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Abstract: This paper introduces a new solution for the speed and current sensor fault-tolerant
direct field-oriented control of induction motor drives. Two self-adjusting observers derived from
a modified current-based model reference adaptive system (CB-MRAS) are presented. Finally, the
recursive least squares method was used to estimate the parameters of the used observers. The
method, in the proposed solution, provides a very fast and accurate finding of the observer parameters
while maintaining relative simplicity and ease of implementation. The presented algorithm eliminates
the CB-MRAS observer dependence on the induction motor parameters and also compensates for
the inaccuracies in the evaluation of the stator voltage vector. The proposed fault-tolerant control
offers the drive operation while either a speed sensor or one/two current sensors fault occurs. The
drive still works with the direct field-oriented control even when no current sensors are healthy.
The proposed scheme was simulated in the MATLAB/Simulink software environment. Then the
algorithm was implemented in a floating-point digital signal controller (DSC) TMS320F28335 and
tested on an induction motor drive prototype of rated power of 2.2 kW to validate the proposed
schemes.

Keywords: current and speed estimation; fault-tolerant control; induction motor drive; model
reference adaptive system; vector control

1. Introduction

Induction motors are still among the most widely used machines for electromechanical
energy conversion. Field oriented control of induction motors (IM) enables applications of
this motor in high performance variable-speed drives and has become an industry standard.
However, the mentioned control technique requires healthy drive components including
current, voltage and speed sensors for correct operation. This is the reason why fault
detection and fault-tolerant control belongs to the up-to-date research trends in the field
of electrical drives, especially for safety applications, such as traction drives, automotive,
electric aircrafts, etc. [1–3]. The source of the fault can be an electric motor [4–7], a power
electronics converter [8,9], a microcomputer control system or sensors. Main sources of
failures are power electronics converters and sensors [2].

The sensor fault-tolerant control includes two approaches:

• When a sensor fault is detected, the system switches to an alternate form of the
controller (typically from a closed loop control system to an open loop control system);

• When a sensor failure is detected, the system still works in the closed control loop
using estimated quantities (instead of the measured ones) provided by estimators.

Sensor fault detection methods can be divided into model or signal-based tech-
niques [10]. The most common approach in current sensor fault detection is based on
Kirchhoff’s first law [11]. If a sensor fails, two other remaining current sensors are used
for compensation, but if two of three phase current sensors fail, Kirchhoff’s law is not
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applicable. In addition, the basic problem of this simple approach is that only two current
sensors are often used for field-oriented control of induction motor drives. In the literature,
model-based approaches are used for sensor fault detection, isolation and compensation,
e.g., in [11,12]. The techniques are based on comparison between the measured quantities
and the estimated ones. In [13], an adaptive observer based on a motor model is presented
for phase current estimation, which is robust to changes in the stator and rotor resistance.
The extended Kalman filter is also one of the popular techniques for estimating the rotor
speed or stator currents of induction motor drives [14,15], but it is generally not easy for
practical implementation. A parity-space-scheme-based sensor fault detection algorithm is
proposed in [16]. As mentioned in the paper, the algorithm is not sensitive to parameter
variations because no model knowledge is required, but compensation of sensor faults is
not possible because no estimator is used. In [17], a method based on an adaptive observer
with rotor resistance estimation is presented for the detection of current, speed and voltage
sensor faults. In [3] and [18], a modification of an X-based model reference adaptive system
(MRAS) based on the inner product of d- and q-axes currents and voltages is used to
estimate the rotor speed of an induction motor (IM). In [3], an interesting concept of vector
rotations to detect, isolate and compensate a faulty current sensor is introduced, but the
reference stator current vector components in the [d, q] rotating reference frame are used
instead of estimated quantities. In [19,20], a proposed scheme integrates three independent
observers for the online monitoring of the state of induction motor current sensors. The
observers can detect the faults and switch a drive to the tolerant field-oriented control
mode even with only one healthy phase current sensor available (as mentioned in [19]). The
schemes for the detection, isolation and compensation of speed and current sensor faults
in [2] do not use a motor model or motor parameters. A detailed and interesting analysis
of speed and current controllers’ responses during sensor faults are presented as well.
In [15,21,22], decision algorithms are used to change the control strategies with respect
to the current and speed measurement faults, but all these approaches do not work with
field orientation when a fault occurs, so this is the reason why they provide low dynamic
performance of the drive. In [23], the direct torque control, indirect field-oriented control
and volts-per-hertz control are used in the case of a sensor fault or recovery. In the paper,
speed, current and voltage sensors are considered. In [1], a current sensor fault-tolerant
control method is presented for the direct torque control of induction motor drives. In this
case, a third-difference of the stator currents and a current estimator are used for the de-
tection of the current sensor fault. In the literature, artificial-intelligence-based techniques
are also used in the field of fault identification [24]. In [25], a presented approach based on
polynomial chaos theory is used for validation and monitoring of sensors behavior. In this
case, the fuzzy inference is implemented to combine all available sensors information, but
the implementation of such algorithms is not easy.

