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Human-centered robots are a specific kind of service robot, which interact

with humans physically or cognitively and help humans with tasks in uncertain

environments. They can be humanoid robots, exoskeletons, or manipulators

and mobile platforms that provide us good services. However, human-centered

robots are still not perfect enough for us to use nowadays. On the one hand,

human-centered robots are still slow and inefficient for their tasks because the

human inputs and dynamics that they react to are uncertain, immeasurable,

or even completely unknown. On the other hand, human-centered robots

face much more complicated safety requirements than other kinds of robots

because humans are dynamic and vulnerable during physical human-robot

interaction. To resolve these issues of human-centered robots, the work in

this dissertation explores new models for reducing human uncertainty and new

control algorithms for improving safety warranty.
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The first half of this dissertation introduces a complex stiffness model

for describing the uncertain human impedance. The discovery of this new

model is motivated to explain the observation of a consistent damping ratio of a

human versus different environmental dynamics. It replaces the linear damping

term in a conventional mass-spring-damping model with a hysteretic damping

term, an imaginary value in the frequency domain. Because of the correlation

between the stiffness term and the newly discovered hysteretic damping term in

the complex stiffness model, we can significantly reduce the human impedance

uncertainty. Based on the complex stiffness model, we can adopt nonlinear

control strategies for improving the responsiveness and the human-friendliness

of human-centered robots.

The second half of this dissertation introduces the concept of a bar-

rier pair, which consists of a barrier function and a controller for the safety

verification and warranty of a human-centered robot. We obtain a barrier

pair by solving an optimization problem subject to a series of linear matrix

inequalities representing the state-space, input, and stability constraints of a

human-centered robot. By incorporating sampling-based methods into the syn-

thesis of barrier pairs, human-centered robots can guarantee safe operation with

non-convex state-space constraints. The sampling-based barrier pair method

helps us construct a control framework of human-robot shared autonomy. A

human-centered robot in this control framework uses an inference of a human’s

objective to figure out how to assist the human and prevent the human from

potential accidents.
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Chapter 1

Introduction

1.1 Motivation and Goals

Human-centered robots, whether they are wearable robots that augment

the productivity of workers or service robots that improve the quality of lives,

react to the inputs from humans [Colgate, Bicchi, Peshkin, and Colgate, 2008].

Different from other types of robots that aim to achieve full autonomy, human-

centered robots assist and cooperate with humans. However, human-centered

robots are still not perfect enough for us to use in practice nowadays. On the

one hand, human-centered robots are still slow and inefficient when attempting

to perform practical tasks because of the ambiguous nature of the interaction

with humans (either physically or via other communication cues) and the

amount of uncertainty existing in human environments. On the other hand,

human-centered robots need to provide safety guarantees in ways that make

the problem much more complicated than robot operation in simpler industrial

setups.

For example, the time-varying nature of human biomechanical

impedance makes physical human-robot interactions hard to accomplish with

efficiency and safety. Human impedance can be modified by both voluntary
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muscle contractions or external torques exerted on the human joints [Bennett,

Hollerbach, Xu, and Hunter, 1992]. Several studies have shown an approxi-

mately linear relationship between the stiffness of the human (found by fitting

a linear mass-spring-damper model for a single joint) and an external torque

[Agarwal and Gottlieb, 1977; Cannon and Zahalak, 1982; Hunter and Kearney,

1982]. To model the damping behavior exhibited by human joints, other studies

have observed that damping behavior also increases with voluntary muscle

contractions [Becker and Mote, 1990] or during the application of external

torques to the joint [Weiss, Hunter, and Kearney, 1988]. An approximately

linear relationship between damping and external torques has also been iden-

tified in the human ankle joint, but it is statistically weaker than the strong

linear relationship between stiffness and external torques [Agarwal and Got-

tlieb, 1977; Hunter and Kearney, 1982]. All these studies attempt to reduce

the time-varying uncertainty of the models representing human impedance.

However, it is unclear from the current literature that a linear relationship

between damping and stiffness in human joints represents the general case in

a statistically significant sense. Because both human stiffness and damping

vary in large amounts, the uncertainty of the parameter space representing

human impedance becomes very big. Therefore, employing traditional models

of human joint impedance results in very conservative human-robot interactions

such as suffering from low control bandwidth.

Adaptive control is a great method for dealing with uncertain dynamical

systems. It has been widely applied to robots [Roy and Whitcomb, 2002; Losey,

2



Erwin, McDonald, Sergi, and O’Malley, 2016; Chen, Chen, Yao, Zhu, Zhu,

Wang, and Song, 2016] successfully dealing the with partially unknown and

uncertain robot parameters by analyzing and estimating them in real-time.

The use of electromyography (EMG) signals has enabled the estimation of

human impedance [Huang, Cappel, Thomas, He, and Sentis, 2020] and also

the estimation of human joint torques [Gui, Liu, and Zhang, 2019] in real-time

for improving the bandwidth of physical human-robot interaction. However,

the stability of adaptive control given time-varying dynamical processes is not

formally proved [Ioannou and Sun, 2012]. It can easily become unstable with

quick changes of the human interaction impedance due to for instance abrupt

muscle co-contractions. Therefore, from our perspective, adaptive control for

physical human-robot interaction requires reliable safety verification and safety

guarantees.

Robust frequency domain methods [Buerger and Hogan, 2007] also

deal with uncertain human dynamics and can be implemented as output

feedback controllers calculated based on human joint positions and human-robot

interaction forces. However, to verify safety during human-robot interaction,

we need to estimate the internal states related to the human body dynamics. A

Luenberger observer [Luenberger, 1964] asymptotically estimates states using

only the direct measurement of input and output signals of a linear system.

This method can be extended to a nonlinear system by considering the nonlinear

dynamics of the system as the modeling error of a linear state space model

[Zeitz, 1987]. For bounded modeling errors, the estimation error converges to a

3



residue set instead of converging to zero [Corless and Tu, 1998]. Recently, a

sum-of-squares programming method [Pylorof, Bakolas, and Chan, 2019] has

been proposed to optimize the convergence rate of robust state estimators for

uncertain nonlinear systems. All these methods can help to improve the state

estimation related to uncertain human body dynamics. But the state estimates

using the previous methods cannot be directly used for safety verification during

human-robot interaction until they fully converge to the true states. Therefore

the interaction system can violate safety constraints if the state estimation

process has not yet finalized.

In dynamical systems such as human-centered robots, the safety of their

operation can be verified by a barrier certificate. Similarly to a Lyapunov

function for stability verification, a barrier certificate or barrier function provides

a sufficient condition for safety verification [Prajna and Jadbabaie, 2004]. But

a Lyapunov function needs decrease everywhere in the state space while a

barrier function relaxes the global convergence requirement and only needs to

be decreasing around the safety bounds. Barrier certificates can be synthesized

through sum-of-squares optimization [Prajna, 2006]. Inspired by the idea of a

control Lyapunov function [Sontag, 1989], a more ambitious goal is to combine

a barrier function and a safety-guaranteeing controller and synthesize them

simultaneously [Wieland and Allgöwer, 2007]. The region of attraction of this

safety controller is also known as a ‘funnel’ [Burridge, Rizzi, and Koditschek,

1999], which can be synthesized over a shooting trajectory via the use of

multiple local stabilizing controllers [Tedrake, Manchester, Tobenkin, and

4



Roberts, 2010] or by solving quadratic programs based on control barrier

functions [Ames, Xu, Grizzle, and Tabuada, 2016]. These control strategies

have been previously proposed to solve closed system problems [Nilsson and

Ames, 2018] and two-player game problems [DeCastro and Kress-Gazit, 2015]

with safety constraints.

However, all the aforementioned methods focus on problems with convex

constraints. If there is an obstacle in the workspace of the robot, the state space

control synthesis problem in its general form will necessitate a non-convex

motion planning process to avoid the obstacles. In [Reist, Preiswerk, and

Tedrake, 2016], a simulation-based method for solving this non-convex motion

planning problem is proposed by simulating many controllers and checking

constraint satisfaction for each one of them. But simulation-based methods

suffer from high computational costs.

For complex robotic systems in dynamic environments, it is important

to plan safe workspace trajectories that always satisfy safety and collision

avoidance constraints. This type of constrained motion planning problem is

often addressed by using sampling-based methods such as a rapidly-exploring

random tree (RRT) method [Lavalle and Kuffner Jr., 2000]. A kino-dynamic

motion planning method [Hauser and Zhou, 2016] can also be considered for

trajectory synthesis subject to kinematic and dynamic constraints. This has

been previously employed to find asymptotically optimal solutions in a multi-

dimensional configuration space using admissible velocity propagation [Pham,

Caron, and Nakamura, 2013] and applied to a manipulator robot using visual

5



servoing [Kazemi, Gupta, and Mehrandezh, 2013]. However, it is unproven

whether there always exists a stabilizing controller along the planned trajectory.

To resolve the issues mentioned above appearing in the control of
human-centered robots, the work of this dissertation explores new
models for reducing human model uncertainty and new control al-
gorithms for improving safety.

1.2 Summary of Contributions

The natural impedance of the human body, which corresponds to the

dynamic relationship between force and motion, can determine the stability of

human-centered robots that rely on interaction-force feedback to assist human

operators. In Chapter 2, we consider a class of human-centered robots designed

to amplify the strength of operators through the use of feedback of sensed

interactions and actuator forces. This type of robotic systems is interesting

because they can amplify a human’s interaction forces–so long as the human

contacts the environment through the robot– and attenuate the operator’s

perception of the robot’s reflected dynamics within the bandwidth limits of

the controller. We define an amplification error term based on a reference

amplification rate and design a linear feedback compensator to attenuate the

error. Since the human operator is an integral part of the system, we design

the compensator to be robust to both a realistic variation in human impedance

and a large variation in load impedance. We demonstrate that our strategy on

a one-degree-of-freedom robot testbed connected to a human arm is successful,

6



using a three-dimensional matrix describing the experimentation choices: slow

or fast human motion; light or extreme robot load; and soft or clenched human

arm impedances. We demonstrate that a slightly aggressive controller results in

a borderline stable system—but only for soft human musculoskeletal behavior

when interacting with a heavy load.

While human impedance is typically modelled as a linear system, our

experiments performed in Chapter 3 on a single-joint testbed involving 10

human subjects show evidence of nonlinear behavior: a low-frequency asymp-

totic phase for the dynamic stiffness of the human that is different than the

expected zero phase, and an unexpectedly consistent damping ratio as the

stiffness and inertia vary. To explain this observation, this chapter considers a

new frequency-domain model describing human joint dynamic behavior featur-

ing complex value stiffness comprising a real stiffness term and a hysteretic

damping term. Using a statistical F-test, we show that the hysteretic damping

term is significant and even more significant than the linear damping term.

Further analysis reveals a linear trend linking hysteretic damping and the real

part of the stiffness, which allows us to simplify the complex stiffness model

down to a 1-parameter system.

Chapter 4 introduces two nonlinear control strategies based on the

complex stiffness model mentioned above for improving the responsiveness of

human-centered robots. The first nonlinear control strategy is a customizable

fractional-order controller that exploits the human complex stiffness behavior

to improve strength amplification bandwidth while maintaining stability. We

7



explore a tuning approach that ensures that this stability property is robust

to muscle co-contraction for each individual. The second nonlinear control

strategy, which we call proportional-and-hysteretic-damping (PHD) control,

endows human-like complex stiffness features to robots using a nonlinear

realization. We show that this PHD controller has the property of being

significantly insensitive to inertia variations.

In Chapter 5, we introduce a safety controller which enforces strict

state and input constraints on a robotic system—but only acts when necessary,

providing transparent operation of the system within a safe region of the

state space. We define this state-space region using a Min-Quadratic Barrier

function, which we construct along the equilibrium manifold using Lyapunov

functions. This problem can be efficiently formulated using linear matrix

inequality controller synthesis for locally valid linearizations. We also introduce

the concept of a barrier pair, which consists of a barrier function and a controller

to guarantee robot’s safety. We demonstrate the efficacy and versatility of our

controller and barrier pair synthesis method in simulated examples.

In Chapter 6, we consider the problem of verifying safety constraint

satisfaction for single-input single-output systems with uncertain transfer

function coefficients. We propose a new type of barrier function based on a

vector norm. This type of barrier function guarantees a measurable upper bound

without having access to the full state. An identifier-based estimator allows an

exact bound for the uncertainty-based barrier function estimate. Assuming that

the system is safe at start time, using our method we guarantee an exponentially
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decreasing bound on the error due to the estimator transient. A method to

synthesize the barrier function and the estimator is proposed by formulating

two convex sub-problems and by exploiting linear matrix inequalities. The

barrier function and the estimator are then used to construct a safety backup

controller. We then demonstrate their successful operation in a simulation of a

1 degree-of-freedom human-robot interaction problem.

For a human-centered robot with its workspace space trajectories con-

strained by obstacles, the synthesis of a safety controller often results in a

non-convex optimization problem. Chapter 7 devises a new algorithm to

solve this non-convex problem by constructing a rapidly-exploring random

tree of barrier pairs. Each barrier pair is composed of a quadratic barrier

function and a full state feedback controller. The proposed method constructs

a rapidly-exploring random tree to deal with the non-convex constraints and

uses barrier pairs to fulfill the local convex constraints. This sampling-based

barrier pair method helps us construct a control framework for human-robot

shared autonomy. A human-centered robot in this control framework uses an

inference of a human’s objective to figure out how to assist the human and

prevent the human from having potential accidents. We demonstrate this new

algorithm using a simulation of a two linkage manipulator robot.

The experimental protocol for the human subject study presented in

this dissertation was approved by the Institutional Review Board (IRB) at the

University of Texas at Austin under study No. 2017-10-0006. The informed

consent forms were signed by all subjects.
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Part I

Responsiveness
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Chapter 2

Linear Control for Responsive

Human-Centered Robots

In this chapter, we use amplification exoskeletons as examples of human-

centered robots to discuss the problems we are facing toward a responsive

physical human-robot interaction. Long the purview of science fiction, ex-

oskeletons are quickly becoming a modern reality—augmenting the strength of

healthy operators as they walk and interact with the world. A vast literature

catalogs the breadth and history of the exoskeleton concept, with survey papers

offering disambiguation between such exoskeletons and the orthotic systems

designed for medical purposes [Dollar and Herr, 2008], and between “parallel-

limb exoskeletons for load transfer” such as our type of system, and several

other types that aim to help the human in a different sense [Herr, 2009] (by

reducing the metabolic cost of walking, for example [Lee, Kim, Baker, Long,

Karavas, Menard, Galiana, and Walsh, 2018]). Amplification exoskeletons,

like the concept of a “Human Extender” [Kazerooni, 1990], interact with the

The results presented in this chapter have also appeared in part of [He, Thomas, Paine,
and Sentis, 2019]. As the primary contributor, Binghan He developed the amplification
exoskeleton controller, conducted human subject experiments, and analyzed the experimental
data. Gray C. Thomas provided theory supports on frequency domain analysis and controller
synthesis. Nicholas A. Paine supported this research with his actuator design and actuator
control methods. This research was advised by Luis Sentis.
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world and the human operator at the same time, with the world perceiving a

strengthened operator, while the operator in feeling a weakened world and a

lighter exoskeleton, all through the feedback action of the device in response

to force-sensors embedded at the human–robot interface.

With the human maintaining full control over the motion of the amplifi-

cation exoskeleton, their primary challenge is not so much autonomy as stable

feedback control in the presence of the difficult-to-model human and the uncer-

tain environment. Humans possess naturally adjustable compliance properties

which depend on muscle activation [Hogan, 1984]. The methodology of inter-

action controller design [Colgate and Hogan, 1988] has had success modeling

humans as active systems which are passive except for non-state-dependent

biases. Robust robot impedance [Hogan, 1989] and haptic interface [Colgate

and Brown, 1994; Adams and Hannaford, 1999] controller design strategies

have supported and used this model to great effect, while acknowledging its

conservatism. The task of amplification exoskeletons, however, is to emulate a

reduction in mass. This can be achieved stably if the human model is more

precisely known [Buerger and Hogan, 2007] than just a passive assumption but

is acknowledged to be a challenging problem.

One of the earliest known amplification-oriented exoskeleton is the

hulking machine HARDIMAN I [Makinson, Bodine, and Fick, 1969], which

introduced the world to the control challenges of exoskeletons, as it was

never safe enough to power on both upper and lower body with an operator.

Ref. [Kazerooni, 1990], much later, conceived of extenders for industrial use with

14



operators controlling much larger machines through force-sensitive interfaces—

acknowledging a tradeoff between stability and performance both in linear

and robust-nonlinear models [Kazerooni, 1990]. Ref. [Kazerooni and Guo,

1993] defined a performance criterion for such extenders using a matrix of

amplification-levels; a critical frequency, since such amplification cannot be

maintained at all frequencies; and introduced a stability filter that allowed the

device to ensure robustness to varied operator behavior. However, the later

BLEEX exoskeleton from the same lab was not designed in this framework

due to practical issues with force sensors [Kazerooni, Racine, Huang, and

Steger, 2005] and the discovery of an alternative strategy using high sensitivity

cancellation of the natural exoskeleton dynamics—which accomplished an

apparent-mass reduction without the force sensors, at the cost of no longer

amplifying human-world interaction forces (and extreme sensitivity to the

dynamic model) [Kazerooni, 2005].

The strategy of measuring a network of force sensors on the human

alone, using them to determine human intent, and then using a simulated ideal

reaction to this intent as input to a position controller is known as admittance

control, and it represents a slight departure from the human extender ideal:

accurate reflection of the environmental forces to the human takes a backseat,

since there are no force sensors for the environment. This is a very successful

paradigm—at least in the absence of environmental contact—it works for giant

gantry robots [Lecours, St-Onge, and Gosselin, 2012], complex upper body

robots [Yu and Rosen, 2013], the slow-yet-amplifying (full-) body extender
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[Fontana, Vertechy, Marcheschi, Salsedo, and Bergamasco, 2014], and the

Sarcos-Ratheon exoskeleton described indirectly in their 2014 Patent [Jacobsen

and Olivier, 2014]—which is implied to be hydraulic, admittance based, and

capable of walking. However, when admittance robots interact with semi-

rigid environments their interaction forces are determined by the position

controller, not the human. A modified admittance scheme with position control

implemented via inverse dynamics shares these fundamental limitations [Lee,

Lee, Kim, Han, Shin, and Han, 2014], and requires either extra force-sensors

or modification to the dynamic model to carry load.

A review paper on admittance control [Keemink, van der Kooij, and

Stienen, 2017] suggests employing feedback based on acceleration when pos-

sible. Acceleration feedback (and the use of accelerometers) dominate the

control strategy of BLEEX [Kazerooni, 2005]. And one exoskeleton has used

acceleration to reduce the apparent inertia of the operator (rather than merely

reducing the apparent mass of the exoskeleton) [Kong and Tomizuka, 2009].

Acceleration has been proposed as a complete framework for exoskeleton control

[Boaventura and Buchli, 2016]. But successful as this strategy is, it cannot aid

in amplification objectives—since the environment is generally not known in

advance.

In one exoskeleton, a simpler strategy was employed which fed con-

tact forces to motor-current through the motion Jacobian transpose [Zanotto,

Akiyama, Stegall, and Agrawal, 2015] (a study not on exoskeleton control but

on an exoskeleton’s effect on human motion). This strategy is able to amplify
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the human with respect to both interaction forces and exoskeleton dynamic

forces, but the researchers only accomplished a modest amplification (around

2) in their study, and did not discuss the tuning of their controller.

In this chapter, we explore the strategies for improving the responsive-

ness of an amplification exoskeleton using linear human impedance models and

linear control methods. Aiming to accomplish higher amplification ratio and

faster response, the exoskeleton hardware we use is designed to include high

performance force controlled series elastic actuators [Paine, Oh, and Sentis,

2014] (similar to the force controlled actuation in [Kong and Tomizuka, 2009],

which used a disturbance observer on motor position based on [Kong, Bae,

and Tomizuka, 2009], while ours operates on the spring deflection). Using a

series elastic actuator allows us to replicate an amplification error framework

reminiscent of [Kazerooni and Guo, 1993], but without a force sensor between

the exoskeleton and the environment. Instead, we use the spring deflection of

the elastic actuators resulting in our scheme to not only attenuate the load

but also the exoskeleton dynamics. As in [Buerger and Hogan, 2007], we need

to model the human as an uncertain system and check for complementary

stability. However, we design our linear exoskeleton controllers using the un-

certain bode plot between desired force (sent to the SEA) and amplification

error. Following the arguments laid out in [Buerger and Hogan, 2007], and

the additional examples in [Kazerooni and Snyder, 1995; Colgate and Brown,

1994], we employ a single-DOF system to study the simplest possible case of

amplification exoskeletons.
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2.1 1-DOF Physical Human-Robot Interaction

Fig. 2.1 introduces a 1-DOF model of physical human-robot interaction,

where the human is modeled as a mass Mh, a spring Kh, and a damper Bh

and the robot is modeled as a mass Me. The actuator is modeled as a mass

Ma and a damper Ba. If the human-robot contact is assumed to be rigid, the

positions of human and robot are both described as θe. The actuator position

is described as θa. An actuator spring Ks is considered in this model to make

the robot compliant for the physical human-robot interaction. This additional

actuator spring turns the actuator into a series elastic actuator (SEA) and the

control problem of the the robot torque τs = Ks · (θa − θe) into the control

problem of an actuator spring deflection control problem. The human-robot

contact force fc, which is measured by a force sensor, and the actuator torque

τa, which is generated by the motor current running through the actuator, are

the raw output and input of the physical human-robot interaction system. The

contact force signal fc is cast as a torque τc using the motion Jacobian J of

the sensor frame (τc = J>fc).

2.1.1 Control of Human-Robot Contact Force

Because the human is modeled as a mass-spring-damper, the dynamic

stiffness of the human is expressed as

Sh = τc/θe = Mh · s2 +Bh · s+Kh. (2.1)

The dynamic stiffness of the robot is expressed as

Se = (τs − τc)/θe = Me · s2, (2.2)
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Figure 2.1: A 1-DOF human-robot interaction model includes an uncertain human
stiffness Kh, an uncertain human damping Bh, a human mass Mh, and a robot
mass Me. The robot is actuated by a SEA, which is modeled as a spring Ks, a
motor damping Ba, and a motor inertia Ma

Together,

Sh-e = Sh +Se = τs/θe, (2.3)

represents a sub-system in parallel with the series elastic actuator.

Considering the stiffness of the actuator spring,

Ss = τs/(θa − θe) = Ks, (2.4)

and the dynamic stiffness of the motor,

Sa = (τa − τs)/θa = Ma · s2 +Ba · s, (2.5)

motion of the whole system relates to the required input force,

τa

θe
= Sh-e +

(Sh-e +Ss) ·Sa

Ss
. (2.6)

This provides a human-dependent force-control plant,

τs

τa
=

Sh-e ·Ss

Sh-e ·Ss + (Sh-e +Ss) ·Sa
. (2.7)

Under the robot force control shown in Fig. 2.2’s block diagram bond
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Figure 2.2: A block diagram of robot force control with a disturbance observer. The
dynamics of human, robot and actuator are represented as a bond graph with effort
sources τa and τc.

graph,

τa = τr +Cs(s) · (τr − τs), (2.8)

where τr is the reference spring force and Cs(s) is a PD controller. Combining

(2.7) and (2.8),

τs

τr
=

Sh-e ·Sss

Sh-e ·Sss + (Sh-e +Ss) ·Sa
, (2.9)

where Sss = Ss · [1+ Cs(s)] = bss · s + kss includes the virtual stiffness and

damping of spring. By tuning the PD gains of Cs(s), the virtual spring stiffness

of kss and the virtual spring damping bss can be modified.

If Sh-e is infinitely large, (2.9) simplifies to,

τs

τr
=

Sss

Sss-a
, (2.10)

where Sss-a = Sss +Sa is the combined dynamic stiffness of the virtual spring

and the actuator.
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Figure 2.3: A 1-DOF human-robot interaction model includes an uncertain human
stiffness Kh, an uncertain human damping Bh, a human mass Mh, and a robot mass
Me. The robot is actuated by a SEA, which is represented by a transfer function
Ga(s).

