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Abstract 

Laser Metal Deposition (LMD) is an additive manufacturing technique for manufacturing 

complex near net shaped components. The grain size of the typical deposition microstructure in 

case of Ti-6Al-4V can range between 100µm-600µm, which is much larger than that of forged-

like microstructures.  Friction Stir Processing (FSP) has been investigated as a method for 

surface modification to form refined microstructure at the surface of the Ti-6Al-4V components 

manufactured from the LMD method. Integration of FSP and LMD can greatly improve the 

product properties.  Friction stir processing of the laser deposited Ti-6Al-4V deposits was 

performed and optimum processing parameters were obtained using this hybrid process. The 

microstructure of the nugget regions obtained in the substrate weld, stir over deposit and deposit 

over stir experiments is presented. A much decreasing grain size was observed in the dilution 

zone inside the nugget from the stir surface to the bottom of the dilution zone.  

 

Introduction 

 

 Laser Metal Deposition (LMD) is an additive manufacturing technique which is used for 

fabricating complex near net shaped components. This technology utilizes fewer raw materials 

and takes less time in producing the final component. The part obtained after the deposition 

requires minimal machining and this is an added advantage of this process over the conventional 

manufacturing processes. The microstructure obtained through this process is dependent on the 

laser deposition parameters which include the laser power, laser scanning speed, the powder feed 

rate etc [1].  Typical deposition microstructure in case of Ti-6Al-4V consists of a basketweave 

Widmanstätten α morphology and colony Widmanstätten α morphology inside a prior β grain, 

continuous α along prior β grains have also been observed [2]. The grains can range between 

100µm-600µm. The lamellar structure results in better creep properties and higher fracture 

toughness [3] whereas the equiaxed structures resist fatigue crack initiation. 

 

 Friction Stir Processing (FSP) has been investigated as a method for surface modification 

to form refined microstructure at the surface of the Ti-6Al-4V components manufactured from 

this method. In the past, FSP has been used to improve mechanical properties like the low cycle 

fatigue properties, hardness, corrosion resistance, and resistance to crack initiation in Al, Ni, Fe, 

Cu and Ti alloys [4, 5, and 6]. FSP works on the principles of Friction Stir Welding (FSW) [7] 

patented by TWI, UK. The only difference being that in case of FSP no weld is formed. The 

rotating non consumable tool consisting of a pin made from a refractory metal plunges into the 

material to be processed till the tool shoulder makes contact with the work piece. Once the tool 

shoulder makes contact, the tool is traversed in X or Y direction based on the clamping 

constraints of the work piece. The material under the shoulder is plastically deformed and is 
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thermo-mechanically processed due to the compressive forces and the churning action induced 

by the rotation of the tool. This deformation is accompanied with high strain rates and the 

process yields highly refined microstructure. Research was conducted earlier in LAMP lab to 

evaluate methods to form work hardened and re-crystallized layer of the LMD Ti-6Al-4V parts 

[2]. Depths of up to 1000µm were obtained by rotational burnishing and up to 10 µm were 

obtained by aggressive milling. Integration of FSP in LAMP lab is a step further in this direction 

to improve the product properties. Cooling rate in case of laser deposits is very high and hence 

FSP can also be used to eliminate the internal stress if any. Lack of fusion voids [8] caused at the 

substrate-deposit interface can also be addressed by FSP.  

 

Metal forging is a metal forming process that involves applying compressive forces to a work 

piece to deform it, and create a desired geometric change to the material.  Metal forging is 

known to produce some of the strongest manufactured parts compared to other metal 

manufacturing processes.  This paper summarizes a hybrid manufacturing process, including an 

LMD and a FSP, for producing or repairing parts with forged-like microstructure.   

