
STL 2.0: A PROPOSAL FOR A UNIVERSAL MULTI-MATERIAL
ADDITIVE MANUFACTURING FILE FORMAT

Jonathan D. Hiller, Hod Lipson
Mechanical and Aerospace Engineering

Cornell University
Ithaca NY 14853, USA

The de-facto standard STL file format has served the rapid prototyping
community for over two decades, but falls short with the advent of new
technological developments such as the ability to handle multiple and graded
materials, specify volumetric digital inkjet patterns and surface colors. We study a
variety of requirements for additive fabrication technologies and propose a new
compact XML-based file format. The new Additive Manufacturing File (AMF)
format allows the resolution-independent specification of geometry and material
properties. Regions may be defined geometrically either using a triangle mesh,
using functional representations, or through a voxel bitmap. Each region is
associated with a material, which may be defined as a base (single) material or
hierarchically by a combination of other materials, either functionally (enabling
smooth gradients) or voxel-wise (for arbitrary microstructure). Files can be self-
contained or refer to external or online material libraries. With a simple
conversion, the AMF file format is both forward and backwards compatible with
the current standard STL format, and the flexibility of the XML structure enables
additional features to be adopted as needed by CAD programs and future additive
manufacturing processes. Code and examples are publicly available.

Introduction
Additive manufacturing technology is quickly evolving from producing primarily single-
material, homogenous shapes to producing multi-material geometries in full color with
functionally graded materials and microstructures. Already, several vendor-specific file
formats have been introduced to overcome the lack of a standard interchange file format
that contains these features. This results in little or no compatibility between files for
machines from different vendors, such as the ObjDF format for Objet's ConnexTM
printers (Objet, 2009) and ZCorp's color ZPR format (ZCorporation, 2009). Here, we
propose a framework for a simple, intuitive file format to address the severe limitations
of the industry standard single-material STL file format with regards to the additive
manufacturing technology of the future.

 There is a tradeoff between the generality of a file format, and its usefulness for a
specific purpose (McMains et al., 2002). Thus, features designed to meet the needs of one
community may hinder the usefulness of a file format for other uses. In order to be
successful across the field of additive manufacturing, a file format should address the
following concerns:

(1) Technology independent: A file format should describe an object in a general way
such that any machine can build it to the best of its ability (Jacob et al., 1999). A suitable
file format should be resolution and layer-thickness independent, and must not contain

rosalief
Typewritten Text
Reviewed, accepted September 15, 2009

rosalief
Typewritten Text

rosalief
Typewritten Text
266

information specific to any one manufacturing process or technique. This does not negate
the inclusion of properties that only certain advanced machines support (color, multiple
materials, etc.), but they must be defined in such away to avoid exclusivity.

(2) Simplicity: A file format should be easy to implement and understand. A file should
be able to be read and debugged in a simple ASCII text viewer to encourage
understanding and adoption. However, this is at odds with the size requirements of the
file format. Also, there is no place for redundancy in a file format, and no identical
information should be stored in multiple places.

(3) Scalability: As the parts to print increase in size and complexity, the file format
should scale well. This includes being able to handle large arrays of identical objects,
complex repeated internal features (e.g. meshes), and multiple components arranged in
the optimal packing for printing.

(4) Future compatibility: In order to remain useful in a rapidly changing industry, a file
format must be easily extensible while remaining compatible with earlier versions and
technologies. This allows new features to be added as advances in technology warrant,
while still working flawlessly for simple homogenous geometries on the oldest hardware.

