷︷ ︸
Term1

− 2ηt〈wt −w∗,
∑
i∈G

pi(wt)∇fi(w∗)〉+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2

+ η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2 + 2ηt 〈w∗ −wt,
∑
i∈O

pi(wt)∇fi(wt)〉︸ ︷︷ ︸
Term2

(C.7)

We have Term1 as follows:

Term1 =
|G|
n

〈
wt −w∗,

∑
i∈G

pi(wt)

|G|/n (∇fi(wt)−∇fi(w∗))
〉

=
|G|
n
〈wt −w∗,∇Fgood(wt)−∇Fgood(w∗)〉

+
|G|
n

∑
i∈G

(
pi(wt)

|G|/n −
1

|G|

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

≥λgood
|G|
n
‖wt −w∗‖2 +

∑
i∈G

(
pi(wt)−

1

n

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

164

For Term2 we apply use the property of the convex function 〈∇fi(v),w − v〉 ≤

fi(w)− fi(v)

〈∇fi(wt),w∗ −wt〉 ≤ fi(w
∗)− fi(wt)

Putting the terms back to (C.7), we have for ηt ≤ 1/(supi Li)

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2 +Rt

(C.8)

where

Rt =− 2ηt(1− ηt sup
i
Li))

∑
i∈G

(
pi(wt)−

1

n

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

− 2ηt
∑
i∈G

pi(wt)〈wt −w∗,∇fi(w∗)〉

+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2 + η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2

+ 2ηt
∑
i∈O

pi(wt) (fi(w
∗)− fi(wt))

We have the following corollary that for noiseless setting, if we can

have some good initialization, MKL-SGD is always better than SGD even the

corrupted data is greater than half. For noisy setting, we can also perform

better than SGD with one more condition: the noise is not large than the

distance ‖∆t‖2. This condition is not mild in the sense that ‖wt − w∗‖2 is

always greater than ‖w̄SGD −w∗‖2 for SGD algorithm and ‖w̄MKL −w∗‖2

for MKL-SGD.

165

Corollary C.3.2. Suppose we have |G| ≤ n
2
. At iteration t for ηt ≤ 1

supi Li
,

the parameter wt satisfies supi∈G fi(wt) ≤ infj∈O fj(wt). Moreover, assume
the noise level at optimal w∗ satisfies

either

‖∇fi(w∗)‖ ≤
λgood(1− ηt supi Li)/n

1 +
√

1 + ηt(1− ηt supi Li)λgood/n
‖wt −w∗‖, for i ∈ G (C.9)

or∑
i∈G
‖∇fi(w∗)‖2 ≤

(
λgood(1− ηt supi Li)|G|/n√

n+
√√

n+ ηt(1− ηt supi Li)λgood|G|/n

)2

‖wt −w∗‖2.

(C.10)

Using the same setup, the vanilla SGD and MKL-SGD (K=2) algorithms

yield respectively

SGD

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2

+R
(SGD)
t

MKL-2

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2

+R
(MKL2)
t

where

R
(MKL2)
t ≤ R

(SGD)
t .

Proof. We use Theorem C.3.1 to analyse the term Rt for vanilla SGD and

MKL-SGD(K = 2) respectively.

166

For vanilla SGD, we have pi(wt) = 1
n

and
∑

i∈G∇fi(w∗) = 0, which

results in

R
(SGD)
t =

2η2
t

n

∑
i∈G

‖∇fi(w∗)‖2 +
η2
t

n

∑
i∈O

‖∇fi(wt)‖2 +
2ηt
n

∑
i∈O

(fi(w
∗)− fi(wt))

note that MKL-SGD for K = 2 have

pmi(w)(w) =
2(n− i)
n(n− 1)

(C.11)

where m1(w),m2(w),m3(w), . . .mn(w) are the indices of data samples for

some w:

fm1(w)(w) ≤ fm2(w)(w) ≤ · · · ≤ fmn(w)(w)

Suppose the iteration wt satisfies that fi(wt) < fj(wt) for i ∈ G, j ∈ O. For

|G| ≤ n
2
, we have for

R
(MKL2)
t =− 2ηt(1− ηt sup

i
Li)

|G|∑
i=1

(n− 2i+ 1)

n(n− 1)
〈wt −w∗,∇fmi(wt)−∇fmi(w∗)〉

+ 2ηt

|G|∑
i=1

2(n− i)
n(n− 1)

(
〈w∗ −wt,∇fi(w∗)〉+ ηt‖∇fi(w∗)‖2

)
+ η2

t

n∑
i=|G|+1

2(n− i)
n(n− 1)

‖∇fi(wt)‖2 + 2ηt

n∑
i=|G|+1

2(n− i)
n(n− 1)

(fi(w
∗)− fi(wt))

≤− 2ηt(1− ηt sup
i
Li)
|G|λgood
n(n− 1)

‖wt −w∗‖2

+
4ηt
n

|G|∑
i=1

(
‖w∗ −wt‖‖∇fi(w∗)‖+ ηt‖∇fi(w∗)‖2

)
+

n∑
i=|G|+1

η2
t

n
‖∇fi(wt)‖2 +

n∑
i=|G|+1

2ηt
n

(fi(w
∗)− fi(wt))

167

We will have R
(MKL2)
t ≤ R

(SGD)
t if we can

(1− ηt sup
i
Li)
|G|λgood
(n− 1)

‖wt −w∗‖2 ≥
|G|∑
i=1

(
2‖w∗ −wt‖‖∇fi(w∗)‖+ ηt‖∇fi(w∗)‖2

)
.

(C.12)

Indeed, for the noise level ‖∇fi(w∗)‖2 satisfying (C.9) we have for i ∈ G,

(1− ηt sup
i
Li)

λgood
(n− 1)

‖wt −w∗‖2 ≥ 2‖w∗ −wt‖‖∇fi(w∗)‖+ ηt‖∇fi(w∗)‖2.

Summing up the terms in i ∈ G, we get (C.12). For the noise level ‖∇fi(w∗)‖2

satisfying (C.10) we have

(1− ηt sup
i
Li)

λgood|G|
(n− 1)

‖wt −w∗‖2 ≥

2‖w∗ −wt‖
√
n
∑
i∈G

‖∇fi(w∗)‖2 + ηt
∑
i∈G

‖∇fi(w∗)‖2

≥ 2‖w∗ −wt‖

∑
i∈G

‖∇fi(w∗)‖+ ηt
∑
i∈G

‖∇fi(w∗)‖2.

which results in (C.12).

C.4 More experimental results

C.4.1 Linear Regression

Here, we show that there exists a tradeoff for MKL-SGD between the

rate of convergence and robustness it provides against outliers. Larger the

k, more robust is the algorithm, but slower is the rate of convergence. The

algorithm outperforms median loss SGD and SGD. We also experimentd with

other order statistics and observed that for most general settings min-k loss

was the best to pick.

168

0 10000 20000 30000 40000 50000

Number of epochs

10−12

10−10

10−8

10−6

10−4

10−2

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.010

Min-k Loss SGD
SGD
Median Loss SGD

(a) k=2

0 10000 20000 30000 40000 50000

Number of epochs

10−12

10−10

10−8

10−6

10−4

10−2

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.010

Min-k Loss SGD
SGD
Median Loss SGD

(b) k=3

0 10000 20000 30000 40000 50000

Number of epochs

10−12

10−10

10−8

10−6

10−4

10−2

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.100

Min-k Loss SGD
SGD
Median Loss SGD

(c) k=5

Figure C.1: Comparing the performance of MKL-SGD , SGD and Median loss
SGD in the noiseless setting, d = 50.

169

0 10000 20000 30000 40000 50000

Number of epochs

10−3

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.200

Min-k Loss SGD
SGD
Median Loss SGD

(a) k=3

0 10000 20000 30000 40000 50000

Number of epochs

10−8

10−6

10−4

10−2

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.200

Min-k Loss SGD
SGD
Median Loss SGD

(b) k=5

0 10000 20000 30000 40000 50000

Number of epochs

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.200

Min-k Loss SGD
SGD
Median Loss SGD

(c) k=9

Figure C.2: Comparing the performance of MKL-SGD , SGD and Median loss
SGD in the noisy setting, d = 10, Noise variance=0.0001

170

0 2000 4000 6000 8000 10000

Number of epochs

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.100

Min-k Loss SGD
SGD
Median Loss SGD

(a) k=3

0 2000 4000 6000 8000 10000

Number of epochs

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.100

Min-k Loss SGD
SGD
Median Loss SGD

(b) k=5

Figure C.3: Comparing the performance of MKL-SGD , SGD and Median loss
SGD in the noiseless setting, d = 25, Noise variance=0.01

0 2000 4000 6000 8000 10000

Number of epochs

10−3

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.100

Min-k Loss SGD
SGD
Median Loss SGD

(a) k=3

0 2000 4000 6000 8000 10000

Number of epochs

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.100

Min-k Loss SGD
SGD
Median Loss SGD

(b) k=5

Figure C.4: Comparing the performance of MKL-SGD , SGD and Median loss
SGD in the noisy setting, d = 10, Noise variance=0.1

C.4.2 Deep Learning

Here, we show that in presence of outliers instead of tuning other hy-

perparameters like learning rate, tuning over k might lead to significant gains

in performances for deep neural networks.