In this paper, a new solution for the speed and current fault-tolerant control of induc-
tion motor drives equipped with a rotor speed encoder and two-phase current sensors is
presented. The main contributions of the proposed approach are the following:

• The method is based on the comparison between the measured and estimated speed
and stator currents, respectively. For the speed and current estimation, two observers
derived from the current-based MRAS (CB-MRAS [26]) observer are proposed for
both the detection of a faulty sensor and also compensation using the estimated rotor
speed or stator currents;

• The algorithm is much simpler in comparison with state observers (Luenberger ob-
server etc.) or the Kalman filter, but it provides an accurate estimation of the rotor
speed or stator current vector (see chapter 3 and 4 for the simulation and experimental
results);

• The disadvantage of most MRAS-type observers is the influence of the motor parame-
ters (mainly the stator and rotor resistance) on the quality of the estimated quantities,
especially at low speeds [26–33]. The proposed approach is independent of the motor
parameters using a recursive least square method (RLS) to estimate the parameters of
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the speed and current observers. Moreover, the RLS method is easy for implementa-
tion in digital signal controllers, and it enables us to compensate for the inaccuracies
in the evaluation of the stator voltage vector so that the reference stator voltage vector
(the input to the PWM, see Figure 1) can be directly used as the input to the observers
and a nonlinear voltage-source inverter model (dead times compensation, voltage
drops etc.) is not needed in the control scheme;

• The proposed fault-tolerant control offers the drive operation while a speed sensor or
one/two current sensors fault occurs;

• The approach enables the drive operation in the direct field-oriented control (DFOC)
even when all current sensors are faulty. In the literature concerning the fault-tolerant
control, the indirect field-oriented control (IFOC) is very often used;

• The presented solution based on the RLS can be used for other new MRAS-type con-
cepts as the CB-MRAS with an auxiliary variable [31] to avoid the motor parameters
influence.
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This paper is organized as follows. Section 2 deals with the proposed speed and
current sensor fault-tolerant control. The simulation and experimental results are shown in
Sections 3 and 4, respectively. Finally, conclusions are presented in Section 5.

2. Fault-Tolerant Control of Induction Motor Drive

The proposed fault-tolerant control of induction motor drive considering the operation
under either the speed or current sensor fault is shown in Figure 1. The system uses two
current sensors and one rotor speed sensor. The current sensors can be placed in any two
stator phases of a three-phase induction motor. The control is based on the conventional
DFOC in Cartesian coordinates. For the DFOC induction motor drives, knowledge of the
rotor magnetic flux vector is required.

When all sensors are healthy this vector is determined using the current model of the
rotor flux defined in Equation (1) [34]:

ψ̂Rαβ =
∫ [(

jωR −
1

TR

)
ψ̂Rαβ +

1
TR

LmiSαβ

]
dt (1)

where ψ̂Rαβ is the rotor flux vector and iSαβ is the stator current vector (measured) in
the stationary reference frame [α, β], ωR is the electrical rotor speed (measured), Lm is the



Energies 2021, 14, 2564 4 of 16

magnetizing inductance and TR = LR/RR is the rotor time constant, LR and RR are the rotor
inductance and resistance.

