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This thesis fills a gap in modeling literature for considering road net-

works and power grids jointly in post disaster response and resilience. Models

are presented for both road network repair as well as power grid repair con-

sidering the road network. Multiple frameworks are presented to handle the

interactions between the two systems. We also provide lower bound genera-

tion and heuristic solution methods. The repair models are then extended to

analyze resilience and preparation for future disasters.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Hurricanes are a growing concern in the operation of power grids in

coastal areas. This is due partly to the increasing density of cities in coastal

areas, but also due to climate change causing rising sea levels that may ex-

acerbate impacts of flooding from hurricanes. Combined with the effects of

climate change directly, there is also the indirect effect of water warming caus-

ing more frequent and more severe hurricanes [23]. This phenomenon suggests

that careful power grid resilience and planning for hurricanes will be of in-

creased importance in the coming years.

This thesis explores the gap in existing literature where previous efforts

have not explicitly considered how multiple networks depended on each other

for the logistics of repair, particularly the post-disaster infrastructure recovery

interactions between power grid and road networks. For example, to repair a

damaged power grid element, the element must be accessible to the crew at-

tempting to repair it. Moreover, the crew will take time to go from one element

to the next to repair, affecting the rate of restoration of the power grid’s per-

formance during recovery as time is lost in transit. This implies that the road
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network becomes part of the overall recovery efforts. This includes multiple

aspects such as logistics, relief supply delivery, and power grid repair. During

a hurricane, the road network will sustain substantial damage from flooding

and/or debris on the road surface, which necessitates repairs/clearance of the

road network as well. To handle the issues of repairing power grids in a way

that minimizes the amount of disruption to power service, both types of re-

pairs (road network and power grid) should be considered jointly. To capture

the interaction effects of these two networks, we consider the route that repair

crews take on the road network as they conduct repairs to either the roads or

the power grid. Previous literature does not study this specific interaction as

discussed in the section below.

Understanding of repair efforts on power grids begins with understand-

ing the basics of power grid topology. We divide the power grid into transmis-

sion and distribution networks. Transmission networks consist of generators,

buses/substations, and high voltage connecting lines. Because this side of the

grid has multiple sources and sinks, power is not guaranteed to flow in a cer-

tain direction. The distribution side of a network begins at the bus/substation

level and connects end users of power to the grid as a whole. Because power

flows from the substation to the end user in a single source network, these

networks are comparatively simpler to model. For the sake of this thesis, we

restrict ourselves to the transmission level power grids as distribution grids are

simpler at an electrical level as well as being geographically small enough that

ignoring the time costs that come from routing the travel of crews leads to a
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solution that does not stray from optimality very far. In addition, as distri-

bution level damage happens in routine storms, power utilities have a better

understanding of how to handle this damage due to experience. The scale of

service loss following damage to the power grid is dramatically different in

distribution and transmission. Loss of distribution power lines can lead to loss

of power service to small segments of a neighborhood while loss of a substation

or set of transmission lines can knock out power to several neighborhoods or

entire towns depending on the extent of redundancies.

1.2 Literature Review
1.2.1 Hurricane Damage Modeling

When delving into the background literature, no discussion of modeling

repair after a hurricane can happen before looking at the literature on damage

to power grids from hurricanes. Guikema et al. [16] use a model based on

negative binomial regression to estimate the number of downed power lines.

They combine this with a classification tree that handles flooding and wind

speed as a secondary method for estimation of damage severity. Scherb et al.

[37] on the other hand take an approach more rooted in scenario generation

and they try to use the peak wind speed and proximity to the eye wall of a

hurricane to construct a loss function (a function that maps wind speed onto

probability of damage for a given element) for power lines. Figure 1.1 provides

an example of the loss function that shows the relationship between probability

of varying levels of damage and local peak windspeed during the hurricane. In
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the figure µ and σ are respectively the mean and standard deviation of number

of breakages in a line for each level of damage.

Both of these papers come to the similar conclusion that damage to 40-

70% of the power lines in the network due to wind and thrown debris is common

in hurricanes. Damage is geographically distributed based on proximity to the

eye-wall of a hurricane, but because hurricanes are frequently hundreds of miles

across, damage inside of a single city may appear functionally random due the

small geographic area highly similar peak wind speeds.

Figure 1.1: A power line loss function example from [37]

Winkler et al. [41] provide the most thorough analysis of these 3 pa-

pers using real world topographies from various small regions of Texas and

generating loss functions for both lines and substations. Worth noting in all

three of these examples is that lines and substations sustain the most damage,

but generators themselves are robust enough that a hurricane is unlikely to

damage them directly, though they may sustain disruption to operations be-
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cause of disrupted fuel or crew availability. This means they can be treated as

undamaged in terms of generation capacity in the modeling in later sections as

the generator’s functionality depends on its associated substation connecting

it to the grid.

1.2.2 Existing Power Grid Repair Modeling

Repair of power grids in the wake of hurricanes is a reasonably well

studied area of research. Ang [2] solves a scheduling problem of power grid

repair in the wake of both hurricanes and terrorist attacks. The problem is de-

termining in which order should elements be repaired with little consideration

of the actual logistics of getting crews to the sites where power grid repair can

happen. While they do not consider impacts of roads, they focus on extending

repair models to DC power flow based models of the power grid when covering

how to model a damaged power grid. Along similar lines, Arab et al. [3] solve a

similar problem under uncertainty by treating the state of each power line and

generator as a random Bernoulli variable and solving the ensuing stochastic

optimization problem. Though it solves the problem as a two stage stochastic

program with recourse and treatment of the hurricane damage much closer

resembles empirical damage, there is still no consideration of repair logistics,

only scheduling and inventory amount.

Ouyang and Duenas-Osorio [29] do a statistical analysis of the rate at

which damage is recovered in the context of broader power grid resilience.

While more descriptive than prescriptive, their analysis concludes that trans-
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mission grid repairs take priority alongside “critical facilities vital to public

safety, health, and welfare”. Of note in this paper is that their observation

that much of the existing literature on repairs to power grid is based on descrip-

tive studies of statistical repair times rather than model-driven optimization

models for how to improve that process.

Golari et al. [15] take a different approach to ensuring power demand

satisfaction in the context of a damaged power grid by approaching the prob-

lem in the lens of construction of sub-grids (termed ”islands” or “microgrids”

in much of the electrical engineering literature) in order to keep demand satis-

fied. This is done by solving a two stage stochastic program in order to identify

the best sub-grids to construct under the uncertainty of a set of contingencies.

Islanding is an active field of study in power grid engineering for developing

tools to minimize the impact of disaster damage. Panteli et al. [31] study

disaster damage by constructing islanding plans in a way that would minimize

load loss subject to severe weather. Though there is no consideration of repair,

their modeling warrants the importance of resilience as an area of study. A

follow on paper to that by Nobels and Panteli [28] extends the previous work

on resilience from islanding by using IEEE 30 and 57 bus test networks to

analysis of cascaded failures caused by disasters. In addition, their modeling

differentiates intentional vs unintentional load shedding due to the disaster

and corresponding response.
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1.2.3 Existing Road Network Repair Modeling

Pregnolato et al. [32] provide an overview of probability of road damage

by location and intensity of damage to the road in terms of flooding and debris.

They go on to provide a literature review and meta-analysis of existing papers

in this subfield. In addition, the paper summarizes a variety of versions of

flooding depth-disruption functions for roads based on local rain intensity.

The focus of this paper is not modeling repair efforts as the models provided

for road repair are cursory, but the analysis of damage to road networks from

debris and flooding in the wake of a disaster is covered in depth.

Looking next at how previous papers have addressed modeling flooding

and how to interact with it in a repair context, we start with a paper by

Duque et al. [9]. This paper focuses on distribution of relief supplies, but in

the context of the problem of supply distribution the paper considers repair

of flooded or damaged roads. Though they solve the problem with dynamic

programming rather than the mixed integer programming of similar papers;

the idea of repair of roads by traversing them at additional cost is the main

contribution of their modeling approach.

Also of note from the perspective of road repair is a paper by Aksu and

Ozdamar [1]. Again, it is not a paper focused on direct repair of networks,

but rather focuses on evacuation and accessibility to areas flooded by the a

disaster. This provides additional insight into flooding and relief as well as

a different treatment of the problem using mixed integer programming rather

than the dynamic programming of Duque et al. Both of these treatments cover
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short term road clearance in the context of disaster response and relief.

All three of these papers make similar assumptions in that minor dam-

age to road networks can be repaired in a time horizon relevant to immediate

post-disaster response. While more severe damage to roads can require resur-

facing or replacement of bridges, debris and flooding clearance is distinct from

those repairs.