 Additionally, there are several specific aspects of an additive manufacturing
interchange format that are addressed in the proposed format to meet the demands of the
current generation of research and hardware. These pressing aspects include:

 Multiple/graded materials
 Colors and surface textures
 Hierarchical microstructure and mesostructure

Background
For the last two decades, the STL file format has been the industry standard for
transferring information between design programs and the software specific to a given
additive manufacturing hardware (Kumar and Dutta, 1997, Jurrens, 1999, Hague and
Reeves, 2000). An STL file contains information only about a surface mesh, and has no
provisions for representing color, texture, material, etc, although several extensions have
been proposed (but not widely accepted) (Chiu and Tan, 2000, Stroud and Xirouchakis,
2000). The surface is represented by an unordered list of triangles, and each triangle is
defined by 12 floating point numbers. A 3D surface normal is defined, followed by three
coordinates that define the vertices of the triangle in three dimensions. Already, this
contains redundant information, since the surface normal can be calculated from the order
and location of the three vertices. By default, the right-hand rule is used to define the
direction of the normal based on the order the points are encoded. Since each triangle is
represented separately, each vertex must be written repeatedly for every triangle that
shares that vertex (three or more times). This introduces leaks, where small rounding
errors result in vertices that do not precisely line up, which make subsequent slicing
algorithms ineffective without an intermediate "welding" step to (hopefully) repair these
defects.

rosalief
Typewritten Text
267

 Also, the STL file has no provisions for defining the physical units intended. Even
though pre-processing software can make an educated guess between inches or mm
depending on the build size of the machine, there is still unnecessary ambiguity. An
additional point of confusion regarding the STL file is that in fact there are two separate
file formats that may be used: binary and ASCII. The ASCII version exists to make the
format human readable, but the binary version is often used by mature programs to
minimize storage space. A summary of the advantages and disadvantages of the current
STL file format is shown in Table 1.

Table 1: Advantages and disadvantages of the current STL format.

Advantages Disadvantages
Simple Geometry leaks
Sequential memory access* No specified units
Portable Unnecessary redundancy
 Incompatible with color, multiple materials, etc
 Poor scalability
*Does not require large amounts of
RAM, critical in '80s Lacks auxiliary information

 Many 3D file formats have been used over the years for a wide variety of
purposes. Several of these have been proposed for use within the Additive Manufacturing
(AM) community to replace the STL. However, none has gained traction (Pratt et al.,
2002, Patil et al., 2002, Rock and Wozny, 1991) for two main reasons. First, up until
recently the AM end-user community has not needed functionality past what the STL
offered. Secondly, the more general file formats in existence include many features that
are irrelevant for the AM field, and do not include many features that would be useful,
which causes unnecessary coding and complexity.

 Several file formats that have been proposed for the additive manufacturing
community are summarized below:

 X3D (VRML): (Virtual Reality Modeling Language) This mesh-based file format
was intended to allow 3D content to be viewed over the web. As such, it includes
information about a 3D surface and its color, but also information that is not
relevant for AM, such as transparency, animations, lights, sounds, and embedded
navigation URLs. Other disadvantages include no provisions for defining multiple
materials within a given mesh or arbitrary microstructure.

 STEP: This format is a general-use solid model representation, using extruded
and swept solids, wireframe, boolean primitives modeling, and many other
modeling paradigms to represent a 3D object. (Gilman and Rock, 1995) As such it
is unnecessarily complex for the needs of the AM community.

 PLY: This format was intended to store and view data from 3D scanners. It uses
polygon meshes and can include information about texture and color. However,
like other purely mesh-based formats it does not define materials or
microstructure volumetrically.

rosalief
Typewritten Text
268

 SAT: The ACIS SAT format is widely used for boundary-representation (B-Rep)
objects in CAD packages. However, the entire format revolves around its internal
topological data structure, which makes it difficult to understand and unsuitable
for an exchange format.

 OBJ: This meshed file format is simple, compact, widely accepted in the 3D
modeling community, and can map textures easily. However, it lacks the ability to
define materials or microstructure volumetrically.

 DXF: Although the DXF format allows the definition of 3D triangle meshes and
solids, it was originally intended for 2D drawings and remains best suited for
such.