Two self-tuning observers, described in the following subsections, are the most im-
portant part of the control structure in Figure 1. The observers secure necessary speed
or current feedback for the appropriate controllers under speed or current sensor failure,
respectively.

2.1. Control under Speed Sensor Failure

To ensure the correct operation of the DFOC, it is necessary to detect the error signal
from the rotor speed sensor and replace it with the output signal from the rotor speed
observer—this means switching to a so-called speed sensorless control mode. Various
application-dependent strategies can be used to detect the speed sensor failure. In this
paper, the measured speed ωR is compared to the speed estimated by the CB-MRAS
observer ω̂R and the speed sensor failure is detected by Equation (2):

If |ωR − ω̂R| ≥ εS then ωRcorr = ω̂R; ψ̂R = ψ̂R1αβ

else ωRcorr = ωR; ψ̂R = ψ̂Rαβ,
(2)

where ωRcorr is the corrected speed (the output of the fault-tolerant algorithm—see Figure 1),
ψ̂R is the rotor magnetic flux vector used in the DFOC (see Figure 1). The εS is a threshold
value, which setting mainly depends on maximum noise and accuracy in the speed mea-
surement and the estimated speed quality. In the literature, a standard used method for
the threshold value evaluation is not available, and this is the reason why the threshold
is mostly set according to the experience [3]. After the experimental testing, we found an
adaptive speed threshold defined by:

If |ωRref| < 150 rpm then εS = 0.1|ωRref|
else εS = 0.05|ωRref|,

(3)

where ωRref is the demanded rotor speed. The rotor speed ω̂R is estimated by the CB-MRAS
observer based on [26]. As shown in Figure 2, the CB-MRAS uses two adaptive models—a
current model of the rotor flux and a current estimator.
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If the speed sensor fault occurs, the rotor flux vector is evaluated using the adaptive
current model of the rotor flux described in Equation (4):

ψ̂R1αβ =
∫ [(

jω̂R −
1

TR

)
ψ̂R1αβ +

1
TR

LmiSαβ

]
dt. (4)

The stator current estimator is defined by Equation (5):

îS1αβ + Ti(CB)
d îS1αβ

dt
= K1(CB)uSαβref + K2(CB)ψ̂R1αβ − jω̂RK3(CB)ψ̂R1αβ, (5)

where uSαβref is the reference stator voltage vector in the stationary reference frame [α, β];
K1(CB), K2(CB), K3(CB), Ti(CB) are the CB-MRAS parameters given by the following forms:

K1(CB) =

LR
Lm(

LRRS
Lm

+ Lm
TR

) ; K2(CB) =
Lm

TRLRRS + L2
m

(6)

K3(CB) =
1(

LRRS
Lm

+ Lm
TR

) ; Ti(CB) =

LSLR−L2
m

Lm(
LRRS

Lm
+ Lm

TR

) (7)

where LS and RS are the stator inductance and resistance. It follows from Equations (6) and
(7) that the estimated stator current vector îS1αβ is affected by the IM parameters.

The adaptation algorithm is based on the comparison of the measured and estimated
stator current vector using the Lyapunov’s stability criterion [26]:

e = eiSαψ̂R1β − eiSβψ̂R1α =
(
iSα − îS1α

)
ψ̂R1β −

(
iSβ − îS1β

)
ψ̂R1α, (8)

ω̂R = KPe + KI

∫
edt. (9)

The speed tuning signal e is processed by a PI controller. The controller output is the
estimated rotor speed ω̂R. The CB-MRAS enables one to avoid the well-known problems
concerning the pure integration in the case of the RF-MRAS [34].