1.2.4 Resilience

As this thesis deals partly with resilience, we look to the correspond-

ing literature for definitions of resilience in the context of disaster response

for power grids. Molyneaux et al. [25] provide a multi-disciplinary literature

review of power grid resilience. They broadly define resilience as “capacity

to cope with the unexpected”. While they go through multiple measures for

resilience they use primarily metrics of price. For example, they reduce power

flow to the cost of power and the change in cost from the hurricane damag-

ing the network rather than treating the utility of unsatisfied power demand

directly. This approach can be very useful, but it ignores that power is more

valuable to some consumers than others in the wake of a hurricane. For exam-

ple, a hospital restoring power is likely more valuable than a factory restoring

power. Panteli and Mancarella [30] focus on more specific resilience definitions

in the context of disaster response. They focus on both magnitude of drop in

service of power demand as well as time dependent total loss of power demand

satisfied.
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Much of the literature on resilience for power grids comes from study

of protecting the power grid from directed attacks. Fortification against a

potential terrorist attack is a standard form of study for grid resilience and

appears in much of the literature. Relevant among these is a paper by Deka

et al. [8] which provides a study of both initial damage as well as potential

damage stemming from cascading failures. In addition, they identify elements

crucial to construction of resilient power grids. More relevant to this thesis

is work by Salmeron et al. [36] Their work identifies key elements to make

resilient using mixed integer programming based on a DC-powerflow based

model of power grids. They solve a bilayer optimization model that involves

minimization of the maximum power demand that can be satisfied to determine

optimal interdiction. The inner problem how to maximize the amount of

power demand that can be serviced given the state of the power grid under

damaged operations. The outer problem is therefore how to choose power grid

damage in order to make sure that as little demand can be satisfied under

ideal operation of the damaged network. This interaction between attacker

and defender provides the framework from which they plan resilience.
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Chapter 2

Modeling

2.1 Overview

To motivate the problem, we note both a gap in the literature for power

grid resilience and repairs in a post disaster context and an acknowledgment

of the coordination issues between road network and power grid repairs by

government agencies. The Federal Emergency Management Agency’s 2017

post season after action report [12] and Hurricane Sandy after action report

[11] identify the lack of coordination between agencies involved in recovery as

a major shortcoming and call for increased coordination, particularly for the

sake of recovery logistics.

We know from the earlier referenced literature that road repair is a

concern in the wake of a hurricane. We assume for the sake of this thesis that

all roads can be cleared of flooding and/or debris. Clearing here represents

digging out drainage for minor flooding and clearing debris. Severely damaged

roads should be treated as completely impassible and dropped from the graph

representation of the network to allow this assumption to work in a practical

context. While more severely damaged roads are eventually repaired, these

repairs frequently represent involved construction efforts spanning weeks or
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months after a disaster and therefore are beyond the scope of the current

modeling efforts.

We model the topology of both power and road networks as a pair of

graphs with shared sets of nodes. On the road graph, the nodes are the physical

locations of power substations and buses. We abstract away from the roads

to a representation of them that captures effects of the road network existing,

but simplifies routing. A more full representation of the road network would

include dummy nodes into the road network to represent major intersections,

letting the edges/roads represent the shortest paths between those points. This

typically comes at the cost of a dramatic increase in runtime as routing-based

problems are computationally intense. Therefore we elect to use an abstracted

representation based on existing literature on road network modeling [5] that

treats a road network as an abstraction based on frequently traveled paths.

The nodes representing power substations, generators, and/or buses

are mirrored on the power grid layer, but the edges at this layer represent the

power line connections between substations. This multilayered graph depic-

tion of the two infrastructures allows cleaner mathematical modeling later on.

With a given post-disaster damage to both networks (damaged nodes and lines

in the power grid and damaged roads in the road network), we analyze the

interactions in the repair efforts needed to get both networks fully operational.

We model time in discrete shifts because it allows for mixed-integer

programming to solve both problems in a way where their solutions can be

temporally aligned. This temporal alignment allows for interaction frameworks
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to remain simple.

We assume that direct current (DC) approximations of power flow can

accurately approximate the full alternating current (AC) power flow of a real

power grid. DC power flow is more accurate than a “pipe-flow” representation

as it captures some of the physics behind electrical flows. This interaction

may be important in the consideration of repair and resilience. DC power flow

models spread flow out among possible lines whereas pipe-flow style models

load all the demand onto single lines due to how they are solved with linear

programming since those methods will seek an extreme point solution. DC

representation is usually within 5-10% of the AC power flow solutions [14] [38]

making it appropriate for the power repair problem. Since we are considering

is one of logistics and not one of power flow management, an approximation

of the power flow that relaxes numerical accuracy of power flow but leaves a

near optimal repair schedule is justified. We model only the power demand

in terms of wattage and not voltage because voltage sag disruptions are a

problem primarily at the distribution level [18]. Additionally, keeping voltage

inside the desired range is a problem of optimal grid control, which is not

considered in this thesis [24].

With the power grid, we treat distribution below the substation level

as a point load associated with a substation. Each substation in real power

grid has a distribution level network that services the local area by connect-

ing individual demand such as a house to the power grid as a whole. The

wires between substations are considered the transmission level network. The
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choice to discard the distribution network’s topology in the modeling of repair

scheduling stems from two factors. First, the distribution network stemming

from a substation has geographically co-located damage as distribution areas

from a single substation are geographically compact. This implies that includ-

ing road networks with distribution grid repairs would provide little benefit,

as time costs from transiting between one damaged element and another are

small. Secondly, flow at the distribution level goes from the substation to the

demand sites unlike transmission level networks where flow can go in different

directions depending on the state of the grid. This is different from operation

of transmission level networks so they can be treated as a point load on the

transmission network, avoiding complexity that does not improve insights into

the core interaction of interest.

2.2 Direct Current Optimal Power Flow (DC-OPF)

To model repair of damaged power grids, we first must understand the

Direct Current-Optimal Power Flow (DC-OPF) model as it forms the basis

of all of the more complex power models used in this thesis. The problem

can be expressed as satisfying all power demand at minimal generation cost–a

problem that shows up frequently in control and analysis of power grids. The

power grid can be represented as a graph with edges representing power lines

and the nodes of the directed graph corresponding to substations and buses.

These substations may service a distribution area with associated unmodeled

distribution network. Directionality in the graph is done for bookkeeping as

13



power can flow both directions and by having the graph be directed, we can

allow positive flow on edge (i, j) to represent power flow going from i to j

and negative flow representing power going from j to i. This leads to the

nodes representing buses and substations having edges that connect the nodes

indexed from lower to higher. For example, edge (1, 2) would be included in

this modeling, edge (2, 1) would not be as it would just be represented as

negative flow on edge (1, 2).

We use the following notation for clarity in models:

• o(e) is the node at the origin of line e

• d(e) is the node at the destination of line e

• O(i) is the set of lines with origin i

• D(i) is the set of lines with destination i

We define the following parameters and sets:

• N is the set of nodes indexed by i

• E is the set of edges indexed by e

• Ci is the cost of producing one unit of power at node i

• Pi is the maximum power that can be generated in megawatts for node

i. If there is no generator connected to the substation, maximum pro-

duction is zero watts.
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• Di is the demand for power in megawatts at node i

• Be is the line susceptance in per unit siemens for power line e (suscep-

tance is the measure of ease of power flowing along a line)

• Le is the maximum amount of flow in megawatts on line e

We also have the following decision variables:

• Xe is the power flow on line e

• Yi is the power generated in megawatts at node i

• θi is the phase angle in radians for power flow at node i

The model can then be formulated as follows:

Minimize
∑
i∈N

CiYi (2.1)

subject to

Xe = Be(θo(e) − θd(e)), ∀e ∈ E (2.2)

Yi −
∑

e∈O(i)

Xe +
∑

e∈D(i)

Xe = Di, ∀i ∈ N (2.3)

Yi ≤ Pi, ∀i ∈ N (2.4)

−Le ≤ Xe ≤ Le, ∀e ∈ E (2.5)

Yi ≥ 0, ∀i ∈ N (2.6)

−π/2 ≤ θi ≤ π/2, ∀i ∈ N. (2.7)
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To explain, the problem is determining how to generate power at the

minimum cost in a way that satisfies all of the demand subject to the physics of

DC-approximated power grids. This problem also solves out line flow amounts

and phase angles for each node as expressed in a per unit basis (normalizing

everything to the same basis unit such as megawatt). Constraints (2.2) are part

of the DC approximation to AC power flow where we assume sin(x) = x for

small values of x and reduce power flow to just its real component (dropping

the reactive component of power flow). This representation of power flow

tracks only power demand (wattage) and neglects voltage as it is less relevant

to this problem, but both versions of DCOPF are a well solved problems in

electrical engineering literature [14] [10] [44]. Constraints (2.3) are a set of

standard flow balance constraints that require power going into a node has

to be equal to power coming out of node. Constraints (2.4) restrict power

generation to the maximum permitted for the generator. Constraints (2.5)

model flow capacity for power lines. Constraints (2.6) impose non-negativity

limits on generation and constraints (2.7) limit the phase angle to a single

period of the sine wave. While overall a simple problem, DCOPF serves as

the building block for most of the power grid models used for the rest of this

thesis as well as being used in practice for controlling power grid generation

and dispatch [19].
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2.3 Validating Use of DC Power Flow

Much of the existing literature in operations research relaxes one step

further than DC powerflow to traditional network flow or “pipe-flow” mod-

els that can be used for any abstracted network. For these problems, DC

powerflow models are sometimes considered to be unnecessary. This begs the

question of why use DC-flow models over traditional network flow models. We

define traditional network flow to consist of just flow balance and line limit

constraints (analogous to relaxation of constraint (2.2) in the DCOPF model

below). DC power flow tends to spread power flow out more across lines due

to the physics of power flow in a grid while a simpler network flow model tends

to seek an extreme point solution, leading to fewer lines heavily utilized, typ-

ically at their capacity, as a result of solving the model as a linear program.