171

0 50 100 150
Epochs

10−5

10−4

10−3

10−2

10−1

100

Lo
ss

Training loss

Min-2 Loss SGD
SGD

0 50 100 150
Epochs

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Test loss

Min-2 Loss SGD
SGD

0 50 100 150
Epochs

40

50

60

70

80

A
cc

ur
ac

y

Test Accuracy

Min-2 Loss SGD
SGD

Figure C.5: Comparing training loss, test loss and test accuracy of MKL-SGD
and SGD. Parameters: ε = 0.1, k = 2, b = 16. The training loss is lower for SGD
which means that SGD overfits to the noisy data. The lower test loss and higher
accuracy demonstrates the robustness MKL-SGD provides for corrupted data.

172

0 50 100 150
Epochs

10−5

10−4

10−3

10−2

10−1

100

Lo
ss

Training loss

Min-2 Loss SGD
SGD

0 50 100 150
Epochs

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Test loss

Min-2 Loss SGD
SGD

0 50 100 150
Epochs

35

40

45

50

55

60

65

70

A
cc

ur
ac

y

Test Accuracy

Min-2 Loss SGD
SGD

Figure C.6: Comparing training loss, test loss and test accuracy of MKL-SGD
and SGD. Parameters: ε = 0.3, k = 2, b = 16. The training loss is lower for SGD
which means that SGD overfits to the noisy data. The lower test loss and higher
accuracy demonstrates the robustness MKL-SGD provides for corrupted data.

173

Dataset MNIST with 2-layer CNN (Directed Noise)
Optimizer SGD MKL-SGD Oracle

εα 1.0 0.9 0.8 0.7 0.6 0.5 1.0
0.1 96.76 97.23 95.89 97.47 96.34 94.54 98.52
0.2 92.54 95.81 95.58 97.46 97.03 95.76 98.33
0.3 85.77 91.56 93.59 95.30 96.54 95.96 98.16
0.4 71.95 78.68 82.25 85.93 91.29 94.20 97.98

Table C.1: In this experiments, we train a standard 2 layer CNN on subsampled
MNIST (5000 training samples with labels corrupted using random label noise).
We train over 80 epochs using an initial learning rate of 0.05 with the decaying
schedule of factor 5 after every 30 epochs. The reported accuracy is based on the
true validation set. The results of the MNIST dataset are reported as the mean of
5 runs. For the MKL-SGD algorithm, we introduce a more practical variant that
evaluates k sample losses and picks a batch of size αk where k = 10.

Dataset MNIST with 2-layer CNN (Random Noise)
Optimizer SGD MKL-SGD Oracle

ε
α

1.0 0.9 0.8 0.7 0.6 0.5 1.0

0.1 96.91 97.9 98.06 97.59 96.49 94.43 98.44
0.2 93.94 95.5 96.16 97.02 97.04 96.25 98.18
0.3 87.14 90.71 91.60 92.97 94.54 95.36 97.8
0.4 71.83 74.31 76.6 78.30 77.58 80.86 97.16

Table C.2: In this experiments, we train a standard 2 layer CNN on subsampled
MNIST (5000 training samples with labels corrupted using random label noise).
We train over 80 epochs using an initial learning rate of 0.05 with the decaying
schedule of factor 5 after every 30 epochs. The reported accuracy is based on the
true validation set. The results of the MNIST dataset are reported as the mean of
5 runs. For the MKL-SGD algorithm, we introduce a more practical variant that
evaluates k sample losses and picks a batch of size αk where k = 10.

174

Dataset CIFAR-10 with Resnet-18 (Directed Noise)
Optimizer SGD MKL-SGD Oracle

ε
α

1.0 0.9 0.8 0.7 0.6 0.5 1.0

0.1 79.1 77.52 79.57 81.00 81.94 80.53 84.56
0.2 72.29 69.58 70.17 72.76 77.77 78.93 84.40
0.3 63.96 61.43 60.46 61.58 66.49 69.57 84.66
0.4 52.4 51.53 51.04 51.07 53.57 51.2 84.42

Table C.3: In this experiments, we train Resnet 18 on CIFAR-10 (50000 training
samples with labels corrupted using directed label noise). We train over 200 epochs
using an initial learning rate of 0.05 with the decaying schedule of factor 5 after every
90 epochs. The reported accuracy is based on the true validation set. The results
of the CIFAR-10 dataset are reported as the mean of 3 runs. For the MKL-SGD
algorithm, we introduce a more practical variant that evaluates k sample losses and
picks a batch of size αk where k = 16.

175

Appendix D

Balancing SGD

D.1 Proof of Proposition 5.4.2

Theorem D.1.1. Suppose the Loss function defined in (5.5). Assume that

the estimator ŵ close to stationary points satisfying for some finite b̂ ∀i,∃ε

such that

yix
>
i ŵ

(d) ≥ log

(
1

ε

)
and e−yi(x

>
i ŵ

(d)+b) < 1.

Then ∂L(w)
∂b
|[
]
w = ŵ = 0 implies

b ∝ 1

2
log

(∑
i∈S1 e

−yix>i ŵ
(d)∑

i∈S−1
e−yix

>
i ŵ

(d)

)
(D.1)

Proof. First, we look at the gradient

∂L(w)

∂b
=− 1

n

n∑
i=1

σ(yi
(
x>i w + b

)
)e−yi(x

>
i w+b)yi

=
1

n

(∑
i∈S0

−yie−yi(x>i w(d)+b)

1 + e−yi(x
>
i w

(d)+b)
+
∑
i∈S1

−yie−yi(x>i w(d)+b)

1 + e−yi(x
>
i w

(d)+b)

)
(D.2)

There exists a small ε for all i such that yix
>
i ŵ

(d) ≥ log
(

1
ε

)
and e−yi(x

>
i ŵ

(d)+b) <

176

1 for some b. Thus, we have the following Taylor expansion:

1

1 + e−yi(x
>
i ŵ

(d)+b)
= 1− e−yi(x>i ŵ(d)+b) +O

(
e−2yi(x

>
i ŵ

(d)+b)
)

= 1− e−yibO (ε)

= 1−O (ε) (D.3)

where the last equality we take into the account with the fact that b is a finite

constant. Plugging (D.3) into equation (D.2) yields

∂L(w)

∂b

∣∣∣∣
w=ŵ

=
1

n

∑
i∈S0

−yie−yi(x
>
i ŵ

(d)+b)
(
1− e−yibO (ε)

)
+

1

n

∑
i∈S1

−yie−yi(x
>
i ŵ

(d)+b)
(
1− e−yibO (ε)

)
=
eb

n

∑
i∈S0

e−yix
>
i ŵ

(d)

(1−O (ε))− e−b

n

∑
i∈S1

e−yix
>
i ŵ

(d)

(1−O (ε))

Solving ∂L(w)
∂b

∣∣∣∣
w=ŵ

= 0 gives

b ∝ 1

2
log

(∑
i∈S1 e

−yix>i ŵ
(d)∑

i∈S−1
e−yix

>
i ŵ

(d)

)
(D.4)

D.2 Proof of bias convergence relation for the toy ex-
ample

Now, let us examine what wt+1 looks like given some wt.

