
Copyright

by

Pengxiang Cheng

2020

The Dissertation Committee for Pengxiang Cheng
certifies that this is the approved version of the following dissertation:

Learning Better Latent Representations

from Semantic Knowledge

Committee:

Katrin Erk, Supervisor

Raymond Mooney

Gregory Durrett

Hannaneh Hajishirzi

Learning Better Latent Representations

from Semantic Knowledge

by

Pengxiang Cheng

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2020

Acknowledgments

It is hard for me to believe how the past seven years of my doctoral studies
have come to an end without the chance to meet in person and express my grati-
tude to so many wonderful mentors, friends, and family members. Without their
wholehearted love and support, this research and this dissertation would not have
been possible.

First and foremost, I would like to thank my advisor Katrin Erk for her guid-
ance and support throughout the years. She spent countless hours to inspire me
to think broader and dig deeper, to share with me both intellectual and personal
experience, to encourage me through difficult times, and to lead me via her metic-
ulous and perfectionist attitude toward science. I am honored to have worked with
her, and I am genuinely grateful.

I would like to thank Ray Mooney, Greg Durrett, and Hanna Hajishirzi, for
serving on my committee and providing valuable comments and feedback on my
dissertation. I also want to thank Jessy Li for stimulating many insightful discus-
sions that helped me find new directions. It would be very remiss of me for not
mentioning Dana Ballard, who guided me patiently during my first year here on
studying computational muscle control of humanoid movement. I learned a great
deal from him on how to approach complex problems and acquire knowledge from
new domains. Dana continues to be a mentor and inspiration for me.

Additional thanks to many lab mates and fellow graduate students, and with-
out their help and friendship, my graduate school journey would have never been
the same. This set of people includes, but is not limited to, Ruohan Zhang, Leif
Johnson, Stephen Roller, Alex Rosenfeld, Eric Holgate, Elisa Ferracane, Jiacheng
Xu, Jifan Chen, and Yasumasa Onoe. Also, special thanks to my longtime friends,
Peisen Zhao for being a drinking partner, and Zhirong Wu for providing phone
counseling services.

Finally, I own a great debt to my parents, Yusheng Cheng and Xia Wang, for
their unwavering support throughout my 28 years of life. I cannot thank them
enough for their sacrifices, encouragement, and everything. And thanks to my
girlfriend, Fangyu Zhang, without whose love my PhD grind would have become
much harder.

iv

Learning Better Latent Representations

from Semantic Knowledge

Pengxiang Cheng, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Katrin Erk

Many modern efforts in Natural Language Processing involve the use of deep
neural network models, where dense vector representations are learned for words
and sentences, and they have been proven effective in many downstream tasks.
However, it remains unknown whether these representations truly understand the
meaning of language, due to their vulnerability against adversarial attacks and
lack of generalization ability to unseen domains.

In this thesis, we investigate the use of semantic knowledge to help learn bet-
ter representations from neural models. We start with a certain type of semantic
phenomenon, the implicit predicate-argument relations, and propose two neural
models that draw on narrative event coherence and entity salience. We also intro-
duce an argument cloze task for the automatic creation of synthetic data at scale
from structural representations of events and entities. We demonstrate that when
trained with large-scale synthetic data, both these models show good performance
on a human-annotated dataset for nominal implicit arguments.

We then focus on the integration of a broader range of semantic knowledge
into neural models in a more latent manner. We find that by injecting corefer-
ence knowledge as auxiliary supervision for self-attention, a relatively small model
sets the state-of-the-art on a word prediction task specifically designed to require
long-distance reasoning. We further explore different ways of integrating semantic
knowledge into large-scale pre-trained language models to make them more gen-
eralizable at out-of-domain question answering tasks, and show some preliminary
results.

v

Table of Contents

List of Tables ... ix

List of Figures ... x

Chapter 1 Introduction ... 1
1.1 Thesis Outline ... 3
1.2 List of Contributions ... 4

Chapter 2 Background .. 7
2.1 Semantic Knowledge .. 7

2.1.1 Semantic Roles... 7
2.1.2 Coreference Resolution.. 11
2.1.3 Abstract Meaning Representation ... 14

2.2 Neural Network Architectures.. 15
2.2.1 Sequence Modeling.. 16
2.2.2 Attention & Transformer ... 18
2.2.3 Pre-training & Contextualization... 22

2.3 Integrating Knowledge into Neural Models ... 24
2.3.1 Integrating Linguistic Knowledge ... 25
2.3.2 Integrating Background Knowledge.. 27

Chapter 3 Inferring Implicit Arguments by Local Coherence 29
3.1 Chapter Overview .. 29
3.2 Prior Work... 31

3.2.1 Implicit Arguments ... 31
3.2.2 Narrative Coherence.. 33

3.3 The Argument Cloze Task... 36
3.4 Methods .. 39

3.4.1 Modeling Narrative Coherence ... 39
3.4.2 The EVENTCOMP Model.. 40
3.4.3 Training for Argument Prediction ... 42
3.4.4 Entity Salience ... 43

vi

3.5 Experiments .. 43
3.5.1 Datasets ... 43
3.5.2 Implementation ... 45
3.5.3 Results on Argument Cloze ... 46
3.5.4 Results on G&C... 49

3.6 Chapter Summary... 52

Chapter 4 Inferring Implicit Arguments by Global Coherence 54
4.1 Chapter Overview .. 54
4.2 Prior Work... 56
4.3 Revisiting the Argument Cloze Task... 58
4.4 Methods .. 60

4.4.1 Pointer Attentive Reader ... 60
4.4.2 Training Objective.. 62
4.4.3 Multi-hop Attention .. 63
4.4.4 Auxiliary Supervision.. 65

4.5 Experiments .. 65
4.5.1 Implementation ... 65
4.5.2 Results on Argument Cloze ... 66
4.5.3 Results on G&C ... 70

4.6 Chapter Summary... 73

Chapter 5 Semantic Structure as Supervision for Self-Attention 74
5.1 Chapter Overview .. 74
5.2 Prior Work... 76
5.3 The LAMBADA Task .. 77
5.4 Methods .. 80

5.4.1 Task Formulation... 80
5.4.2 Model .. 80
5.4.3 Auxiliary Supervision for Self-Attention 83

5.5 Experiments .. 86
5.5.1 Dataset & Pre-processing... 86
5.5.2 Implementation Details ... 87
5.5.3 Main Results .. 89

vii

5.6 Analysis .. 91
5.6.1 Does pre-processing quality affect performance? 91
5.6.2 Does COREFALL really learn coreference knowledge? 92
5.6.3 Where should the supervision be applied?................................ 93
5.6.4 Are other types of supervision also useful? 94

5.7 Chapter Summary... 96

Chapter 6 Semantic Knowledge on Pre-trained Language Models 97
6.1 Chapter Overview .. 97
6.2 Prior Work... 99
6.3 The MRQA 2019 Shared Task.. 100
6.4 Methods .. 103

6.4.1 Baseline Model .. 103
6.4.2 Integrating Semantic Knowledge .. 105

6.5 Experiments .. 109
6.5.1 Implementation Details ... 109
6.5.2 Preliminary Results ... 110
6.5.3 Analysis ... 111

6.6 Chapter Summary... 113

Chapter 7 Conclusion ... 114
7.1 Future Work .. 116

7.1.1 More Evaluation on Implicit Arguments 116
7.1.2 New Methods for Integrating Semantic Knowledge 119

Bibliography ... 122

Vita .. 154

viii

List of Tables

3.1 Entity salience features from Dunietz and Gillick (2014). 43
3.2 Statistics of the OntoNotes argument cloze datasets............................. 44
3.3 Mapping of predicates and argument labels in the G&C dataset.......... 45
3.4 Evaluation results on the OntoNotes datasets. 48
3.5 Ablation test on entity salience features.. 48
3.6 Features used in the fill / no-fill classifier for evaluating on G&C........ 51
3.7 Evaluating EVENTCOMP on G&C dataset. ... 53

4.1 Statistics of the original and modified OntoNotes argument cloze
datasets. .. 67

4.2 Evaluation results on the modified OntoNotes datasets. 67
4.3 Evaluating on subsets of the OntoNotes datasets with more than one

missing argument in the query.. 68
4.4 Evaluating PAR on the G&C dataset. ... 71

5.1 Results on the LAMBADA task from major previous work.................. 79
5.2 Statistics of the LAMBADA dataset. ... 87
5.3 Main evaluation results on the LAMBADA test set 90
5.4 Does COREFALL learn coreference? Analysis on some dev subsets...... 93
5.5 Comparing the results of early supervision vs. late supervision. 93
5.6 Which layer to apply auxiliary supervision? .. 94
5.7 Evaluation results with different types of auxiliary supervision. 95

6.1 Overview of the datasets in the MRQA Task, from Fisch et al. (2019)... 102
6.2 Results of the two best performing participating systems and two

official baselines on MRQA... 103
6.3 Evaluation results on MRQA by integrating semantic knowledge. 112

ix

List of Figures

2.1 An example of coreference resolution. .. 12
2.2 An AMR annotation example in two notations. 15
2.3 Illustration of LSTM and GRU. ... 18
2.4 The seq2seq model and the attention mechanism................................. 20
2.5 The multi-head self-attention used in the transformer architecture,

from Vaswani et al. (2017). .. 22

3.1 An example of the narrative cloze task. .. 35
3.2 An example of the argument cloze task. ... 38
3.3 Diagram for the EVENTCOMP model. ... 41
3.4 An example of event-based word2vec training sequence 41
3.5 A training sample as a triple of events.. 42
3.6 Analysis on the performance of baselines and EVENTCOMP models ... 50
3.7 Event triples for training multi implicit argument prediction............... 52

4.1 The Attentive Reader model from Hermann et al. (2015). 56
4.2 An example of multi-hop inference in Memory Networks from

Sukhbaatar et al. (2015). .. 57
4.3 Revisit the argument cloze example in Figure 3.2. 59
4.4 Diagram for Pointer Attentive Reader (PAR). 61
4.5 An example of document-query pairs for predicates with more than

one implicit argument. .. 63
4.6 2-hop Pointer Attentive Reader .. 64
4.7 Analysis on the performance of EVENTCOMP and PAR....................... 68
4.8 The heatmap of attention scores on an OntoNotes example from the

PAR and 2-hop PAR models.. 69
4.9 The heatmap of attention scores on a G&C example from the PAR

and 2-hop PAR models. .. 72

5.1 The LISA model from Strubell et al. (2018). .. 77
5.2 An example from the LAMBADA dataset. ... 78
5.3 Diagrams of the original BIDAF model and two variants. 82

x

5.4 Examples of different types of auxiliary supervision for self-attention. 84
5.5 Does pre-processing quality affect performance? 91

6.1 A graphical illustration of the three alternatives of integrating se-
mantic knowledge... 107

7.1 A diagram of the proposed method to explicitly model events and
entities using semantic knowledge. .. 120

xi

Chapter 1

Introduction

In recent Natural Language Processing (NLP) research, we have seen substan-
tial progress in a wide range of semantic tasks (for example, question answering
and natural language inference), largely accredited to the development of power-
ful deep neural models and the fast-growing computing resources that facilitate
the training of large models with massive data. Many of these approaches take the
idea of end-to-end training, that is, to train a single neural network that takes the
raw text in its natural language form as input and directly produces task-specific
outputs (e.g., a label in a classification task, or a sequence of tokens in a genera-
tion task). However, current models often fail on problems where sophisticated
reasoning of the semantic structure is explicitly needed. In this thesis, we seek to
enhance the end-to-end training approach with different techniques for integrating
semantic knowledge.

The trend of end-to-end training paradigm in NLP is accelerated by the intro-
duction of pre-trained word embeddings (Mikolov et al., 2013, Pennington et al.,
2014) where words are mapped to dense vectors of real numbers as their meaning
representations, with the idea rooted from the hypothesis of distributional seman-
tics: “A word is characterized by the company it keeps” (Firth, 1957). These pre-
trained embeddings have been shown to greatly improve the performance in tasks
like syntactic parsing (Chen and Manning, 2014), text classification (Kim, 2014),
machine translation (Cho et al., 2014), named entity recognition (Lample et al.,
2016), question answering (Seo et al., 2017), and so on. Word embeddings are
adopted in place of the traditional feature engineering approach, with the expec-
tation that the dense vector for each word would capture most of the hand-crafted
features required for the end tasks.

There is one major limitation of the pre-trained word embeddings: They are
context-independent, in that the embedding vector for a word does not change
when the word is surrounded by different contexts. This is contradictory to the
fact that word meanings in natural language are highly context-sensitive. There-
fore, more recently we have seen a surge of pre-trained contextualized representa-
tions, including ELMo (Peters et al., 2018), GPT (Radford et al., 2018), BERT (Devlin

1

et al., 2019), and many others. The underlying idea is that, instead of learning a
fixed vector to represent each word, we learn a function (usually some variant of
a language model) that takes a word and its surrounding context and calculates a
context-dependent vector as the meaning representation for the word. While rely-
ing heavily on the scale of the language model (up to billions of parameters) and
the scale of the pre-training data (up to hundreds of Gigabytes of raw text), these
contextualized representations have achieved great success on many tasks (e.g., se-
mantic role labeling, textual entailment, reading comprehension, summarization,
commonsense reasoning), without the need of complex neural architectures on top
of them.

Although neural models powered by pre-trained embeddings are approaching
human performance on many natural language understanding tasks, like the ones
in the GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) benchmarks,
they do not necessarily understand the semantics of language. Jia and Liang (2017)
show that when an adversarial sentence irrelevant to the question is appended to
the passage in the SQuAD (Rajpurkar et al., 2016) reading comprehension dataset,
the average F1 score of sixteen published models drops significantly from 75% to
36%. Wallace et al. (2019) show that a lot of models can be deceived by a univer-
sal adversarial trigger. For example, a trigger consisting of some certain subword
tokens will lead the pre-trained GPT-2 model (Radford et al., 2018) to always gen-
erate racist output even when conditioned on non-racial contexts. Such findings
suggest that these models are probably only doing shallow pattern matching in-
stead of semantic reasoning on most of the tasks, and the success might be partly
due to easily exploitable biases in the datasets.

We argue that one important missing piece in more robust and generalizable
models is to learn latent representations from semantic knowledge. Namely, in
addition to training the model in an end-to-end fashion with the objective of some
downstream tasks, we should strengthen the model with linguistic knowledge of
semantic structure, for example, event structures, predicate-argument relations, or
entity coreference. Our hypothesis is that such semantic knowledge will introduce
beneficial inductive biases into the models and discourage them from exploiting
surface-level cues in the datasets.

We start by focusing on one certain type of semantic knowledge, the implicit

2

predicate-argument relation, as it is a widespread phenomena in natural language
while being understudied in recent research, partly due to the scarcity of training
data (Gerber and Chai, 2010). We propose a cloze task to create synthetic train-
ing data for the problem, and study two different approaches of learning latent
representations to infer implicit arguments from raw text. Both these approaches
benefit from the structural knowledge of events and entities, and we also find that
an auxiliary supervision derived from event structures on a multi-hop attention
mechanism greatly boost performance on the more challenging cases where an
event predicate has more than one implicit argument.

Then we shift our focus to models that take linguistic knowledge into account
in a more latent manner. We show that by applying semantic structure as super-
vision for self-attention computation, a relatively small model can achieve signifi-
cantly better results than the largest pre-trained GPT-2 model (Radford et al., 2018)
on the LAMBADA task (Paperno et al., 2016), a language modeling task that is
specifically designed to require the knowledge of broader discourse context in or-
der to make the correct prediction even for human subjects. We further extend the
idea to large-scale pre-trained language models, and discuss some ongoing exper-
iments on the MRQA 2019 Shared Task (Fisch et al., 2019) aimed at making BERT
(Devlin et al., 2019) more generalizable by injecting semantic knowledge during
fine-tuning.

1.1 Thesis Outline

The remainder of the thesis is organized as follows:

• In Chapter 2, we review the necessary background information to under-
stand this thesis, starting with a discussion on several semantic representa-
tions that we are interested in investigating. We also briefly review some
relevant neural network architectures. This chapter also discusses some re-
lated work on integrating knowledge into neural models.

• In Chapter 3, we introduce the task of inferring implicit arguments, and pro-
pose an argument cloze task to address the data sparsity issue in training
neural models. We also propose the EVENTCOMP model that draws on nar-
rative coherence and entity salience, and evaluate it on a naturally occurring

3

nominal implicit arguments dataset, as well as a larger synthetic evaluation
dataset based on argument cloze.

• In Chapter 4, we discuss some limitations of the argument cloze task and
modify the task accordingly. We propose a new model for implicit argu-
ments, the Pointer Attentive Reader, by casting the problem as reading com-
prehension to model global coherence, and demonstrate improved perfor-
mance on the same two evaluation datasets.

• In Chapter 5, we investigate whether semantic knowledge can be integrated
into neural models in a more latent manner. We experiment with several
types of semantic knowledge, and find that integrating the knowledge as
supervision for self-attention benefits downstream tasks that require long-
distance reasoning. On the LAMBADA dataset, we show that a relatively
small model enhanced with coreference knowledge achieves the new state-
of-the-art performance.

• In Chapter 6, we explore whether semantic knowledge can make large-scale
pre-trained language models more generalizable to unseen domains. We pro-
pose three methods of integrating semantic knowledge, and experiment on
the MRQA 2019 Shared task. We find that it is very hard to obtain significant
and consistent improvement across different pre-trained language models.

• In Chapter 7, we summarize our contributions and findings, and propose
some directions for further investigation.

1.2 List of Contributions

In the thesis, we make the following contributions.

Neural Models for Inferring Implicit Argument The problem of implicit argu-
ments has been regarded as a very hard problem in the literature, and most prior
work focuses on feature-based methods. We propose two neural models to in-
fer implicit arguments from raw text, building on the structural representation of
events and entities. The first model measures local narrative coherence between

4

pairs of events, while the second model captures global coherence between the
target event with the implicit arguments and all context events. Both these models
achieve good performance on the nominal implicit arguments dataset from Gerber
and Chai (2010).

The Argument Cloze Task One of the major obstacles in predicting implicit argu-
ments is the lack of training data, mainly due to the difficulty in human annotation.
We propose an argument cloze task to address the data sparsity issue, by randomly
removing an event argument that is part of a coreference chain, and then asking
the model to recover the removed argument. The task allows us to automatically
create large-scale training data from raw corpus data, after preprocessing the text
with off-the-shelf dependency parsing and coreference resolution tools. We show
that the synthetic training data, while being noisy, still enables us to train effective
neural models to infer implicit arguments.

We also create a synthetic evaluation dataset from the OntoNotes corpus (Hovy
et al., 2006), which contains gold annotations of dependency parses and corefer-
ence chains. This synthetic evaluation dataset is larger and more comprehensive
than existing human-annotated datasets, and is used for case analysis and ablation
studies to assess models’ performance.

Semantic Knowledge as Supervised Self-Attention We propose to integrate se-
mantic knowledge into neural models as supervision for self-attention. On the
LAMBADA task designed to require long-distance reasoning (Paperno et al., 2016),
we show that integrating the knowledge of coreference chains into a relatively
small model via supervised attention outperforms a much larger pre-trained lan-
guage model, demonstrating the efficacy of the proposed method.

Integrating Semantic Knowledge into Pre-trained Language Models We ex-
tend the idea of integrating semantic knowledge to large-scale pre-trained lan-
guage models like BERT (Devlin et al., 2019). In addition to using semantic knowl-
edge as supervision for self-attention, we explore two more alternatives of apply-
ing semantic knowledge: as edge probing instances in a multi-task learning objec-
tive, or as a semantically-informative masking strategy for language modeling. On

5

the MRQA 2019 Shared Task (Fisch et al., 2019) aimed at testing the generalization
capabilities of QA systems, we observe some improvement on the out-of-domain
performance of several BERT variants, though the improvement is inconsistent
and insignificant. We also analyze some possible shortcomings of our current ap-
proach, and discuss some future directions.

6

Chapter 2

Background

This thesis concerns learning better representations from semantic knowledge.
To give a background on related prior work critical to the topic, we begin with a
discussion on several semantic representations that we are interested in as “knowl-
edge”. We then introduce some neural network architectures that we investigate.
Finally, we review recent approaches of integrating knowledge into neural models.

This chapter is intended to give a general motivation and background useful
for understanding the original contributions in this thesis. Discussions on the more
detailed background and prior work will be presented in each subsequent chapter
individually.

2.1 Semantic Knowledge

By semantic knowledge, we mean the structural meaning representations of
words and sentences. Among the various types of meaning representations that
have been studied in the field of computational semantics, we primarily focus on
two of them: semantic roles, and coreference resolution. We also briefly discuss
Abstract Meaning Representation (AMR) at the end.

2.1.1 Semantic Roles

Semantic roles model the relations between event predicates and their partici-
pating arguments. For example, in the sentence:

(2.1) Alice gives Bob a book.

The predicate give has three arguments: Alice as the GIVER, Bob as the RECIPI-
ENT, and a book as the THINGGIVEN. This is considered a relaxed form of semantic
parsing, as it only requires filling a closed set of semantic roles with textual spans,
while semantic parsing converts the sentence in Example (2.1) into a fully sym-
bolic expression (as in Neo-Davidsonian event semantics (Davidson, 1967, Par-
sons, 1990)):

7

∃e, x. GIVE(e) ∧ GIVER(e, Alice) ∧ RECIPIENT(e, Bob)

∧ THINGGIVEN(e, x) ∧ BOOK(x)

Early work attempts to model the shared semantic properties of typical role
fillers across different predicates using a universal set of thematic roles (Fillmore,
1968), such as AGENT (the volitional causer of an event), THEME (the participant
mostly directly affected by an event), and INSTRUMENT (an instrument used in an
event). But it has proved difficult to define a standard set of roles that cover all
possible predicate-argument relations. Therefore, more recent work has focused
on alternative semantic role models that use role sets that are either verb-specific
or frame-specific, including the Proposition Bank (PropBank, Palmer et al., 2005)
and FrameNet (Baker et al., 1998).

PropBank Instead of trying to explicitly define thematic roles, Dowty (1991) pro-
poses the idea of proto-roles, with the observation that there often exists distinct
characteristics between the agent role and the patient role of an event. Therefore,
the more an argument displays agent-like properties (volitional involvement in
the event, causing an event of a change of state in another participant, being sen-
tient or intentionally involved, etc.), the more likely the argument can be labeled
as a proto-agent. Similarly, if an argument exhibits more patient-like properties
(undergoing change of state, causally affected by another participant, stationary
relative to other participants, etc.), it is more likely to be a proto-patient.

PropBank (Palmer et al., 2005) builds on this agent-patient distinction, and as-
signs a list of numbered roles to each verb, like ARG0, ARG1, ARG2, and so on.
Generally, ARG0 is the proto-agent, and ARG1 is the proto-patient. The semantics of
other roles are more specific to each sense of each verb. The definition of each role
is given as an informal gloss in frame files. For example, the roles of GIVE.01 (the
first sense of the verb give) are defined as:

• ARG0: giver

• ARG1: thing given

8

• ARG2: entity given to

Therefore, the sentence in Example (2.1) can be labeled as

(2.2) [ARG0 Alice] gives [ARG2 Bob] [ARG1 a book].

In addition to the numbered roles, PropBank also defines some non-numbered
roles (ARGM-*) for modification or adjunct meanings, for example, ARGM-TMP
(time), ARGM-LOC (location), ARGM-MNR (manner), and so on. These adjunct
roles are universal across all verbs and can be used in combination with any num-
bered roles. For example:

(2.3) [ARG0 Alice] studied in [ARGM-LOC the library] [ARGM-TMP yesterday].

The PropBank project annotates all verbs in all sentences in the Penn TreeBank
(PTB, Marcus et al., 1993). Another related project, NomBank (Meyers et al., 2004),
adds annotations to noun predicates, for example:

(2.4) [ARG0 Alice]’s gift of [ARG1 a book] to [ARG2 Bob] ...

FrameNet The FrameNet project (Baker et al., 1998, Fillmore, 1968) is another
attempt on addressing the shortcomings of defining a universal set of thematic
roles. Unlike PropBank, where definitions of semantic roles are specific to each
verb, FrameNet focuses on frame-specific roles. A frame is defined as of a set of
predicates (lexical units) that share some common background knowledge, and
a set of frame-specific semantic roles, called frame elements (including core el-
ements and non-core elements, which roughly correspond to the numbered and
adjunct roles in PropBank). Currently, there are about 1,000 frames and a corpus
of more than 100,000 “exemplar sentences” annotated in FrameNet.

For example, the GIVING frame includes lexical units like1: contribute.v, do-
nate.v, donation.n, gift.n, give.v, hand over.v, pass out.v, and so on. And the core
frame elements are defined as:

• DONOR: The person that begins in possession of the THEME and causes it to
be in the possession of the RECIPIENT.

1https://framenet.icsi.berkeley.edu/fndrupal/frameIndex

9

https://framenet.icsi.berkeley.edu/fndrupal/frameIndex

• RECIPIENT: The entity that ends up in possession of the THEME.