 

Experimental Methodology 

 

Equipment and Deposition Process Overview 

 Friction stir processing (FSP) was performed using FADAL 3016 CNC which is part of 

the multi axis hybrid laser deposition system at the Missouri S&T LAMP lab. The 1kW 

Nuvyonx diode laser (808 nm) forms the second part of the hybrid laser deposition system. The 

laser system comprising of the laser cladding head, focusing optics, powder delivering hoses is 

attached to the Z axis of the CNC.  Atomized metal powder is delivered from a powder feeder to 

the laser melt pool on the substrate while the X-Y axes of the CNC moves as per the G and M 

codes fed to it via the control system to deposit the 2D cross-section of the part. When one macro 

layer is deposited, the Z axis moves up by a predetermined height to refocus the laser to form 

melt pool on the previously deposited layer and follow the build pattern for deposition. The 

approximate bead width in case of deposition with Ti-6Al-4V is 3mm. The deposition was 

carried out at 780 watts laser power with melt pool size of 2mm and table speed of 5 mm/s.  A 15 

% overlap of the tracks was maintained while deposition. Three laser deposits approximately 

47mm x 26mm x 10mm in dimension were then deposited on a 50mm x 108mm x 9.5mm Ti 

6Al-4V substrate. The deposition parameters of these deposits were not expected to significantly 

affect FSP.  Ti-6Al-4V powder was supplied by Accumet Materials Co and was to the order of -

100 +325 mesh.  

 

Friction Stir Processing 

 Two different stepped FSP tools manufactured from Densimet-176 were used for this 

study. The tool shoulder did not have any features and no lead angle was used during the run. 

Each tool consisted of a stepped pin profile resembling an inverted wedding cake. Each step 

acted as a shoulder, helped in heat buildup and plastic deformation resulting in better processing. 

The step diameters were 2.8mm, 3.5mm, 4.5mm and tool shoulder diameter was 7.6 mm. The 

steps were 0.5mm deep in case of Tool-1 and 1mm in case of Tool-2 (Figure 1). 
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Figure 1.Stepped pin profile Tool-2 

  

Atmospherically sealed argon gas enclosure was used to prevent oxidation of the tool and 

Ti 6Al-4V deposit during FSP. Multiple trials were previously conducted with both the tools to 

obtain defect free stir surfaces before this run was performed. Tool traverse feed of 50.8 mm/min 

(2 IPM) yielded better stir surface finish and it also maintained the tool integrity.  It was 

observed that the Tool-1 required approximately 10% higher RPM than Tool-2 which was being 

operated at 275 RPM to attain the intended plunge. This was due to the fact that only limited heat 

buildup was obtained with a shorter pin profile at the same parameters. This meant that even 

though Ti-6Al-4V had a low thermal conductivity it was high enough to dissipate the thermal 

energy into the surrounding material requiring higher RPM for attaining plunge and subsequent 

plastic deformation. The processing parameters used for the experiment has been summarized in 

Table 1. 

Table 1 Friction stir processing parameters 

Run ID Plunge Feed Traverse Feed RPM 

T1-103007.1 † 1.27 mm/min 50.8 mm/min 300 

T2-102907.1 1.27 mm/min 50.8 mm/min 275 

T1-103007.2 1.27 mm/min 50.8 mm/min 300 

T2-102907.2 1.27 mm/min 50.8 mm/min 275 

T1-103007.3 1.27 mm/min 50.8 mm/min 300 

T2-102907.3 1.27 mm/min 50.8 mm/min 275 

† All the stir runs have been named in the following manner (Type of tool) - (Month) (Date) 

(Year). (Run serial No: for that day) 

 

 Three sets of experiments were performed with each tool to evaluate the effects of FSP 

on the laser deposits.  The first set comprised of laying one track of stir each with both the tools 

side by side on the same laser deposit. Second set of experiment was performed to study the 

effect of laser interaction with the stir zone (SZ). Single, double and triple pass of single track 

laser deposition was performed on top of the stir region in addition to FSP of laser deposit. Third 

set of experiment consisted of stirring through the deposit into the substrate. This sample was 

obtained by milling off the existing laser deposit to leave approximately 1 mm of deposit on the 

substrate.  

 

Sample Preparation 

 The stirred samples were cross-sectioned perpendicular to the stir direction using resin 

bonded silicon carbide rotary blades. Samples were mounted using Diallyl Phthalate epoxy resin. 

Grinding and polishing was performed on a LECO Spectrum System 1000 automatic polisher. 