E [wt+1|wt] = wt − ηE [∇fi(wt)] (D.5)

177

The expected gradient for this toy example at wt = [at, bt]
> is given as:

E [∇fi(wt)] = −p1σ(−w>t p1) +
∑
i∈S−1

xiσ(w>t xi)

≈ −p1σ(−w>t p1) +

∫ 1

0

xiσ(w>t xi)∂xi[0] ... assuming small r

≈ −p1σ(−w>t p1) +

[
δ

(w)
t

δ
(b)
t

]

where δ
(w)
t = 1

at
log exp(at+bt)+1

exp(at)+1
and

δ
(b)
t = 1

a2t
(log at(exp(at + bt) + exp(2bt)) + Li2(− exp(at + bt))− Li2(− exp(bt)))

This leads us to two phases of running any SGD based algorithm on

separable data: i) Rapid correction in the direction of wt, ii) Increase in

the magnitude of wt. In general, equation (5.7) indicates that the frequent

occurrence of gradient updates from the majority class than the minority push

the separating hyper-plane further away from majority class. The farther the

separating hyper-plane from the majority class, the smaller (and less useful)

are the corresponding gradient updates from majority class. We know from

[117, 118] that the rate of convergence is quite slow in Phase 2. However, if

we restrict the subset associated with the denominator in equation (5.7), it is

possible to reduce this bias term even further which in turn will lead to faster

convergence.

Using the expected gradient from the toy example, we observe that

while it is easy to see that the bias can affect generalization, it also leads to

slow convergence. High value of bias, bt ensures that the δ
(w)
t can scale up-to

two times 1
at

causing the expected gradient to keep on getting biased until at

178

is not large enough. Thus in the initial phase, when at is small, bias can be

quite high. Only in the second phase when at increases in magnitude does the

bias becomes small. In this paper, we want our proposed algorithm to reach

Phase 2 with as little bias as possible, similar to the case when it would have

received equal distribution of both classes. Similar to

D.3 Convergence

Lemma D.3.1. (Stochastic PAUM in [114]) Consider the perceptron algo-

rithm (Algorithm 6) with the linear classifier

fi(w) = sign(〈w,xi〉) with ‖xi‖2 = 1

and so the ∇wfi(w) = −yixi. Suppose there exits w∗ ∈ Rd such that ‖w∗‖ = 1

and γ(w∗,S0,S1) ≥ Γ. Then the number of updates made by the PAUM is

bounded w.h.p. by

1

Γ2
+

2(1− r)τ−1 + 2rτ1

ηΓ2
(D.6)

Proof. Observe that

‖wt+1‖2 = ‖wt‖2 + 2ηyi〈wt, xi〉1i∈S0 + 2ηyi〈wt, xi〉1i∈S1 + η2‖xi‖2

E
[
‖wt+1‖2

]
≤ E

[
‖wt‖2

]
+ 2ητ−1E[1i∈S0] + 2ητ1E[1i∈S1] + η2‖xi‖2

= E
[
‖wt‖2

]
+ 2η(1− r)τ−1 + 2ηrτ1 + η2 take ‖xi‖2 = 1

(E[‖wt+1‖])2 ≤ E
[
‖wt+1‖2

]
≤ 2tη(1− r)τ−1 + 2ηrτ1 + η2t

179

Algorithm 6 Stochastic PAUM (the minority class y = 1)

1: Initialize w. Two margin parameters τ−1 and τ1

2: Given samples D = (xi, yi)
∞
i=1

3: for t = 1 to m do
4: Chose i uniformly from {1, . . . , n}.
5: if yiw

>xi ≤ τyi then
6: w+ = w + ηyixi
7: end if
8: end for
9: Return w

On the other hand, we have

〈E[wt+1],w∗〉 = 〈E[wt],w∗〉+ ηE[yi〈xi,w∗〉]

≥ 〈E[wt],w∗〉+ ηΓ

≥ tηΓ

Thus, we have

(tηΓ)2 ≤ (〈E[wt+1],w∗〉)2

≤ ‖E[wt+1]‖2‖w∗‖2

≤ 2ηt(1− r)τ−1 + 2ηrtτ1 + η2t

which is upper bound (D.6)

Theorem D.3.2 (Restatement of Theorem 5.4.3). Consider the B-SGD algo-

rithm with fixed thresholds (over time) τ−1 and τ1 for the majority and minority

class, respectively. The expected gradient update step for B-SGD is as follows:

E [wt+1|wt] = wt − η∇fi(wt)Ifi(wt)≥Cyi (D.7)

180

Suppose the data is normalized (i.e., ‖xi‖ = 1). Define the margin

γ(w,S−1,S1) := min
i

yi (〈w,xi〉)
‖w‖ .

Suppose there exists w∗ ∈ Rd+1 such that ‖w∗‖ = 1 and γ(w∗,S−1,S1) ≥ Γ.

Then the number of gradient updates performed by Algorithm 3 is bounded

w.h.p. by

1

Γ2 ((1− r)β−1 + rβ1)2 +
2(1− r)B−1 + 2rB1

ηΓ2 ((1− r)β−1 + rβ1)2 (D.8)

where βyi = (exp(Cyi)− 1) exp(−Cyi) and Byi = − log (exp(Cyi)− 1).

Note that here Cyi is τyi in Theorem 5.4.3.

Proof. Let pi(wt) = exp(−yi〈w,xi〉)
1+exp(−yi〈w,xi〉) . Note that

log(1 + exp (−yi〈w,xi〉)) ≥ Cyi ⇔ yi〈w,xi〉 ≤ − log (exp(Cyi)− 1)︸ ︷︷ ︸
τyi

⇒ (exp(Cyi)− 1) exp(−Cyi)︸ ︷︷ ︸
βyi

≤ pi(wt) ≤ 1

Observe that

‖wt+1‖2 = ‖wt‖2 + 2ηyi〈wt, xi〉pi(wt)1i∈S0

+ 2ηyi〈wt, xi〉pi(wt)1i∈S1 + η2‖pi(wt)xi‖2

E[‖wt+1‖2] ≤ E[‖wt‖2] + 2η(1− r)B−1 + 2rηB1 + η2‖xi‖2

181

On the other hand, we have

〈E[wt+1],w∗〉 = 〈E[wt],w∗〉+ ηE[pi(wt)yi〈xi,w∗〉]

≥ 〈E[wt],w∗〉+ ηβ−1E[1i∈S−1]Γ + ηβ1E[1i∈S1]Γ

≥ 〈E[wt],w∗〉+ ((1− r)β−1 + rβ1) ηΓ

≥ tη ((1− r)β−1 + rβ1) Γ

Thus, we have

(tηΓ ((1− r)β−1 + rβ1))2 ≤ (〈E[wt+1],w∗〉)2

≤ ‖E[wt+1]‖2‖w∗‖2

≤ 2ηt(1− r)B−1 + 2ηrtB1 + η2t

which yields our upper bound of t

D.4 Proof of Proposition 5.4.4

Proposition D.4.1. Suppose the data is normalized (i.e., ‖xi‖ = 1). Suppose

ŵ minimizes both equations (5.10) and (5.11), then without loss of generality

ŵ>xi < 0,∀i ∈ S−1. Set τ−1 ≥ 0 for the set Aŵ. Solving for τ−1 given some

r in equation (5.12), we observe that τ−1 > 0 is monotonically decreasing

function with respect to r ∈ [0, 0.5]. In addition, If r → 0.5 or r
1−r → 1, then

τ−1 → 0. If r → 0 or r
1−r → 0, then we could let τ−1 → log(1 + exp(‖ŵ‖)) so

that we have 1{log(1+e−zi)>τ−1} = 0. 1

1Note the the term of τ−1 → log(1 + exp(‖ŵ‖)) is a sufficient condition but not a nec-
essary condition. As long as it is greater than c log(1 + exp(〈ŵ,xi〉)) for each i with some
c > 1.