To demonstrate this effect, we solve DCOPF and its corresponding relaxation

of constraint (2.2) on IEEE 30 bus and IEEE 57 bus networks [6]. The results

shown in Figure 2.1 show a small but noticeable difference in flow patterns.

The shift in power flow may be relevant when modeling system-wide damage

in a power grid because of the reduced ability to spread out load. Therefore it

is worth including in models for repair and resilience. In addition to this, the

computational cost of including DC power flow over a pipe-flow model is near

zero because extra linear variables have a low impact on runtime of branch-

and-bound based solvers. Additionally, this modeling change helps keep the

representation of the network closer to the real AC flow, which has the added

benefit of making it easier to persuade practitioners in the field that the models
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Figure 2.1: Comparison of megawatts of power flow in DC and traditional
(pipeflow) network flow by line index.

presented using DC power flow have relevance to real operations.

Further, as we extend this model to resilience, use of pipeflow style net-

work models to handle power flow may over-prioritize the resilience of certain

lines which strays from optimality on the full AC power grid. Since DC power

flow is of low computational cost and low model complexity to add and has

upside in some limited cases, we continue our analysis using the DC power

model.

2.4 Road Repair Problem

When dealing with repairs on the power grid, we need a framework for

solving problems based on the damage to the road network. Any framework

will rely on a method for modeling repair of the road network. We elect to solve

18



the road repair problem as a scheduling/routing problem for a crew tasked with

clearing debris and/or digging out minor flooding, following Duque et al. [9]

and their treatment of how road repairs function. This takes the form of using

routing the crew down a damaged road at higher time cost. This is solved by

constructing a series of roads to traverse as a tour that begins and ends at a

depot in every shift. We model the road network repair probelm as follows:

Parameters and Sets:

• T is the set of time periods (shifts) over the time horizon, indexed by t

• N is the set of nodes in an undirected graph with node 1 being the

depot, representing the locations of substations where each substation

could have a distribution load, a generator, or both. Edges between

nodes represent an abstraction of the road network in terms of frequently

traveled paths.

• ctij is the measure of the value of the road segment from node i to node

j during period t. i, j pairs that do not have a road between them have

value zero.

• lij is the transit time in hours of the road segment between nodes i and

j under nominal conditions

• rij is the time to repair the road segment between nodes i and j (hours),

rij>lij ∀i, j since lines are repaired while traversing them

• st is the length of shift period t in time units (hours)
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• oij is the initial condition (1 is working, 0 is not) of the road segment

between nodes i and j

Decision Variables:

• X t
ij is the binary variable for road segment ij being operational in time

t

• Y t
ij is the binary variable for travel from i to j being in the tour at time

t

• W t
ij is the length of travel time for road segment ij at time t

Given the parameters and decision variables, we formulate the model

as follows:

Minimize
∑
t∈T

∑
i,j∈N

ctij(1−X t
ij) (2.8)
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subject to: ∑
j∈N

Y t
1j = 1, ∀t ∈ T (2.9)∑

i,j∈N

W t
ijY

t
ij ≤ st, ∀t ∈ T (2.10)

W t
ij = max{lij, rij(1−X t

ij)}, ∀t ∈ T, ∀i, j ∈ N (2.11)∑
j∈N

Y t
ij −

∑
j∈N

Y t
ji = 0, ∀t ∈ T, ∀i ∈ N (2.12)

X t
ij ≤

t−1∑
t′=0

Y t′

ij + oij, ∀t ∈ {1, 2, ....T}, ∀i, j ∈ N (2.13)∑
i,j∈S;i ̸=j

Y t
ij ≤ |S| − 1, ∀S ⊂ N, S ̸= ∅, ∀t ∈ T (2.14)

W t
ij ≥ 0, ∀t ∈ T, ∀i, j ∈ N (2.15)

X t
ij, Y

t
ij,∈ {0, 1}. (2.16)

To explain the modeling, the objective is to minimize the value of out-

of-service road. Value here is defined loosely so that without loss of generality,

this can be substituted with a set of priority weights from another agency that

cares about the road network’s operation. For example, the value metric for

the road network can be selected based on an agency such as the Red Cross or

FEMA that is tasked with bringing relief supplies in to a disaster-stricken area.

This modeling is done to capture the issue of both power and road utilities

having different priorities when it comes to restoring infrastructure.

Constraints (2.9) force the depot to be in every tour. Constraints (2.10)

provide scheduling constraints that limit the tour’s length to the length of the

shift. Constraints (2.11) are nonlinear but linearizable constraints that set
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the length of a road to either its nominal operation time or its repair time

depending on whether or not it is marked as working (X t
ij = 1). Constraints

(2.12) are standard path connectivity constraints. Constraints (2.13) restrict

each road segment to only be working if it started working (oij = 1) or has

been repaired. Constraints (2.14) are a standard set of subtour elimination

constraints. Constraints (2.15) and (2.16) exist to restrict decision variables

to only valid values.

Of note is that constraints (2.10) and (2.11) are nonlinear as intuitively

expressed. We linearize it by rewriting them as the following:

∑
i,j∈N

W t
ij ≤ st, ∀t ∈ T (2.17)

W t
ij ≤ MY t

ij, ∀t ∈ T, ∀i, j ∈ N (2.18)

W t
ij ≥ lijY

t
ij, ∀t ∈ T, ∀i, j ∈ N (2.19)

W t
ij ≥ (1−X t

ij)rij − (1− Y t
ij)M, ∀t ∈ T, ∀i, j ∈ N. (2.20)

2.5 Power Grid Repair Problem

When looking at repair of the power grid at the transmission level,

we formulate a discrete time mixed integer program that captures both the

planning/scheduling/movement of repair crews as well as the DC power flow

model. We assume the following:

• Repair of a power line can be started from either end of that power line.
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• Minimum spanning tree’s lower bound on the length of a tour/route

provides a usable approximation for the sake of keeping model runtime

down.

• Load shedding can be modeled as a continuous loss even though on real

power grids it is a series of discrete decisions to stop power to specific

parts of the distribution network that allows for small increments of load

to be shed, though leading to continuous power shedding. We make this

assumption due the modeling and computational burden of having many

low-impact decisions to make.

• Substations can have an associated demand from an attached distri-

bution network as well as generation capacity from an attached power

plant. For substations that do not have these attached, the node demand

and/or power generation capacity are set to 0.

We pose the model as follows:

Sets and indices:

N set of nodes, indexed by i
E set of power lines, indexed by e
R the set of road segments
T the planning horizon, indexed by t
O(i) set of lines with origin i
D(i) set of lines with destination i
o(e) origin node of line e
d(e) destination node of line e
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Parameters:

Le maximum power flow for line e in terms of megawatts
Ri time to repair node i in hours
Re time to repair line e in hours
Ct

ij length of the shortest path from node i to node j at time t
Di power demand in megawatts at node i in the pre-disaster state
Pk maximum power generation in megawatts for generator k
Be line susceptance in siemens per unit for power line e
Ie, Ii binary initial condition of line e and node i, respectively (1 is operational)
F Maximum length of shift in hours

Decision Variables:

X t
e power flow in megawatts on line e at time t

Gt
k production from generator k at time t

Y t
i load shed from bus i at time t

V t
i binary variable for node i being operational at time t (1 is operational)

W t
e binary variable for line e being operational at time t (1 is operational)

U t
e binary variable for line e serviced at time t

Zt
i binary variable for node i serviced at time t

θti phase angle in radians for the power flow at i in time t
M t length of the tree used for “routing” at time t measured in hours
Qt

ij indicator for ij being in the spanning tree at t

Given these parameters and decision variables, we formulate the model

as follows:

Minimize
∑
i∈N

∑
t∈T

Y t
i (2.21)
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subject to:

X t
e = Be(θ

t
o(e) − θtd(e)), ∀t ∈ T, ∀e ∈ E (2.22)

Gt
i −

∑
e∈O(i)

X t
e +

∑
e∈D(i)

X t
e = Di − Y t

i , ∀t ∈ T, ∀i ∈ N (2.23)

0 ≤ Gt
k ≤ PkV

t
k , ∀t ∈ T, ∀k ∈ N (2.24)

0 ≤ Y t
i ≤ Di, ∀t ∈ T, ∀i ∈ N (2.25)

−LeW
t
e ≤ X t

e ≤ LeW
t
e , ∀t ∈ T, ∀e ∈ E (2.26)