• THEME: The object that changes ownership.

Therefore, the following two sentences would have exactly the same annotations
in FrameNet:

(2.5)
a. [DONOR Alice] gives [RECIPIENT Bob] [THEME a book].
b. [DONOR Alice] hands [THEME a book] over to [RECIPIENT Bob].

Semantic Role Labeling The task of Semantic Role Labeling (SRL), is to auto-
matically identify the semantic roles of each argument of each predicate in a sen-
tence. The standard evaluation for SRL computes precision, recall, and F-measure
based on whether each word in the sentence is assigned the correct argument label.
The two most widely used datasets for evaluation are CoNLL-2005 (Carreras and
Màrquez, 2005), based on the PropBank corpus (Palmer et al., 2005), and CoNLL-
2012 (Pradhan et al., 2013), based on the OntoNotes corpus (Hovy et al., 2006).
Both these datasets adopt the PropBank style annotation scheme. Another evalua-
tion dataset, CoNLL-2009 (Hajič et al., 2009), differs from the former two in that it
only requires predicting the head word of an argument, rather than predicting the
whole argument span.

Early work (Gildea and Jurafsky, 2000; 2002) relied on the constituency tree of
the input sentence (either from an off-the-shelf parser or from human annotations
on PropBank), and views semantic role labeling as a feature-based classification
problem. To illustrate, the constituency tree will identify all predicates in the sen-
tence. Then, for every possible combination of a predicate and a constituent, the
model extracts a set of features to predict a semantic role label (or ∅ if the con-
stituent is not an argument of the predicate. Typical features include: the lemma
of the predicate verb and its part-of-speech (POS) tag, the type of the phrase (e.g.,
NP, PP), the head word of the constituent and its POS tag, the syntactic path from
the constituent to the predicate, and so on. Pradhan et al. (2005) also try extracting
syntactic features from the dependency parse of the sentence.

One major limitation of treating SRL as a classification problem is that some-
times the model output might violate some global constraints, for example, as-
signing the same label (e.g., ARG0) to multiple constituents, or assigning different

10

labels to overlapping constitutes. Therefore, some follow-up work performs con-
strained optimization as the last step to ensure global consistency. One common
choice is to use integer linear programming (ILP) to find the solution that conforms
best to the constraints (Punyakanok et al., 2008).

More recently, neural network approaches have been introduced to SRL, by
casting the problem as a sequence labeling task using the BIO notation2. In al-
gorithms like Zhou and Xu (2015), Marcheggiani et al. (2017), He et al. (2017;
2018), the input sentence is first encoded by multiple layers of bidirectional LSTM
(Hochreiter and Schmidhuber, 1997); then a constrained decoding layer is applied
on the LSTM output to produce valid BIO tags. Shi and Lin (2019) investigate the
use of large-scale pre-trained language models, like BERT (Devlin et al., 2019), and
achieve F1 scores close to 90 on benchmark SRL datasets. See Section 2.2 for a more
detailed discussion on these neural architectures.

2.1.2 Coreference Resolution

One of most prominent forms of ambiguity in natural language understanding
is “referential ambiguity”, that is, ambiguity in which mentions refer to which
entities or events. An example is shown in Figure 2.1. The individual spans in
brackets are called mentions or referring expressions. They can be pronouns (like
its, his), proper nouns (like Yasser Arafat’s Palestinian Authority, Israel), or nominals
(like the truce, his country). Two or more mentions are said to be coreferent, if
they refer to the same underlying entity, like Israel and his country. Each mention
has a (possibly empty) set of antecedents, which are preceding mentions that are
coreferent. The task of coreference resolution, is to group mentions that refer
to the same underlying entity. The set of coreferent mentions is often called a
coreference chain or a cluster. For example, in Figure 2.1, the truce and the cease-
fire form a coreference chain.

Coreference resolution is considered a very challenging problem. First, differ-
ent types of referring expressions require different types of reasoning: features
most useful for resolving the antecedents of pronouns might not work as well on

2The BIO notation represents each token as either the beginning of an argument (B), the inside
of an argument (I), or outside of all arguments (O). For example, the BIO tags for Example (2.2)
would be: Alice(B-ARG0) gives(O) Bob(B-ARG2) a(B-ARG1) book(I-ARG1).

11

The clashes took place as [Yasser Arafat's Palestinian Authority]1 reaffirmed [its]1

commitment to [the truce]2. [Israel]3 is to withdraw [its]3 forces from several areas

over the next two days, and [an Israeli official]4 says [[his]4 country]3 would

honor [the cease-fire]2 even if sporadic rock-throwing continues.

Cluster 1

* Yasser Arafat’s
Palestinian Authority
* its

Cluster 2

* the truce
* the cease-fire

Cluster 3

* Israel
* its
* his country

Cluster 4

* an Israeli official
* his

Figure 2.1: An example of coreference resolution from the OntoNotes corpus
(Hovy et al., 2006). Coreferring mentions are indicated by brackets with the
same subscript. Note that mentions may be nested. Mention clusters (coreference
chains) are color coded and shown at the bottom.

proper nouns and nominals. Also, linguistic knowledge from the text might not
be enough, and sometimes we need world knowledge to disambiguate sophisti-
cated coreferring mentions, as shown in the following example from the famous
Winograd Schema Challenge (Winograd, 1972):

(2.6)

a. The city council denied the demonstrators a permit because they
feared violence.
b. The city council denied the demonstrators a permit because they
advocated violence.

In (a), the antecedent for the pronoun they is the city council, while in (b), it
is the demonstrators. This requires understanding that city councils are perhaps
more likely to fear violence while demonstrators might be more likely to advocate
violence.

Task and Evaluation To formalize the task of coreference resolution: for each
mention mi from the text, assign it to a cluster zi such that zi = zj if mi and mj

are coreferent, or assign it to ∅ if it refers to a “singleton” entity (an entity that
is mentioned only once). The task can thus be viewed as a structured prediction
problem with two stages: identifying all entity mentions from the text (mention

12

detection), and grouping the detected mentions into clusters (mention clustering).
We will briefly discuss these two stages in following paragraphs.

The most popular benchmark dataset for coreference resolution is the CoNLL-
2012 Shared Task (Pradhan et al., 2012), which is derived from the OntoNotes
corpus (Hovy et al., 2006). To evaluate a coreference system, we compare a set
of hypothesis clusters produced by the system against a set of gold clusters from
human annotations. However, the comparison is not trivial, and there exists a
wide variety of metrics for doing this comparison. Following Denis and Baldridge
(2009), the CoNLL-2012 Shared Task evaluates participating systems using three of
the most popular metrics: MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
and Entity-based CEAF (Luo, 2005). The average F1 score of these three metrics is
also reported (commonly referred to as CoNLL F1).

Mention Detection Some prior work on mention detection (Lee et al., 2013, Dur-
rett and Klein, 2013) chooses a deterministic approach, by starting with all noun
phrases and named entities and then applying some heuristics to prune them. This
might be problematic, as false negative mentions cannot be recovered from the sec-
ond stage of mention clustering. An alternative (Lee et al., 2017) is to consider all
spans up to a certain length as mention candidates, and perform mention detection
and clustering in a joint fashion.

Mention Clustering There have been several different classes of models for men-
tion clustering. The mention-pair model (Soon et al., 2001) predicts a binary label
yi,j ∈ {0, 1} for each pair of mentions (mi,mj) where i < j on whether mi is an
antecedent of mj . The main shortcoming of this model is that it makes classifica-
tions on each pair of mentions independently, without taking into account global
information on other mentions and entities.

A subsequent approach, the mention-rank model (Denis and Baldridge, 2008,
Rahman and Ng, 2009, Durrett and Klein, 2013, Lee et al., 2017), compares all an-
tecedent candidates for each mention: For each mention mi, the model performs
a multi-class classification among {m1, . . . ,mi−1,∅} to determine the correct an-
tecedent, where m1, . . . ,mi−1 are the list of preceding mentions, and ∅ indicates
that mi does not have any antecedent (thus is the first mention of a new cluster).

13

Another alternative is the entity-based model (Rahman and Ng, 2009, Clark
and Manning, 2015; 2016): Instead of predicting whether two mentions are coref-
erent, a classifier is trained to decide whether a mention mk is coreferent with a
partial cluster cj that precedes mk, or whether two partial clusters ci and cj should
be merged.

Neural Network Approaches More recently, neural network models have been
adopted for coreference resolution, and show rapid progress on benchmark per-
formance. Clark and Manning (2016) represent mentions and entities as distribu-
tional vectors instead of hand-crafted feature sets. Lee et al. (2017; 2018) propose
an end-to-end approach combined with the ELMo embeddings (Peters et al., 2018),
and for the first time achieve a CoNLL F1 score above 70. Joshi et al. (2019; 2020)
further improve the system by integrating large-scale pre-trained language models
like BERT (Devlin et al., 2019) and SpanBERT. Wu et al. (2020) achieve a CoNLL
F1 score of 83.1 by formulating the problem as a span prediction task like in ma-
chine reading comprehension, which is, to the best of our knowledge, the current
state-of-the-art performance on the CoNLL-2012 Shared Task.

2.1.3 Abstract Meaning Representation

Traditional SRL annotation schemes, like PropBank and FrameNet, do not pro-
vide a unified view of all predicate-argument relations in a sentence. For example,
consider the following sentence:

(2.7) The dog wants the boy to feed him.

PropBank would label this sentence as the following two propositions:

(2.8)
a. [ARG0 The dog] wants [ARG1 the boy to feed him].
b. The dog wants [ARG0 the boy] to feed [ARG1 him].

The Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is an
effort to merge these scattered annotations into a single graph structure for each
sentence. Figure 2.2 shows an example of AMR in two notations: the PENMAN
notation (Matthiessen and Bateman, 1991), and the graph notation.

14

(w / want-01
 : ARG0 (d / dog)
 : ARG1 (f / feed-01
 : ARG0 (b / boy)
 : ARG2 d))

(a) The PENMAN notation.

w / want-01

d / dog

b / boy

f / feed-01

ARG0 ARG1

ARG0ARG2

(b) The graph notation.

Figure 2.2: An AMR annotation example in two notations.

In the AMR graph, each node is a variable, and each variable is an instance
of a concept. This is represented by the slash notation, for example, w / want-01
indicates that a variable w is an instance of the concept want-01. Variables can be
reused, so that when we know that him refers to the dog, we can use the variable d
to represent it in the graph. This also allows us to model intra-sentence coreference
relations.

While AMR is a powerful meaning representation, it is also so comprehensive
that it is very hard to train a parser to predict the graph. Even evaluating AMR
parsing involves very complex algorithms (Cai and Knight, 2013). Early work on
AMR parsing try graph-based models (Flanigan et al., 2014) or transition-based
models (Wang et al., 2015) with hand-crafted features. More recently, Zhang et al.
(2019a) introduce a neural parser for AMR by casting the problem as a sequence-
to-graph transduction. However, these models generally do not work well on out-
of-domain text, thus limiting its application to downstream tasks.

In this thesis, we do not directly use AMR graphs as semantic knowledge. In
Chapter 5 and Chapter 6, we try combining the knowledge of predicate-argument
relations and coreference relations, which can be loosely viewed as an approxima-
tion for AMR.

2.2 Neural Network Architectures

In this thesis, we experiment with several different types of neural networks.
Here, we briefly review the basics of relevant neural architectures. More detailed

15

discussions on how these architectures are adapted to each problem are provided
in subsequent chapters.

2.2.1 Sequence Modeling

Recurrent Neural Networks By nature, language is a sequence of variable length
that unfolds in time, and traditional feedforward neural networks cannot handle
such variable length input. Therefore, the recurrent neural networks (RNNs) are
proposed to address this limitation, by introducing a recurrent connection on the
hidden states from the previous time step to the current time step. The simplest
form of RNN is called the vanilla RNN (or Elman Networks, Elman, 1990). To
illustrate, we denote the inputs as {xt}Tt=1, the outputs as {yt}Tt=1, and the hidden
states as {ht}Tt=1. At time step t, the Elman unit performs the following computa-
tion:

ht = f(U · ht−1 +W · xt)
yt = g(V · ht)

(2.1)

where f and g are non-linear transformation functions, U,W, V are trainable pa-
rameters. That is, at each time step, we update the hidden state based on the input
state from the current time step and the hidden state from the previous time step.

In practice, two RNN architectures are often explored:

• Stacked RNN: We can stage multiple RNN layers together, using the hidden
states of one layer as the input to a subsequent layer. To illustrate, assuming
a stacked RNN with two layers, and the hidden states of each layer denoted
as {h1t}Tt=1 and {h2t}Tt=1 respectively, then we have

h1t = f(U1 · h1t−1 +W 1 · xt)
h2t = f(U2 · h2t−1 +W 2 · h1t)
yt = g(V · h2t)

(2.2)

• Bidirectional RNN: The vanilla RNN assumes that the hidden state at any
time step depend only on the left context. In many application where the
whole sequence is provided at once, information form the right context might

16

also be beneficial. Therefore, the bidirectional RNN can be viewed as the
combination of a forward RNN and a backward RNN:

−→
ht = f(U1 · ht−1 +W 1 · xt)
←−
ht = f(U2 · ht+1 +W 2 · xt)
ht =

−→
ht ⊕

←−
ht

(2.3)

where ⊕ denotes vector concatenation.

RNNs can be trained via back-propagation through time (BPTT), by unrolling
all recurrent connections to form a big computation graph. However, on long se-
quence inputs, the gradients on early time steps are usually driven to zero, lead-
ing to the “vanishing gradients” problem. To overcome this issue, more complex
variants have been designed with gating mechanisms, like the Long-short Term
Memory networks (LSTMs, Hochreiter and Schmidhuber, 1997) and the Gated
Recurrent Units (GRUs, Cho et al., 2014).

LSTMs In addition to the hidden states {ht}Tt=1, LSTMs add a set of memory cells
{ct}Tt=1, and three gating functions: the forget gate ft, the input gate it, and the output
gate ot. The update equations are:

ft = σ(Uf · ht−1 +Wf · xt) forget gate

it = σ(Ui · ht−1 +Wi · xt) input gate

c̃t = tanh(Uc · ht−1 +Wc · xt) update candidate

ct = ft � ct−1 + it � c̃t memory cell update

ot = σ(Uo · ht−1 +Wo · xt) output gate

ht = ot � tanh(Ct) output

(2.4)

where � is element-wise product. To explain, the forget gate controls what to carry
from the previous memory cell; the input gate controls what to add from the current
input; and finally, the output gate controls what to include in the hidden state. See
Figure 2.3a for a graphical illustration.

17

σ

<latexit sha1_base64="optMtSBkgWPvZWYKLyM1cOgwF9Y=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKIHoLePEYwTwgWcLsZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ETaUM0lblllOu4mmWEScdqLJ7dzvPFFtmJIPdprQUOCRZDEj2Dqp3TdsJPCgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MbXYcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJ+6oa1Ko397VKw8/jKMIZnMMlBFCHBtxBE1pA4BGe4RXePOW9eO/ex7K14OUzp/AH3ucPmtWPHQ==</latexit>

+

<latexit sha1_base64="KtBECXwvZafh7uMIhHkIBDXKJrU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjct+qexW3DnIKvFyUoYc9X7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/NApObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZoQ/CWX14lrauKV63cNqrlmpvHUYBTOIML8OAaanAPdWgCA4RneIU359F5cd6dj0XrmpPPnMAfOJ8/b/uMqQ==</latexit>

×

<latexit sha1_base64="FACCjZDEUqOvoT1DVR39XiCojt0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGMA9IljA7mU3GzM4sM71CCPkHLx4U8er/ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVYPOE55mNCBErFgFJ3U7KJIuO2VK37Vn4OskiAnFchR75W/un3NsoQrZJJa2wn8FMMJNSiY5NNSN7M8pWxEB7zjqKJuSTiZXzslZ07pk1gbVwrJXP09MaGJteMkcp0JxaFd9mbif14nw/g6nAiVZsgVWyyKM0lQk9nrpC8MZyjHjlBmhLuVsCE1lKELqORCCJZfXiXNi2pwWb25v6zU/DyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp70X7937WLQWvHzmGP7A+/wBtKGPLg==</latexit>

ht−1

<latexit sha1_base64="JK16rGFuT1aXm9yOZsGXte4zXXU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRQvVW8OKxgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1PY2Nza3inulvb2Dw6PyscnbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5G7ud564NiJWjzhNuB/RkRKhYBSt1BkPMrzyZoNyxa26C5B14uWkAjmag/JXfxizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8W587IhVWGJIy1LYVkof6eyGhkzDQKbGdEcWxWvbn4n9dLMbzxM6GSFLliy0VhKgnGZP47GQrNGcqpJZRpYW8lbEw1ZWgTKtkQvNWX10n7uurVqrcPtUrDzeMowhmcwyV4UIcG3EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/4Y49L</latexit>

xt

<latexit sha1_base64="XouZi0CaU04tghdiVOhpWuAsDaU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWtB/QhrLZbtqlm03YnYgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89iPXRsTqAScJ9yM6VCIUjKKV7p/62C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuql6ten1Xq9TdPI4inMApnIMHl1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBvso3d</latexit>

ct−1

<latexit sha1_base64="NyIWVstW5QJrN81/N93NLElrD58=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRQvVW8OKxgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1PY2Nza3inulvb2Dw6PyscnbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5G7ud564NiJWjzhNuB/RkRKhYBSt1GGDDK+82aBccavuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFuTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9OhkJzhnJqCWVa2FsJG1NNGdqESjYEb/XlddK+rnq16u1DrdJw8ziKcAbncAke1KEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QPwsY9G</latexit>

tanh

<latexit sha1_base64="WnfoSiOb4Mfu/gG82+v6wpZavTA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNO7uZ+54lrIxL1iNOUBzEdKREJRtFKfh+pGg+qNbfuLkDWiVeQGhRoDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfHDsjF1YZkijRthSShfp7IqexMdM4tJ0xxbFZ9ebif14vw+gmyIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2JD8FZfXiftq7rXqN8+NGpNt4ijDGdwDpfgwTU04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfZMI6t</latexit>

tanh

<latexit sha1_base64="WnfoSiOb4Mfu/gG82+v6wpZavTA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNO7uZ+54lrIxL1iNOUBzEdKREJRtFKfh+pGg+qNbfuLkDWiVeQGhRoDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfHDsjF1YZkijRthSShfp7IqexMdM4tJ0xxbFZ9ebif14vw+gmyIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2JD8FZfXiftq7rXqN8+NGpNt4ijDGdwDpfgwTU04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfZMI6t</latexit>

ft

<latexit sha1_base64="NYtWS2LsedqPT0Sv0zF1rxt9FBA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPYQDHJQrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4bWfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9WvbmvVRpuHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP1RGjcs=</latexit>

it

<latexit sha1_base64="49eZ9w+4sC0R+KRFGXaWZOur7yA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPYgBDsoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqler3tzXKg03j6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH1jYjc4=</latexit>

ot

<latexit sha1_base64="miLGIzA0miBFhcOlyIo1t17qs9E=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGNA9IljA7mU2GzM4sM71CCPkELx4U8eoXefNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVaPOE55mNCBErFgFJ30oHvYK1f8qj8HWSVBTiqQo94rf3X7mmUJV8gktbYT+CmGE2pQMMmnpW5meUrZiA54x1FFE27DyfzUKTlzSp/E2rhSSObq74kJTawdJ5HrTCgO7bI3E//zOhnG1+FEqDRDrthiUZxJgprM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5Ug8vqzf1lpebncRThBE7hHAK4ghrcQR0awGAAz/AKb570Xrx372PRWvDymWP4A+/zB2H8jdQ=</latexit>

c̃t

<latexit sha1_base64="DxHAro7MK1LqQscpgx2nGYRvGTk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWsB/QhrLZbNqlm2zYnQgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QSqFQdf9dkobm1vbO+Xdyt7+weFR9fikY1SmGW8zJZXuBdRwKRLeRoGS91LNaRxI3g0md3O/+8S1ESp5xGnK/ZiOEhEJRtFK/QEKGfKczYY4rNbcursAWSdeQWpQoDWsfg1CxbKYJ8gkNabvuSn6OdUomOSzyiAzPKVsQke8b2lCY278fHHyjFxYJSSR0rYSJAv190ROY2OmcWA7Y4pjs+rNxf+8fobRjZ+LJM2QJ2y5KMokQUXm/5NQaM5QTi2hTAt7K2FjqilDm1LFhuCtvrxOOld1r1G/fWjUmm4RRxnO4BwuwYNraMI9tKANDBQ8wyu8Oei8OO/Ox7K15BQzp/AHzucPs6CRfg==</latexit>

σ

<latexit sha1_base64="optMtSBkgWPvZWYKLyM1cOgwF9Y=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKIHoLePEYwTwgWcLsZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ETaUM0lblllOu4mmWEScdqLJ7dzvPFFtmJIPdprQUOCRZDEj2Dqp3TdsJPCgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MbXYcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJ+6oa1Ko397VKw8/jKMIZnMMlBFCHBtxBE1pA4BGe4RXePOW9eO/ex7K14OUzp/AH3ucPmtWPHQ==</latexit>

σ

<latexit sha1_base64="optMtSBkgWPvZWYKLyM1cOgwF9Y=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKIHoLePEYwTwgWcLsZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ETaUM0lblllOu4mmWEScdqLJ7dzvPFFtmJIPdprQUOCRZDEj2Dqp3TdsJPCgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MbXYcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJ+6oa1Ko397VKw8/jKMIZnMMlBFCHBtxBE1pA4BGe4RXePOW9eO/ex7K14OUzp/AH3ucPmtWPHQ==</latexit>

ht

<latexit sha1_base64="o1gWtvFxZos8dGKqfL52Rep5hE8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPYwHOChX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvql6tenNfqzTcPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBXUo3N</latexit>

ct

<latexit sha1_base64="kPvcQgLjYp35MkMYY1zr2w8IpPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPbABDsoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NrPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqler3tzXKg03j6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH0+0jcg=</latexit>

×

<latexit sha1_base64="FACCjZDEUqOvoT1DVR39XiCojt0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGMA9IljA7mU3GzM4sM71CCPkHLx4U8er/ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVYPOE55mNCBErFgFJ3U7KJIuO2VK37Vn4OskiAnFchR75W/un3NsoQrZJJa2wn8FMMJNSiY5NNSN7M8pWxEB7zjqKJuSTiZXzslZ07pk1gbVwrJXP09MaGJteMkcp0JxaFd9mbif14nw/g6nAiVZsgVWyyKM0lQk9nrpC8MZyjHjlBmhLuVsCE1lKELqORCCJZfXiXNi2pwWb25v6zU/DyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp70X7937WLQWvHzmGP7A+/wBtKGPLg==</latexit>

×

<latexit sha1_base64="FACCjZDEUqOvoT1DVR39XiCojt0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGMA9IljA7mU3GzM4sM71CCPkHLx4U8er/ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVYPOE55mNCBErFgFJ3U7KJIuO2VK37Vn4OskiAnFchR75W/un3NsoQrZJJa2wn8FMMJNSiY5NNSN7M8pWxEB7zjqKJuSTiZXzslZ07pk1gbVwrJXP09MaGJteMkcp0JxaFd9mbif14nw/g6nAiVZsgVWyyKM0lQk9nrpC8MZyjHjlBmhLuVsCE1lKELqORCCJZfXiXNi2pwWb25v6zU/DyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp70X7937WLQWvHzmGP7A+/wBtKGPLg==</latexit>

ht

<latexit sha1_base64="o1gWtvFxZos8dGKqfL52Rep5hE8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPYwHOChX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvql6tenNfqzTcPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBXUo3N</latexit>

(a) The LSTM Unit.