Under a disturbance observer (DoB) of [Paine, Oh, and Sentis, 2014],

τr = τd − [Q · Sss-a
Sss

· τs −Q · τr], (2.11)

where τd is the DoB spring torque command and Q is a low-pass filter of

sufficient order to ensure the observer is causal.

Combining (2.9) and (2.11), we obtain a transfer function Ga(s) from

τd to τs,

Ga(s) =
τs

τd
=

Sh-e ·Sss

Sh-e ·Sss + [Sh-e + (1−Q) ·Ss] ·Sa
. (2.12)

By tuning the cut-off frequency of Q, (2.10) is (approximately) enforced without

an infinitely large Sh-e—as explained in [Paine, Oh, and Sentis, 2014], this

approximation depends on an inertia lower-bound (in this case, the unloaded

robot inertia).

2.1.2 Plant of Physical Human-Robot Interaction

The transfer function Pc(s) (obtained by combining (2.1), (2.3) and

(2.12)) from the desired actuator torque τd to the human-robot interaction
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Figure 2.4: A block diagram of amplification control. Dynamics of human with
exoskeleton are expressed as a bond graph with effort source of τs and τc.

torque τc is expressed as

Pc(s) =
τc

τd
=

Sh ·Sss

Sh-e ·Sss + [Sh-e + (1−Q) ·Ss] ·Sa
. (2.13)

Let us define α as an amplification factor we want the exoskeleton to achieve.

In Fig. 2.4, we show a direct amplification control, which implement a negative

feedback of τc to τd with a gain α− 1. It can considered as a proportional

control for eliminating τc. If a infinitely large value of α can be achieved,

we obtain a transparent interaction between the human and the exoskeleton.

If a reference torque value is implemented as shown in Fig. 2.4, the direct

amplification control will try to eliminate the difference between τc and the

reference. A more in-depth study of direct amplification is in Chapter 4.

Another way of amplification control is through defining an amplification

error signal τα = (α− 1)τc + τs, and considering the transfer function Pα(s)

(obtained by combining (2.1), (2.3) and (2.12)) from the desired force τd to

22



the error τα,

Pα(s) =
τα

τd
=

Sαh-e ·Sss

Sh-e ·Sss + [Sh-e + (1−Q) ·Ss] ·Sa
, (2.14)

where Sαh-e = αSh + Se is the combined dynamic stiffness of the amplified

human and exoskeleton.

Because the cut-off frequency of Q is much larger than the natural

frequency of the human system, ωh =
√

Kh/Mh, and the natural frequency

of the force control, ωss-a =
√

kss/Ma, Pα(s) can be approximated:

Pα(s) ≈
Sαh-e ·Sss

Sh-e ·Sss-a
. (2.15)

As shown in Fig. 2.5—assuming kss/bss is high enough to ignore—Pα(s)

has a pair of conjugate zeros at ωαh-e =
√

Kh/(Me/α+Mh) and two pairs

of conjugate poles at ωh-e =
√

Kh/(Me +Mh) and at ωss-a. ωss-a is usually

larger than the maximum of ωh. However, even if an actuator has a soft serial

spring or a huge motor rotor inertia, increasing the gain of Cs(s) will result

in an ωss-a much larger than ωh-e and ωαh-e—which avoids the phase drop

below −180◦ in Pα(s).

The bode magnitude plot of Pα(s) starts from 20 log(α) dB in steady

state. If the loop of Pα(s) is directly closed, the gain cross-over is decided by

the feedback gain—and of course by the shape of Pα(s), which varies with the

value of α, the stiffness and damping of the human, and the environmental

impedance.

When α is set very close to 1 the actuator does almost no amplification,

and Pα(s) approaches the closed loop force tracking behavior of the low-level
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Figure 2.5: Conceptual bode plots with a large kss/bss show the plant Pα(s),
proportional gain kp, and compensated open-loop. Regions are color-coded: the
green region has practical model-accuracy, the blue region reflects the multi-crossover
behavior which makes a compensator design unreliable, and the yellow region is noise
dominated in our identification tests, so the model is unreliable. Crosses, circles and
stars indicate the poles, zeros and cross-over points.
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force controller—in this configuration ωαh-e converges to ωh-e and Pα(s) looks

like a second order low pass filter.

On the other hand, as α increases, ωαh-e travels right, and the gap

between ωh-e and ωαh-e widens. This gap behaves like a second order lag

compensator—and it corresponds to a phase dip that approaches −180◦ as the

gap widens.

When the human stiffness is very low, both ωh-e and ωαh-e shift to

lower frequencies together—unless there is an environmental stiffness. If the

human becomes stiffer the two shift higher together as well.

Fig. 2.5 highlights three frequency bands. At the highest frequencies, it

should be possible to design controllers, but on our hardware the amount of

amplified noise makes them to dangerous to try. In the next highest band it is

very easy to gain two extra cross-overs, because the zeros at ωαh-e are under

damped. The lowest frequency region is where we will attempt to cross over in

this chapter.

2.2 Human Mass-Spring-Damper Model

The experiments in this section use the elbow-joint exoskeleton testbed

(Fig. 2.6(a)) with a SEA and a contact sensor. The aluminum exoskeleton arm

has M̄e = 0.1 kgm2.
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Figure 2.6: P0 elbow-joint exoskeleton testbed (a) is used for a human model
identification experiment (b).

Table 2.1: Identified Parameters of Mass-Spring-Damper Model

Experiment Kh (Nmrad ) Bh (Nms
rad ) Mh +Me (kgm2) ζh-e |τd| (Nm)

1 7.44 0.56 0.09+ 0.10 0.24 2.0
2 70.11 1.60 0.09+ 0.10 0.22 5.0
3 31.91 1.84 0.09+ 0.57 0.20 4.0
4 50.18 4.21 0.09+ 1.05 0.28 4.0

2.2.1 Frequency Domain Identification

The human model identification (Fig. 2.6(b)) includes four chirp signal

experiments (Exp. 1-4) with a 27-year old male subject. The subject wears

the cuff of the contact sensor and straps his upper arm to a fixed mount.

A 300 second, exponential chirp signal is provided as a torque command to

the low level force controller. The subject tries to hold the exoskeleton still—

with various levels of attempted stiffness—as the exoskeleton vibrates. The

exoskeleton does not hit its joint safety hard-stops in these experiments, and

operator has access to the system emergency stop at all times.
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2.2.2 Human Joint Stiffness and Damping

The joint stiffness is decided by contractions in the group of muscles

around the joint. By activating a higher level of contractions in flexor and

extensor of elbow, the elbow stiffness can be increased [Cannon and Zahalak,

1982]. Exp. 1 and Exp. 2 identify the range of subject’s elbow Kh. The muscle

around the elbow is as relaxed as possible in Exp. 1-2. The subject clenches

his hand into a fist to help him achieve a high stiffness and leaves it open for

soft behavior. This is also a convenient way to visually distinguish these two

types of human behavior in the rest of this chapter.

Although the stiffness of a human elbow can possibly go up to

400 Nm/rad, such stiffness is only possible with a perturbation of 40 Nm

[Lanman, 1980]. The chirp amplitude |τd| is only 2 Nm in Exp. 1 and 5 Nm in

Exp. 2 to provide just enough perturbation of torque while the subject can still

keep the exoskeleton within the safety joint limits. The results from Exp. 1-2

suggest that Kh varies within the [7.44, 70.11] Nm/rad range.

Without additional inertia added to the exoskeleton and load, the human

is able to maintain an invariant damping ratio of the arm [Perreault, Kirsch,

and Crago, 2004]. However, the human is also able to adapt damping and

stiffness to compensate the environment dynamics [Milner and Cloutier, 1993].

We added a 5 lb and a 10 lb loads at 18 inches from the joint on the exoskeleton

in Exp. 3 and Exp. 4. The results from the four experiments suggest that the

human tends to maintain an invariant damping ratio ζh-e of Sh-e when wearing

the exoskeleton (Tab. 2.1). Therefore, we model the human as a 1-parameter
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system. With changing values of Kh and Me, we predict Bh

Bh = 2ζh-e
√

Kh(Mh +Me). (2.16)

The identified values of Kh, Bh and Mh (Tab. 2.1) suggest the value of ζh-e

of the subject is around 0.23.

2.3 Proportional-and-Integral Control

2.3.1 Loop Shaping

By adding a proportional gain kp less than 1 to Pα(s), the cross-over

shifts below ωαh-e. However, It also reduces the low frequency magnitude and

increases the closed loop steady state error. An integral term can be added

to boost the low frequency magnitude while maintaining the same cross-over

below ωαh-e. We parameterize a simple PI controller transfer function Cα(s)

(from −τc to τd in Fig. 2.4) as

Cα(s) = kp ·
s+ z

s
, (2.17)

where z is a zero with kp · z as the integral gain. As a reference, kp = 1
α starts

the compensated open-loop plant at a low frequency gain equal to unity.

The amplification tracking is evaluated by comparing − τs
τc

to α− 1. The

transfer function from −(α− 1)τc to τs is equivalent to closing the loop of

Cα(s)Ps(s). Because the cut-off frequency of Q is much greater than ωss-a,

Cα(s)Ps(s) can be simplified as

Cα(s)Ps(s) ≈ kp ·
s+ z

s
· Sss

Sss-a
. (2.18)

Notice that Sss
Sss-a

behaves as a low-pass filter with a cut-off frequency at
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Figure 2.7: Conceptual bode plots with a large kss/bss show the plant Pα(s), PI
compensator Cα(s), and compensated open-loop. Regions are color-coded: the green
region has practical model-accuracy, the blue region reflects the multi-crossover
behavior which makes a compensator design unreliable, and the yellow region is noise
dominated in our identification tests, so the model is unreliable. Crosses, circles and
stars indicate the poles, zeros and cross-over points.
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(a) (b)
Open Hand Closed Hand

Trigger

Trigger
Figure 2.8: Step response with an aggressive controller was triggered by releasing an
external spring at the end of the exoskeleton arm. The subject opens (a) and closes
(b) his hand to illustrate different levels of muscle co-contraction (and therefore
stiffness).

ωss-a. Therefore, Cα(s)Ps(s) is dominated by Cα(s) at low frequency. This

allows the amplification tracking to be deterministic despite the uncertainty

from Sh-e.

The dynamic tracking of amplification depends a lot on the location of

z in Cα(s) and the magnitude of Cα(s)Ps(s). However, z cannot be arbitrarily

large because it allows Cα(s) to drop more phase from Pα between ωh-e and

ωαh-e.

2.3.2 Examples

Considering the range of Kh and Me, a model of Pα(s) with uncertainty

can be obtained and used for PI controller design for α = 10. In this section,

an aggressive controller and a robust controller are implemented to validate the

uncertain model and control strategy. The video of all the experiments in this

section is available at https://www.youtube.com/watch?v=EUHoAEwCfFY.
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Table 2.2: Estimated Model Parameters of Aggressive PI Control

Load (lb) Hand K̂h(
Nm
rad ) B̂h(

Nms
rad ) ζ̂h-e

10 open 27.12 2.34 0.22
10 closed 59.34 3.99 0.25

Aggressive PI Control A controller with kp = 0.1 and z = 30 is imple-

mented with a load of 10 lb on the exoskeleton, the uncertain model suggests it

makes the exoskeleton slightly unstable with a low value of Kh but fully stable

with a high value of Kh (Fig. 2.9).

To validate this prediction, the subject wearing the exoskeleton with

the controller either opens his hand—for low values of Kh—or tightly closes

his hand—for high stiffness Kh—in two separate experiments. A spring with

one end connected on the ground and the other end hanging on the end of the

exoskeleton is released at the beginning of each experiment—a step input in

external force (Fig. 2.8).

The experiment results (Fig. 2.10) show that the exoskeleton joint

oscillates with a slowly increasing amplitude with open hand and oscillates

but settles down in 2 seconds with closed hand. By using the data of τc, θe

and θ̇e, a linear regression is built to identify a simplified human model with

only damping B̂h and stiffness K̂h (Tab. 2.2). The value of K̂h verifies that

human maintains a much higher stiffness with closed hand than open hand.

The estimated contact torques τ̂c = B̂hθ̇e + K̂hθe are well matched to the

measured τc (Fig. 2.10)—which confirms that the system is oscillating despite
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Figure 2.9: Uncertain model of Pα(s) is made by 20 interpolations of Kh in the
range of [7.44, 70.11] Nm/rad. Time delay is 6 ms.
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Table 2.3: Observed Amplification of Robust PI Control

Load (lb) Hand |− τs
τc
| (static) |− τs

τc
| (1Hz) ∠− τs

τc
(1Hz)

0 open 8.15 1.48 −53.55◦
0 closed 8.05 1.49 −53.68◦
10 open 8.13 1.58 −53.39◦
10 closed 8.18 1.46 −50.75◦

a passive, spring-damper-like, human behavior. The estimated damping ratio

ζ̂h-e = B̂h/(2
√

K̂hMe) for open hand is slightly lower than 0.23 and makes

the system more unstable than the prediction.

Robust PI Control We also implemented a controller with kp = 0.1 and

z = 10 for improved robustness to parameter variation in the exoskeleton

load, and human stiffness (and damping). The uncertain model suggests it

maintains a phase margin no less than 10◦ for permissible values of Kh and

Me (Fig. 2.11).

To validate the expectation, the experiments include two different Me

(with 0 and 10 lb load) and two different Kh (open and closed hands). The

subject generates motion with 0.1 Hz trapezoid-like wave for steady state tests

and 1 Hz sinusoid-like wave for dynamic tests.

The integrator in the controller is implemented as a pole p = 0.01 to

numerically integrate τα. Because the amplification tracking relies mostly on

Cα(s), a static gain of 8.18 and a 1 Hz dynamic gain of 1.42 with phase shift

of −56.94◦ are expected for −τs/τc.
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The experiment results (Fig. 2.12-2.13) verify that the exoskeleton is

stable with all eight settings. The values of gain and phase shift are also

close to the expected values (Tab. 2.3). The results show little influence on

amplification tracking from the variation of Sh and Me, as expected.
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Figure 2.11: Uncertain model of Pα(s) is made by 20 interpolations of Kh in the range
of [7.44, 70.11] Nm/rad and 20 interpolations of Me in the range of [0.1, 1.05] kg ·m2.
Time delay is 6 ms.
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Chapter 3

Human Complex Stiffness Model

Among all different kinds of dynamic model of an individual human

joint, perhaps the most popular one is the mass-spring-damper model—with

the additional non-linearity that the spring stiffness of the human joint can be

modified by both voluntary muscle contractions or external torques exerted

on the joint [Bennett, Hollerbach, Xu, and Hunter, 1992]. Several studies

demonstrated a linear relationship between the stiffness of the human (found

by fitting a linear mass-spring-damper model for a single joint) and an external

torque [Agarwal and Gottlieb, 1977; Cannon and Zahalak, 1982; Hunter and

Kearney, 1982]. For modeling the human joint damping, some other studies

explored the fact that not only the stiffness but also the damping increases

with muscle contractions [Becker and Mote, 1990] and external torques [Weiss,

Hunter, and Kearney, 1988]. A linear relationship between the damping and

the external torque has also been identified for the human ankle joint, but it is

statistically weaker than the strong linear relationship between the stiffness

The results presented in this chapter have also appeared in part of [He, Huang, Thomas,
and Sentis, 2019] and [He, Huang, Thomas, and Sentis, 2020a]. The human subject study in
this work was conducted by Binghan He and Huang Huang. As the primary contributor,
Binghan He processed the statistical analysis of experimental data. Gray C. Thomas provided
theory supports on statistical analysis. This research was advised by Luis Sentis.
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of the ankle and the external torques [Agarwal and Gottlieb, 1977; Hunter

and Kearney, 1982]. However, it is not clear from the literature that a linear

relationship between the damping and the stiffness of a human joint can be

expected in more general cases.

In Chapter 2, we model the damping in the linear mass-spring-damper

model through the empirical observation that a relatively consistent damping

ratio is maintained by the human elbow across different joint stiffnesses [He,

Thomas, Paine, and Sentis, 2019]. Frequency domain identification of the

ankle joint impedance [Agarwal and Gottlieb, 1977; Gottlieb and Agarwal,

1978] also showed a consistent damping ratio within the range from 0.22 to

0.49. This damping ratio consistency on the ankle is also supported by the

fact that the ankle damping ratio does not have significant change with large

variations of mean external torques exerted on the subjects [Weiss, Hunter,

and Kearney, 1988]. For upper limbs, a multi-joint impedance study on human

arms [Perreault, Kirsch, and Crago, 2004] showed that the damping ratio of the

minimally damped mode for the 2-D endpoint impedance in the transverse plane

is distributed with a mean of 0.26 and a standard deviation of 0.08. Although

this could be explained as the effect of humans adapting their damping to

stabilize movement [Milner and Cloutier, 1993], a more detailed explanation of

how humans achieve this consistency remains unclear.

Hysteretic damping models have seen success in biomechanical mod-

elling before. In [Agarwal and Gottlieb, 1977], experimental results showed

a hysteretic relationship between the applied torque and the ankle angle at
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very low frequencies. Hysteretic damping is shown indirectly in [Cannon and

Zahalak, 1982, Fig. 6], where the human elbow stiffness has a phase shift

around 25 degrees in a wide range of low frequencies—contradicting the viscous

damping hypothesis. This type of phase behavior is explained (in the field

of structural mechanics) by defining a hysteretic damping whose damping

coefficient is proportional to the inverse of frequency [Bishop and Johnson,

1960]. Models with hysteretic damping have also been adapted to describe the

dynamic properties of the whole body of a seated human [Kitazaki and Griffin,

1997] as well as cockroach legs [Dudek and Full, 2006].

In this chapter, we conduct a more in-depth study about the human

stiffness and damping behavior when coupled to an exoskeleton inertia, and

test the effectiveness of a hysteretic damping term in the system model. More

specifically we compare three models 1) a linear mass, spring, and viscous

damper model, 2) a nonlinear complex-stiffness-spring and mass model (that

is, a spring, mass, and hysteretic damper model), and 3) a combination model

with mass, spring, and both viscous and hysteretic damping. Our results show

that there is a statistically significant benefit of the hysteretic damping term

(comparing model 1 to model 3 with an F-test), and a less significant benefit

for the viscous damping term (comparing model 2 to model 3). This hysteretic

damping explains the consistent damping-ratio of the human–exoskeleton

resonant peak even as the stiffness and exoskeleton inertia change—which is

not well explained by the linear model. And it also explains the low frequency

phase lag in human stiffness (previously observed in [Cannon and Zahalak,
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1982]). Our elbow joint experiments vary parameters which would result in a

differing damping ratio if the linear model were true: we change the inertia of

the exoskeleton, and (indirectly, using an adjustable exercise hand grip and a

bias torque) the stiffness of the human joint. We also test different exoskeleton

strength amplification factors, and it does not appear to elicit a different human

behavior than when the inertia is simply reduced.

Similar to Chapter 2, we employed the P0 series elastic elbow-joint

exoskeleton from Apptronik Systems (Fig. 3.1) for this study. This exoskeleton

has a moment of inertia of 0.1 kg ·m2 with no load on it, but allows for attaching

additional weights to it. A load, attached 0.45 m from the exoskeleton joint,

is pictured in Fig. 3.1.b. The contact force fc between the human and the

exoskeleton is measured by a six-axis force/torque sensor situated below the

white 3D printed “cuff” (which includes the adjustable strap which clamps the

forearm). This force torque signal is cast as a torque (τc) using the motion

Jacobian J of the sensor frame (τc = J>fc). Rubber pads are adhered to the

inside surfaces of the cuff and the cuff strap to improve user comfort. Joint

position θe is directly measured by a dedicated encoder at the exoskeleton

joint. The series elastic actuator (SEA) has a spring force control bandwidth

of 10 Hz and provides high fidelity actuator torque τs tracking using the force

control disturbance observer of [Paine, Oh, and Sentis, 2014].

In parallel with an excitation chirp command (which essentially performs

system identification of the human subject), a gravity compensation controller, a

human amplification controller, and a bias torque comprise the desired actuator
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torque signal. The gravity compensation controller takes the measurement of

θe to calculate and compensate the gravity torque τg acting on the exoskeleton

system. The human amplification controller takes the measurement of τc

and multiplies τc by negative α− 1. With the assistance of actuator torques

produced from the amplification command, the human’s interaction forces with

the exoskeleton are amplified by a factor of α. This exoskeleton amplification

strategy differs from the one we applied in [He, Thomas, Paine, and Sentis,

2019] in the directness of the amplification feedback.

3.1 Three Human Impedance Models

We use three models describing human-exoskeleton interactions in our

statistical tests. As preliminaries, we first define Kh as the (real-valued) human

elbow-joint apparent stiffness, Hh as the human elbow-joint hysteretic damping,

Bh as the human elbow-joint viscous damping, Mh as the moment of inertia

of the human, and Me as the moment of inertia of the exoskeleton. With the

amplification control specified by the factor α, the subject feels an attenuated

inertia Me/α from the interaction with the exoskeleton. Therefore, we also

define the perceived inertia Mh-e/α , Mh +Me/α at the elbow joint.

3.1.1 Linear Model Versus Nonlinear Model

The first model is a passive linear model with viscous damping and

stiffness:

Sh-e/α(s) = Mh-e/αs
2 +Bhs+Kh. (M1)
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Figure 3.1: Experimental apparatus consisting of a series elastic P0 exoskeleton from
Apptronik Systems, featuring an ATI Mini40 force sensitive cuff and a P170 Orion
air cooled series elastic actuator module acting through a simple 3 bar linkage.
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Replacing the viscous damping in (M1) by a hysteretic damping we arrive at

our second model:

Sh-e/α(s) = Mh-e/αs
2 +Hhj+Kh, (M2)

where a complex stiffness appears. Finally, to generalize (M1) and (M2), we

consider a third model with both viscous and hysteretic damping:

Sh-e/α(s) = Mh-e/αs
2 +Bhs+Hhj+Kh. (M3)

In order to take advantage of the clean human cuff sensor signal, we

express these models in terms of the dynamic stiffness of the human alone,

Sh(s) = τc(s)/θe(s), using the following three equalities to learn the model

parameters of (M1)–(M3) respectively:

Sh(s) = Mhs2 +Bhs+Kh, (3.1)

Sh(s) = Mhs2 +Hhj+Kh, (3.2)

Sh(s) = Mhs2 +Bhs+Hhj+Kh. (3.3)

The original transfer function can be recovered by adding in the exoskeleton

inertia term Sh-e/α(s) = Sh(s) +
1
αMes2. By re-casting the parameter estima-

tion problem as the problem of estimating this re-creation of Sh-e/α(s), we can

take advantage of the clean sensor data and avoid various corrupting effects

in the τs(s) signal. Since the actual exoskeleton’s dynamics are bypassed,

the potential influence of unmodeled exoskeleton damping on the estimated

parameters is eliminated.
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3.1.2 Damping Ratio

In order to further explore the relatively consistent damping ratio that

we observe from the mass-spring-damper model study in Chapter 2, we also

calculate the damping ratio ζh-e/α of Sh-e/α. Because M2 and M3 have the

Hhj term which provides a damping effect in addition to Bhs, we define the

damping ratio of each model using the imaginary part of the transfer function

evaluated at the resonance:

ζh-e/α =
Bh

2
√

KhMh-e/α

for M1, (3.4)

ζh-e/α =
Hhω

−1
h-e/α

2
√

KhMh-e/α

=
Hh

2Kh
for M2, and (3.5)

ζh-e/α =
Bh

2
√

KhMh-e/α

+
Hh

2Kh
for M3, (3.6)

where ωh-e/α =
√
Kh/Mh-e/α is the natural frequency of Sh-e/α.

3.2 Pilot Study

The experimental protocol was approved by the Institutional Review

Board (IRB) at the University of Texas at Austin. The pilot study consists

of fifteen perturbation experiments with a 28-year old male subject. The

experiments are separated into three groups of five experiments.
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Table 3.1: Experimental Setting of Pilot Study

Exp α
Load Grip Bias Amplitude Frequency Range
(kg) (kg) (Nm) (Nm) (rad/s to rad/s)

1 1 0.6

10 0 2 2− 20
2 1 2.3
3 1 4.5
4 2 4.5
5 4 4.5

6 1 0.6

14 4 2 3− 30
7 1 2.3
8 1 4.5
9 2 4.5
10 4 4.5

11 1 0.6

27 8 2 4− 40
12 1 2.3
13 1 4.5
14 2 4.5
15 4 4.5

3.2.1 Experimental Protocol

The first three experiments in each group are conducted with loads of 0.6

kg, 2.3 kg and 4.5 kg and an α value of 1 (corresponding to a non-amplification

controller) while the last two experiment in each group are conducted with a

load of 4.5 kg and α values of 2 and 4. The mass of the loads and the mass of

the exoskeleton have their gravitational bias torque fully compensated through

gravity compensation control, while their inertia is attenuated by a factor of α

due to the cuff torque feedback.