−LeV
t
o(e) ≤ X t

e ≤ LeV
t
o(e), ∀t ∈ T, ∀e ∈ E (2.27)

−LeV
t
d(e) ≤ X t

e ≤ LeV
t
d(e), ∀t ∈ T, ∀e ∈ E (2.28)

V t
i ≤

t−1∑
t′=0

Zt′

i + Ii, ∀i ∈ N, ∀t ∈ {1, 2, ....T} (2.29)

W t
e ≤

t−1∑
t′=0

U t′

e + Ie, ∀t ∈ {1, 2, ....tmax} ∀e ∈ E (2.30)

M t =
∑
i∈N

∑
j∈N

Ct
ijQ

t
ij, ∀t ∈ T (2.31)∑

i∈N

∑
j∈N

Qt
ij =

∑
i∈N

Zt
i +

∑
e∈E

U t
e −

∑
i∈N

∑
e∈O(i)∪D(i)

Zt
iU

t
e, ∀t ∈ T (2.32)

∑
i,j∈S

Qt
ij ≤ |S| − 1, ∀S ⊂ N, S ̸= ∅, ∀t ∈ T (2.33)∑

j∈N

Qt
ij ≤ Zt

i +
∑

e∈O(i)∪D(i)

U t
e, ∀t ∈ T, ∀i ∈ N (2.34)

∑
e∈E

ReU
t
e +

∑
i∈N

RiZ
t
i +M t ≤ F, ∀t ∈ T (2.35)

Qt
ij, U

t
e, Z

t
i ,W

t
e , V

t
i ∈ {0, 1}. (2.36)

The objective here is to minimize the amount of load shedding (failure

to service demand) where zero load shed would represent nominal operation
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of the power grid. This is equivalent to maximizing the amount of demand

satisfied over the repair horizon. Constraints (2.22) are in place to handle

line susceptance and phase angle related power flow. Constraints (2.23) are

the flow balance constraints from DCOPF with the change that demand can

not be satisfied (”shed”) at penalty to the objective function. Constraints

(2.24) are a generation capacity constraint set where generation of power can

only flow into the grid if the bus that the generator connects to is intact.

Constraints (2.25) handle amount of load shedding at each bus so that the

maximum load shed is 100% of the demand. Constraints (2.26-2.28) are flow

limit constraints subject to functioning of the line and buses on both sides of

the corresponding line. Constraints (2.29) and (2.30) regulate the functionality

of a power grid element so that an element can only be operational (V t
i or W t

e

= 1) if it started operational or was repaired before the current shift. These

are inequality constraints rather than equality constraints to allow elements to

be switched off if that decision would allow more power demand to be satisfied.

Constraints (2.31) define the length of a minimum spanning tree based

on elements selected to be repaired. This is done for readability reasons, since

there is no reason that it can not be folded into (2.35). Constraints (2.32) are

a quadratic constraint set that counts how many elements need to be inserted

into the minimum spanning tree using inclusion/exclusion counting to handle

repairs where a bus and a line that connects to the bus both get repaired

using the multiplied binary variables. Unlike other quadratic constraints in

this thesis, this one is not linearized. As the quadratic term is of the form
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of multiplying two binary decision variables, Gurobi is able to solve these

constraints directly. As we are modeling under the assumption that a line’s

repair can start from either endpoint, we need to account for the cases where

a bus and its attached node are repaired in the same shift when planning the

spanning tree approximation to the route. Constraints (2.33) are standard

subtree elimination constraints. Constraints (2.34) restrict the inclusion of

elements in the tree to only nodes that are repaired or are the site of a line

repair. While a route could go through other nodes, we compute the shortest

paths between nodes to keep the minimum spanning tree as simple as possible.

Constraints (2.35) are scheduling constraints that matches the ones seen in the

road repair model to restrict the total operations in each shift to the length

of the shift. We note that this model does not fully generate the route and

it would have to be constructed as a post processing step to solve the actual

route. Routing problems for a given set of elements are well-studied as well as

computationally easy on this scale. Given that the route cost is approximated,

this problem remains feasible

2.6 Lower Bounding and Post Processing Heuristic

From the previously presented models, we recognize that we can gen-

erate a lower bound using these models. While the MST method provides a

lower bound on a routed solution, by not considering travel times at all, we

find a lower bound on any repair procedure that can be planned. By setting

all the travel times to zero (Cij = 0), leaving the rest of the model in place,
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we provide a lower bound as it generates an optimal repair schedule (Kt
lb) that

is compressed into the minimum possible time. This can then be post pro-

cessed into a feasible schedule (Kt
h) by starting with the lower bound schedule

and then repacking it into shifts using the following algorithm to generate a

heuristic solution to the repair problem:

1. Create a feasible list (F ) that will be used to track repairs that can be

put into the post processed schedule, a priority list (P ) of repairs that

have been on the feasible list before, an index (I) to track what shifts

are in the search, S as the current shift of repairs, and a tracker of the

current node (N).

2. Begin by assigning I = 1 .

3. Move any repairs remaining on F to P

4. Move any repair from Kt
lb in shift I to F

5. Set N to the pre-defined depot location for repairs

6. Calculate the time to reach and repair every item in both P and F from

N . For edge repairs, choose the endpoint of the edge with lower cost for

travel and repair.

7. If there are unassigned node repairs in P that can be added to S without

having the time cost of S exceed the allowed length of a shift, assign the

lowest cost node repair to S. Set N to be the site of repair. Return to

step 6
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8. If there are unassigned edge repairs in P that can be added to S without

having the time cost of S exceed the allowed length of a shift, assign the

lowest cost edge repair to S. Set N to be the site of repair. Return to

step 6.

9. If there are unassigned node repairs in F that can be added to S without

having the time cost of S exceed the allowed length of a shift, assign the

lowest cost node repair to S. Set N to be the site of repair. Return to

step 6.

10. If there are unassigned edge repairs in F that can be added to S without

having the time cost of S exceed the allowed length of a shift, assign the

lowest cost edge repair to S. Set N to be the site of repair. Return to

step 6.

11. If there are no repairs that can be added to S, set shift I in Kt
h to be S.

12. I = I + 1

13. Once every repair from the Kt
lb has been assigned to a shift, end the

algorithm.

This is similar to many greedy heuristics for knapsack problems where

the lowest cost element is added to the knapsack. This method leverages the

knowledge of what order repairs occur in the lower bound schedule to quickly

add in the impact of travel time. This heuristic runs in polynomial time for

the post processing. The mixed integer program to generate the lower bound
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schedule is non-polynomial by virtue of being a mixed integer program though

it runs in under a minute for both IEEE 30 bus and IEEE 57 bus power girds.

As we show later, this process yields solutions that are close to our full model

solutions across a variety of example cases. The reason to use this heuristic

is that it allows for scheduling models for repairs to grow more complex while

presenting a method for incorporating travel times after solving the optimal

schedule.

2.7 Road Power Interaction Frameworks

Now that we have established both models that will be used to draw

insights from the repair problem, we now outline how we handle their inter-

actions. Since the models are solved independently, we have to choose one of

them to be the first mover and the other to be the second mover. We therefore

lay out the following frameworks:

• Road First– We model the problem as if the road-network decision

maker has priority over the power grid decision maker in the combined

repair effort. This is done by solving the road model, then treating the

road model repair schedule as an input to the power model as a time-

varying shortest path matrix.

• Power First – We model the problem with the power grid as the first

mover by solving the power grid repair problem with the roads at their

nominal lengths. Presume that due to coordination effects, road seg-
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ments are repaired before they are needed in the power grid repair sched-

ule. This means that the road repair model is solved so that certain roads

must be repaired before a certain shift. To account for this delay while

waiting for road repair, we introduce a one shift delay before the start of

power repairs, assuming that one shift is enough for road repairs needed

by the power grid.

• Uncoordinated Repairs – To handle the case where the power grid

decision maker may have to commence repairs with no prior information

about the repair plan for the roads, but they have an assessment of the

state of the roads in the wake of a hurricane. We model the roads as

if they are damaged and their state does not change. Travel times for

a damaged road segment are significantly longer due to debris and/or

flooding, so longer alternate routes are usually used.

• Heuristic – Using the heuristic described above, we can take the lower

bound schedule constructed without travel times. These solutions are

farther from the lower bound than solutions based on interacting the full

models, but they are computationally fast and can be used to quickly

gain insight about the repair problem to direct future plans and direction

of exploration.
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Chapter 3

Results

3.1 Introduction to Results

To validate the models outlined as more than just a theoretical exercise

in modeling, we engineer test cases based on standard IEEE power grids. We

choose to use the 30 bus and 57 bus systems in order to capture effects on a

large enough scale to demonstrate the model’s applications. We hope this can

extend into practical uses later on while the tests remain small enough that

model run time stays reasonable. To convert these from standard test grids to

DC versions for use in this model, reactive/imaginary power flow is dropped

leaving only real power flow.

We assume also that the resulting road network for the area correspond-

ing to the power grid’s service area can be represented with a Watts-Strogatz

network, which is a network that connects each node of a graph to the k near-

est neighbors and then has probability p of connecting any two nodes chosen.