182

Proof. The expression that establishes the relation of τ−1 and r is∑
i∈S−1

(
r

1− r − 1i∈Aŵ

)
∇fi(w)|[

]
w = ŵ = 0 (D.9)

Let us now explicitly write down down the function f , ∇f and Aŵ for the

majority class y = −1:

f(yi = −1, ŷi) = log
(
1 + e〈ŵ,xi〉

)
∇wf(yi = −1, ŷi) =

xi
1 + exp (−〈ŵ,xi〉)

Aŵ =
{
i ∈ S−1

∣∣ log
(
1 + e〈ŵ,xi〉

)
> τ−1

}
=
{
i ∈ S−1

∣∣− 〈ŵ,xi〉 ≤ − log (eτ−1 − 1)
}

Substituting above equations back to (D.9) gives

r

1− r
∑
i∈S−1

xi
1 + exp (−〈ŵ,xi〉)

=
∑
i∈S−1

xi1i∈Aŵ

1 + exp (−〈ŵ,xi〉)

For the class i ∈ S−1, we have 〈ŵ,xi〉 < 0, multiplying above with ŵ, we get

r

1− r
∑
i∈S−1

−〈ŵ,xi〉
1 + exp (−〈ŵ,xi〉)

=
∑
i∈S−1

−〈ŵ,xi〉1{log
(
1 + e〈ŵ,xi〉

)
> τ−1}

1 + exp (−〈ŵ,xi〉)

⇒ r

1− r
∑
i∈S−1

zi
1 + exp (zi)

=
∑
i∈S−1

zi1{log (1 + e−zi) > τ−1}
1 + exp (zi)

(D.10)

where let zi = −〈ŵ,xi〉 > 0. Now observe that when r increases, the left

hand side of the above equation will increases since the term
∑

i∈S−1

zi
1+exp(zi)

is fixed. For the right hand side, when τ−1 decreases with other parameters

fixed, the term
∑

i∈S−1

zi1{log(1+e−zi)>τ−1}
1+exp(zi)

increases. Thus when r increase, τ−1

needs to decrease for the equality (D.10) to hold. Finally, it is easy to check

that

183

• If r → 0.5 or r
1−r → 1, τ−1 → 0;

• If r → 0 or r
1−r → 0 , then 1{log (1 + e−zi) > τ−1} = 0. A sufficient

condition for 1{log (1 + e−zi) > τ−1} = 0 is τ−1 = log
(
1 + e‖ŵ‖

)
for

normalized data (i.e., ‖xi‖ = 1).

D.5 Experiments

We performed a grid-based hyper-parameter search for initial learning

rates for SGD and picked the step-size that achieves the lowest training loss for

SGD (Note that B-SGD had no learning rate based hyper-parameter tuning).

While the training dataset was imbalanced, the test loss was evaluated over

a balanced test set. The following table illustrates the training and test loss

performance of SGD and B-SGD vs. the number of gradient computations. It

is quite evident that B-SGD achieves significant performance gains in terms

of both loss and number of gradient computations over its SGD counterpart.

D.5.1 Synthetic experiments

In this section, we run synthetic experiments on logistic regression on

separable data. We assume that the training data is imbalanced however the

test distribution is balanced. In this section, we compare the performance of

SGD and B-SGD in terms of training error, test error and estimation error vs

gradient computations (and time taken) for different values of d. We observe

184

that SGD has high estimation errors demonstrating that it over-fits to the

majority class. On the other hand, B-SGD has low estimation error, thus

demonstrating its effectiveness in imbalanced classification.

Algorithm SGD B-SGD Focal

Dataset TL TEL TA GC TL TEL TA GC TA

car eval 4 0.031 0.247 88.1 8.64 · e4 0.278 0.249 89.3 9.98 · e3 89.2
optical digits 0.054 0.387 89.0 1.41 · e5 1.479 0.367 89.6 8.11 · e3 88.0
isolet 0.035 0.649 87.0 1.94 · e5 0.485 0.585 88.5 8.80 · e3 88.4
letter img 0.061 0.66 83.8 2.00 · e5 1.81 0.612 83.8 3.34 · e3 84.3
pen digits 0.097 0.388 83.8 2.74 · e5 0.711 0.364 85.1 3.33 · e4 85.1
mammography 0.051 0.901 70.9 5.59 · e4 0.144 0.873 70.5 2.12 · e3 71.1

Table D.1: Comparing training loss (TL), Test Loss (TEL), Test AUC (TA), Top-1
Test Error (TE1), and Number of gradient computations (GC) for SGD and B-SGD
over different Imbalanced datasets. The reported results for the first 6 datasets are
an average of 5 runs, and for the last 3 datasets are an average of 3 runs. Focal
loss (Focal) is the state-of-the-art method proposed in [2], which changes the loss
function and so it is not fair to compare the training and the test errors. Focal
has the same number of gradient computations as SGD. Hence, we only report test
accuracy for Focal.

D.5.2 Real data from imblearn package

We ran some of the experiments described in Table ?? on more datasets

and for more iterations and tabulated the results in Table 5.1. Using the

same setup as described in the main paper, we run experiments on additional

datasets in the imblearn package and further illustrate that using B-SGD re-

duces the number of gradient computations required as well as improves the

generalization performance. To generate the training test split, we use strat-

ified sampling and ensure that the ratio of the number of samples for the

185

0 20000 40000 60000 80000
Number of gradient computations

10
1

10
0

E
st

im
at

io
n

E
rr

or
, |

|w
w

* |
|

Imbalanced Labels (frac = 0.0126, d = 20)

SGD
Balancing SGD

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time taken (in seconds)

10
1

10
0

E
st

im
at

io
n

E
rr

or
, |

|w
w

* |
|

Imbalanced Labels (frac = 0.0126, d = 20)

SGD
Balancing SGD

Figure D.1: Comparing the training loss and test loss vs the number of gra-
dient computations for SGD and Balancing SGD for synthetic datasets across
d = {10, 20, 50}

186

minority class in the training and test set is 3:1. We then randomly sample

data from the majority class such that the number of training and test points

are identical. Thus, the test set often comprises of around 3 − 5% of the

training set depending on the imbalance ratio r. Further information about

the datasets including the number of samples, number of feature per samples

and the true imbalance ratio is available in the sklearn documentation of the

imblearn package [157].

For a given run, we pass the same samples through SGD, B-SGD and

Focal Loss. B-SGD evaluates the loss of the incoming samples and determines

whether to take an update step while the other two algorithms always take an

update step. For evaluation purposes we take the average of 3 runs and calcu-

late the expected moving average of training loss, test loss and test AUC with

parameter value of 0.01 for the most recent evaluation. However, label distri-

bution aware methods often show better generalization than B-SGD, however,

over significantly more gradient computations.

Lastly, we observe that the variance in training data is high as we train

over only one sample at a time. This variance term can be reduced by taking

a mini-batch, which is also a practical alternative for large datasets.

D.5.3 Artificially generated imbalanced datasets from real data

D.5.3.1 Hyperparameter Tuning:

For hyper-parameter tuning, we vary the step size as (η ∈ {0.1, 0.01, 0.001}).

Similarly, we use the following step-size decay rule ηt = η
1+q·t where q ∈

187

100 101 102 103 104 105

Number of iterations

2

4

6

8

10

12
Te

st
 L

os
s

Test loss for isolet with r=0.0834
SGD
BSGD

100 101 102 103 104 105

Number of iterations

50

60

70

80

90

Te
st

 A
UC

 (%
)

Test AUC for isolet with r=0.0834
SGD
BSGD
Focal Loss

100 101 102 103 104 105

Number of iterations

0.3

0.4

0.5

0.6

0.7

Te
st

 L
os

s

Test loss for optical_digits with r=0.1094
SGD
BSGD

100 101 102 103 104 105

Number of iterations

70

75

80

85

90

Te
st

 A
UC

 (%
)

Test AUC for optical_digits with r=0.1094
SGD
BSGD
Focal Loss

100 101 102 103 104 105

Number of iterations

0.4

0.5

0.6

0.7

0.8

Te
st

 L
os

s

Test loss for pen_digits with r=0.1062
SGD
BSGD

100 101 102 103 104 105

Number of iterations

65

70

75

80

85

Te
st

 A
UC

 (%
)

Test AUC for pen_digits with r=0.1062
SGD
BSGD
Focal Loss

Figure D.2: Comparing the training loss and test loss vs the number of gradient
computations for SGD and Balancing SGD for isolet, optical digits and pen digits
dataset. Each experiment is an average of 5 runs

188

Algorithm SGD B-SGD Focal

TL TEL TE1 Epochs TL TEL TE1 Epochs TE1

CIFAR-10 0.021 1.43 28.5 200 0.163 0.90 26.2 88 28.7

Table D.2: Comparing training loss (TL), Test Loss (TEL), Test AUC (TA), Top-
1 Test Error (TE1), and Number of gradient computations (GC) for SGD and B-
SGD over different Imbalanced datasets. The reported results artificially generated
imbalanced dataset for CIFAR-10. Focal loss (Focal) is the state-of-the-art method
proposed in [2], which changes the loss function and so it is not fair to compare the
training and the test errors. Focal has the same number of gradient computations
as SGD. Hence, we only report test accuracy for Focal.

{0.1, 0.01, 0.001} and select the hyperparameter tuple that optimizes SGD and

Focal individually. For B-SGD, the threshold parameter was tuned over the

following set, c ∈ {0.1, 0.2, 0.5, 1}.