The stiffness of the human elbow is influenced by muscle co-contraction

as well as by contraction to resist the bias torque. In order to obtain different

values of elbow stiffness for the three experiment groups, both the bias torque
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component of the controller and the co-contraction are varied. The three groups

have, respectively, 0 Nm, 4 Nm, and 8 Nm of bias torque. Co-contraction is

controlled by having the subject squeeze an adjustable force hand grip. The

three groups have a 10-kg, a 14-kg, and a 27-kg gripping force respectively.

The amplitude of the perturbation chirp signal is set to be 2 Nm.

To avoid fatigue of the subject, the duration of each perturbation

experiment is set to be 100 seconds. The perturbation is set to be an exponential

chirp signal, and the results are typically analyzed in the frequency domain.

To sufficiently capture the natural frequency for damping feature identification,

we set different ranges of frequency for the chirp signal according to the

stiffness values the subject achieved from the bias torque and the gripping

force. Frequency ranges of 2-20 rad/s, 3-30 rad/s and 4-40 rad/s are set for

the chirp signals for the three experiment groups.

After the chirp perturbation experiments, we transfer the time domain

data into the frequency domain and identify the dynamic stiffness model of the

subject by linear regression. The parameters of the three experiment groups

are summarized in Tab. 3.1.

3.2.2 Bode Plots

In the frequency domain results of Sh-e/α (Fig. 3.3), the phase starts (at

low frequencies) from a value between 25◦ to 45◦ instead of zero and changes

very little across all the frequencies before it reaches the second order zero at

ωh-e/α for each experiment. This type of phase shift is very different from the
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the frequency data of Sh-e/α at the frequencies of 4.0, 5.0, 6.3 and 8.0 rad/s show
the phase shift in the time domain.

50



Table 3.2: Model Parameters of Pilot Study

Exp Model Kh(
Nm
rad ) Hh(

Nm
rad ) Bh(

Nms
rad ) Mh-e/α (kgm2) ωh-e/α(

rad
s ) ζh-e/α

1
M1 10.05 - - 1.03 0.28 5.95 0.31
M2 10.05 5.89 - - 0.28 5.95 0.29
M3 10.05 4.97 0.18 0.28 5.95 0.30

2
M1 11.80 - - 1.51 0.60 4.44 0.28
M2 11.80 6.68 - - 0.60 4.44 0.28
M3 11.80 5.44 0.31 0.60 4.44 0.29

3
M1 15.74 - - 2.09 1.18 3.65 0.24
M2 15.74 8.33 - - 1.18 3.65 0.26
M3 15.74 10.44 −0.60 1.18 3.65 0.26

4
M1 13.82 - - 1.46 0.60 4.78 0.25
M2 13.82 6.87 - - 0.60 4.78 0.25
M3 13.82 6.01 0.21 0.60 4.78 0.25

5
M1 12.09 - - 1.22 0.28 6.59 0.33
M2 12.09 6.84 - - 0.28 6.59 0.28
M3 12.09 4.26 0.52 0.28 6.59 0.32

6
M1 12.73 - - 1.41 0.20 7.94 0.44
M2 12.73 10.18 - - 0.20 7.94 0.40
M3 12.73 5.86 0.66 0.20 7.94 0.44

7
M1 18.79 - - 1.91 0.57 5.72 0.29
M2 18.79 11.77 - - 0.57 5.72 0.31
M3 18.79 11.54 0.04 0.57 5.72 0.31

8
M1 25.95 - - 3.08 1.03 5.02 0.30
M2 25.95 16.75 - - 1.03 5.02 0.32
M3 25.95 15.48 0.26 1.03 5.02 0.32

9
M1 25.77 - - 2.83 0.52 7.02 0.39
M2 25.77 20.49 - - 0.52 7.02 0.40
M3 25.77 16.60 0.60 0.52 7.02 0.40

10
M1 19.07 - - 1.88 0.28 8.32 0.41
M2 19.07 16.27 - - 0.28 8.32 0.43
M3 19.07 15.72 0.08 0.28 8.32 0.43

11
M1 48.15 - - 1.97 0.23 14.4 0.29
M2 48.15 25.45 - - 0.23 14.4 0.26
M3 48.15 16.66 0.76 0.23 14.4 0.29

12
M1 48.60 - - 2.85 0.58 9.13 0.27
M2 48.60 25.61 - - 0.58 9.13 0.26
M3 48.60 15.19 1.23 0.58 9.13 0.27

13
M1 42.23 - - 3.19 1.01 6.47 0.24
M2 42.23 23.60 - - 1.01 6.47 0.28
M3 42.23 24.08 −0.07 1.01 6.47 0.28

14
M1 32.22 - - 2.82 0.46 8.35 0.37
M2 32.22 25.36 - - 0.46 8.35 0.39
M3 32.22 20.83 0.55 0.46 8.35 0.39

15
M1 42.33 - - 2.08 0.27 12.43 0.31
M2 42.33 26.50 - - 0.27 12.43 0.31
M3 42.33 27.66 −0.11 0.27 12.43 0.31

51



phase shift usually experienced by a linear system with a constant time delay

or a constant damping property in which the phase shift approaches zero in

the limit as ω→ 0. As shown in Fig. 3.4, this phase shift is clearly visible even

in time domain comparisons of τc and θe. The data show that the human joint

motion θe is not perfectly sinusoidal—it stops following the trend of the torque

after they both reach their peak values and “waits” before following the torque

τc in its descent. At low frequencies, these peaks seem especially flat.

3.2.3 Statistical Analysis

In order to compare the significance of Bhs and Hhj in the human-

exoskeleton interaction model, we calculate the residual square sum (RSS)

for all three models, denoted RM1, RM2 and RM3 respectively. For each

experiment, we conduct F-tests for each of the two three-parameter models (M1

and M2) against the generalizing four-parameter model (M3). Our F-statistic

accounts for complex value data,

FMi-M3 =
RMi −RM3

RM3
(2n− 4), for i = 1, 2 (3.7)

where n is the number of complex value samples at the frequency domain

and the real and imaginary parts of each sample are statistically independent.

The significance of Bhs and Hhj then will be evaluated by comparing this F

statistic against a critical F statistic threshold based on a 0.05 false-rejection

probability.

We split the 100 seconds of time domain data for each experiment into

10 sequences. For each of the 10 second sequences, only the data from the
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first 5.78 seconds is used for calculating the frequency domain sample. The

remainder period of 4.22 seconds is greater than the 2% settling time for all the

2nd order dynamics of Sh-e/α identified in the experiments. By this method

we can safely assume statistical independence between the 10 single-frequency

data points comprising our estimate of the frequency response function for the

purposes of statistical testing.

The results of the identified parameters (Tab. 3.2) show that the three

models give the same values of Kh, Mh-e/α and consequently ωh-e/α to two

decimal places for each experiment. This is because the difference between the

three models is restricted to the imaginary part of Sh-e/α while Kh and Mh-e/α

are the coefficients of the real part of Sh-e/α. Although the identified values of

Bh and Hh are quite different between the three models, the values of ζh-e/α

are still very close for each experiment. This means that the three models give

very similar values for the slope of the phase at the resonant frequency ωh-e/α.

From M1 to M3, the values of Bh have been reduced considerably. This

means that M3 uses the Hhj term to replace part of the Bh term in M1 while

maintaining a similar phase behavior at the frequency ωh-e/α. From M2 to

M3, the values of Hh have been reduced except for Exp. 3, 13 and 15 in which

M3 gives a negative value for Bh. These negative value of Bh is because there

is no lower bound constraint on the value of Bh during the frequency domain

regression for M3. Although a negative value of Bh brings non-passivity to

a linear mass-spring-damper system in the common sense, the Hhj term in

M3 enforces the dynamics of Sh-e/α to remain passive across the range of
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frequencies in our experiments.

The results from the F-tests (Fig. 3.5) relate to the significance of

Bhs and Hhj in M3. Based on the 20 statistically independent data values

for each experiment, a critical F-statistic value of 4.49 is calculated for 0.05

false-rejection probability. The results show that values of FM1-M3 for all the

experiments are much higher than the critical F-statistic value, with the values

of FM1-M3 in Exp. 8 and 10 exceeding 100 (c.f. the critical value of 4.49).

This proves that the existence of the Hhj term in M3 significantly improves

modeling accuracy of Sh-e/α. The values of FM2-M3 are mostly below the

critical F-statistic value except for Exp. 5, 6, 11 and 12. The other observation

is that the value of FM2-M3 is always much lower than the value of FM2-M3

for all experiments. Although the effect of the Bhs term cannot be completely

ignored based on the results of these F-tests, we can claim that the Hhj term

is still much more significant than the Bhs term in M3.

Because the Hhj term is created to describe the phase shift effect from

the complex human stiffness in M2 and M3, we suspect that the identified

value of Hh has a linear relation with the value of Kh. Therefore, we apply

linear regression between the values of Hh and Kh identified from M2 and M3

(Fig. 3.6). Compared with M3, the linear regression result with M2 shows a

stronger linear relationship with a much higher coefficient of determination

(R2). The regression equation identified from the M2 parameters also has a

smaller value of bias from the origin of the Hh-Kh plane compared with the

regression equation identified from the M3 parameters. Intuition leads us to
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expect low bias in the regression equation, since a nonzero value of Hh when

the value of Kh is zero could not be explained as hysteretic spring behavior.

Based on linear regression equations, we can express the phase shift

φh-e/α (with respect to 0◦) at the low frequencies as

φh-e/α = tan−1(
Hh

Kh
) = tan−1(ch +

dh

Kh
) for M2, and (3.8)

φh-e/α = tan−1(ch +
dh +Bhω

Kh
) for M3, (3.9)

where Hh = chKh + dh is the regression equation identified from the values

of Hh and Kh in M2 and M3 with ch and dh being the slope and the bias of

the regression equation. By substituting Hh = chKh +dh into (3.5) and (3.6),

the value of ζh-e/α for M2 and M3 can be expressed as

ζh-e/α =
Hh

2Kh
=

ch
2

+
dh

2Kh
for M2, and (3.10)

ζh-e/α =
ch
2

+
dh

2Kh
+

Bh

2
√

KhMh-e/α

for M3. (3.11)

Because the values of dh of the regression equations for M2 and M3 and the

values of Bh for M3 are relatively small, the phase shift at the low frequencies

is dominated by the value of tan−1(ch) and the value of ζh-e/α is dominated by

the constant ch/2 term. This explains the fact that the phase shift is non-zero

at low frequencies and the fact that the value of ζh-e/α changes very little

compared to the changes of Kh and Mh-e/α across all our experiments.
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3.3 Full Study

The full study consists of nine perturbation experiments with 10 healthy

subjects between the ages of 21-29, where subjects A-E are females and subjects

F-J are males.

3.3.1 Experimental Protocol

The nine experiments are separated into three groups of three experi-

ments. The three experiments in each group are conducted with a 4.5 kg load

and an α value of 1 (corresponding to no amplification), 2, and 4. The gravity

torque of the load and the exoskeleton itself are cancelled out by the gravity

compensation feature of the controller, while the total inertia is attenuated by
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Table 3.3: Experimental Setting of Full Study

Exp α
Load Grip Bias Amplitude Frequency Range
(kg) (kg) (Nm) (Nm) (rad/s to rad/s)

1 1
4.5 10 0 2 2× 100 to 2× 100.92 2

3 4

4 1
4.5 14 4 2 3× 100 to 3× 100.95 2

6 4

7 1
4.5 27 8 2 4× 100 to 4× 100.98 2

9 4

a factor of α due to the amplification feature.

Each of the three experimental groups are differently perturbed to

achieve variation in elbow stiffnesses. Because the stiffness is determined by

both muscle co-contraction and contraction to resist an external torque, we

induce variation in stiffness by having each subject squeeze an adjustable

force hand grip and by applying a bias torque from the actuator. The three

experimental groups are divided into pairs of gripping forces and bias torques.

The first group uses a 10 kg gripping force and a 0 Nm bias torque. The second

group uses 14 kg and 4 Nm. And the third group uses 27 kg and 8 Nm.

Each of the nine perturbation experiments includes ten 60-sec periods.

The bias torque is gradually added during the first 5 sec of each period while

the subject raises the forearm to around a 45◦ angle from the resting position

and starts to squeeze the hand grip. Then, a sinusoidal perturbation signal is

added for the next 10 sec. After the sinusoidal perturbation signal finishes, the
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Table 3.4: Observed Phase Shifts of Full Study

Subject Exp. 1-3 (deg) Exp. 4-6 (deg) Exp. 7-9 (deg)
Mean S.E. Mean S.E. Mean S.E.

A 27.8 3.1 25.4 2.8 18.1 2.5
B 27.2 2.4 34.8 2.5 35.2 2.0
C 16.7 2.6 21.6 3.3 22.8 2.7
D 34.7 2.7 38.5 2.4 33.3 3.0
E 17.6 2.5 10.7 2.8 11.1 2.2
F 33.7 2.1 33.4 2.2 27.5 3.0
G 23.9 3.2 16.7 3.2 15.2 2.6
H 19.3 3.1 23.4 4.4 25.3 2.2
I 18.3 2.5 14.5 3.7 10.4 2.4
J 19.9 3.2 20.0 3.6 14.6 4.1

Cuff 6.0 0.6 6.5 0.9 7.6 1.2

bias torque is gradually subtracted for another 5 sec with the subject bringing

the arm back to the resting position and relaxing the hand. To avoid fatigue,

the subject rests for the next 40 sec in each period.

In order to capture the natural frequency of the human elbow joint

wearing the exoskeleton, we set different values of the perturbation frequency

for the different groups of experiments previously described. The three experi-

mental groups use 2 rad/s, 3 rad/s, and 4 rad/s for perturbation in the first

time period. For other time periods, we set the perturbation frequencies to be

100.1 times the frequency of the previous perturbation.

The amplitude of the sinusoidal perturbation signal is set to 2 Nm.

However, after the perturbation frequency is higher than the natural frequency

of Sh-e/α(s), the inertia effect Mh-e/α starts dominating the dynamic response

and therefore the angle of displacement θe becomes less and less sensitive to
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the torque excitation. Thus, starting at the 8th perturbation time period for

each experiment, we increase the amplitude of the perturbation signal by 100.2

times in order to increase the sensitivity to the torque excitation.

In the end, we identify the three models of Sh-e/α for all 90 subject

experiments using linear regression in the frequency domain obtained from time

domain data. The parameters of all nine experimental settings are summarized

in Tab. 3.3.

3.3.2 Bode Plots

The frequency data for the two most representative subjects are shown

in Fig. 3.7. Fig. 3.7.(a)-(f) shows the Bode plots of Sh-e/α(s). Similarly to

[Agarwal and Gottlieb, 1977, Fig. 4], [Gottlieb and Agarwal, 1978, Fig. 3],

[Zahalak and Heyman, 1979, Fig. 2], the phase for each experiment shows a

non-zero value (near 30◦ for subjects B and F) at low frequencies. This type of

phase shift is very different from the phase shift values usually described by

linear systems with viscous damping where the phase shift approaches zero as

ω→ 0.

Since Sh(s) is unaffected by changes of Mh-e/α, we compute the statistics

for all three experiments in each experimental group. Fig. 3.7.(g)-(i) shows the

mean and standard error for each experimental group. Similarly to [Cannon

and Zahalak, 1982, Fig. 6], the phase shift in each experimental group changes

very little across a wide range of frequencies before it reaches the second order

zero at the natural frequency ωh of Sh(s).

61



Tab. 3.4 shows the mean and standard error for the phase shift of Sh(s)

in each experimental group across different frequencies. The data for the last

three frequencies is excluded from the calculation due to the effect of the second

order zero at ωh.

The sensor configuration for this experiment measures the deflection at

the exoskeleton’s hinge joint as well as the human torque using the cuff’s six-

axis force/torque sensor. Using this setup, we conduct a test of superposition

for differentiating between the human elbow and cuff impedances. Fig. 3.7.(g)-

(i) and Tab. 3.4 show the frequency data and phase shift values of the cuff

attached to a rigid object. The phase of the cuff is lower than the phases of all

human subjects. Furthermore, the magnitude of the cuff stiffness is above 60

dB (1000 Nm/rad), which is significantly higher than the stiffness values of all

human subjects as shown in Tab. 3.4. We conclude that the human impedance

becomes the dominant factor measured in our experiments.

3.3.3 Statistical Analysis

Since we split each experiment into ten 60-sec periods with 40-sec resting

time within each period, the response of Sh-e/α(s) to the sinusoidal perturbation

in each period completely dies out before the next period. Therefore, for the

purposes of statistical testing, we can safely assume statistical independence

between any two single-frequency data points in each experiment.

Regarding the 10-sec sinusoidal perturbation within each period, only

the data from the second 5-sec part of the perturbation is used for calculating
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each frequency domain sample. Because the first 5-sec perturbation time is

greater than the 2% settling time for all Sh-e/α(s) identified in our experiments,

the output response reaches sinusoidal steady-state before entering the second

5-sec perturbation time period.

For each experiment on each subject, we calculate the residual square

sum for all three models, denoted as Rsub-exp
M1 , Rsub-exp

M2 and Rsub-exp
M3 re-

spectively, where sub = A, B, · · · , J and exp = 1, 2, · · · , 9 are the indices of

subjects and experiments. For i = 1, 2, 3, let us define

Rsub
Mi ,

9∑
exp=1

Rsub-exp
Mi , Rexp

Mi ,
J∑

sub=A

Rsub-exp
Mi , (3.12)

Rall
Mi ,

9∑
exp=1

J∑
sub=A

Rsub-exp
Mi . (3.13)

In order to compare the significance of Bhs and Hhj in the human-

exoskeleton interaction model, we conduct F-tests for each of the two three-

parameter models (M1 and M2) against the generalizing four-parameter model

(M3). Our F-statistic accounts for frequency domain data. For i = 1, 2,

Fsub
Mi-M3 =

Rsub
Mi −Rsub

M3
Rsub

M3
·
(2n− 4) ·nexp

(4− 3) ·nexp
, (3.14)

Fexp
Mi-M3 =

Rexp
Mi −Rexp

M3
Rexp

M3
· (2n− 4) ·nsub

(4− 3) ·nsub
, (3.15)

Fall
Mi-M3 =

Rall
Mi −Rall

M3
Rall

M3
·
(2n− 4) ·nexp ·nsub

(4− 3) ·nexp ·nsub
, (3.16)

where nsub = 10 is the number of subjects, nexp = 9 is the number of

experiments per subject, n = 10 is the number of complex value samples in the

frequency domain, and the factor of two represents statistical independence
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between the real and imaginary parts of each sample.

We now focus on the statistical significance analysis presented in Fig. 3.8.

Fig. 3.8.(a) shows a subject-wise comparison of the significance of the terms

Bhs and Hhj that we use in M3. A critical F-statistic value of 1.95 is calculated

for 0.05 false-rejection probability with (9, 144) degrees of freedom. The results

show that the values of Fsub
M1-M3 for all subjects are higher than the critical

F-statistic value. In particular, the values of Fsub
M1-M3 for subjects B, D, and F

exceed 20. These results prove that the existence of Hhj in M3 significantly

improves modeling accuracy of Sh-e/α for all subjects. The values of Fsub
M2-M3

are mostly below the critical F-statistic value except for subjects A and C.

Another observation is that the value of Fsub
M2-M3 is lower than the value of

Fsub
M1-M3 for most of the subjects except for subject A.

Fig. 3.8.(b) shows an experiment-wise comparison of the models. A

critical F-statistic value of 1.89 is calculated for 0.05 false-rejection probability

with (10, 160) degrees of freedom. The results show that the values of Fexp
M1-M3

for all subjects are much higher than the critical F-statistic value. These results

prove that the existence of Hhj in M3 significantly improves modeling accuracy

of Sh-e/α for all stiffness and inertia settings. The values of Fexp
M2-M3 are mostly

lower than the critical F-statistic value except for the three experiments with

amplification factor α = 4 (Exp. 3, 6, 9). Also, we can see a clear increment of

the values of Fexp
M2-M3 (i.e. the significance of Bhs in M3) as α gets higher.

Regarding the significance of the terms Bhs and Hhj used in M3 over

all subjects and all experiments, a critical F-statistic value of 1.27 is calculated

64



A B C D E F G H I J

100

102

4.8

29.0

6.7
21.4

3.9

25.0
7.3 8.1 4.5 3.4

5.9

0.9

4.8

0.6 0.4

1.8

0.1

1.0 1.1 1.6

(a) F-test v.s. Subject

FM1-M3

FM2-M3

1 2 3 4 5 6 7 8 9 All

100

102

9.6 11.8 8.1 7.8 6.3 8.5 10.1 14.7 9.5 9.4

0.1

0.9

4.0

0.7
1.6

3.2

0.4
1.1

2.3 1.8

(b) F-test v.s. Experiment

FM1-M3

FM2-M3

10-2

10-2

Figure 3.8: Bar charts on log scale show first, all Fsub
Mi-M3 in (a), second all Fexp

Mi-M3
in the first nine columns of (b), and third Fall

Mi-M3 in the last column of (b), for
i = 1, 2. The solid line appears on a bar if the F-statistic value is over the critical
F-statistic value with a false-rejection probability of 0.05.

for a 0.05 false-rejection probability with (90, 1440) degrees of freedom. The

value of Fall
M1-M3 is much larger than 1.27 while the value of Fall

M2-M3 is only

slightly above 1.27. Although the effect of Bhs cannot be completely ignored

based on the results of these F-tests, we can claim that the term Hhj has much

more significance than the term Bhs as used in M3.

In our single-subject pilot study [He, Huang, Thomas, and Sentis, 2019],

65



a linear regression is applied to describe the relationship between Hh and

Kh identified from M2 and M3. However, based on our frequency domain

results, the phase shifts of Sh-e/α(s) for some subjects are not consistent over

different stiffness values. Therefore, a linear relationship between Hh and

Kh is not always ensured for all subjects. Instead, we apply linear regression

between the base 10 logarithms of Hh and Kh and use it to identify a power

law between these two parameters. Since the value of Hh is not guaranteed

to be positive from the parameter identification of M3, we only calculate the

power law between Hh and Kh of M2.

Tab. 3.5 shows the identified parameter values of Hh and Kh using M2,

with a coefficient of determination (R2) in the range of 0.88 ∼ 1.00. We define

β0 and β1 as the intercept and slope of the linear regression equation between

the base 10 logarithms of Hh and Kh. From the parameter identification results

using M2, a very strong linear relationship between logarithms is observable

across all subjects, with an R2 value in the range of 0.73 ∼ 0.96. Fig. 3.9.(a)-(b)

show the regression results of subjects B and F.

The last three rows of Tab. 3.5 show the identified power law parameters.

The damping ratio and low-frequency phase shift of M2 can be expressed as

ζh-e/α = ch/2, φh-e/α = tan−1(ch), (3.17)

where ch is a hysteretic damping loss factor [Bishop and Johnson, 1960]

expressed as

ch , Hh/Kh = 10β0 ·Kβ1−1
h (3.18)
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Figure 3.9: Here we show plots of Hh versus Kh for M2 on a log scale, with the
results for subjects B and F in (a)-(b) and the geometric average across all subjects
in (c). The dash lines and the ellipsoids show the linear regression results and the
co-variances on the log scale.

obtained by substituting the power law Hh = 10β0 ·Kβ1
h .

The last column of Tab. 3.5 shows the geometric average (i.e. arithmetic

average of the logarithms) of the complex stiffness parameters across all subjects.

We apply a linear regression to the logarithms of these average values and

identify a power law of β0 = −0.23, β1 = 0.90, and R2 = 0.95 (Fig. 3.9.(c)).