+

<latexit sha1_base64="KtBECXwvZafh7uMIhHkIBDXKJrU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSIIQkmkoN4KXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKjct+qexW3DnIKvFyUoYc9X7pqzeIWRqhNExQrbuemxg/o8pwJnBa7KUaE8rGdIhdSyWNUPvZ/NApObfKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZoQ/CWX14lrauKV63cNqrlmpvHUYBTOIML8OAaanAPdWgCA4RneIU359F5cd6dj0XrmpPPnMAfOJ8/b/uMqQ==</latexit>

×

<latexit sha1_base64="FACCjZDEUqOvoT1DVR39XiCojt0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGMA9IljA7mU3GzM4sM71CCPkHLx4U8er/ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVYPOE55mNCBErFgFJ3U7KJIuO2VK37Vn4OskiAnFchR75W/un3NsoQrZJJa2wn8FMMJNSiY5NNSN7M8pWxEB7zjqKJuSTiZXzslZ07pk1gbVwrJXP09MaGJteMkcp0JxaFd9mbif14nw/g6nAiVZsgVWyyKM0lQk9nrpC8MZyjHjlBmhLuVsCE1lKELqORCCJZfXiXNi2pwWb25v6zU/DyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp70X7937WLQWvHzmGP7A+/wBtKGPLg==</latexit>

xt

<latexit sha1_base64="XouZi0CaU04tghdiVOhpWuAsDaU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWtB/QhrLZbtqlm03YnYgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89iPXRsTqAScJ9yM6VCIUjKKV7p/62C9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuql6ten1Xq9TdPI4inMApnIMHl1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBvso3d</latexit>

tanh

<latexit sha1_base64="WnfoSiOb4Mfu/gG82+v6wpZavTA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNO7uZ+54lrIxL1iNOUBzEdKREJRtFKfh+pGg+qNbfuLkDWiVeQGhRoDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfHDsjF1YZkijRthSShfp7IqexMdM4tJ0xxbFZ9ebif14vw+gmyIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2JD8FZfXiftq7rXqN8+NGpNt4ijDGdwDpfgwTU04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfZMI6t</latexit>

σ

<latexit sha1_base64="optMtSBkgWPvZWYKLyM1cOgwF9Y=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKIHoLePEYwTwgWcLsZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ETaUM0lblllOu4mmWEScdqLJ7dzvPFFtmJIPdprQUOCRZDEj2Dqp3TdsJPCgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MbXYcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJ+6oa1Ko397VKw8/jKMIZnMMlBFCHBtxBE1pA4BGe4RXePOW9eO/ex7K14OUzp/AH3ucPmtWPHQ==</latexit>

σ

<latexit sha1_base64="optMtSBkgWPvZWYKLyM1cOgwF9Y=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKIHoLePEYwTwgWcLsZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5VqQltEcaW7ETaUM0lblllOu4mmWEScdqLJ7dzvPFFtmJIPdprQUOCRZDEj2Dqp3TdsJPCgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MbXYcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJ+6oa1Ko397VKw8/jKMIZnMMlBFCHBtxBE1pA4BGe4RXePOW9eO/ex7K14OUzp/AH3ucPmtWPHQ==</latexit>

×

<latexit sha1_base64="FACCjZDEUqOvoT1DVR39XiCojt0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGMA9IljA7mU3GzM4sM71CCPkHLx4U8er/ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVYPOE55mNCBErFgFJ3U7KJIuO2VK37Vn4OskiAnFchR75W/un3NsoQrZJJa2wn8FMMJNSiY5NNSN7M8pWxEB7zjqKJuSTiZXzslZ07pk1gbVwrJXP09MaGJteMkcp0JxaFd9mbif14nw/g6nAiVZsgVWyyKM0lQk9nrpC8MZyjHjlBmhLuVsCE1lKELqORCCJZfXiXNi2pwWb25v6zU/DyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp70X7937WLQWvHzmGP7A+/wBtKGPLg==</latexit>

×

<latexit sha1_base64="FACCjZDEUqOvoT1DVR39XiCojt0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGMA9IljA7mU3GzM4sM71CCPkHLx4U8er/ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR7cxvPXFjhVYPOE55mNCBErFgFJ3U7KJIuO2VK37Vn4OskiAnFchR75W/un3NsoQrZJJa2wn8FMMJNSiY5NNSN7M8pWxEB7zjqKJuSTiZXzslZ07pk1gbVwrJXP09MaGJteMkcp0JxaFd9mbif14nw/g6nAiVZsgVWyyKM0lQk9nrpC8MZyjHjlBmhLuVsCE1lKELqORCCJZfXiXNi2pwWb25v6zU/DyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp70X7937WLQWvHzmGP7A+/wBtKGPLg==</latexit>

ht

<latexit sha1_base64="o1gWtvFxZos8dGKqfL52Rep5hE8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPYwHOChX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbSvql6tenNfqzTcPI4inME5XIIHdWjAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBXUo3N</latexit>

ht−1

<latexit sha1_base64="JK16rGFuT1aXm9yOZsGXte4zXXU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRQvVW8OKxgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1PY2Nza3inulvb2Dw6PyscnbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5G7ud564NiJWjzhNuB/RkRKhYBSt1BkPMrzyZoNyxa26C5B14uWkAjmag/JXfxizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8W587IhVWGJIy1LYVkof6eyGhkzDQKbGdEcWxWvbn4n9dLMbzxM6GSFLliy0VhKgnGZP47GQrNGcqpJZRpYW8lbEw1ZWgTKtkQvNWX10n7uurVqrcPtUrDzeMowhmcwyV4UIcG3EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w/4Y49L</latexit>

1−

<latexit sha1_base64="tX1ycq/Hd3hUXSTZZt5YJLFkUgM=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgxbArAfUW8OIxinlAsoTZyWwyZHZmmZkVwhLwA7zqJ3gTr/6KX+BvOJvswSQWNBRV3XR3BTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfJv57SeqNJPi0Uxi6kd4KFjICDZWevAu+uWKW3VnQKvEy0kFcjT65Z/eQJIkosIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupwBHVfjq7dIrOrDJAoVS2hEEz9e9EiiOtJ1FgOyNsRnrZy8T/vG5iwms/ZSJODBVkvihMODISZW+jAVOUGD6xBBPF7K2IjLDCxNhwFrbEmNtshJzaZLzlHFZJ67Lq1ao397VK3c0zKsIJnMI5eHAFdbiDBjSBQAgv8ApvzrPz7nw4n/PWgpPPHMMCnK9f50WWKQ==</latexit>

rt

<latexit sha1_base64="ky9/83jWPbeinf/+SCr6wBujxmA=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjxGNA9IljA7mU2GzM4uM71CWHLwA7zqJ3gTr36KX+BvOEn2YBILGoqqbrq7gkQKg6777RTW1jc2t4rbpZ3dvf2D8uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup36rSeujYjVI44T7kd0oEQoGEUrPege9soVt+rOQFaJl5MK5Kj3yj/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiFnVumTMNa2FJKZ+ncio5Ex4yiwnRHFoVn2puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU1nYUtCpQ1HxRObjLecwyppXlS9y+rN/WWl5uYZFeEETuEcPLiCGtxBHRrAYAAv8ApvzrPz7nw4n/PWgpPPHMMCnK9ffn+XGg==</latexit>

zt

<latexit sha1_base64="sqP8IYvnGoZkTRbis5CzpC6iOnc=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvHiMaB6QLGF2MkmGzM4uM71CXHLwA7zqJ3gTr36KX+BvOEn2YBILGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zUeujYjUA45j7od0oERfMIpWun/qYrdYcsvuDGSVeBkpQYZat/jT6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyZpUe6UfalkIyU/9OpDQ0ZhwGtjOkODTL3lT8z2sn2L/yU6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCms7AlptKGo6KJTcZbzmGVNC7KXqV8fVcpVd0sozycwCmcgweXUIVbqEEdGAzgBV7hzXl23p0P53PemnOymWNYgPP1C4tXlyI=</latexit>

h̃t

<latexit sha1_base64="ibaj1aRzAzhO5PTcMKJLS4zbAuQ=">AAACB3icbVBLSgNBEO2Jvxh/UZduGoPgKsxIQN0F3LiMYD4wGUJPT0/SpKd76K4RwpADeAC3egR34tZjeAKvYSeZhUl8UPB4r4qqemEquAHX/XZKG5tb2zvl3cre/sHhUfX4pGNUpilrUyWU7oXEMMElawMHwXqpZiQJBeuG47uZ331i2nAlH2GSsiAhQ8ljTglYye8DFxHLR9MBDKo1t+7OgdeJV5AaKtAaVH/6kaJZwiRQQYzxPTeFICcaOBVsWulnhqWEjsmQ+ZZKkjAT5POTp/jCKhGOlbYlAc/VvxM5SYyZJKHtTAiMzKo3E//z/AzimyDnMs2ASbpYFGcCg8Kz/3HENaMgJpYQqrm9FdMR0YSCTWlpS0qEDUmqqU3GW81hnXSu6l6jfvvQqDXdIqMyOkPn6BJ56Bo10T1qoTaiSKEX9IrenGfn3flwPhetJaeYOUVLcL5+ARp3msY=</latexit>

(b) The GRU Unit.

Figure 2.3: Illustration of LSTM and GRU. Reproduced from Christopher Olah’s
blog post: https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

GRUs LSTMs introduce considerably more parameters compared to the vanilla
RNN, leading to high memory footprint and time cost. To simplify, Cho et al. (2014)
introduce the Gated Recurrent Units, by removing the need for memory cells and
reducing the number of gates. The underlying idea is quite similar, with the reset
gate controlling what to carry from the previous hidden state, and the update gate
controlling what to add from the current input. A graphical illustration is shown
in Figure 2.3b, with the equations as follows:

rt = σ(Ur · ht−1 +Wr · xt) reset gate

zt = σ(Uz · ht−1 +Wz · xt) update gate

h̃t = tanh(U·(rt · ht−1) +W · xt) output candidate

ht = (1− zt)� ht−1 + zt � h̃t output

(2.5)

2.2.2 Attention & Transformer

Seq2seq & Attention Recurrent neural networks have been widely used on nat-
ural language input, mostly in two ways:

• as a transducer (i.e., to produce one output for each input token), for exam-
ple, in language modeling (Mikolov et al., 2010, Sundermeyer et al., 2012), or
in sequence labeling tasks like part-of-speech tagging (Plank et al., 2016) and
named entity recognition (Lample et al., 2016);

18

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• or as a sequence encoder (i.e., to compress the whole input sequence into a
fixed-size vector), for example, in machine translation (Sutskever et al., 2014),
sentiment analysis (Dai and Le, 2015), and natural language inference (Bow-
man et al., 2015).

In the second approach, early methods simply use the last hidden state of RNN
hT as the representation for the whole sequence (or the concatenation of the last
hidden states of the forward direction and the backward direction in bidirectional
models:

−→
hT ‖

←−
h1). However, a fixed-size vector does not scale up to represent an

arbitrarily long sequence. Also, for problems like machine translation where the
RNNs are typically employed in a encoder-decoder (also called seq2seq) architec-
ture (Sutskever et al., 2014), that is, to first encode a variable-length input into a
fixed-size vector, and then decode the vector back into a variable-length output (as
shown in Figure 2.4a), this becomes more problematic as it is hard even for LSTMs
to keep track of information over many time steps.

Bahdanau et al. (2015) propose the attention mechanism to allow the model to
“look back” at any hidden state of the input sequence, as shown in Figure 2.4b. To
illustrate, denote the encoder hidden states as {hi} and the decoder hidden states
as {h̄j}. In the standard seq2seq model, at decoder time step j, we use the output
from the previous time step yj−1 as input to update the RNN state:

h̄j = f(h̄j−1, yj−1) (2.6)

where the function f depends on the type of RNN being used (i.e., vanilla RNN,
LSTM, or GRU), as discussed in Subsection 2.2.1. The attention mechanism adds
an extra context vector cj as input to function f :

h̄j = f(h̄j−1, yj−1, cj) (2.7)

To get the context vector cj , we first compute an attention score between the last
decoder state h̄j−1 and every encoder state {hi}Ti=1, then use the normalized atten-

19

le film était superthe movie was great <bos>

le film était super <eos>

h̄1

<latexit sha1_base64="HJtbNT0mgfA0mBxto2QEtOSDSeU=">AAACBXicbVDLSgNBEJz1GeMr6tHLYBA8hV0JqLeAF48RzEOSJfROJsmQeSwzs0JY9uwHeNVP8CZe/Q6/wN9wkuzBJBY0FFXddHdFMWfG+v63t7a+sbm1Xdgp7u7tHxyWjo6bRiWa0AZRXOl2BIZyJmnDMstpO9YURMRpKxrfTv3WE9WGKflgJzENBQwlGzAC1kmP3Qh0Osp6Qa9U9iv+DHiVBDkpoxz1Xumn21ckEVRawsGYTuDHNkxBW0Y4zYrdxNAYyBiGtOOoBEFNmM4OzvC5U/p4oLQrafFM/TuRgjBmIiLXKcCOzLI3Ff/zOokdXIcpk3FiqSTzRYOEY6vw9HvcZ5oSyyeOANHM3YrJCDQQ6zJa2BIDdxFJlblkguUcVknzshJUKzf31XKtmmdUQKfoDF2gAF2hGrpDddRABAn0gl7Rm/fsvXsf3ue8dc3LZ07QAryvX/0fmZY=</latexit>

h̄2

<latexit sha1_base64="hkN+W3F7OSZct3sOBQ4ewRuHScU=">AAACBXicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLePEYwTwkWcLsZDYZMjO7zMwKYdmzH+BVP8GbePU7/AJ/w0myB5NY0FBUddPdFcScaeO6305hY3Nre6e4W9rbPzg8Kh+ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJrczv/NElWaRfDDTmPoCjyQLGcHGSo/9AKt0nA1qg3LFrbpzoHXi5aQCOZqD8k9/GJFEUGkIx1r3PDc2foqVYYTTrNRPNI0xmeAR7VkqsaDaT+cHZ+jCKkMURsqWNGiu/p1IsdB6KgLbKbAZ61VvJv7n9RITXvspk3FiqCSLRWHCkYnQ7Hs0ZIoSw6eWYKKYvRWRMVaYGJvR0pYYcxuRjDKbjLeawzpp16pevXpzX6806nlGRTiDc7gED66gAXfQhBYQEPACr/DmPDvvzofzuWgtOPnMKSzB+foF/riZlw==</latexit>

h̄3

<latexit sha1_base64="z4QI0TKK9dYa2eM9MiW9cK4wlZw=">AAACBXicbVDLSgNBEJyNrxhfUY9eBoPgKexqQL0FvHiMYB6SLKF3MpsMmZldZmaFsOzZD/Cqn+BNvPodfoG/4STZg0ksaCiquunuCmLOtHHdb6ewtr6xuVXcLu3s7u0flA+PWjpKFKFNEvFIdQLQlDNJm4YZTjuxoiACTtvB+Hbqt5+o0iySD2YSU1/AULKQETBWeuwFoNJR1r/slytu1Z0BrxIvJxWUo9Ev//QGEUkElYZw0LrrubHxU1CGEU6zUi/RNAYyhiHtWipBUO2ns4MzfGaVAQ4jZUsaPFP/TqQgtJ6IwHYKMCO97E3F/7xuYsJrP2UyTgyVZL4oTDg2EZ5+jwdMUWL4xBIgitlbMRmBAmJsRgtbYuA2IhllNhlvOYdV0rqoerXqzX2tUq/lGRXRCTpF58hDV6iO7lADNRFBAr2gV/TmPDvvzofzOW8tOPnMMVqA8/ULAGCZmA==</latexit>

h̄4

<latexit sha1_base64="N0r/aQwiR8n6SdHYdh2hDfz6RsQ=">AAACBXicbVDLSsNAFL3xWeur6tLNYBFclUQC6q7gxmUF+5A2lMl00g6dzISZiVBC1n6AW/0Ed+LW7/AL/A2nbRa29cCFwzn3cu89YcKZNq777aytb2xubZd2yrt7+weHlaPjlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vp367SeqNJPiwUwSGsR4KFjECDZWeuyFWGWjvO/3K1W35s6AVolXkCoUaPQrP72BJGlMhSEca9313MQEGVaGEU7zci/VNMFkjIe0a6nAMdVBNjs4R+dWGaBIKlvCoJn6dyLDsdaTOLSdMTYjvexNxf+8bmqi6yBjIkkNFWS+KEo5MhJNv0cDpigxfGIJJorZWxEZYYWJsRktbEkwtxEJmdtkvOUcVknrsub5tZt7v1r3i4xKcApncAEeXEEd7qABTSAQwwu8wpvz7Lw7H87nvHXNKWZOYAHO1y8B+ZmZ</latexit>

h̄5

<latexit sha1_base64="spVtg+e8OziM/a6gou81399/oZU=">AAACBXicbVDLSgNBEJyNrxhfUY9eBoPgKexKRL0FvHiMYB6SLKF3MpsMmZ1ZZmaFsOzZD/Cqn+BNvPodfoG/4STZg0ksaCiquunuCmLOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlomitAmkVyqTgCaciZo0zDDaSdWFKKA03Ywvp367SeqNJPiwUxi6kcwFCxkBIyVHnsBqHSU9S/75YpbdWfAq8TLSQXlaPTLP72BJElEhSEctO56bmz8FJRhhNOs1Es0jYGMYUi7lgqIqPbT2cEZPrPKAIdS2RIGz9S/EylEWk+iwHZGYEZ62ZuK/3ndxITXfspEnBgqyHxRmHBsJJ5+jwdMUWL4xBIgitlbMRmBAmJsRgtbYuA2IiEzm4y3nMMqaV1UvVr15r5WqdfyjIroBJ2ic+ShK1RHd6iBmoigCL2gV/TmPDvvzofzOW8tOPnMMVqA8/ULA5KZmg==</latexit>

h1

<latexit sha1_base64="ZZYNvdYkOE22NxbF/XY6NJwkU9g=">AAAB/3icbVDLSgMxFL3js9ZX1aWbYBFclRkpqLuCG5cV7QPaoWTSTBuaSUKSEcrQhR/gVj/Bnbj1U/wCf8O0nYVtPXDhcM693HtPpDgz1ve/vbX1jc2t7cJOcXdv/+CwdHTcNDLVhDaI5FK3I2woZ4I2LLOctpWmOIk4bUWj26nfeqLaMCke7VjRMMEDwWJGsHXSw7AX9Eplv+LPgFZJkJMy5Kj3Sj/dviRpQoUlHBvTCXxlwwxrywink2I3NVRhMsID2nFU4ISaMJudOkHnTumjWGpXwqKZ+nciw4kx4yRynQm2Q7PsTcX/vE5q4+swY0KllgoyXxSnHFmJpn+jPtOUWD52BBPN3K2IDLHGxLp0FrYozF04Qk5cMsFyDqukeVkJqpWb+2q5Vs0zKsApnMEFBHAFNbiDOjSAwABe4BXevGfv3fvwPueta14+cwIL8L5+AQSaltE=</latexit>

h2

<latexit sha1_base64="C58fOCojD6GvSvXeKQiC1B2q1Wo=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLePEY0TwgWcLsZDYZMjuzzMwKYcnBD/Cqn+BNvPopfoG/4WSzB5NY0FBUddPdFcScaeO6305hY3Nre6e4W9rbPzg8Kh+ftLVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCye3c7zxRpZkUj2YaUz/CI8FCRrCx0sN4UBuUK27VzYDWiZeTCuRoDso//aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv00O3WGLqwyRKFUtoRBmfp3IsWR1tMosJ0RNmO96s3F/7xeYsJrP2UiTgwVZLEoTDgyEs3/RkOmKDF8agkmitlbERljhYmx6SxtiTG34Qg5s8l4qzmsk3at6tWrN/f1SqOeZ1SEMziHS/DgChpwB01oAYERvMArvDnPzrvz4XwuWgtOPnMKS3C+fgEGM5bS</latexit>

h3

<latexit sha1_base64="wGTxnV8//1JczebYLN0D3esaO0g=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKezqgnoLePEY0TwgWcLsZDYZMjuzzMwKYcnBD/Cqn+BNvPopfoG/4STZg0ksaCiquunuChPOtHHdb6ewtr6xuVXcLu3s7u0flA+PmlqmitAGkVyqdog15UzQhmGG03aiKI5DTlvh6Hbqt56o0kyKRzNOaBDjgWARI9hY6WHYu+yVK27VnQGtEi8nFchR75V/un1J0pgKQzjWuuO5iQkyrAwjnE5K3VTTBJMRHtCOpQLHVAfZ7NQJOrNKH0VS2RIGzdS/ExmOtR7Hoe2MsRnqZW8q/ud1UhNdBxkTSWqoIPNFUcqRkWj6N+ozRYnhY0swUczeisgQK0yMTWdhS4K5DUfIiU3GW85hlTQvqp5fvbn3KzU/z6gIJ3AK5+DBFdTgDurQAAIDeIFXeHOenXfnw/mctxacfOYYFuB8/QIHzJbT</latexit>

h4

<latexit sha1_base64="TsPkw73yu8waSJb1ag3n3RqW67M=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKezKQvQW8OIxonlAsoTZyWwyZHZmmZkVwpKDH+BVP8GbePVT/AJ/w0myB5NY0FBUddPdFSacaeO6305hY3Nre6e4W9rbPzg8Kh+ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbD8e3Mbz9RpZkUj2aS0CDGQ8EiRrCx0sOo7/fLFbfqzoHWiZeTCuRo9Ms/vYEkaUyFIRxr3fXcxAQZVoYRTqelXqppgskYD2nXUoFjqoNsfuoUXVhlgCKpbAmD5urfiQzHWk/i0HbG2Iz0qjcT//O6qYmug4yJJDVUkMWiKOXISDT7Gw2YosTwiSWYKGZvRWSEFSbGprO0JcHchiPk1CbjreawTlpXVc+v3tz7lbqfZ1SEMziHS/CgBnW4gwY0gcAQXuAV3pxn5935cD4XrQUnnzmFJThfvwllltQ=</latexit>

(a) The seq2seq model for machine translation from Sutskever et al. (2014).

film étaitthe movie was great

était super

……

th
e

m
ovie

w
as

gre
at

attention scores

+
weighted-sum

……h1

<latexit sha1_base64="ZZYNvdYkOE22NxbF/XY6NJwkU9g=">AAAB/3icbVDLSgMxFL3js9ZX1aWbYBFclRkpqLuCG5cV7QPaoWTSTBuaSUKSEcrQhR/gVj/Bnbj1U/wCf8O0nYVtPXDhcM693HtPpDgz1ve/vbX1jc2t7cJOcXdv/+CwdHTcNDLVhDaI5FK3I2woZ4I2LLOctpWmOIk4bUWj26nfeqLaMCke7VjRMMEDwWJGsHXSw7AX9Eplv+LPgFZJkJMy5Kj3Sj/dviRpQoUlHBvTCXxlwwxrywink2I3NVRhMsID2nFU4ISaMJudOkHnTumjWGpXwqKZ+nciw4kx4yRynQm2Q7PsTcX/vE5q4+swY0KllgoyXxSnHFmJpn+jPtOUWD52BBPN3K2IDLHGxLp0FrYozF04Qk5cMsFyDqukeVkJqpWb+2q5Vs0zKsApnMEFBHAFNbiDOjSAwABe4BXevGfv3fvwPueta14+cwIL8L5+AQSaltE=</latexit>

h2

<latexit sha1_base64="C58fOCojD6GvSvXeKQiC1B2q1Wo=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLePEY0TwgWcLsZDYZMjuzzMwKYcnBD/Cqn+BNvPopfoG/4WSzB5NY0FBUddPdFcScaeO6305hY3Nre6e4W9rbPzg8Kh+ftLVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCye3c7zxRpZkUj2YaUz/CI8FCRrCx0sN4UBuUK27VzYDWiZeTCuRoDso//aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv00O3WGLqwyRKFUtoRBmfp3IsWR1tMosJ0RNmO96s3F/7xeYsJrP2UiTgwVZLEoTDgyEs3/RkOmKDF8agkmitlbERljhYmx6SxtiTG34Qg5s8l4qzmsk3at6tWrN/f1SqOeZ1SEMziHS/DgChpwB01oAYERvMArvDnPzrvz4XwuWgtOPnMKS3C+fgEGM5bS</latexit>

h3

<latexit sha1_base64="wGTxnV8//1JczebYLN0D3esaO0g=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKezqgnoLePEY0TwgWcLsZDYZMjuzzMwKYcnBD/Cqn+BNvPopfoG/4STZg0ksaCiquunuChPOtHHdb6ewtr6xuVXcLu3s7u0flA+PmlqmitAGkVyqdog15UzQhmGG03aiKI5DTlvh6Hbqt56o0kyKRzNOaBDjgWARI9hY6WHYu+yVK27VnQGtEi8nFchR75V/un1J0pgKQzjWuuO5iQkyrAwjnE5K3VTTBJMRHtCOpQLHVAfZ7NQJOrNKH0VS2RIGzdS/ExmOtR7Hoe2MsRnqZW8q/ud1UhNdBxkTSWqoIPNFUcqRkWj6N+ozRYnhY0swUczeisgQK0yMTWdhS4K5DUfIiU3GW85hlTQvqp5fvbn3KzU/z6gIJ3AK5+DBFdTgDurQAAIDeIFXeHOenXfnw/mctxacfOYYFuB8/QIHzJbT</latexit>

h4

<latexit sha1_base64="TsPkw73yu8waSJb1ag3n3RqW67M=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKezKQvQW8OIxonlAsoTZyWwyZHZmmZkVwpKDH+BVP8GbePVT/AJ/w0myB5NY0FBUddPdFSacaeO6305hY3Nre6e4W9rbPzg8Kh+ftLRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbD8e3Mbz9RpZkUj2aS0CDGQ8EiRrCx0sOo7/fLFbfqzoHWiZeTCuRo9Ms/vYEkaUyFIRxr3fXcxAQZVoYRTqelXqppgskYD2nXUoFjqoNsfuoUXVhlgCKpbAmD5urfiQzHWk/i0HbG2Iz0qjcT//O6qYmug4yJJDVUkMWiKOXISDT7Gw2YosTwiSWYKGZvRWSEFSbGprO0JcHchiPk1CbjreawTlpXVc+v3tz7lbqfZ1SEMziHS/CgBnW4gwY0gcAQXuAV3pxn5935cD4XrQUnnzmFJThfvwllltQ=</latexit>

h̄j−1

<latexit sha1_base64="NV5ohjSyw+ZE3INr+yrJC5RL5EA=">AAACCXicbZBLSgNBEIZrfMb4irp00xgEN4YZCai7gBuXEcwDkiH0dHqSNj3dY3ePEIacwAO41SO4E7eewhN4DXuSWZjEHwp+/qqiii+IOdPGdb+dldW19Y3NwlZxe2d3b790cNjUMlGENojkUrUDrClngjYMM5y2Y0VxFHDaCkY3Wb/1RJVmUtybcUz9CA8ECxnBxkZ+N8AqHU566cO5N+mVym7FnQotGy83ZchV75V+un1JkogKQzjWuuO5sfFTrAwjnE6K3UTTGJMRHtCOtQJHVPvp9OkJOrVJH4VS2RIGTdO/GymOtB5HgZ2MsBnqxV4W/tfrJCa88lMm4sRQQWaHwoQjI1FGAPWZosTwsTWYKGZ/RWSIFSbGcpq7EmNuMQmZkfEWOSyb5kXFq1au76rlWjVnVIBjOIEz8OASanALdWgAgUd4gVd4c56dd+fD+ZyNrjj5zhHMyfn6BR/3m00=</latexit>

h̄j

<latexit sha1_base64="TWrX32GKy7xQM392DiMCtb4iGew=">AAACBXicbVDLSgNBEOyNrxhfUY9eFoPgKexKQL0FvHiMYB6SLGF2MpuMmccyMyuEZc9+gFf9BG/i1e/wC/wNJ8keTGJBQ1HVTXdXGDOqjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJRmDSxZFJ1QqQJo4I0DTWMdGJFEA8ZaYfjm6nffiJKUynuzSQmAUdDQSOKkbHSQy9EKh1l/cd+ueJVvRncVeLnpAI5Gv3yT28gccKJMJghrbu+F5sgRcpQzEhW6iWaxAiP0ZB0LRWIEx2ks4Mz98wqAzeSypYw7kz9O5EirvWEh7aTIzPSy95U/M/rJia6ClIq4sQQgeeLooS5RrrT790BVQQbNrEEYUXtrS4eIYWwsRktbIkRsxEJmdlk/OUcVknrourXqtd3tUq9lmdUhBM4hXPw4RLqcAsNaAIGDi/wCm/Os/PufDif89aCk88cwwKcr19YP5nP</latexit>

cj

<latexit sha1_base64="ZPpG39nP06uZkQJNCEz5Tq0u2l8=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvHiMaB6QLGF2MpuMmZ1ZZmaFsOTgB3jVT/AmXv0Uv8DfcLLZg0ksaCiquunuCmLOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Gbmt5+o0kyKBzOJqR/hoWAhI9hY6Z70H/vlilt1M6BV4uWkAjka/fJPbyBJElFhCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VOCIaj/NTp2iM6sMUCiVLWFQpv6dSHGk9SQKbGeEzUgvezPxP6+bmPDKT5mIE0MFmS8KE46MRLO/0YApSgyfWIKJYvZWREZYYWJsOgtbYsxtOEJObTLecg6rpHVR9WrV67tapV7LMyrCCZzCOXhwCXW4hQY0gcAQXuAV3pxn5935cD7nrQUnnzmGBThfv1eklwU=</latexit>

(b) The seq2seq model with attention from Bahdanau et al. (2015).