D.5.4 CIFAR-10

We use the experimental setup in [12] and evaluated and compared the

performance of B-SGD with respect to SGD and Focal Loss. We observe that

in this case also, B-SGD outperforms SGD and Focal Loss in terms of both

gradient evaluations and generalization performance. Note, that our method

typically outperforms or shows comparable performance to many state of the

art methods which are not label distribution aware.

D.5.5 Early Stopping:

Early stopping is a beneficial way to achieve a solution that generalizes

well. Initially, the bias reduction caused by B-SGD allows w to get closer to

w∗. However, if we run the algorithm for too long, then the algorithm starts

189

getting closer and closer to ŵ that determines the separating hyper-plane of

the training data and away from w∗, which in turn decreases the magnitude

of improvements achieved by B-SGD over SGD.

D.5.6 Parameter Sensitivity of Threshold Parameter, c

Figure D.3: In this figure, we evaluate the parameter sensitivity of threshold
parameter c in Algorithm 3 with respect to the training error, test error and number
of gradient computations. We observe that the number of gradient computations is
inversely proportional to threshold, while both training and test loss first decrease
and then increase as c increases from 0 to 50

The dependence of the generalization behavior (and the number of

gradient steps taken) follows a linear increasing behavior up to a particular

value beyond which it becomes constant. For c = 0, the loss threshold function

accepts all samples, and B-SGD is identical to SGD. As c increases, B-SGD

190

starts selectively choosing samples from the majority class leading to gradual

improvements in generalization and convergence performance with respect to

SGD. However, as c > c′ for some c′, it is observed that fewer and fewer samples

are accepted from majority class until they are not enough to determine the

supporting hyper-plane, in turn adversely impacting both generalization and

convergence performances. For larger values of c, the generalization will often

be worse than SGD. As a result, low values of c, i.e., c = 1,are recommended

in practice. We also argue that for B-SGD hyper-parameter tuning over c is

more important than over learning rate η.

191

Appendix E

Conclusions

In this dissertation, we propose practical variants of SGD to address

its shortcomings with respect to convergence, generalization and robustness.

192

Bibliography

[1] Causality workbench team. A phamacology dataset, 06 2008.

[2] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.

Focal loss for dense object detection. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2980–2988, 2017.

[3] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent

using predictive variance reduction. In Advances in Neural Information

Processing Systems, pages 315–323, 2013.

[4] Lin Xiao and Tong Zhang. A proximal stochastic gradient method

with progressive variance reduction. SIAM Journal on Optimization,

24(4):2057–2075, 2014.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual

networks. In European Conference on Computer Vision, pages 630–645.

Springer, 2016.

[6] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam. MobileNets: Efficient convolutional neural

networks for mobile vision applications. arXiv preprint arXiv:1704.04861,

2017.

193

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. In-

verted residuals and linear bottlenecks: Mobile networks for classifica-

tion, detection and segmentation. arXiv preprint arXiv:1801.04381,

2018.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition, pages 248–255.

Ieee, 2009.

[9] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip

Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-

nal of artificial intelligence research, 16:321–357, 2002.

[10] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adap-

tive synthetic sampling approach for imbalanced learning. In 2008 IEEE

international joint conference on neural networks (IEEE world congress

on computational intelligence), pages 1322–1328. IEEE, 2008.

[11] Haibo He and Yunqian Ma. Imbalanced learning: foundations, algo-

rithms, and applications. John Wiley & Sons, 2013.

[12] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma.

Learning imbalanced datasets with label-distribution-aware margin loss.

arXiv preprint arXiv:1906.07413, 2019.

194

[13] Vatsal Shah, Megasthenis Asteris, Anastasios Kyrillidis, and Sujay Sang-

havi. Trading-off variance and complexity in stochastic gradient descent.

arXiv preprint arXiv:1603.06861, 2016.

[14] Ruiliang Zhang, Shuai Zheng, and James T Kwok. Fast distributed

asynchronous sgd with variance reduction. arXiv preprint arXiv:1508.01633,

2015.

[15] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochas-

tic gradient descent under a strong growth condition. arXiv preprint

arXiv:1308.6370, 2013.

[16] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast

incremental gradient method with support for non-strongly convex com-

posite objectives. In Advances in Neural Information Processing Sys-

tems, pages 1646–1654, 2014.

[17] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate as-

cent methods for regularized loss. The Journal of Machine Learning

Research, 14(1):567–599, 2013.

[18] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, and Quoc V Le.

Large scale distributed deep networks. In Advances in Neural Informa-

tion Processing Systems, pages 1223–1231, 2012.

195

[19] Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic

gradient method with an exponential convergence rate for finite training

sets. In Advances in Neural Information Processing Systems, pages

2663–2671, 2012.

[20] Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon.

Accelerating stochastic gradient descent via online learning to sample.

arXiv preprint arXiv:1506.09016, 2015.

[21] Christopher D Sa, Christopher Re, and Kunle Olukotun. Global conver-

gence of stochastic gradient descent for some non-convex matrix prob-

lems. In Proceedings of the 32nd International Conference on Machine

Learning (ICML-15), pages 2332–2341, 2015.

[22] Yurii Nesterov. Introductory lectures on convex optimization, volume 87.

Springer Science & Business Media, 2004.

[23] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-

bridge university press, 2004.

[24] Herbert Robbins and Sutton Monro. A stochastic approximation method.

The annals of mathematical statistics, pages 400–407, 1951.

[25] Léon Bottou. Large-scale machine learning with stochastic gradient

descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,

2010.

196

[26] Jakub Konecny and Peter Richtarik. Semi-stochastic gradient descent

methods. arXiv preprint arXiv:1312.1666, 2013.

[27] Jakub Konevcny, Jie Liu, Peter Richtarik, and Martin Takac. ms2gd:

Mini-batch semi-stochastic gradient descent in the proximal setting. arXiv

preprint arXiv:1410.4744, 2014.

[28] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V

Le, and Andrew Y Ng. On optimization methods for deep learning. In

Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 265–272, 2011.

[29] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On

the importance of initialization and momentum in deep learning. In

Proceedings of the 30th international conference on machine learning

(ICML-13), pages 1139–1147, 2013.

[30] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Par-

allelized stochastic gradient descent. In Advances in neural information

processing systems, pages 2595–2603, 2010.

[31] Mark Schmidt. Convergence rate of stochastic gradient with constant

step size, Sep 2014.

[32] Angelia Nedić and Dimitri Bertsekas. Convergence rate of incremen-

tal subgradient algorithms. In Stochastic optimization: algorithms and

applications, pages 223–264. Springer, 2001.

197

[33] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal

methods for convex optimization: A survey. Optimization for Machine

Learning, 2010:1–38, 2011.

[34] Aaron J Defazio, Tibério S Caetano, and Justin Domke. Finito: A

faster, permutable incremental gradient method for big data problems.

arXiv preprint arXiv:1407.2710, 2014.

[35] Julien Mairal. Optimization with first-order surrogate functions. arXiv

preprint arXiv:1305.3120, 2013.

[36] Zeyuan Allen-Zhu and Yang Yuan. Univr: A universal variance reduc-

tion framework for proximal stochastic gradient method. arXiv preprint

arXiv:1506.01972, 2015.

[37] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex

Smola. On variance reduction in stochastic gradient descent and its

asynchronous variants. arXiv preprint arXiv:1506.06840, 2015.

[38] Jason Lee, Tengyu Ma, and Qihang Lin. Distributed stochastic variance

reduced gradient methods. arXiv preprint arXiv:1507.07595, 2015.

[39] Dimitri P Bertsekas. Nonlinear programming. Journal of the Opera-

tional Research Society, 48(3):334–334, 1997.

[40] Mikhail V Solodov. Incremental gradient algorithms with stepsizes

bounded away from zero. Computational Optimization and Applica-

tions, 11(1):23–35, 1998.

198

[41] Paul Tseng. An incremental gradient (-projection) method with momen-

tum term and adaptive stepsize rule. SIAM Journal on Optimization,

8(2):506–531, 1998.

[42] Vatsal Shah, Anastasios Kyrillidis, and Sujay Sanghavi. Minimum

weight norm models do not always generalize well for over-parameterized

problems. arXiv preprint arXiv:1811.07055, 2018.

[43] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler.

Benign overfitting in linear regression. Proceedings of the National

Academy of Sciences, 2020.

[44] Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant

Sahai. Harmless interpolation of noisy data in regression. IEEE Journal

on Selected Areas in Information Theory, 2020.

[45] M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need

to understand kernel learning. arXiv preprint arXiv:1802.01396, 2018.

[46] Christopher M Bishop. Pattern recognition and machine learning. springer,

2006.