 3DS: Another triangular mesh-based format with color and texture information. It
is limited to 65536 vertices and polygons, and contains much information not
necessary for the AM industry, such as lighting and animation info.

 SLC: The SLC format represents individual 2D slices of a 3D object as contours
representing internal and external boundaries. However, since a specific Z-slice
distance is assumed, this format is not suitable for a cross-platform interchange
format.

Proposed AMF Format
In order to address the lack of a suitable file format for the additive manufacturing
industry, we propose the following framework for a simple, flexible, extensible file
format.

 First, the information should be stored in standard XML format. Using this widely
accepted data format opens the door to a rich host of tools for creating, viewing,
manipulating, and storing AMF files. However, the beauty of XML is that it
accomplishes this without alienating programmers who wish to code low-level native
parsing/storing routines. XML is human readable, which makes debugging errors in the
file possible. Unlike many of the current file formats which specify completely separate
ASCII and binary file formats, the AMF format will be store entirely in ASCII XML,
then compressed if desired in a post-processing step using highly optimized standardized
compression routines. This allows significantly smaller file sizes without maintaining
multiple parallel file specifications.

 Another significant advantage of XML is its inherent flexibility. Missing or extra
parameters do not present a problem for a parser as long as the document conforms to the
XML standard. Practically, this allows new features to be added without needing to
update old versions of the parser, such as in legacy software.

Top Level Tags
There are four top level tags in the AMF file, of which only a single object tag is required
for a fully functional AMF file that encompasses the usefulness of the STL format.

<Object> The object tag defines a region or regions of material, each of which are
associated with a material ID for printing.

rosalief
Typewritten Text
269

<Constellation> The constellation tag hierarchically combines objects and other
constellations into a relative pattern for printing. If no constellation tags are specified,
each object tag will be imported with no relative position data.

<Palette> The palette tag defines one or more named materials for printing with an
associated material ID. If no palette tag is included, a single default material is assumed.

<Print> The print tag specifies which constellations and/or objects to print, and is
necessary only if multiple constellations or objects introduce ambiguity as to how many
of each to print.

Examples
Basic STL Equivalent
The first example presents a simple case of an AMF file that contains all the functionality
of an STL file (Figure 1). Note that in the sample code, the ellipses (...) denotes a
continuing, similar list of tags.

(a) (b)

Figure 1: The AMF file can use a simple list of vertices and triangles to define a mesh and replicate the
functionality of an STL file, but without leaks. The XML-compliant format makes storing, parsing, and
reading the file easy.

<?xml version="1.0"?>
<AMF>
 <Object PrintID = "0" units = "mm">
 <Mesh>
 <Vertices>
 <Vertex VertexID="0">
 <VertexLocation x="0" y="1.332" z="3.715"/>
 </Vertex>
 <Vertex VertexID="1">
 <VertexLocation x="0" y="1.269" z="3.715"/>
 </Vertex>
 ...
 </Vertices>

 <Region FillMaterialID = "0">
 <Triangle V1 = "0" V2 = "1" V3 = "3"/>
 <Triangle V1 = "0" V2 = "1" V3 = "4"/>
 ...
 </Region>
 </Mesh>
 </Object>
</AMF>

 The opening <AMF> tag is necessary to denote the file type, as well as fulfill the
requirement that all XML files have a single root element. The top level <Object> tag
contains two sub-tags: <Vertices> and <Region>. The required <Vertices> tag lists all
vertices that are used in this object, and assigns a unique vertex ID to each. The sub-tag
<VertexLocation> gives the position of the point in 3D space. After the vertex
information, at least one <Region> tag must be included, using the <Triangle> tag to
define triangles by the right-hand rule (vertices listed in counter-clockwise order as
viewed from the outside) from the indices of the defined vertices. The problem of STL

rosalief
Typewritten Text
270

leaks is solved by the fact that common vertices of triangles reference the same <Vertex>
tag.