Figure 2.4: The seq2seq model and the attention mechanism.

tion scores to compute a weighted-sum over all encoder states:

eij = a(hi, h̄j)

αij =
exp(eij)∑T

i′=1 exp(ei′j)

cj =
T∑
i=1

αijhi

(2.8)

where a is the attention function. Bahdanau et al. (2015) use the “additive” atten-
tion, and Luong et al. (2015) extend it with two more variants, “dot product” and

20

“bilinear”:

a(hi, h̄j) = v>a tanh(Wa · [hi; h̄j]) additive

a(hi, h̄j) = h>i · h̄j dot product

a(hi, h̄j) = h>i Wah̄j bilinear

(2.9)

The LSTM (or GRU) + Attention combination has been successful on a num-
ber of tasks, like machine translation (Luong et al., 2015), reading comprehension
(Hermann et al., 2015), summarization (Chopra et al., 2016), and semantic parsing
(Jia and Liang, 2016).

Self-attention & Transformer While LSTM has become the most popular se-
quential encoder until very recently, one major shortcoming is that it cannot fully
exploit the parallel computing power of modern GPUs due to the nature of its
recurrent connections, making the training process very slow when the input se-
quences are long (e.g., several hundreds tokens). Vaswani et al. (2017) propose the
transformer architecture with a stack of multi-head self-attention layers, and show
strong performance on machine translation without any recurrent computation.

Unlike the traditional attention mechanism which attends from a decoder state
to an encoder state, self-attention (Cheng et al., 2016) performs the attention com-
putation from every encoder state to other encoder states. The motivation is quite
intuitive: RNNs are designed to capture long-term dependencies, and attention is
designed to further support this objective by allowing direct access to all hidden
states. Therefore, by giving each token access to all other tokens at encoding time,
the self-attention model should theoretically possess more expressing power than
RNN-based encoders. The left column of Figure 2.5 illustrates the self-attention
mechanism used in the transformer architecture.

At each self-attention layer, every token is projected into three vectors, the query
Q, the key K, and the value V . An attention matrix is computed by the scaled
dot-product between each query vector and each key vector, which is then used to
compute a weighted-sum of the value vectors:

Attention(Q,K, V) = softmax(
QK>√
dk

)V (2.10)

21

Concat

Linear

Scaled Dot-Product
Attention

Linear Linear Linear

V K Q

h

Mutli-Head Attention

Scale

MatMul

Mask (opt.)

SoftMax

MatMul

Scaled Dot-Product Attention

VKQ

Figure 2.5: The multi-head self-attention used in the transformer architecture, from
Vaswani et al. (2017).

where dk is the dimension of query and key vectors. In the transformer archi-
tecture, each layer is a multi-head self-attention (the right column of Figure 2.5),
by first splitting the Q,K, V vectors into small chunks and then concatenating the
weighted-sum output of each chunk, analogous to the multiple convolutional fil-
ters used in CNNs.

The transformer architecture has been studied extensively in the past two years,
and is the building block for many pre-trained contextualized models which will
be discussed in the next subsection.

2.2.3 Pre-training & Contextualization

The first component of most neural network models for NLP is usually a map-
ping from discrete tokens to continuous vector representations (embeddings). Tra-
ditionally, pre-trained word embeddings like word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) have often been used as an initialization for the
mapping. These embeddings are trained with large unlabeled corpora by learn-
ing word co-occurrence statistics, building on the distributional hypothesis that
“a word is characterized by the company it keeps” (Firth, 1957). However, these
fixed embeddings do not truthfully encode the meaning of words, because word

22

meanings are highly context-dependent.
Recently, we have seen a surge in the research of contextualized embedding

models. McCann et al. (2017) propose CoVe (Context Vectors), by pre-training a
two-layer bidirectional LSTM on machine translation. The pre-trained LSTM is
then used to compute context-dependent embeddings for input words, and show
consistent improvement across many tasks. Peters et al. (2018) propose ELMo
(Embeddings from Language Models), also by pre-training a two-layer bidirec-
tional LSTM, but on the task of language modeling using the 1B Word Benchmark
(Chelba et al., 2014), and achieve the best results at the time on a broad range of
tasks, including reading comprehension, semantic role labeling, coreference reso-
lution, and many others.

With the introduction of the transformer architecture (Vaswani et al., 2017),
there has been a lot of interest in designing pre-trained transformers. Radford et al.
(2018) propose OpenAI GPT (Generative Pre-Training), by pre-training a 12-layer
transformer as a generative language model, similar to ELMo, on the BooksCor-
pus (Zhu et al., 2015). A follow-up work, GPT2 (Radford et al., 2019), use 10 times
larger training corpora and more complex transformers (up to 1.5 billion parame-
ters), and set new state-of-the-art on a number of language modeling tasks.

Probably the most popular pre-trained transformer model, BERT (Bidirectional
Encoder Representations from Transformers, Devlin et al., 2019), enhances the
GPT model by allowing bidirectional self-attention with a new “masked language
modeling” (MLM) objective. To illustrate, given a chunk of text as input, BERT ran-
domly replaces 15% of the tokens with a special [MASK] token (or another random
token from the vocabulary), and then predicts the masked tokens in pre-training.
BERT also adds another pre-training objective named “next sentence prediction”
(NSP), by creating input in the form of “[CLS] senta [SEP] sentb [SEP]”.In half of
training samples, senta and sentb are drawn from consecutive text; while the rest
are drawn from random locations. The model is then asked to make a binary pre-
diction on whether sentb does occur next to senta.

BERT is pre-trained on both the BooksCorpus (Zhu et al., 2015) and Wikipedia.
The authors provides two model variants: BERTBASE, with 12 self-attention layers,
a hidden dimension of 768, and 12 attention heads per layer; BERTLARGE, with 24
layers, 1024 hidden size, and 24 heads. Unlike ELMo where the LSTM weights

23

are kept frozen when fine-tuning on end tasks, fine-tuning BERT usually requires
updating all parameters in the transformer (Peters et al., 2019b). Evaluation on
the GLUE benchmark (Wang et al., 2019b) and some other datasets on reading
comprehension (Rajpurkar et al., 2016; 2018) and commonsense reasoning (Zellers
et al., 2018) show that BERT outperforms prior work by a huge margin.

There have been many follow-up models since then. XLNet (Yang et al., 2019b)
propose a permutation language modeling objective to address the discrepancy be-
tween pre-training and fine-tuning in BERT. RoBERTa (Robustly optimized BERT,
Liu et al., 2019) use 10 times more training data than BERT and dynamic masking
on MLM pre-training. SpanBERT (Joshi et al., 2020) extend BERT with a “span
boundary prediction” (SBO) objective by randomly masking contiguous spans of
token. T5 (Text-To-Text Transfer Transformer, Raffel et al., 2019) cast every prob-
lem to a text-to-text format and utilize a huge pre-training dataset (750GB of text).
BART (Bidirectional and Auto-Regressive Transformer, Lewis et al., 2019) present
a encoder-decoder model pre-trained with multiple denoising autoencoder objec-
tives.

2.3 Integrating Knowledge into Neural Models

In traditional feature-based machine learning approaches for NLP, some core
annotation tasks are usually organized in a pipeline, where features and outputs
from earlier tasks are usually used as input for later tasks. For example, in the
Stanford CoreNLP pipeline (Manning et al., 2014), major component tasks are or-
ganized in the following order: part-of-speech tagging, named entity recognition,
syntactic parsing, and coreference resolution. In this setup, linguistic knowledge
is exploited inherently, for example, using syntactic structures to assist coreference
resolution.

With the introduction of pre-trained embeddings and end-to-end neural mod-
els, research focus has shifted from “feature-engineering” (designing better fea-
tures for each task) to “architecture-engineering” (tweaking network architectures
to better capture task-specific features). The usage of linguistic knowledge has be-
come less prevalent, especially in many downstream tasks, like question answer-
ing, sentiment analysis, information extraction, and so on. Nonetheless, there are

24

still some recent work on enhancing neural models with knowledge, which can
be broadly divided into two categories according to the type of knowledge being
utilized: linguistic knowledge or background knowledge.

2.3.1 Integrating Linguistic Knowledge

Syntactic Knowledge One major line of work in integrating linguistic knowl-
edge to neural models is the use of syntactic knowledge for SRL. As discussed in
Subsection 2.1.1, traditional feature-based systems usually rely on features from
the syntactic structures like a constituency tree or a dependency tree (Gildea and
Jurafsky, 2002, Pradhan et al., 2005). In the neural era, different approaches of
incorporating syntax into neural models have also been explored.

One way is to encode syntactic structures into continuous vectors that will
serve as additional input to SRL models, for example, by:

• Using LSTMs to encode the dependency paths between arguments and pred-
icates (Roth and Lapata, 2016);

• Using graph convolutional networks (GCN, Kipf and Welling, 2017) to en-
code the syntactic tree structure (either dependency or constituency) of the
input sentence (Marcheggiani and Titov, 2017; 2019);

• Using LSTMs to learn embeddings that represent the supertag label (Banga-
lore and Joshi, 1999) of each input token (Kasai et al., 2019).

Most of these approaches also require access to the syntactic structures at test time,
either from gold annotations as provided by the evaluation tasks (Carreras and
Màrquez, 2005, Pradhan et al., 2013), or from an off-the-shelf parser.

An alternative idea is to use syntactic structures as auxiliary training signals to
guide the model to become more “syntax-aware”.

• Strubell et al. (2018) propose the linguistically-informed self-attention (LISA)
model, by training a multi-task transformer model for SRL together with sev-
eral auxiliary objectives, including the prediction of POS tags, dependency
heads, and dependency relations. The auxiliary objective for dependency
head prediction is implemented as supervision for self-attention weights, by

25

encouraging a self-attention head to attend to each token’s parent in a depen-
dency tree.

• Swayamdipta et al. (2018) introduce syntactic scaffolds – auxiliary tasks de-
signed to steer the model toward awareness of syntactic structure, and show
that a syntactic scaffold to predict constituency labels can boost performance
across PropBank SRL, FrameNet SRL, and coreference resolution.

• Cai and Lapata (2019) propose a joint learning approach to learn dependency
information as an intermediate output in SRL prediction.

These models do not need syntactic structures at test time, though Strubell et al.
(2018) also show that their model can further benefit from injecting a dependency
tree during inference.

Semantic Knowledge There are also some very recent work on integrating se-
mantic knowledge into neural models.

• Dhingra et al. (2018) propose to integrate coreference structure into standard
GRUs via a “Coref-GRU” variant, by changing the hidden state update func-
tion to not only rely on the last time step (see Figure 2.3b), but also on the time
step corresponding to the previous mention in the same coreference chain.
Substituting standard GRUs with Coref-GRUs leads to performance gains on
several reading comprehension tasks.

• Mihaylov and Frank (2019) enhance the QANet model (Yu et al., 2018) by
integrating information from several semantic annotations, including SRL,
coreference, and discourse relations. For each token, a set of annotation labels
are extracted (e.g. SRL_ARG1, DISCREL_CAUSE), and the learned embed-
dings for these labels are used as additional input to the self-attention layers.
On the NarrativeQA (Kočiský et al., 2018) reading comprehension dataset,
knowledge from discourse relations provides the largest performance boost,
while SRL and coreference show modest improvement.

• Similarly, Zhang et al. (2020) concatenate the BERT embeddings (Devlin et al.,
2019) with the embeddings of semantic role labels, and show better results on
the GLUE benchmark (Wang et al., 2019b) over the BERT baseline.

26

• Dai and Huang (2019) propose a regularization approach to integrate event
knowledge and coreference relations into neural discourse parsing, by fram-
ing predicate-argument relations in SRL and coreferent mention relations as
auxiliary loss in an end-to-end discourse parsing model, and show consistent
improvement on almost all discourse relation classes.

2.3.2 Integrating Background Knowledge

Another type of widely used knowledge source in neural models is background
knowledge. This can be either general knowledge bases about real-world enti-
ties, like Wikipedia, or structured knowledge graphs encoding factual or com-
monsense relations, such as:

• WordNet (Miller, 1995), a lexical database with expert annotations on a set
of semantic relations (e.g., hypernymy, hyponymy, antonymy, etc) between con-
cept nodes (called “synsets”, by grouping words into sets of cognitive syn-
onyms). For example, (location, hypernym_of, city).

• ConceptNet (Speer and Havasi, 2012, Speer et al., 2017), a large knowledge
base for commonsense relations with over 8 million nodes and over 21 mil-
lion edges. For example, (ice, used_for, cooling).

• NELL (Mitchell et al., 2015), an automatically constructed web knowledge
base storing beliefs about entities. For example, (New York, located_in, United
States).

One common strategy is the use of relational commonsense knowledge to facil-
itate natural language understanding, on tasks like reading comprehension (Yang
and Mitchell, 2017, Mihaylov and Frank, 2018, Bauer et al., 2018) or natural lan-
guage inference (Weissenborn et al., 2017, Chen et al., 2018). This usually follows
a retrieve-then-encode paradigm, that is, to retrieve information from the knowl-
edge graph and then encode it into the neural network. The form of the retrieved
information can be either relevant concepts and facts (Yang and Mitchell, 2017,
Mihaylov and Frank, 2018, Yang et al., 2019a), or parts of the graph (edges, logical
paths, or sub-graphs) that connect words from the input text (Chen et al., 2018,
Bauer et al., 2018, Wang and Jiang, 2019, Qiu et al., 2019, Lin et al., 2019). The

27

encoding step is performed by either an attention computation over the retrieved
information, or by a graph updating step with GCNs (Kipf and Welling, 2017) or
graph attention networks (Veličković et al., 2018) when sub-graphs are retrieved.
Another alternative is to convert the retrieved information into free-form texts,
which will be used as addition training input to refine word embeddings (Weis-
senborn et al., 2017).

There has also been prior work on integrating entity knowledge into neural
models. Ahn et al. (2016), Yang et al. (2017), Ji et al. (2017), Logan et al. (2019)
propose several variants of entity-aware language models, by adding external in-
formation about entities mentioned in the text into generative language model-
ing. More recently, with the introduction of pre-trained language models (see Sub-
section 2.2.3), some extensions of BERT have been studied to incorporate entity
knowledge during pre-training, such as ERNIE (Zhang et al., 2019b), KnowBERT
(Peters et al., 2019a), and Pretrained Encyclopedia (Xiong et al., 2020). We will
discuss them in more detail in Section 6.2.

28

Chapter 3

Inferring Implicit Arguments by Local Coherence

This chapter introduces a method to infer implicit predicate-argument struc-
tures from raw text by exploiting local narrative coherence between pairs of events,
and an argument cloze task to automatically create synthetic data for implicit argu-
ments at scale. This is a first step to study how the semantic knowledge of events
and entities can benefit the inference of implicit arguments. The work in this chap-
ter has been published in Cheng and Erk (2018), where I developed the models,
conducted the experiments and analysis, and wrote the paper, under the advice of
Katrin Erk. All work in this chapter constitutes original contributions.

3.1 Chapter Overview

Predicate-argument tuples describe “who did what to whom”, and are an im-
portant latent structure to extract from text. Such tuples can be useful in many
tasks, for example Open Information Extraction (Etzioni et al., 2008) and Reading
Comprehension (Hermann et al., 2015). This extraction is straightforward when
arguments are syntactically connected to the predicate, but much harder in the
case of implicit arguments, which are not syntactically connected to the predicate
and may not even be in the same sentence. These cases are not rare; they can be
found within the first few sentences on any arbitrary Wikipedia page (a common
knowledge source for open information extraction), for example1:

(3.1)
Twice in the late 1980s Gillingham came close to winning promotion
to the second tier of English football, but a decline then set in . . .

Here is another example from the reading comprehension dataset of Hermann
et al. (2015):

1https://en.wikipedia.org/wiki/History_of_Gillingham_F.C.

29

https://en.wikipedia.org/wiki/History_of_Gillingham_F.C.

(3.2)

Text: More than 2,600 people have been infected by Ebola in Liberia,
Guinea, Sierra Leone and Nigeria since the outbreak began in Decem-
ber, according to the World Health Organization. Nearly 1,500 have
died.

Question: The X outbreak has killed nearly 1,500.

In Example (3.1), Gillingham is an implicit argument to decline. In Example (3.2),
it is Ebola that broke out, and Ebola was also the cause of nearly 1,500 people dying,
but the text does not state this explicitly. Ebola is an implicit argument of both
outbreak and die, which is crucial to answering the question. Generally, predicates
with implicit arguments can be nouns, as decline and outbreak, or verbs, as died, in
the above examples.

Implicit argument prediction as a machine learning task was first introduced
by Gerber and Chai (2010) and Ruppenhofer et al. (2010), who each annotated a
dataset for the task. However, neither of these two datasets contains more than
1,000 examples, making it a very hard task due to the limited size of training data.
Most of the previous work on the task thus only utilized simple linear models
while relied heavily on large numbers of hand-crafted features, making the models
hard to generalize.

We hypothesize that narrative event coherence is crucial for implicit argument
prediction. In Example (3.2), diseases are maybe the single most typical things to
break out, and diseases also typically kill people, which is key to correctly answer
the question. Built on this insight, we first address the data sparsity issue by in-
troducing a simple argument cloze task (Section 3.3), which allows us to automat-
ically generate synthetic training data at scale. We also create a large and compre-
hensive evaluation dataset following the same task setting, using the OntoNotes
(Hovy et al., 2006) corpus. To take advantage of the large-scale training data, we
then propose a neural model, EVENTCOMP, that draws on narrative coherence
to predict implicit arguments. We also take into account entity salience features in
our model, as the omitted arguments tend to be salient, as Ebola is in Example (3.2).
Experiments on the Gerber and Chai (2010) dataset as well as the OntoNotes eval-
uation dataset show that our method achieves better performance than previous
work and baselines.

30

3.2 Prior Work

3.2.1 Implicit Arguments

In this section, we review some prior work on implicit arguments, including
the two main datasets, and some major follow-up work.

The G&C Dataset Gerber and Chai (2010) constructed a dataset (G&C) by se-
lecting 10 nominal predicates from the NomBank (Meyers et al., 2004) corpus and
manually annotating implicit arguments for all occurrences of these predicates.
The resulting dataset is quite small, consisting of less than 1000 examples. An
example for the nominal predicate sale is shown below:

(3.3)

The average interest rate rose to 8.3875% at [Citicorp]iarg0 ’s $50 mil-
lion weekly auction of [91-day commercial paper]iarg1 , or corporate
IOUs, from 8.337% at last week’s [sale]pred.

In the example, Citicorp is an implicit arg0 (SELLER) of sale, and 91-day com-
mercial paper is an implicit arg1 (THING SOLD) of sale. In an analysis of their data
they found implicit arguments to be very frequent, as their annotation added 65%
more arguments to NomBank. They also trained a linear classifier for the task rely-
ing on many hand-crafted features, including gold features from FrameNet Baker
et al. (1998), PropBank Palmer et al. (2005) and NomBank. Gerber and Chai (2012)
added more features and performed cross validation on the dataset, leading to
better results.

The SEMEVAL-2010 Dataset Ruppenhofer et al. (2010) also introduced a similar
dataset (SEMEVAL-2010) by annotating fillers for “null-instantiated” (implicit) se-
mantic roles in several chapters of Arthur Conan Doyle’s fiction works. Here is an
example:

(3.4)
In a lengthy court case the defendant was tried for [murder]iarg2 . In
the end, he was [cleared]pred.

In the example, arg2 (CHARGES) is a null-instantiated role of cleared, which can
be filled by murder in the previous sentence. The task contains 3 phases: A model

31

would need to 1) identify such null-instantiated (NI) semantic roles, 2) determine
whether or not a filler for the role can be accessible from the context (definite NI vs.
indefinite NI), and 3) find the correct antecedents as fillers for DNIs. The dataset is
even smaller than G&C, with 245 and 259 resolved DNIs in training and test data
respectively.

Follow-ups There has since been much follow-up work on these two datasets,
mainly in two directions.

(a) Some worked on proposing new methods for the task.

• Silberer and Frank (2012) cast the task as an anaphora resolution task,
and applied a feature-based entity-mention model for coreference reso-
lution to the SEMEVAL-2010 dataset.

• Laparra and Rigau (2013a) viewed the G&C task as a heuristic ranking
problem rather than a classification problem.

• Laparra and Rigau (2013b) looked into how features from anaphora and
coreference resolution can be applied to implicit argument resolution in
the SEMEVAL-2010 task.

• Gorinski et al. (2013) built four different models for NI resolution and
used majority voting to get the final prediction.

• Chiarcos and Schenk (2015) proposed to use memory-based learning to
identify null-instantiated roles.

• Do et al. (2017) viewed each predicate along with its arguments as a
sequence of [pred, arg0, arg1, . . .], and trained a recurrent neural network
for the task with an objective similar to language modeling.

(b) Other people focused on alleviating the size limitation by proposing methods
for creating additional training data.

• Silberer and Frank (2012) used datasets with manually annotated coref-
erence (Hovy et al., 2006) as additional training data. However the size
of their additional training data is still limited given the amount of ex-
isting human annotations on coreference. In this chapter, we generate

32

large amounts of training data using raw text with automatically pro-
duced (though noisy) coreference labels (Subsection 3.5.2).

• Roth and Frank (2015) identified new instances of implicit arguments by
aligning monolingual comparable texts, however the size is still similar
to that of G&C and SEMEVAL-2010.

• Feizabadi and Padó (2015) combined the G&C and SEMEVAL-2010 data-
sets, using one as out-of-domain training data for another.

• Schenk and Chiarcos (2016) utilized raw text with automatically labeled
semantic roles, but only used it to learn prototypical fillers in an unsu-
pervised fashion.