[47] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements

of statistical learning. Number 10 in 1. Springer series in statistics New

York, 2001.

[48] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine

learning: From theory to algorithms. Cambridge university press, 2014.

199

[49] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory

for deep learning via over-parameterization. arXiv preprint arXiv:1811.03962,

2018.

[50] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient

descent provably optimizes over-parameterized neural networks. arXiv

preprint arXiv:1810.02054, 2018.

[51] Simon S Du and Jason D Lee. On the power of over-parametrization in

neural networks with quadratic activation. arXiv preprint arXiv:1803.01206,

2018.

[52] Y. Bengio. Practical recommendations for gradient-based training of

deep architectures. In Neural networks: Tricks of the trade, pages 437–

478. Springer, 2012.

[53] L. Bottou. Stochastic gradient descent tricks. In Neural networks:

Tricks of the trade, pages 421–436. Springer, 2012.

[54] G. Orr and K.-R. Müller. Neural networks: tricks of the trade. Springer,

2003.

[55] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generaliza-

tion. arXiv preprint arXiv:1611.03530, 2016.

[56] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In

International Conference on Machine Learning, pages 343–351, 2013.

200

[57] W. Xu. Towards optimal one pass large scale learning with averaged

stochastic gradient descent. arXiv preprint arXiv:1107.2490, 2011.

[58] A. Senior, G. Heigold, and K. Yang. An empirical study of learning rates

in deep neural networks for speech recognition. In Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International Conference on,

pages 6724–6728. IEEE, 2013.

[59] Sebastian Ruder. An overview of gradient descent optimization algo-

rithms. arXiv preprint arXiv:1609.04747, 2016.

[60] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine

Learning Research, 12(Jul):2121–2159, 2011.

[61] D. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[62] M. Zeiler. ADADELTA: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[63] T. Tieleman and G. Hinton. Lecture 6.5-RMSPro: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural

networks for machine learning, 4(2):26–31, 2012.

[64] T. Dozat. Incorporating Nesterov momentum into Adam. In Interna-

tional Conference on Learning Representations, 2016.

201

[65] J. Zhang and I. Mitliagkas. YellowFin and the art of momentum

tuning. arXiv preprint arXiv:1706.03471, 2017.

[66] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit

bias in terms of optimization geometry. arXiv preprint arXiv:1802.08246,

2018.

[67] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshi-

rani. Surprises in high-dimensional ridgeless least squares interpolation.

arXiv preprint arXiv:1903.08560, 2019.

[68] Song Mei and Andrea Montanari. The generalization error of ran-

dom features regression: Precise asymptotics and double descent curve.

arXiv preprint arXiv:1908.05355, 2019.

[69] Phuong Thi Tran et al. On the convergence proof of amsgrad and a new

version. IEEE Access, 7:61706–61716, 2019.

[70] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence

of adam and beyond. arXiv preprint arXiv:1904.09237, 2019.

[71] A. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal

value of adaptive gradient methods in machine learning. In Advances in

Neural Information Processing Systems, pages 4151–4161, 2017.

[72] M. S. Nacson, J. Lee, S. Gunasekar, N. Srebro, and D. Soudry. Conver-

gence of gradient descent on separable data. arXiv preprint arXiv:1803.01905,

2018.

202

[73] Y. Nesterov. Introductory lectures on convex optimization: A basic

course, volume 87. Springer Science & Business Media, 2013.

[74] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge

university press, 2012.

[75] D. Dowler. Bounding the norm of matrix powers, 2013.

[76] Xiaoxia Wu, Simon S Du, and Rachel Ward. Global convergence of

adaptive gradient methods for an over-parameterized neural network.

arXiv preprint arXiv:1902.07111, 2019.

[77] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail

Belkin, Daniel Hsu, and Anant Sahai. Classification vs regression in

overparameterized regimes: Does the loss function matter?, 2020.

[78] M. C. Mukkamala and M. Hein. Variants of RMSProp and AdaGrad

with logarithmic regret bounds. arXiv preprint arXiv:1706.05507, 2017.

[79] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A simple way to prevent neural net-

works from overfitting. The Journal of Machine Learning Research,

15(1):1929–1958, 2014.

[80] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 770–778, 2016.

203

[81] M. Telgarsky. Benefits of depth in neural networks. arXiv preprint

arXiv:1602.04485, 2016.

[82] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1–9,

2015.

[83] Y. Bansal, M. Advani, D. Cox, and A. Saxe. Minnorm training: an

algorithm for training over-parameterized deep neural networks, 2018.

[84] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t decay

the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489,

2017.

[85] Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. Choosing the sample

with lowest loss makes sgd robust. In Silvia Chiappa and Roberto Calan-

dra, editors, Proceedings of the Twenty Third International Conference

on Artificial Intelligence and Statistics, volume 108 of Proceedings of

Machine Learning Research, pages 2120–2130, Online, 26–28 Aug 2020.

PMLR.

[86] Herman Kahn and Andy W Marshall. Methods of reducing sample

size in monte carlo computations. Journal of the Operations Research

Society of America, 1(5):263–278, 1953.

204

[87] Thomas Strohmer and Roman Vershynin. A randomized kaczmarz al-

gorithm with exponential convergence. Journal of Fourier Analysis and

Applications, 15(2):262, 2009.

[88] Peilin Zhao and Tong Zhang. Stochastic optimization with importance

sampling for regularized loss minimization. In international conference

on machine learning, pages 1–9, 2015.

[89] Angelos Katharopoulos and François Fleuret. Not all samples are cre-

ated equal: Deep learning with importance sampling. arXiv preprint

arXiv:1803.00942, 2018.

[90] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient

descent, weighted sampling, and the randomized kaczmarz algorithm.

In Advances in neural information processing systems, pages 1017–1025,

2014.

[91] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochas-

tic approximation algorithms for machine learning. In Advances in

Neural Information Processing Systems, pages 451–459, 2011.

[92] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent

methods and faster algorithms for solving linear systems. In 2013 IEEE

54th Annual Symposium on Foundations of Computer Science, pages

147–156. IEEE, 2013.

205

[93] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to

boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-

780):1612, 1999.

[94] Peter J Rousseeuw. Least median of squares regression. Journal of the

American statistical association, 79(388):871–880, 1984.

[95] Jan Visek et al. The least weighted squares ii. consistency and asymp-

totic normality. Bulletin of the Czech Econometric Society, 9, 2002.

[96] Jan Amos Visek. The least trimmed squares. part i: Consistency.

Kybernetika, 42(1):1–36, 2006.

[97] Peter J Huber. Robust statistics. Springer, 2011.

[98] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression

via hard thresholding. In Advances in Neural Information Processing

Systems, pages 721–729, 2015.

[99] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushot-

tam Kar. Consistent robust regression. In Advances in Neural Infor-

mation Processing Systems, pages 2110–2119, 2017.

[100] Yanyao Shen and Sujay Sanghavi. Learning with bad training data via

iterative trimmed loss minimization. In International Conference on

Machine Learning, pages 5739–5748, 2019.

206

[101] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra,

and Alistair Stewart. Robust estimators in high-dimensions without the

computational intractability. SIAM Journal on Computing, 48(2):742–

864, 2019.

[102] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation

of mean and covariance. In 2016 IEEE 57th Annual Symposium on

Foundations of Computer Science (FOCS), pages 665–674. IEEE, 2016.

[103] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from

untrusted data. In Proceedings of the 49th Annual ACM SIGACT Sym-

posium on Theory of Computing, pages 47–60. ACM, 2017.

[104] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob

Steinhardt, and Alistair Stewart. Sever: A robust meta-algorithm for

stochastic optimization. arXiv preprint arXiv:1803.02815, 2018.

[105] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep

Ravikumar. Robust estimation via robust gradient estimation. arXiv

preprint arXiv:1802.06485, 2018.

[106] Farhad Pourkamali Anaraki and Shannon Hughes. Memory and compu-

tation efficient pca via very sparse random projections. In International

Conference on Machine Learning, pages 1341–1349, 2014.

[107] Dana Angluin and Philip Laird. Learning from noisy examples. Ma-

chine Learning, 2(4):343–370, 1988.

207

[108] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced

learning for latent variable models. In Advances in Neural Information

Processing Systems, pages 1189–1197, 2010.

[109] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.

Curriculum learning. In Proceedings of the 26th annual international

conference on machine learning, pages 41–48. ACM, 2009.

