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a b s t r a c t

Electrical distribution networks are facing an energy transition which entails an increase of decen-
tralised renewable energy sources and electric vehicles. The resulting temporal and spatial uncertainty
in the generation/load patterns challenges the operations of an infrastructure not designed for such
a transition. In this situation, Optimal Power Flow methods can play a key role in identifying system
weak points and supporting efficient management of the electrical networks, including the distribution
level. In this work, to support distribution system operators’ decision-making process, we aim at
attaining a quasi-optimal solution in the shortest time possible in an electrical network experiencing a
large growth of distributed energy sources. We propose an optimisation method based on a modified
version of a genetic algorithm and the Python pandapower package. The method is tested on a
model of a real urban meshed network of a large Czech city. The optimisation method minimises
the total operating costs of the distribution network by controlling selected network components
and parameters, namely the transformer tap changers and the active power demand at consumption
nodes. The results of our method are compared with the exact solution showing that a close-to-optimal
solution of the observed problem can be reached in a relatively short time.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Conceived several decades ago to supply electrical power gen-
rated by few large power plants to end consumers, power sys-
ems (mainly transmission and distribution systems) have re-
ently undergone radical changes. Firstly, the whole sector was
ade more efficient. The electricity business deregulation and
nbundling policies put in place in the 1990s established more
ompetitive markets (in particular at the generation and retail
evel). Later, increasing concerns over climate change pushed for
n enormous increase of electrical power production from renew-
ble sources (mainly wind and photovoltaic modules). As a result,
he current production of electrical power has become more de-
entralised, with a general tendency to generate electrical power
loser to where it is consumed [1]. Additionally, power consumers
ave started to produce and consume their own electrical power,
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metamorphosing themselves into prosumers. Despite of the mul-
titude of benefits these changes have had, and continue to have
on air quality and on the climate as a whole, the operation of
electrical distribution networks has become considerably more
challenging. At any given time in an electrical power system, the
balance between the power supply and power demand must be
preserved. The stability of other electrical parameters (e.g. voltage
and frequency) must be ensured as well. Constant values for
these parameters are required both by the operating rules and
the power consumers. The consumers’ requirements have been
becoming more and more stringent in recent years [2].

To enable the distribution system operators (DSOs) to operate
safely, reliably, and to supply consumers with an electrical power
satisfying all power quality requirements, distribution networks
are being equipped with measuring devices for the active and
reactive power, for voltage and current magnitudes and angles,
etc. These components are equipped with software which sets
individual network devices to make the distribution system (DS)
operate optimally.

The first DS optimisation algorithms were developed in the
1950s [3,4]. These algorithms sought the optimal topology of
reconfigurable radial distribution networks with the goal of min-
imising total active power losses in the network. In 1968, the
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tandard problem of DS operation with minimum costs called
ptimal Power Flow (OPF) was formulated [5]. In the following
ears, this standard optimisation problem was studied by many
esearchers who came up with many formulations of it, and many
pproaches to its solution.
In recent years, OPF research has been divided into several

ranches, with each branch highlighting a different issue. Cur-
ently, most of the attention is devoted to OPF problems that
onsider powering the observed power system with power plants
sing renewable energy sources of intermittent nature, and ef-
icient use of battery energy storage. There is also a growing
nterest in the application of demand-side management in power
low regulation. Recent trends and aims of power system op-
imisation research are presented in [6]. In [7] a comprehen-
ive survey of recent optimisation techniques used to solve OPF
roblems is presented. Traditional methods often suffer from
ocal minimum issues, so alternative optimisation techniques are
eeded which are categorised based on their inspirations, such
s nature-swarm-inspired methods, human-inspired algorithms,
volutionary-inspired algorithms, physics-inspired, and artificial
eural networks (ANN). It is important to note that many research
ctivities today focus on reducing the gap between academic
tudies and the real problems faced by power system operators.
esearchers are also looking for new formulations of risk-based
C OPF problems under uncertainty that consider flexible se-
urity criteria. A trending current topic is the development of
ew methods for decomposing the AC OPF problem into smaller
roblems that are more easily solvable than the original problem
nd which can be solved in parallel during one time period.
t should also be noted that significant progress has recently
een made in developing OPF problem solvers that are based
n local optimisers derived from general-purpose optimisers. De-
pite their optimal performance, these local optimisers some-
imes fail to converge, especially for highly constrained feasible
roblems. More in-depth insights regarding the current trends in
PF research can also be found in [8,9].
As mentioned, in the emerging transition, DSOs are required

o act more and more frequently in real-time. In [10], the au-
hors develop a cascading outage probabilistic risk assessment
ased on the decomposition of the analysis in two levels corre-
ponding to two stages of a cascading failure: the slow cascade
nd the fast cascade. The slow cascade is caused by the contin-
ency occurrence in a power system with N-1 security criteria
here the occurrence of just one contingency cannot cause a

ast collapse of the power system. However, it can trigger a
hermal transient, significantly increasing the occurrence of addi-
ional contingencies. The fast cascade follows the slow cascade:
t is triggered when another contingency occurs and there is
till electrical instability caused by the first contingency. For
he electrical instability in the power system, authors consider
oltage, frequency, and transient angular instability, and static
iolation of overcurrent limits. The voltage instability is detected
hrough the non-convergence of power flow equations, the fre-
uency instability through the steady-state frequency deviation,
nd the transient angular instability through the simulation of
simplified dynamic model of the power system during several
econds.
Apart from managing outages, the existence of local markets

here prosumers can make bids/offers to exchange electrical
ower is becoming increasingly possible, which makes real-time
peration of the DS necessary. To cope with these tasks, DSOs will
eed to be able to perform OPF analyses in the shortest possible
ime. However, this is not trivial even for networks of reduced
ize.
In this paper, we present a method for solving an AC OPF
roblem, optimising the operation of a real electrical distribution n