As the subject average stiffness increases from 12.40 to 65.12 Nm/rad, the

value of ζh-e/α decreases from 0.23 to 0.19 as calculated using (3.17) and is

within a 1-standard deviation range of the damping ratio of the minimally

damped mode of the human arm (0.26± 0.08) described in [Perreault, Kirsch,

and Crago, 2004].

As in [He, Huang, Thomas, and Sentis, 2019], the correlation between

Hh and Kh can be introduced into M2 to reduce it to a 1-parameter complex

stiffness model. Adopting this reduced model allows simplifying (3.2) to

Sh(s) = τc/θe = Mhs2 +Kh(1+ chj), (3.19)

and the dynamic stiffness of the human coupled with the exoskeleton Sh-e(s)
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Table 3.5: M2 Model Parameters of Full Study

Exp Parameter
Subject

A B C D E F G H I J Average

1
Kh (Nm/rad) 12.68 28.67 17.76 16.88 11.55 13.41 17.95 17.37 18.85 13.77 16.35
Hh (Nm/rad) 5.26 14.09 5.22 12.38 3.92 7.26 4.48 5.22 5.30 2.56 5.80

R2 0.99 0.98 0.97 0.98 0.96 1.00 0.97 0.95 0.95 0.96 -

2
Kh (Nm/rad) 16.05 21.43 12.62 16.85 14.72 9.49 19.39 14.62 20.16 10.78 15.13
Hh (Nm/rad) 8.08 11.57 4.79 9.58 4.59 5.98 8.98 5.42 6.55 4.43 6.64

R2 0.95 0.99 0.96 0.98 0.97 0.98 0.97 0.96 0.97 0.96 -

3
Kh (Nm/rad) 10.16 18.59 10.88 10.60 12.87 8.83 12.33 12.41 22.70 10.03 12.40
Hh (Nm/rad) 6.60 9.70 4.63 7.19 5.72 7.04 7.05 5.14 9.14 4.35 6.44

R2 0.97 0.98 0.88 0.90 0.90 0.99 0.96 0.95 0.96 0.97 -

4
Kh (Nm/rad) 28.69 45.01 30.81 39.08 35.16 31.57 41.56 34.24 62.06 27.66 36.52
Hh (Nm/rad) 9.95 29.42 14.01 30.98 7.13 18.18 13.72 7.97 15.69 8.57 13.75

R2 0.96 0.96 0.94 0.98 0.97 0.98 0.91 0.96 0.96 0.96 -

5
Kh (Nm/rad) 26.97 32.64 18.81 27.25 36.50 23.94 41.65 47.88 36.65 17.92 29.60
Hh (Nm/rad) 15.25 21.69 7.51 21.78 9.74 16.28 13.54 23.64 10.60 7.26 13.57

R2 0.93 0.96 0.95 0.96 0.93 0.99 0.89 0.94 0.93 0.97 -

6
Kh (Nm/rad) 24.23 32.94 25.85 29.05 26.09 20.93 24.41 24.21 26.29 14.55 24.37
Hh (Nm/rad) 14.23 20.52 11.31 18.23 8.48 14.48 9.93 10.15 12.11 7.01 12.03

R2 0.90 0.97 0.97 0.98 0.95 0.99 0.92 0.97 0.88 0.95 -

7
Kh (Nm/rad) 45.12 73.23 66.65 54.75 63.99 63.31 78.08 55.26 108.33 60.11 65.12
Hh (Nm/rad) 13.52 49.62 34.33 45.87 11.70 32.12 20.20 25.01 23.61 12.83 23.90

R2 0.94 0.98 0.96 0.94 0.92 0.97 0.97 0.97 0.98 0.95 -

8
Kh (Nm/rad) 52.45 55.48 63.19 59.58 59.37 41.71 67.47 69.80 68.61 41.52 57.03
Hh (Nm/rad) 17.52 43.15 31.05 39.03 16.03 21.37 19.20 28.97 14.61 15.99 22.97

R2 0.91 0.98 0.97 0.98 0.95 0.99 0.97 0.97 0.94 0.97 -

9
Kh (Nm/rad) 40.87 65.45 45.33 46.37 46.67 39.03 49.83 63.44 67.79 33.68 48.63
Hh (Nm/rad) 20.08 38.08 17.76 24.44 14.52 22.11 17.62 33.32 18.52 13.92 20.93

R2 0.93 0.98 0.96 0.98 0.92 0.95 0.92 0.97 0.95 0.93 -

β0 0.03 −0.55 −0.55 −0.21 −0.11 −0.01 0.00 −0.56 −0.10 −0.26 −0.23
Power Law β1 0.73 1.21 1.12 1.03 0.70 0.85 0.70 1.10 0.73 0.84 0.90

R2 0.77 0.97 0.97 0.94 0.86 0.96 0.83 0.91 0.87 0.73 0.95
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becomes,

Sh-e(s) = τs/θe = Mh-es
2 +Kh(1+ chj), (3.20)

where Mh-e = Mh +Me is the combined inertia between the human and the

exoskeleton. Similarly to (3.17), the damping ratio and low-frequency phase

shift of Sh(s) and Sh-e(s) can also be expressed as ch/2 and tan−1(ch).

3.4 Historical Review

While the noticeable phase shift values observed in this study are

consistent with the ankle and elbow joint phase values reported in [Agarwal

and Gottlieb, 1977; Gottlieb and Agarwal, 1978; Zahalak and Heyman, 1979;

Cannon and Zahalak, 1982], some research studies also report very small phase

shift values for other human joints. Yet, our proposed complex stiffness model

still holds for those results. For example, the damping ratio for the human

knee joint reported in [Pope et al., 1976, Fig. 5] is 0.02, which results in a phase

shift of 2.34◦ using equation (3.17). This kind of small hysteretic damping

characteristic can be easily overlooked.

Low-frequency phase shifts are found in muscle spindles [Poppele and

Bowman, 1970] and arteries [Westerhof and Noordergraaf, 1970] of mammals,

suggesting that joint hysteretic damping could be due to the bio-mechanical

properties of the human tissue. Therefore, we suspect that the human neu-

romuscular system, either through muscle and tendon hysteresis or through

neural hysteretic behavior, is the mechanism behind our hysteretic damping

hypothesis.
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Because Fig. 3.7.(g)-(i) shows a consistent phase shift across a wide

range of low frequencies, it is natural to consider that the phase behavior

of Sh(s) has already reached a low-frequency asymptote at the lowest tested

frequency and it will not change much at lower frequencies than that. This

is difficult to experimentally verify because lower frequencies require longer

experimental times making it harder for the subjects. Nonetheless, our lowest

tested frequency, 2 rad/s (≈ 0.3 Hz), is below the frequencies reported in

references [Agarwal and Gottlieb, 1977; Gottlieb and Agarwal, 1978; Zahalak

and Heyman, 1979; Cannon and Zahalak, 1982; Hunter and Kearney, 1982]. In

addition, our tested frequency range covers the frequencies that are important

for practical control system design.
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Chapter 4

Nonlinear Control for Responsive

Human-Centered Robots

In Chapter 2, we introduce the amplification exoskeletons, which is a

specific type of human centered robots. While the concept of an amplification

exoskeleton is an old idea [Yagn, 1890; Makinson, Bodine, and Fick, 1969;

Kazerooni and Guo, 1993], a system which delivers on the dream of transparent

interaction, of “feeling like the system is not there,” through augmentation

of sensed human interaction forces is still an ambitious goal of force control

technology today [Kazerooni, 2005; Dollar and Herr, 2008; Jacobsen and Olivier,

2014; Fontana, Vertechy, Marcheschi, Salsedo, and Bergamasco, 2014]. Unlike

assistive exoskeletons which help complete predictable behaviors [Zhang, Fiers,

Witte, Jackson, Poggensee, Atkeson, and Collins, 2017; Lee, Kim, Baker, Long,

Karavas, Menard, Galiana, and Walsh, 2018] or rehabilitation exoskeletons

The results presented in this chapter have also appeared in part of [He, Huang, Thomas,
and Sentis, 2019] and [Brissonneau, He, Thomas, and Sentis, 2021]. The human subject
experiments in [He, Huang, Thomas, and Sentis, 2019] were conducted by Binghan He and
Huang Huang. As the primary contributor, Binghan He developed the fractional-order
control method for amplification exoskeletons. Gray C. Thomas provided theory supports
on frequency domain analysis. In the work of [Brissonneau, He, Thomas, and Sentis, 2021],
Nicolas Brissonneau is the primary contributor in developing algorithm and conducting
experiments. Binghan He provided supports on programming the algorithm in the early stage
and assisting the data analysis. Gray C. Thomas provided theory supports on frequency and
time domain analysis. These works were advised by Luis Sentis.
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[Kong, Moon, Jeon, and Tomizuka, 2010; Kim and Deshpande, 2017] which

simulate rehabilitation therapy, human augmentation exoskeletons [Kazerooni,

2005; Lee, Lee, Kim, Han, Shin, and Han, 2014] use non-passive feedback control

to amplify the user’s strength. But this type of feedback control brings the

system closer to instability. And since the robot is in a feedback interconnection

with the human, a model of the human’s dynamic behavior plays a critical role

in determining the stability of a human-centered robot [Buerger and Hogan,

2007; He, Thomas, Paine, and Sentis, 2019].

In Chapter 3, we validate a complex stiffness model for human elbow

joint dynamics. The primary model validation experiment uses statistical

F-tests to compare three dynamic stiffness models: a linear mass, spring, and

viscous damper model, a nonlinear complex-stiffness-spring and mass model

(that is, a spring, mass, and hysteretic damper model), and a combined model

with mass, spring, and both viscous and hysteretic damping. This hysteretic

damping explains the consistent damping ratio of the human–exoskeleton

resonant peak even as the stiffness and exoskeleton inertia change—which is

not well explained by the linear model. And it also explains the low frequency

phase lag in human stiffness (previously observed in [Agarwal and Gottlieb,

1977; Gottlieb and Agarwal, 1978; Zahalak and Heyman, 1979; Cannon and

Zahalak, 1982]).

Based on this new model, we introduce two nonlinear control methods

in this chapter for improving the responsiveness of human-centered robots.

First, we develop a customizable fractional-order control strategy to take
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full advantage of the low-frequency phase lag for each individual. Based on

results from the previous test, a customized fractional order is chosen for

each of three subjects such that the behavior is nearly oscillatory (marginally

stable). The subjects then change their co-contraction level to illustrate the

phenomenon of co-contraction induced instability and subject dependent co-

contraction relationships with stability. The three subjects span the range of

observed co-contraction–stability relationships. Compared to the PI control

strategy in Chapter 2, this fractional-order control strategy improves dynamical

amplification (at 10 rad/s) by 81 ∼ 88%.

Then, we investigates how to transfer human-like complex stiffness

feature to human-centered robots. The challenge of this problem is that the

time-domain representation of a complex stiffness is non-causal and therefore

cannot be realized in practice. Based on a causal approximation of complex

stiffness proposed in [Reid, 1956], we develop a proportional-and-hysteretic-

damping (PHD) control method. We show that the step response of our PHD

controller maintains a percentage overshoot, which is insensitive to inertia.

4.1 Fractional-Order Control

The amplification feedback we discuss in this section is the same as

the direct amplification feedback shown in Fig. 3.2 in which the amplification

command is −τc multiplied by α − 1. But instead of a constant value of

α across all frequencies, we introduce a frequency dependent amplification

transfer function α(s) = kp ·F(s) + 1, where kp is a proportional gain and F(s)

73



is a fractional order controller customized according to the complex stiffness

behavior displayed by users.

4.1.1 Loop Shaping

Based on (3.19) and (3.20), the plant transfer function P(s) from τd to

τc can be expressed as

P(s) =
Sh(s)

Sh-e(s)
·Ga(s) =

Mhs
2 +Kh(1+ chj)

Mh-es
2 +Kh(1+ chj)

·Ga(s) (4.1)

where the SEA transfer function Ga(s) = τs/τd acts as a 2nd order low-

pass filter. Because of the high bandwidth of the SEA force controller, the

natural frequency ωa of Ga(s) is much greater than the natural frequencies

ωh-e =
√

Kh/Mh-e and ωh =
√

Kh/Mh of Sh-e(s) and Sh(s).

Considering the frequency domain properties from low to high frequen-

cies, P(s) has a pair of conjugate poles at ωh-e, then a pair of conjugate zeros

at ωh and then another pair of conjugate poles at ωa (Fig. 4.1). Between

ωh-e and ωh, Sh-e(s) is dominated by its inertia effect and the magnitude of

P(s) decreases while the phase decreases from 0◦. On the other hand, Sh(s) is

still dominated by the complex stiffness and prevents the phase moving below

tan−1(ch) − 180◦.

If we apply a very large value of kp, the gain crossover of P(s) falls

beyond ωa. The phase margin with such crossover is very close to zero because

of the 2nd order SEA dynamics. Also, the closed loop behavior amplifies the

high frequency sensor noise from the actual signal from τc (which is usually

de-noised by a low-pass filter beyond the frequency of ωa that makes the closed
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loop even more likely to be unstable). Similarly to [He, Thomas, Paine, and

Sentis, 2019], the crossover frequency cannot be placed between ωh and ωa

because multiple crossovers could easily occur. Besides the multiple crossovers,

this frequency range is also outside of the tested frequency ranges in Chapter

3. The unmodeled dynamics from the human and cuff will cause additional

stability issues if a crossover is placed there. Instead, a new crossover can

be safely placed at the frequency between ωh-e and ωh using a smaller kp

(Fig. 4.1). As a rule of thumb, kp can be set as

kp = (ωgc/ωh)
2 = (Mh-e/Mh)

1
2 ,

ωgc ,
√

Kh/(Mh-e ·Mh)
1
2 ,

(4.2)

where the crossover ωgc of kp ·P(s) is exactly in the middle between ωh-e to

ωh in the log scale.

In Chapter 2, an additional integral term is added to the proportional

gain kp to boost the amplification at low frequencies while maintaining the

same crossover frequency between ωh-e and ωh. However, a PI controller has

a −90◦ phase at low frequency, which can result in loss of stability if the zero

of the PI controller is too close to the crossover.

Therefore, we propose a fractional order controller to take advantage of

the complex stiffness model,

F(s) = kf · s−f , (4.3)

where f is the fractional order (that is, a non-integer power of s) of F(s) and kf

is a gain which allows tuning the magnitude of F(s) in the frequency domain.

The fractional order controller in (4.3) has its magnitude decreasing −20 · f dB
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Figure 4.1: These conceptual bode plots show P(s) with its poles (crosses) and
zeros (circles). The various regions are color-coded: the model is trustworthy in
the green region, the blue region reflects the multi-crossover behavior which makes
an amplification controller design unreliable, and the yellow region is dominated by
sensor noise from τc. A fractional-order controller F(s) complements a proportional
controller kp by boosting the low-frequency amplification.

per decade and its phase staying at −90 · f degrees at all frequencies.

By multiplying (4.3) by the proportional gain kp, the gain of the

controller is increased at low frequency and reduced at high frequency (for

further de-noising the measurement of τc). If kf is tuned to make F(s) have

the exact same crossover frequency as kp ·P(s), we will obtain the magnitude

bode plot kp ·P(s) ·F(s) rotated from kp ·P(s) with pivot at the point of the
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gain crossover frequency (Fig. 4.1). Since the exact crossover frequency of

kp ·P(s) varies with the value of Kh, kf can be set as

kf = ω̂
f
gc, ω̂gc ,

√
K̂h/(Mh-e ·Mh)

1
2 , (4.4)

where ω̂gc is chosen as a nominal crossover frequency of kp ·P(s) with K̂h ,

(
¯
Kh · K̄h)

1/2 being the geometric mean between the lower bound
¯
Kh and the

upper bound K̄h.

Because of the non zero phase shift associated with the complex stiffness

behavior, a positive phase margin can be guaranteed if 0 < f < tan−1(ch)/90.

The fractional order controller can be precisely designed for all subjects based

on the values of β0 and β1 shown in Tab. 3.5 through the settings

f =

{
tan−1(10β0 · K̄β1−1

h )/90−φ/90, if β1 < 1,
tan−1(10β0 ·

¯
Kβ1−1

h )/90−φ/90, if β1 > 1,
(4.5)

where φ > 0 is a user-defined guaranteed phase margin. Differently from

[He, Huang, Thomas, and Sentis, 2019] where a constant ch is assumed, (4.5)

considers the lowest value of ch of a subject in the stiffness range [
¯
Kh, K̄h].

As a fractional-order controller, F(s) cannot be implemented directly

into a computational control process. However, from [He, Huang, Thomas,

and Sentis, 2019], we can approximate it as the product of many 1st order lag

filters,

F(s) =
kf

pf
1
·

n∏
i=1

1+ s/ zi
1+ s/pi

, (4.6)

zi/pi = rzp, for i = 1, 2, · · · , n (4.7)

pi/pi−1 = rpp, for i = 2, 3, · · · , n, (4.8)
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where n is the number of lag filters and the pole and the zero for each lag

filter are −pi and −zi. We define rzp such that all lag filters have an equal

distance between the pole and the zero, and we define rpp such that there

is a constant distance between adjacent lag filters (in log frequency space).

The amplification controller in (4.6) functions as a fractional-order filter in the

frequency range of [p1, zn] rad/s. The fractional order can be approximated

as f ≈ log(rzp)/ log(rpp).

4.1.2 Examples

In Chapter 3, we presented the results of a 10-subject study, where

subjects A-E are females and subjects F-J are males. Based on (4.5), we

conducted loop shaping experiments on subjects B, D and G who, respectively,

had the highest value, the closest value to 1, and the lowest value of β1 across

all subjects. Our loop shaping study consists of two tuning experiments and

two amplification experiments.

The value of Me is 1.01 kg ·m2, which includes a 4.5 kg load at the

end of the exoskeleton arm. Although we do not measure the value of Mh

directly from our subjects, an average Mh of 0.11 kg ·m2 can be obtained from

a 10-subject measurement study presented in [Cannon and Zahalak, 1982].

Based on these inertia values and (4.2), we set kp = 3.2.

As shown in Tab. 3.5, the human stiffness changes from 10.03 to 108.33

Nm/rad across all subjects and all experiments, which gives us a nominal value

of K̂h = 32.96 Nm/rad. Based on (4.4) and (4.6), we compute ω̂gc ≈ 10 rad/s
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and implement an approximate fractional-order controller using 5 lag filters

with p1 = 1 and rpp = 100.5 such that ω̂gc is located at the center of the

frequency range defined by [p1, p5] rad/s.

The two tuning experiments we perform aim to find out the fractional

order of a subject where the minimum phase margin φ is near zero. From (4.5),

we gradually increase the fractional order, f, from low value to higher values

until the exoskeleton starts to oscillate. We do that with subjects employing

low and high human stiffness behaviors. The maximum stable value of f will

be the lower value between the two stiffness cases. An important advantage

is that this tuning strategy does not require prior knowledge of the human

complex stiffness. Similarly to the modeling experiments previously presented,

we regulate the low and high stiffness of a subject by setting the gripping force

as 10 and 27 kg and the bias torque as 0 and 8 Nm.

After the tuning experiments outlined above, we subtract 0.12 from the

marginally stable fractional order, which provides a minimum phase margin

φ = 10.8◦. Then, we conduct two amplification experiments both with a

gripping force of 14 kg and a bias torque of 4 Nm. These two experiments are

conducted using sinusoidal voluntary movements performed by the subjects

with frequencies of 1 and 10 rad/s. The voluntary sinusoidal movements are

guided by showing the subject a visual signal of the actual joint position θe

and the desired sinusoidal wave on a screen. The amplification factor α for

these sinusoidal voluntary movements can be calculated from the experimental

data after the experiments.
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(a) (b)Apparatus Experimental Setup
6-Axis Force Sensor

SEA

Encoder

Hand Grip

Load

Spring Trigger

Figure 4.2: Experimental apparatus: the series elastic P0 exoskeleton featuring an
ATI Mini40 force sensitive cuff and a P170 Orion air cooled series elastic actuator
module acting through a simple 3 bar linkage. During all experiments, subjects
apply forces to a adjustable hand grip to regulate their elbow stiffness. A spring
trigger is used for perturbation during the post-tuning tests.

In order to study the performance of the tuned amplification controllers

for various subjects, we define τ̃s , τs + τg − bias and τ̃c , τc − bias. The

real-time amplification factor for the proposed amplification controller can be

expressed as α(t) = τ̃s(t)/τ̃c(t) + 1.

After gradually increasing the fractional order for low and high human

stiffness behaviors until the exoskeleton starts to oscillate continuously, we

obtain the values f = 0.72, 0.56, 0.22 for subjects B, D, G. In order to display

the tuning results concisely, we conduct two post-tuning tests involving low and

high human stiffness setups. We attach a set of mechanical springs to the tip

of the exoskeleton arm (Fig. 4.2.(b)) and quickly detach it to test the dynamic

response of the controller. The response of θe and τ̃c for the post-tuning tests

are shown in Fig. 4.3.

In Tab. 3.5, we had identified that β1 for subject B was greater than 1.
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Figure 4.3: (a)-(c) show the responses of θe (dash red) and τ̃c (solid blue) for the
post-tuning tests on subjects B, D and G.
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Figure 4.4: (a)-(c) show the responses of τ̃s (dash red) and τ̃c (solid blue) for the
amplification tests on subjects B, D and G.
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Table 4.1: Observed Amplification of Fractional-Order Control

Subject f | τ̃sτ̃c | (1 rad/s) ∠ τ̃sτ̃c (1 rad/s) | τ̃sτ̃c | (10 rad/s) ∠ τ̃sτ̃c (10 rad/s)

B 0.60 10.86 −25.2◦ 2.83 −54.9◦
D 0.44 6.74 −28.2◦ 2.84 −42.5◦
G 0.10 3.70 −8.8◦ 2.99 −12.6◦

This explains why the post-tuning test for subject B applying high stiffness is

less oscillatory than the post-tuning test applying low stiffness. Because the

value of β1 is very close to 1 for subject D, the results for both post-tuning

tests are very similar. Similarly, the high stiffness post-tuning test for subject

G is more oscillatory than the low stiffness post-tuning test because β1 < 1.

When we subtract 0.12 from f for subjects B, D and G, we get the

values 0.60, 0.44 and 0.10. The behaviors of τ̃s and τ̃c for sinusoidal voluntary

movements between 1 and 10 rad/s demonstrate that the exoskeleton is stable

for all subjects using our proposed custom robust amplification controllers

(Fig. 4.4). The values for the gain and the phase shift for τ̃s and τ̃c during the

amplification tests are shown in Tab. 4.1.

Notice that the subjects are able to maintain values between | τ̃sτ̃c | =

2.83 ∼ 2.99 with a voluntary motion of 10 rad/s. In Chapter 2 which did

not incorporate the proposed complex stiffness model [He, Thomas, Paine,

and Sentis, 2019], the value of | τ̃sτ̃c | was between 1.46 ∼ 1.58 at 6.3 rad/s

(experimentally validated), and a value of 1.12 at 10 rad/s (theoretically

estimated). Therefore, the fractional-order control strategy shows a 81 ∼ 88%

improvement in the magnitude when using a dynamical amplification factor
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α(s) = τ̃s(s)/τ̃c(s) + 1.

4.2 Proportional-and-Hysteretic-Damping Control

In (3.17), we use the complex stiffness model to explain how humans

maintain the consistency of their damping ratios versus different stiffness and

inertia values. If a robot has a similar complex stiffness feature to a human,

the dynamical behavior of the robot will be more consistent while interacting

with different uncertain environments. Therefore, the next question for us to

study is how to build a control system which reproduces a virtual complex

stiffness on a robot.

4.2.1 Hilbert Transformation

For a linear mass-spring-damper system

Sr(s) = m · s2 +b · s+ k, (4.9)

the most direct way for changing it into a complex stiffness system is to let we

let b = h
ω . Then, we obtain

Sr(s) = m · s2 +h · j+ k. (4.10)

However, the frequency ω at the current moment is not available if we do not

know the robot’s motion in the future moment. This observation shows that

(4.10) is non-causal and cannot be realized in time domain.

