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● Whole Exome Sequencing (WES) provides a snapshot of 
the sample’s exonic regions (exome).

● By comparing this to a typical exome, we can identify 
structural variants (SVs) in the sample. 

● These SVs may play a role in the development of 
diseases such as multiple myeloma (MM). 

●

Because these are 
established cell lines, we 
have 59 experimentally 
determined SVs that we 
expect to see in each 
cell-line.

● Calculate structural variant burden for each 
cell-line’s output VCFs

● Characterise CNVs in each MM cell-lines.
● Use characterised SVs to detect neoantigens.
● Visualize characterised SVs.
● Display characterisation of MM cell-line with an 

interactive R shiny app.

Tools’ output vary in SV type & length

Acknowledgements 

Structural variants are alterations to the genome 
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Limitations
● Lack of coordinate info for known SVs
● Only evaluated tool with 59 known SVs even 

though each tool identifies 1000s of SVs
● No tool accounted for a specific type of SVs:  

Copy Number Variants (CNVs)
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Figure 1:  The 
methodology to Whole 
Exome Sequencing; 
Genomic DNA is 
fragmented and only 
regions that hybridize to 
the capture array 
(exons) are isolated and 
sequenced, providing a 
view of the exome 
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General Workflow

All SV Detection tools tested have poor recall of experimentally determined SVs

● Different published cancer studies have used 
these tools to identify SVs in exome data

● Given their poor recall rate with established SVs, 
we question these tools’ applicability to WES 
data.

● A reasonable approach may be considering only 
SVs detected by more than one tool.

● We identified 5783 SVs to characterize these cell 
lines.

Overlapping SV output

 # of SVs detected by N tools

Error range 
(+= bps)

2 3 4 5 6

0 5029 1070 73 3 0

10 9449 2573 294 5 0

100 20054 5783 862 20 0

1000 59280 17997 4880 456 0

Figure 4: Contrasting tool recall rates at the chromosomal (indicated by 
blue) and coordinate level (indicated by orange). SvABA’s unfiltered 
output has best recall of experimentally determined SVs (19.5%)

As the tools’ output 
had poor recall and 
little overlap,  we can 
be most confident in 
SVs detected by more 
than one tool.

Table 2: Number of SVs detected N tools with varying 
margins of allowed bp differences

Figure 2:  Proportion of SV types detected by each tool. 
Legend: BND: Breakend. DEL: Deletion, INS: Insertion

Figure 3:  Grouped box plot comparing the length (bp) of the structural variants 
detected by each tool. Note y-axis is log transformed.

However, recall of these 
SVs at the coordinate 
level was much lower 
among these tools. 
Strikingly, SvABA’s 
unfiltered output recall 
rate was 58% lower!

● Detecting SVs can lead to more personalised, 
affordable cancer treatment by predicting antigens 
specific to the SVs present in the patient’s cancer 
cells (neoantigen).

● As WES is much cheaper than Whole genome 
sequencing (WGS), effective SV detection on WES 
data would drastically reduce the costs of detecting a 
patient’s novel cancer-causing SVs

● However, as most SV detection tools are designed 
for WGS data, it’s unclear how well they work with 
WES data.

● To this end, we benchmarked SV detection tools on 
71 MM WES cell lines.  

We first computed 
recall of these SVs at 
the chromosomal level.  
SvABA and Delly had 
the best recall rates 
(78% and 28% 
respectively).

Detection of experimentally established  SV by tool

Sample Delly LUMPY/Smoove BreakDancer
SvABA 
filtered

SvABA 
unfiltered Manta Variant Description

KMM1 Y Y Y N Y N t(6,14)

KAS61 N Y Y Y Y Y t(4,14)

SKMM
1 Y N Y N Y N t(14,20)

PE1 Y N Y N Y N t(11,14)

Only four experimentally determined 
SVs were detected by >= three tools

Table 1: Experimentally determined 
SVs detected by at least 3 tools

(b
p)

We characterised these 
cell-lines with 5783 SVs 
found by 3 tools w/ an 
error range of 100 bp..
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