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The de-facto standard STL file format has served the rapid prototyping 
community for over two decades, but falls short with the advent of new 
technological developments such as the ability to handle multiple and graded 
materials, specify volumetric digital inkjet patterns and surface colors. We study a 
variety of requirements for additive fabrication technologies and propose a new 
compact XML-based file format. The new Additive Manufacturing File (AMF) 
format allows the resolution-independent specification of geometry and material 
properties. Regions may be defined geometrically either using a triangle mesh, 
using functional representations, or through a voxel bitmap. Each region is 
associated with a material, which may be defined as a base (single) material or 
hierarchically by a combination of other materials, either functionally (enabling 
smooth gradients) or voxel-wise (for arbitrary microstructure). Files can be self-
contained or refer to external or online material libraries. With a simple 
conversion, the AMF file format is both forward and backwards compatible with 
the current standard STL format, and the flexibility of the XML structure enables 
additional features to be adopted as needed by CAD programs and future additive 
manufacturing processes. Code and examples are publicly available. 

 
Introduction 
Additive manufacturing technology is quickly evolving from producing primarily single-
material, homogenous shapes to producing multi-material geometries in full color with 
functionally graded materials and microstructures. Already, several vendor-specific file 
formats have been introduced to overcome the lack of a standard interchange file format 
that contains these features. This results in little or no compatibility between files for 
machines from different vendors, such as the ObjDF format for Objet's ConnexTM 
printers (Objet, 2009) and ZCorp's color ZPR format (ZCorporation, 2009). Here, we 
propose a framework for a simple, intuitive file format to address the severe limitations 
of the industry standard single-material STL file format with regards to the additive 
manufacturing technology of the future. 
 
 There is a tradeoff between the generality of a file format, and its usefulness for a 
specific purpose (McMains et al., 2002). Thus, features designed to meet the needs of one 
community may hinder the usefulness of a file format for other uses. In order to be 
successful across the field of additive manufacturing, a file format should address the 
following concerns: 
 
(1) Technology independent: A file format should describe an object in a general way 
such that any machine can build it to the best of its ability (Jacob et al., 1999). A suitable 
file format should be resolution and layer-thickness independent, and must not contain 
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information specific to any one manufacturing process or technique. This does not negate 
the inclusion of properties that only certain advanced machines support (color, multiple 
materials, etc.), but they must be defined in such away to avoid exclusivity. 
 
(2) Simplicity: A file format should be easy to implement and understand. A file should 
be able to be read and debugged in a simple ASCII text viewer to encourage 
understanding and adoption. However, this is at odds with the size requirements of the 
file format. Also, there is no place for redundancy in a file format, and no identical 
information should be stored in multiple places. 
 
(3) Scalability: As the parts to print increase in size and complexity, the file format 
should scale well. This includes being able to handle large arrays of identical objects, 
complex repeated internal features (e.g. meshes), and multiple components arranged in 
the optimal packing for printing. 
 
(4) Future compatibility: In order to remain useful in a rapidly changing industry, a file 
format must be easily extensible while remaining compatible with earlier versions and 
technologies. This allows new features to be added as advances in technology warrant, 
while still working flawlessly for simple homogenous geometries on the oldest hardware. 
 
 Additionally, there are several specific aspects of an additive manufacturing 
interchange format that are addressed in the proposed format to meet the demands of the 
current generation of research and hardware. These pressing aspects include: 

 Multiple/graded materials 
 Colors and surface textures 
 Hierarchical microstructure and mesostructure 

 
 