While complex stiffness F(s) = h · j+ k is a frequency-domain equation,
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Figure 4.5: (a) shows the phases and transitions describing the dynamics of the
PHD controller in the force to position plane while following a sinusoidal desired
position input over one period, while (b) shows the associated time response of f to
a sinusoidal position input.

its time-domain representation can be expressed as

f(t) = h · x̂(t) + k · x(t), (4.11)

where x(t) is the robot position variable and x̂(t) is the Hilbert transform of

x(t) [Inaudi and Kelly, 1995] defined as

x̂(t) = −
1
π

w ∞
−∞ x(t)

t− τ
dτ. (4.12)

Based on (4.12), it is also obvious that the time-domain representation of

complex stiffness is non-casual.

4.2.2 Reid Model

In [Reid, 1956], a causal approximation of the time-domain representa-

tion of complex stiffness is expressed as

f(t) =
π

2
·h · sgn(x(t) · ẋ(t)) · x(t) + k · x(t). (4.13)
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Based on the idea of Reid model, we propose our proportional-and-hysteretic-

damping (PHD) control method [Brissonneau, He, Thomas, and Sentis, 2021].

A PHD controller switches between two linear virtual springs (Fig. 4.5.a) as

f(t) =

{
k1 · x(t), if sgn(x(t) · ẋ(t)) < 0,
k2 · x(t), if sgn(x(t) · ẋ(t)) > 0,

(4.14)

where k1 , (1− β) · kPHD and k2 , (1+ β) · kPHD are the stiffness values

of the two virtual springs and β decides how much these two stiffness values

deviate from a nominal stiffness value kPHD. If the position and velocity of

the virtual spring deflection are in opposite directions, the PHD controller is in

its proactive phase and switches to virtual spring k1 · x(t). Otherwise, if the

position and velocity of the virtual spring deflection are in the same direction,

the PHD controller is in its reactive phase and switches to virtual spring k2 ·x(t).

If we input a sinusoidal perturbation of x(t) into the PHD controller, the force

output f(t) (Fig. 4.5.b) will also switch between the sinusoidal response of

virtual spring k1 · x(t) and the sinusoidal response of virtual spring k2 · x(t)

based on whether the PHD controller is in a proactive phase or a reactive phase.

Percentage Overshoot Notice that the PHD controller switches between

two marginally stable sub-systems if we implement it to a robot with inertia m.

For a 2nd order system that is marginally stable, its step response is sinusoidal.

We can analytically calculate the amount of overshoot using conservation of

energy. The potential energy equality 1
2 · k1 · x1

2 = 1
2 · k2 · x2

2 holds between
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subsequent peaks in amplitude, x1 and x2 (see Fig. 4.6). And therefore,

|x2|

|x1|
=

√
k1
k2

. (4.15)

Substituting k1 , (1− β) · kPHD and k2 , (1+ β) · kPHD, the percentage

overshoot %OSPHD of controlling the inertia m using the proposed PHD

controller can be expressed as

%OSPHD = 100 · |x2|

|x1|
= 100 ·

√
1−β
1+β

, (4.16)

which is irrelevant to both the robot inertia m and the nominal stiffness kPHD.

Damped Natural Frequency Considering again the step response behavior

in Fig. 4.6, the response of a PHD controller is defined by the consecutive switch

between two stiffness k1 and k2. The switching happens when q or q̇ crosses

zero. We can split the full period into four quadrants, such that each quadrant
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Figure 4.7: A modified Taurus Testing System with a P-170 Orion actuator

is the result of a single linear spring behavior:

TPHD = 2 · T1
4

+ 2 · T2
4
, (4.17)

where T1 and T2 are the duration of the full periods of the mass-spring

dynamics solely dominated by k1 and k2. Let us define ω1 and ω2 as the

natural frequencies of the inertia m with virtual springs k1 and k2. By

substituting T1 = 2π
ω1

, T2 = 2π
ω2

, and TPHD = 2π
ωd

PHD

into (4.17), we can

express the damped natural frequency ωd
PHD as

ωd
PHD =

2 ·ω1 ·ω2
ω1 +ω2

, (4.18)

Substituting ω1 =
√

k1/m and ω2 =
√

k2/m into (4.18), we obtain

ωd
PHD =

2 ·
√

k1 · k2√
k1 ·m+

√
k2 ·m

. (4.19)

Substituting k1 , (1−β) · kPHD and k2 , (1+β) · kPHD, we get

ωd
PHD =

√
kPHD

m
· 2 · (1−β2)
1+

√
1−β2

. (4.20)
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4.2.3 Series Elastic Actuator Example

To confirm the performance of our PHD controller, we perform exper-

iments in the hardware testbed shown in Fig. 4.7. Fig. 4.8 shows the PHD

controller’s performance in two step-responses verified in hardware with differ-

ing load inertia. The two step responses are overlaid, but plotted on different

time axes, to highlight their similar shapes and nearly identical overshoot

behaviors.
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Part II

Safety
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Chapter 5

State Feedback Control for Safe

Human-Centered Robots

Safe human-robot interaction is mission-critical for human-centered

robots. For a dynamical system like a human-centered robot, the safety of its

operation can be verified by a barrier certificate. Similar to a Lyapunov function

for stability verification, a barrier certificate or barrier function provides a

sufficient condition for safety verification [Prajna and Jadbabaie, 2004]. But a

Lyapunov function needs to be decreasing everywhere in the state space while

a barrier function relaxes the global convergence requirement and only needs

to be decreasing at the safety bounds. Barrier certificates can be synthesized

through sum-of-squares optimization [Prajna, 2006]. Inspired by the idea of a

control Lyapunov function [Sontag, 1989], a more ambitious goal is to combine

the barrier function and the safety guarantee controller through a control

barrier function and synthesize them simultaneously [Wieland and Allgöwer,

2007].

Controllers which ensure safe operation of dynamic systems despite un-

The results presented in this chapter have also appeared in part of [Thomas, He, and
Sentis, 2018]. As the primary contributor, Gray C. Thomas developed the control theory and
did the mathematical proofs of this work. Binghan He programmed the control algorithms
and conducted simulations for the proof of concept. This research was advised by Luis Sentis.
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trusted inputs are widely appreciated for their straightforward safety verification.

They find application where safety is critical, and also where input foresight

is unavailable. These systems must first guarantee future satisfaction of both

state and input constraints on the dynamic system—with input limits being a

critical complicating factor. As was famously argued in the first Bode lecture,

input limits on the fuel rod controller explain the signal behavior minutes

before the Chernobyl reactor’s nuclear melt-down [Stein, 2003]. A natural

secondary goal is to maximize the region of the state space that the controller

certifies as safe to use.

Unlike the reference governor [Bemporad, 1998], which enforces state

constraints by way of constrained model predictive control [Mayne, Rawlings,

Rao, and Scokaert, 2000], safety controllers for nonlinear systems use the

sub-level sets of a scalar function—a Lyapunov function, or one of several

relaxations—to encode information about the safe region boundary.

Several barrier Lyapunov nonlinear approaches start by building a

Lyapunov function which is infinite within the unsafe region. Backstepping

[Tee, Ge, and Tay, 2009] and adaptive control techniques [Liu and Tong,

2016] can then guarantee safety, if not input limits. Less restrictive barrier

functions and barrier certificates must decrease only at the boundary [Prajna

and Jadbabaie, 2004]—the sub-level set of zero. Barrier Lyapunov functions

can be constructed from a Lyapunov function and a barrier function [Ames,

Xu, Grizzle, and Tabuada, 2016], but finding such functions is the classical art

of nonlinear control practitioners.
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A control Lyapunov function [Sontag, 1989] merely needs to be capable

of decreasing everywhere, and control barrier functions [Wieland and Allgöwer,

2007] relax limitations on the choice of scalar function to the utmost—but still

leaves the construction of such functions, and the bounding of the input, as

an art. The secondary, or non-safety control objectives can be combined into

a composite function [Romdlony and Jayawardhana, 2016], or added to the

optimization which determines the input [Ames, Xu, Grizzle, and Tabuada,

2016], [Nguyen and Sreenath, 2016a], [Nguyen and Sreenath, 2016b], but doing

so alters the original controller’s behavior everywhere. In particular, [Nguyen

and Sreenath, 2016a] and [Nguyen and Sreenath, 2016b] emphasize that high

relative order constraints require careful adjustments to the boundary function

to avoid large inputs.

Automatic synthesis of barrier certificates through sum of squares (SoS)

optimization [Prajna, 2006] has emerged as the standard solution to this design-

burden issue, and has been adopted in safety verification [Barry, Majumdar,

and Tedrake, 2012], and region of attraction estimation [Glassman, Desbiens,

Tobenkin, Cutkosky, and Tedrake, 2012] for already designed controllers in the

presence of constraints. Most ambitiously, the LQR-Tree algorithm [Tedrake,

2009], [Tedrake, Manchester, Tobenkin, and Roberts, 2010] attempts to map

out the entire backwards-reachable state space using the union of funnels—the

sub-level sets of trajectory tracking LQR Lyapunov functions. The LQR-Tree

strategy could potentially be adapted to safety control, but remains structurally

plagued by the non-conservative polynomial approximation of the dynamics,
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inability to exploit choices available during controller design, and—despite

efforts to improve the speed by sacrificing guarantees [Reist and Tedrake,

2010]—dimensional explosion of the SoS sub-problem, trajectory optimization

sub-problem, and the tree structure in the full state space [Tedrake, Manchester,

Tobenkin, and Roberts, 2010].

Linear matrix inequality (LMI) controller synthesis problems (c.f. [Boyd,

El Ghaoui, Feron, and Balakrishnan, 1994]) offer a conservative way to certify

invariant ellipsoids as safe—and design controllers to maximize their area. Such

invariant ellipsoids have been applied to input and state constrained linear

systems [Hu and Lin, 2003], and it has been shown that under these conditions

the convex hull of the regions is also invariant. But the these ellipsoids must

share the same center. The less-explored, non-convex min-quadratic function

mentioned in [Hu, Ma, and Lin, 2006] for same-center ellipsoids—which bears

similarity to the minimization over quadratics that runs once to select the

starting funnel in [Reist and Tedrake, 2010]—is more easily adapted to our

purpose.

In this chapter, we propose to use linear differential inclusions to ap-

proximate a nonlinear system at a grid of equilibriums—each a conservative

approximation of the nonlinear model within some region of validity. For

each equilibrium we use an LMI to find the linear feedback and quadratic

Lyapunov function such that the function’s unity-sublevel set satisfies all state

and input constraints while certifying the largest volume region. Our min-

quadratic barrier function is the minimum over all of these quadratic Lyapunov
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functions—minus one so that the 0-sub-level set is an approximation of the

safe region. This produces an approximate safe region which is the union of

ellipsoids, region e in Fig. 5.1-5.2.

The ideal safety controller, in our view, would adhere exactly to Fig. 5.1-

5.2’s region (a), applying either no input, or limit-saturated input as soon as

the state hits the boundary of the safe region. This strategy relies on being

able to compute this region, but this is only feasible in SISO systems of order

less than 2, in which case the safety boundary can be found by a series of

integrations [Bobrow, Dubowsky, and Gibson, 1985; Thomas and Sentis, 2016;

Pham, Caron, Lertkultanon, and Nakamura, 2017].

We use two slightly negative “threshold” level sets of the min-quadratic

barrier function to engage and disengage the safety controller—which applies the

equilibrium-centered linear feedback law associated with the current minimum

over the Lyapunov functions when active. When the state reaches the first

(greater) threshold, the controller activates, applies a control input guaranteed

to reduce the active Lyapunov function, and thus reduces the min-quadratic

barrier function itself. This continues until the min-quadratic barrier function

falls below the second (lower) threshold, and the system returns to transparent

operation. Trajectories which stay within the larger of the two threshold level

sets are thus unaffected by the safety control.

We demonstrate our technique by constructing the region in which

an inverted pendulum can balance, subject to speed and tight input limits—

demonstrating the natural emergence of an exponential deceleration limit near
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the point where the force of gravity overwhelms the pendulum. We also simulate

the high relative order behavior of a series elastic actuator under position and

motor effort constraints.

5.1 Barrier Pairs

Various methods create control barrier functions to ensure safety con-

straint satisfaction. A reciprocal control barrier function which is infinite within

the unsafe region can be obtained through back-stepping methods [Tee, Ge,

and Tay, 2009; Liu and Tong, 2016]. The non-safety control objectives can be

combined into a composite function [Romdlony and Jayawardhana, 2016], or

added to the optimization of quadratic programming which determines the in-

put [Ames, Xu, Grizzle, and Tabuada, 2016; Nguyen and Sreenath, 2016b], but

doing so alters the original controller’s behavior everywhere. In particular, Ref.

[Nguyen and Sreenath, 2016b] emphasizes that high relative order constraints

require careful adjustments to the boundary function to avoid large inputs. To

solve this issue, a semi-definite programming method in [Pylorof and Bakolas,

2016] is proposed for enforcing the safety input constraints.

The synthesis of a control barrier function can be considered a problem

of finding an invariant set of the system which is also a subset of the safe region

in the state space. Based on this idea, a barrier pair is defined.

Definition 5.1 ([Thomas, He, and Sentis, 2018]) A barrier pair is a pair

of functions (B(x), k(x)) with two following properties:
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(a) −1 < B(x) 6 0, u = k(x) =⇒ Ḃ(x) < 0,

(b) B(x) 6 0 =⇒ x ∈ X, k(x) ∈ U,

where x ∈ X and u ∈ U are the safety constraints, B(x) is a barrier function

and k(x) is a feedback controller.

The sub-level set of B(x) corresponding to zero value becomes a safe

region under the operation of controller u = k(x). If a barrier pair is specified

as

B(x) = x>Q−1x− 1, k(x) = Kx (5.1)

where B(x) is a quadratic barrier function with a positive definite matrix Q

and k(x) is a full state feedback controller, the barrier pair synthesis problem

becomes a convex optimization with a series of linear matrix inequalities (LMIs)

[Boyd, El Ghaoui, Feron, and Balakrishnan, 1994] for enforcing state and input

constraint satisfaction.

5.1.1 Barrier Pair Synthesis for Polytopic LDIs

For a strictly causal n-input-m-output system, whether it is linear or

non-linear and whether it is time-invariant or time-varying, we can model it

as a polytopic linear differential inclusion (LDI) [Boyd, El Ghaoui, Feron, and

Balakrishnan, 1994]
ẋ = A(t)x+B(t)u,

y = C(t)x,
(5.2)
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where A(t) ∈ Co{A1, A2, . . . , Ana}, B(t) ∈ Co{B1, B2, . . . , Bnb
}, C(t) ∈

Co{C1, C2, . . . , Cnc}, x , [x1, · · · , xn]> is the vector of state, y ,

[y1, · · · , ym]> is the vector of output, and u , [u1, · · · , un]> is the vector

of input. Its input and state constraints (Fig. 5.1-5.2) are expressed as

U , {u : |bn-iu| 6 ūi, i = 1, · · · , n}, (5.3)

X , {x : |bm-iCjx| 6 ȳi, i = 1, · · · , m, j = 1, · · · , nc}, (5.4)

where bn-i ∈ R1×n for i = 1, · · · , n is the standard basis (row) vectors of n-

dimensional Euclidean space and bm-i ∈ R1×m for i = 1, · · · , m is the standard

basis (row) vectors of m-dimensional Euclidean space.

The input constraint LMIs can be expressed as[
Q ?

bn-iY ū2
i

]
� 0, ∀ i = 1, . . . ,n (5.5)

where Y , KQ. The state constraint LMIs can be expressed as[
Q ?

bm-iCjQ ȳ2i

]
� 0, ∀ i = 1, . . . ,m

j = 1, . . . ,n.
(5.6)

To guarantee the invariance of the barrier function, a Lyapunov stability LMI

in [Boyd, El Ghaoui, Feron, and Balakrishnan, 1994] for the norm-bound LDI

model is expressed as

AiQ+QA>i +BjY +Y>B>j � 0, ∀ i = 1, . . . ,na

j = 1, . . . ,nb.
(5.7)

where µx and µu are positive real scalar variables. A LMI problem for maxi-

mizing the volume of the ellipsoidal region of attraction {x : x>Q−1x 6 1} can
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be expressed as
maximize

Q,Y
log(det(Q))

subject to Q � 0, (5.5), (5.6), (5.7)
(5.8)

which automatically generates a barrier pair (B(x),k(x)) if the problem is

feasible.

5.1.2 Barrier Pair Synthesis for Norm-Bound LDIs

Similarly, we can also model a strictly causal n-input-m-output system

as a norm-bound linear differential inclusion (LDI) [Boyd, El Ghaoui, Feron,

and Balakrishnan, 1994]

ẋ = (Aa +Ab∆Ac)x+ (Ba +Bb∆Bc)u,

y = (Ca +Cb∆Cc)x,
(5.9)

where ‖∆‖ 6 1, x , [x1, · · · , xn]> is the vector of state, y , [y1, · · · , ym]> is

the vector of output, and u , [u1, · · · , un]> is the vector of input. Its input

and state constraints (Fig. 5.1-5.2) are expressed as

U , {u : |bn-iu| 6 ūi, i = 1, · · · , n}, (5.10)

X , {x : |bm-i(Ca +Cb∆Cc)x| 6 ȳi, ‖∆‖ 6 1, i = 1, · · · , m}, (5.11)

where bn-i ∈ R1×n for i = 1, · · · , n is the standard basis (row) vectors of n-

dimensional Euclidean space and bm-i ∈ R1×m for i = 1, · · · , m is the standard

basis (row) vectors of m-dimensional Euclidean space.

The input constraint LMIs can be expressed as[
Q ?

bn-iY ū2
i

]
� 0, ∀ i = 1, . . . ,n (5.12)

where Y , KQ. The state constraint LMIs derived using the S-procedure [Ma
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and Chen, 2006] can be expressed as
ȳ2j Q ? ? ?

0 µjI ? ?

bm-jCaQ µjbm-jCb 1 ?

CcQ 0 ~0 µjI

 � 0, ∀ j = 1, . . . ,m (5.13)

where µj for j = 1, . . . ,m are positive real scalar variables. To guarantee the

invariance of the barrier function, a Lyapunov stability LMI in [Boyd, El Ghaoui,

Feron, and Balakrishnan, 1994] for the norm-bound LDI model is expressed asAaQ+QA>a +BaY +Y>B>a +µxAbA>b +µuBbB>b ? ?

AcQ −µxI ?

BcY 0 −µuI

 � 0,

(5.14)

where µx and µu are positive real scalar variables. A LMI problem for maxi-

mizing the volume of the ellipsoidal region of attraction {x : x>Q−1x 6 1} can

be expressed as

maximize
Q,Y

log(det(Q))

subject to Q � 0, (5.12), (5.13), (5.14)
(5.15)

which automatically generates a barrier pair (B(x),k(x)) if the problem is

feasible.

5.1.3 Composite Barrier Pairs

To certify a larger region of attraction, composite quadratic barrier

functions (Fig. 5.1-5.2) can combine multiple existing quadratic barrier func-

tions, either centered at the origin [Hu and Lin, 2003; He, Thomas, and Sentis,

2020c] or with multiple equilibrium points [Thomas, He, and Sentis, 2018]. The

LQR-tree strategy [Tedrake, Manchester, Tobenkin, and Roberts, 2010], which
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Figure 5.1: Single-Equilibrium Composition [Hu and Lin, 2003]

could potentially be applied to the barrier pair synthesis problem, creates a

series of connected regions of attraction using quadratic Lyapunov functions for

mapping the reachable state space. In [Hannaford and Ryu, 2002], a strategy

was proposed to observe the safety of a system through its passivity which can

be considered as a more conservative safety constraint than quadratic Lyapunov

stability.

Proposition 5.1 ([Thomas, He, and Sentis, 2018]) For any list of barrier

pairs (B1,k1), (B2,k2), . . . , (BN,kN), the pair comprising the min-barrier

function

B(x) , min
n=1,...,N

Bn(x) (5.16)

and control input

k(x) , kn(x) | n ∈ argmin
n=1,...,N

Bn(x), (5.17)
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Figure 5.2: Multi-Equilibrium Composition [Thomas, He, and Sentis, 2018]

(B,k), is also a barrier pair.

Proof Consider the set

N = argmin
n=1,...,N

Bn(x), (5.18)

and in particular an n ∈ N : k(x) = kn(x). Assuming first that −1 < B(x) 6 0
and u = k(x),

Ḃ(x) 6 Ḃn(x) < 0, (5.19)

since (Bn,kn) is a barrier pair, u = k(x) = kn(x), and −1 < B(x) = Bn(x) 6 0.
This demonstrates property (a) in Definition 5.1. As for property (b) in
Definition 5.1, using the same choice of n,

0 > B(x) = Bn(x) =⇒ x ∈ X, k(x) = kn(x) ∈ U (5.20)
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û xu

x

Σ0Σs K

ẋ = f(x) + g(x)u

u = k(x)

u = û
or

Figure 5.3: Block diagram, re-purposed from [Wieland and Allgöwer, 2007], showing
a safety controller K in feedback with the original system Σ0 to produce a safe system
Σs. The safety controller chooses either to be completely transparent (u = û) or
apply the known-to-be-safe input u = k(x).

5.2 Examples

Equipped with barrier pair (B,k), with its potentially non-smooth k,

we opt for an explicitly discontinuous safety controller (Fig. 5.3) with a simple

state machine (Fig. 5.4) to produce hysteretic behavior—reminiscent of [Prajna

and Jadbabaie, 2004]’s second example of a safe hybrid system.

Behavior is tuned by two near-zero thresholds ε̄ and
¯
ε, 0 > ε̄ >

¯
ε > −1.

As
¯
ε→ ε̄, the safety controller enforces the inequality constraint B 6 ε̄, and

as
¯
ε→ −1 it returns the system to the nearest equilibrium after each run-in

with the safety limits. Detuning ε̄ from the ideal of zero can only reduce X0,

but offers a hedge against real-world noisy signals in the computation of B(x).

The gap between ε̄ and
¯
ε indirectly sets the rate of back and forth switching

when the system is up against the limit.

In the examples, we use a min-quadratic barrier pair—simply the combi-

nation of those barrier pairs resulting from the LMI sub-problem. We therefore

expect that applying the control k(x) guarantees exponential convergence

to one of the equilibriums—though which one, and whether the system will
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u = û u = k(x)

B(x) > ε̄

B(x) 6
¯
ε

start

Figure 5.4: Hybrid Control System

transition between local control laws as it settles is not clear before hand. (This

behavior is later visualized in Figs. 5.6 and 5.9.) The original equilibriums now

represent the multiple minima of B, all of them sharing the minimum value

−1.

In this section, we provide two simulation examples demonstrating the

operation of the hybrid safety controller. The first example is a second order

unstable nonlinear system, an inverted pendulum1 (Fig. 5.5). The second

example is a spring-mass system with 1 input and 4 states—which we use to

explore the behavior near high relative-order constraints. In both examples,

we use only equilibrium-centered barrier pairs—generated using our example

LMI subproblem.
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Figure 5.5: Inverted pendulum model with natural position limit θc—a “point of no
return”—due to input limit −τ̄ 6 τ 6 τ̄, which causes θc to be a critical point in the
flow field for τ = −τ̄ and −θc to be one in the flow field for τ = τ̄. In our approach
such points are implicitly treated as on the boundary of the unsafe set.
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Figure 5.6: Visualizing the min-quadratic approximation of the safe region with 50
ellipsoids. Acceleration limits bound reachable region, but non-reachable region can
still be safe, (as starting points, for example). Simulated trajectories at the bound
demonstrate behavior of under k(x) control.
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Figure 5.7: The inverted pendulum system protected by the safety controller, with a
low priority reference tracking task for three references—one which exceeds position
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barely push this input limited unstable system past the point of no return (e,f).
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low speed (a) and (e) examples dominated by gravity bias, hence behavior mostly
opposite the position. 50 equilibrium point resolution. Signal tracking after leaving
B(x) = ε implemented with a simple feedback linearizing controller.
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5.2.1 Inverted Pendulum Example

We consider an inverted pendulum (Fig. 5.5, m = 1 kg, l = 1.213 m,

g = 9.8 m/s/s), with safe region

X =

{[
θ

θ̇

]
: |θ| 6 θc = 1 rad, |θ̇| 6 1 rad/s

}
,

U = {τ : |τ| 6 τ̄ = 10 N ·m}, (5.21)

and dynamics

ml2θ̈ = τ+mgl · sin(θ). (5.22)

Linearizing around equilibrium θe, τe, with a validity region2 |θ− θe| <
α = min(0.25, θc − |θe|)[

θ̇

θ̈

]
∈ Co

{[
0 1

g
l cos(θe)± ζ̄ 0

] [
θ− θe
θ̇− θ̇e

]
+

[
0
1

ml2

]
(τ− τe)

}
,

∀
[
θ

θ̇

]
∈
{[
θ

θ̇

]
: |θ− θe| 6 α, |θ̇| 6 1 rad · s−1

}
⊆ X,

τ ∈ U,

where ζ̄ = max
θ:|θ−θe|<α

ζ(θ) represents a bound on linearization error,

ζ(θ) =
g

l

[
sin(θ) − sin(θe)

θ− θe
− cos(θe)

]
. (5.23)

While it is possible to analytically calculate this bound, it is also simple to

compute via one dimensional brute force search.3

1Though others have focused on the inverted pendulum for its interesting swing-up
dynamics, we imagine a pendulum for which falling is a catastrophic failure.