2

network (powering a part of a Czech city). Our approach, based
on the genetic algorithm (GA), allows us to find an optimal
solution effectively and efficiently. To ensure this fact, the GA
was compared to the particle swarm optimisation (PSO) algo-
rithm, which is also commonly used to solve OPF problems [6].
In the development process of our optimisation method, we
relied on the approaches presented in [11–13]. Our optimisation
method controls the transformers’ on-load tap changers and the
power load demands of consumption nodes to find global optima
that satisfy operation constraints of a portion of the distribution
network of a large city in the Czech Republic. The constraints
include, among others, a voltage magnitude range and lines’
and transformers’ maximum current loading. More in depth, our
optimisation method:

• is tuned to effectively and efficiently optimise the operation
of highly-meshed distribution networks;

• allows us to evaluate the computational model with the
discontinuities and conditioned penalties;

• is easily traceable in each step of its iterative cycle, so that it
is always possible to tune the algorithm for individual cases
to reach its best performance.

The remainder of the paper is organised as follows. Section 2
presents the optimisation problem, Section 3 describes the real
Czech urban meshed network used as case study. Section 4 dis-
cusses our modified version of the GA method as a solver of this
problem. Section 5 provides some numerical experiments with
our GA method and benchmarks its results with the (brute force)
exact solution. Section 6 concludes the work with a summary and
a discussion of future potential activities.

2. Description of the problem

The OPF aim is to optimise the steady-state performance of
the power system expressed through a given objective function
while satisfying a set of equality and inequality constraints at the
same time. A general formulation of the OPF is presented in [6]. In
our case, the distribution system’s operation costs are minimised
while all solution constraints are maintained within their limits.
The formulation of the problem is presented in the following
sections. The internal structure of this OPF problem uses per-unit
quantities. Apparent powers of individual network elements are
related to a reference apparent power equal to 1 MVA, whereas
magnitudes of individual node voltages are related to the nominal
voltage of the network, which includes the given node.

2.1. Objective function

In the distribution network, there are ncn power consumption
odes, while the power consumption of some of them can be
ontrolled by the DSO. These nodes are called controlled power
onsumption nodes and their number is ncc. The network also
ncludes npll low-voltage (LV) power lines and ntr distribution
ransformers. The set of all nodes with power consumption con-
rol is divided into two subsets: a set of first-grade consumption
odes and a set of second-grade consumption nodes. First-grade
onsumption nodes refer to those nodes where flexible con-
umers are connected. These nodes are the most suitable for
ynamic power consumption control and to offer demand re-
ponse services to DSOs. It is in the interest of the DSO that
he maximum part of negative regulation power (i.e. reduction
f power consumption) is provided by appliances connected to
his set of consumption nodes. The remaining nodes with power
onsumption control are included in the set of second-grade
onsumption nodes. Appliances connected to these consumption

odes also allow their instantaneous power input to be controlled
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y the DSO, but their involvement in the final process of reg-
lating power flows in the distribution network is not suitable
or physical, economic, and social reasons. The preferential use
f power input reduction control in the first-grade consump-
ion nodes during the power flow regulation process is ensured
y different values of the power consumption reduction price
or the first-grade consumption nodes and for the second-grade
onsumption nodes in the objective function.
Our OPF model minimises the following objective (cost) func-

ion C:

=

ncc∑
i=1

(Ccc_i + CPcc_i)+

npll∑
j=1

C∆Ppll_j+

ntr∑
m=1

C∆Ptr_m+

ncn∑
p=1

PV l_p+PQo

(1)

where Ccc_i is the cost related to a change of power consumption
of the ith power consumer and CPcc_i is the cost related to the
magnitude of this change of power consumption, i = 1, 2, . . . ,
ncc; C∆Ppll_j is the cost related to the magnitude of an active
power loss of the jth LV power line, j = 1, 2, . . . , npll; C∆Ptr_m
s the cost related to the magnitude of an active power loss
f the mth distribution transformer, m = 1, 2, . . . , ntr; PV l_p
s the penalty related to the voltage-limit exceeding in the pth
etwork consumption node (i.e., a node which is connected to
power consumer), p = 1, 2, . . . , ncn; and PQo is the penalty

elated to the reactive power overload of the powering higher-
evel distribution system. Note that the last two members of the
bjective function were created via a transformation of the two
oft solution constraints presented below.
The individual costs observed by the objective function are

efined as:

cc_i =

{
Cfcc , i ∈ Ncn1
Cscc , i ∈ Ncn2

(2)

CPcc_i =

{
cfcc · ∆Pi , i ∈ Ncn1
cscc · ∆Pi , i ∈ Ncn2

(3)

C∆Ppll_j = c∆P · ∆Ppll_j , j ∈
{
1, . . . , npll

}
(4)

C∆Ptr_m = c∆P · ∆Ptr_m , m ∈ {1, . . . , ntr} (5)

PV l_p = pV l ·
⏐⏐Vp − Vsl

⏐⏐2 , p ∈ {1, . . . , ncn} (6)