Multiple-material STL equivalent
One of the most critical limitations of the current STL format is the lack of support for
multiple materials. With the AMF format, this minor extension introduces the <Palette>
tag. Here, any number of materials may be defined by name and associated with a
material ID. Other relevant attributes may also be added to each material. Then, within
the <mesh> tags, additional <Region> tags can be added that reference different material
indices. Since the vertex list is shared, no leaks are introduced at the boundaries between
materials (Figure 2).

(a) (b)
Figure 2: With the addition of the palette tag, multiple materials may be easily defined and assigned to
different regions. A common vertex list ensures no leaks between materials.

<?xml version="1.0"?>
<AMF>
 <Palette>
 <Material MaterialID = "0">
 <Name>StiffMaterial</Name>
 </Material>
 <Material MaterialID = "1">
 <Name>FlexibleMaterial</Name>
 </Material>
 </Palette>

 <Object PrintID = "0" units = "mm">
 <Mesh>
 <Vertices>
 ...
 </Vertices>

 <Region FillMaterialID = "0">
 ...
 </Region>
 <Region FillMaterialID = "1">
 <Triangle V1 = "5" V2 = "6" V3 = "7"/>
 <Triangle V1 = "5" V2 = "7" V3 = "9"/>
 ...
 </Region>
 </Mesh>
 </Object>
</AMF>

Gradated material example
The power of the material palette comes from the fact that "meta" materials may be
defined using any previously defined (i.e. lower material index) materials. These "meta"
materials may be defined functionally, enabling arbitrarily simple or complex gradients
of two or more materials to be defined as a single material (Figure 3). When defining
functions, the only variables that should be used are "x", "y" and "z", representing the
respective spatial coordinates. A list of acceptable operations is given in Table 2.

rosalief
Typewritten Text
271

Table 2: Operators used in the functional representation of material gradients and geometry in the AMF
format.

Precedence Operator Description
1 () Parentheses block
2 ^ Power
3 * Multiply
3 / Divide
3 % Modulus
4 + Add
4 - Subtract
5 = Equal
5 <, <= Less than (or equal to)
5 >, >= Greater than (or equal to)
6 & Intersection (Logical AND)
6 | Union (Logical OR)
6 \ Difference (Logical XOR)
6 ~ Negation (Logical NOT)

 The computational process to determine the relative concentrations of materials at
any given sample point is quite easy. The equation tag for each material present is
evaluated to a single number by plugging in the desired 3D spatial coordinates. All values
are assumed to be zero where not defined, and are also floored at zero, so that it is
possible to have regions that are fully a single material. Then the values for each material
are added and the actual concentration of each is calculated as its proportion of the sum.
Any equation using an undefined or self-referencing material ID is ignored.

(a) (b)

Figure 3: A "meta" material is defined in the material palette as a functional combination of two previously
defined materials. This enables smooth gradients and arbitrary 3D material distributions within an object.

<?xml version="1.0"?>
<AMF>
 <Palette>
 <Material MaterialID = "0">
 <Name>StiffMaterial</Name>
 </Material>
 <Material MaterialID = "1">
 <Name>FlexibleMaterial</Name>
 </Material>
 <Material MaterialID = "2">
 <Name>GradientMaterial</Name>
 <Equation UseMaterialID = "0">0.30*X</Equation>
 <Equation UseMaterialID = "1">0.30*(1-X)</Equation>
 </Material>
 </Palette>

 <Object PrintID = "0" units = "mm">
 ...
 </Object>
</AMF>

Mesostructure example
Meta-materials may also be defined as a tiled combination of materials and empty space
to create micro and meso structures that are repeated throughout the region. These may

rosalief
Typewritten Text
272

be defined functionally, by a mesh or a voxel bitmap. This allows complex internal
structure to be defined once, then tiled for efficient use of storage space. The region is
tiled at its envelope dimension, or in the case of the functional representation the modulus
operator may be used to create periodic structures.