2This validity region could potentially be iteratively tuned to match the extent of the
ellipse, but such concerns are of lesser importance than verifying safety. Indeed, few systems
will even have a readily available function for mapping these tuned regions to trustworthy
models.

3This is not a conservative strategy in general, but it is an extremely accurate approxi-
mation relative to the numerical tolerances in the LMI subproblem.
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This brings us to the LMI subproblems: we construct 50 barrier pairs

to approximate the safe region using ellipsoids (Fig. 5.6), and then combine

them—forming a barrier pair with a min-quadratic barrier function.

In the simulation (Fig. 5.7), the inverted pendulum system is protected

by the safety controller, with the safe system Σs itself in a feedback configuration

with a reference tracking controller. We demonstrate the behavior using three

references. For a reference exceeding position bounds (Fig. 5.7 a,b), the

pendulum stops very close to the position bound and returns to tracking after

the reference returns to X0. In the mean time, constraints are enforced by high

speed switching. For a reference exceeding velocity bounds (Fig. 5.7 c,d), the

pendulum stalls at the maximum allowable velocity. For a reference which

would just barely push this input-limited unstable system past the point of no

return (Fig. 5.7 e,f), the pendulum begins to rail the deceleration in advance of

impact, and comes to a full stop in the safe region. When the reference returns

to X0 it is moving relatively fast, and the reference-tracker has to exceed this

speed to catch up. While this last-second deceleration behavior is not as perfect

as is possible with second order systems, it is close—and this is encouraging

for the higher order systems for which no equally simple policy exists.

The time plots (Fig. 5.7 a,c,d) show the pendulum never violates any

state or input limits during the tasks. By comparing the time plots between

positions and inputs, the safety controller only applies k(x) when it is necessary.

The chattering (fast switching) of the input happens because our ε̄ ≈
¯
ε ≈ 0.

When the pendulum is in the safety region, the performance of the reference
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Figure 5.8: A conceptual series elastic actuator model, with higher relative order
constraints.

tracking controller is preserved.

5.2.2 Series Elastic Actuator Example

A series elastic actuator can be conceptually modeled as a dual spring-

mass system (Fig 5.8) with M1 as the motor, M2 as the output inertia, and

u as the motor effort (M1 = M2 = 1, Ks = 1). The safe constraints includes

position limits, velocity limits, motor effort limits, and spring deflection limits:

X = {(θ1, θ̇1, θ2, θ̇2)> : |θ1 − θ2| 6 1, |θi| 6 1, |θ̇i| 6 1, i = 1, 2},

U = {u : |u| 6 10}. (5.24)

A linear state equation

M1θ̈1 = Ks(θ2 − θ1) +u (5.25)

M2θ̈2 = Ks(θ1 − θ2) (5.26)

is valid in any point of the safe region. We use 50 barrier pairs to approximate

the safe state space region.

30 trajectories are simulated on each of the 6 2-D projections (Fig.

5.9) of the state space. These trajectories start from the edge of the min-
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Figure 5.9: Visualizing multi-equilibrium composition in the SEA example.
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quadratic barrier and converge to one of its 50 minima, and these projections

offer a glimpse into the approximation performance of our strategy in this four

dimensional space—which notably allows very tight adherence to the position

limits in input, output, and spring deflection states.
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Chapter 6

Output Feedback Control for Safe

Human-Centered Robots

Safe control is mission critical for robotic systems with humans in the

loop. Uncertain robot model parameters and the lack of direct human state

knowledge bring extra difficulty to the stabilization of human–robot systems.

Methods such as robust loop shaping [Buerger and Hogan, 2007; He, Thomas,

Paine, and Sentis, 2019; Thomas, Coholich, and Sentis, 2019], model reference

adaptive control [Chen, Chen, Yao, Zhu, Zhu, Wang, and Song, 2016] and energy

shaping control [Lv and Gregg, 2017] aim to balance the closed loop stability

and performance of physical human robot interaction systems. However, there

is no backup controller if these systems fail to maintain safety, because backup

safety controllers require full state availability.

For systems with direct state measurements, safety is usually verified

by a barrier certificate. Similar to a Lyapunov function, a barrier function or

barrier certificate decreases at the boundary of its zero level set [Prajna and

The results presented in this chapter have also appeared in part of [He, Thomas, and
Sentis, 2020c]. As the primary contributor, Binghan He developed the control theory, did
the mathematical proofs, programmed the control algorithms, and conducted simulations for
the proof of concept. Gray C. Thomas provided theory supports on linear matrix inequality
methods. This research was advised by Luis Sentis.
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Jadbabaie, 2004]. While barrier certificate can be synthesized automatically

through sum-of-squares (SoS) optimization [Prajna, 2006], a more ambitious

goal is to combine the synthesis of the barrier function and the controller

together through a control barrier function [Wieland and Allgöwer, 2007].

Various methods such as backstepping [Tee, Ge, and Tay, 2009] and quadratic

programming [Ames, Xu, Grizzle, and Tabuada, 2016; Nguyen and Sreenath,

2016b] create control barrier functions to ensure output and state constraint

satisfaction while other methods such as semidefinite programming [Pylorof

and Bakolas, 2016] aimed to also include input saturation.

Safety warranties can also be considered a problem of finding an invariant

set of the system which is also a subset the safe region in the state space. This

allows us to consider using the synthesis of a quadratic Lyapunov function

subject to the state and input constraints in a series of linear matrix inequalities

(LMIs) [Boyd, El Ghaoui, Feron, and Balakrishnan, 1994]. To certify a larger

safe region, composite quadratic Lyapunov functions can combine multiple

existing certificates, either centered at the origin [Hu and Lin, 2003] or with

multiple equilibrium points [Thomas, He, and Sentis, 2018]. The LQR-Tree

strategy [Tedrake, Manchester, Tobenkin, and Roberts, 2010], which could

potentially be applied to safety control, creates a series of connected regions

of attraction (also known as funnels) using quadratic Lyapunov functions for

mapping the reachable state space. In [Hannaford and Ryu, 2002], a strategy

was proposed to observe the safety of a system through its passivity which can

be considered as a more conservative safety constraint than quadratic Lyapunov
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stability.

A state space realization models a physical process if it correctly repro-

duces the corresponding output for each admissible input [Morse, 1974]. A

Luenberger observer [Luenberger, 1964] asymptotically estimates the state of

such a model of a linear system with only the direct measurement of input and

output. This idea has also been extended for system with nonlinear modeling

error [Zeitz, 1987]. For bounded modeling errors, the estimation error converges

to a residue set instead of zero [Corless and Tu, 1998]. Recently, a method of

using sum-of-squares programming [Pylorof, Bakolas, and Chan, 2019] aims to

optimize the converging rate of a robust state estimation for uncertain nonlinear

systems. But the estimated state still cannot be directly used for evaluation of

barrier functions until it fully converges. The system could possibly violate the

safety constraints before the barrier function estimation becomes valid.

In this chapter, we aim to close the gap between state estimation and

safety assurance for uncertain systems. In order to address the barrier function

estimation, we start with an identifier-based state estimator [Morse, 1996]

which provides us a state estimate that is linear with the uncertain transfer

function coefficients. Then, we define a vector norm based on a quadratic

Lyapunov function such that a triangle inequality can be applied to decompose

it into estimated state and estimation error. A convex polytopic bound on the

estimated state is availiable through the estimator structure, and an upper

bound on the estimation error arises from the convergence rate of the estimator

and initial error. To obtain a larger safe (state-space) region, we extend this
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upper bound searching strategy to another vector norm defined based on a

composite quadratic Lyapunov function [Hu and Lin, 2003], whose unit level set

is a convex hull of the unit level sets of multiple quadratic Lyapunov functions.

Using these vector norms, we derive our proposed barrier functions for uncertain

systems with stable static output feedback. The synthesis of an estimator for

the proposed barrier functions can be done in a two-step convex optimization

using linear matrix inequalities, first optimizing the barrier function and then

optimizing the estimator. This establishes a barrier pair [Thomas, He, and

Sentis, 2018], which can be used with a hybrid safety controller to guarantee

safety even for arbitrary inputs. In the end, our hybrid safety controller is

demonstrated in a simulation of a simple human-exoskeleton interaction model

with human stiffness uncertainty and velocity and force limits.

Let us consider an n-th order strictly proper uncertain SISO system Σp

with transfer function

P(s) =
y(s)

u(s)
=

b1sn−1 + · · ·+ bn−1s+ bn
sn + a1sn−1 + · · ·+ an−1s+ an

, (6.1)

ai ∈ [
¯
ai, āi], i ∈ {1, 2, · · · , n}, (6.2)

bj ∈ [
¯
bj, b̄j], j ∈ {1, 2, · · · , n}, (6.3)

where u and y are the input and output of Σp and i and j are the indices of

the polynomial coefficients.

A state space realization of (6.1) can be expressed as

ẋ = Ax+buu, (6.4)

y = c0x, (6.5)
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where x is the state vector. We specify (A, bu, c0) as an n-dimensional observ-

able canonical form with c0
∆
= [1, 0, · · · , 0]. With the state space realization in

the form of (6.4), the problem we consider is defined as follows.

Suppose there exists a stable controller for the parameter uncertain

system Σp which can satisfy constraints x ∈ X and u ∈ U indefinitely for all

initial states in Xs ⊆ X, find an estimator Σe that can observe whether the

system is inside the safe region Xs with direct measurement of only the input

u and output y even when this controller is not necessarily active.

6.1 Vector Norm Functions

In order to upper bound the barrier function proposed later in this

chapter, we recall the following two properties of a vector norm function.

Lemma 6.1 For every vector x in some vector space within Rn, let ‖·‖ be a

scalar function of x with the following properties.

(a) 0 < ‖x‖ <∞ except for ‖x‖ = 0 at the origin.

(b) ‖λx‖ = |λ|‖x‖ for all λ ∈ R.

Then ‖·‖ satisfies

(c) ‖x+ y‖ 6 ‖x‖+ ‖y‖

if and only if Ω
∆
= {x | ‖x‖ 6 1} is convex.
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These properties (a), (b) and (c) in Lemma 6.1 are also called the three

characteristic properties of a vector norm.

Lemma 6.2 Let ‖·‖ be a vector norm function satisfying (a), (b) and (c)

in Lemma 6.1. Suppose there is a vector x0 =
∑N

j=1 γjxj with
∑N

j=1 γj = 1,

0 6 γj < 1 for all j = 1, 2, · · · , N and ‖x0‖ = λ. Then there exists an index j

such that ‖xj‖ > λ.

Proof Suppose that ‖xj‖ < λ for all j = 1, 2, · · · , N. Based on (b) in

Lemma 6.1, we have ‖γjx‖ = |γj|‖x‖ for all j = 1, 2, · · · , N.

Applying (c) in Lemma 6.1 to ‖x0‖ we get

‖x0‖ =
∥∥ N∑

j=1

γjxj

∥∥ 6
N∑
j=1

γj‖xj‖ <
N∑
j=1

γjλ = λ, (6.6)

which contradicts ‖x0‖ = λ.

The triangle inequality of vector norms allows us to decompose the

state x into the estimated state x̂ and estimation error ε. While we do not

know x, we know x̂ and can bound ε within a decaying window—allowing us

to extend barrier pairs [Thomas, He, and Sentis, 2018] to systems without full

state availability.

6.1.1 Norm of Quadratic Lyapunov Function

Let us define a quadratic Lyapunov function as Vq(x) = x>Q−1x where

Q is a positive definite matrix. We can form a vector norm using its square

root,

‖x‖q
∆
= V

1
2
q (x), (6.7)
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Figure 6.1: A unit ball Ωc of ‖x‖c equivalent to the convex hull of the ellipsoidal
unit balls Ωqj of three different ‖x‖qj.

because Vq(x) is positive definite, Vq(λx) = λ2Vq(x) and the unit level set of

V(x) is convex.

6.1.2 Norm of Composite Quadratic Lyapunov Function

In order to obtain a larger safe region Xs, a composite quadratic Lya-

punov function is considered. For multiple different quadratic Lyapunov

functions defined with positive-definite matrices Q1, Q2, · · · , Qnq , a composite

quadratic Lyapunov function [Hu and Lin, 2003] is defined as

Vc(x)
∆
= min

γ
x>Q−1(γ)x, (6.8)

Q(γ)
∆
=

nq∑
j=1

γjQj, (6.9)

where
∑nq

j=1 γj = 1 and γj > 0 for all j = 1, 2, · · · , nq.
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The unit level set of Vc(x) is the convex hull of all the unit level sets

of Vqj(x) = x>Q−1
j x for j = 1, 2, · · · , nq and is therefore also a convex shape

(see Fig. 6.1). Since Vc(x) is positive definite and Vc(λx) = λ2Vc(x), we can

use Lemma 6.1 to define the “composite” vector norm,

‖x‖c
∆
= V

1
2
c (x). (6.10)

6.2 Estimator-Based Barrier Pairs

6.2.1 Robust State Estimator

Since only u and y are directly measured, we need to estimate x in

(6.4) to verify safety. According to Lemma 1 in [Morse, 1980], we can select a

strictly stable A0 in observable canonical form such that (6.4) becomes

ẋ = A0x+byy +buu, (6.11)

where A in (6.4) is replaced by A0 + byc0. Let the characteristic equation

of A0 be sn + â1sn−1 + · · ·+ ân−1s + ân. Since (c0, A0) is also a pair in the

observable canonical form, by and bu are

by = [â1 − a1, â2 − a2, · · · , ân − an]>, (6.12)

bu = [b1, b2, · · · , bn]>, (6.13)

which are either linear with or affine to the coefficients of the polynomials of

P(s) in (6.1).

We estimate x through an identifier-based estimator which includes a
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pair of sensitivity function filters expressed as

θ̇y = A>0 θy + c>0 y,

θ̇u = A>0 θu + c>0 u,
(6.14)

where (A>0 , c
>
0 ) is a controllable pair in the canonical form.

Lemma 6.3 Suppose Ey = C−1
0 Θ

>
y and Eu = C−1

0 Θ
>
u where C0 is the observ-

ability matrix of (c0, A0), and Θy and Θu are the controllability matrices of

(A>0 , θy) and (A>0 , θu). Eyby +Eubu converges to x exponentially.

Proof This is similar to Lemma 2 in [Morse, 1980]. Notice that C0

is also the transpose of the controllability matrix of (A>0 , c>0 ). We can derive

from (6.14) that

Ė>y = A>0 E>y + Iy,

Ė>u = A>0 E>u + Iu.
(6.15)

Because A0 is in a canonical form, it is easy to show that EyA0 = A0Ey

and EuA0 = A0Eu. Therefore, by taking the transpose of (6.15), we obtain

Ėy = A0Ey + Iy and Ėu = A0Eu + Iu.

If we define x̂
∆
= Eyby +Eubu, then ˙̂x = A0x̂+byy +buu. Since A0

is strictly stable, we have x = x̂+ ε where ε = eA0t(x(0) − x̂(0)).

Notice that the dynamics of x̂ can also be expressed as

˙̂x = Ax̂+by(y − c0x̂) +buu, (6.16)

which is a Luenberger observer of (6.4). However (6.16) cannot be directly

implemented because of the uncertainty in by and bu. The identifier-based

estimator in (6.14) provides us a convex hull containing the estimated state
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vector x̂,

x̂(by, bu) ∈ Co

{
Ey


â1 − a1
â2 − a2

...
ân − an

+Eu


b1
b2
...

bn

 ,
ai ∈ {

¯
ai, āi}, bj ∈ {

¯
bj, b̄j},

for i, j = 1, 2, · · · , n

}
.

(6.17)

Because of the initial estimation error ε0
∆
= x(0) − x̂(0), any barrier function

B(x) aiming to constrain the system inside the safe region Xs cannot be directly

bounded using x̂(by, bu). Instead, our goal is to find an upper bound for the

barrier function using both x̂(by, bu) and ε0.

For a given pair of Ey and Eu, we can derive from Lemma 6.2 that the

maximum values of ‖x̂‖q and ‖x̂‖c occur at one of vertices of the convex hull

in (6.17).

Theorem 6.1 If a strictly stable matrix A0 in (6.11) and (6.14) satisfies

A0Q+QA>0 + 2αQ � 0, (6.18)

then for all t > 0 there exists an i ∈ {1, · · · , N} such that

‖x‖q 6 ‖x̂(byi, bui)‖q + e−αt‖ε0‖q, (6.19)

where x̂(byi, bui) for i = 1, 2, · · · , N are the all vertices of (6.17).

Proof From Lemma 6.1, we have ‖x‖q 6 ‖x̂‖q + ‖ε‖q. The time

derivative of Vq(ε) can be expressed as

V̇q(ε)= ε
>(Q−1A0 +A>0 Q

−1)ε = ε>Q−1(A0Q+QA>0 )Q
−1ε. (6.20)
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By substituting (6.18), V̇q(ε) 6 −2αVq(ε) which guarantees that Vq(ε) 6

e−2αtVq(ε0). Therefore, ‖ε‖q 6 e−αt‖ε0‖q. Together with Lemma 6.2, we

have (6.19).

This Theorem 6.1 provides an upper bound on ‖x‖q which is available

in that it be calculated from x̂ and ε0 for all t > 0.

Theorem 6.2 For all j = 1, 2, · · · , nq, if a strictly stable matrix A0 in (6.11)

and (6.14) satisfies

A0Qj +QjA
>
0 + 2αQj � 0, (6.21)

then for all t > 0 there exists an i ∈ {1, · · · , N} such that

‖x‖c 6 ‖x̂(byi, bui)‖c + e−αt‖ε0‖c (6.22)

where x̂(byi, bui) for i = 1, 2, · · · , N are the all vertices of (6.17).

Proof As in Theorem 6.1.

Therefore, an upper bound on ‖x‖c can be calculated using x̂ and ε0

for all t > 0.

6.2.2 Output Feedback Safety Controller

We can now introduce two barrier pairs using our vector norms and

static output feedback controller.

Proposition 6.1 Suppose Vq is a quadratic Lyapunov function for system of

(6.4) and (6.5) with a static output feedback u = ky and Ωq is a unit ball of

‖x‖q defined as (6.7). If

Ωq ⊆ X∩ {x | c0x ∈ k−1U}, (6.23)
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then (‖x‖q − 1, ky) is a barrier pair.

Proof Let Bq(x) = ‖x‖q − 1. Its time derivative is

Ḃq(x) =
1
2
‖x‖−1q V̇q. (6.24)

Since ‖x‖−1q > 0 and V̇q < 0 when −1 < Bq(x) 6 0, (Bq(x), ky) satisfies (a)

in Definition 5.1. From (6.23), we also have (b) in Definition 5.1 satisfied.

Proposition 6.2 Suppose Vc is a composite quadratic Lyapunov function

defined as (6.8) and (6.9) for the system of (6.4) and (6.5), with static output

feedback u = ky and that Ωc is a unit ball of ‖x‖c defined as in (6.10). If we

have

Ωc ⊆ X∩ {x | c0x ∈ k−1U}, (6.25)

then (‖x‖c − 1, ky) is a barrier pair.

Proof As in Proposition 6.1.

As in (6.19) and (6.22), upper bounds of the barrier functions of these

two barrier pairs can be calculated using x̂ and ε0 for all t > 0.

6.2.3 Barrier Pair Synthesis Sub-Problems

Both barrier functions Bc(x)
∆
= ‖x‖c − 1 and their identifier-based esti-

mators can be synthesized with LMIs, through the sub-problem of synthesizing

Bq(x)
∆
= ‖x‖q − 1.

Barrier Function Synthesis With static output feedback, the closed loop

system of (6.4) is still a polytopic linear differential inclusion (PLDI) model
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[Boyd, El Ghaoui, Feron, and Balakrishnan, 1994] ẋ ∈ Acx with

Ac = Co

{
0 1 0
...

. . .

0 0 1
0 0 · · · 0

−


a1
a2
...

an

 c0 +


b1
b2
...

bn

kc0,

ai ∈ {
¯
ai, āi}, bj ∈ {

¯
bj, b̄j},

for i, j = 1, 2, · · · , n

}
. (6.26)

Supposing that X and U can be described (perhaps conservatively) as

X = {x : |fix| 6 1, i = 1, 2, · · · , nf }, (6.27)

U = {u : |u| 6 ū}, (6.28)

they can be enforced by LMIs

fiQjf
>
i 6 1, ∀ i = 1, 2, · · · , nf , (6.29)

c0Qjc
>
0 6

ū2

k2 . (6.30)

To synthesize Qj, we maximize the width of the unit ball of x>Q−1
j x along

some state space direction xj by minimizing ρj subject to the following LMI[
ρj x>j
xj Qj

]
� 0, (6.31)

such that the optimization sub-problem becomes

minimize
Qj

ρj

subject to (6.29), (6.30), (6.31), Qj � 0,

AciQj +QjA
T
ci + 2α0Qj � 0,

∀ i = 1, 2, · · · , N.

(6.32)

where Aci for i = 1, 2, · · · , N are the all vertices of (6.26). A positive value of

α0 is used to guarantee a minimum exponential decay rate for ‖x‖c.
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Σp

ẋ = Ax+buu

y = c0x

Σs

u = û

or

u = ky

Σe

θ̇y = AT
0 θy + cT0 y

θ̇u = AT
0 θu + cT0 u

x̂ = Eyby +Eubu

û u

y

B̂

y

y

Figure 6.2: Block diagram consisting of plant Σp, estimator Σe and hybrid safety
controller Σs.

u = û u = kystart

∃ B̂(byi,bui) > B̄

∀ B̂(byi,bui) 6 ¯
B

Figure 6.3: Switching logic of hybrid safety controller Σs.
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Estimator Synthesis While it is simple to specify an A0 in (6.11) with a

fast decay rate of ε (choosing big negative-real-part eigenvalues), this does not

necessarily improve the value of α in (6.22). To synthesize an A0 in the set of

matrices in observable canonical form O ⊂ Rn×n we directly optimize for α:

maximize
A0∈O

α

subject to A0Qj +QjA
>
0 + 2αQj � 0,

∀ j = 1, 2, · · · , nq,

(6.33)

knowing that a solution α > α0 will exist. (Any A0 in the convex hull of (6.26)

is guaranteed to satisfy the constraints in (6.33) with a decay rate of α0.)

6.3 A Human-Robot Interaction Example

To enforce safety satisfaction on a potentially unsafe input û, we can

estimate the barrier function as

B̂c(by, bu)
∆
= ‖x̂(by, bu)‖c + e−αt‖ε0‖c − 1. (6.34)

With this estimate, we can design a hybrid safety controller Σs which decides

whether to apply either û or ky (that is, the safety backup control law) as the

input in order to keep Bc 6 0 (see Fig. 6.2) and therefore guarantee safety.

According to Theorem 6.2, system Σp is guaranteed to be safe if

B̂c(byi, bui) 6 0 for all vertices x̂(byi, bui) of convex hull (6.17). Therefore,

the switching logic for Σs defined in Fig. 6.3, which introduces two near-zero

thresholds
¯
B and B̄ (with −1 <

¯
B < B̄ 6 0), will result in robust safety.