PQo =

{
pQo · |Qe|

3 , Qe < 0
0, Qe ≥ 0 (7)

where the meaning of the used symbols is as follows:

• Cfcc denotes the cost related to a change of power consump-
tion at a first-grade controlled consumption node;

• Cscc is the cost related to a change of power consumption at
a second-grade controlled consumption node;

• Ncn1 is the set of first-grade controlled-consumption nodes;
• Ncn2 is the set of second-grade controlled-consumption

nodes;
• cfcc is the cost per unit (in e/MW) related to the magnitude

of a change of power consumption at a first-grade controlled
consumption node;

• cscc is the cost per unit (in e/MW) related to the magni-
tude of a change of power consumption at a second-grade
controlled consumption node;

• ∆Pi is the magnitude of a change of power consumption at
the ith consumption node, i = 1, 2, . . . , ncc;

• c∆P is the cost per unit (in e/MW) related to the magnitude
of an active power loss of a network element;

• ∆Ppll_j is the magnitude of an active power loss in the jth LV
power line, j = 1, 2, . . . , npll;

• ∆Ptr_m is the magnitude of an active power loss in the mth
distribution transformer, m = 1, 2, . . . , n ;
tr

3

• pV l is the penalty per unit (in e/V) related to the voltage-
limit exceeding at a consumption node;

• Vp is the magnitude of voltage at the pth consumption node,
p = 1, 2, . . . , ncn;

• Vsl is the soft limit of a voltage phasors magnitude, where

Vsl =

{ Vmax _sl , Vp > Vmax _sl
Vmin _sl , Vp < Vmin _sl

Vp , Vmin _sl ≤ Vp ≤ Vmax _sl

, p ∈ {1, . . . , ncn} (8)

• Vmin_sl and Vmax_sl are the minimum and maximum values of
the soft limit of a voltage phasors magnitude;

• pQo is the penalty per unit (in e/Mvar) related to magnitude
of a reactive power overload to the powering higher-level
distribution system;

• Qe is the magnitude of a reactive power flowing to or from
the distribution network through the slack node e.

2.2. Constraints

The OPF problem’s solution space is constrained by equality
and inequality constraints. Some of them are hard, i.e. they set
certain conditions on the variables that must be satisfied, while
some are soft, meaning they do not need to be strictly satisfied,
but their exceeding is penalised in the objective function.

2.2.1. Hard constraints
Inequality constraints describe the maximum current load-

ing of the power lines and transformers (current loading of the
transformers’ primary winding), the minimum and maximum
admitted values of voltage’s magnitudes in individual LV network
nodes, and the minimum and maximum admitted values of indi-
vidual local distribution transformers’ taps. They are expressed as
follows:

Ipl_i ≤ Ipl_max _i , i ∈ Npl (9)

Itr_i ≤ Itr_max _i , i ∈ Ntr (10)

Vmin _fl ≤ Vi ≤ Vmax _fl , i ∈ Nnl (11)

tmin _i ≤ ti ≤ tmax _i , i ∈ Ntr (12)

• where Ipl_i is the current flowing through the ith power line;
• Ipl_max_i is the maximum current loading of the ith power

line;
• Npl is the set of local power lines’ indices;
• Itr_i is the current flowing through the primary winding of

the ith distribution transformer;
• Itr_max_i is the maximum current loading of the primary

winding of the ith distribution transformer;
• Ntr is the set of local distribution transformers’ indices;
• Vi is the magnitude of voltage at the ith LV network node;
• Vmin_fl and Vmax_fl are the minimum and maximum admit-

ted values of the voltage’s magnitude at the individual LV
network nodes;

• Nnl is the set of LV-network nodes’ indices;
• ti is the tap settings of the ith distribution transformer;
• tmin_i and tmax_i denote the minimum and maximum value

of tap settings of the ith distribution transformer.

2.2.2. Soft constraints
Although soft constraints do not restrain the problem’s feasi-

ble space, they have a large impact on the specific final solution.
In our OPF problem, one soft constraint is observed. It describes
the limits of the voltage’s magnitude at the individual LV network
nodes:

V ≤ V ≤ V , i ∈ N (13)
min _sl i max _sl nl
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Constant values of the objective function.
Cfcc Cscc cfcc cscc c∆P pV l pQo

15 · 10−4 e 3 · 10−3 e 0.6 e/MW 0.9 e/MW 1.0428 e/MW 1 · 10−5 e/V 0.02 e/kvar
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Table 2
Constants used in the inequality constraints.
Ipl_max_i Itr_max_i Vmin_fl Vmax_fl tmin_i tmax_i Vmin_sl Vmax_sl

1 1 0.85 1.1 −2 2 0.95 1.02

As mentioned above, we consider soft constraints in the OPF
problem as a penalty added to the objective function. The penalty
considering the soft constraint (13) is formulated as:
ncn∑
p=1

PV l_p (14)

With respect to the considered constants in the objective func-
tion, Table 1 summarises their values:

The values of the constants in Table 1 are derived from the
price of electricity on the Czech wholesale electricity market (pxe
market) in the following way: we use the predicted price of
purchased electricity for a peak load consumption in 20211 (on
the pxe market, the peak-load time is set for Monday through
Friday, 8 a.m. to 8 p.m., the base-load time is every day from
0 a.m. to 12 p.m.). The peak-load electricity price per MWh is
divided by 60 min. This is done because we assume that the
steady frequency of the optimisation system’s control actions will
correspond to one action per minute. Consequently, it is assumed
that the energy loss in the network during this one-minute time
interval is equal to dP · 1 min, where dP is the total active power
loss.