Background 
For the last two decades, the STL file format has been the industry standard for 
transferring information between design programs and the software specific to a given 
additive manufacturing hardware (Kumar and Dutta, 1997, Jurrens, 1999, Hague and 
Reeves, 2000). An STL file contains information only about a surface mesh, and has no 
provisions for representing color, texture, material, etc, although several extensions have 
been proposed (but not widely accepted) (Chiu and Tan, 2000, Stroud and Xirouchakis, 
2000). The surface is represented by an unordered list of triangles, and each triangle is 
defined by 12 floating point numbers. A 3D surface normal is defined, followed by three 
coordinates that define the vertices of the triangle in three dimensions. Already, this 
contains redundant information, since the surface normal can be calculated from the order 
and location of the three vertices. By default, the right-hand rule is used to define the 
direction of the normal based on the order the points are encoded. Since each triangle is 
represented separately, each vertex must be written repeatedly for every triangle that 
shares that vertex (three or more times). This introduces leaks, where small rounding 
errors result in vertices that do not precisely line up, which make subsequent slicing 
algorithms ineffective without an intermediate "welding" step to (hopefully) repair these 
defects. 
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 Also, the STL file has no provisions for defining the physical units intended. Even 
though pre-processing software can make an educated guess between inches or mm 
depending on the build size of the machine, there is still unnecessary ambiguity. An 
additional point of confusion regarding the STL file is that in fact there are two separate 
file formats that may be used: binary and ASCII. The ASCII version exists to make the 
format human readable, but the binary version is often used by mature programs to 
minimize storage space. A summary of the advantages and disadvantages of the current 
STL file format is shown in Table 1. 
 

Table 1: Advantages and disadvantages of the current STL format. 

Advantages Disadvantages 
Simple Geometry leaks 
Sequential memory access* No specified units 
Portable Unnecessary redundancy 
 Incompatible with color, multiple materials, etc 
 Poor scalability 
*Does not require large amounts of 
RAM, critical in '80s Lacks auxiliary information 

 
 Many 3D file formats have been used over the years for a wide variety of 
purposes. Several of these have been proposed for use within the Additive Manufacturing 
(AM) community to replace the STL. However, none has gained traction (Pratt et al., 
2002, Patil et al., 2002, Rock and Wozny, 1991) for two main reasons. First, up until 
recently the AM end-user community has not needed functionality past what the STL 
offered. Secondly, the more general file formats in existence include many features that 
are irrelevant for the AM field, and do not include many features that would be useful, 
which causes unnecessary coding and complexity. 
 
 Several file formats that have been proposed for the additive manufacturing 
community are summarized below:  

 X3D (VRML): (Virtual Reality Modeling Language) This mesh-based file format 
was intended to allow 3D content to be viewed over the web. As such, it includes 
information about a 3D surface and its color, but also information that is not 
relevant for AM, such as transparency, animations, lights, sounds, and embedded  
navigation URLs. Other disadvantages include no provisions for defining multiple 
materials within a given mesh or arbitrary microstructure. 

 STEP: This format is a general-use solid model representation, using extruded 
and swept solids, wireframe, boolean primitives modeling, and many other 
modeling paradigms to represent a 3D object. (Gilman and Rock, 1995) As such it 
is unnecessarily complex for the needs of the AM community. 

 PLY: This format was intended to store and view data from 3D scanners. It uses 
polygon meshes and can include information about texture and color. However, 
like other purely mesh-based formats it does not define materials or 
microstructure volumetrically. 
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 SAT: The ACIS SAT format is widely used for boundary-representation (B-Rep) 
objects in CAD packages. However, the entire format revolves around its internal 
topological data structure, which makes it difficult to understand and unsuitable 
for an exchange format. 

 OBJ: This meshed file format is simple, compact, widely accepted in the 3D 
modeling community, and can map textures easily. However, it lacks the ability to 
define materials or microstructure volumetrically. 

 DXF: Although the DXF format allows the definition of 3D triangle meshes and 
solids, it was originally intended for 2D drawings and remains best suited for 
such. 

 3DS: Another triangular mesh-based format with color and texture information. It 
is limited to 65536 vertices and polygons, and contains much information not 
necessary for the AM industry, such as lighting and animation info. 

 SLC: The SLC format represents individual 2D slices of a 3D object as contours 
representing internal and external boundaries. However, since a specific Z-slice 
distance is assumed, this format is not suitable for a cross-platform interchange 
format. 

 
 
Proposed AMF Format 
In order to address the lack of a suitable file format for the additive manufacturing 
industry, we propose the following framework for a simple, flexible, extensible file 
format. 
 
 First, the information should be stored in standard XML format. Using this widely 
accepted data format opens the door to a rich host of tools for creating, viewing, 
manipulating, and storing AMF files. However, the beauty of XML is that it 
accomplishes this without alienating programmers who wish to code low-level native 
parsing/storing routines. XML is human readable, which makes debugging errors in the 
file possible. Unlike many of the current file formats which specify completely separate 
ASCII and binary file formats, the AMF format will be store entirely in ASCII XML, 
then compressed if desired in a post-processing step using highly optimized standardized 
compression routines. This allows significantly smaller file sizes without maintaining 
multiple parallel file specifications. 
 