Blue, green and red cameo platinum plates corresponding to 120~180, 220~280 and 600 grit 
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were used for initial grinding. Two step polishing was performed using 9 micron diamond 

solution and 0.05 micron colloidal silica on imperial cloth. The samples were rinsed thoroughly 

in water after the first polishing medium. It was then placed in an ultrasonic bath of 95% ethyl 

alcohol for 20 minutes to clean off the final polishing medium.  

 

Analysis 
 Vickers microhardness test was performed using the Struers Duramin 5 hardness testing 

machine with a load of 9.81N for 10 seconds. Three columns of 16 microhardness indents each 

were made on the samples. Three indent columns represented the advancing side of the nugget 

(N/4), centerline of the nugget (N/2) and the retreating side of the nugget (3N/4). The indents 

were separated by 250 micros to ensure that the readings were not biased. The samples were then 

etched with modified Kroll’s reagent (5ml HF, 22.5ml HNO3, 22.5ml HCl) for approximately 15 

seconds. The microstructure was later characterized using the Hitachi S570 scanning electron 

microscope, Hitachi S4700 Field emission microscope and the Nikon Epiphot 300 optical 

microscope. Backscattered compo mode was used for imaging in SEM. 

 

Results and Discussion 

 

Microstructural Evolution 

Substrate Welding Experiment-Stir Zone: The nugget cross-section (c/s) was shallower in case 

of T1-103007.3 compared to T2-102907.3 (Figure 2 a, b) since a shorter tool was used. In both 

the cases the nugget c/s was observed to be nearly parabolic. The overall nugget cross-section 

consisting of the SZ, TMAZ (Thermomechanically Affected Zone) and HAZ (Heat Affected 

Zone) was outlined with an image editing software after etching the samples with modified 

Kroll’s reagent. The observed depth at the center of the nugget (N/2) has been summarized in 

Table 2. In both cases, the FSP nugget region extended into the substrate through the laser 

deposit as per the requirements of the experiment. 

 

Table 2 Substrate weld nugget depths 

Run No: 

Avg FSP Nugget depth 

(µm) 

T1-103007.3 1670±25 

T2-102907.3 2500±20 

 

   
(a) Run No: T1-103007.3 Substrate Welding       (b) Run No: T2-102907.3 Substrate Welding 

Figure 2. Substrate welding experiment 

Substrate 

Laser Deposit 
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The temperature profile obtained from the optical pyrometer aimed at the tool shank 

slightly above the shoulder indicated that the tool shank temperature did not exceed 815
о
C which 

strongly indicates that the processing conditions existing underneath the tool shoulder would 

have been below Beta transus (995-1010
 о

C). The equiaxed microstructure of the substrate 

approx 16µm (Figure.3) and the Widmanstätten, lamellar morphology with α+β laths in the prior 

β grains (Figure 4) of the deposit region was transformed into highly refined, re-crystallized 

primary α microstructure (Figure 5) which had a diameter of around 0.805 ± 0.080 µm. The grain 

size was measured by linear intercept method as per ASTM 112[9].  

 

      
Figure 3. Equiaxed substrate microstructure   Figure 4. Basketweave structure 

 

  Rubal et.al [3] observed similar morphology in the SZ when sub transus FSP was 

performed on near alpha Ti-5111 alloy. FSP studies on investment cast Ti-6Al-4V conducted by 

Pilchak et al [5, 10] also showed equiaxed primary α microstructure in the sub transus FSP SZ. 

The microstructure was homogenized throughout the SZ converting the parent microstructures to 

primary α. 

 
Figure 5. Equiaxed primary α grains 

 

 Ramirez et al [4] observed that the SZ microstructure was dependent on the processing 

conditions namely tool traverse feed, tool RPM, forge force, tool design, shoulder features etc 
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and not on the starting base material. The SZ microstructure observation is in agreement with 

that finding. Although stir no: T1-103007.3 was performed at a higher RPM of 300, the SZ 

microstructure observed was similar to the T2-102907.3 indicating that the processing conditions 

during that run were also sub transus. Pilchak et al [11] reported that the if the material is being 

worked upon by the tool during its cooling from the β transus then the dislocation density in the 

subsequently formed primary α would be high. In this case, although the stir zone did not 

experience β transus there is a possibility of high dislocation density being present from the 

decomposition of α+β phase. 