(a) (b)
Figure 4: Mesostructure is defined by a voxel bitmap here using a simple repeated mesh pattern. Any tiling
size and material combination may be used.

<?xml version="1.0"?>
<AMF>
 <Palette>
 <Material MaterialID = "0">
 <Name>StiffMaterial</Name>
 </Material>
 <Material MaterialID = "1">
 <Name>FlexibleMaterial</Name>
 </Material>
 <Material MaterialID = "2">
 <Name>MesoStructureMaterial</Name>
 <Lattice>
 ...
 </Lattice>
 <Structure>
 <X_Voxels>10</X_Voxels>
 <Y_Voxels>10</Y_Voxels>
 <Z_Voxels>10</Z_Voxels>
 <Data Layer = "1">0000110000...</Data>
 <Data Layer = "2">0001111000...</Data>
 ...
 </Structure>
 </Material>
 </Palette>

 <Object PrintID = "0" units = "mm">
 ...
 </Object>
</AMF>

Colored surface example
It is desirable to be able to define surface properties of the geometry, such as color, that
do not necessarily need to penetrate into the 3D body. Thus, a <Color> tag can be
introduced at either the <Object> level, the <Region> level, or the <Vertex> level, in
increasing order of precedence. Thus, the entire object or region can be made one color
with a single tag, but certain vertices can be recolored individually. All RGB values must
be real values ranging from 0 to 1. Also, it is possible to map images onto the surface of
the part. This is accomplished by adding <ColorMap> or <ColorFile> tags with unique
map ID numbers. Then vertices in the vertex list are associated with the desired map ID
and pixel location within the image. This way, any triangle in which all three vertices
have a <VertexMap> tag with the same ID will have that associated triangle of the image
mapped onto it. Vertices may have more than one <VertexMap> tag, which can also refer
to material distribution on the surface (with an associated depth) or a physical texture
(bump map) that is to be mapped onto the surface. In the case of ambiguity (I.E. multiple
color maps) the lowest map ID takes precedence.

rosalief
Typewritten Text
273

(a) (b)

Figure 5: Surface properties such as color and texture may be added with several additional tags.
Individual regions or vertices may be colored, or a bitmap can be mapped onto the 3D surface.

<?xml version="1.0"?>
<AMF>
 <Object PrintID = "0" units = "mm">
 <Mesh>
 <ColorFile MapID="0">
 <File>Logo.bmp</File>
 </ColorFile>
 <Vertices>
 <Vertex VertexID="0">
 <VertexLocation x="0" y="1.332" z="3.715"/>
 <VertexMap UseMapID="0" MapXPixel="65" MapYPixel="87"/>
 </Vertex>
 <Vertex VertexID="1">
 <VertexLocation x="0" y="1.269" z="3.715"/>
 <VertexMap UseMapID="0" MapXPixel="64" MapYPixel="87"/>
 </Vertex>
 <Vertex VertexID="2">
 <VertexLocation x="0" y="1.310" z="3.587"/>
 <VertexMap UseMapID="0" MapXPixel="32" MapYPixel="10"/>
 </Vertex>
 ...
 </Vertices>

 <Region FillMaterialID = "0">
 <Color R = "0" G = "0" B = "0.5"/>
 <Triangle V1 = "0" V2 = "1" V3 = "2"/>
 <Triangle V1 = "0" V2 = "1" V3 = "4"/>
 ...
 </Region>
 </Mesh>
 </Object>
</AMF>

CSG (Computational Solid Geometry) Example
In addition to defining regions by a mesh, there are cases in which it is desirable to define
regions via computational solid geometry, or a functional representation. From a
complexity standpoint, it is not desirable to replicate all the features of the advanced
CAD engines such as ACIS in the file format. However, regions may be defined using
the <FRep> tag as an equation involving the three variable "X", "Y", and "Z", along with
any number of unions, intersections, differences, and negations. By using binary
operators "less than" and "greater than", complex regions may defined. By convention,
wherever the equation evaluates to "true", geometry is present and wherever it is false, no
geometry is present. If color is to be added, separate continuous <RedEquation>,
<GreenEquation>, and <BlueEquation> tags should be added. The additional CDATA
text in the file is a requirement of XML when storing arbitrary text, such as an equation.