 Another significant advantage of XML is its inherent flexibility. Missing or extra 
parameters do not present a problem for a parser as long as the document conforms to the 
XML standard. Practically, this allows new features to be added without needing to 
update old versions of the parser, such as in legacy software. 
 
Top Level Tags 
There are four top level tags in the AMF file, of which only a single object tag is required 
for a fully functional AMF file that encompasses the usefulness of the STL format. 
 
<Object> The object tag defines a region or regions of material, each of which are 
associated with a material ID for printing. 
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<Constellation> The constellation tag hierarchically combines objects and other 
constellations into a relative pattern for printing. If no constellation tags are specified, 
each object tag will be imported with no relative position data. 
 
<Palette> The palette tag defines one or more named materials for printing with an 
associated material ID. If no palette tag is included, a single default material is assumed. 
 
<Print> The print tag specifies which constellations and/or objects to print, and is 
necessary only if multiple constellations or objects introduce ambiguity as to how many 
of each to print. 
 
Examples 
Basic STL Equivalent 
The first example presents a simple case of an AMF file that contains all the functionality 
of an STL file (Figure 1). Note that in the sample code, the ellipses (...) denotes a 
continuing, similar list of tags. 
 

 
(a) (b) 

Figure 1: The AMF file can use a simple list of vertices and triangles to define a mesh and replicate the 
functionality of an STL file, but without leaks. The XML-compliant format makes storing, parsing, and 
reading the file easy.  

<?xml version="1.0"?> 
<AMF> 
  <Object PrintID = "0" units = "mm"> 
    <Mesh> 
      <Vertices> 
        <Vertex VertexID="0"> 
          <VertexLocation x="0" y="1.332" z="3.715"/> 
        </Vertex> 
        <Vertex VertexID="1"> 
          <VertexLocation x="0" y="1.269" z="3.715"/> 
        </Vertex> 
        ... 
      </Vertices> 
 
      <Region FillMaterialID = "0"> 
        <Triangle V1 = "0" V2 = "1" V3 = "3"/> 
        <Triangle V1 = "0" V2 = "1" V3 = "4"/> 
        ... 
      </Region> 
    </Mesh> 
  </Object> 
</AMF> 

 

 
 The opening <AMF> tag is necessary to denote the file type, as well as fulfill the 
requirement that all XML files have a single root element. The top level <Object> tag 
contains two sub-tags: <Vertices> and <Region>. The required <Vertices> tag lists all 
vertices that are used in this object, and assigns a unique vertex ID to each. The sub-tag 
<VertexLocation> gives the position of the point in 3D space. After the vertex 
information, at least one <Region> tag must be included, using the <Triangle> tag to 
define triangles by the right-hand rule (vertices listed in counter-clockwise order as 
viewed from the outside) from the indices of the defined vertices. The problem of STL 
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leaks is solved by the fact that common vertices of triangles reference the same <Vertex> 
tag. 
 
Multiple-material STL equivalent 
One of the most critical limitations of the current STL format is the lack of support for 
multiple materials. With the AMF format, this minor extension introduces the <Palette> 
tag. Here, any number of materials may be defined by name and associated with a 
material ID. Other relevant attributes may also be added to each material. Then, within 
the <mesh> tags, additional <Region> tags can be added that reference different material 
indices. Since the vertex list is shared, no leaks are introduced at the boundaries between 
materials (Figure 2). 
 

(a) (b) 
Figure 2: With the addition of the palette tag, multiple materials may be easily defined and assigned to 
different regions. A common vertex list ensures no leaks between materials. 