2.2. Control under Current Sensor Failure

The proper stator current feedback is critical for reliable control operation. The stator
current failure is detected by Equations (10)–(12):

If
∣∣iSα − îSα

∣∣ < εC and
∣∣iSβ − îSβ

∣∣ < εC then
iSαβcorr = iSαβ; ψ̂R = ψ̂Rαβ,

(10)

If
∣∣iSα − îSα

∣∣ < εC and
∣∣iSβ − îSβ

∣∣ ≥ εC then

iSαcorr = iSα; iSβcorr = îSβ; ψ̂R = ψ̂R2αβ,
(11)

If
∣∣iSα − îSα

∣∣ ≥ εC then

(iSβ is also not correct because of Clarke transformation)

iSαβcorr = îSαβ; ψ̂R = ψ̂R2αβ,

(12)

where îSαβ = îSα + jîSβ is the estimated stator current vector and iSαβcorr is the corrected
stator current vector (the output of the fault-tolerant algorithm—see Figure 1). The εC is a
threshold value, which setting depends on many factors, e.g., maximum noise and accuracy
in the current measurement, dc offset of a sensor, machine load, the estimated current
quality, etc. In the literature, a standard used method for the threshold value evaluation
is not available, and this is the reason why the threshold is mostly set according to the
experience [3]. To take into account a machine load and after the experimental testing,
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it was chosen an adaptive current threshold equal to 15% of the magnitude of the stator
current vector evaluated from the reference values of d- and q-axes currents:

εC = 0.15
√

i2Sdref + i2Sqref. (13)

The flux producing stator current in Equation (13) is very important for the correct
current sensor fault detection when the drive is not subjected to load (iSq is close to zero).

The stator current vector estimation is based on a modified CB-MRAS observer (see
Figure 3). The fundamental adaptive models defined in Equations (4) and (5) are reformu-
lated to the form:

ψ̂R2αβ =
∫ [(

jωR −
1

TR

)
ψ̂R2αβ +

1
TR

Lm îSαβ

]
dt, (14)

îSαβ + Ti(CB)
dîSαβ

dt
= K1(CB)uSαβref + K2(CB)ψ̂R2αβ − jωRK3(CB)ψ̂R2αβ. (15)
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The current model defined by Equation (14) provides the estimation of the rotor flux
vector components in the stationary reference frame [α, β]. The current estimator defined
by Equation (15) calculates the components of the stator current vector, also in the [α, β]
frame. It is evident from Figure 3 that the DFOC can operate without any stator current
measurement, only the rotor speed information from the sensor is required (see Figure 1).

2.3. Self-Tuning of Rotor Speed and Stator Current Observers

Fundamental Equations (5) and (15) of the applied rotor speed and stator current
observers depend on the following parameters K1(CB), K2(CB), K3(CB) and Ti(CB), which
are influenced by the induction motor parameters and their changes. Bad settings and
variations of these parameters strongly deteriorate the accuracy of the estimation of the
stator current and the rotor speed. Another factor that influences the accuracy of the
estimation is the correct evaluation of the components of the stator voltage vector. The
precise reconstruction of the stator voltage vector is difficult; therefore, the proposed
self-tuning algorithm not only adapts the parameters K1(CB), K2(CB), K3(CB) and Ti(CB) but
also compensates uncertainty in the stator voltage reconstruction; therefore, the nonlinear
voltage-source inverter model (dead times compensation, etc.) is not needed.

The proposed self-tuning algorithm uses the recursive least square method (RLS). The
RLS is applied to arbitrary component (α or β) of the stator current estimator defined by
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Equations (5) and (15) respectively, where the measured both stator current components
and rotor speed are used:

iSα = K1(CB)uSαref + K2(CB)ψ̂Rα + ωRK3(CB)ψ̂Rβ − Ti(CB)
diSα
dt

. (16)

For the implementation of the RLS, the following substitution is used:

y = p1u1 + p2u2 + p3u3 + p4u4. (17)

The actual output of the system y is, in this case, the α component of the stator current
vector iSα. The components of the input vector u and vector of the search parameters p are
defined as:

u1 = uSαref , u2 = ψ̂Rα , u3 = ωRψ̂Rβ , u4 = −
diSα
dt

, (18)

p1 = K1(CB) , p2 = K2(CB) , p3 = K3(CB) , p4 = Ti(CB). (19)

The new estimate of the parameters vector p(k + 1) is given by the following
Equations (20)–(23) [35]:

e(k + 1) = y(k + 1)− uT(k + 1)p(k), (20)

q(k + 1) =
P(k)u(k + 1)

λ + uT(k + 1)P(k)u(k + 1)
, (21)

P(k + 1) =
1
λ

[
P(k)− q(k + 1)uT(k + 1)P(k)