<?xml version="1.0"?>
<AMF>
 <Object PrintID = "0" units = "mm">
 <FRep MaterialID = "0">
 <GeometryEquation>
 <![CDATA[X^2+Y^2+Z^2-4 <= 0 & Z >= 0]]>
 </GeometryEquation>
 </FRep>
 </Object>
</AMF>

rosalief
Typewritten Text
274

Additional Capabilities and Extensions
In addition to the <Mesh> and the <FRep> tags, a region can also be defined by the
<Voxels> tag. Within the <Voxels> tag, a <Lattice> tag sets up the dimensions and
packing type of the voxels, and a <Structure> tag defines a three dimensional matrix of
material IDs to define the geometry and materials. The <Voxels> tag can also be used for
a material in the palette to define complex, repeating microstructures of multiple
materials.

 Materials within the palette may refer to external material library files using the
<File> tag. This allows vendors to maintain a database of existing materials, including
useful material data, and for an AMF file to specify a specific material to be built with.
Also, objects can include a <tolerance> to define the build tolerances that are required.

 This paper is not intended to be an exhaustive tutorial on the AMF file format. A
glossary of available tags is included in Appendix 1, along with a short description of
each. Sample code and future updates are available at http://ccsl.mae.cornell.edu/AMF.

Performance
One disadvantage of the XML format is that the human readability comes at the cost of
file size. In order to compare the AMF file sizes to the standard STL files, a sample mesh
geometry of a rook was created with 3680 triangles. This geometry was saved as both
ASCII and binary STL files. As expected, the binary STL exhibited a much smaller file
size, or about 24% of the ASCII STL version (Figure 6). The XML text version of the
AMF file was already 44% smaller than the ASCII STL file, and after applying standard
compression routines, the AMF file was approximately 25% smaller than the binary STL.
Compressing the binary STL yielded a file that was still 48% larger than the compressed
AMF. Different types of compression routines may also be used for the XML (Ng et al.,
2006), including those in which elements can be efficiently extracted without
decompressing the entire file.

File Size of STL vs AMF File Formats

0

100

200

300

400

500

600

700

800

900

Ascii STL Binary STL AMF Ascii STL
(compressed)

Binary STL
(compressed)

AMF
(compressed)

F
il

e
S

iz
e

(K
B

)

(a) (b)

Figure 6: The size of files generated for both STL and AMF formats are shown in (a) for a rook geometry
with 3680 triangles (b). The ASCII readable AMF file is 44% smaller than the equivalent ASCII STL, and
after compression the AMF is 24% smaller than the binary STL and 67% smaller than the similarly
compressed binary STL.

rosalief
Typewritten Text
275

Conclusion
Here we proposed a replacement for the STL file format for use in additive
manufacturing applications. We addressed the shortcomings of the STL file—namely
leaks, lack of multi-material support, and no provisions for surface data—with a flexible
XML-based format. This allows the file format to be extensible while maintaining
compatibility with legacy applications. The AMF format is easily forwards and
backwards compatible with STL files with a simple conversion, which will allow
adoption driven by need and not by mandate as additive manufacturing hardware
becomes more versatile. Additionally, the AMF format is easy to understand and human
readable (before standard compression routines) which will allow for easy debugging and
adoption by software developers. Ultimately, the success of a file format depends on its
adoption by both manufacturers and users, and its acceptance as a formal standard.

Open source code for implementation of a parser and viewer for AMF files is available at
http://ccsl.mae.cornell.edu/AMF

References

CHIU, W. K. & TAN, S. T. (2000) Multiple material objects: from CAD representation to data
format for rapid prototyping. Computer-Aided Design, 32, 707-717.