<?xml version="1.0"?> 
<AMF> 
  <Palette> 
    <Material MaterialID = "0"> 
      <Name>StiffMaterial</Name> 
    </Material> 
    <Material MaterialID = "1"> 
      <Name>FlexibleMaterial</Name> 
    </Material> 
  </Palette> 
 
  <Object PrintID = "0" units = "mm"> 
    <Mesh> 
      <Vertices> 
        ... 
      </Vertices> 
 
      <Region FillMaterialID = "0"> 
        ... 
      </Region> 
      <Region FillMaterialID = "1"> 
        <Triangle V1 = "5" V2 = "6" V3 = "7"/> 
        <Triangle V1 = "5" V2 = "7" V3 = "9"/> 
        ... 
      </Region> 
    </Mesh> 
  </Object> 
</AMF> 

 
Gradated material example 
The power of the material palette comes from the fact that "meta" materials may be 
defined using any previously defined (i.e. lower material index) materials. These "meta" 
materials may be defined functionally, enabling arbitrarily simple or complex gradients 
of two or more materials to be defined as a single material (Figure 3). When defining 
functions, the only variables that should be used are "x", "y" and "z", representing the 
respective spatial coordinates. A list of acceptable operations is given in Table 2.  

rosalief
Typewritten Text
271



 

Table 2: Operators used in the functional representation of material gradients and geometry in the AMF 
format. 

Precedence Operator Description 
1 () Parentheses block 
2 ^ Power 
3 * Multiply 
3 / Divide 
3 % Modulus 
4 + Add 
4 - Subtract 
5 = Equal 
5 <, <= Less than (or equal to) 
5 >, >= Greater than (or equal to) 
6 & Intersection (Logical AND) 
6 | Union (Logical OR) 
6 \ Difference (Logical XOR) 
6 ~ Negation (Logical NOT) 

 
 The computational process to determine the relative concentrations of materials at 
any given sample point is quite easy. The equation tag for each material present is 
evaluated to a single number by plugging in the desired 3D spatial coordinates. All values 
are assumed to be zero where not defined, and are also floored at zero, so that it is 
possible to have regions that are fully a single material. Then the values for each material 
are added and the actual concentration of each is calculated as its proportion of the sum. 
Any equation using an undefined or self-referencing material ID is ignored.  
 

 
(a) (b) 

Figure 3: A "meta" material is defined in the material palette as a functional combination of two previously 
defined materials. This enables smooth gradients and arbitrary 3D material distributions within an object. 

<?xml version="1.0"?> 
<AMF> 
  <Palette> 
    <Material MaterialID = "0"> 
      <Name>StiffMaterial</Name> 
    </Material> 
    <Material MaterialID = "1"> 
      <Name>FlexibleMaterial</Name> 
    </Material> 
    <Material MaterialID = "2"> 
      <Name>GradientMaterial</Name> 
      <Equation UseMaterialID = "0">0.30*X</Equation> 
      <Equation UseMaterialID = "1">0.30*(1-X)</Equation> 
    </Material> 
  </Palette> 
 
  <Object PrintID = "0" units = "mm"> 
    ... 
  </Object> 
</AMF> 

 
Mesostructure example 
Meta-materials may also be defined as a tiled combination of materials and empty space 
to create micro and meso structures that are repeated throughout the region. These may 
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be defined functionally, by a mesh or a voxel bitmap. This allows complex internal 
structure to be defined once, then tiled for efficient use of storage space. The region is 
tiled at its envelope dimension, or in the case of the functional representation the modulus 
operator may be used to create periodic structures. 
 

(a) (b) 
Figure 4: Mesostructure is defined by a voxel bitmap here using a simple repeated mesh pattern. Any tiling 
size and material combination may be used. 

<?xml version="1.0"?> 
<AMF> 
  <Palette> 
    <Material MaterialID = "0"> 
      <Name>StiffMaterial</Name> 
    </Material> 
    <Material MaterialID = "1"> 
      <Name>FlexibleMaterial</Name> 
    </Material> 
    <Material MaterialID = "2"> 
      <Name>MesoStructureMaterial</Name> 
      <Lattice> 
        ... 
      </Lattice> 
      <Structure> 
        <X_Voxels>10</X_Voxels> 
        <Y_Voxels>10</Y_Voxels> 
        <Z_Voxels>10</Z_Voxels> 
        <Data Layer = "1">0000110000...</Data> 
        <Data Layer = "2">0001111000...</Data> 
        ... 
      </Structure> 
    </Material> 
  </Palette> 
 