This cost model is based on the pxe peak-load electricity price
traded on 1.10.2019 (i.e. 62.57 e/MWh). As a result, the price per
MW · minute is 1.0428 e:

c∆P =
62.57e/MWh

60min
= 1.0428e/MW

he values of other price coefficients used in formulas (1) to (7)
ere set with regard to the value of c∆P and to the optimisation
oals, which are based on the requirements of the DSO. During
ndividual test runs, the ratios between the individual members of
he objective function and the total value of the objective function
ere observed. Based on these observed values, the individual
rice coefficients were adjusted so that the values of all the ratios
ere approximately the same.
In the inequality constraints we use the individual constants

hown in Table 2:
The values Ipl_max_i and Itr_max_i are set to 100%, which means

hat each network element can be loaded for a long time (or
ermanently) only by a current whose magnitude is not bigger
han 100% of its maximum current-carrying capacity (otherwise
he element would be overloaded and its maximum allowable
emperature would be exceeded). The individual local power line
ections are constructed using different types of power carrying
ables and each type has its own value for maximum current-
arrying capacity, determined by its producer. The maximum
urrent-carrying capacity value for individual cable types is de-
ined in Amperes. Likewise, the transformer producer determines
he value of the maximum current-carrying capacity for each
ransformer. The electrical network model used in the optimisa-
ion method presented in this paper contains a specific maximum
urrent-carrying capacity value for each power line section and

1 https://www.pxe.cz/Products/Detail.aspx?isin=FCZPLY211231#KL.
4

each transformer. As mentioned above, the mathematical system
used within the local AC power flow problem is based on per-
unit values. In order to assess whether a given steady-state of
the distribution network does not exceed the overcurrent limit
for any of the network elements, it is necessary to convert the
per-unit values of currents flowing through individual network
elements to actual values expressed in Amperes. These values in
Amperes are then compared to the defined overcurrent limits for
individual network elements.

The value of Vmin_fl is set to 0.85 because the undervoltage
limit set by the DS’s operating regulations is 85% of the nominal
voltage of the LV network. Similarly, the value of Vmax_fl is set to
1.1 because the overvoltage limit set by the DS’s operating regula-
tions is 110% of the nominal voltage of the LV network. Because
the DSO’s goal is to achieve the highest possible power quality,
it also sets soft limits for the value of the voltage magnitude,
i.e. Vmin_sl and Vmax_sl. These soft limits determine the area of high-
quality electrical energy in terms of voltage magnitude, and their
distance from 1 (i.e. the per-unit nominal-voltage value) is much
less than the distance of the limits defining undervoltage and
overvoltage from 1. The values of tmin_i and tmax_i are described
n the following section.

. Description of the test model

The method’s optimisation performance and efficiency were
ested on the model of a portion of a real Czech urban mesh LV
istribution network. The distribution network model consists of
6 LV nodes (the nominal line voltage of these LV nodes is 0.4
V) and 6 medium-voltage (MV) nodes (the nominal line voltage
f these MV nodes is 22 kV).
The 6 MV nodes operate as slack nodes in the model (these
slack nodes are then aggregated into one slack node, e, in

the model). The magnitude and phase of the voltage phasors in
these nodes are constant and are permanently equal to 1 and 0◦,
espectively (this set of 6 slack nodes can also be described as one
lack node and 5 PQ nodes, which are connected with the slack
ode by network elements, the impedance of which is equal to
ero, and the active and reactive power consumption of which
re equal to zero as well). These 6 nodes provide power balance
ithin the network model.
The reason why all nodes of the MV side of all transformers

n this distribution network are connected to one common slack
ode are the following: Measurements performed in the six local
V/LV substations showed that from the point of view of all these
ix substations, the differences in the absolute value and phase
f the voltage phasors on the MV side are negligible. Very small
mpedances connecting individual MV nodes of individual local
V/LV transformers caused by small lengths and large cross-
ection areas of local MV cables are the main reason for these
ery small differences of the voltage phasors. Based on these
indings, we have decided to connect all six local MV nodes into
ne node in order to reduce the size of the admittance matrix of
he network mathematical model by five rows and five columns.
his significantly reduces the computational complexity of the
ocal AC-power-flow solution without reducing the accuracy of
his model.

Moving down, 6 LV nodes serve as LV network supply nodes.
ach of these 6 LV nodes is connected to one of the 6 slack buses
sing a distribution transformer. The remaining 40 LV nodes are

https://www.pxe.cz/Products/Detail.aspx?isin=FCZPLY211231#KL
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Fig. 1. Topology of the analysed Czech urban meshed distribution network. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
consumption nodes, each connected to a power load. As men-
tioned above, the magnitude of the active power consumption
of some consumption nodes is controlled by our optimisation
method (that is, by the DSO in practice). Of these consump-
tion nodes, 5 are classified as first-grade controlled-consumption
nodes and 5 as second-grade controlled-consumption nodes. In
summary, there are 10 loads connected to the distribution net-
work, for which the active power consumption can be controlled
by our optimisation method. Until the optimisation method ac-
tivates the control of a node’s power consumption, the active
and reactive power consumed in this node is determined by the
standard needs of the local consumer. These standard values for
both classes of controlled-consumption nodes represent 100% of
the amount of power consumption and are listed in Tables 3 and
4. If the optimisation method activates the control of the power
consumption in a given node, then the amount of active power
consumed in that node drops to 85% of the standard amount of
local active power consumption. However, the amount of reactive
power consumed in this node remains 100% of the standard
amount of local reactive power consumption.