[110] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and

Ambuj Tewari. Learning with noisy labels. In Advances in neural

information processing systems, pages 1196–1204, 2013.

[111] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei.

Mentornet: Learning data-driven curriculum for very deep neural net-

works on corrupted labels. arXiv preprint arXiv:1712.05055, 2017.

[112] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learn-

ing to reweight examples for robust deep learning. arXiv preprint

arXiv:1803.09050, 2018.

[113] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity

mappings in deep residual networks. In European conference on com-

puter vision, pages 630–645. Springer, 2016.

[114] Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-Taylor, and Jaz

Kandola. The perceptron algorithm with uneven margins. In ICML,

volume 2, pages 379–386, 2002.

208

[115] Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and

Ling Shao. Striking the right balance with uncertainty. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 103–112, 2019.

[116] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic

study of the class imbalance problem in convolutional neural networks.

Neural Networks, 106:249–259, 2018.

[117] Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of lo-

gistic regression. arXiv preprint arXiv:1803.07300, 2018.

[118] Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gra-

dient descent on separable data: Exact convergence with a fixed learning

rate. arXiv preprint arXiv:1806.01796, 2018.

[119] Cheng Zhang, Hedvig Kjellstrom, and Stephan Mandt. Determinantal

point processes for mini-batch diversification. arXiv preprint arXiv:1705.00607,

2017.

[120] Jiong Zhang, Hsiang-fu Yu, and Inderjit S Dhillon. Autoassist: A

framework to accelerate training of deep neural networks. arXiv preprint

arXiv:1905.03381, 2019.

[121] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning

with class imbalance. Journal of Big Data, 6(1):27, 2019.

209

[122] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue,

and Gong Bing. Learning from class-imbalanced data: Review of meth-

ods and applications. Expert Systems with Applications, 73:220–239,

2017.

[123] Haibo He and Edwardo A Garcia. Learning from imbalanced data.

IEEE Transactions on knowledge and data engineering, 21(9):1263–1284,

2009.

[124] Alberto Fernández, Salvador Garćıa, Mikel Galar, Ronaldo C Prati, Bar-

tosz Krawczyk, and Francisco Herrera. Learning from imbalanced data

sets. Springer, 2018.

[125] CX LING. Data mining for direct marketing: problems and solutions.

In Proceedings of the Fourth International Conference on Knowledge Dis-

covery & Data Mining (KDD-98), pages 73–79. AAAI Press, 1998.

[126] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem:

A systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[127] Show-Jane Yen and Yue-Shi Lee. Cluster-based under-sampling ap-

proaches for imbalanced data distributions. Expert Systems with Appli-

cations, 36(3):5718–5727, 2009.

[128] Gilles Vandewiele, Isabelle Dehaene, György Kovács, Lucas Sterckx,

Olivier Janssens, Femke Ongenae, Femke De Backere, Filip De Turck,

Kristien Roelens, Johan Decruyenaere, Sofie Van Hoecke, and Thomas

210

Demeester. Overly optimistic prediction results on imbalanced data:

Flaws and benefits of applying over-sampling, 2020.

[129] Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying sup-

port vector machines to imbalanced datasets. In European conference

on machine learning, pages 39–50. Springer, 2004.

[130] Lara Lusa et al. Smote for high-dimensional class-imbalanced data.

BMC bioinformatics, 14(1):106, 2013.

[131] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie.

Class-balanced loss based on effective number of samples. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 9268–9277, 2019.

[132] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersam-

pling for class-imbalance learning. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 39(2):539–550, 2008.

[133] Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and

Paul J Kennedy. Training deep neural networks on imbalanced data sets.

In 2016 international joint conference on neural networks (IJCNN),

pages 4368–4374. IEEE, 2016.

[134] Nabila Abraham and Naimul Mefraz Khan. A novel focal tversky loss

function with improved attention u-net for lesion segmentation. In

211

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI

2019), pages 683–687. IEEE, 2019.

[135] Haishuai Wang, Zhicheng Cui, Yixin Chen, Michael Avidan, Arbi Ben

Abdallah, and Alexander Kronzer. Predicting hospital readmission via

cost-sensitive deep learning. IEEE/ACM transactions on computational

biology and bioinformatics, 15(6):1968–1978, 2018.

[136] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A

Sohel, and Roberto Togneri. Cost-sensitive learning of deep feature

representations from imbalanced data. IEEE transactions on neural

networks and learning systems, 29(8):3573–3587, 2017.

[137] Chong Zhang, Kay Chen Tan, and Ruoxu Ren. Training cost-sensitive

deep belief networks on imbalance data problems. In 2016 international

joint conference on neural networks (IJCNN), pages 4362–4367. IEEE,

2016.

[138] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks

with methods addressing the class imbalance problem. IEEE Transac-

tions on knowledge and data engineering, 18(1):63–77, 2005.

[139] Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. Cost-

sensitive learning methods for imbalanced data. In The 2010 Interna-

tional joint conference on neural networks (IJCNN), pages 1–8. IEEE,

2010.

212

[140] Peng Cao, Dazhe Zhao, and Osmar Zaiane. An optimized cost-sensitive

svm for imbalanced data learning. In Pacific-Asia conference on knowl-

edge discovery and data mining, pages 280–292. Springer, 2013.

[141] Jing Lu, Peilin Zhao, and Steven CH Hoi. Online passive-aggressive

active learning. Machine Learning, 103(2):141–183, 2016.

[142] Jonathon Byrd and Zachary C Lipton. What is the effect of importance

weighting in deep learning? arXiv preprint arXiv:1812.03372, 2018.

[143] Bo Yuan and Xiaoli Ma. Sampling+ reweighting: boosting the perfor-

mance of adaboost on imbalanced datasets. In The 2012 international

joint conference on neural networks (IJCNN), pages 1–6. IEEE, 2012.

[144] Ashish Anand, Ganesan Pugalenthi, Gary B Fogel, and PN Suganthan.

An approach for classification of highly imbalanced data using weighting

and undersampling. Amino acids, 39(5):1385–1391, 2010.

[145] Yan Yan, Tianbao Yang, Yi Yang, and Jianhui Chen. A framework of

online learning with imbalanced streaming data. In Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

[146] Yong Zhang and Dapeng Wang. A cost-sensitive ensemble method for

class-imbalanced datasets. In Abstract and applied analysis, volume

2013. Hindawi, 2013.

[147] Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Exper-

imental perspectives on learning from imbalanced data. In Proceedings

213

of the 24th international conference on Machine learning, pages 935–942,

2007.

[148] Yu Sui, Xiaohui Zhang, Jiajia Huan, and Haifeng Hong. Exploring

data sampling techniques for imbalanced classification problems. In

Fourth International Workshop on Pattern Recognition, volume 11198,

page 1119813. International Society for Optics and Photonics, 2019.

[149] Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. Choosing the sample

with lowest loss makes sgd robust. arXiv preprint arXiv:2001.03316,

2020.

[150] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization

of on-line learning and an application to boosting. In European confer-

ence on computational learning theory, pages 23–37. Springer, 1995.

[151] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and

Yoram Singer. Online passive-aggressive algorithms. Journal of Ma-

chine Learning Research, 7(Mar):551–585, 2006.

[152] Brendan McMahan. Follow-the-regularized-leader and mirror descent:

Equivalence theorems and l1 regularization. In Proceedings of the Four-

teenth International Conference on Artificial Intelligence and Statistics,

pages 525–533, 2011.

[153] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Di-

etmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,

214

Daniel Golovin, et al. Ad click prediction: a view from the trenches.

In Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 1222–1230, 2013.

[154] Geovani Nunes Grapiglia and Yurii Nesterov. Tensor methods for find-

ing approximate stationary points of convex functions. arXiv preprint

arXiv:1907.07053, 2019.

[155] Albert B Novikoff. On convergence proofs for perceptrons. Technical

report, STANFORD RESEARCH INST MENLO PARK CA, 1963.

[156] Werner Krauth and Marc Mézard. Learning algorithms with optimal

stability in neural networks. Journal of Physics A: Mathematical and

General, 20(11):L745, 1987.

[157] Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-

learn: A python toolbox to tackle the curse of imbalanced datasets in

machine learning. Journal of Machine Learning Research, 18(17):1–5,

2017.

[158] Mark D McDonnell and Tony Vladusich. Enhanced image classification

with a fast-learning shallow convolutional neural network. In Neural

Networks (IJCNN), 2015 International Joint Conference on, pages 1–7.

IEEE, 2015.