These networks exhibit the “small world” property where any two arbitrarily

distant nodes can be connected using only a small number of edges. Based

on the literature on statistical analyses of road network topologies [20] [5] this

is a serviceable but imperfect assumption to model a semi-abstracted road
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network. Ideally the real topology of a hurricane struck area should be used,

but for a computational and modeling effort to draw insight into joint repair

efforts, the contrived Watts-Strogatz based network suffices as it avoids hav-

ing a full road model that would dramatically complicate the routing parts of

the modeling by including dummy nodes in the routing efforts of every major

intersection.

We then overlay a Watts-Strogatz graph with connection to the 3 near-

est neighbor nodes and .03 global connectivity (i.e each node has a 3% chance

of being connected to any other node) as mentioned earlier based on fitting

power buses to a grid. The key reason for fitting based on a grid is to main-

tain triangle inequalities. Random edge length generation is not guaranteed

to follow triangle inequalities when computing distances. Having a network

that violates triangle inequalities (Distance from A to B + distance from B to

C is greater than or equal to distance from A to C) is both unrealistic to “real

world” situation as well as altering the solutions of routing problems [13]. We

plan this so that travel time between opposite sides of the network are about

3 hours so that routing times are not trivial compared to repair times. We

arbitrarily define repair times to be 5 hours for damaged nodes representing

replacement of easy to fix components like breakers and downed lines inside

the substation as well as inspection of potentially damaged elements. More

severe damage resulting from flooding and/or corrosion can take months to

repair and is therefore outside the scope of immediate post-disaster response.

We assume lines have a repair time of 1 hour plus a variable amount based on
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the geographical length of the line from our grid fit. We let the length of a shift

be 12 hours to update the status of the grid twice per day. We acknowledge

these times are somewhat arbitrary, but without loss of generality, data from

a power utility can be fed in, so these arbitrary repair times suffice to warrant

the utility of the underlying model. Different shift lengths were tested and the

choice of 12 hours best captured the interaction between roads and power.

To show validity as well as impact of alteration of several factors, we

first solve out a base damage instance for both grid topologies, then conduct

perturbations of respectively weather damage, road topology, damage inten-

sity, and power grid topology. We do this to show that the model is valid

for a large variety of inputs and therefore can be presumed to be valid when

applied to real world hurricane and network data. It is worth noting that not

every model solves the repair horizon all the way to nominal operation. We

cut off the computing at the same number of shifts per power grid topology so

that everything plans to the same repair horizon to make comparison across

instances valid.

3.2 Nominal Operation

To provide a point of comparison for damage and repair modeling, we

look first at the case of nominal operation. Figure 3.1 shows the layout of the

IEEE 30 bus network that has been overlaid with a road network as outlined

above. The grid has a total demand of 283 MW as modeled. The network has

node 4 being the site of largest demand and node 0 being the site with the
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most generation capacity.

Figure 3.1: Overlaid power grid in green with road network in red

We also use the IEEE 57 test network, which has significantly more

demand as it is loosely based on a representation of the American Midwest

power grid in the 1960s. This test case from IEEE allows us to validate a

larger network that has proportionally more demand and more complexity.

3.3 Geographically Clustered Damage

Looking at our first case to validate the model, we manually apply ge-

ographically clustered damage to both road and power networks. The damage

in this case is concentrated where several damaged elements are next to each
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other in varying locations around the power grid. We show this in Figure 3.2

with damaged elements in red and operational elements in green. Of note here

is that damaged substations have a damaged line close by.

Figure 3.2: IEEE 30 bus network with the base case damage applied and
shown as red elements

For the base case on the 30 bus network, damage is applied to approx-

imately one third of road segments, one quarter of power buses, and one third

of power lines based on the damage modeling from the literature review. The

following repair curves are generated from the model as stated earlier. This

instance as well as all following instances are solved to a 1% optimality gap.

The reason for this is based on running instances, the final solution was found

before this point.
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Figure 3.3: Load shed by shift in the 30 bus base instance

Table 3.1: Total load shed over the repair horizon for the base instance

Road First Power First Uncoordinated Repairs Post Processed Lower Bound
291.7 479.4 291.7 367.8 247.1
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We conclude from Figure 3.3 as well as Table 3.1’s summary of total

unsatisfied demand across the repair horizon that changes in processing and

interaction between models has meaningful impact on outcomes. It is worth

noting that between points at the start and end of each shift, the shape of

the repair curve is unknown. We present it as linear for the sake of simple

visualization. For this case, we find that solving the roads and then condi-

tioning the power repairs on that road schedule yields the outcome closest to

the lower bound. This method being better is predicated on the assumption

that the road repair crews would need one full shift to get ahead of what roads

are needed in the framework where the power utility is the priority decision

maker. If that delay can be reduced, letting the power utility dictate the road

repair schedule becomes the best schedule inside the context of minimizing

unsatisfied power demand over the repair horizon.

3.4 Varied Damage Location

Looking at our next case to validate the models, we apply randomly

distributed damage to both road network and power grid of similar intensity to

the base case. We can draw comparable conclusions to the the geographically

Table 3.2: Total load shed over the repair horizon for the random damage
instance

Road First Power First Uncoordinated Repairs Post Processed Lower Bound
349.2 544.1 372.2 406.8 274.4

distributed base case, but for this instance as depicted in Figure 3.4 and Table
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Figure 3.4: Load shed by shift in the 30 bus randomized damage instance

3.2. These repair curves having a rapid drop in load shed is due to the first

several node and edge repairs being obvious choices. Given the rapid drop to

baseline, the total lost load over the repair horizon is 544.8 MW-shifts under

the power first with delay framework as compared to the 349.2 MW-shifts when

solving the roads first or the 274.4 MW-shifts of unsatisfied power demand in

the lower bound solution. This is predicated on the delay to allow for road

repairs to happen before they are needed for power grid repairs to occur with

ideal transit times. Were this not to be the case, we find that the power first

framework is the closest solution to the lower bound.

To demonstrate that the changes to how the road network is treated

drive much of the changes in satisfied power flow, we display the schedule for

the random damage case in Table 3.3 for each of the interaction frameworks.

The schedules are broadly similar in terms of what elements are prioritized,
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but by capturing the interactions with the road network, we can see that small

perturbations to the schedule can dramatically change amount of demand

unsatisfied over the repair horizon.

Of note is that not every element is repaired due to redundancies in

the power grid, but that is justifiable in the context of disaster response as the

first priority is satisfying demand and restoring redundant systems is a lower

priority.

3.5 Varied Road Connectivity

We now perturb the road topology of the network and solve a variation

of the base case on the new road topology. The base-case road network was

constructed as a Watts-Strogatz graph with neighbor connectivity 3 and global

connectivity .03 as discussed earlier. To show the model as written is valid

for multiple road topologies as well to show the impact of changing the road

network, we permute the road network while keeping the power grid static.

The new road topology is a different Watts-Strogatz graph with neighbor con-

nectivity 2 and global connectivity .015. Additionally distances between nodes

are increased by 25%. This simulates the effect of the power grid in a more

geographically spread out area with fewer direct paths between nodes.

The solutions are as follows in Figure 3.5 and 3.6 for first the unper-

turbed road network and then the perturbed road network. The damage here

is another instance of random damage with a loss to 50% of roads, 50% of

power lines, and 25% of buses and substation in order to show the effects of a
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Table 3.3: Repair schedule by interaction method for the 30 bus network with
random damage

Shift
Num-
ber

Road First Power First Uncoordinated
Repairs

Post Pro-
cessed

Lower
Bound

1 Node 4,
Lines (1,3),
(1,4)

Node 4,
Lines (1,3),
(1,4), (9,19),
(11,15)

Node 4 and
Line (1,4)

Node 7,
Lines
(9,19)
(1,4)

Node 4,
Node 7,
Lines
(1,4)
(9,19)

2 Node 7,
Lines (4,6)
(24,25)

Node 7,
Node 23

Node 7, Lines
(1,3), (11,15),
(18,19),

Node
4, Line
(24,25)

Node
23, Node
24, Line
(24,25)

3 Node
23, Node
24, Line
(18,19)

Node 18,
Node 24

Node 15,
Node 18, Line
(9,19)

Node 23,
Node 24

Node 18,
Lines
(1,3),
(4,6),
(9,22),
(11,13),
(18,19)

4 Node 18,
Lines
(7,27),
(9,19),
(11,15)

Node 20,
Lines
(18,19),
(24,25),
(4,6), (7,27)

Node 23,
Lines (4,6),
(7,27),
(24,25)

Node 18,
Lines
(18,19),
(1,3),
(4,6),
(9,22)

Node
15, Line
(7,27)

5 Node 15,
Line (9,22)

Node 24 Node 15,
Lines
(11,15),
(7,27)

6
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more severe hurricane and best the impact of the perturbed road network.