]
, (22)

p(k + 1) = p(k) + q(k + 1)e(k + 1), (23)

where λ is the forgetting factor (the best results were achieved with λ = 0.999), the initial
settings of the parameters vector is p(0) = [0, 0, 0, 0]T and the following covariance matrix:

P(0) =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

. (24)

The RLS algorithm is simple for implementation and not computationally intensive
(its calculation takes 3.4 µs on target TMS320F28335 using the C programming language).
The most difficult implementation problem has been the derivative of the stator current
occurring in Equation (16). Finally, the integration of Equation (16) and its use for the RLS
algorithm proved to be the best solution of the problem:∫

iSαdt = K1(CB)

∫
uSαrefdt + K2(CB)

∫
ψ̂Rαdt + K3(CB)

∫
ωRψ̂Rβdt− Ti(CB)iSα (25)

u1 =
∫

uSαrefdt , u2 =
∫
ψ̂Rαdt , u3 =

∫
ωRψ̂Rβdt , u4 = −iSα. (26)

When the drive operates in normal mode, the optimal observers parameters are set
for the accurate sensor fault detection and then compensation using the RLS method. If the
speed or current sensor fault occurs the RLS algorithm is deactivated and the drive uses
the speed or current observer. In general, the FOC performance with sensors is always
better than any sensorless method, which often has operational difficulties in a low-speed
range (10% of the rated speed and less) due to the sensitivity of machine parameters, the
nonlinearity of inverters, etc. IMDs should not generally operate with the faulty sensor for
a long time and the broken sensor should be repaired or replaced as soon as possible to
recover the normal operation.
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3. Simulation Results

The correct function of the proposed control has been verified by the simulation of
the induction motor drive of the rated power of 2.2 kW in the Matlab-Simulink. The
parameters of the motor are given in Table 1. A voltage-source inverter works with these
parameters—the dc-link voltage is 300 V; the switching frequency is 20 kHz.

Table 1. Induction motor parameters.

Parameter Value

Rated power 2.2 kW
Rated speed 1425 rpm

Rated voltage 230 V/400 V
Rated current 8.8 A/4.8 A
Rated torque 14.8 Nm

Number of pole-pairs 2
Stator resistance 2.78 Ω
Rotor resistance 2.84 Ω

Stator inductance 319 mH
Rotor inductance 318 mH

Magnetizing inductance 309 mH
Moment of inertia 0.0058 kgm2

First, the drive was operating with all healthy sensors and the self-tuning algorithm
was used to find the correct parameters of the observers. The K1(CB), K2(CB), K3(CB) and
Ti(CB) parameters are found very fast and accurately in less than 0.8 s. The parameter
identification test shown in Figure 4 consisted of the drive start-up, the motor excitation
and acceleration from 0 to 100 rpm. The found parameters of the observers are presented
in Table 2.

The simulation results for the speed sensor fault at 1 s are shown in Figure 5a. At the
beginning of the test, all sensors are healthy. The motor is excited at 0 s and acceleration
from 0 to 100 rpm is commanded at 0.25 s. The drive works with the defined reference
speed of 100 rpm according to Figure 5a. By comparing the actual and estimated rotor
speed, the fault-tolerant algorithm (FTA) detects the fault in the rotor speed sensing (see
Equation (2) and Section 2.1), and the DFOC of the induction motor uses the estimated
rotor speed instead of the measured rotor speed. The output from the FTA block (see
Figures 1 and 2) is the corrected rotor speed, which is equal to the measured speed in the
case of healthy speed sensor and equal to the estimated speed when a speed sensor fault
occurs. It can be seen from Figure 5a that the electric drive is able to normally operate even
after the rotor speed sensor has failed.