 

Stir over laser deposit-Stir zone: The etched nugget (c/s) for both T1-103007.1, T2-102907.1 

(Figure 6. a, b) was not nearly as parabolic as observed for the substrate weld experiment. The 

reason for this could be that the difference in the BM caused different thermal cycles and heat 

dissipation patterns. The bottom of the nugget region was observed to be much more flat. The SZ 

in case of this particular experiment also showed highly refined grains to the order of 1 micron. 

The depth at the center of the nugget region has been summarized in Table 3. 

 

Table 3 Stir over deposit nugget depths 

Run No: 

Avg FSP Nugget depth 

(µm) 

T1-103007.1 
1578±23 

T2-102907.1 
2287±19 

 

 

 Although the tool processed the regions totally inside the laser deposit, the resulting 

microstructure consisted of equiaxed primary alpha grains. As discussed earlier, the 

microstructure of the laser deposit is primarily lamellar. SZ microstructure observation is in 

agreement with Peters et al [12] who reported that the diameter of the recrystallized α 

grains in the thermomechanically processed bulk Ti-6Al-4V generally correspond to the 

width of the α lamellae in the BM. In this case the BM being the laser deposit, the α lamellae is 

to the order of ~1-2µm. The temperature history showed that the tool shanks did not experience 

temperatures more than 820
 о

C.  

 

       
(a) Stir Over Deposit Run No: T1-103007.1                (b) Run No: T2-102907.1  

Figure 6. Mounted cross sections-stir over deposit 

 

Substrate 
Laser Deposit 
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Transition Zone (TZ) / Thermomechanically Affected Zone (TMAZ): Zhang et al [13] 

reported a sharp boundary (SB) with no TMAZ in FSW of Ti-6Al-4V plates. It was reported that 

the deformation characteristics of TMAZ may have been masked by the subsequent phase 

transformations. Ramirez et al [4] observed an extremely narrow TMAZ (~10µm) zone. 

However extensive presence of equiaxed α was observed in this region.  TZ which is analogous 

to this region was proposed by Pilchak et al [11] as the region between the HAZ and the SZ 

which experiences measurable strain, but where the strain induced temperature gradient was 

insufficient to cause recrystallization as in SZ. However, gradual change from the BM to SZ 

microstructure was observed in the substrate weld experiment. Microstructure of the BM being a 

beta annealed structure. The zone observed was approximately 70-80µm wide (Figure 7). 

This could be explained due to the fact that stirring deformation imparted from the SZ was 

primarily being resisted by the β annealed microstructure of the substrate. SZ 

microstructure, which was being formed as a result of dynamic recrystallization (DRX) 

from two different starting microstructures would have caused thermal conductivity 

gradient between the SZ and BM leading to a wider TZ.  The TZ microstructure was 

observed to consist of deformed α/β lamellae and also equiaxed primary α (Figure 8). These 

grains were of the order of 1µm. 

 

 Ramirez, Pilchak et al[4, 11] observed similar morphologies in the TZ/TMAZ which was 

explained by lamellar α recrystallization which in case of α+β is called α globularization [14]. 

Seshacharyulu[14] et al. developed a microstructural deformation mechanism map for Ti 

6Al-4V and based on that the existing strain rates in this region should be between 10
-3

 s
-1 

to 10 
-2

 s
-1 

since the temperature at the SZ boundary is expected to be between 820
о 

c and β 

transus.
 

 

 
Figure 7. Nugget Morphologies- T2-102907.3 
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Figure 8. Equiaxed α structure along with deformed lamellae in TMAZ 

 

TZ/TMAZ-Stir over laser deposit: TZ observed in this case was vastly different from the one 

which was observed in the substrate weld experiment. The TZ existed (Figure 9) but was only of 

the order of 25-30µ as compared to almost 70µm which existed in the substrate weld. The 

shearing mechanism from the adjacent SZ could be related to this observation of abrupt 

change in the microstructure. Observations made in TZ of the FSP laser deposit is in 

agreement with Pilchak et all [11] who reported that the morphology of TZ is a function of 

lamellar α orientation of the adjacent BM, depth from surface and its location (AS/RS). 

