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A B S T R A C T

We propose and demonstrate analytically, within the framework of a hydrodynamic model, a novel and simpler
variational approach to study the asymptotic behavior of a continuous wave (cw) laser beam propagating in
a nonlinear nonlocal medium.
The starting point in the analysis is the light propagation in a weakly
nonlocal nonlinear defocusing medium described by normalized NLSE

𝑖 𝜓𝑧 +
1
2
𝜓𝑥,𝑥 − 𝜑𝜓 = 0 , (1)

where the dimensionless 𝑧 and 𝑥 are the spatial evolutionary variable
and the transverse coordinates, respectively. Also, 𝜓 is the complex
electric field envelop, 𝜑 is a real function that denotes the nonlinear
nonlocal change of the refractive index depending on the intensity
𝐼 = |𝜓|2. Finally 0 < 𝜖 ≪ 1 is a small quantity that deal with the
weakly diffracting regime (see [1] for more details). Other examples of
light propagating in different media are [2–9].

The above expression is coupled to a diffusion-like equation for the
response of the nonlocal medium

− 𝜎2 𝜑𝑥,𝑥 + 𝜑 = |𝜓|2, (2)

where the parameter 𝜎 is a spatial scale (setting the diffusion length)
that measures the degree of nonlocality.

We consider small amplitude slowly varying modulations of the
steady state given by a continuous wave 𝜓 = 𝜓0 exp(−𝑖 |𝜓0|

2 𝑧), where
𝜓0 is an arbitrary complex constant, |𝜓0|

2 = 1 and the constant 𝜑 =
|𝜓0|

2.
Applying the Mandelung transformation 𝜓(𝑧, 𝑥) = 𝜌1∕2(𝑧, 𝑥) exp[ 𝑖

ℎ(𝑧, 𝑥) ] and retaining leading orders in 𝜖, it is possible to obtain the
following equations

𝜌𝑧 +
(

𝜌 ℎ𝑥
)

𝑥 = 0, (3a)

ℎ𝑧 +
1
2
ℎ2𝑥 +

1
2
𝜌−1∕2 𝜌1∕2𝑥,𝑥 + 𝜑 = 0, (3b)
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− 𝜎2 𝜑𝑥,𝑥 + 𝜑 = 𝜌, (3c)

The above system of equations can be derived from the appropriate
Lagrangian density

𝐿 = 𝜌

[

ℎ2𝑥
2

+ ℎ𝑧 + 𝜑 − 1

]

+ 1
2
(𝜌1∕2𝑥 )2 − 1

2

[

𝜑2 +
(

𝜎 𝜑𝑥
)2 − 1

]

. (4)

Euler–Lagrange variation with respect to ℎ yields (3a) whereas the
𝜌 and 𝜑 variations yield (3b) and (3c), respectively.

To discuss the wave envelop dynamics in this long-wavelength limit
due to weak nonlinear and weak dispersive effects, we introduce the
stretched variables

𝜉 = 𝜖1∕2 (𝑥 − 𝑧) and 𝜏 = 𝜖3∕2 𝑧,

where 𝜉 allows us to study the system on different, slowly, moving
frames and by 𝜏, longer propagation distance 𝑧. Also, 𝜖 is a mea-
sure of the deviation from the background 𝜓0. Using the perturbation
expansions

𝜌(𝜉, 𝜏) = 𝜌0 +
∞
∑

𝑗=1
𝜖𝑗 𝜌(𝑗)(𝜉, 𝜏) , (5a)

𝜑(𝜉, 𝜏) = 𝜑0 +
∞
∑

𝑗=1
𝜖𝑗 𝜑(𝑗)(𝜉, 𝜏) , (5b)

ℎ(𝜉, 𝜏) =
∞
∑

𝑗=0
𝜖𝑗+1∕2 ℎ(𝑗+1)(𝜉, 𝜏) . (5c)
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where 𝜌0 = 1, 𝜑0 = |𝜓0|
2.