In the apartment buildings connected to the controlled con-
sumption nodes, there are electric heaters installed. These appli-
ances can be controlled remotely by the DSO. Electrical appliances
of this kind are very suitable tool for power balancing inside the
distribution network. Every unit has a quite large power input,
5

and its remote control can serve this scope. During the cold part
of the year, it operates for several hours every day, and during
its operation, the value of its power input is constant in time.
Because the optimisation method optimally controls the distribu-
tion network in real-time, it needs to know how much electrical
power is currently consumed in the network. Thus, the current
balance of active and reactive power in individual consumption
nodes of this network is continuously observed in real-time using
modern measuring devices, KMB SMC 144.2 The DSO gets the
information about the currently-accessible controllable power
consumption also from this power data.

Tables 3, 4, and 5 describe all LV-network nodes using their
indices and the amount of active and reactive power they con-
sume.

As there is only one type of distribution transformer installed
in the distribution network, the values of individuals parameters
of all local transformers are the same. The nominal turns ratio
of these transformers is 22 kV/0.4 kV, their nominal apparent
power is 400 kVA, their percentual short-circuit voltage is 6% and
their percentual open-circuit current is 0.1075%. On the trans-
formers’ primary side (i.e. middle-voltage side), there are on-load
tap changers (OLTC) installed. An OLTC allows changing of the

2 http://www.kmb.cz/index.php/en/power-monitor-data-logger/smc-144.

http://www.kmb.cz/index.php/en/power-monitor-data-logger/smc-144
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X

.

ransformer’s turns ratio when the transformer is loaded. Each
ocal OLTC has 5 taps. Rated tap is the centre one, so the taps
ange from −2 to 2 (the tmin_i is equal to −2 and the tmax_i is equal
o 2). After switching from tap X to tap X + 1, the voltage on the
ransformer’s secondary side increases by 2.5% of the secondary
ide’s nominal voltage.
One capacitor is connected to each consumption node of the

V network. These capacitors operate here as local reactive power
ources, producing a constant reactive power of 6.5 kvar. Usual
zech city distribution networks are not equipped with any ca-
acitors and until recently, there were no capacitors in the net-
ork presented in this paper. However then, the local DSO de-
ided to install the capacitors into this network as part of the
rocess of increasing the network operation efficiency. This pro-
ess is part of the test project and this network was the only
ne where the DSO installed the capacitors. The specific nominal
alue of the reactive power of the individual local capacitors,
qual to 6.5-kvar, was chosen on the basis of historical data
easured in this network. Historical data have shown that the

otal reactive power consumption inside this network does not
all below 260 kvar for a long time. So, the DSO decided to
over this minimum total reactive power consumption by local
roduction, while the total amount of reactive power was equally
ivided between all 40 consumption nodes, so the nominal reac-
ive power of individual local capacitors is equal to 260 kvar/40
6.5 kvar.
Fig. 1 shows a scheme of the whole distribution network. The

irst grade controlled consumption nodes are marked with red
oloured text, the second grade controlled consumption nodes are
arked with green coloured text and the uncontrolled consump-

ion nodes are marked with black coloured text. Fig. 1 also shows
MV nodes: these MV nodes are marked by indices 1002, 1003,
004, 1005, 1006 and 1007.
Although it is common to see LV distribution networks supply-

ng apartment buildings in housing estates in Czech cities using
meshed topology and being supplied through more than one
V/LV substation, the rate of mutual connections of individual
etwork nodes and the number of MV/LV substations in the
istribution network presented in the paper are unusual from the
zech electrical networks perspectives. The high spatial density
f consumption nodes and high power consumption of these
odes (individual local consumption nodes represents apartment
uildings) are the reason for the unusual characteristics of this
etwork.
From the long-time view, the size of power consumption

f individual apartments in apartment buildings connected to
ndividual local consumption nodes is approximately the same.
his distribution network supplies many apartment buildings. In
ach apartment building, there are many apartments and these
partments are connected to the network in such a way that
pproximately the same number of apartments is powered by
ach network phase. Based on these facts, there was an idea
hat at any time the power consumption in this distribution
etwork is (approximately) equally distributed into individual
istribution network phases. Consequently, at any time all three
hase conductors of individual power-line sections in any part of
he network are (approximately) equally loaded. Later, this idea
as verified by measurements done in all local MV/LV substa-
ions. The validity of this idea made it possible to describe this
istribution network using a 1-phase model. The computational
omplexity of the 1-phase AC power flow solution is much lower
han the 3-phase AC power flow solution. Since most of the
omputational time of the optimisation algorithm presented in
his paper is consumed by the AC power flow solution calculation,
6

the usage of the less complex 1-phase AC power flow solution
leads to the much lower computational complexity of the whole
optimisation algorithm.