The task is considered a very hard problem. On G&C, Gerber and Chai (2010)
achieved an F1 score of 42.3, while Gerber and Chai (2012) further boosted it up
to 50.3, but still far below the human performance of 87.6. Some follow-up work
(Laparra and Rigau, 2013a, Do et al., 2017) outperformed Gerber and Chai (2010),
but none of them could beat Gerber and Chai (2012) on this task. SEMEVAL-2010 is
even harder, possibly due to the smaller data size and that the task is more complex
comparing to G&C. The two original participating systems in the challenge only
reached F1 scores of 1.2 and 1.4. Follow-up work exploited various techniques in
modeling and data acquisition, but none of them could exceed an F1 score of 20.
Therefore, in our work we focus on evaluating on the G&C dataset.

There have been some other recent efforts in adapting datasets originally de-
signed for other relevant semantic tasks to the problem of implicit arguments
(Stern and Dagan, 2014, O’Gorman et al., 2018). We leave the experiments to future
work, and discuss them in more detail in Subsection 7.1.1.

3.2.2 Narrative Coherence

Since we intend to exploit narrative coherence in predicting implicit arguments,
in this chapter, we review some recent work on the field of statistical script learn-
ing, which studies the modeling and inference of prototypical sequences of narra-
tive events and participants.

Early work on script learning dates back to the 1970s, when Schank and Abel-
son (1977) conducted a detailed analysis of structured scripts for the understand-

33

ing of world knowledge, with a well-known example being the "restaurant script",
describing the prototypical act sequence of a customer going into a restaurant as
entering, ordering, eating, and exiting. Most follow-up work in the 1980s and 1990s
continued to use the notion of hand-annotated event structures, thus making it
very hard to learn and inference such event sequences with a statistical model due
to the lack of data.

Chambers and Jurafsky (2008; 2009) first introduced the idea of using the statis-
tics of co-occurrences between events with coreferring arguments to infer a narra-
tive chain of events. The events and chains can be obtained from raw text without
manual annotation, in the following way:

1. Run a dependency parser on the input text, and then extract events by iden-
tifying all verbs and their arguments (e.g., McCann being the subject of threw
in Figure 3.1a).

2. Run a coreference resolution engine on the input text, and then identify the
entity that each event argument from step 1 refers to (e.g., all underlined
mentions in Figure 3.1a refer to the same entity “McCann”).

3. Group all events into narrative chains so that events in a single chain involve
the same entity in their arguments (Figure 3.1b shows the narrative chain
involving “McCann”).

The advantage of such approach is that the narrative chains can be learned in an
unsupervised manner (albeit after parsing and resolving coreference in the text),
thus allowing large-scale statistical models to be trained and evaluated.

To evaluate systems’ performance on inducing narrative events, Chambers and
Jurafsky (2008) also proposed a new cloze task that requires narrative knowledge
to solve, the narrative cloze task. Given a narrative chain consisting of a sequence
of events sharing an argument (referred to as the protagonist), one event is re-
moved at random from the chain, and the model is asked to predict the missing
event in the context of all the remaining events. In the task, a narrative event is
a tuple of the event predicate (mostly a verb) and the typed dependency of the
protagonist: (predicate, dependency).

An example is shown in Figure 3.1. Given a piece of raw text with event
verbs marked bold and mentions of the protagonist marked with underline (Fig-

34

1. McCann threw two interceptions early.

2. Toledo pulled McCann aside and told him he'd start.

3. McCann quickly completed his first two passes.

(a) A piece of text about American football with McCann as the protagonist.

1. (threw, subject)
2. (pulled, object)
3. (told, object)
4. (start, subject)
5. (completed, subject)

(b) The extracted narrative chain.

1. (threw, subject)
2. (pulled, object)

4. (start, subject)
5. (completed, subject)

??

(c) A narrative cloze example.

Figure 3.1: An example of the narrative cloze task.

ure 3.1a), a narrative chain with five events can be extracted as in Figure 3.1b.
Then in the narrative cloze task, we could remove the third event (told, object) and
ask the model to predict the missing event using the remaining four events (Fig-
ure 3.1c). In this chapter, we adopt a similar idea to define the argument cloze task
for implicit argument prediction, discussed in Section 3.3.

Many follow-up papers on statistical script learning have evaluated on the nar-
rative cloze task:

• Chambers and Jurafsky (2009) extended their original work by learning to
induce the “narrative schema”, that is, a set of narrative chains on different
protagonists, in order to take into account all entities in a document when
inferring missing events. However, their method still only represent events
as bare verbs, rather than the interaction between verbs and arguments.

• Pichotta and Mooney (2014) further improved Chambers and Jurafsky (2009)
to model an event as a tuple of a verb and multiple arguments: v(es, eo, ep),
where v is the verb, and es, eo, and ep are the subject, direct object, and prepo-
sitional object of v. For example, Mary gave the book to John would give an
event structure as give(Mary, book, John).

• Rudinger et al. (2015) showed that sequences of events can be efficiently

35

modeled by a log-bilinear language model.

• Pichotta and Mooney (2016a;b) proposed to use recurrent neural networks
instead of simple co-occurrence statistics to infer missing events.

• Granroth-Wilding and Clark (2016) trained a compositional neural network
to learn dense representations of events by composing the embeddings of
verbs and arguments, which were then used to compute pairwise event co-
herence scores to infer missing events.

For our task we also aim to exploit narrative coherence: We want to predict how
coherent a narrative would be with a particular entity candidate filling the implicit
argument position. So we take the model of Granroth-Wilding and Clark (2016) as
our starting point for the EVENTCOMP model. More details will be discussed in
Section 3.4.

3.3 The Argument Cloze Task

As discussed in Section 3.1 and Subsection 3.2.1, the main bottleneck of the
implicit argument prediction task is knowledge acquisition, because it requires
a lot of human effort in annotating implicit arguments, and the existing human-
annotated datasets are too small for the use of neural models. The most relevant
previous effort on resolving the data bottleneck is by Silberer and Frank (2012),
who exploited datasets with manually annotated coreference as additional training
data, but the size of the data is still limited.

We here present the Argument Cloze task, taking inspiration from the narrative
cloze task (Chambers and Jurafsky, 2008), which allows us to automatically gener-
ate large scale data for both training and evaluation of implicit argument predic-
tion. In this task, given a list of events extracted from the text, we randomly remove
an entity from an argument position of one event. The entity in question needs to
appear in at least one other place in the text. The task is then for the model to pick,
from all entities appearing in the text, the one that has been removed.

We first define what we mean by an event, then what we mean by an entity.

• Following common practice in recent script learning literature (Pichotta and
Mooney, 2016a, Granroth-Wilding and Clark, 2016), we define an event e as

36

a tuple:
e = (v, s, o, p)

where v is the verbal predicate, s is the subject, o is the direct object, and p

is the prepositional object along with the preposition. Here we only allow
one prepositional argument in the tuple, to avoid variable length input in
computing event representations2. Also, we represent each predicate / argu-
ment as a concatenation of the head word and the role, in order to distinguish
different positions in the event tuple. For example, from Mary gave the book
to John we would extract the event tuple as (give-pred, Mary-subj, book-dobj,
John-prep_to).

• By an entity, we mean a coreference chain with a length of at least two – that
is, the entity needs to appear at least twice in the text. This is to ensure that
the argument being removed appears in at least one other place in the text
for the model to recover.

We extract event structures from raw text using dependency parses. Given the
dependency labels defined in the Universal Dependencies3, we extract the subjects,
the direct objects, and the prepositional objects based on the following dependency
labels respectively4:

• Subjects: nsubj (nominal subjects), nmod:agent (agents of passive verbs),
nsubj:xsubj (controlling subjects)

• Direct objects: dobj (direct objects), nsubjpass (passive nominal subjects)

• Prepositional objects: all nmod:* (nominal modifiers) except nmod:agent

For example, given a piece of raw text (Figure 3.2a), we first obtain the de-
pendency relations (marked by arrows) and coreference chains (marked by sub-
script numbers) from the text, which are used to automatically extract a sequence

2In case of multiple prepositional objects, we select the one that is closest to the predicate. Also,
we remove such constraint in our next work, as discussed in Chapter 4.

3http://universaldependencies.org.
4We still use the version 1 of UD as in http://universaldependencies.org/docsv1/, because ver-

sion 2 was not available in the Stanford CoreNLP tool when this work was conducted. The core
dependency labels are almost the same between v1 and v2 except a few name changes.

37

http://universaldependencies.org
http://universaldependencies.org/docsv1/

[Manville Corp.]0 said [it]0 will build a $ 24 million [power plant]2 to

provide electricity to its [Igaras pulp and paper mill]1 in Brazil .

[The company]0 said [the plant]2 will ensure that [it]0 has adequate energy

for [the mill]1 and will reduce [the mill]1 ’s energy costs .

nsubj dobj

dobj

nmod:to

nsubj dobj

nmod:for
dobjnsubj

nsubj

(a) A piece of raw text from the OntoNotes corpus (english/nw/wsj_1278), with depen-
dency relations marked by arrows, coreference chains marked by subscript numbers, and
predicates marked in bold.

e0: (build-pred , x0-subj , x2-dobj , —)

e1: (provide-pred , — , electricity-dobj , x1-prep_to)

e2: (ensure-pred , x2-subj , — , —)

e3: (has-pred , x0-subj , energy-dobj , x1-prep_for)

e4: (reduce-pred , x2-subj , cost-dobj , —)

x0 = The company

x1 = mill

x2 = power plant

(b) Extracted events (e0~e4) and entities (x0~x2), using the above dependency and corefer-
ence annotations.

e0: (build-pred , x0-subj , x2-dobj , —)

e1: (provide-pred , — , electricity-dobj , ??-prep_to)

e2: (ensure-pred , x2-subj , — , —)

e3: (has-pred , x0-subj , energy-dobj , x1-prep_for)

e4: (reduce-pred , x2-subj , cost-dobj , —)

x0 = The company

x1 = mill

x2 = power plant

(c) An example instance of the argument cloze task for the prep_to argument of event e1.

Figure 3.2: An example of the argument cloze task.

38

of events and a list of entities. In Figure 3.2b, e0~e4 are events, x0~x2 are entities.
To construct a sample for the argument cloze task, we randomly remove an entity
from an argument position. Therefore, arguments not in coreference chains, such
as electricity-dobj in e1 and energy-dobj in e3, are not candidates for removal. An
example of the argument cloze task is shown in Figure 3.2c. Here the prep_to argu-
ment of e1 has been removed, and all entities appearing in the text are considered
as candidates for the prediction.

The main differences between the original narrative cloze task and the argu-
ment cloze task are:

• We are not removing a whole event, but only an argument of an event. Also,
due to the nature of implicit arguments (that they must be resolved to an
existing entity in the context), we constrain the removal to the cases where
the argument belongs to a coreference chain with a length of at least two,
in order to make our cloze task more similar to the natural occurrences of
implicit arguments.

• Unlike the original narrative cloze task in which the missing event is pre-
dicted from the whole vocabulary of events, we constrain our candidates
to only entities appearing in the context, making the problem much more
tractable.

Finally, although recent dependency parsers can produce quite accurate parse
trees, even the state-of-the-art algorithm for coreference resolution is still very
noisy. In the meanwhile, datasets with human-labeled gold coreference annota-
tions are still very limited. Therefore, we use raw text with automatically gen-
erated dependency parses and coreference chains for creating training data (Sub-
section 3.5.2), and datasets with gold dependency and coreference annotations for
creating additional evaluation data (Subsection 3.5.1).

3.4 Methods

3.4.1 Modeling Narrative Coherence

We model implicit argument prediction as selecting the entity that, when filled
in as the implicit argument, makes the overall most coherent narrative. Suppose

39

we are trying to predict the direct object argument of some target event et. Then we
complete et by putting an entity candidate into the direct object argument position,
and check the coherence of the resulting event with the rest of the narrative. Say we
have a sequence of events e1, e2, . . . , en in a narrative, and a list of entity candidates
x1, x2, . . . , xm. Then for any candidate xj , we first complete the target event to be

et(j) = (vt, st, xj, pt), j = 1, . . . ,m (3.1)

where vt, st, and pt are the predicate, subject, and prepositional object of et respec-
tively, and xj is filled as the direct object. (Event completion for omitted subjects
and prepositional objects is analogous.)

Then we compute the narrative coherence score Sj of the candidate xj by: 5

Sj =
n

max
c=1, c 6=t

coh
(
~et(j), ~ec

)
, j = 1, . . . ,m (3.2)

where ~et(j) and ~ec are representations for the completed target event et(j) and
one context event ec, and coh is a function computing a coherence score between
two events, both depending on the model being used. The candidate xj with the
highest score Sj is then selected as our prediction.

3.4.2 The EVENTCOMP Model

To model coherence (coh) between a context event and a target event, we build
an event composition model consisting of three parts, as shown in Figure 3.3: event
components are represented through event-based word embeddings, which en-
code event knowledge in word representations; the argument composition net-
work combines the components to produce event representations; and the pair
composition network compute a coherence score for two event representations.

This basic architecture is as in the model of Granroth-Wilding and Clark (2016).
However our model is designed for a different task, argument cloze rather than
narrative cloze, and for our task entity-specific information is more important.
We therefore create the training data in a different way, as described in Subsec-

5We have also tried using the sum instead of the maximum, but it did not perform as well across
different models and datasets.

40

Context Event

Argument
Index

Target Event (Missing Object)

Entity
Salience

Coherence Score

Pair Composition
Network

Event-Based
Word Embeddings

Argument Composition
Network

Extra Features

vt st ot ptvc sc oc pc

ot

coh

Figure 3.3: Diagram for the EVENTCOMP model. Input: a context event and a tar-
get event. Event-Based Word Embeddings: embeddings for components of both
events that encodes event knowledge. Argument Composition Network: produces
an event representation from its components. Pair Composition Network: com-
putes a coherence score coh from two event representations. Extra Features: argu-
ment index and entity salience features as additional input to the pair composition
network.

tion 3.4.3. We now discuss the three parts of the model in more detail.

Event-Based Word Embeddings The model takes the word embeddings of both
predicates and arguments as input to compute event representations. To better
encode event knowledge at the word level, we train an SGNS (skip-gram with
negative sampling) word2vec model (Mikolov et al., 2013) with event-specific in-
formation. For each extracted event sequence, we create a sequence with the pred-
icates and arguments of all events in the sequence. An example of such a training
sequence is given in Figure 3.4.

… build-pred company-subj plant-dobj provide-pred electricity-dobj
mill-prep_to ensure-pred plant-subj has-pred company-subj energy-dobj
mill-prep_for reduce-pred plant-subj cost-dobj …

Figure 3.4: An example of event-based word2vec training sequence, constructed
from the events and entities as shown in Figure 3.2b.

41

Argument Composition Network The argument composition network (marked
in dark blue in Figure 3.3) is a two-layer feedforward neural network that com-
poses an event representation from the embeddings of its components. All non-
existent argument positions are filled with zeros.

Pair Composition Network The pair composition network (marked in light blue
in Figure 3.3) computes a coherence score coh between 0 and 1, given the vector
representations of a context event and a target event. The coherence score should
be high when the target event contains the correct argument, and low otherwise.
So we construct the training objective function to distinguish the correct argument
from wrong ones, as described in Equation 3.3.

3.4.3 Training for Argument Prediction

To train the model to pick the correct candidate, we automatically construct
training samples as event triples consisting of a context event ec, a positive event ep,
and a negative event en. The context event and positive event are randomly sam-
pled from an observed sequence of events, while the negative event is generated
by replacing one argument of positive event by a random entity in the narrative,
as shown in Figure 3.5.

Context: (build-pred, x0-subj, x2-dobj, —)

Positive: (reduce-pred, x2-subj, cost-dobj, —)

Negative: (reduce-pred, x1-subj, cost-dobj, —)

x0 = The company

x1 = mill

x2 = power plant

Figure 3.5: A training sample as a triple of events, constructed from the events and
entities as shown in Figure 3.2b.

We want the coherence score between ec and ep to be close to 1, while the score
for ec and en should be close to 0. Therefore, we train the model to minimize cross-
entropy as follows:

1

m

m∑
i=1

− log(coh(eci, epi))− log(1− coh(eci, eni)) (3.3)

42

where eci, epi, and eni are the context, positive, and negative events of the ith train-
ing sample respectively.

3.4.4 Entity Salience

Implicit arguments tend to be salient entities in the document. So we extend
our model by entity salience features, building on recent work by Dunietz and
Gillick (2014), who introduced a simple model with several surface level features
for entity salience detection. Among the features they used, we discard those that
require external resources, and only use the remaining three features, as illustrated
in Table 3.1. Dunietz and Gillick found mentions to be the most powerful indicator
for entity salience among all features. We expect similar results in our experiments,
however we include all three features in our event composition model for now, and
conduct an ablation test afterwards.

Feature Description
1st_loc Index of the sentence where the first mention of the entity appears
head_count Number of times the head word of the entity appears
mentions A vector containing the numbers of named, nominal, pronominal,

and total mentions of the entity

Table 3.1: Entity salience features from Dunietz and Gillick (2014).

The entity salience features are directly passed into the pair composition net-
work as additional input. We also add an extra feature for argument position index
(encoding whether the missing argument is a subject, direct object, or prepositional
object), as marked in red in Figure 3.3.

3.5 Experiments

3.5.1 Datasets

Previous hand-annotated implicit argument datasets (Gerber and Chai, 2010,
Ruppenhofer et al., 2010) are very small. Therefore, in addition to evaluating on the
G&C dataset, we also automatically create a large and comprehensive evaluation

43

dataset following the argument cloze task setup defined in Section 3.3. We first
describe this synthetic evaluation dataset, then the G&C dataset.

Argument Cloze Evaluation Since the events and entities are extracted from de-
pendency labels and coreference chains, we do not want to introduce systematic er-
ror into the evaluation from imperfect parsing and coreference algorithms. There-
fore, we create the evaluation set from OntoNotes Hovy et al. (2006), which con-
tains human-labeled dependency and coreference annotation for a large corpus.
So the extracted events and entities in the evaluation set are gold. Note that this is
only for evaluation; in training we do not rely on any gold annotations (we discuss
our training data generation in Subsection 3.5.2).

There are four English sub-corpora in OntoNotes Release 5.06 that are anno-
tated with dependency labels and coreference chains. Three of them, which are
mainly from broadcast news, share similar statistics in document length, so we
combine them into a single dataset and name it ON-SHORT as it consists mostly
of short documents. The fourth sub-corpus is from the Wall Street Journal and has
significantly longer documents. We call this sub-corpus ON-LONG and evaluate
on it separately. Some statistics are shown in Table 3.2.

ON-SHORT ON-LONG

doc 1027 597
test cases 13018 18208

Avg # entities 12.06 36.95

Table 3.2: Statistics of the OntoNotes argument cloze datasets.

The G&C Dataset The G&C dataset (Gerber and Chai, 2010) consists of 966 in-
stances of human-annotated implicit arguments on 10 nominal predicates.

To evaluate our model on G&C, we convert the annotations to the input format
of our model as follows: We map nominal predicates to their verbal form, and
semantic role labels to syntactic argument types based on the NomBank frame
definitions, as defined in Table 3.3. The converted Example (3.3) (after mapping
semantic role labels) is as follows:

6LDC Catalog No. LDC2013T19

44

(3.5)

The average interest rate rose to 8.3875% at [Citicorp]subj ’s $50 mil-
lion weekly auction of [91-day commercial paper]dobj , or corporate
IOUs, from 8.337% at last week’s [sale]pred.

For the nominal predicate sale, there are two arguments missing (subj and dobj).
The model first needs to determine that each of those argument positions in fact
has an implicit filler. Then, from a list of candidates (not shown here), it needs
to select Citicorp as the implicit subj argument, and 91-day commercial paper as the
implicit dobj argument.

Nominal
Predicate

Verbal
Form arg0 arg1 arg2 arg3 arg4

bid bid subj prep_for dobj – –
sale sell subj dobj prep_to prep_for prep
loan loan subj dobj prep_to prep prep_at
cost cost – subj dobj prep_to prep
plan plan subj dobj prep_for prep_for –
investor invest subj dobj prep_in – –
price price subj dobj prep_at prep –
loss lose subj dobj prep_to prep_on –
investment invest subj dobj prep_in – –
fund fund subj dobj prep prep_on –

Table 3.3: Mapping from the 10 nominal predicates in the G&C dataset to their ver-
bal forms, and from the semantic role labels of each predicate to the corresponding
dependency labels.

3.5.2 Implementation

We train our EVENTCOMP model using synthetic data as described in Sec-
tion 3.3. For creating the training data, we do not use gold parses or gold coref-
erence chains. We use the 20160901 dump of English Wikipedia7, with 5,228,621
documents in total. For each document, we extract plain text and break it into
paragraphs, while discarding all structured data like lists and tables8. We con-
struct a sequence of events and entities from each paragraph, by running Stan-

7https://dumps.wikimedia.org/enwiki/
8We use the WikiExtractor tool at https://github.com/attardi/wikiextractor.

45

https://dumps.wikimedia.org/enwiki/
https://github.com/attardi/wikiextractor

ford CoreNLP (Manning et al., 2014) to obtain dependency parses and coreference
chains. We lemmatize all verbs and arguments. We incorporate negation and par-
ticles in verbs, and normalize passive constructions. We represent each argument
by the corresponding entity’s representative mention if it is linked to an entity,
otherwise by its head lemma. We keep verbs and arguments with counts over 500,
together with the 50 most frequent prepositions, leading to a vocabulary of 53,345
tokens; all other words are replaced with an out-of-vocabulary token. The most
frequent verbs (with counts over 100,000) are down-sampled.

For training the event-based word embeddings, we create pseudo-sentences
(Figure 3.4) from all events of all sequences (approximately 87 million events) as
training samples. We train an SGNS word2vec model (Mikolov et al., 2013) with
embedding size = 300, window size = 10, sub-sampling threshold = 10−4, and neg-
ative samples = 10, using the Gensim package (Řehůřek and Sojka, 2010).

For training the event composition model, we follow the procedure described
in Subsection 3.4.3, and extract approximately 40 million event triples as training
samples9. We use a two-layer feedforward neural network with layer sizes 600 and
300 for the argument composition network, and another two-layer network with
layer sizes 400 and 200 for the pair composition network. We use cross-entropy
loss with `2 regularization of 0.01. We train the model using stochastic gradient
descent (SGD) (Bottou, 2010) with a learning rate of 0.01 and a batch size of 100 for
20 epochs.

To study how the size of the training set affects performance, we downsample
the 40 million training samples to another set of 8 million training samples. We
refer to the resulting models as EVENTCOMP-8M and EVENTCOMP-40M respec-
tively.

3.5.3 Results on Argument Cloze

For the synthetic argument cloze task, we compare our model with the follow-
ing 3 baselines.

• RANDOM Randomly select one entity from the candidate list.

9We only sample one negative event for each pair of context and positive events for fast training,
though more training samples are easily accessible.

46

• MOSTFREQ Always select the entity with highest number of mentions.

• EVENTWORD2VEC Use the event-based word embeddings described in
Subsection 3.4.2 for predicates and arguments. The representation of an event
e is the sum of the embeddings of its components, i.e.,

~e = ~v + ~s+ ~o+ ~p (3.4)

where ~v, ~s, ~o, ~p are the embeddings of verb, subject, direct object, and preposi-
tional object, respectively. The coherence score of two events in this baseline
model is their cosine similarity. Like in our main model, the coherence score
of the candidate is then the maximum pairwise coherence score, as described
in Subsection 3.4.1.

The evaluation results are shown in Table 3.4. On ON-SHORT, the EVENT-
WORD2VEC baseline is much stronger than the other two, achieving an accuracy
of 38.40%. In fact, EVENTCOMP-8M by itself does not do better than EVENT-
WORD2VEC, but adding entity salience greatly boosts performance. Using more
training data (EVENTCOMP-40M) helps by a substantial margin both with and
without entity salience features. Note that the entity salience features reported in
Table 3.4 and Table 3.5 are computed from gold coreference chains, because the
candidate entities in this task are also generated from gold chains (see Subsec-
tion 3.5.1). We acknowledge that this is not a realistic setting in the natural implicit
argument prediction task. We were planning to conduct additional experiments
with salience features computed from predicted coreference chains, but instead
we moved to a different model architecture, detailed in Chapter 4, that implic-
itly takes (non-oracle) salience into account into account by its design. That latter
architecture supersedes the experiments planned here. In the G&C evaluation of
naturally occurring implicit arguments (Subsection 3.5.4), we use non-oracle entity
salience features from the coreference chains predicted by the Stanford CoreNLP
toolkit, which also bring about significant performance boost.

The ON-LONG dataset consists of OntoNotes data with much longer docu-
ments than found in ON-SHORT (Table 3.2). Although the overall numbers are
lower than those for ON-SHORT, we are selecting from 36.95 candidates on aver-
age, more than 3 times more than for ON-SHORT. Considering that the accuracy

47

Accuracy (%) ON-SHORT ON-LONG

RANDOM 8.29 2.71
MOSTFREQ 22.76 17.23
EVENTWORD2VEC 38.40 21.49
EVENTCOMP-8M 38.26 18.79

+ entity salience 45.05 26.23
EVENTCOMP-40M 41.89 21.79

+ entity salience 47.75 27.87

Table 3.4: Evaluation results on the OntoNotes datasets.

of randomly selecting an entity is as low as 2.71%, the performance of our best
performing model, with an accuracy of 27.87%, is quite good.