  <Object PrintID = "0" units = "mm"> 
    ... 
  </Object> 
</AMF> 

 
Colored surface example 
It is desirable to be able to define surface properties of the geometry, such as color, that 
do not necessarily need to penetrate into the 3D body. Thus, a <Color> tag can be 
introduced at either the <Object> level, the <Region> level, or the <Vertex> level, in 
increasing order of precedence. Thus, the entire object or region can be made one color 
with a single tag, but certain vertices can be recolored individually. All RGB values must 
be real values ranging from 0 to 1. Also, it is possible to map images onto the surface of 
the part. This is accomplished by adding <ColorMap> or <ColorFile> tags with unique 
map ID numbers. Then vertices in the vertex list are associated with the desired map ID 
and pixel location within the image. This way, any triangle in which all three vertices 
have a <VertexMap> tag with the same ID will have that associated triangle of the image 
mapped onto it. Vertices may have more than one <VertexMap> tag, which can also refer 
to material distribution on the surface (with an associated depth) or a physical texture 
(bump map) that is to be mapped onto the surface. In the case of ambiguity (I.E. multiple 
color maps) the lowest map ID takes precedence. 
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(a) (b) 

Figure 5: Surface properties such as color and texture may be added with several additional tags. 
Individual regions or vertices may be colored, or a bitmap can be mapped onto the 3D surface. 

<?xml version="1.0"?> 
<AMF> 
  <Object PrintID = "0" units = "mm"> 
    <Mesh> 
      <ColorFile MapID="0"> 
        <File>Logo.bmp</File> 
      </ColorFile> 
      <Vertices> 
        <Vertex VertexID="0"> 
          <VertexLocation x="0" y="1.332" z="3.715"/> 
          <VertexMap UseMapID="0" MapXPixel="65"   MapYPixel="87"/> 
        </Vertex> 
        <Vertex VertexID="1"> 
          <VertexLocation x="0" y="1.269" z="3.715"/> 
          <VertexMap UseMapID="0" MapXPixel="64" MapYPixel="87"/> 
        </Vertex> 
        <Vertex VertexID="2"> 
          <VertexLocation x="0" y="1.310" z="3.587"/> 
          <VertexMap UseMapID="0" MapXPixel="32" MapYPixel="10"/> 
        </Vertex> 
        ... 
      </Vertices> 
 
      <Region FillMaterialID = "0"> 
        <Color R = "0" G = "0" B = "0.5"/> 
        <Triangle V1 = "0" V2 = "1" V3 = "2"/> 
        <Triangle V1 = "0" V2 = "1" V3 = "4"/> 
        ... 
      </Region> 
    </Mesh> 
  </Object> 
</AMF> 

 
 
CSG (Computational Solid Geometry) Example 
In addition to defining regions by a mesh, there are cases in which it is desirable to define 
regions via computational solid geometry, or a functional representation. From a 
complexity standpoint, it is not desirable to replicate all the features of the advanced 
CAD engines such as ACIS in the file format. However, regions may be defined using 
the <FRep> tag as an equation involving the three variable "X", "Y", and "Z", along with 
any number of unions, intersections, differences, and negations. By using binary 
operators "less than" and "greater than", complex regions may defined. By convention, 
wherever the equation evaluates to "true", geometry is present and wherever it is false, no 
geometry is present. If color is to be added, separate continuous <RedEquation>, 
<GreenEquation>, and <BlueEquation> tags should be added. The additional CDATA 
text in the file is a requirement of XML when storing arbitrary text, such as an equation. 
 

 
 

<?xml version="1.0"?> 
<AMF> 
  <Object PrintID = "0" units = "mm"> 
    <FRep MaterialID = "0"> 
      <GeometryEquation> 
        <![CDATA[X^2+Y^2+Z^2-4 <= 0 & Z >= 0]]> 
      </GeometryEquation> 
    </FRep> 
  </Object> 
</AMF> 
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Additional Capabilities and Extensions 
In addition to the <Mesh> and the <FRep> tags, a region can also be defined by the 
<Voxels> tag. Within the <Voxels> tag, a <Lattice> tag sets up the dimensions and 
packing type of the voxels, and a <Structure> tag defines a three dimensional matrix of 
material IDs to define the geometry and materials. The <Voxels> tag can also be used for 
a material in the palette to define complex, repeating microstructures of multiple 
materials. 
 