Figure 3.5: Load shed by shift and method in a 30 bus instance before road
perturbation

We get largely intuitive changes here. Interaction frameworks that are

on-face more sensitive to road changes (the uncoordinated repairs framework

shows this most clearly) have larger magnitudes of change in performance

under perturbation of the road network. Figure 3.6 shows a markedly different

curve set from Figure 3.5 where instead of a fairly steady decrease, we see a

larger amount of damage carrying over into later parts of the repair horizon.

Additionally, there is far more deviation in framework solutions in the case

where the roads are altered to be a more geographically distributed network.

This is to be expected as more time within each shift is spent on the travel

time causing fewer repairs to be done in each shift.

Of note here is that the heuristically solved version of the model without
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Figure 3.6: Load shed by shift and method in a 30 bus instance for the geo-
graphically dispersed road network

travel time and use of a post-processor performs much better (i.e closer to the

lower bound) in the case with the road network perturbed to be more distant.

This is because the heuristic ignores road repair entirely in the name of not

having to solve a mixed integer programming model as the heuristic is designed

to solve quickly to generate insights. The model runtimes are discussed in a

following section to give credence to this. A version of the model where the

road repair integer program is solved and used to generate time dependent road

lengths for use in the post-processing heuristic would likely be significantly

closer to the kind of solution the method would generate if deployed to real

disaster response.
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3.6 Varied Damage Intensity

We now perturb the base case for a higher damage instance in order

to show model effectiveness for varying levels of damage. We do this by ex-

pressing similar geographically correlated damage as seen in the geographically

clustered damage, but we raise the damage here to slightly over 50% of edges

and 33% of nodes. This would be representative of the case of a more se-

vere hurricane as discussed back in the literature review on hurricane damage

modeling. We show the higher damage in Figure 3.7

Figure 3.7: IEEE 30 bus network with the more severe damage applied and
shown as red elements

For larger amounts of damage on a network, the repair curve has a large

initial drop followed by the similar amounts of tailing off seen in lower damage
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Figure 3.8: Load shed by shift in a 30 bus instance with increased damage

Table 3.4: Total load shed over the repair horizon for the increased damage
instance

Road First Power First Uncoordinated Repairs Post Processed Lower Bound
447.9 548 454.2 477.7 327.9
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cases. This is because of most power grids having a few high priority node

repair decisions for nodes that satisfy large amounts of the grid’s demand. The

remaining 75MW of demand have less obvious decisions and depend more on

the state of the road network. This is seen clearly in Figure 3.8. While the

post processed solution looks like it has a delay, but this is due to not fixing a

particular node until the second shift and placing only line repairs in the first

shift. We note here that uncoordinated repairs and solving the road repairs

first generate the same repair curve. This is a consequence of the network

having enough alternate routes that rerouting the repair crew does not alter

the repair schedule.

3.7 Varied Grid Topology

We now demonstrate the repair problem for a larger and more complex

power grid (IEEE 57 Bus) in order to confirm model validity for larger scale

problems as well as the impact of looking a more complex power network.

The road network is fit as it was for the base case where travel time from

one side of the topology to the other is about 3 hours with the same degree

of connectivity. We apply damage of comparable magnitude to the base case

where damage is applied to approximately one third of road segments, one

quarter of power buses, and one third of power lines. This is done in the same

geographically clustered way as the base instance in order to best showcase

the impacts of changing the grid topology.

While the result for both solving the roads first and for solving with
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Figure 3.9: Load shed by shift in the 57 bus instance

nominal condition roads with delay have similar behavior to previous cases’

model interactions, the heuristic solution method of solving the lower bound

and post-processing performs significantly worse. The reason for this is that a

spatially larger power grid means that routing is a proportionally larger share

of each shift, and ignoring that aspect until postprocessing results in solutions

that get farther from the lower bound as the power grid grows spatially. In

Figure 3.9, we see that both roads first and uncoordinated repairs framework

have nearly the same load shed solution. This appears to be a flaw of how

road damage is treated and suggests that a sparser road network representation

or higher proportion of road network damage may be necessary to correctly

capture the effects of road interactions for larger power grids. This stems from

the abstracted road grid representing frequently taken paths as mentioned

earlier, and a different approach to generation of synthetic roads may need to
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be taken for more complex road topologies.

3.8 Model Runtimes

Models are only useful if they can be implemented in a practical context.

As disaster response planning is a somewhat time sensitive affair, a model that

takes days or weeks to run is not useful as repairs need to start within the first

few days. Based on using Gurobi 8.1.1 running on a i5-9600k CPU with 32gb of

RAM running through the gurobipy interface for Python 3 for model building,

model runtimes for road repairs range between 5 and 15 minutes on the 30 node

case and 15-45 minutes on the 57 node case depending on the damage level.

More damage leads to more possible decision options which means a longer

runtime. Power repair model solution times range between 10-20 minutes for

the IEEE 30 bus test network depending on interaction with the road network

and 60-90 minutes for the IEEE 57 bus test network.

3.9 Overall

From the basket of demonstrated cases, we can see that interaction

frameworks that allow more information sharing between road and power re-

pairs are closer to the theoretical lower bound. As we make the assumption

that power repairs that treat the road network as if it has been repaired to

their needs requires a one shift delay in the start of repair operations, it is

sub-par compared to solving the road network and then planning the power

repairs based on that schedule. Were that assumption not to be valid, solving
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the power grid repairs under the presumption of nominal condition roads and

then using those solutions to find a series of road repairs would be the best

way of solving the repair problem if the only goal was to minimize total loss

of satisfied demand in the power grid. Even with the delay, if the goal is to

get the power grid back to nominal operation, solving the power first with

the delay is better for higher damage cases. There are real reasons to give

the road network’s decision maker first-mover priority such as prioritizing flow

in of humanitarian goods rather than restoration of power grid operations.

Even under that interaction framework, power grid outcomes are better than

they were under the schedule and post-process framework, suggesting that

any coordination is still an improvement over methods that fail to capture the

power/road interactions.

3.10 Justifying the use of a Minimum Spanning Tree
Approximation

Now that we have presented several instances of the repair models, we

can use these to go back and validate the use of our minimum spanning tree

assumption when we first constructed the model.

In the above model we discuss the use of a minimum spanning tree to

approximate the length of the route of a repair crew to reduce computational

time. We demonstrate the validity of this by formulating the routing version

of the problem, then running three instances to find first if we get the same

(or at least a very similar) solution, and secondly to show the difference in
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runtime.

We begin by defining our sets and variables as above with the change

that Qt
ij represents the inclusion of the shortest path from i to j in the tour

at time t. We change M t from the length of the minimum spanning tree

approximation of the route/tour length to the tour length itself. The routing

model is then as follows:

Minimize
∑
i∈N

∑
t∈T

Yit (3.1)
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subject to:

X t
e = Be(θ

t
o(e) − θtd(e)), ∀t ∈ T, ∀e ∈ E (3.2)

Gt
i −

∑
e∈O(i)

X t
e +

∑
e∈D(i)

X t
e = Di − Y t

i , ∀t ∈ T, ∀i ∈ N (3.3)

0 ≤ Gt
k ≤ PkV

t
k , ∀t ∈ T, ∀k ∈ N (3.4)

0 ≤ Y t
i ≤ Di, ∀t ∈ T, ∀i ∈ N (3.5)

−LeW
t
e ≤ X t

e ≤ LeW
t
e , ∀t ∈ T, ∀e ∈ E (3.6)

−LeV
t
o(e) ≤ X t

e ≤ LeV
t
o(e), ∀t ∈ T, ∀e ∈ E (3.7)

−LeV
t
d(e) ≤ X t

e ≤ LeV
t
d(e), ∀t ∈ T, ∀e ∈ E (3.8)

V t
i ≤

t−1∑
t′=0

Zt′

i + Ii, ∀i ∈ N, ∀t ∈ {1, 2, ....tmax} (3.9)

W t
e ≤

t−1∑
t′=0

U t′

e + Ie, ∀e ∈ E, ∀t ∈ {1, 2, ....tmax} (3.10)

M t =
∑
i∈N

∑
j∈N

SP t
ijQ

t
ij, ∀t ∈ T (3.11)∑

j∈N

Qt
ij ≥ Zt

i , ∀i ∈ N, ∀t ∈ T (3.12)∑
j∈N

Qt
o(e)j +

∑
j∈N

Qt
d(e)j ≥ U t

e, ∀e ∈ E, ∀t ∈ T (3.13)∑
j∈N

Qt
ij −

∑
j∈N

Qt
ji = 0, ∀i ∈ N, ∀t ∈ T (3.14)∑

i,j∈S

Qt
ij ≤ |S| − 1, ∀S ⊂ N, ∀t ∈ T (3.15)∑

e∈E

ReU
t
e +

∑
i∈N

RiZ
t
i +M t ≤ F t, ∀t ∈ T (3.16)

Qt
ij, U

t
e, Z

t
i ,W

t
e , V

t
i ∈ {0, 1}. (3.17)

This model nearly the same as the model presented in Section 2.5, but
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the minimum spanning tree approximation to routing is replaced by a full rout-

ing problem in order to test the validity of the approximation we make. The

changes are the replacement of constraints (2.31-2.33) in the original model

with constraints (3.11-3.16). This more complex model generates the full route

of the crew in terms of shortest paths between nodes rather than just deter-

mining what nodes they visit and providing a bound on what cost they pay

to do so.