GILMAN, C. R. & ROCK, S. J. (1995) The use of STEP to integrate design and solid freeform
fabrication. Solid Freeform Fabrication Symposium. Austin, TX.

HAGUE, R. J. M. & REEVES, P. E. (2000) Rapid Prototyping, Tooling and Manufacturing,
Rapra Technology Ltd.

JACOB, G. G. K., KAI, C. C. & MEI, T. (1999) Development of a new rapid prototyping
interface. Computers in Industry, 39, 61-70.

JURRENS, K. K. (1999) Standards for the rapid prototyping industry. Rapid Prototyping
Journal, 5, 169-178.

KUMAR, V. & DUTTA, D. (1997) An assessment of data formats for layered manufacturing.
Advances in Engineering Software, 28, 151-164.

MCMAINS, S., SMITH, J. & SEQUIN, C. (2002) The evolution of a layered manufacturing
interchange format. ASME Design Engineering Technical Conferences. Montreal,
Quebec.

NG, W., LAM, W.-Y. & CHENG, J. (2006) Comparative Analysis of XML Compression
Technologies. World Wide Web, 9, 5-33.

OBJET (2009) CADMatrix for Solidworks Brochure.
PATIL, L., DUTTA, D., BHATT, A. D., JURRENS, K., LYONS, K., PRATT, M. J. & SRIRAM,

R. D. (2002) A proposed standards-based approach for representing heterogeneous
objects for layered manufacturing. Rapid Prototyping Journal, 8, 134-146.

PRATT, M. J., BHATT, A. D., DUTTA, D., LYONS, K. W., PATIL, L. & SRIRAM, R. D.
(2002) Progress towards an international standard for data transfer in rapid prototyping
and layered manufacturing. Computer-Aided Design, 34, 1111-1121.

ROCK, S. J. & WOZNY, M. J. (1991) A Flexible File Format for Solid Freeform Fabrication. IN
MARCUS, H. L. (Ed. Solid Freeform Fabrication Symposium. Austin, TX.

STROUD, I. & XIROUCHAKIS, P. C. (2000) STL and extensions. Advances in Engineering
Software, 31, 83-95.

ZCORPORATION (2009) ZEdit Software.

rosalief
Typewritten Text
276

Appendix 1
Summary of tags for the AMF file format:

Tag Parent tag(s) Attributes
Multi
tags? Description

<AMF> No Root XML tag

<Print> <AMF> No
Contains information about which
objects/constellations to print

<Instance>
<Print>,
<Constellation> Yes An instance of an object or constellation to print

 UsePrintID The PrintID of the object or constellation to use

<Translate> <Instance> No
Translate the relative position of an object or
constellation

 DX, DY, DZ
the distance of translation in x, y, and z
directione

<Rotate> <Instance> Yes
Rotate the relative position of an object or
constellation

 Ax, Ay, Az The axis to rotate about

 Deg
How much to rotate about the defined axis, in
degrees by the right-hand rule

<Constellation> <AMF> Yes
A collection of objects or constellations with
specific relative locations

 PrintID Assigns the PrintID for the constellation

<Object> <AMF> Yes An object definition

 PrintID Assigns the PrintID for the constellation

 Units
The units to be used. May be "IN", "MM", or "M"
for inches, millimeters, and meters respectively.

<Tolerance>
<Object>,
<Region> No Defines a desired tolerance

 XT, YT, ZT
The tolerance (in physical units) to be achieved if
possible

<Color>

<Object>,
<Region>,
<Vertex> No

The color to display the object in, and to print if
supported

 R, G, B Red, Green, and Blue values ranging from 0 to 1

<Mesh> <Object> Yes A 3D mesh hull

<Vertices> <Mesh> No
The list of vertices to be used in defining
triangles

<Vertex> <Vertices> Yes A vertex to be referenced in triangles

 VertexID Unique ID of this vertex.