Therefore we can expand the Lagrangian density for small ampli-
udes following the method in [10,11].

= 𝜖 𝐿(1) + 𝜖2 𝐿(2) + 𝜖3 𝐿(3) + (𝜖4). (6)

For 𝜖:

𝐿(1) = −ℎ(1)𝜉 ,

from where no relevant information is obtained.
For 𝜖2 ∶

𝐿(2) = 1
2
ℎ(1)

2

𝜉 − 2𝜌(1)ℎ(1)𝜉 + 𝜌(1)𝜑(1) + ℎ(1)𝜏 − ℎ(2)𝜉 − 1
2
𝜑(1)2 (7)

from where we have obtained the following expression as Euler–
Lagrange equations

𝛿𝜌(1) ∶ ℎ(1)𝜉 = 𝜑(1), (8a)

𝜑(1) ∶ 𝜌(1) = 𝜑(1), (8b)

ℎ(1) ∶ 𝜌(1) = ℎ(1)𝜉 , (8c)

nd the relation
(2)
𝜉 = −𝜌(1) ℎ(1)𝜉 . (9)

The 𝜖3 final Lagrangian is obtained with help of (8) and (9) as

(3) = 1
2
ℎ(1)

3

𝜉 − 𝜌(2)ℎ(1)𝜉 + 2ℎ(1)𝜏 ℎ
(1)
𝜉 +

𝛾
8
ℎ(1)

2

𝜉𝜉 + ℎ(2)𝜏 (10)

providing the condition

ℎ(2)𝜏 = −𝜌(2) ℎ(1)𝜉 . (11)

where 𝛾 =
(

1 − 4 𝜎2
)

is the optical analogue to surface tension [1].
Second-approximation terms ℎ(2) and 𝜌(2) could be obtained and stud-
ed [12] using the expressions (9)–(11).

Assuming 𝑢 = ℎ𝑥, the preceding equation yields, as its Euler–
agrange equation, a KdV type [1,13]

𝜏 +
3
2
𝑢 𝑢𝜉 −

𝛾
8
𝑢𝜉𝜉𝜉 = 0. (12)

The solution of (12) is given by

(𝜉, 𝜏) ≡ 𝑢 = 𝑁 𝑠𝑒𝑐ℎ2
[√

𝑁
2 𝛾

(

𝜉 − 𝑁
4
𝜏
)

]

. (13)

here 𝑁 is the soliton amplitude. In original coordinates

(𝑧, 𝑥) = 𝑁 𝑠𝑒𝑐ℎ2
{

1
4

√

𝜖 𝑁
𝛾

[

𝑥 −
(

1 + 𝜖𝑁
8

)

𝑧
]

}

, (14)

nd ℎ(𝑧, 𝑥) can be obtained readily from (8c),

= −
4𝛾
𝜖

√

𝜖𝑁
𝛾

tanh
{

1
4

√

𝜖𝑁
𝛾

[

𝑥 −
(

1 + 𝜖𝑁
8

)

𝑧
]

}

. (15)

In the original (dimensionless) 𝑥 and 𝑧, one may write down an ap-
proximate [up to order (𝜖)] solution for the macroscopic wavefunction
𝜓

𝜓 = 𝜓0
√

𝜌0 + 𝜖 𝜌1 exp
[

−𝑖 |𝜓0|
2𝑧 + 𝑖 ℎ(𝑧, 𝑥)

]

, (16)
2

𝜑 = |𝜓0|
2 + 𝜖 𝜑1 , (17)

where 𝜑1 is written as (8b) and (14).

Conclusions

We have explored theoretically light propagation in a nonlocal
nonlinear defocusing media through a proposed alternative simpler
method, the asymptotic variational multiscale approach. The obtained
KdV equation is similar to the one derived using reductive multi-
scale technique. Our results advance the understanding of nonlinear
phenomena.
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