We then solve a trio of instances check the validity of the minimum

spanning tree assumption. Table 3.2 shows the optimum object function values

and solution times of the corresponding models for the three instances.

Table 3.5: Runtime and objective values for minimum spanning tree and rout-
ing versions of the power repair problem

MST Routing
MST Objective MST Runtime Routing Objective Routing Runtime

Instance 1 (30 bus base instance) 345.2 25 seconds 369.6 639 seconds
Instance 2 (30 bus random damage instance) 357.5 15 seconds 406 488 seconds

Instance 3 (57 bus) 2748 4328 seconds no solution 5400∗ seconds

From this, we can see that the minimum spanning tree version of the

model runs significantly faster and comes to a similar objective. The reason the

3rd instance has no solution for the routing based model is that these instances

were run with a 90 minute maximum runtime. At 90 minutes, there was still

a 22% gap between the best incumbent solution and the lower bound solution

in the branch-and-bound solver. While the second instance has a difference

of 13.5% between the objectives, the difference here is because of a single

repair being moved to a later shift as a byproduct of the MST based model
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underestimating travel time. This leads us to believe this is an approximation

that will be useful in planning disaster response. The step that would have to

exist if the MST approximation is used is to solve the routing problem for the

response crew between the selected elements. Determining the optimal route

between less than 10 elements chosen for a shift by the MST based model is a

simple and well solved problem.
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Chapter 4

Resilience

4.1 Introduction

Given that we have constructed models for response to a scenario of a

hurricane strike on power and road infrastructures, we can use these to look at

how different methods of resilience interact with repair. We define resilience as

the ability to withstand disruption and efficiently return to normal operation,

but there are many definitions of resilience throughout literature on network

operations [25]. In this chapter, we consider increasing the grid’s resilience

through hardening and fortification rather than an islanding based approach.

We can then look to the repair procedures to evaluate the resilience of the

power grid through looking at the rate of repair rather than just looking at

the time to resume normal operation or magnitude of maximum initial drop

in performance.

Most approaches to resilience construct a resilience curve such as the

one in Figure 4.1 taken from [21]. Resilience is shown as an initial drop and

then time to both partial and full recovery.

Large sections of the literature assume the recovery process for a system

is fixed, so they study resilience in the context of minimizing either time to
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Figure 4.1: Standard depiction of a resilience curve

restoration of nominal system performance or minimizing the magnitude of the

initial drop. We can frame this in terms of looking at the means versus the end.

The goal is not to minimize some metric of resilience, but rather to reduce the

impact of damage to the power grid. As we have been working with models

for repair of damaged networks that generate repair schedules and associated

curves showing power demand shed over time, we can look at all aspects of

the resilience curve. This method gives us both the magnitude of the initial

drop and the time to recovery in addition to the repair curve generated. Using

this, we look into how the repair model defined above interacts with standard

methods of improving resilience of a power grid.

4.2 Hardening

Hardening is one of the approaches to resilience achieved by fortifying

a subset of nodes and edges in a network to make the network harder to
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damage. In the context of a power grid, this can include placing additional

support guide wires on power poles, burying lines, or building flood walls and

windbreaks around substations. Hardening is often looked at in the context

of interdiction problems [7].

To overview the problem solved in interdiction: player 1 operates a net-

work, player 2 attacks the network with the objective of maximizing demand

shed under optimal power grid operation, and player 1 hardens the network be-

fore the attack under the assumption that it is coming and wants to preserve as

much of the network’s capacity as possible given a budget for hardening. This

can be formulated as a trilayer maximization/minimization/maximization mixed

integer programming [22]. Alternatively, it can be approached as a stochas-

tic problem with uncertainties used to model attacks not being guaranteed to

succeed [34].

A similar approach can be taken with disaster planning. Unlike in in-

terdiction, the attack coming from a hurricane is a semi-random process of

nature and not a targeted interdiction by an intelligent actor. Therefore the

exact methods from directed attack based interdiction are not directly imple-

mentable for disaster planning. When solving this problem, we find a fixed

quantity of damage based on the amount of hardening that can be undertaken

with a budget constraint. By solving the ensuing interdiction problem, choos-

ing the combination of elements that would be damaged forms the best set

of elements to harden against damage. Solving this to optimality with best

practices requires a delve into bi-level optimization that is outside the scope of
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this thesis. We therefore solve the problem heuristically through the following

setup.

1. Solve the baseline DC-OPF model for the given power grid

2. Identify how many nodes (N) and edges (E) that are to be hardened

based on the budget constraint

3. Select at least the 2N highest demand nodes and the 2E highest utiliza-

tion edges based on the DC-OPF model for the undamaged grid.

4. For each possible subset of N nodes and E edges, solve DC-OPF with

those elements damaged (i.e down)

5. Out of all the tested subsets, find the one that produces the maximum

load shed in the DC-OPF solution. Use that subset of nodes and edges

as the best choice for hardening when analyzing resilience.

This is a heuristic solution rather than guaranteed optimality as writ-

ten. In the case where all possible subsets are considered, this method gen-

erates a full solution to the multilayer (maximization of the minimum) opti-

mization problem through enumeration. The result of this is a set of power

grid elements that, if damaged, would maximally impede the operation of the

power grid. The implication then is that by protecting this set of elements,

the grid would be best protected against the worst case. This is the approach

that Salmeron et al. [36] took when studying terror attacks in the context of

power grid resilience.
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4.3 Modeling

We elect to use the IEEE 30 bus network outlined in earlier chapters

to demonstrate the effectiveness of interdiction and priority heuristic based

resilience procedure. Each scenario is solved three times using the interaction

framework of solving the road network first and then solving power grid repair

based on that road repair schedule as laid out in Chapters 2 and 3. We choose

this as it had the solution closest to the lower bound for most instances in

chapter 3. We solve for resilience in three ways:

• Choosing hardened elements based on the interdiction method defined

above

• Choosing hardened elements heuristically where the highest demand

nodes and the edges that have the highest ratio of flow compared to

their maximum flow limit. This is the kind of approximation that a

power utility may use to choose elements to harden.

• Choosing no elements to be hardened

Solution for the interdiction based hardening is done to optimality by

selecting every subset of the desired size. The runtime for doing this is about

90 minutes as one linear program was solved for each subset that satisfies the

hardening budget. This was possible because the model for load shed is a linear

program and solves quickly efficiently. The literature base on interdiction will

have more sophisticated models and metaheuristics to solve or approximate
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interdiction on larger networks, but they are unnecessary for grids of this size

since the optimal solution can be found with this simpler method.

We show the chosen hardened elements in Table 4.1 with the grid topol-

ogy shown in Figure 4.2 for clarity as to what’s hardened. Were all the elements

from the interdiction based hardening method to be damaged, 233.4 MW of

demand would have to be shed. For the priority heuristic based method’s cho-

sen elements being damaged, the power grid would have to shed 187.6 MW of

demand.

Figure 4.2: Layout of the power grid used for hardening and resilience

Table 4.1: Hardened elements by resilience method

Interdiction Based Priority Heuristic Based
Nodes 1 and 7 4 and 7
Edges (22,23), (5,9), (1,5), and (0,1) (22,23), (5,9), (23,24), and (14,17)
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We solve 20 repair problems corresponding to scenarios that are gen-

erated by uniform random generation are solved. Each scenario reflects 50%

line loss and 25% bus loss in the power grid and a standardized road damage

of 50%. We solve the repair problem and find a schedule that will display the

difference in not just recovery time, but amount of unsatisfied demand during

the repair process for different treatments of resilience. In addition to this, we

assess the objective with perfect information to construct a lower bound on

the amount of demand unsatisfied in each scenario.

4.3.1 Objective with Perfect Information

On top of these three methods of comparison in resilience, we also

look at a case where we had perfect information about upcoming damage to

generate a lower bound to compare to. If we knew which scenario will be

realized, then the hardening of the most important elements for that scenario

would be the optimal thing to do beforehand. Hardening here occurs with the

same budget as the other methods. This method with perfect information is

similar to wait-and-see lower bounds in optimization under uncertainty.