 Materials within the palette may refer to external material library files using the 
<File> tag. This allows vendors to maintain a database of existing materials, including 
useful material data, and for an AMF file to specify a specific material to be built with. 
Also, objects can include a <tolerance> to define the build tolerances that are required. 
 
 This paper is not intended to be an exhaustive tutorial on the AMF file format. A 
glossary of available tags is included in Appendix 1, along with a short description of 
each. Sample code and future updates are available at http://ccsl.mae.cornell.edu/AMF. 
 
Performance 
One disadvantage of the XML format is that the human readability comes at the cost of 
file size. In order to compare the AMF file sizes to the standard STL files, a sample mesh 
geometry of a rook was created with 3680 triangles. This geometry was saved as both 
ASCII and binary STL files. As expected, the binary STL exhibited a much smaller file 
size, or about 24% of the ASCII STL version (Figure 6). The XML text version of the 
AMF file was already 44% smaller than the ASCII STL file, and after applying standard 
compression routines, the AMF file was approximately 25% smaller than the binary STL. 
Compressing the binary STL yielded a file that was still 48% larger than the compressed 
AMF. Different types of compression routines may also be used for the XML (Ng et al., 
2006), including those in which elements can be efficiently extracted without 
decompressing the entire file.  
 

File Size of STL vs AMF File Formats
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Figure 6: The size of files generated for both STL and AMF formats are shown in (a) for a rook geometry 
with 3680 triangles (b). The ASCII readable AMF file is 44% smaller than the equivalent ASCII STL, and 
after compression the AMF is 24% smaller than the binary STL and 67% smaller than the similarly 
compressed binary STL. 
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Conclusion 
Here we proposed a replacement for the STL file format for use in additive 
manufacturing applications. We addressed the shortcomings of the STL file—namely 
leaks, lack of multi-material support, and no provisions for surface data—with a flexible 
XML-based format. This allows the file format to be extensible while maintaining 
compatibility with legacy applications. The AMF format is easily forwards and 
backwards compatible with STL files with a simple conversion, which will allow 
adoption driven by need and not by mandate as additive manufacturing hardware 
becomes more versatile. Additionally, the AMF format is easy to understand and human 
readable (before standard compression routines) which will allow for easy debugging and 
adoption by software developers. Ultimately, the success of a file format depends on its 
adoption by both manufacturers and users, and its acceptance as a formal standard. 
 
Open source code for implementation of a parser and viewer for AMF files is available at 
http://ccsl.mae.cornell.edu/AMF 
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Appendix 1 
Summary of tags for the AMF file format: 
 

Tag Parent tag(s) Attributes 
Multi 
tags? Description 

<AMF>   No Root XML tag 

<Print> <AMF>  No 
Contains information about which 
objects/constellations to print 

<Instance> 
<Print>, 
<Constellation>  Yes An instance of an object or constellation to print 

  UsePrintID  The PrintID of the object or constellation to use 

<Translate> <Instance>  No 
Translate the relative position of an object or 
constellation 

  DX, DY, DZ  
the distance of translation in x, y, and z 
directione 

<Rotate> <Instance>  Yes 
Rotate the relative position of an object or 
constellation 

  Ax, Ay, Az  The axis to rotate about 

  Deg  
How much to rotate about the defined axis, in 
degrees by the right-hand rule 

<Constellation> <AMF>  Yes 
A collection of objects or constellations with 
specific relative locations 

  PrintID  Assigns the PrintID for the constellation 

<Object> <AMF>  Yes An object definition 

  PrintID  Assigns the PrintID for the constellation 

  Units  
The units to be used. May be "IN", "MM", or "M" 
for inches, millimeters, and meters respectively. 

<Tolerance> 
<Object>, 
<Region>  No Defines a desired tolerance 

  XT, YT, ZT  
The tolerance (in physical units) to be achieved if 
possible 

<Color> 

<Object>, 
<Region>, 
<Vertex>  No 

The color to display the object in, and to print if 
supported 

  R, G, B  Red, Green, and Blue values ranging from 0 to 1 

<Mesh> <Object>  Yes A 3D mesh hull 

<Vertices> <Mesh>  No 
The list of vertices to be used in defining 
triangles 

<Vertex> <Vertices>  Yes A vertex to be referenced in triangles 

  VertexID  Unique ID of this vertex. 