Moreover it is clear with observations from TZ in both the substrate weld experiments that the 

TZ microstructure is more dependent on the BM microstructure. 

 

α globularization 
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Figure 9. Narrow TZ on AS of the FSP Laser Deposit 

 

Microstructural evolution in the deposit over stir experiments:  Regions with varying 

microstructures were observed when cross- sections from the laser deposition over the stir zone 

were studied. These regions included the deposit, dilution zone (DZ), β transus zone (βZ), stir 

zone (SZ) and transition zone (TZ). The SZ and TZ morphology did not differ from the 

previously described microstructures for the FSP over laser deposits.  

 

 The heat source from the laser would be primarily utilized in (a) melting the powder 

which is being deposited and (b) re-melting the already deposited layer (in this case it would be 

the FSP layer). It is clear from Figure 10 that the first layer of the deposit over the SZ consisted 

of large equiaxed grains which to the order of 200µm. The dilution zone in the FSP nugget 

showed a grain size gradient. Decreasing equiaxed grain size was observed as the depth 

increased from the surface of the stir. This observation can be explained as the additional heat 

energy supplied by the laser aided the growth of the earlier refined equiaxed primary α grains 

which was formed from FSP. More heat was absorbed by the grains closer to surface and the 

remaining heat aided in the grain grown of the primary α in the dilution zone.  
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Figure 10. Center of the single track-single pass deposition over run no: T1-103007.2 

 

 Backscattered SEM imaging of an area very close to the deposit in run T2-102907.2 with 

triple pass of laser revealed the grain morphology as shown in Figure 11. The morphology 

clearly shows a fine basketweave microstructure inside a prior β. It is evident that this region 

experienced temperatures above the β transus. 

  

 
Figure 11. Fine basket weave structure close to the deposit over the stir region 
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 It was also observed that in all the deposition over the SZ (single, double and triple pass) 

a clear region of approximately 100µm wide existed around the dilution zone. This interface 

consisted of extremely fine grains and it was evident that these grains did not experience 

temperatures above β transus. The same has been shown in the following Figures 12 a and b. 

         
(a)        (b) 

Figure 12. (a) Untransformed Zone (Higher magnification), (b) Untransformed Zone (Lower 

magnification) 

 

Microhardness 

Substrate weld microhardness: Microhardness test data of the nugget center (N/2) of runs: T1-

103007.3 and T2-102907.3 revealed that the hardness had increased noticeably in both the runs 

in the nugget region. Tool-2 which was processed at a lower RPM imparted more hardness to the 

SZ compared to Tool-1. This could have been observed due to the fact that lower processing 

temperatures which existed due to a lower RPM may have added more dislocations during the 

processing. Similar trends were observed when the microhardness data was compared on the 

advancing side (N/4) and the retreating side (3N/4). It is worthwhile to note that the hardness 

kept decreasing as a function of depth which can be explained as more plastic strain was 

imparted by the tool shoulder at the top of the nugget compared to the remaining volume 

inducing more hardness near the top of the nugget. 

 

 
Figure 13. Microhardness data for substrate welding experiment 
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Stir over deposit microhardness: Microhardness test data for the stir over deposit (Runs: T1-

103007.1 and T2-102907.1) along N/2 of the SZ revealed that the hardness had increased 

noticeably for the run with Tool-2 (Figure 14) but not as much for the run with Tool-1. Similar 

trends were observed when the microhardness data was compared at N/4 and 3N/4. As 

mentioned earlier this could be possible due to the more dislocation density which could have 

been created due to processing at lower temperatures. In both the experiments it was observed 

that hardness profiles in the laser deposit and substrate region beyond the nugget closely 

followed each other indicating that deposit hardness was uniform. 