3.1. Loads connected to the controlled-consumption nodes

Table 3
First-grade controlled-consumption nodes.
First-grade

Node’s index P (kW) Q (kvar)

101 50 5
109 100 10
117 90 3
125 220 15
133 100 13

Table 4
Second-grade controlled-consumption nodes.
Second-grade

Node’s index P (kW) Q (kvar)

103 70 2
111 140 6
119 110 8
127 110 7
135 130 3

3.2. Loads connected to the uncontrolled-consumption nodes

Table 5
Uncontrolled-consumption nodes.
Node’s
index

P
(kW)

Q
(kvar)

Node’s
index

P
(kW)

Q
(kvar)

Node’s
index

P
(kW)

Q
(kvar)

102 30 0.5 122 25 2 105 40 2
104 30 0.2 124 20 0.1 113 40 2
106 30 0.5 126 30 0.2 121 40 5
108 30 0.2 128 30 2 129 40 5
110 20 0.2 130 20 1 137 40 5
112 30 0.5 132 20 0.5 107 50 3
114 50 0.2 134 30 1 115 40 5
116 10 0.1 136 20 0.5 123 30 2
118 20 2 138 30 0.5 131 50 3
120 25 2 140 40 1 139 40 2

4. Genetic algorithm as an optimisation method

Genetic algorithms are described in good detail in [14,15]. A
version of GA using the information of the weighted gradient
in the mutation process is presented in [16,17]. Our modified
version of the GA is based on the main idea of the crossover and
mutation step.

Let

P =
{
X0
1 ; X0

2 ; . . . ; X0
n

}
, n ∈ N (15)

e a population of chromosomes, where Xk
i denotes the ith chro-

osome in the kth generation. Every chromosome consists of two
enes: the first one codes the configuration of transformer taps,
he second codes the percentages of active power demands at the
ontrollable consumption nodes, as follows:
k
i =

[(
tki,1; t

k
i,2; t

k
i,3; t

k
i,4; t

k
i,5; t

k
i,6

)
;
(
lki,1; l

k
i,2; l

k
i,3; l

k
i,4; l

k
i,5; l

k
i,6; l

k
i,7;

lki,8; l
k
i,9; l

k
i,10

)]
.

tki,j ∈ {−2; −1; 0; 1; 2} , j = 1, 2 is the tap number of the
jth transformer in the kth generation and lki,j ∈ {0.85; 1.0} is
the percentage of active power demands at the jth controllable
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onsumption node in the kth generation. The value of 0.85 corre-
ponds to the maximum 15% decrease of power demand permit-
ed on controllable loads. These load values reasonably constrain
he space of valid solution. In each generation of the GA, we
erify whether the individual chromosome, i.e. combination of
ransformer taps and active power load demands, falls in a fea-
ible domain DV or not. The feasible domain is composed by
hose cases in which the conditions (9)–(11) are satisfied after
ne run of the Python pandapower’s power flow function [18].
ased on this simple test, we divide the population set into valid
hromosomes

k
V =

{
Xk
j : X

k
j ∈ DV ; ∀j

}
(16)

nd invalid chromosomes

k
F =

{
Xk
j : X

k
j /∈ DV ; ∀j

}
. (17)

Then we proceed to the next steps of the algorithm.
In the step of creating offspring (chromosomes of the next

eneration), we prefer chromosomes from the set of valid chro-
osomes IkV over those from the invalid set IkF . The main steps of
ur algorithm can be summarised as follows:

1. Select 10% of the population size from the best valid chro-
mosomes IkV as elite chromosomes which automatically
proceed to the next generation. As the fitness value, we
consider the actual cost of the performed network config-
uration. If there are fewer valid chromosomes IkV (less than
10% of the population size), choose all valid chromosomes
IkV as elite chromosomes.

2. Create up to 2·nk
V offspring from the valid chromosomes by

crossover and mutation, where nk
V is the number of valid

chromosomes in kth generation. If nk
V > n, then nk

V =

n. Chromosomes that progress to the crossover step are
chosen by the roulette method.

3. Create up to nk
F = n −

(
2 · nk

V

)
offspring from the invalid

chromosomes by crossover and mutation. Chromosomes
proceeding to the crossover step are chosen randomly.

The stop criterion of the GA is a given maximum number
f generations (which is estimated after many rounds of the
lgorithm). Note that the crossover step is always performed in
ach generation, that is, the crossover step has a 100% probability
o occur.

.1. Selection of valid chromosomes

We use a roulette technique as the selection method to choose
arent chromosomes from the set of valid chromosomes IkV .
ince we are interested in finding the global minimum (in the
deal case), a function that normalises the fitness values into the
ange [0;1] is(
f ki

)
=

f kmax − f ki
fsum

, (18)

here f ki is the fitness value of ith valid chromosome in the kth
iteration, f kmax represents the maximum fitness value of valid chro-
mosomes in kth iteration, and fsum denotes a summation of all fit-
ness values of valid chromosomes in the kth iteration. We present
pseudocode of the selection method for better illustration; see
Algorithm 1.
7

4.2. Crossover

In the crossover step, children’s genes are derived from par-
ent’s genes. A random index iR = rand(2, iend − 1), from which
the crossover begins, is generated. The symbol iend represents the
last index of the gene array. One child inherits from one parent
the part of the gene up to a random index iR. The rest of the
chromosome is inherited from another parent to the end index
iend. The crossover step is performed for both genes separately.

4.3. Mutation

The mutation step allows us to randomly generate the new
value from the given range in the gene notation. If we consider
the gene of transformer taps, then the new value will be an
integer in the range [−2; 2]. We also generate an index in which
the mutation will proceed. Furthermore, we check whether the
generated value is the same as the current one. If these two values
are the same, we generate a new one that varies from the old one.
Some recommendations about the mutation probability values
can be found in [19]. We choose the highest probability (0.09)
because we want to ensure that the GA will not get stuck in local
optima, given the characteristics of our problem. Additionally, we
mutate only one bit per chromosome. The mutation probability
value of 9% is based on numerical experiments.