[159] Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt,

and Jakub Konecny. Stop wasting my gradients: Practical SVRG. To

215

appear in Advances in Neural Information Processing Systems, 2015.

[160] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander

Shapiro. Robust stochastic approximation approach to stochastic pro-

gramming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[161] Yadong Mu, Wei Liu, and Wei Fan. Stochastic gradient made stable:

A manifold propagation approach for large-scale optimization. arXiv

preprint arXiv:1506.08350, 2015.

[162] Philipp Moritz, Robert Nishihara, and Michael I Jordan. A linearly-

convergent stochastic l-bfgs algorithm. arXiv preprint arXiv:1508.02087,

2015.

[163] Richard H Byrd, SL Hansen, Jorge Nocedal, and Yoram Singer. A

stochastic quasi-newton method for large-scale optimization. arXiv

preprint arXiv:1401.7020, 2014.

[164] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite

sums with the stochastic average gradient. Mathematical Programming,

162(1-2):83–112, 2017.

[165] A. Blum and R. Rivest. Training a 3-node neural network is NP-

complete. In Advances in neural information processing systems, pages

494–501, 1989.

216

[166] T. Poggio, K. Kawaguchi, Q. Liao, B. Miranda, L. Rosasco, X. Boix,

J. Hidary, and H. Mhaskar. Theory of deep learning III: explaining the

non-overfitting puzzle. arXiv preprint arXiv:1801.00173, 2017.

[167] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization

in adam. arXiv preprint arXiv:1711.05101, 2017.

[168] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp

convergence over nonconvex landscapes, from any initialization. arXiv

preprint arXiv:1806.01811, 2018.

[169] Qian Qian and Xiaoyuan Qian. The implicit bias of adagrad on separa-

ble data. arXiv preprint arXiv:1906.03559, 2019.

[170] Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear

learning: Gradient descent takes the shortest path? arXiv preprint

arXiv:1812.10004, 2018.

[171] Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overpa-

rameterization: global convergence guarantees for training shallow neu-

ral networks. arXiv preprint arXiv:1902.04674, 2019.

[172] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical

insights into the optimization landscape of over-parameterized shallow

neural networks. IEEE Transactions on Information Theory, 65(2):742–

769, 2018.

217

[173] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.

Visualizing the loss landscape of neural nets. In Advances in Neural

Information Processing Systems, pages 6389–6399, 2018.

[174] Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear

learning: Gradient descent takes the shortest path? In International

Conference on Machine Learning, pages 4951–4960, 2019.

[175] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent

for weak features. arXiv preprint arXiv:1903.07571, 2019.

[176] Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma.

Rethinking bias-variance trade-off for generalization of neural networks.

arXiv preprint arXiv:2002.11328, 2020.

[177] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster

convergence of sgd for over-parameterized models and an accelerated

perceptron. arXiv preprint arXiv:1810.07288, 2018.

[178] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence

of gradient and proximal-gradient methods under the polyak- lojasiewicz

condition. In Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and

Jilles Vreeken, editors, Machine Learning and Knowledge Discovery in

Databases, pages 795–811, Cham, 2016. Springer International Publish-

ing.

218

[179] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex

finite-sum optimization via scsg methods. In Advances in Neural Infor-

mation Processing Systems, pages 2348–2358, 2017.

[180] Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adap-

tive stochastic gradient descent. arXiv preprint arXiv:1908.10525, 2019.

[181] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence

of gradient and proximal-gradient methods under the polyak- lojasiewicz

condition. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[182] Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond

sharp and flat local minima. arXiv preprint arXiv:1902.00744, 2019.

[183] Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Ac-

tive bias: Training more accurate neural networks by emphasizing high

variance samples. In Advances in Neural Information Processing Sys-

tems, pages 1002–1012, 2017.

[184] Jie Chen and Ronny Luss. Stochastic gradient descent with biased but

consistent gradient estimators. arXiv preprint arXiv:1807.11880, 2018.

[185] RA Poliquin and R Tyrrell Rockafellar. Tilt stability of a local mini-

mum. SIAM Journal on Optimization, 8(2):287–299, 1998.

[186] Art B Owen. A robust hybrid of lasso and ridge regression, 2007.

219

[187] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep

learning is robust to massive label noise. arXiv preprint arXiv:1705.10694,

2017.

[188] Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power

of localization for efficiently learning linear separators with noise. In

Proceedings of the forty-sixth annual ACM symposium on Theory of com-

puting, pages 449–458, 2014.

[189] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization meth-

ods for large-scale machine learning. Siam Reviews, 60(2):223–311,

2018.

[190] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements

of statistical learning: data mining, inference, and prediction. Springer

Science & Business Media, 2009.

[191] Art B Owen. Infinitely imbalanced logistic regression. Journal of

Machine Learning Research, 8(Apr):761–773, 2007.

[192] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and

Nathan Srebro. The implicit bias of gradient descent on separable data.

The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

[193] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural net-

works via stochastic gradient descent on structured data. In Advances

in Neural Information Processing Systems, pages 8157–8166, 2018.

220

[194] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special

issue on learning from imbalanced data sets. ACM SIGKDD explo-

rations newsletter, 6(1):1–6, 2004.

[195] Byungju Kim and Junmo Kim. Adjusting decision boundary for class

imbalanced learning. arXiv preprint arXiv:1912.01857, 2019.

[196] Nathalie Japkowicz. The class imbalance problem: Significance and

strategies. In Proc. of the Int’l Conf. on Artificial Intelligence, 2000.

221

Vita

Vatsal Shah received his M.Tech. in Electrical Engineering with a spe-

cialization in Communications and Signal Processing and B.Tech in Electronics

and Electrical Communication Engineering (with a minor in Center of Studies

in Resource Engineering) from the Indian Institute of Technology Bombay in

2014. He is currently working towards Ph.D. in Electrical Engineering at the

University of Texas at Austin. His research interests include stochastic opti-

mization, machine learning and graphical models. He has held internship po-

sitions at Amazon, Austin, TX, U.S.A. (2017); Amazon Web Services (AWS),

Palo Alto, CA, U.S.A. (2017); Technicolor Research, Los Altos, CA, U.S.A.

(2016); KTH Royal Institute of Technology, Stockholm, Sweden (2014).

Permanent address: vatsalshah1106@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

222

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Contributions and Organization
	Chapter 2: Trading-off Variance and Complexity in Stochastic Gradient Descent
	Chapter 3: On the Generalization of Adaptive Methods for Over-parameterized Linear Regression
	Chapter 4: Choosing the Sample with Lowest Loss makes SGD Robust
	Chapter 5: Balancing SGD: Faster Optimization for Imbalanced Classification
	Chapter 2. Trading-off Variance and Complexity in Stochastic Gradient Descent
	Introduction
	Related work
	Our variance reduction scheme
	Convergence analysis
	Experiments
	Conclusions
	Chapter 3. On the Generalization of Adaptive Methods
	Introduction
	Problem Setup
	Over-parameterized linear regression
	Performance on Unseen Data
	Experiments
	Conclusions and Future Work
	Chapter 4. Towards Improving the Robustness of SGD
	Related Work
	Problem Setup
	Understanding MKL-SGD
	Convergence Rates
	Experiments
	Discussion and Future Work
	Conclusion
	Chapter 5. Balancing SGD: Faster Optimization for Imbalanced Classification
	Introduction
	Related Work
	Algorithm
	Theoretical Results for Logistic Regression
	Experiments

	Appendices
	Appendix A. Cheap-SVRG
	Proof of Theorem 2.4.2
	Mini-batches in CheapSVRG
	Proof of Theorem A.2.1
	Coordinate updates in CheapSVRG
	Appendix B. On the Generalization of Adaptive Methods
	Folklore theorem on convergence of matrices
	Proof of Proposition 3.3.1
	Proof of Proposition 3.3.2
	Proof of Proposition 3.4.1
	Proof of Proposition 3.4.2
	Proof of Proposition 3.4.3
	Proof of Lemma B.7.1
	Proof of Theorem 3.4.5
	Proof of Proposition B.9.1
	Proof of Lemma 3.5.1
	More details and experiments for the counter-example
	Deep Learning
	Appendix C. Appendix
	Additional Results for Section 3
	Proofs and supporting lemmas
	Additional results and proofs for Section 4.4
	More experimental results
	Appendix D. Balancing SGD
	Proof of Proposition 5.4.2
	Proof of bias convergence relation for the toy example
	Convergence
	Proof of Proposition 5.4.4
	Experiments
	Appendix E. Conclusions
	Bibliography
	Vita