<VertexLocation> <Vertex> No The 3D location of this vertex

 X, Y, Z 3D coordinates in specified units of this vertex

<VertexMap> <Vertex> Yes
Maps this vertex onto the 2D coordinates of the
specified bitmap

 UseMapID Which map to use

MapXPixel,
MapYPixel

The coordinates within the map to map to this
vertex

<Region> <Mesh> Yes Defines a region from the established vertex list

 FillMaterialID Which MaterialID from the Palette to use

<Triangle> <Region> Yes
Defines a 3D triangle from three vertices,
according to the right-hand rule

 V1, V2, V3 VertexIDs of the desired vertices

<HeightFile> <Mesh> Yes
References an external heightmap to apply
physical texture to a surface

 MapID MapID for mapping this heightmap onto vertices

 Amplitude
Defines the height of the bump-map as it is
applied to a surface.

<File>

<HeightFile>,
<ColorFile>,
<Material> No The location of the file to use

rosalief
Typewritten Text
277

Tag Parent tag(s) Attributes
Multi
tags? Description

<HeightMap> <Mesh> Yes
An internally stored bump map for physical
textures.

 MapID MapID for mapping this heightmap onto vertices

 Amplitude
Defines the height of the bump-map as it is
applied to a surface.

<XPixels>,
<YPixels>

<HeightMap>,
<MaterialMap>,
<ColorMap> No Defines the size of the bitmap to be encoded

<PixelData>
<HeightMap>,
<ColorMap> No

The actual pixel data in order RGB from lowest
to highest X, iterating from lowest to highest Y

<MaterialMap> <Mesh> Yes An internally stored material map for the surface

 MapID
MapID for mapping this materialmap onto
vertices

 Amplitude
Defines the depth of the material from the
surface

<IndexData> <MaterialMap> No
Actual material index data in order from lowest to
highest X, iterating from lowest to highest Y

<ColorFile> <Mesh> Yes
References an external file to be used as a color
map.

 MapID MapID for mapping this colormap onto vertices

<ColorMap> <Mesh> Yes An internally stored color map for surface color

 MapID MapID for mapping this colormap onto vertices

<FRep>
<Mesh>,
<Material> Yes

Defines a shape using computational solid
geometry

 FillMaterialID Which MaterialID from the Palette to use

<GeometryEquatio
n> <FRep> No

Defines an equation using X, Y, and Z that
evaluates to true for regions of material and false
elsewhere

<RedEquation>,
<GreenEquation>,
<BlueEquation> <FRep> No

Defines a color to use from a real-valued
equation using X, Y, and Z

<Voxels>
<Mesh>,
<Material> Yes

Defines a 3D bitmap of voxels, each associated
with a material index

<Lattice> <Voxels> No
Defines the lattice to be used for the voxel
bitmap.

<Lattice_Dim> <Lattice> No The main dimension (distance) between voxels
<X_Dim_Adj>,
<Y_Dim_Adj>,
<Z_Dim_Adj>, <Lattice> No

Amount to adjust the LatticeDim in each
dimension (0 to 1)

<X_Line_Offset>,
<Y_Line_Offset> <Lattice> No

Amount to offset each line within each layer in X
and Y dimensions

<X_Layer_Offset>,
<Y_Layer_Offset> <Lattice> No Amount to offset each subsequent layer

<Structure> <Voxels> No Defines a 3D spatial arrangement of voxels
<X_Voxels>,
<Y_Voxels>,
<Z_Voxels> <Structure> No The size (in voxels) of the specified region

<VoxelData> <Structure> No
Array of material indicies iterating through x,
then y, then z

<Palette> <AMF> No Contains the materials that make up the objects

<Material> <Palette> Yes An available material

 MaterialID A unique material ID

<Name> <Material> No A descriptive name for the material

rosalief
Typewritten Text
278