The simulation results for the a-phase current sensor fault at 1 s are shown in Figure 5b.
At the beginning of the test, all sensors are healthy. The motor is excited at 0 s, and
acceleration from 0 to 100 rpm is commanded at 0.25 s. The drive works with the defined
reference speed of 100 rpm according to Figure 5b. After a current sensor failure in the
a-phase, both current vector components expressed in the stator reference frame are not
correct because of the Clarke transformation. By comparing the actual and estimated stator
currents, the FTA detects the failure in the stator current sensing (see Equations (10)–(12)
and Section 2.2) and the DFOC algorithm uses the estimated stator current vector obtained
from the stator current observer. The output of the FTA block is the corrected stator current
vector iSαβcorr and the rotor magnetic flux vector ψ̂R used in the DFOC. It can be seen from
Figure 5b that the electric drive is able to properly operate even after the stator currents
measurement has failed.
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Table 2. Comparison of estimated parameters.

Parameter
Evaluated from

IM Nominal
Parameters

Estimated Using
RLS—Simulation

Estimated Using
RLS—Experiment

K1(CB) 0.1831 0.1835 0.1598
K2(CB) 15.889 1.592 0.682
K3(CB) 0.1779 0.1783 0.1972
Ti(CB) 0.003432 0.003437 0.003448
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Figure 5. Simulation results: Simulated scenario—motor excitation, acceleration from 0 to 100 rpm, speed reversal to
−100 rpm, step changes of load torque from 0 to −5 Nm at 2.5 s and from −5 to 0 Nm at 3.3 s; (a) rotor speed sensor fails at
1 s, drive passes to speed sensorless control using estimated rotor speed.; (b) a-phase stator current sensor fails at 1 s, drive
passes to current sensorless control using estimated stator currents.

4. Experimental Results

The proposed fault-tolerant control including the rotor speed observer, the stator
current observer and the self-tuning algorithm is experimentally validated on a laboratory
prototype of the induction motor drive with the DFOC. The prototype consists of the
induction motor (its parameters are defined in Table 1) fed by an indirect frequency
converter with a voltage-source inverter, a second induction motor (for loading) and a
control system based on the Texas Instruments Digital Signal Controller TMS320F28335. A
sampling frequency of 20 kHz is set for the real time processing of the algorithms. The rotor
speed is measured by an incremental encoder with resolution of 2048 pulses per revolution.
The dc-link voltage is 300 V for all experimental results.

First, the drive was operating with all healthy sensors (a speed sensor and two current
sensors), and the self-tuning algorithm was used to find the correct parameters of the
observers. The parameters are found quite fast, after 10 s (right after the motor excitation,
acceleration from 0 to 100 rpm and speed reversal to −100 rpm), see Figure 6 and Table 2
for the experimental results of the found observers parameters. It is obvious from Table 2
that the identified parameters of the observers by simulation are almost identical to those
of the values determined by the calculation from the nominal motor parameters.
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The experimentally obtained parameters show slight differences, the largest difference
occuring with the K2(CB). The reason for these differences is that the used nominal motor
parameters may not exactly match the actual values, and the self-tuning algorithm also
compensates for inaccuracies when evaluating the stator voltage vector (for more details,
see Section 2.3).

The experimental results for the speed sensor fault are shown in Figures 7–9. At
the beginning of the test, all the sensors are healthy. Figure 7 shows a situation where
the rotor speed sensor of the motor is intentionally disabled and subsequently put into
operation again. While the rotor speed sensor is malfunctioning, the FTA detects the fault
in the rotor speed sensing (see Equation (2) and Section 2.1) and the control passes to the
speed sensorless control mode of IM using the rotor speed observer (see Figures 8 and 9).
It is evident from the courses that the transitions between these control modes, during
the operation of the drive, run smoothly without any visible disturbances and the drive
normally operates even after the rotor speed sensor has failed. In Figures 8 and 9, the
measured rotor speed is shown for comparison purposes only, and it is not used in the
control structure during the speed sensorless control mode. The measured and estimated
rotor speeds are very similar; therefore, it is necessary to zoom Figures 8 and 9 to see
both speeds.
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The experimental results for both stator current sensor faults (in a-phase and b-phase)
are shown in Figures 10–13. At the beginning of the test, all the sensors are healthy.
Figure 10 shows a situation where both stator current sensors are intentionally disabled.
While all the current sensors are malfunctioning, the FTA detects the fault in the stator cur-
rent sensing (see Equations (10)–(12) and Section 2.2) and the control passes to the current
sensorless control mode of IM using the stator current observer (see Figures 11–13). It is
evident from the experiments that the transitions between the sensor and sensorless control
modes, during the operation of the drive, run smoothly without any visible disturbances,
and the drive normally operates even after all the stator current sensors have failed. In
Figures 11 and 12, the measured stator currents are shown for comparison purposes only,
and they are not used in the control structure during the current sensorless DFOC control.