Ablation Analysis To see which of the entity salience features are important, we
conduct an ablation test with the EVENTCOMP-8M model on ON-SHORT. From
the results in Table 3.5, we can see that in our task, as in Dunietz and Gillick (2014),
the entity mentions features, i.e., the numbers of named, nominal, pronominal,
and total mentions of the entity, are most helpful. In fact, the other two features
even decrease performance slightly.

Features Accuracy (%)
no entity salience feature 38.26

– mentions 39.02
– head_count 45.71
– 1st_loc 45.65

all entity salience features 45.05

Table 3.5: Ablation test on entity salience features. (Using EVENTCOMP-8M on
ON-SHORT.)

We take a closer look at several of the models in Figure 3.6. Figure 3.6a breaks
down the results by the argument type of the removed argument. On subjects,
the EVENTWORD2VEC baseline matches the performance of EVENTCOMP, but not
on direct objects and prepositional objects. Subjects are semantically much less
diverse than the other argument types, as they are very often animate. A similar
pattern is apparent in Figure 3.6b, which has results by the part-of-speech tag of

48

the head word of the removed entity. Note that an entity is a coreference chain, not
a single mention; so when the head word is a pronoun, this is an entity which has
only pronoun mentions. A pronoun entity provides little semantic content beyond,
again, animacy. And again, EVENTWORD2VEC performs well on pronoun entities,
but less so on entities described by a noun. It seems that EVENTWORD2VEC can
pick up on a coarse-grained pattern such as animate/inanimate, but not on more
fine-grained distinctions needed to select the right noun, or to select a fitting direct
object or prepositional object. This matches the fact that EVENTWORD2VEC gets
a less clear signal on the task, in two respects: It gets much less information than
EVENTCOMP on the distinction between argument positions,10 and it only looks at
overall event similarity while EVENTCOMP is trained to detect narrative coherence.
Entity salience contributes greatly across all argument types and parts of speech,
but more strongly on subjects and pronouns. This is again because subjects, and
pronouns, are semantically less distinct, so they can only be distinguished by rela-
tive salience.

Figure 3.6c analyzes results by the frequency of the removed entity, that is, by
its number of mentions. The MOSTFREQ baseline, unsurprisingly, only does well
when the removed entity is a highly frequent one. The EVENTCOMP model is
much better than MOSTFREQ at picking out the right entity when it is a rare one,
as it can look at the semantic content of the entity as well as its frequency. Entity
salience boosts the performance of EVENTCOMP in particular for frequent entities.

3.5.4 Results on G&C

The G&C data differs from the argument cloze data in two respects. First, not
every argument position that seems to be open needs to be filled: The model must
additionally make a fill / no-fill decision. Whether a particular argument posi-
tion is typically filled is highly predicate-specific. Besides, the number of total
missing argument positions (3737) is about 4 times larger than the number of gold
implicit arguments (966), making the decision highly biased. As the small G&C
dataset does not provide enough data to train our neural model on this task, we
instead train a simple logistic classifier, the fill / no-fill classifier, with a small sub-

10As shown in Figure 3.4, the “words” for which embeddings are computed are role-lemma pairs.

49

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

SUBJ DOBJ POBJ

42.0

51.5
47.8

37.9

48.4

40.4

32.5

40.239.3

13.0
18.8

27.0

MOSTFREQ
EVENTWORD2VEC
EVENTCOMP-40M
EVENTCOMP-40M + SALIENCE

(a) Accuracy by Argument Type

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

Noun Pronoun

49.747.5
40.242.8 41.4

37.5
31.9

19.8

MOSTFREQ
EVENTWORD2VEC
EVENTCOMP-40M
EVENTCOMP-40M + SALIENCE

(b) Accuracy by POS of Head Word

A
cc

ur
ac

y
(%

)

0
10
20
30
40
50
60
70
80

2 3 4 5 6 7 8 9 10+

MOSTFREQ
EVENTWORD2VEC
EVENTCOMP-40M
EVENTCOMP-40M + SALIENCE

(c) Accuracy by Entity Frequency

Figure 3.6: Performance of EVENTCOMP (with and without entity salience) and
two baseline models by (a) argument type, (b) part-of-speech tag of the head word
of the entity, and (c) entity frequency.

50

set of shallow lexical features used in Gerber and Chai (2012), to make the decision.
These features describe the syntactic context of the predicate. We use only 14 fea-
tures as shown in Table 3.6; the original Gerber and Chai (2012) model had more
than 80 features, and our re-implementation, described below, has around 60.

Description
1 p itself.
2 p & p’s morphological suffix.
3 p & iargn.
4 Verbal form of p & iargn.
5 Frequency of p within the document.
6 p & the stemmed content words in a one-word window around p.
7 p & the stemmed content words in a two-word window around p.
8 p & the stemmed content words in a three-word window around p.
9 p & whether p is before a passive verb.
10 p & the head of the following prepositional phrase’s object.
11 p & the syntactic parse tree path from p to the nearest passive verb.
12 p & the part-of-speech of p’s parent’s head word.
13 p & the last word of p’s right sibling.
14 Whether or not p’s left sibling is a quantifier (many, most, all, etc.).

Table 3.6: Features used in the fill / no-fill classifier. This is a subset of features
used by Gerber and Chai (2012). Here, p is the nominal predicate, iargn is the
integer n of the semantic role label of the implicit argument, as shown in Table 3.3,
and the & symbol denotes concatenation.

The second difference is that in G&C, an event may have multiple open argu-
ment positions. In that case, the task is not just to select a candidate entity, but also
to determine which of the open argument positions it should fill. So the model
must do multi implicit argument prediction. We can flexibly adapt our method
for training data generation to this case. In particular, we create extra negative
training events, in which an argument of the positive event has been moved to
another argument position in the same event, as shown in Figure 3.7. We can then
simply train our EVENTCOMP model on this extended training data. We refer to
the extra training process as multi-arg training.

As discussed in Subsection 3.2.1, none of the follow-up work on G&C could
outperform the original results in Gerber and Chai (2012). Therefore, we only
compare our models to that of Gerber and Chai (2012). However, their origi-

51

Context: (build-pred, x0-subj, x2-dobj, —)

Positive: (reduce-pred, x2-subj, cost-dobj, —)

Negative: (reduce-pred, —, cost-dobj, x2-prep)

x0 = The company

x1 = mill

x2 = power plant

Figure 3.7: Event triples for training multi implicit argument prediction.

nal logistic regression model used many features based on gold annotation from
FrameNet, PropBank and NomBank. To create a more realistic evaluation setup,
we re-implement a variant of their original model by removing gold features, and
name it GCAUTO. Results from GCAUTO are directly comparable to our models,
as both are trained on automatically generated features. 11

We present the evaluation results in Table 3.7. The original EVENTCOMP mod-
els do not perform well, which is as expected since the model is not designed to
do the fill / no-fill decision and multi implicit argument prediction tasks as described
above. With the fill / no-fill classifier, precision rises by around 13 points because
this classifier prevents many false positives. With additional multi-arg training, F1

score improves by another 22-23 points. At this point, our model achieves a perfor-
mance comparable to the much more complex G&C re-implementation GCAUTO.
Adding entity salience features 12 further boosts both precision and recall, showing
that implicit arguments do tend to be filled by salient entities, as we had hypothe-
sized. Again, more training data substantially benefits the task. Our best perform-
ing model, at 49.6 F1, clearly outperforms GCAUTO, and is comparable with the
original Gerber and Chai (2012) model trained with gold features.13

3.6 Chapter Summary

In this chapter, we address the task of implicit argument prediction. To sup-
port training at scale, we introduce a simple argument cloze task for which data

11To be fair, we also test adding the fill / no-fill classifier to GCAUTO. However the classifier
only increases precision at the cost of reducing recall, and GCAUTO already has higher precision
than recall. The resulting F1 score is actually worse, and thus is not reported here.

12As discussed in Subsection 3.5.3, here we use non-oracle entity salience features from automat-
ically predicted coreference chains.

13We also try fine-tune our model on the G&C dataset with cross validation, but the model
severely overfit, possibly due to the very small size of the dataset.

52

P R F1

Gerber and Chai (2012) 57.9 44.5 50.3
GCAUTO 49.9 40.1 44.5

EVENTCOMP-8M 8.9 27.9 13.5
+ fill / no-fill classifier 22.0 22.3 22.1

+ multi-arg training 43.5 44.1 43.8
+ entity salience 45.7 46.4 46.1

EVENTCOMP-40M 9.4 30.3 14.3
+ fill / no-fill classifier 23.7 24.0 23.9

+ multi-arg training 46.7 47.3 47.0
+ entity salience 49.3 49.9 49.6

Table 3.7: Evaluating EVENTCOMP on G&C dataset.

can be generated automatically. We also introduce a neural model, EVENTCOMP,
which frames implicit argument prediction as the task of selecting the textual en-
tity that completes the event in a maximally narratively coherent way. The model
prefers salient entities, where salience is mainly defined through the number of
mentions. Evaluating on synthetic data from OntoNotes, we find that our model
clearly outperforms even strong baselines, that salience is important throughout
for performance, and that event knowledge is particularly useful for the (more
verb-specific) object and prepositional object arguments. Evaluating on the natu-
rally occurring data from Gerber and Chai (2010), we find that in a comparison
without gold features, our model clearly outperforms the previous state-of-the-art
model, where again salience information is important.

This chapter takes a first step towards predicting implicit arguments based on
narrative coherence. We currently use a relatively simple model for local narrative
coherence; in Chapter 4, we will turn to models that can test global coherence for
an implicit argument candidate.

53

Chapter 4

Inferring Implicit Arguments by Global Coherence

This chapter introduces another method to infer implicit arguments, by model-
ing global narrative coherence between the target event and all preceding context
events. The method is further enhanced by a multi-hop inference module to tackle
cases with more than one implicit argument in a single event. This is a direct ex-
tension of the work in Chapter 3, providing another view on how to reason over
event and entity structures to infer implicit arguments. The work in this chapter
has been published in Cheng and Erk (2019), where I developed the models, con-
ducted the experiments and analysis, and wrote the paper, under the advice of
Katrin Erk. All work in this chapter constitutes original contributions.

4.1 Chapter Overview

In Chapter 3, we introduce a novel argument cloze task to address the data
sparsity issue, and the EVENTCOMP model to predict implicit arguments, and
achieve good performance on both the synthetic argument cloze evaluation data
and the naturally occurring G&C dataset (Gerber and Chai, 2010). However, there
are still some limitations of both the model and the task.

First, the model only learns local narrative coherence, in that it computes a pair-
wise coherence score between the target event and every context event separately
to indicate how likely these two events exist in the same narrative chain, instead
of jointly reasoning over all context events to measure global coherence.

Also, the model is not well designed to handle cases with more than one ar-
gument missing in a predicate-argument tuple. This is not rare in the natural oc-
currences of implicit arguments, as this is the case for more than 30% of the G&C
dataset. In Example (4.1)1, both arg0 and arg1 of the nominal predicate sale are
implicit arguments. The EVENTCOMP model tries to infer these two implicit ar-
guments independently, that is, to predict the filler for implicit arg0 without any
clue of implicit arg1, and vice versa. However, plausible fillers for different implicit

1This is the same as Example (3.3), and we include it here just for easy reference.

54

arguments of the same event are typically mutually interdependent. In this exam-
ple, knowing that 91-day commercial paper is the implicit arg1 of sale is an important
clue to guess that Citicorp is the implicit arg0, even for human readers.

(4.1)

The average interest rate rose to 8.3875% at [Citicorp]iarg0 ’s $50 mil-
lion weekly auction of [91-day commercial paper]iarg1 , or corporate
IOUs, from 8.337% at last week’s [sale]pred.

Further, many synthetic examples constructed from the argument cloze task do
not closely resemble the implicit arguments in natural language, in that an argu-
ment would not likely to be left implicit unless a filler for the argument slot can
be resolved from the preceding context. This is also evidenced by the two human-
annotated implicit argument datasets (Gerber and Chai, 2010, Ruppenhofer et al.,
2010), where only mention spans in the preceding context are considered as candi-
dates of fillers. In the original argument cloze task, however, the correct fillers for
a manually removed argument might only exist in the subsequent context.

Motivated by these observations, in this chapter, we view the task of implicit
argument prediction as related to reading comprehension, and present another
model, the Pointer Attentive Reader (PAR), by combining a standard reading
comprehension model (Hermann et al., 2015) with Pointer Networks (Vinyals et al.,
2015).

• A predicate-argument tuple with the missing argument(s) is a query.

• All events in the preceding context consist the document.

• The answer to the query has to be located in the document.

To handle cases with multiple implicit arguments, we further extend the model
with multi-hop inference, taking inspiration from multi-hop memory networks
(Sukhbaatar et al., 2015), which allows the model to reason over the whole docu-
ment multiple times to derive a more informative query.

In the following sections, we first review some prior work on reading com-
prehension and multi-hop reasoning (Section 4.2). Then we revisit the original
argument cloze task and introduce some changes to the formulation of the task
(Section 4.3), in order to address the statistical discrepancy between synthetic data

55

and natural data as discussed above. We present the model in Section 4.4 and
experimental results in Section 4.5.

4.2 Prior Work

Hermann et al. (2015) first introduced neural models to reading comprehension
tasks by collecting a large number of news articles paired with human-written bul-
let points, summarizing information contained in the article. To construct a corpus
of document-question-answer triples, each bullet point is turned into a question by
replacing one entity with a placeholder. They also proposed an Attentive Reader
model, as shown in Figure 4.1. In the model, they first use bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997) to encode the document (y(1), y(2), . . .) and
the question (u) separately. Then, an attention mechanism (s(1), s(2), . . .) is ap-
plied over the hidden representations of the document and query pair to derive a
joint embedding (g), which is used to produce the final answer.

r

g

u

s(4)y(4)
s(2)y(2) s(3)y(3)

s(1)y(1)

Mary went to England X visited England

Figure 4.1: The Attentive Reader model from Hermann et al. (2015).

Since then there has been much follow-up work on constructing new datasets
(Hill et al., 2016, Rajpurkar et al., 2016, Welbl et al., 2018, Yang et al., 2018) and
proposing new models (Chen et al., 2016, Seo et al., 2017, Dhingra et al., 2017, Wang
et al., 2017, Clark and Gardner, 2018) for reading comprehension. 2 In this chapter,

2More recently, large-scale pre-trained language models like BERT (Devlin et al., 2019) and XL-

56

we aim to take a first step in investigating how models in reading comprehension
can be applied to better resolve implicit arguments than traditional models. We
choose the Attentive Reader (Hermann et al., 2015) as our starting point, because
it is simpler while still being a wide-used standard baseline.

Another related line of work in reading comprehension that is of particular
interest to us is that on End-to-End Memory Networks (Sukhbaatar et al., 2015),
which use multiple layers of attention computation (called “multiple hops”) to
allow for complex reasoning over the document input. An example of the bAbI
task (Weston et al., 2015) in given in Figure 4.2. In each hop, the model updates the
query representation with a weighted sum over all input sentences to gradually
build a more informative query. For example, after the second hop, the model
would know that the original query is equivalent to “What color is Brian?” after
learning that “Brian is a frog” and “Greg is a frog”. In our task, we want to use
multi-hop inference to tackle cases where multiple implicit arguments are missing
in one single event, as discussed in Subsection 4.4.3.

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3

Brian is a frog. yes 0.00 0.98 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. yes 0.07 0.00 1.00
Julius is green. 0.06 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00

What color is Greg? Answer: yellow Prediction: yellow

Figure 4.2: An example of multi-hop inference in Memory Networks from
Sukhbaatar et al. (2015).

We also draw on Pointer Networks in that we view implicit argument pre-
diction as a pointer to a previous mention of an entity. Vinyals et al. (2015) first
proposed Pointer Networks as a variant of the conventional sequence-to-sequence
models (Sutskever et al., 2014) that uses the attention distribution over input se-
quence directly as a “pointer” to suggest one preferred input state, instead of as a
weight to combine all input states. This architecture has been applied to a number

Net (Yang et al., 2019b) have shown superior performance on a wide range of reading compre-
hension tasks, but they were not available at the time when this work (Cheng and Erk, 2019) was
submitted (September 2018).

57

of tasks, including Question Answering (Xiong et al., 2017) and Machine Compre-
hension (Wang and Jiang, 2017).

4.3 Revisiting the Argument Cloze Task

The argument cloze task defined in Section 3.3 is a first step to address the data
issue in training complex neural models for implicit argument prediction, and has
shown good performance on both synthetic and natural evaluation datasets (Sec-
tion 3.5). As a quick reminder, in the original setup, given a list of events extracted
from the text, we construct an argument cloze example by randomly removing an
argument of one event. The task is then to recover the removed argument, with all
coreference chains (entities) as candidates. In this new model, we view the task as
related to reading comprehension. Thus, we need to change the setup of the argu-
ment cloze task that would 1) better fit the nature of reading comprehension and
2) also make the cloze task more similar to naturally occurring implicit arguments,
as discussed in Section 4.1.

Figure 4.3a shows the same set of events and entities as in Figure 3.2b, and we
mark all arguments that may be removed in red boxes (essentially, such arguments
belong to some coreference chain). However, for some of them (masked as gray in
Figure 4.3b), the correct fillers only exist in subsequent events, because they are the
first mentions of some coreference chain. Such argument should not be removed
to construct synthetic argument cloze examples, as in natural language implicit
arguments are most likely to occur when the fillers can be resolved from the pre-
ceding context, which is also the case in the two existing human-annotated implicit
argument datasets (Gerber and Chai, 2010, Ruppenhofer et al., 2010). Therefore, to
make the argument cloze task closer to the natural task, we only remove an argu-
ment if it co-refers with at least one argument in its preceding events, as marked
in red boxes in Figure 4.3b.

Now since the ground truth filler for the removed argument must exist in the
preceding context, to make it more realistic, the model should also only have ac-
cess to the preceding context when making its prediction, similar to how human
reason about implicit arguments in natural language. So we should consider all
arguments in preceding events as candidates, instead of limiting to the ones that

58

e0: (build-pred , x0-subj , x2-dobj , —)

e1: (provide-pred , — , electricity-dobj , x1-prep_to)

e2: (ensure-pred , x2-subj , — , —)

e3: (has-pred , x0-subj , energy-dobj , x1-prep_for)

e4: (reduce-pred , x2-subj , cost-dobj , —)

x0 = The company

x1 = mill

x2 = power plant

(a) The arguments to be removed in the original argument cloze task, where the events
and entities are the same as in Figure 3.2b).

e0: (build-pred , x0-subj , x2-dobj , —)

e1: (provide-pred , — , electricity-dobj , x1-prep_to)

e2: (ensure-pred , x2-subj , — , —)

e3: (has-pred , x0-subj , energy-dobj , x1-prep_for)

e4: (reduce-pred , x2-subj , cost-dobj , —)

x0 = The company

x1 = mill

x2 = power plant

(b) The arguments to be removed in the new setup.

Document (e0 ~ e3)

build-pred company-subj plant-dobj provide-pred electricity-dobj
mill-prep_to ensure-pred plant-subj has-pred company-subj
energy-dobj mill-prep_for

Query (e4)

reduce-pred TARGET-subj cost-dobj

(c) An example of the modified argument cloze task, when viewed as reading comprehen-
sion in the form of a document-query pair.

Figure 4.3: Revisit the argument cloze example in Figure 3.2.

59

are part of some coreference chain, because without access to the subsequent con-
text, the model would not know whether an argument actually co-refers with some
other arguments or not. Therefore, we also change the evaluation of the task by
considering candidates to be mentions, not coreference chains, and by consider-
ing only candidates that appear before the implicit argument, independent of their
number of mentions.

We thus formalize the task as shown in Figure 4.3c. For an event (e4) with a
missing argument (subj), we concatenate the predicates and arguments of all pre-
ceding events (e0~e3) into a sequence and view it as the document, and we treat
the target event with a special placeholder token (marked red) at the missing ar-
gument position as the query. The task is then to select any mention of the correct
entity (marked blue) among the arguments appearing in the preceding document.
A query may have multiple correct answers when there are multiple mentions of
the removed entity, as shown in this example.

4.4 Methods

4.4.1 Pointer Attentive Reader

As discussed above, we view the task of implicit argument prediction as a vari-
ant of reading comprehension, in that we can treat the list of preceding events as
a document and the target event with missing argument as a query. And we also
draw on Pointer Networks and on multi-hop attention.

Most previous work on reading comprehension (Chen et al., 2016, Seo et al.,
2017, Dhingra et al., 2017, Wang et al., 2017) can be viewed as extending the At-
tentive Reader model by Hermann et al. (2015). The Attentive Reader (Figure 4.1)
first encodes the document and the query via separate recurrent neural networks
to get a list of document word vectors and one query vector. The query vector is
used to obtain an attention-weighted sum over all document word vectors, which
is then combined with the query vector to make the final prediction.

In the case of implicit argument prediction, however, the task is to directly se-
lect one token (an argument mention) from the document input sequence as the
filler for the missing argument. This suggests the use of Pointer Networks (Vinyals
et al., 2015), a variant of the sequence-to-sequence model that uses the attention

60

distribution over input states to “point” to a preferred input state.
So we combine the ideas from Attentive Reader and Pointer Networks and pro-

pose the Pointer Attentive Reader (PAR) model for implicit argument prediction,
as illustrated in Figure 4.4.

bu
ild
-p
red

co
mp
an
y-
su
bj

pl
an
t-d
ob
j

pr
ov
id
e-p
red

ele
ctr
ici
ty-
do
bj

mi
ll-
pr
ep
_to

en
su
re-
pr
ed

pl
an
t-s
ub
j

ha
s-p
red

…

…

Document Input

Embedding

Document
Encoder
(BiGRU) …

…

red
uc
e-p
red

TA
RG
ET
-su
bj

co
st-
do
bj

Query Input

Query
Encoder
(BiGRU)

Pointer
Distribution

d1 d2 d3 d4 d5

q

Figure 4.4: Pointer Attentive Reader (PAR). The document encoder produces a
context-aware embedding for each argument mention via a BiGRU. The query en-
coder, similar to the document encoder, concatenate the last forward and back-
ward hidden state to produce a single query vector. The attention scores between
the query vector q and all argument mention embeddings dt are normalized to a
pointer distribution to select one filler for the missing argument in the query.

Embedding The document input and the query input, as discussed in Section 4.3,
are both concatenated sequences of event components, represented as [xd1, . . . , x

d
|D|]

and [xq1, . . . , x
q
|Q|] respectively (where |D| and |Q| are the numbers of tokens in doc-

ument and query). The missing argument in the query is represented by a special
placeholder token. Each token is then mapped to an embedding vector before be-
ing passed into the document encoder and query encoder.

61

Document Encoder The document encoder is a bidirectional single-layer Gated
Recurrent Unit (BiGRU) (Cho et al., 2014). The forward and backward hidden
state of each token are concatenated, with predicate tokens being masked out (as
predicates are not considered as candidates), which gives us a list of context-aware
embeddings of argument mentions: [d1, . . . ,dT].

Query Encoder The query encoder is also a BiGRU similar to the document en-
coder, except that we concatenate the last forward hidden state and the last back-
ward hidden state to get the single query vector q.

Attention For each argument mention embedding dt, we compute an attention
score at using the query vector q as3:

st = vT · tanh(W[dt,q])

at = softmax(st)
(4.1)

where W and v are learned parameters.
Finally, the attention scores [a1, . . . , aT] are directly used as pointer probabilities

to select the most probable filler for the implicit argument.

4.4.2 Training Objective

Unlike conventional pointer networks where there exists a single target for the
pointer, there could be multiple correct answers from the document input list in
the implicit argument prediction task (as in the example in Figure 4.3c). Therefore,
we train the model to maximize the “maximum correct” attention score. That is,
with a list of attention scores a = [a1, a2, . . . , aT] ∈ RT , and a binary answer mask
mc ∈ RT which has 1’s for correct answer positions (e.g., plant-dobj and plant-subj
in Figure 4.3c) and 0s elsewhere, we train the model with the following negative
log likelihood (NLL) loss function:

L = − log(max(a ◦mc)) (4.2)

3We have also tried bilinear attention and dot product attention (Luong et al., 2015), but got
lower performance.

62

where ◦ is element-wise multiplication.

4.4.3 Multi-hop Attention

A single event can have more than one implicit argument, and in fact this is the
case for over 30% of nominal predicates in the dataset of Gerber and Chai (2010). In
such cases, we still treat one implicit argument as the target argument to be filled,
and the other arguments are indicated to the model to be missing but not target,
using a separate placeholder token. An example is shown in Figure 4.5, where
target arguments are marked red, “missing but not target” arguments are marked
bold, and answers to the target arguments are marked blue.