 
Figure 14. Microhardness data for stir over deposit experiment 

  

Deposit over stir microhardness: Increased hardness was observed in the laser deposition 

dilution zone inside the FSP nugget (Figure 15).  This was true for all the nugget regions where 

the laser interacted. It was also noted that the deposit was softer than the dilution zone and that is 

the reason for the initial surge in hardness. In case of double pass laser deposition it was 

observed that hardness values decrease as a function of depth before stabilizing in the stir zone 

which was not affected by the laser dilution zone. The HAZ of the laser interaction which was 

within the FSP nugget resulted in lower hardness. 
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Figure 15. Microhardness data for deposit over stir experiment 

 

Tool Wear And Processing Defects:  Pilchak et al. [15] reported sub micron tungsten tool 

inclusions form the W-25% Re tool during FSP of investment cast, hot isostatically pressed Ti-

6Al-4V. W is a beta stabilizer and being higher in the atomic number shows up bright in the 

SEM images (Figure 16). Densimet-176, also a W based alloy was used for this experiment and a 

bright stripe was observed below the processing defect formed inside the nugget region. EDS 

analysis performed on this area confirmed the presence of W. 

 

 
Figure 16. Processing defect observed in substrate weld experiment 
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 This processing defect was observed ~ 1.9mm from the surface of the stir. A tool profile 

when superimposed on the nugget region revealed that the defect had formed in close proximity 

to 2
nd

-3
rd

 shoulder interface. Processing voids could have been formed for a variety of reasons. 

One cause of this could be related to the laser deposits prepared with un-optimized deposition 

parameters. There were porosities in the laser deposit which was revealed when the deposit c/s 

was analyzed. These porosities could have accumulated on the advancing side of the tool during 

processing resulting in a macro void. The lead angle on the tool helps in providing a downward 

forge force and the absence of this lead angle due to system constraints during this FSP 

experiment could have also contributed to this defect. 

 

Fatigue Life Estimation 

 Fatigue life tests were not performed on the FSP laser deposit samples however certain 

predictions can be made about the fatigue life performance based on previous published work. 

Four point bend tests and micropillar compressive tests conducted by Pilchak et al. [16] reported 

increased fatigue life and compressive yield strengths in FSP cast Ti-6Al-4V. It was concluded 

in their study that the improved fatigue life could have been attributed to the reduced slip length 

from several hundred micrometers of the α colony size to the primary α grain size which was 

around 1µm. The equiaxed primary α microstructure showed a 12% increase in the compressive 

yield stress. The SZ microstructure found in our study closely resembles the microstructure 

observed by Pilchak et al and we expect a similar fatigue response. M.Peters el al [17] have 

reported that reducing the α grain size from 12µm~15µm to 1µm~2µm in an equiaxed Ti-6Al-4V 

alloy corresponded with about 25% increase in fatigue strengths at 10
7 

cycles. 

 

Conclusion 

 

 Friction stir processing of the laser deposited Ti-6Al-4V deposits was performed and 

optimum processing parameters were obtained. The microstructure of the nugget regions 

obtained in the substrate weld, stir over deposit and deposit over stir experiments was presented. 

It was observed that FSP modifies the BM microstructure to a highly refined equiaxed primary α 

grain microstructure. Large equiaxed grains were observed in the experiment where subsequent 

deposition was carried over the stir. A decreasing grain size was also observed in the dilution 

zone inside the nugget from the stir surface to the bottom of the dilution zone. Presence of a band 

approximately 100µm wide consisting of untransformed grains which did not experience β 

transus was also observed in all the samples around the dilution zone formed form laser 

interaction. FSP imparted hardness in the substrate weld experiment and the hardness imparted 

by Tool-2 was higher. It was also noted that the hardness in the dilution zone inside the nugget 

region was also harder than the SZ nugget. Tool wear was observed during this process, EDS 

analysis of the nugget showed the presence tungsten particles. Previous studies indicated that 

highly refined microstructure formed from FSP in Ti-6Al-4V has been able to increase the 

fatigue life by delaying the fatigue crack initiation. Similar performance is expected from the 

results obtained in this study. 
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