Energies 2021, 14, 2564 13 of 16
Energies 2021, 14, 2564 13 of 16 
 

 

 
Figure 10. Experimental result: all current sensors fail—steady state at 100 rpm, no load. Measured 
rotor speed (yellow), measured (blue) and estimated (green) a-phase stator current. Scales: 
speeds—200 rpm/div; currents—1 A/div; time—100 ms/div. 

 
Figure 11. Experimental result: current sensorless control using estimated stator currents when all 
current sensors fail—speed reversal to ±100 rpm, no load. Measured rotor speed (yellow), 
measured (blue) and estimated (green) a-phase stator current. Scales: speeds—200 rpm/div; 
currents—2 A/div; time—500 ms/div. 

  
(a) (b) 

Figure 12. Experimental results: current sensorless control using estimated stator currents when all current sensors fail. 
Measured (yellow) and estimated (red) α-component of stator current vector (a-phase stator current), measured (blue) and 
estimated (green) β-component of stator current vector; (a) speed reversal to 10 rpm, (b) step changes of load torque from 
0 to 2 Nm at 10 rpm. Scales: currents—2 A/div; time—1 s/div (a), 2 s/div (b). 
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Figure 13. Experimental result: current sensorless control using estimated stator currents when all 
current sensors fail. Measured rotor speed (yellow), torque (blue) and flux (green) producing 
stator currents—step changes of load torque from 0 to 3 Nm at 50 rpm. Scales: speeds—100 
rpm/div; currents—1 A/V; time—1 s/div. 

5. Conclusions 
This paper presents a new method of the speed and current sensor fault-tolerant 

control for induction motor drives. This approach enables the detection, isolation and 
compensation of either the speed or all current sensors faults using the estimated rotor 
speed and stator currents. For these purposes, self-tuning stator current and rotor speed 
observers have been proposed. The self-tuning algorithm is based on the recursive least 
squares method. The self-tuning strategy eliminates the dependence of the observers on 
the motor parameters and is also able to compensate for inaccuracies when evaluating the 
components of the stator voltage vector, which can significantly affect the precision of the 
estimation. The presented simulation and experimental results show very accurate rotor 
speed and stator current estimations in steady states and transient states as well, including 
a very low speed and load operation. From the results, it is obvious that this sensor fault-
tolerant DFOC drive can operate well even when no healthy phase current sensor is 
available. The proposed method makes the induction motor drive more robust and 
reliable and it is suitable for safety crucial applications, e.g., in the field of traction vehicles 
and automotive drivetrains. 
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Figure 13. Experimental result: current sensorless control using estimated stator currents when all
current sensors fail. Measured rotor speed (yellow), torque (blue) and flux (green) producing stator
currents—step changes of load torque from 0 to 3 Nm at 50 rpm. Scales: speeds—100 rpm/div;
currents—1 A/V; time—1 s/div.

5. Conclusions

This paper presents a new method of the speed and current sensor fault-tolerant
control for induction motor drives. This approach enables the detection, isolation and
compensation of either the speed or all current sensors faults using the estimated rotor
speed and stator currents. For these purposes, self-tuning stator current and rotor speed
observers have been proposed. The self-tuning algorithm is based on the recursive least
squares method. The self-tuning strategy eliminates the dependence of the observers on
the motor parameters and is also able to compensate for inaccuracies when evaluating
the components of the stator voltage vector, which can significantly affect the precision
of the estimation. The presented simulation and experimental results show very accurate
rotor speed and stator current estimations in steady states and transient states as well,
including a very low speed and load operation. From the results, it is obvious that this
sensor fault-tolerant DFOC drive can operate well even when no healthy phase current
sensor is available. The proposed method makes the induction motor drive more robust
and reliable and it is suitable for safety crucial applications, e.g., in the field of traction
vehicles and automotive drivetrains.
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