Document 1 (e0 ~ e2)

build-pred company-subj plant-dobj provide-pred electricity-dobj
mill-prep_to ensure-pred plant-subj

Query 1 (e3)

has-pred MISS-subj energy-dobj TARGET-prep_for

Document 2 (e0 ~ e2)

build-pred company-subj plant-dobj provide-pred electricity-dobj
mill-prep_to ensure-pred plant-subj

Query 2 (e3)

has-pred TARGET-subj energy-dobj MISS-prep_for

Figure 4.5: An example of document-query pairs for predicates with more than
one implicit argument.

When there are multiple implicit arguments, this could make the query vector
q lack enough information to compute the correct attention distribution, especially
in the extreme case where only the predicate and placeholder tokens are present
in the query input. To overcome this difficulty, we strengthen the model with the
ability to reason over the document and query to infer the missing but non-target
arguments and thus build a better query. We do this by extending the Pointer At-
tentive Reader model with multi-hop attention, inspired by the idea of end-to-end
memory networks (Sukhbaatar et al., 2015). For example in Figure 4.5, we can

63

make the vector of Query 1 more informative by attending to all missing argu-
ments of has in the first hop. We are not predicting the subject at this point, but
could use it to help the final prediction of TARGET-prep_for. Figure 4.6 shows the
2-hop Pointer Attentive Reader model.

Document Input Query Input

Query EncoderDocument Encoder

Embedding

Attention
Weighted Sum

+

Pointer Distribution

2-hop
Attention

Embedding

d1 d2 d3 dT
q…

o1

q1

Figure 4.6: 2-hop Pointer Attentive Reader. The query vector q is first updated
by an attention weighted sum o1 from all argument embeddings in the document,
before used to compute the final attention distribution.

To make the query vector document-aware, we update the query vector q, in
each but the last hop, by an attention-weighted sum o1 over argument embeddings
[d1,d2, . . . ,dT]:

s′t = v′
T · tanh(W′[dt,q])

a′t = softmax(s′t)

o1 = ΣT
t=1a

′
t · dt

q1 = o1 + q

(4.3)

where W′ and v′ are learned parameters. Then in Equation 4.1 we use q1 instead
of q to compute the final attention scores.

In this chapter we only experiment with 2-hop attention. However the model

64

can be easily extended to k-hop (k > 2) attention models.

4.4.4 Auxiliary Supervision

Another advantage of using multi-hop attention is that we can apply extra su-
pervision (Hill et al., 2016) on the attention scores to force the model to learn any
arbitrary attention distribution as desired. In the case of multiple implicit argu-
ments, we want the model to attend to all missing arguments of the query event in
the first hop of attention, so that the query vector receives enough information for
subsequent hops. Therefore, the desired distribution has 1/k for all mentions of all
missing arguments (assuming k mentions in total) and 0 elsewhere. For the exam-
ples in Figure 4.5, this target distribution t would have 0.5 for both company-subj
and mill-prep_to:

build company plant provide electricity mill ensure plant
t = [0, 0.5, 0, 0, 0, 0.5, 0, 0]

Then we can add the KL-divergence between the actual attention scores in the
first hop

a′ = [a′1, a
′
2, . . . , a

′
T]

and the desired distribution t to the loss function in Equation 4.2:

L = − log(max(a ◦mc)) + kl_div(a′, t) (4.4)

4.5 Experiments

4.5.1 Implementation

Preprocessing We use the same preprocessing steps on the Wikipedia corpus as
in the EVENTCOMP model (Subsection 3.5.2). Then for each paragraph, after ex-
tracting a sequence of events and a list of entities, we adopt the new setup of the
argument cloze task, that is, constructing a document-query pair for every argu-
ment of every event in the sequence if the argument co-refers with at least one

65

argument in its preceding events (Figure 4.3c). This leads to approximately 25 mil-
lion document-query pairs in the training dataset.

Initialization and Hyperparameters For training the PAR model, we initialize
the embedding layer with the same event-based word2vec embeddings (see Fig-
ure 3.4) as in the EVENTCOMP model. The embedding vectors for placeholder
tokens like TARGET-* and MISS-* are initialized to zero. We use a hidden size of
300 in both document encoder and query encoder, and apply a dropout layer with
a rate of 0.2 on all embeddings before they are passed to the encoders. We train
the model for 10 epochs with a batch size of 128, using Adagrad optimizer (Duchi
et al., 2011) to minimize the negative log-likelihood loss as defined in Equation 4.2
with a learning rate of 0.01. The 2-hop PAR model is trained with the same set of
hyperparameters.

4.5.2 Results on Argument Cloze

To evaluate the PAR model on the OntoNotes argument cloze task, we also
need to change the way the evaluation data is created according to the new task
setup (Section 4.3). This greatly reduces the number of test cases, as many cases
in the original setting have the missing argument only coreferring with arguments
of subsequent events, which are excluded in the new setting. Also, although now
there can be more than one candidate that constitutes a correct answer to a query
(as in the example in Figure 4.3c), the number of candidates also grows much larger
(about three times), because we now view every argument mention rather than a
whole coreference chain as a candidate. Some statistics of both the original and
modified datasets are shown in Table 4.1.

We compare the PAR model to 2 baselines, the RANDOM baseline, which ran-
domly selects one candidate, and the MOSTFREQ baseline, which selects any can-
didate belonging to the coreference chain with highest number of mentions. We
also compare with the best performing EVENTCOMP model in Subsection 4.5.2.

The evaluation results are shown in Table 4.2. We can see that the PAR model
outperforms the previously best EVENTCOMP model by a large margin, especially
on the harder ON-LONG dataset. In the EVENTCOMP model, we find that entity
salience features, that is, numbers of different types of mentions in a coreference

66

ON-SHORT ON-LONG

Original Modified Original Modified
doc 1027 597

test cases 13018 7781 18208 10539
Avg # candidates 12.06 34.99 36.95 93.89

Avg # correct 1 3.17 1 4.61

Table 4.1: Statistics of the original and modified OntoNotes argument cloze
datasets.

chain, greatly improves the performance. We have also tried to add such features
to the PAR model, but do not see significant improvement (sometimes adding the
features even degrades the performance). This is probably due to the fact that by
sequentially modeling the context through a document encoder, PAR is already
encoding entity salience as some latent information in its context-aware vectors
[d1, . . . ,dT].

ON-SHORT ON-LONG

RANDOM 13.24 8.74
MOSTFREQ 35.15 26.29
EVENTCOMP 36.90 21.26

+ entity salience 46.06 31.43
PAR 58.12 51.52

Table 4.2: Evaluation results on the modified OntoNotes datasets.

To better understand why PAR is performing well, we plot the accuracy of dif-
ferent models on ON-LONG by the frequency of the removed argument, that is, by
the number of preceding mentions referring to the argument, in Figure 4.7. We can
see that entity salience boosts the performance of the EVENTCOMP model in partic-
ular for frequent entities. While PAR not only achieves comparable performance
on frequent entities with EVENTCOMP + entity salience, it also maintains a rela-
tively steady performance on rare entities, indicating that PAR is able to capture
both semantic content of events and salience information of entities.

Evaluation on Multiple Implicit Arguments To test the PAR model’s ability to
predict multiple implicit arguments of the same predicate (Subsection 4.4.3), we

67

A
cc

ur
ac

y
(%

)

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10+

EVENTCOMP
EVENTCOMP + SALIENCE
PAR

Figure 4.7: Performance of EVENTCOMP, with and without entity salience, and
PAR, by entity frequency (length of coreference chain) of the removed argument,
on ON-LONG.

extract subsets from both the ON-SHORT and ON-LONG datasets in which every
query has more than one argument that is a potential implicit argument (i.e., co-
referring with arguments of preceding events). Then we modify each query by
removing all such potential implicit arguments, and ask the model to predict one
of them at a time, as in the examples shown in Figure 4.5. We name the resulting
two subsets ON-SHORT-MULTI and ON-LONG-MULTI.

ON-SHORT-MULTI ON-LONG-MULTI

PAR w/o multi-arg 51.49 43.06
PAR 48.45 39.90
2-HOP PAR 50.54 42.69

+ extra supervision 50.73 41.72

Table 4.3: Evaluating on subsets of the OntoNotes datasets with more than one
missing argument in the query.

Table 4.3 shows the result of testing PAR and 2-hop PAR on the two subsets.
The “PAR w/o multi-arg” evaluates PAR on the same subsets of queries, but only
removes one argument at a time. The performance drop of over 3 points from the
same model proves that the multi-argument cases are indeed harder than single-
argument cases. The 2-hop model, however, brings the performance on multi-
argument cases close to single-argument cases. This confirms our hypothesis that
multi-hop attention allows the model to build a better query by reasoning over the

68

Nine people were injured in Gaza when gunmen opened fire on an Israeli bus.
Witnesses say the shots came from the Palestinian international airport. Israeli
Prime Minister Ehud Barak closed down the two-year-old airport in response
to the incident. Palestinians criticized the move. They regard the airport as a
symbol of emerging statehood.

(a) A piece of raw text from the OntoNotes corpus (english/bn/cnn_0019).

Document
injure-pred people-dobj Gaza-prep_in open-pred gunman-subj fire-dobj
bus-prep_on come-pred shot-subj airport-prep_from close-pred Barak-subj
airport-dobj response-prep_in criticize-pred Palestinians-subj move-dobj

Query
regard-pred MISS-subj TARGET-dobj symbol-prep_as

(b) An argument cloze example with multiple implicit arguments in the query, with the
correct answers to the query marked blue in the document.

0.00
0.08
0.16
0.24
0.32
0.40

injure-
pred

peo
ple-

dobj

Gaz
a-p

rep
_in

open
-p

red

gunman
-su

bj

fire-
dobj

bus-p
rep

_o
n

co
me-p

red

sh
ot-s

ubj

air
port-

prep
_fr

om

clo
se

-p
red

Bar
ak

-su
bj

air
port-

dobj

res
ponse

-p
rep

_in

cri
tic

ize
-p

red

Pale
sti

nian
s-s

ubj

move-d
obj

PAR
2-hop PAR (1st hop)

2-hop PAR (2nd hop)

(c) The heatmap of attention scores over document input from PAR and 2-hop PAR. While
PAR fails on this example, 2-hop model succeeds from a more informative query vector
when the first hop attends to other missing arguments of the query.

Figure 4.8: The heatmap of attention scores on an OntoNotes example from the
PAR and 2-hop PAR models.

69

document. We also train a 2-hop model with extra supervision on the first hop
of attention scores, as discussed in Subsection 4.4.4, but it does not provide much
benefit in this experiment. Figure 4.8 shows an example where PAR fails to point
to the correct answer, but the 2-hop model succeeds by first attending to other
missing arguments of the query (Palestinians as missing subject) in the first hop,
then pointing to the correct answer in the second hop with a more informative
query vector.

4.5.3 Results on G&C

The first obstacle of evaluating on the G&C dataset is again the fill / no-fill de-
cision, which is particularly hard for a complex neural model to learn, as discussed
in Chapter 3. Therefore, we use the same fill / no-fill classifier as in the previous
EVENTCOMP model (see Subsection 3.5.4 for more details).

Another obstacle of applying the PAR model to G&C is, the PAR model only
considers arguments of preceding verbal events (i.e., with verb predicates) as can-
didates. However, many of the candidates defined by the task, especially those
from NomBank annotations, are not present in any verbal event (arguments of
nominal predicates are likely to be absent from any dependency relation with a
verb). To make a fair comparison, we convert every NomBank proposition within
the candidate window to an event by mapping the nominal predicate to its ver-
bal form, and add it to the list of preceding events. After adding the extra events,
there still remains a slight difference between the candidates available to the PAR
model and the candidates defined by the task, which we adjust by masking out the
unavailable candidates from other models used in comparison.

Cross Validation The Wikipedia training data for PAR contains only verbal pred-
icates, and the text is from a different domain than the G&C dataset. To bridge
the gap, we fine-tune the model on G&C dataset by 10-fold cross validation, that
is, for each testing fold, the model is tuned on the other nine folds. We remove
the dropout layers in both document encoder and query encoder to ensure repro-
ducibility. To prevent overfitting, we freeze the parameter weight in embedding
layer and query encoder layer, using Adagrad optimizer with a learning rate of
0.0005. Still, due to the size of the dataset and the complexity of the model, the

70

performance is very sensitive to other hyperparameters, and we cannot find a sin-
gle set of hyperparameters that works best for all models. Therefore, we report the
results as an average of 5 runs with slightly different hyperparameter settings. 4

The evaluation results are presented in Table 4.4. As a reminder, GCAUTO is
an re-implementation of Gerber and Chai (2012) by removing all gold features,
in order to make it a fair comparison with our methods, as discussed in Subsec-
tion 3.5.4. EVENTCOMP* evaluates the best performing EVENTCOMP model in a
condition that masks out some candidates to make it a fair comparison with the
PAR model, as discussed above. Note that GCAUTO, EVENTCOMP and EVENT-
COMP* all have an intrinsic advantage over PAR as they exploit event information
from the whole document to make the prediction, while PAR only looks at the
preceding text.

P R F1

Gerber and Chai (2012) 57.9 44.5 50.3
GCAUTO 49.9 40.1 44.5
EVENTCOMP 49.3 49.9 49.6
EVENTCOMP* 48.0 48.7 48.3
PAR 44.0 44.7 44.4
2-HOP PAR 45.9 46.6 46.2

+ extra supervision 47.9 48.6 48.3

Table 4.4: Evaluating PAR on the G&C dataset.

The performance of the plain PAR model is already comparable to GCAUTO.
With an additional hop of attention, the performance increases by around 2 points.
This is as expected, as over 30% of the predicates in the G&C dataset have more
than one implicit argument, and we have shown in Table 4.3 that multi-hop atten-
tion helps prediction on multi-argument cases. Finally, when the 2-hop model is
trained with extra supervision, it gains another 1.7 points improvement, achieving
an F1 score of 48.3, on par with EVENTCOMP*, the comparably evaluated EVENT-
COMP. Figure 4.9 shows the attention scores of PAR and 2-hop PAR on Exam-
ple (4.1), to demonstrate the power of 2-hop inference on multi-argument cases.

4The hyperparameters are: (B = 4, λ = 1.0), (B = 8, λ = 1.0), (B = 16, λ = 1.0), (B = 8, λ =
0.1), and (B = 8, λ = 0.0), where B is the batch size and λ is the `2 regularizer weight.

71

The average interest rate rose to 8.3875% at Citicorp's $50 million
weekly auction of 91-day commercial paper, or corporate IOUs,
from 8.337% at last week's sale.

(a) An example from the G&C dataset (same as Example (4.1)).

Document
rise-pred rate-subj 8.3875%-prep_to auction-prep_at
8.337%-prep_at auction-pred Citicorp-subj paper-dobj

Query
sale-pred TARGET-subj MISS-dobj

(b) The example when viewed as a document-query pair, with multiple implicit arguments
in the query.

0.0
0.2
0.4
0.6
0.8
1.0

ris
e-p

red

ra
te-

su
bj

8.3
87

5%
-p

rep
_to

au
cti

on-p
rep

_a
t

8.3
37

%-p
rep

_fr
om

au
cti

on-p
red

Citi
co

rp
-su

bj

pap
er-

dobj

PAR
2-hop PAR (1st hop)

2-hop PAR (2nd hop)

(c) The heatmap of attention scores over document input from PAR and 2-hop PAR. While
the 2-hop model attends more to the non-target missing argument (paper-dobj) on the first
hop, it successfully points to the target argument in the second hop.

Figure 4.9: The heatmap of attention scores on a G&C example from the PAR and
2-hop PAR models.

72

4.6 Chapter Summary

In this chapter, we frame implicit argument prediction as a reading compre-
hension task, where the predicate-argument tuple with the missing argument is a
query, and the preceding text is the document in which the answer can be found.
Also drawing on pointer networks and multi-hop memory networks, we introduce
the Pointer Attentive Reader (PAR) model for implicit argument prediction. On an
argument cloze task, PAR beats our previous best EVENTCOMP model by a large
margin, showing good performance on both short and long texts, and on both
salient as well as less salient arguments. When multiple arguments are missing,
the use of a second hop to reason over possible arguments of the query consid-
erably improves performance. This also proves useful on the naturally occurring
implicit arguments dataset from Gerber and Chai (2010), where we also show that
applying extra supervision on the first-hop attention scores further boosts perfor-
mance.

73

Chapter 5

Semantic Structure as Supervision for Self-Attention

This chapter introduces a framework to guide self-attention computations in
the Transformer architecture (Vaswani et al., 2017) with semantic structural knowl-
edge, in the form of auxiliary supervision. The semantic knowledge we use here
consists of coreference information along with predicate-argument relations. The
work in this chapter has been published in Cheng and Erk (2020), where I devel-
oped the models, conducted the experiments and analysis, and wrote the paper,
under the advice of Katrin Erk. All work in this chapter constitutes original con-
tributions.

5.1 Chapter Overview

In Chapter 3 and Chapter 4, we focus on learning latent representations of
events and their arguments to infer the implicit predicate-argument relations from
text. Given that implicit arguments widely exist in natural language, an interesting
question we want to ask next is: Would the knowledge of implicit arguments, or
more broadly, linguistic knowledge of semantic structure (e.g., entities, events, etc), be
beneficial to other downstream tasks on natural language understanding? While
the models studied in the previous chapters show good performance on both syn-
thetic and naturally-occurring data of implicit arguments, it is non-trivial to gener-
alize them to other tasks that would benefit from the knowledge of implicit argu-
ments, because they are deliberately designed to predict implicit arguments, and
they take pre-processed event tuples instead of raw text as input. Therefore, in this
chapter, we shift our focus to models that take linguistic structure into account in a
more latent manner.

Large-scale pre-trained language models such as ELMo (Peters et al., 2018),
GPT (Radford et al., 2018), BERT (Devlin et al., 2019), and XLNet (Yang et al.,
2019b) have recently achieved state-of-the-art results on a wide range of NLP tasks,
approaching human performance. These models, mostly built on a stacked self-
attention architecture as in the Transformer (Vaswani et al., 2017), are not explic-
itly trained to take linguistic structure into account, but they have been shown

74

to encode some linguistic knowledge anyway, in particular knowledge related to
syntactic structure (Tenney et al., 2019b, Jawahar et al., 2019). However, on some
tasks that require complex and long-distance reasoning where surface-level cues
are not enough, there is still a large gap between the pre-trained models and hu-
man performance, including tasks that require knowledge of broader discourse
(Paperno et al., 2016) or coreference (Dasigi et al., 2019), or that require identifying
valid reasoning (Niven and Kao, 2019). For such tasks in particular, it is interest-
ing to test whether explicit information about linguistic structure can be helpful,
how such structure should be injected, and whether it can be helpful in addition to
recent language models. Strubell et al. (2018) recently showed that it is possible to
inject knowledge of syntactic structure into a Transformer-style model by applying
supervision on self-attention weights. Intriguingly, their model, which they apply
to semantic role labeling (SRL), benefits orthogonally from the use of ELMo em-
beddings, and the integration of supervised self-attention, showing that syntactic
knowledge and pre-trained language models can be mutually beneficial to some
extent.

In this chapter, we consider a task that was explicitly designed to require long-
distance knowledge, the LAMBADA task (Paperno et al., 2016). LAMBADA is a
language modeling task on narrative text passages (Zhu et al., 2015), where the
models are asked to predict the last word of a sentence. The test set data points
are chosen to be easily solvable for humans given a larger preceding context of
several (on average 4 to 5) sentences, but impossible to solve for humans given
only a single sentence (see Figure 5.2 for an example). In the paper that originally
introduced LAMBADA, Paperno et al. (2016) reported the highest model accu-
racy of only 7.3%. Since then, more recent models have improved performance to
63.24% (Radford et al., 2019, GPT-2), while human performance is above 80%. So
the LAMBADA dataset clearly has the characteristic described above, with a large
gap between pre-trained models and human performance. We discuss the dataset
in more detail in Section 5.3.

We test whether an injection of linguistic knowledge in a similar manner to
Strubell et al. (2018), i.e., adding supervised self-attention to an existing model,
will improve performance on this complex task. As LAMBADA focuses on narra-
tive texts, we hypothesize that certain semantic knowledge, including the entities

75

mentioned in the passage, and relations among events and their participants, will
be particularly useful for solving the task (Section 5.4). We find that a BIDAF-
based (Seo et al., 2017) model trained with auxiliary supervision from semantic
knowledge achieves state-of-the-art performance (Section 5.5), while containing
with only a tiny fraction of trainable parameters compared to the previous best
model, the largest GPT-2 model. We further analyze the results in more detail
(Section 5.6), finding evidence that the auxiliary supervision enables the model to
better capture semantic structure in the text. To provide some insights on how
to apply similar techniques to other problems, we also experiment with different
model variants to test where best to insert the supervision into the system.

5.2 Prior Work

As discussed in Subsection 2.2.3, recent pre-trained language models do not
explicitly take any linguistic structure into account, as the pre-training objective is
to predict the next word, a randomly masked word, or the next sentence. While
these pre-trained models achieved state-of-the-art results on many tasks, it is still
largely unknown to what extent implicit knowledge of linguistic structure, such as
syntactic structure or coreference, contributes to the improvement. Tenney et al.
(2019b) designed a list of probing tasks to test how well the contextualized repre-
sentations learned from ELMo / GPT / BERT do on some core NLP pipeline tasks,
and found out that contextualized embeddings improve largely on syntactic tasks
(like part-of-speech tagging and parsing) but not so much on semantic tasks (like
coreference).

Strubell et al. (2018) recently achieved state-of-the-art performance on seman-
tic role labeling by injecting syntactic knowledge into a Transformer-style model.
In their LISA model (Linguistically-Informed Self-Attention) consisting of 10 to
12 self-attention layers (Figure 5.1a), one self-attention head in one of the lay-
ers is configured to learn dependency parsing via an auxiliary supervision sig-
nal that encourages each token to only attend to its syntactic parent (Figure 5.1b).
They also showed that such syntactically-informed self-attention can be combined
with ELMo embeddings to further improve performance over a baseline with only
ELMo and self-attention but no auxiliary supervision. In this paper, we want to

76

investigate whether linguistic knowledge of semantic structure can be injected in
a similar manner.

Multi-head self-attention + FF

I saw the sloth climbing

PRP VBP:PRED DT NN VBG:PRED

Syntactically-informed self-attention + FF

Multi-head self-attention + FF

Feed

Forward
Bilinear

Feed

Forward

 B-ARG0 B-V B-ARG1 I-ARG1 I-ARG1

 O O B-ARG0 I-ARG0 B-V

saw

climbing

spred srole

p

<latexit sha1_base64="UI24tHsSAyCYs3t2x/16uqVmemE=">AAAB/XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIwboruHHZgn1AO5RMmrahmSQkGaEMxQ9wq5/gTtz6LX6Bv2HazsK2HrhwOOde7r0nUpwZ6/vfXm5re2d3L79fODg8Oj4pnp61jEw0oU0iudSdCBvKmaBNyyynHaUpjiNO29Hkfu63n6g2TIpHO1U0jPFIsCEj2DqpofrFkl/2F0CbJMhICTLU+8Wf3kCSJKbCEo6N6Qa+smGKtWWE01mhlxiqMJngEe06KnBMTZguDp2hK6cM0FBqV8Kihfp3IsWxMdM4cp0xtmOz7s3F/7xuYofVMGVCJZYKslw0TDiyEs2/RgOmKbF86ggmmrlbERljjYl12axsUZi7aIScuWSC9Rw2SeumHFTKd41KqVbNMsrDBVzCNQRwCzV4gDo0gQCFF3iFN+/Ze/c+vM9la87LZs5hBd7XL+FFljk=</latexit>

J

<latexit sha1_base64="CA4UUWD14l1fCJh8y5rPIhwTPUQ=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYLwFvIinBMwDkiXMTnqTIbOzy8ysEJbgB3jVT/AmXv0Wv8DfcPI4mMSChqKqm+6uIBFcG9f9dnIbm1vbO/ndwt7+weFR8fikqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3dRvPaHSPJaPZpygH9GB5CFn1Fip/tArltyyOwNZJ96ClGCBWq/40+3HLI1QGiao1h3PTYyfUWU4EzgpdFONCWUjOsCOpZJGqP1sduiEXFilT8JY2ZKGzNS/ExmNtB5Hge2MqBnqVW8q/ud1UhNW/IzLJDUo2XxRmApiYjL9mvS5QmbE2BLKFLe3EjakijJjs1naklBho5HxxCbjreawTppXZe+6fFu/LlUri4zycAbncAke3EAV7qEGDWCA8AKv8OY8O+/Oh/M5b805i5lTWILz9Qukj5YT</latexit>

r

<latexit sha1_base64="VGUyWwLNK55AL7tbD3dfnupwRSE=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKexKwHgLePGYgHlAsoTZSScZMju7zMwKYQl+gFf9BG/i1W/xC/wNJ8keTGJBQ1HVTXdXEAuujet+O7mt7Z3dvfx+4eDw6PikeHrW0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28Hkfu63n1BpHslHM43RD+lI8iFn1FipofrFklt2FyCbxMtICTLU+8Wf3iBiSYjSMEG17npubPyUKsOZwFmhl2iMKZvQEXYtlTRE7aeLQ2fkyioDMoyULWnIQv07kdJQ62kY2M6QmrFe9+bif143McOqn3IZJwYlWy4aJoKYiMy/JgOukBkxtYQyxe2thI2poszYbFa2xFTYaGQ0s8l46zlsktZN2auU7xqVUq2aZZSHC7iEa/DgFmrwAHVoAgOEF3iFN+fZeXc+nM9la87JZs5hBc7XL+R3ljs=</latexit>

…
…

(a) The overall architecture of the LISA model.