4.4. Parallel implementation

The main objective of the parallel implementation of the GA
is to reduce the computational time of the Python pandapower’s
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Table 6
Parameters used in the GA.
Population
size

Number of
generations

Mutation
probability

Number of elite
chromosomes

2400 20 9% 240

power flow function that evaluates network variables. Steps such
as the evaluation of the fitness function, crossover, and mutation
are performed in parallel. The validation of chromosomes and the
choice of the elite ones is instead done sequentially due to the fact
that we need to assemble the array of all fitness values.

4.5. Modification

The core of the modification of GA lies in the way the sets
f valid and invalid chromosomes are used within the algorithm.
he chromosomes are not only created on the basis of crossover
nd mutation operator processes, but also by considering the
alidity of the results the chromosome gives. The chromosomes
abelled as valid have a higher priority to make offspring than
nvalid ones. However, the invalid chromosomes are by no means
orbidden. They are also used to make offspring, because com-
inations of two invalid chromosomes could result in a valid
hromosome. The same can be true for a combination of a valid
nd invalid pair.

. Numerical experiments

In the numerical experiments, we use the GA parameters
escribed in Table 6. Note that the described parameters of the
A are all used in the analysis below. The resulting values of the

xact solution are instead summarised in Table 7.

8

Table 7
Resulting values of the exact solution.
Number of
all possible
combinations

Number of
all valid
combinations

Global valid
minimum
cost value

Global valid
maximum
cost value

16,000,000 135,639 0.05516 0.20267

We can see from Table 7 that the brute force algorithm pro-
vides a wide range of valid solutions. The cost value based on 16
million possible combinations varies from 0.05516 e to 0.20267
. However, we are interested in the combinations leading to the
ptimal solution, which provides the minimal valid cost. In the
ext subsections, we provide the results of our modified genetic
lgorithm, which are used for fast but accurate approximations of
he optimal solution. We also perform a comparison of the GA to
he PSO in the last subsection.

Numerical experiments were performed on an HP Spectre
360 Convertible 13-ap xxx, Intel(R) Core(TM) i7-8565U 1.80 GHz
ith 8 logical cores, 16 GB RAM and implemented in Python.

.1. Single run analysis

We provide an analysis of one run of our modified GA ob-
erving its numerical behaviour, i.e. a monotonous descent of
he objective function value to the global minimum. We analyse
he cost function C given by Eq. (1). All fitness values from each
eneration of the GA algorithm are shown in Fig. 2. The red dash-
otted line marks the valid global maximum fitness value, while
he blue dashed line denotes the valid global minimum fitness
alue i.e. the optimal (minimal) value of the cost function C,
hich is 0.05516; see Table 7. Grey dots are values corresponding
o the invalid chromosomes, green dots represent values of valid
hromosomes. Finally, the red dots highlight the current minimal
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able 8
umber of valid chromosomes in each generation of the GA.
gen 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

N 19 50 107 231 428 787 1440 2179 2187 2195

gen 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

N 2187 2165 2166 2176 2179 2199 2181 2171 2192 2200

Fig. 3. Absolute errors of 100 GA runs in detail.

alue, which tends to reach the valid global minimum. Fig. 2
hows that the valid global maximum fitness value can even be
emporarily exceeded by invalid chromosomes.

The number of valid combinations in each generation is de-
cribed in Table 8 respectively, where ‘‘gen’’ denotes the current
eneration and ‘‘N’’ represents the number of chromosomes in the
urrent generation.
As we can see, one run of the GA evaluates 48,000 values

which imply in total 48,000 pandapower calls) for all 20 gen-
rations. Note that we choose 20 generations to be sure to obtain
stable solution. Another possibility is to use a tolerance limit to
nd the GA. It takes about 156 s to finish the calculations.

.2. Multiple run analysis

To analyse the convergence of our GA we study its behaviour
hen launched multiple times. We ran the GA 100 times and
bserved its convergence. As a precision criterion, we consider
he absolute error, which is defined as the difference between
he resulting minimal value of the objective function found by
ur modified GA and the exact global minimum value. We choose
he absolute error representation to demonstrate the distance of
esulting values from the valid global minimum. Fig. 3 shows the
inimal absolute error values of the GA.
The violet dashed horizontal line denotes the 10% of the max-

mum possible error, i.e. absolute error y = 0.1 · 0.148, where
.148 is the maximum possible error. Our aim was to reach at
east 90% precision (i.e. limit the absolute error by 10%), and the
urple line in Fig. 3 shows us that the aim was reached, as all dots
epresenting the precision of GA runs are under this line. The blue
ashed horizontal line is the cut-off for the 95% precision of our
A, i.e. it represents the absolute error y = 0.05 · 0.148. Black
ots mark minimal values from the individual runs of the GA.
All the minimal values satisfy our criterion for 90% precision,

eaning all GA solutions are within the 10% error area. Remark-
bly, 73% of the values even satisfy the stricter criterion of 95%
recision.
9

able 9
ummarised statistical results.
Count Minimum Maximum Average Median Std. deviation

135,639 0.000 0.148 0.082 0.083 0.025

Fig. 4. Density function of the observed values.