To illustrate robust barrier function estimation and hybrid safety control,

126



me = 1
bekh

u
xexh

Figure 6.4: Our simplified human-human interaction model, a mass-spring-damper
system, includes an uncertain human stiffness kh, an exoskeleton damping be, and
an exoskeleton inertia me.

we introduce a simplified human-exoskeleton interaction model. As shown in

Fig. 6.4, this model is a mass-spring-damper with uncertain human stiffness

kh, the exoskeleton damping be, and exoskeleton inertia me.

6.3.1 Barrier Pair Synthesis

The exoskeleton plant can be expressed as a transfer function

P(s) =
y(s)

u(s)
=

kh

mes2 +bes+ kh
(6.35)

where the input u is the actuator force exerted and the output y
∆
= kh(xe − xh)

is the contact force between human and exoskeleton. Although the contact

force and the exoskeleton position, xe, can be measured, the reference position,

xh, of the human spring is not available because of the unknown stiffness.

Suppose that the uncertain value of kh is in the range from 4 to 12 and

that the value of be is 12. We can express the closed loop Ac matrix set with

static output feedback as a convex hull

Ac = Co

{ [
−12 1
−kh 0

]
+

[
0

kh

]
kc0, kh = 4, 12

}
. (6.36)
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And the safety constraints can be defined via the sets

X = {[x1, x2]> : |− x1 + x2/12| 6 1},

U = {u : |u| 6 1.2},
(6.37)

where the output y = x1 and ẏ = −12x1 + x2, so X is constraining the output

derivative |ẏ| 6 12.

We choose the static output feedback gain k = −1.2 which is stable, and

leads to a human amplification factor of 2.2 and the output constraint |y| 6 1.

In Fig. 6.5, we construct a barrier function Bc from two different quadratic

Lyapunov functions (optimized along directions xj = [1, 0]> and xj = [1, 12]>)

generated by synthesis (6.32) with a shared decay rate of α0 = 0.50. Then,

an A0 matrix with a characteristic polynomial s2 + â1s+ â2 (with â1 = 13.60

and â2 = 18.68) and a higher decay rate (α = 0.68) is generated from synthesis

(6.33). Notice that the optimal A0 matrix is not exactly inside the convex hull

of (6.36).

6.3.2 Simulation

In the numerical simulation, human stiffness kh = 8. In our first

simulation, we release the system near the boundary of Ωc with zero nominal

input. In the second simulation the system starts at the origin and we apply

a nominal input û which tracks an unsafe reference y trajectory: y(t) =

1.2 · sin(0.05 · 2πt). In the first test (Fig. 6.5.a) the static output feedback is

always on, to demonstrate the slower decay of B̂c(kh). In the second (Fig. 6.5.b),

the static output feedback is turned on when max(B̂c(kh)) > B̄ = −0.01 and is
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Bc

B̂c

Bc

B̂c

(b)

x 2

x1
−1.0 −0.5 0.0 0.5 1.0

−
12

−
6

0
6

12 Ωqj

Ωc

x

x̂

(d)

t (s)
0 5 10 15 20

−
1

0

(a)
x 2

x1
−1.0 −0.5 0.0 0.5 1.0

−
12

−
6

0
6

12 Ωqj

Ωc

x

x̂

(c)

t (s)
0 1 2 3 4

−
1

0

Figure 6.5: In the first simulation, the system state is initialized near the boundary
of Ωc (phase plot in (a)). The maximum B̂c(kh) converges slower than Bc (in (c)).
In the second simulation, an unsafe sinusoidal input û is forced to be safely inside
Ωc by a hybrid safety controller (phase plot in (b)). This safety controller activates
only when max(B̂c(kh)) u 0 (see (d)).

turned off when all values of max(B̂c(kh)) 6 ¯
B = −0.02. This switching logic

forces the system to stop near the boundary of Ωc—deviating from the unsafe

trajectory to produce a safe output. In both tests, the largest element of B̂c(kh)

converges to zero slower than the value of Bc such that max(B̂c(kh)) > Bc, as

shown in Fig. 6.5.c and Fig. 6.5.d respectively.
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Chapter 7

Sampling-Based Safety Control

Unlike full robot autonomy, shared autonomy allows a robot to leverage

the perceptual and decision making capabilities of operators while helping them

to work more efficiently and accurately [Colgate, Bicchi, Peshkin, and Colgate,

2008]. Across different fields, such as brain-computer interfaces [Carlson and

Millán, 2013], autonomous driving [Fridman, 2018], and teleoperation [Javdani,

Admoni, Pellegrinelli, Srinivasa, and Bagnell, 2018], shared autonomy helps

us to improve our productivity without completely removing the human from

the task at hand. However, safety becomes critical with shared autonomy,

especially when operators and robots interact through physical contact. On

the one hand, the human’s objective is not directly measurable but can be

inferred based on the robot’s sensing of human inputs such as contact forces.

The robot needs this inference of the human’s objective to figure out how to

assist the human and prevent them from potential accidents. On the other

The results presented in this chapter have also appeared in part of [He, Lee, Topcu, and
Sentis, 2020b] and [He, Ghasemi, Topcu, and Sentis, 2021]. As the primary contributor,
Binghan He developed the control theory, did the mathematical proofs, programmed the
control algorithms, and conducted simulations for the proof of concept. Jaemin Lee provided
theory supports on multi-body robot dynamics in the work of [He, Lee, Topcu, and Sentis,
2020b]. Mahsa Ghasemi provided theory supports on human intention inference in the work
of [He, Ghasemi, Topcu, and Sentis, 2021]. These works were co-advised by Luis Sentis and
Ufuk Topcu.
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hand, human inputs can alter the robot’s current path resulting in additional

safety concerns. Therefore in a shared autonomy task, the robot faces a conflict

between inferring the human’s objectives and maintaining safety under the

interaction with human inputs.

For a nonlinear dynamical system such as a robot, safety is usually veri-

fied through barrier functions [Prajna and Jadbabaie, 2004]. Just like Lyapunov

functions for stability verification, barrier functions provide sufficient condi-

tions for safety verification. But barrier functions relax the global convergence

requirement of Lyapunov functions and only need to be decreasing at the safety

bounds. Various methods create barrier functions with controllers to enforce

safety constraint satisfaction. For state-space constraints, controllers can be

synthesized simultaneously with barrier functions using back-stepping [Tee, Ge,

and Tay, 2009] or quadratic programming methods [Ames, Xu, Grizzle, and

Tabuada, 2016; Nguyen and Sreenath, 2016b]. Input constraints can also be

enforced using semi-definite programming methods [Pylorof and Bakolas, 2016;

Thomas, He, and Sentis, 2018].

While the above methods aim to resolve the safety problem for a robot

alone, it is a more challenging problem to guarantee safety for a robot that has

physical contact with a person. This is because humans represent an uncertain

dynamical sub-system when physically interacting with robots. The internal

states of the human dynamics are usually immeasurable. In Chapter 2-4, we

use robust control strategies [He, Thomas, Paine, and Sentis, 2019; He, Huang,

Thomas, and Sentis, 2019] to address the uncertain human dynamics and
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achieve complementary stability for human-robot coupled system. However,

the control problems we study in those chapters only consider the robot as

a strict follower of the human’s trajectory and hence, relies on the human to

obey safety constraints. In human-robot shared autonomy, the robot needs to

enforce safety constraints in relation to the human’s objective such that it can

prevent them from potential accidents.

In this chapter, we consider a robot operating around multiple different

polytopic regions defined in the workspace of its end-effector and a human

operator that applies a norm-bound interaction force to the robot’s end-effector

intermittently. During real-time human-robot shared autonomy operation, we

aim to infer the operator’s target region from a time series of intermittent

human force measurements and create a sequence of barrier pairs such that

the robot’s end-effector can safely move to the target region without passing

through all other regions.

In order to address the safety problem during shared autonomy operation,

we develop a barrier pair rapidly-exploring random tree method to generate

sequences of barrier pairs given different human objectives. Each barrier pair

comprises a quadratic barrier function and a state feedback controller. We

synthesize the state feedback controllers in these barrier pairs using a robust

control strategy so that the robot can satisfy the safety constraints for different

human objectives and reject the human input interventions. Based on the

human intention inference formulated from the human input measurements,

the robot can execute these barrier pair sequences accordingly and help the
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human to safely accomplish the objective. We demonstrate this control method

on a simulation of a two-linkage manipulator robot, where a human operator

uses a keyboard to control a simulated human force exerted on the end-effector

of the manipulator robot.

7.1 Multi-Body Robot Dynamics

In this section, we recall the basics of multi-body robot dynamics. For

convenience, xai is defined as the geometric center for the region of ai and

āi , Rn r ai is defined as a workspace region excluding the set for ai.

7.1.1 Lagrangian Equation

The Lagrangian dynamics of an n-DOF robot can be expressed as

M(q) · q̈+C(q, q̇) · q̇ = u+ J>(q) ·w (7.1)

where M(q) is the matrix of inertia, C(q, q̇) is the coefficient matrix of Coriolis

and centrifugal effects, J(q) is the matrix of Jacobian, q , [q1, · · · , qn]> is

the vector of joint positions with q̇ and q̈ defined as its first and second

order time derivatives, u , [u1, · · · , un]> is the vector of joint torques and

w , [w1, · · · , wn]
> is the vector of external forces exerted by the human. An

n-dimensional workspace position vector x , [x1, · · · , xn]> can be calculated

from the joint position vector using

x = F(q) (7.2)
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where F(·) represents the forward kinematics. By linearizing (7.1) and (7.2)

around an equilibrium point [q>e , ~0>]>, we obtain the state-space form[ ˙̃q
¨̃q

]
=

[
0 I
0 M−1(qe)C(qe, ~0)

] [
q̃
˙̃q

]
+

[
0

M−1(qe)

]
u+

[
0

M−1(qe)J>(qe)

]
w

(7.3)

x̃ =
[
J(qe) 0

] [q̃
˙̃q

]
(7.4)

where q̃ , q− qe and x̃ , x− xe with xe = F(qe). The partial derivative of

F(q) with respect to q is the Jacobian matrix J(q).

7.1.2 Norm-Bound LDI Model

Our proposed method relies on formulating an LMI problem to synthesize

the barrier pairs subject to local convex constraints. However, the linearized

state space equations (7.3) and (7.4) become inaccurate if the state [q>, q̇>]>

deviates from the equilibrium. Before employing barrier pair synthesis, we

need to ensure that the linear model is valid for all states in the constrained

state space Z of the barrier pair.

If we express the norm-bound uncertainties of the linearized robot

dynamical model in (7.3) and (7.4) as

M−1(q) ·C(q, q̇) ∈ {A1 +A2∆A3 : ‖∆‖ 6 1} (7.5)

M−1(q) · J>(q) ∈ {Bw
1 +Bw

2 ∆Bw
3 : ‖∆‖ 6 1} (7.6)

M−1(q) ∈ {Bu
1 +Bu

2∆Bu
3 : ‖∆‖ 6 1} (7.7)

J(q) ∈ { J1 + J2∆J3 : ‖∆‖ 6 1} (7.8)

for all state [q>, q̇>]> in the constrained state space Z around the equilibrium,
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a norm-bound linear differential inclusion (LDI)[ ˙̃q
¨̃q

]
=

[
0 I
0 A1 +A2∆A3

] [
q̃
˙̃q

]
+

[
0

Bu
1 +Bu

2∆Bu
3

]
u+

[
0

Bw
1 +Bw

2 ∆Bw
3

]
w

(7.9)

x̃ =
[
J1 + J2∆J3 0

] [q̃
˙̃q

]
. (7.10)

We can formulate a norm-bound LDI by calculating M−1(q) ·C(q, q̇), M−1(q) ·

J>(q, q̇), M−1(q) and J(q) from a number of sample states in Z and using

quadric inclusion programs [Thomas and Sentis, 2019] to fit an inclusion model.

Since we assume the polytopic regions are polytopic, each edge of an

polytopic region can be transformed into an inequality constraint. To exclude

the undesirable regions of a transition, only one of these inequality constraints

need to be considered for each undesirable region. Otherwise, the state space

can be over-constrained. If the workspace position xe of an equilibrium satisfies

multiple inequality constraints associated with an undesirable region, we can

select the edge which has the maximal distance to xe to avoid being over-

constrained. Based on the selected inequality constraints |aix̃| < āi associated

with all undesirable regions a1, a2, · · · , ano , a local convex state space region

Zsafe can be defined as

Zsafe , {[q̃>, ˙̃q>]> : |ai(J1 + J2∆J3) q̃| < āi,

‖∆‖ 6 1, i = 1, · · · , no},
(7.11)

where ai for i = 1, · · · , no are row vectors with no as the number of undesirable

polytopic regions.

However, Zsafe cannot be directly used as the constrained state space

region Z for barrier pair synthesis because it has no joint velocity state con-
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straints. In some cases, a selected edge of an undesirable region has a very long

distance to xe and result in a very large uncertainty of the norm-bound LDI

model. Therefore, we need some additional state space constraints for defining

Z. Let us first define another constrained state space Z0 as

Z0 , {[q̃>, ˙̃q>]> : |bi(J1 + J2∆J3) q̃| < x̄i, |bi ˙̃q| < ¯̇qi,

‖∆‖ 6 1, i = 1, · · · , n},
(7.12)

where bi for i = 1, · · · , n are the standard basis (row) vectors of n-dimensional

Euclidean space. Then, the constrained state space region for the valid norm-

bound LDI model is defined as Z , Zsafe ∩Z0.

Similar to (7.11) and (7.12), a constrained input space region U and a

constrained external input space region W can be formulated as

U , {u : |biu| < ūi, i = 1, · · · , n}. (7.13)

W , {w : ‖w‖ < w̄ }. (7.14)

7.2 Barrier Pair Rapidly-Exploring Random Trees

The robot controller needs to guarantee that the transitions for all

continuous states in one polytopic region to another polytopic region following

the high-level discrete controller. It can be considered as a trajectory planning

problem with uncertain initial state conditions corresponding to the regions

defined by the atomic propositions. The region of attraction of the generated

robust trajectory planner is also known as a ‘funnel’ [Burridge, Rizzi, and

Koditschek, 1999]. A ‘funnel’ can be synthesized over a shooting trajectory

via multiple local stabilizing controllers [Tedrake, Manchester, Tobenkin, and
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Roberts, 2010] or by solving quadratic programs based on control barrier

functions [Ames, Xu, Grizzle, and Tabuada, 2016]. These strategies have

been proposed to solve closed system problems [Nilsson and Ames, 2018] and

reactive synthesis problems [DeCastro and Kress-Gazit, 2015] with temporal

logic constraints. The real challenge is that the trajectory planning problem

in its general form is a non-convex problem, for instance, when there are

polytopic regions located between the initial and goal polytopic regions. In

[Reist, Preiswerk, and Tedrake, 2016], a simulation-based method to solve

the non-convex problem is proposed by simulating a number of ‘funnels’ and

checking constraint satisfaction for each funnel. However, simulation-based

methods suffer from high computational costs.

For robotic systems, this type of non-convex motion planning problem is

usually addressed using sampling-based methods such as the rapidly-exploring

random tree (RRT) method [Lavalle and Kuffner Jr., 2000]. In an RRT algo-

rithm, a random position xrand is sampled from the reachable space in every

iteration. An RRT graph expands toward the sampled position from its closest

vertex xnear by a predefined distance δ. The trajectory that connects an initial

position x0 and a desired position xf can be extracted from the graph in the

end. By incorporating optimal control theory in the sampled trajectory of

RRT, the convergence rate of the motion planning problem is greatly improved

[Karaman and Frazzoli, 2011]. To improve the exploration of the RRT graph, a

sampling strategy based on the estimated feasibility set of a robot is proposed

in [Shkolnik, Walter, and Tedrake, 2009]. However, the transitions between
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x1

x2
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a2

a3

afa0

E0(1)
E1(1) E3(1)

E2(1)

Ef(1)

Figure 7.1: Atomic proposition a0, a1, a2, a3, af represent the polytopic regions (red)
in workspace. The proposed BP-RRT consists of a sequence of barrier pairs with
their sub-level sets E(1) (blue) interconnected to guarantee the transition between a0
and af . An example trajectory (black) switches to a different barrier pair controller
as it enters the sub-level set of another barrier pair.

the vertices of the RRT trajectory are not guaranteed to avoid collisions with

the undesirable state-space regions without having barrier certificates [Prajna,

2006] along the RRT trajectory.

In order to solve the non-convex robot motion planning problem for

the shared-autonomy operation, we propose a new approach consisting of a

rapidly-exploring random tree of barrier pairs [Thomas, He, and Sentis, 2018].

Our method employs RRT to deal with non-convex constraints while employing

barrier pairs equipped with sub-optimal stabilizing controllers to fulfill local

convex constraints. Let us recall the definition of a barrier pair.

Definition 7.1 [Thomas, He, and Sentis, 2018]: A barrier pair for a robot
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with dynamics in form of (7.1) is a pair consisting of a barrier function and a

controller (B, k) with the following properties

(a) −1 < B(q̃, ˙̃q) 6 0,u = k(q̃, ˙̃q) =⇒ Ḃ(q̃, ˙̃q) < 0,

(b) B(q̃, ˙̃q) 6 0 =⇒ [q̃>, ˙̃q>]> ∈ Z, k(q̃, ˙̃q) ∈ U,

where [q̃>, ˙̃q>]> ∈ Z and u ∈ U are the state and input constraints.

Similar to Chapter 5, we define a barrier pair as

B =

[
q̃
˙̃q

]>
Q−1

[
q̃
˙̃q

]
− 1, k = K

[
q̃
˙̃q

]
(7.15)

where B is a quadratic barrier function with a positive definite matrix Q and

k is a full state feedback controller, the barrier pair synthesis becomes a linear

matrix inequality (LMI) optimization problem [Thomas, He, and Sentis, 2018].

For convenience, we use (Q,K) to represent a barrier pair (B,k) in the

form of (7.15) and define E(ε) , {[q̃>, ˙̃q>]> | [q̃>, ˙̃q>]Q−1[q̃>, ˙̃q>]> 6 ε2} as

the sub-level set of B corresponding to a value ε2− 1. Based on Definition 1, the

zero sub-level set E(1) of the barrier function B needs to satisfy all constraints

defined by Z and U.

The proposed approach is illustrated in Fig. 7.1. It starts with finding

an equilibrium point inside the goal polytopic region af and synthesizing a

barrier pair in the form of (7.15), subject to local convex state constraints

(e.g. surrounding undesirable polytopic regions) for this equilibrium. We then

sample a new equilibrium point inside the sub-level set Ef (1) for the first
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barrier pair and synthesize a new barrier pair subject again to local convex

state constraints for the new equilibrium. Inside the sub-level sets of the

existing barrier pairs, another equilibrium is sampled, followed by a barrier

pair synthesis. This barrier pair sampling process is iterated until the sub-level

set of a barrier pair contains the equilibrium of a barrier pair whose sub-level

set E0(1) contains the entire initial polytopic region a0. In the end, we obtain

a sequence of interconnected barrier pairs between a0 and af without passing

through undesirable polytopic regions.

7.2.1 Barrier Pair Synthesis Sub-Problems

The barrier pair synthesis problem includes a series of LMI constraints

and generates a quadratic barrier function B with a full state controller k in

the form of (7.15). First, the sequence of barrier pairs needs to contain the

two desired polytopic regions a0 and af defining the automaton transitions and

exclude all undesirable polytopic regions a1, · · · , ano .

Although a desired polytopic region ad is assumed to be polytopic in

the Cartesian workspace, its joint space projection is not guaranteed to be

polytopic. In order to ensure that the ellipsoidal sub-level set E(1) of a barrier

pair contains ad, we sample a number of points from all edges of ad and let

E(1) contain the joint space projections of these Cartesian space samples using

the following set of LMIs[
1 ?

R(xi) − qe S1QS>1

]
� 0, ∀ i = 1, . . . , np (7.16)

where np is the number of sampled workspace points at the edge of ad with ad =
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Co{x1, · · · , xp}, R(·) is an inverse kinematics operator and S1 , [In×n, 0n×n].

Using the S-procedure [Ma and Chen, 2006], the inequality constraints

|aix̃| < āi of Zsafe in (7.11) can be transformed into a set of LMIs
ā2
i Q ? ? ?

0 γiI ? ?

aiJ1S1Q γiaiJ2 1 ?

J3S1Q 0 ~0 γiI

 � 0, ∀ i = 1, . . . , no (7.17)

where γi for i = 1, . . . , no are positive real scalar variables.

Similar to (7.17), the workspace position constraints |bix̃| < x̄i of Z0

defined in (7.12) can be transformed into a set of LMIs
x̄ 2
i Q ? ? ?

0 µiI ? ?

biJ1S1Q µibiJ2 1 ?

J3S1Q 0 ~0 µiI

 � 0, ∀ i = 1, . . . , n (7.18)

where µi for i = 1, . . . , n are positive real scalar variables. The joint velocity

constraint LMIs of Z0 are expressed as[
Q ?

biS2Q ¯̇q2i

]
� 0, ∀ i = 1, . . . , n (7.19)

where S2 , [0n×n, In×n].

Although the full state feedback controller k in (7.15) turns the input

constraints into state constraints, K is also a variable to be solved. In [Boyd,

El Ghaoui, Feron, and Balakrishnan, 1994], a new variable Y , KQ is in-

troduced to express the input constraints into LMIs. After the barrier pair

synthesis problem is solved, K can be extracted by multiplying Y by Q−1 on

the right hand side. The input constraint LMIs can be expressed as[
Q ?

biY ū2
i

]
� 0, ∀ i = 1, . . . , n (7.20)
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for enforcing the input constraints |biu| 6 ūi of U defined in (7.13).

Let us first consider a simpler case in which there is no human force

input w exerted to the robot. To guarantee the invariance of the barrier

function, we include a Lyapunov stability LMI in [Boyd, El Ghaoui, Feron, and

Balakrishnan, 1994] for the norm-bound LDI model X0 ? ?

Ā3Q −µxI ?

Bu
3Y 0 −µuI

 � 0, (7.21)

where

X0 = Ā1Q+QĀ>1 + B̄u
1Y +Y>B̄u>

1 +µxĀ2Ā
>
2 +µuB̄u

2 B̄u>
2

+αQ (7.22)

Ā1 = S>1 S2 +S>2 A1S2, Ā2 = S>2 A2, Ā3 = A3S2, (7.23)

B̄u
1 = S>2 Bu

1 , B̄u
2 = S>2 Bu

2 , (7.24)

and µx and µu are positive real scalar variables.

Then, the volume of the ellipsoid E(1) is maximized through the

cost function of the log of the determinant of Q [Boyd, El Ghaoui, Feron,

and Balakrishnan, 1994]. A barrier pair synthesis sub-problem (B, k) =

BP(xe, ad, ā1, · · · , āno , Z0, U) for W = ∅ can be expressed as

maximize
Q,Y

log(det(Q))

subject to Q � 0,

(7.16), (7.17), (7.18), (7.19), (7.20), (7.21)

(7.25)

for finding a sub-level set E(1) that contains the desired region ad and excludes

the undesirable regions a1, a2, · · · , ano .
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By the following proposition, the robot’s Lyapunov stability can also

be enforced under the impact of norm-bound human input w.

Proposition 7.1 For a robot starting from a state in the zero sub-level set

E(1) of the barrier pair (B,K), the robot state converges to a residue set E(ε0)

with an exponential convergence rate no less than α
2 if[

X11 ?

X21 X22

]
� 0, (7.26)

where

X11 =

[
Ā1Q+QĀ>1 + B̄u

1Y +Y>B̄u>
1 +αQ B̄w

1

B̄w>
1 −α

ε20
w̄2 I

]

+

[
Ā2 B̄u

2 B̄w
2

0 0 0

]µxI 0 0
0 µuI 0
0 0 µwI

[Ā2 B̄u
2 B̄w

2
0 0 0

]>
(7.27)

X21 =

Ā3Q 0
Bu

3Y 0
0 Bw

3

 (7.28)

X22 =

−µxI 0 0
0 −µuI 0
0 0 −µwI

 (7.29)

B̄w
1 = S>2 Bw

1 , B̄w
2 = S>2 Bw

2 , (7.30)

and µx, µu and µw are positive real scalar variables.