<VertexLocation> <Vertex>  No The 3D location of this vertex 

  X, Y, Z  3D coordinates in specified units of this vertex 

<VertexMap> <Vertex>  Yes 
Maps this vertex onto the 2D coordinates of the 
specified bitmap 

  UseMapID  Which map to use 

  
MapXPixel, 
MapYPixel  

The coordinates within the map to map to this 
vertex 

<Region> <Mesh>  Yes Defines a region from the established vertex list 

  FillMaterialID  Which MaterialID from the Palette to use 

<Triangle> <Region>  Yes 
Defines a 3D triangle from three vertices, 
according to the right-hand rule 

  V1, V2, V3  VertexIDs of the desired vertices 

<HeightFile> <Mesh>  Yes 
References an external heightmap to apply 
physical texture to a surface 

  MapID  MapID for mapping this heightmap onto vertices 

  Amplitude  
Defines the height of the bump-map as it is 
applied to a surface. 

<File> 

<HeightFile>, 
<ColorFile>, 
<Material>  No The location of the file to use 
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Tag Parent tag(s) Attributes 
Multi 
tags? Description 

<HeightMap> <Mesh>  Yes 
An internally stored bump map for physical 
textures. 

  MapID  MapID for mapping this heightmap onto vertices 

  Amplitude  
Defines the height of the bump-map as it is 
applied to a surface. 

<XPixels>, 
<YPixels> 

<HeightMap>, 
<MaterialMap>, 
<ColorMap>  No Defines the size of the bitmap to be encoded 

<PixelData> 
<HeightMap>, 
<ColorMap>  No 

The actual pixel data in order RGB from lowest 
to highest X, iterating from lowest to highest Y 

<MaterialMap> <Mesh>  Yes An internally stored material map for the surface 

  MapID  
MapID for mapping this materialmap onto 
vertices 

  Amplitude  
Defines the depth of the material from the 
surface 

<IndexData> <MaterialMap>  No 
Actual material index data in order from lowest to 
highest X, iterating from lowest to highest Y 

<ColorFile> <Mesh>  Yes 
References an external file to be used as a color 
map. 

  MapID  MapID for mapping this colormap onto vertices 

<ColorMap> <Mesh>  Yes An internally stored color map for surface color 

  MapID  MapID for mapping this colormap onto vertices 

<FRep> 
<Mesh>, 
<Material>  Yes 

Defines a shape using computational solid 
geometry 

  FillMaterialID  Which MaterialID from the Palette to use 

<GeometryEquatio
n> <FRep>  No 

Defines an equation using X, Y, and Z that 
evaluates to true for regions of material and false 
elsewhere 

<RedEquation>, 
<GreenEquation>, 
<BlueEquation> <FRep>  No 

Defines a color to use from a real-valued 
equation using X, Y, and Z 

<Voxels> 
<Mesh>, 
<Material>  Yes 

Defines a 3D bitmap of voxels, each associated 
with a material index 

<Lattice> <Voxels>  No 
Defines the lattice to be used for the voxel 
bitmap. 

<Lattice_Dim> <Lattice>  No The main dimension (distance) between voxels 
<X_Dim_Adj>, 
<Y_Dim_Adj>, 
<Z_Dim_Adj>,  <Lattice>  No 

Amount to adjust the LatticeDim in each 
dimension (0 to 1) 

<X_Line_Offset>, 
<Y_Line_Offset> <Lattice>  No 

Amount to offset each line within each layer in X 
and Y dimensions 

<X_Layer_Offset>, 
<Y_Layer_Offset> <Lattice>  No Amount to offset each subsequent layer 

<Structure> <Voxels>  No Defines a 3D spatial arrangement of voxels 
<X_Voxels>, 
<Y_Voxels>, 
<Z_Voxels> <Structure>  No The size (in voxels) of the specified region 

<VoxelData> <Structure>  No 
Array of material indicies iterating through x, 
then y, then z 

<Palette> <AMF>  No Contains the materials that make up the objects 

<Material> <Palette>  Yes An available material 

  MaterialID  A unique material ID 

<Name> <Material>  No A descriptive name for the material 
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