5.3. Statistical analysis of the absolute error of multiple runs

In this section we analyse the absolute error of 100 GA runs.
Let us remember that the optimal (minimal) value of the cost
function C corresponds to 0.05516. Note that, as observed values
are in the form of error values of all valid configurations of the
network, the minimal error is 0.05516 − 0.05516 = 0 and the
maximal error is 0.20267 − 0.05516 = 0.14751. A summary of
the statistical results is shown in Table 9.

Fig. 4 shows the density function of the absolute error. Here,
the black line represents the normal distribution using the pa-
rameters from Table 9. It can be seen that the computed error
values loosely follow the normal distribution. This means that
these values are mainly concentrated around the mean value of
0.082, and that the majority of computed values are in the ±3σ
area. The probability to randomly obtain a value within the 10%
error threshold is 0.3%. Moreover, the probability to obtain ≤ 5%
absolute error is 0.1%. Fig. 5 shows a more detailed histogram of
the best obtained results from 100 runs of the GA. Despite the low
probabilities, the absolute error of the best GA values is within
10%. Moreover, we will also see that GA can reliably reach an
approximation of the optimal solution.

Between the maximum absolute error and the minimum ab-
solute error lie 135,637 different values. Within the range of 10%
error, i.e. for 90% precision, there are 118 different values. These
118 values form only 118/135,637 ∼8.7·10−4

∼0.087% of all valid
values and only 7.375·10−4% of the total 16 million combinations.

.4. Sequential versus parallel computation

One run of sequential GA for 300 chromosomes in a generation
akes approximately 72.78 s. Note that the GA computation time
mutation, crossover) is almost negligible. From analysis of the
ost expensive functions it emerges that, for each computation,
andapower creates a pandas structure (dataframe), which is
ubsequently transformed into a pypower structure suitable for
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Fig. 5. A histogram detailing the best solutions.

able 10
esults of PSO and GA.
N PSO GA

Error Global index Error Global index

1. 0.06492 36. 0.06656 59.
2. 0.06605 49. 0.05581 2.
3. 0.06460 31. 0.05516 1.
4. 0.06367 26. 0.05682 3.
5. 0.05989 12. 0.05516 1.
6. 0.05989 12. 0.06330 24.
7. 0.06164 19. 0.05682 3.
8. 0.06367 26. 0.05581 2.
9. 0.05516 1. 0.05765 4.
10. 0.06367 26. 0.05989 12.

computation, and vice versa. A run of a parallel GA takes ap-
proximately 156 s with 300 chromosomes used per core. Even
though the time increase is twice the run time of the sequential
GA (due to the communication between processes), we are able
to compute 8 times more pandapower simulations.

5.5. GA versus PSO

We choose the genetic algorithm due to its searching ability
n the discrete space. From our point of view, the PSO algorithm
s more suitable when the solution lies in the continuous space.
e compared the GA with the PSO in a sequential mode for
00 elements per population with up to 20 iterations of the
hole algorithm. We ran both algorithms 10 times. The results
re shown in Table 10. The valid global minimum 0.05516 (see
able 7) has a global index equal to 1. This means that this
alue is the best one we can find, so we assigned it an ordered
lobal index 1. The second best value has a global index equal
o 2, etc. The average computational time of the GA is 48.17 s
nd the time of the PSO is 128.00 s, so the GA algorithm is 3
imes faster than the PSO. We used the PSO algorithm from the
yswarms package (https://pyswarms.readthedocs.io). We used
he Pyswarms package (https://pyswarms.readthedocs.io) for the
yperparameter search of PSO parameters, and subsequently for
he PSO optimisation.

. Conclusions

Optimal Power Flow (OPF) methods can play a key role in
nsuring efficient management and control of electrical distri-
ution networks. In this paper, in line with current distribu-
ion system operators’ needs, we have presented an OPF solving
ethod which is applied to optimise the operation of a real
zech urban meshed electrical distribution network. Our method,
ased on a modified version of a Genetic Algorithm and on
10
the use of the Python pandapower package, satisfies all given
inequality constraints such as voltage magnitude range, and lines’
and transformers’ current loading, and converges to the solution
very quickly. To demonstrate the robustness of the proposed
algorithm, we performed several practical tests. By running 100
random instances of the problem, we were able to reach 90%
precision of results for all the tests, meaning that all the results
were close to the optimal solution with an absolute error of less
than 10%. One run of our modified GA takes approximately 156 s
in a parallel implementation on a standard laptop. It is obviously
possible to reduce the computational time by using a more pow-
erful workstation, but also by improving the GA code where the
Python pandapower’s power flow function is called. It is worth
mentioning that our intuition to use both information from the
feasible and the non-feasible domain in the GA is quite effective.
In fact, we can reach the 90% precision criterion in our GA in
only 20 generations of chromosomes. Practically speaking this
means that we need to evaluate only 48,000 pandapower function
calls out of 16 million possible combinations to achieve very high
precision. Although other test cases can be implemented to verify
the robustness of our modified GA, we can already state that our
goal to make a GA-based algorithm that is robust and as fast
as possible has been successfully achieved. Our next step is to
be able to use it effectively and efficiently to optimise various
types of electrical distribution networks. Because models of real
distribution networks are not easy to obtain for security and
confidential reasons, we will use the Distribution Network Model
(DiNeMo) web-platform which reproduces realistic distribution
network models of a given area of interest based on a small set
of users’ inputs [20]. In [21], a distribution network of a portion of
the Varaždin city in Croatia has already been calculated through
DiNeMo and validated with the DSO. This network model could
be a good first candidate to further test the performance of our
proposed GA-based method.
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