Proof Let us define z , [q̃>, ˙̃q>]>. Based on the matrices defined in

(7.23), (7.24) and (7.30), (7.9) can be expressed as

ż = Ā1z+ B̄u
1u+ B̄w

1 w + Ā2pz + B̄u
2pu + B̄w

2 pw (7.31)
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where

pz = ∆qz, qz = Ā3z, (7.32)

pu = ∆qu, qu = Bu
3u, (7.33)

pw = ∆qw, qw = Bw
3 w. (7.34)

For barrier function B = z>Pz− 1 with controller u = Kz, the time derivative

of B is

Ḃ =


z
w
pz

pu

pw


> 

(Ā1 + B̄u
1K)>P+P(Ā1 + B̄u

1K) ? ? ? ?

B̄w>
1 P 0 ? ? ?

Ā>2 P 0 0 ? ?

B̄u>
2 P 0 0 0 ?

B̄w>
2 P 0 0 0 0




z
w
pz

pu

pw

 . (7.35)

In addition, we have

w>w 6 w̄2, (7.36)

z>Pz 6 ε20, (7.37)

for the norm-bound human input w and the residue set {z | B 6 ε20 − 1} of the

barrier function.

Using the S-procedure, we can combine (7.32), (7.33), (7.34), (7.36),

(7.37), and Ḃ 6 0 intoX̃11 ? ?

X̃21 X̃22 ?

0 0 −αε20 +αww̄2

 � 0. (7.38)
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where

X̃11 =

[
(Ā1 + B̄u

1K)>P+P(Ā1 + B̄u
1K) +αP PB̄w

1
B̄w>

1 P −αwI

]

+

 Ā3 0
Bu

3K 0
0 Bw

3

> λxI 0 0
0 λuI 0
0 0 λwI

 Ā3 0
Bu

3K 0
0 Bw

3

 (7.39)

X̃21 =

 Ā>2 P 0

B̄u>
2 P 0

B̄w>
2 P 0

 (7.40)

X̃22 =

−λxI 0 0
0 −λuI 0
0 0 −λwI

 (7.41)

Without loss of generality, we can let αw = α
ε20
w̄2 such that (7.38) becomes[

X̃11 ?

X̃21 X̃22

]
� 0 (7.42)

which is equivalent to (7.26) for µx = 1
λx

, µu = 1
λu

, µw = 1
λw

, and Q = P−1.

Finally, we can express our barrier pair synthesis sub-problem (B, k) =

BP(xe, ad, ā1, · · · , āno , Z0, U, W, ε0) for a robot with a norm-bound human

force input w as

maximize
Q,Y

log(det(Q))

subject to Q � 0,

(7.16), (7.17), (7.18), (7.19), (7.20), (7.26)

(7.43)

for finding a sub-level set E(1) that contains the desired region ad and excludes

the undesirable regions a1, a2, · · · , ano .

(7.25) can be considered as a special case of (7.43) where W = ∅ and

ε0 = 0.
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Algorithm 1 G← RRT(x0, xf , δ, ā1, · · · , āno)

Require: Initial state x0, goal state xf , incremental distance δ, state con-
straints ā1, · · · , āno

Ensure: RRT graph G
1: δ0 ← GetDistance(xf , x0)

2: G.AddVertex(xf)

3: xnew ← xf
4: while δ0 > δ do
5: xrand ← RandomState(

⋂no
i=1 āi)

6: xnear ← NearestVertex(xrand, G)

7: xnew ← NewState(xnear, xrand, δ)
8: if xnew ∈

⋂no
i=1 āi then

9: δ0 ← GetDistance(xnew, x0)

10: G.AddVertex(xnew),G.AddEdge((xnear,xnew))

11: end if
12: end while
13: G.AddVertex(x0),G.AddEdge((xnew,x0))

7.2.2 Barrier Pair Sampling Algorithm

Let us recall the algorithm of RRT that generates trajectories from x0

to xf subject to workspace constraints x ∈
⋂no

i=1 āi where no is the number of

undesirable regions. In Algorithm 1, a random state xrand is sampled from the

reachable space in line 5. In line 6-7, the graph extends toward the sampled

state from its closest vertex by a constant distance δ. The algorithm terminates

when distance to the initial state x0 is smaller than δ. The trajectory that

connects x0 and xf can be generated from the graph.

In Algorithm 1, line 5-7 can be considered as the essential steps of

building a RRT trajectory with the rest of the algorithm checking the state

constraint satisfaction and the distance to x0. We leverage these essential steps
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qinit
qnewqnear qrand

qgoal
δ

Figure 7.2: RRT Graph Expansion

of RRT to combine the barrier pair into a sequence that connects two polytopic

regions in the reachable workspace.

BP-RRT Without Human Force Input Algorithm 2 describes our BP-

RRT method for a robot without human force input w. Line 1-3 in Algorithm 2

initialize the graph by creating a barrier pairs which contain workspace region

af , where the graph starts from. In order to build the graph, a joint position

qrand is sampled in line 5. If a sample of qrand is not reachable because of the

undesirable polytopic regions, it will be excluded.

Line 5-7 in Algorithm 2 is similar to line 5-7 in Algorithm 1. However,

instead of applying a constant incremental distance δ as RRT, the new equi-

librium qnew is obtained by projecting the random equilibrium qrand to the

hyper-surface of level set Enear(ε1) of the nearest barrier pair with −1 < ε1 6 0

(Fig. 7.3). Therefore, qnew is always inside the boundaries of the previously

created barrier pairs and there is no need to check if qnew satisfies the polytopic

constraints.
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Algorithm 2 G← BPRRT(a0, af , ā1, · · · , āno ,Z0,U, ε1)
Require: Initial region a0, goal region af , constraints associated with unde-

sirable regions ā1, · · · , āno , state space constraint Z0, input constraint U,
scalar ε1 (0 < ε1 6 1)

Ensure: BP-RRT graph G
1: (Qf , Kf)← BP(xaf , af , ā1, · · · , āno , Z0, U, ∅, 0)
2: G.AddVertex(xf), G.AddBP((Qf , Kf))

3: (Qnew, Knew)← (Qf , Kf), xnew ← xf
4: while x0 /∈ Enew(ε1) do
5: qrand ← RandomConfiguration(

⋂no
i=1 āi)

6: Enear(ε1)← NearestBP(qrand, G, ε1)
7: qatt ← NewEquilibrium(qrand, Enear(ε1))

8: xatt ← F(qatt)
9: (Qatt, Katt)← BP(xatt,∅, ā1, · · · , āno ,Z0,U,∅, 0)

10: ε2 ←
√
[q>near − q>att, ~0>]> Q−1

att [q>near − q>att, ~0>]

11: if ε2 6 1 then
12: (Qnew, Knew)← (Qatt, Katt), xnew ← xatt
13: G.AddVertex(xnew), G.AddBP((Qnew, Knew)), G.AddEdge((xnear, xnew))

14: end if

15: end while
16: (Q0, K0)← BP(xa0 , a0, ā1, · · · , āno , Z0, U, ∅, 0)
17: G.AddVertex(x0), G.AddBP((Q0, K0)), G.AddEdge((xnew, x0))

The algorithm terminates if there exists a sub-level set Enew(ε) of a new

barrier pair (Qnew, Knew) that contains the equilibrium of the barrier pair of a0.

Then, the branch that connects a0 and af can be extracted from the BP-RRT

graph. The barrier pair sequence is executed in reverse order for barrier pair

synthesis to achieve the transition from a0 to af .

The robot’s safe transition from (Qnew, Knew) to (Qnear, Knear) is guar-

anteed because qnew is inside Enear(1). By checking the condition in line 11,

we can also enforce the safe transition from (Qnear, Knear) to (Qnew, Knew).
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Algorithm 3 G← BPRRT(a0, af , ā1, · · · , āno ,Z0,U,W, ε0, ε1)

Require: Initial region a0, goal region af , constraints associated with undesir-
able regions ā1, · · · , āno , state space constraint Z0, robot input constraint
U, human input constraint W, scalar ε0 (0 < ε0 6 1), scalar ε1 (0 < ε1 6 1)

Ensure: BP-RRT graph G
1: (Qf , Kf)← BP(xaf , af , ā1, · · · , āno , Z0, U,W, ε0)
2: G.AddVertex(xf), G.AddBP((Qf , Kf))

3: (Qnew, Knew)← (Qf , Kf), xnew ← xf
4: while x0 /∈ Enew(ε1) do
5: qrand ← RandomConfiguration(

⋂no
i=1 āi)

6: Enear(ε1)← NearestBP(qrand, G, ε1)
7: qatt ← NewEquilibrium(qrand, Enear(ε1))

8: xatt ← F(qatt)
9: (Qatt, Katt)← BP(xatt,∅, ā1, · · · , āno ,Z0,U,W, ε0)

10: ε2 ←
√
[q>near − q>att, ~0>]> Q−1

att [q>near − q>att, ~0>]

11: if Qatt � (1−ε1)2
ε20

·Qnear and Qnear � (1−ε2)2
ε20

·Qatt then

12: (Qnew, Knew)← (Qatt, Katt), xnew ← xatt
13: G.AddVertex(xnew), G.AddBP((Qnew, Knew)), G.AddEdge((xnear, xnew))

14: end if

15: end while
16: (Q0, K0)← BP(xa0 , a0, ā1, · · · , āno , Z0, U,W, ε0)
17: G.AddVertex(x0), G.AddBP((Q0, K0)), G.AddEdge((xnew, x0))

Therefore, the barrier pair sequence we obtain is bidirectional. Notice that the

condition in line 11 checks if qnear is also inside Enew(1). This condition can

also be expressed as an LMI similar to (7.16) and potentially included in the

convex optimization problem defined in (7.25).

BP-RRT With Norm-Bound Human Force Input Although Algo-

rithm 2 provides us the steps for creating a BP-RRT graph, it cannot be

used directly to solve the interaction problem because of the additional human
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input w. Therefore, we need to formulate a new barrier pair sampling algorithm

for creating a barrier pair sequence that moves the robot’s end-effector safely

to a human desired region ad under the human input intervention.

We extend our BP-RRT method to a robot under a human force input

w, as outlined in Algorithm 3. The algorithm initializes the BP-RRT graph by

creating a barrier pair at af in line 1-3, expands it by sampling new barrier

pairs in line 4-14, and completes it by creating a barrier pair at a0 in line 15-16.

Different from Algorithm 2, Algorithm 3 considers two scalar inputs ε0

and ε1 (Fig. 7.4). The first scalar input ε0, previously introduced in (7.27),

defines the residue set E(ε0) of a barrier pair. Similar to the scalar input ε1 in

Algorithm 2, the second scalar input ε1 defines a hyper-surface of sub-level set

Enear(ε1) of the nearest barrier pair found in line 6 such that a new equilibrium

qatt can be obtained by projecting a random configuration qrand sampled in

line 5 to this hyper-surface.

In order to enforce the robot’s safe transition between two barrier pairs

of an edge in the graph, the residue set Eatt(ε0) of the newly sampled barrier

pair created in line 9 needs to be completely inside the zero sub-level set

Enear(1) of the nearest barrier pair found in line 6. We can check this safety

requirement through the condition stated in the following proposition.

Proposition 7.2 Suppose (Q1,K1) and (Q2,K2) represent two barrier pairs

forming an edge in a BP-RRT graph. Let z1 , [q>1 , ~0
>]> and z2 , [q>2 , ~0

>]> be

the equilibrium points of (Q1,K1) and (Q2,K2) located at the hyper-surface
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qnear

qrand

qatt

ai

ai−1

ai+1

2

1

q1

q2

Figure 7.3: By projecting a random joint space position qrand to the hyper-surface
of Enear(ε) of the nearest barrier pair, a new equilibrium qatt of BP-RRT is created.
Notice that even if the workspace undesirable regions are polytopic, their joint space
projections are not guaranteed to be also polytopic. The numbers indicate 1 the
hyper-surface of Enear(ε1), and 2 the zero sub-level set Enear(1).
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qnear qatt qrand

ai

ai+1

1
2

3

q2

q1

Figure 7.4: By projecting a random joint space position qrand to the hyper-surface of
Enear(ε1) of the nearest barrier pair, a new equilibrium qatt of BP-RRT is created.
The residue set Enew(ε0) of the new barrier pair is designed to be strictly inside
the zero sub-level set Enear(1) of the nearest barrier pair. Notice that even if the
undesirable regions of the workspace are polytopic, their joint space projections
are not guaranteed to be also polytopic. The numbers indicate 1 the residue set
Enear(ε0), 2 the hyper-surface of Enear(ε1), and 3 the zero sub-level set Enear(1).

152



of E2(ε2) and E1(ε1), respectively. Let E1(ε0) and E2(ε0) be the residue sets

of (Q1,K1) and (Q2,K2). The robot can safely transit between the zero sub-

level sets E1(1) and E2(1) of these two barrier pairs if Q1 � (1−ε2)2
ε20

·Q2 and

Q2 � (1−ε1)2
ε20

·Q1.

Proof Let us define a vector norm function

‖?‖Q1 ,
√

?>Q−1
1 ? (7.44)

based on the quadratic part in the barrier function of (Q1,K1). Because

equilibrium z2 of (Q2,K2) is on hyper-surface of E1(ε1), we have

‖z2 − z1‖Q1 = ε1. (7.45)

Suppose z′1 is a point on the hyper-surface of E1(1), we have

‖z′1 − z2‖Q1 + ‖z2 − z1‖Q1 > ‖z′1 − z1‖Q1 = 1 (7.46)

because of the triangle inequality of ‖?‖Q1 . Based on (7.45) and (7.46), we

have

‖z′1 − z2‖Q1 > 1− ε1 (7.47)

which is equivalent to

{z | (z− z2)
>Q−1

1 (z− z2) 6 (1− ε1)2} ⊆ E1(1). (7.48)

If Q1 � (1−ε2)2
ε20

·Q2, we have

E2(ε0) ⊆ {z | (z− z2)
>Q−1

1 (z− z2) 6 (1− ε1)2}. (7.49)

Combining (7.48) and (7.49), we have E2(ε0) ⊆ E1(1). If the robot starts from

any states in E2(1), it safely converges to a subset in E1(1) using barrier pair

(Q2,K2).
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Similarly, we have E1(ε0) ⊆ E2(1) if Q2 � (1−ε1)2
ε20

·Q1.

Line 11 in Algorithm 3 checks the condition in Proposition 2. Notice

that this condition guarantees the safe transition between (Qnear,Knear) and

(Qatt,Katt) in both directions. Therefore, although the graph is initialized

from af and expanded toward a0, we can finally extract a sequence of barrier

pairs which plan safe robot trajectories from a0 to af and from af to a0.

Notice that we check the condition in Proposition 2 after the barrier

pair synthesis because Qnear � (1−ε2)2
ε20

·Qatt in line 11 of Algorithm 3 is a

non-convex LMI constraint and cannot be included in the convex optimization

problem defined in (7.43). However, this also means Qatt � (1−ε1)2
ε20

·Qnear in

line 11 of Algorithm 3 is a convex LMI constraint which can be potentially

added to our barrier pair synthesis problem.

7.3 A Human-Robot Shared Autonomy Example

Our BP-RRT algorithm is demonstrated through a simulation of a 2-link

manipulator robot with an equal length of 0.75m for each link, a mass of

2.5 kg located at the distal end of each link, and a torque limit of 25N ·m for

each joint. Fig. 7.5 shows the definition of polytopics in the workspace of the

robot end effector, where a1, a2, a3 represent the desired task regions, a4, a5,

a6 represent obstacle regions, and a7 represents the region where the robot’s

base is located.

The manipulator robot starts from an end-effector position in a1. A
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human operator decides whether to apply a 1 N force to the end-effector during

the simulation. The human operator chooses the direction of the 1 N force

from 8 different possible directions through a keyboard. The robot uses the

measurement of human force input to infer which task region in a1, a2 and a3

the human wants its end-effector to move to. Then, a barrier pair sequence

synthesized using in advance our BP-RRT algorithm is executed based on the

inference of the human’s objective.

7.3.1 Human Intention Inference

Based on the concept of Boltzmann rationality [Baker, Tenenbaum, and

Saxe, 2007; Morgenstern and Von Neumann, 1953], we propose our human intent

inference method for interpreting the human input w in the shared autonomy.

Boltzmann rationality formalizes intent according to a variable that quantifies

the value of the human’s actions. In particular, it states that a rational human

takes an action with probability proportional to the exponentiated value of

that human action. Therefore, an action with higher value is more probable to

be chosen by the human.

In the setting of robotic manipulation considered in this chapter, we

define the value of the human’s action based on how well the human force w

aligns with the direction toward the human’s goal. Let a denote the human’s

goal, xt denote the position of the robot’s end-effector at time t, and wt denote

the human force exerted at time t. Recall that xai is the center of a polytopic

region ai in the workspace. We define the likelihood function of exerting the
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Figure 7.5: A 2-link manipulator robot moves its end effector in a workspace with
different polyoptic regions. a1, a2, and a3 represent the desired task regions, a4, a5,
and a6 represent obstacle regions, and a7 represents the region where the robot’s
base is located.
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force wt conditioned on the true human’s goal a as

p(wt | a = ai) = β−1
0 · exp(β1 · 〈wt, xai − xt〉), (7.50)

where β0 > 0, β1 > 0, and the value of the human’s action is captured by the

inner product of wt and the direction toward the target region xai − xt. The

value of this inner product indicates how well the exerted force is correlated

with the direction toward the target region. β0 is a partition function defined

as

β0 =
w

w∈W

exp(β1 · 〈wt, xai − xt〉)dw, (7.51)

where W is the domain of feasible human force input defined in (7.14). β1 is

the rationality parameter representing the degree of human’s rationality.

Now, using the likelihood function, we can compute and update the

robot’s belief over the human’s intended target region. Let us define the robot’s

belief as

bt(ai) = p(a = ai | w0, . . . , wt) (7.52)

which denotes the probability of the target region being ai given the history

of human’s inputs. Initially, the system starts with a uniform belief, i.e.,

b0 ∼ unif{1, no}. Then, we can update the belief using the Bayes’ theorem

bt(ai) =
bt−1(ai) · p(wt | a = ai)∑no

j=1 bt−1(aj) · p(wt | a = aj)
, (7.53)

where p(wt | a = ai) is computed according to (7.50).

At time t, the robot’s belief is used to select the sequence of barrier

pairs that carry out the task of safely going to the estimated target region â(t)
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Figure 7.6: A finite state machine indicates the possible transitions between a1, a2,
a3, c1, c2, and c3.

calculated as

â(t) = argmax
i∈{1,2,...,no}

bt(ai), (7.54)

which has the highest probability of being the human’s intended goal.

7.3.2 Barrier Pair Synthesis

We use Algorithm 3 to build barrier pair sequences which connect

between a1, a2, and a3 (Fig. 7.7.a-c). Barrier pairs c1, c2, and c3 are in the

middle of the sequences from a2 to a3, from a3 to a1, and from a1 to a2,

respectively. Sometimes, the inference of the human target region may change

and result in the barrier pair sequence currently executed by the robot to be

invalid. Therefore, we also use Algorithm 2 to connect between c1, c2, and c3

(Fig. 7.7.d-f) such that the robot can freely switch between the correct barrier

pair sequences without going through any undesired regions. Fig. 7.6 shows

the transitions between a1, a2, a3, c1, c2, and c3.
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7.3.3 Simulation

The video of this simulation is available at https://youtu.be/

xTprU0jMT8w. The simulated manipulator robot uses the measurement of

the 1 N force to infer the human operator’s desired goal region. As the video

shows, the initial force input from the human operator is sometimes ambiguous

because it can point to multiple potential goal regions. However, the proposed

human intention inference method is able to successfully recover the intended

goal fast enough such that the manipulator robot does not move its end-effector

to an incorrect goal region.
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Chapter 8

Concluding Remarks

8.1 Conclusions

Human-centered robots using human forces for feedback must be stable

given the natural impedance displayed by human operators to avoid unde-

sired vibrations. Chapter 3 presents a new model describing observed human

impedances using an imaginary stiffness term to fill an energy-dissipation

role. We also present experiments demonstrating that this new term is a

more significant contributor to model accuracy than a linear damping term

for cyclic motions of the human elbow. This was verified in a study that

we performed involving a 10-subject cohort. Between the linear PI control

method in Chapter 2 and the nonlinear fractional-order control method in

Chapter 4, we can compare the control design problem with and without the

use of the hysteretic adjustment in the human impedance model. The result is

clear: without complex stiffness controllers must be designed to cross over (in

a frequency domain sense) before the lowest natural frequency calculated using

the human and exoskeleton inertias and the softest predicted human stiffness;

with the hysteretic adjustment, the crossover frequency can exceed the above

limits by implementing a fractional-order controller, thus improving bandwidth.

Our loop shaping experiments demonstrate the stability and bandwidth of
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our controllers and highlight the importance of testing both maximum and

minimum human stiffness values when tuning the fractional order controller.

In Chapter 5-7, we presented a method for synthesis of controllers

that guarantee future satisfaction of state constraints, subject to input-limited

dynamics. This method takes advantage of the guarantees provided through

LMI-based controller synthesis. We introduced the concept of barrier pairs—

which make it easier to reason about the satisfaction of input limits—and a

min-quadratic barrier in particular as a simple means of combining the results

of many LMI-synthesis problems. And we distinguish our work from others

by addressing input constraints and synthesizing the barrier function and

the controllers together so that the controller choices, which can significantly

alter the shape of the invariant sets, are used to maximize their volume. In

the presence of input constraints, our controller synthesis method will choose

invariant ellipsoids to avoid the critical-point-terminating trajectories that

represent dynamic limitations due to input limits. By incorporating the RRT

method into our method for synthesizing barrier pairs, human-centered robots

can provide safe motions in the presence of non-convex state-space constraints.

We demonstrated that our sampling-based barrier pair method allows us to

implement human-robot shared autonomy. In our control framework, a robot

manipulator uses the inference of human target objectives to assist the human

and prevent potential accidents.
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8.2 Suggested Ideas for Future Research

In this dissertation, we discussed new human models and new control

algorithms, which help to improve the responsiveness and safety of human-

centered robots. Many types of human inputs can be measured using robot

sensors and can be incorporated into feedback control policies. However, the

responsiveness of human-centered robots can be further improved if we utilize

additional hidden human inputs such as human desired trajectories and human

impedances in our control loop. These hidden human inputs cannot be directly

measured in real-time by robot sensors. Although various data-driven methods

have attempted to estimate hidden human inputs, the randomness and time-

varying nature of human behaviors make the estimation extremely difficult.

While an aggressive control policy using an imperfect estimation of hidden

human inputs brings safety and stability concerns, a conservative control policy

that achieves more robustness to the variation of the human inputs will sacrifice

the efficiency of controllers during human-robot interaction. Therefore, closing

the gap between safety and responsiveness of human-centered robots is a

challenging problem that we will continue investigating.

This dissertation introduced safety control algorithms using the concept

of a barrier pair. Therefore, an idea to close the gap between safety and

responsiveness is using a barrier pair, which consists of a barrier function and a

tunable robot control policy. The barrier function quantifies the confidence of

the hidden state estimation while the tunable robot control policy can provide

aggressive or conservative behavior based on the run-time value of the barrier
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function. This kind of solution aims to simultaneously provide safety guarantees

and real-time responsiveness of human-centered robots. Usually, safety requires

control policies to be robust and conservative, while responsiveness requires

control policies to be optimal and aggressive. Therefore, these two goals are

difficult to satisfy at the same time. The idea is to resolve this conflict using a

two-layer control framework. This framework includes a layer providing data-

driven methods that estimate hidden human inputs and deal with real-time

responsiveness and a layer providing barrier functions that quantify hidden

state estimation confidence and guarantee safety constraint satisfaction.

Human-centered robots have the hallmark of a system with high po-

tential in our industrial and service sectors. Instead of replacing the human

capital in our workforce, they will assist us and cooperate with us to improve

our productivity and quality of work and life. Considering the global pandemic

of COVID-19 in 2020-2021, many types of close collaborations among humans

became difficult to carry on because of social distancing requirements. However,

human-centered robots are invulnerable to the spread of the virus. Thus they

can take roles such as collecting biological samples for virus testing and helping

humans to have their groceries delivered and sanitized in the supermarket or at

home. The proposed ideas, if successful, will improve the safety and real-time

responsiveness of human-centered robots for every day use. The achievements

regarding these two goals will help our societies to improve our work and

social lives and provide infrastructure for dealing with major events such as

the current global pandemic.
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