To assess the objective with perfect information, we construct a simple

mixed integer program based on models presented earlier to identify that given

we know exactly what damage is about to occur, what elements should be

hardened. We formulate it as follows:
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N set of nodes, indexed by i
E set of power lines, indexed by e
O(i) set of lines with origin i
D(i) set of lines with destination i
o(e) origin node of line e
d(e) destination node of line e
Le, Le power lower and upper bounds for line e
Di power demand in megawatts at node i in the pre-disaster state
Pk maximum power generation in megawatts for the generator at node k
Be line susceptance in per unit siemens for power line e
Ie, Ii a scenario’s damage is represented here by Ie and Ii where 1 is working
Kn The maximum number of nodes that can be hardened
Kl The maximum number of edges that can be hardened
Xe power flow in megawatts on line e
Gk production from the generator at node k
Yn Load shed in megawatts from bus n
Vi indicator for node i being operational (1 is working)
We indicator for line e being operational (1 is working)
Ue indicator for line e being chosen to be hardened
Fi indicator for node i being chosen to be hardened
θi phase angle in radians for the power flow at node i

Minimize
∑
i∈N

Yi (4.1)
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subject to:

Xe = Be(θo(e) − θd(e)), ∀e ∈ E (4.2)

Gi −
∑

e∈O(i)

Xe +
∑

e∈D(i)

Xe = Di − Yi, ∀t ∈ T, ∀i ∈ N (4.3)

Gk ≤ PkVk, ∀k ∈ N (4.4)

0 ≤ Yi ≤ Di, ∀t ∈ T, ∀i ∈ N (4.5)

LeWe ≤ Xe ≤ LeWe, ∀e ∈ E (4.6)

LeVo(e) ≤ Xe ≤ LeVo(e), ∀e ∈ E (4.7)

LeVd(e) ≤ Xe ≤ LeVd(e), ∀e ∈ E (4.8)

Vi ≤ Fi + Ii, ∀i ∈ N (4.9)

We ≤ Ue + Ie, ∀e ∈ E (4.10)∑
i∈N

Fi ≤ Kn (4.11)∑
e∈E

Ue ≤ Kl (4.12)

−π/2 ≤ θi ≤ π/2, ∀i ∈ N (4.13)

St
e, F

t
i ,W

t
e , V

t
i ∈ {0, 1}. (4.14)

This is a variation on DC optimal power flow from Chapter 2 with load

shedding. The objective is to minimize unsatisfied demand by choosing what

elements to harden if we know the exact damage ahead of time. Constraints

(4.9-4.12) handle the choice of hardening if the damage to the power grid is

known ahead of time. While this is not a problem that will ever occur without

weather modeling getting dramatically better, it is useful for generating a
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lower bound on damage such that a resilience strategy can be compared to

both upper (do nothing) and lower (perfect information) bounds.

4.4 Results

We begin by showing the expected load shed across the full suite of 20

scenarios with equal weights on each scenario. We solve this by generating a

scenario and computing the set of elements to harden with perfect information.

Following this, the repair problem with the road first interaction framework is

solved four times corresponding to each method of looking at resilience. It is

worth noting that averaging “smooths out” the effect of individual scenarios,

so several specific scenarios are displayed to make clear what the difference in

a single scenario’s actualization can be. The averages are shown in Figure 4.3

for hardening of two nodes and four edges.

Figure 4.3: Average load demand shed over the set of 20 random scenarios on
IEEE 30 bus network
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Table 4.2: Expected unsatisfied demand by shift in each hardening method

Shift Number Interdiction Based Priority Heuristic Based No Resilience Perfect Information
1 168.3 171.5 187.9 107.4
2 74.7 92.1 100.9 39.9
3 41.1 43.3 53.1 15.3
4 14.8 18.3 28.3 4.54
5 4.3 4.1 9.5 0.24
6 1.3 1 2.0 0
7 0 0.12 0 0

total 304.7 330.4 381.8 167.3

When using the interacted models to look at resilience though the repair

curve, we find that over the average of the set of random scenarios modeled,

interdiction based resilience has lower total expected load shed as well as a

smaller expected initial drop. Figure 4.3 provides a visualization of this where

the interdiction based method is visibly better than both the heuristic method

and doing nothing. Both methods of making the power grid resilient are

substantially better than doing nothing as would be intuitively expected, but

the difference between use of the priority heuristic and solution to the full

interdiction method is much smaller. This is still in line with expectations

that more involved modeling should result in a better solution. Table 4.1

shows the direct magnitude where interdiction-based modeling results in the

satisfaction of an additional 25 MW-shifts of demand. This small difference is

due to interdiction models being best used for planned intelligent attacks and

being and imperfect tool for planning hardening for random process.

We then break out the following two specific scenarios to showcase the

effect that hardening an element matters most when it would be damaged by

the disaster. Figure 4.4 shows the impact of protection of node 4 and several
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important lines by the priority heuristic based method that were not protected

in the interdiction method. In this scenario, node 4 would have been damaged,

but wasn’t in the priority heuristic method because of hardening. This is not

evidence that the heuristic is better than the interdiction method, but it does

show the importance of hardening nodes that take damage. By contrast, Fig-

ure 4.5 shows a scenario where node 7 would have been damaged, but was not

damaged due to hardening in all hardening methods. The differences in repair

curves stem from the difference in hardened lines, showing that protection of

nodes is not the only factor that matters.

Figure 4.4: A specific scenario from resilience modeling that shows the effect
of protecting node 4 in the priority heuristic method

Out of concern that the earlier results could be anomalous due to the

budget constraint or grid topology based on choices of what elements to fortify,

we repeat the process under a different budget constraint. We elect this time to
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Figure 4.5: A specific scenario from resilience modeling that shows the effect
of protecting damaged lines in the interdiction based method

fortify only one node and three edges to show the impact of a reduced budget.

In the interdiction based method, we choose node 1 and edges (1,5), (22,23),

and (0,1) using the interdiction based hardening. The priority heuristic chooses

to harden node 4 and edges (22,23), (22,24), and (5,9). We again create 20

random damage scenarios with the same parameters as before.

Table 4.3: Expected unsatisfied demand by shift across resilience methods for
a reduced hardening budget

Shift Number Interdiction Based Priority Heuristic Based No Resilience Perfect Information
1 192.2 184.8 201.4 127.6
2 100.6 103.1 118.1 82.9
3 64.7 61.8 76.0 43.0
4 25.6 25.4 35.7 19.5
5 12.1 10.6 13.3 5.12
6 1.85 1.21 2.75 0.83
7 0.22 0.22 0.33 0

total 397.3 387.2 447.6 278.9
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Figure 4.6: Average repair curve for the tightened budget constraint

On the reduced budget, we see a similar conclusion to the higher budget

example of resilience modeling when analyzing both Figure 4.6 and Table

4.3. In this case, the priority heuristic generates a slightly better solution in

terms of both magnitude of initial drop and total lost load over the repair

horizon. The reason for this is that interdiction based modeling can capture

interactions between sets of elements. With only one node chosen, the impact

of considering interactions rather than just heuristically choosing high priority

elements is minimized.

The conclusion from these two example studies into resilience is that

the shape of the repair curves matter in terms of the end goal for resilient

operations of power grids. Changes in the curve shape leads to the difference

in outcomes for the methods of choosing hardened elements on a power grid

topology. Use of the repair curve captures both initial magnitude of damage

as well as time to recovery when solving the optimal repair problem. As we
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see from comparing the interdiction based hardening to the priority heuristic

solved hardening method, initial drop and time to resume nominal operations

are not the only things that matter. Since interdiction based hardening is

most frequently used in defense of a network against a directed attack and

not a random event like a hurricane, it may not be the best tool for the job

in planning resilience against a random event. We suspect this to be a place

where probability based resilience methods based on hardening/fortifying the

elements most likely to be damaged based on assessment of hurricane forecasts

or some form of two step stochastic optimization to construct a resilience plan

would be the best approach to take.
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Chapter 5

Conclusions

5.1 Conclusions

As discussed in the literature review, interaction between actors in a

repair context has not been thoroughly explored. We present a pair of models

and analyze several perturbations of standard IEEE test grids to demonstrate

the effectiveness of interacting the models in several different frameworks.

This yields a series of results that are closer to a theoretical lower bound as

compared to treating repairs as a pure scheduling problem on the power grid

and applying routing as an after-the-fact post processing step as is done in

previous modeling efforts that generate only a schedule and leave routing to

the agency conducting repairs.

These repair models are then extended into resilience models to show

that interdiction based modeling performs better than a heuristic method at

minimizing the unsatisfied power demand over a basket of random damage

instances. This suggests that further consideration of multiple network layers

can lead to better insights when considering resilience planning of multiple

network layers.
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5.2 Future Research Directions

The natural extensions for future research are to take the models out-

lined and fit them to the topology of a real place that is struck by hurricanes

such as Houston and then simulate a hurricane strike to generate the damage

scenario. This would require an involved effort to correctly model both flood-

ing/storm surge as well as wind damage, but is possible. Along those lines,

further study of how the road grid is modeled would provide a middle step

in moving towards use of a full real-world topology. Additionally along the

same line of research, treating the repair problem outlined above as a recourse

step in a two stage stochastic program based on a suite of hurricane scenarios

would be an interesting direction of study. The first step could take the form

of inventory location and quantity or problem about network hardening.

Another research direction that could be undertaken is to account for

imperfect information about the state of the power grid or imperfect infor-

mation about the status of the road network. Sharing of resources (e.g space

on a truck moving supplies in) as a form of optimization under uncertainty

which would also have implications for interesting interactions between deci-

sion makers in the repair effort. Along those lines, optimization of roads has

implications for other types of network infrastructure such as water supplies

and rail/mass transit networks.
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