I

saw

the

sloth

climbing

A[t]
parse

<latexit sha1_base64="fKYuLPBMvRC1YVNlKNt3G57iptw=">AAACGnicbZDLSgMxFIYzXut91KUugkVwVWakYN1V3LisYFuhHcqZTGpDM5kxOSOUoRufwwdwq4/gTty68Ql8DdN2Ft4OBP78/zmc5AtTKQx63oczN7+wuLRcWlldW9/Y3HK3d1omyTTjTZbIRF+HYLgUijdRoOTXqeYQh5K3w+H5JG/fcW1Eoq5wlPIghhsl+oIBWqvn7nczFdmcY969zSCiKdjLOD/rYDDuuWWv4k2L/hV+IcqkqEbP/exGCctirpBJMKbjeykGOWgUTPLxajczPAU2hBvesVJBzE2QT38xpofWiWg/0fYopFP3+0QOsTGjOLSdMeDA/M4m5n9ZJ8N+LciFSjPkis0W9TNJMaETJDQSmjOUIyuAaWHfStkANDC0YH5sSUFabiqZkPF/c/grWscVv1o5vayW67WCUYnskQNyRHxyQurkgjRIkzByTx7JE3l2HpwX59V5m7XOOcXMLvlRzvsXY5aibQ==</latexit>

M [t]
parse

<latexit sha1_base64="pP7rVuKFFdkcKPBRWKI3cRHiH54=">AAACGnicbZDLSgMxFIYzXut91KUugkVwVWakYN0V3LgRKthWaIdyJpPa0ExmTM4IZejG5/AB3OojuBO3bnwCX8O0nYW3A4E//38OJ/nCVAqDnvfhzM0vLC4tl1ZW19Y3Nrfc7Z2WSTLNeJMlMtHXIRguheJNFCj5dao5xKHk7XB4Nsnbd1wbkagrHKU8iOFGib5ggNbqufvdTEU255h3bzOIaAr2Ms4vOhiMe27Zq3jTon+FX4gyKarRcz+7UcKymCtkEozp+F6KQQ4aBZN8vNrNDE+BDeGGd6xUEHMT5NNfjOmhdSLaT7Q9CunU/T6RQ2zMKA5tZww4ML+ziflf1smwXwtyodIMuWKzRf1MUkzoBAmNhOYM5cgKYFrYt1I2AA0MLZgfW1KQlptKJmT83xz+itZxxa9WTi+r5XqtYFQie+SAHBGfnJA6OScN0iSM3JNH8kSenQfnxXl13matc04xs0t+lPP+BXbyonk=</latexit>

Ai
0[t]

<latexit sha1_base64="Rblrf3mc8X6Bfwd1spJ4XDHuGC0=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYLxFvHiMYB6wWcPsZDYZMjuzzMwKYcnVD/Cqn+BNvPoffoG/4STZg0ksaCiquunuChPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmitAmkVyqTog15UzQpmGG006iKI5DTtvh6Hbqt5+o0kyKBzNOaBDjgWARI9hYqXPTcx+Zb4JeueJW3RnQKvFyUoEcjV75p9uXJI2pMIRjrX3PTUyQYWUY4XRS6qaaJpiM8ID6lgocUx1ks3sn6MwqfRRJZUsYNFP/TmQ41noch7Yzxmaol72p+J/npyaqBRkTSWqoIPNFUcqRkWj6POozRYnhY0swUczeisgQK0yMjWhhS4K5TUjIiU3GW85hlbQuqt5l9fr+slKv5RkV4QRO4Rw8uII63EEDmkCAwwu8wpvz7Lw7H87nvLXg5DPHsADn6xej8pjS</latexit>

Ai
1[t]

<latexit sha1_base64="G8eVpCBVK12XhuNLBLTjbntzH4o=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYLxFvHiMYB6wWcPsZDYZMjuzzMwKYcnVD/Cqn+BNvPoffoG/4STZg0ksaCiquunuChPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmitAmkVyqTog15UzQpmGG006iKI5DTtvh6Hbqt5+o0kyKBzNOaBDjgWARI9hYqXPT8x6Zb4JeueJW3RnQKvFyUoEcjV75p9uXJI2pMIRjrX3PTUyQYWUY4XRS6qaaJpiM8ID6lgocUx1ks3sn6MwqfRRJZUsYNFP/TmQ41noch7Yzxmaol72p+J/npyaqBRkTSWqoIPNFUcqRkWj6POozRYnhY0swUczeisgQK0yMjWhhS4K5TUjIiU3GW85hlbQuqt5l9fr+slKv5RkV4QRO4Rw8uII63EEDmkCAwwu8wpvz7Lw7H87nvLXg5DPHsADn6xelkJjT</latexit>

Ai
2[t]

<latexit sha1_base64="YVYmVmfrnXa/wenXeiKw+Sk5AfE=">AAACBHicbVDLTgJBEJzFF+IL9ehlIjHxRHYJiXjDePGIiTySZSWzwwATZmc2M70mZMPVD/Cqn+DNePU//AJ/wwH2IGAlnVSqutPdFcaCG3Ddbye3sbm1vZPfLeztHxweFY9PWkYlmrImVULpTkgME1yyJnAQrBNrRqJQsHY4vp357SemDVfyASYxCyIylHzAKQErdW56lUfuQ9ArltyyOwdeJ15GSihDo1f86fYVTSImgQpijO+5MQQp0cCpYNNCNzEsJnRMhsy3VJKImSCd3zvFF1bp44HStiTgufp3IiWRMZMotJ0RgZFZ9Wbif56fwKAWpFzGCTBJF4sGicCg8Ox53OeaURATSwjV3N6K6YhoQsFGtLQlJsImJNXUJuOt5rBOWpWyVy1f31dL9VqWUR6doXN0iTx0heroDjVQE1Ek0At6RW/Os/PufDifi9ack82coiU4X7+nLpjU</latexit>

M i
2[t]

<latexit sha1_base64="Pa0lotrd3T/uPQrp5KePtXY1J9c=">AAACBHicbVDLSgNBEJyNrxhfUY9eBoPgKeyGgPEW8OJFiGAesFnD7GSSDJmdWWZ6hbDk6gd41U/wJl79D7/A33CS7MEkFjQUVd10d4Wx4AZc99vJbWxube/kdwt7+weHR8Xjk5ZRiaasSZVQuhMSwwSXrAkcBOvEmpEoFKwdjm9mfvuJacOVfIBJzIKIDCUfcErASp27XuWR+xD0iiW37M6B14mXkRLK0OgVf7p9RZOISaCCGON7bgxBSjRwKti00E0MiwkdkyHzLZUkYiZI5/dO8YVV+nigtC0JeK7+nUhJZMwkCm1nRGBkVr2Z+J/nJzCoBSmXcQJM0sWiQSIwKDx7Hve5ZhTExBJCNbe3YjoimlCwES1tiYmwCUk1tcl4qzmsk1al7FXL1/fVUr2WZZRHZ+gcXSIPXaE6ukUN1EQUCfSCXtGb8+y8Ox/O56I152Qzp2gJztcvuq6Y4A==</latexit>

M i
1[t]

<latexit sha1_base64="WOZtIPaKS9HhTMPElox670uoFhk=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYLwFvHgRIpgHbNYwO5lNhszOLDOzQlhy9QO86id4E6/+h1/gbzhJ9mASCxqKqm66u8KEM21c99sprK1vbG4Vt0s7u3v7B+XDo5aWqSK0SSSXqhNiTTkTtGmY4bSTKIrjkNN2OLqZ+u0nqjST4sGMExrEeCBYxAg2Vurc9bxH5pugV664VXcGtEq8nFQgR6NX/un2JUljKgzhWGvfcxMTZFgZRjidlLqppgkmIzygvqUCx1QH2ezeCTqzSh9FUtkSBs3UvxMZjrUex6HtjLEZ6mVvKv7n+amJakHGRJIaKsh8UZRyZCSaPo/6TFFi+NgSTBSztyIyxAoTYyNa2JJgbhMScmKT8ZZzWCWti6p3Wb2+v6zUa3lGRTiBUzgHD66gDrfQgCYQ4PACr/DmPDvvzofzOW8tOPnMMSzA+foFuRCY3w==</latexit>

M i
0[t]

<latexit sha1_base64="vlVdH6tqWCb2Rg/mAVUBGQW0tqw=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYLwFvHgRIpgHbNYwO5lNhszOLDOzQlhy9QO86id4E6/+h1/gbzhJ9mASCxqKqm66u8KEM21c99sprK1vbG4Vt0s7u3v7B+XDo5aWqSK0SSSXqhNiTTkTtGmY4bSTKIrjkNN2OLqZ+u0nqjST4sGMExrEeCBYxAg2Vurc9dxH5pugV664VXcGtEq8nFQgR6NX/un2JUljKgzhWGvfcxMTZFgZRjidlLqppgkmIzygvqUCx1QH2ezeCTqzSh9FUtkSBs3UvxMZjrUex6HtjLEZ6mVvKv7n+amJakHGRJIaKsh8UZRyZCSaPo/6TFFi+NgSTBSztyIyxAoTYyNa2JJgbhMScmKT8ZZzWCWti6p3Wb2+v6zUa3lGRTiBUzgHD66gDrfQgCYQ4PACr/DmPDvvzofzOW8tOPnMMSzA+foFt3KY3g==</latexit>

sloth(i) (t = 3)

 MatMul: Ai
hV i

h

<latexit sha1_base64="pLKn1xao+mXOqDn29MZuUmsq0H8=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsxIQQUXFTcuK9gHtmPJpJk2NJMMSUYopXs/wK1+gjtx62/4Bf6GmXYWtvVAwuGce7n3niDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKFlogitE8mlagVYU84ErRtmOG3FiuIo4LQZDG9Sv/lElWZS3JtRTP0I9wULGcHGSg/X3cEja6Rft1hyy+4UaJl4GSlBhlq3+NPpSZJEVBjCsdZtz42NP8bKMMLppNBJNI0xGeI+bVsqcES1P55uPEEnVumhUCr7hEFT9W/HGEdaj6LAVkbYDPSil4r/ee3EhBf+mIk4MVSQ2aAw4chIlJ6PekxRYvjIEkwUs7siMsAKE2NDmpsSY24zEnJik/EWc1gmjbOyVylf3lVK1assozwcwTGcggfnUIVbqEEdCAh4gVd4c56dd+fD+ZyV5pys5xDm4Hz9AnXzmdo=</latexit>

Concat + FF

sloth(i+1)

+

(b) Syntactically-informed self-attention.

Figure 5.1: The LISA model from Strubell et al. (2018).

5.3 The LAMBADA Task

Paperno et al. (2016) introduced the LAMBADA dataset, a specially designed
language modeling task where each data point is a passage composed of a context
(on average 4 to 5 sentences) and a target sentence, and the task is to guess the last
word of the target sentence. The data comes from narrative text in the BooksCor-
pus (Zhu et al., 2015), and is filtered by human subjects such that it is easy for
humans to guess the target word when provided with the whole passage, but im-
possible to guess given only the target sentence. Figure 5.2 shows an example.

Paperno et al. (2016) also experimented some baselines and some standard lan-
guage models (N-Gram, RNN, LSTM, Memory Network) on the task. The results

77

Context: "By the way, Elizabeth asked if I’d seen you,"
Tony lied. He wanted Jon to leave so he could talk with
Ezekiel alone. There was something that aunt Casey, Patella
and Gabriella had said about Tom that had bothered him
ever since meeting Ezekiel earlier that afternoon.

Target sentence: "I’m sure she’ll find me," Jon remarked
curtly, trying to cut short the conversation with ___ .

Target word: Tony

Figure 5.2: An example from the LAMBADA dataset.

of the language models are extremely low as none of them reached an accuracy of
1%, while the best baseline, i.e., selecting a random capitalized word from passage,
gave an accuracy of 7.3%, indicating the difficulty of the task.

Chu et al. (2017) proposed to a new evaluation setup for the LAMBADA task,
by viewing it as reading comprehension, with the context sentences as the passage
and the target sentence without the last word as the query. The model is then
asked to select a word from the passage as the answer to the query. Despite the
fact that models under this setup will decidedly fail on 19% of the test cases where
the target word is not in the context, doing so still greatly boosts performance,
partly because in the remaining 81% cases the model only needs to consider words
appeared in the passage as candidates, rather than the whole vocabulary. Chu
et al. (2017) tested several widely-used reading comprehension models, including
the Stanford Reader (Chen et al., 2016), the Attention Sum Reader (Kadlec et al., 2016),
and the Gated-Attention Reader (Dhingra et al., 2017), and achieved a best result of
49.0% with the Gated-Attention Reader plus some hand-designed features.

Dhingra et al. (2018) improved the number to 55.69% by combining the Gated-
Attention Reader with a “Coref-GRU” layers, where both the previous token and
the co-referent antecedent serve as the input to the current GRU cell. Hoang et al.
(2018) combined the Attention Sum Reader with a multi-task objective to track en-
tities in the context, further improving performance to 59.23%. Both these experi-
ments proved the effectiveness of entity knowledge in the task.

There have also been some efforts in applying Transformer-style models to the

78

task. Dehghani et al. (2019) proposed the Universal Transformer, by tying the
weights of self-attention layers across depth, and achieved an accuracy of 56.25%,
in comparison to 39.88% of a standard Transformer. Most recently, Radford et al.
(2019) reported 63.24% with the largest GPT-2 model (1.5 billion parameters), set-
ting the current state-of-the-art. Nonetheless, it is still far from the human perfor-
mance of 86% estimated by Chu et al. (2017).

We summarize the results from major previous work in Table 5.1.

Models Acc. (%)

Paperno et al. (2016) Random capitalized word from passage 7.3
N-Gram Language Model with Cache 0.1

Chu et al. (2017)

Stanford Reader 21.7
AS Reader 41.4
AS Reader + features 44.5
GA Reader 45.4
GA Reader + features 49.0

Dhingra et al. (2018) GA Reader 53.981

GA Reader + Coref-GRU 55.69

Hoang et al. (2018) AS Reader 55.601

AS Reader + features + entity tracking 59.23

Dehghani et al. (2019) Transformer 39.88
Adaptive Universal Transformer 56.25

Radford et al. (2019)

GPT-2-small (117M parameters) 45.99
GPT-2-medium (345M parameters) 55.48
GPT-2-large (762M parameters) 60.12
GPT-2-xl (1.5B parameters) 63.24

1 These numbers from Dhingra et al. (2018), Hoang et al. (2018) are higher than their counter-
parts from Chu et al. (2017), probably because they applied another filtering step on their
training set, which is not explicitly discussed in their papers. We elaborate more on this
point in Subsection 5.5.1.

Table 5.1: Results on the LAMBADA task from major previous work. Note: AS
Reader refers to Attention Sum Reader (Kadlec et al., 2016), and GA Reader refers
to Gated Attention Reader (Dhingra et al., 2017).

79

5.4 Methods

5.4.1 Task Formulation

In this chapter, we adopt the reading comprehension setup from Chu et al.
(2017), following most of the previous work on the task. Formally, we concatenate
all tokens in the context sentences to get the context input x = {x1 . . . xn}. We
represent all but the last word from the target sentence as the query input q =

{q1 . . . qm}, and the last word of the target sentence as the answer a.
The model computes a probability of being the correct answer for each word in

the context P (xi|x,q). Because the answer amight occur multiple times in the con-
text, at training time, we sum the probabilities of all correct tokens, and compute
the loss as the negative log-likelihood of the summed probability:

L0 = − logP (a|x,q) = − log
∑
i:xi=a

P (xi|x,q) (5.1)

At test time, a pointer sum mechanism (Kadlec et al., 2016) is used to predict
the word type with the highest summed probability among all distinct word types
in the context.

5.4.2 Model

The aim of this chapter is to test whether linguistic knowledge of semantic
structure can be injected into an existing model via supervised self-attention, and
whether the performance of such a model on the LAMBADA task can be matched
with the large-scale pre-trained language models (i.e., GPT-2).1

As discussed in Section 5.3, a range of different reading comprehension mod-
els (i.e., Gated-Attention Reader, Attention-Sum Reader) have been tested in the
previous work, and they all showed reasonably strong performance on the task
(Dhingra et al., 2017, Hoang et al., 2018). Therefore, we decide to start with a con-
ventional reading comprehension model, and fuse into it a simpler and shallower
stacked self-attention architecture (with much smaller numbers of layers, atten-

1We take this route, rather than adding supervision to an existing GPT-2 model, because of the
high computational cost of training such a large Transformer model from scratch.

80

tion heads, and hidden size compared to GPT-2). We choose another widely-used
reading comprehension model, the BIDAF model (Seo et al., 2017), as our starting
point, because BIDAF has consistently outperformed the aforementioned models
in many reading comprehension benchmarks.

BIDAF Baseline The original BIDAF model, as illustrated in Figure 5.3a, mainly
consists of the following components:

1. Embedding Layer represents each token in the context and the query by a
concatenation of GloVe embeddings (Pennington et al., 2014) and Character-
CNN embeddings (Kim, 2014).

2. Contextual Layer encodes the context sequence and the query sequence with
a bidirectional-LSTM encoder.

3. Bidirectional Attention Layer computes both context-to-query and query-
to-context attentions, which are then used to merge the query representations
and the context representations to get query-aware vector representations for
each context word.

4. Modeling Layer encodes the query-aware context representation with an-
other bidirectional-LSTM encoder to capture the interaction among context
words conditioned on the query.

5. Output Layer predicts the probability for each context word being the correct
answer with a feed-forward layer followed by a softmax layer.

Our baseline model is mostly the same as the original BIDAF model, except for
a few small changes: we substitute the LSTMs for GRUs; we apply Layer Normal-
ization (Ba et al., 2016) after the bidirectional attention layer and after the modeling
layer to improve stability (see Section 5.5).

BiDAF with Self-Attention In order to inject semantic knowledge into the model
via supervised attention, we need to fuse a stacked multi-head self-attention en-
coder into the BIDAF model. Intuitively, there are two options on where the self-
attention encoder fits in:

81

Embedding Layer
(Glove + Char-CNN)

Context Input Query Input

Contextual Layer
(BiGRU)

Bidirectional Attention

Modeling Layer
(BiGRU)

Dense + SoftmaxOutput Layer

Query2Context &
Context2Query

Attention

Answer Scores

(a) The baseline BIDAF model.

Embedding Layer Embedding Layer

Bidirectional
Attention

Context Input Query Input

Modeling Layer

Output Layer

Answer Scores

Multi-Head
Self-Attention

Multi-Head
Self-Attention

Multi-Head
Self-Attention

Multi-Head
Self-Attention

(b) The BIDAF-SA-EARLY variant.

Embedding Layer Embedding Layer

Bidirectional
Attention

Context Input Query Input

Modeling Layer

Output Layer

Answer Scores

Contextual Layer Contextual Layer

Multi-Head
Self-Attention

(c) The BIDAF-SA-LATE variant.

Figure 5.3: The original BIDAF model (Seo et al., 2017) that we use as a baseline
in our experiment, and two variants with a self-attention encoder (in red) being
added either as the contextual layer or after the bidirectional attention layer.

82

a) Use the encoder to replace the Contextual Layer, as shown in Figure 5.3b.

This is inspired by the trend of using self-attention encoders to replace tradi-
tional RNN-based encoders in many NLP problems. Also, a common prac-
tice in using pre-trained language models like BERT for downstream tasks
is to first encode raw input with BERT and then pass the output to higher-
level task-specific layers, which is similar to what we do here. We name this
variant BIDAF-SA-EARLY.

b) Add the encoder after the Bidirectional Attention Layer, as shown in Fig-
ure 5.3c.

This is inspired by the BIDAF++ model (Clark and Gardner, 2018), where a
standard self-attention layer is added after the bidirectional attention layer to
help reason over multiple paragraphs. Here we instead use multi-head self-
attention, since applying auxiliary supervision on an attention layer with just
one attention head leads to inferior performance in our preliminary experi-
ments. We name this variant BIDAF-SA-LATE.

We also explore a third variant that combines the above two options, and name
it BIDAF-SA-BOTH.

5.4.3 Auxiliary Supervision for Self-Attention

Similar to Strubell et al. (2018), we want to apply auxiliary supervision on a
self-attention encoder to guide the model to learn some specific linguistic struc-
ture. Our model receives context input, namely the passage, as well as query in-
put, which is the target sentence minus the last word. We focus on investigating
auxiliary supervision on the context input, because the context input, with 4 to
5 sentences on average, should exhibit much richer linguistic structure than the
query input, which is a single sentence.

To examine what kind of linguistic structures are beneficial to the problem, we
experiment with 3 types of supervision signals:

Syntax Supervision: Given the dependency parses for each sentence in the con-
text, we construct the target self-attention weights by putting a weight of 1 from

83

"By the way, Elizabeth asked if I’d seen you," Tony lied.

He wanted Jon to leave so he could talk with Ezekiel alone.

There was something that aunt Casey, Patella and Gabriella

had said about Tom that had bothered him ever since

meeting Ezekiel earlier that afternoon.

(asked-pred , Elizabeth-subj)
(seen-pred , I-subj , you-dobj)
(lied-pred , Tony-subj)
(wanted-pred , he-subj , Jon-dobj)
(leave-pred , Jon-dobj)
(talk-pred , he-subj , Ezekeil-prep_with)
(said-pred , Casey-subj , Tom-prep_about)
(bothered-pred , him-dobj)
(meeting-pred , Ezekiel-dobj)

(a) Left: The dependency parses (arrows) and coreference chains (color-coded) of a con-
text input (from the same example as in Figure 5.2), which are used to construct different
auxiliary supervision signals. Right: A list of events extracted from the context, using the
same heuristics as described in Section 3.3.

DEPPARSE

…
you —> seen
Tony —> lied
He —> wanted
Jon —> wanted
to —> leave
leave —> wanted
…

…

…

He

Tony

Jon

leave

.

wanted

you

so

lied

he

,"

seen

to

…… H
e

To
ny

Jo
n

le
av

e

. w
an

te
d

yo
u

solie
d

he,"se
en

to

…

…

He

Tony

Jon

leave

.

wanted

you

so

lied

he

,"

seen

to

…… H
e

To
ny

Jo
n

le
av

e

. w
an

te
d

yo
u

solie
d

he,"se
en

to

COREFALL

…
you <—> Jon
Tony <—> He
Tony <—> he
He <—> he
…

NARRATIVE

…
seen <—> Jon
lied <—> He
lied <—> he
wanted <—> Tony
wanted <—> you
leave —> Jon
…

…

…

He

Tony

Jon

leave

.

wanted

you

so

lied

he

,"

seen

to

…… H
e

To
ny

Jo
n

le
av

e

. w
an

te
d

yo
u

solie
d

he,"se
en

to

(b) Examples of the target self-attention weights from 3 different supervision types (only
showing part of the full matrices due to space limit). Light gray represents 0, and dark
gray stands for 1.

Figure 5.4: An example showing how we construct different types of supervision
signals from pre-processed text input.

84

each token to its syntactic head token, and 0 otherwise, as shown in the left column
of Figure 5.4b. We name this type of supervision DEPPARSE.

This is similar to the auxiliary supervision used in Strubell et al. (2018), except
that we have multiple sentences rather than just one sentence. If an attention head
is trained with this syntax supervision, we constrain the self-attention window
by sentence boundaries, that is, each token can only attend to other tokens in the
same sentence, to make it easier for the model to approach the target self-attention
weights.

Coreference Supervision: Given a list of coreference chains from the context
(each coreference chain contains a set of mentions that refer to the same entity), we
construct the target self-attention weights by putting a weight of 1 between each
pair of mention heads in the same coreference chain, and 0 otherwise, as shown in
the middle column of Figure 5.4b. We name it COREFALL.

We also test other variants of coreference supervision, namely, guiding the head
of each mention to only attend to the head of the most recent previous mention, or
to the head of the immediately following mention. We refer to these two variants
as COREFPREV and COREFNEXT respectively.

Narrative Supervision: Since the LAMBADA dataset is built from a corpus of
novels, we hypothesize that narrative structures, that is, the sequence of events and
their participants, could also be important for predicting the missing word. The
interaction between the predicate and arguments of a single event is largely cap-
tured by the syntax supervision described above. Therefore, we combine the de-
pendency parses and coreference chains to construct another type of self-attention
targets that reflect higher-level narrative knowledge, as shown in the right column
of Figure 5.4b: For each event argument a, we put a weight of 1 between a and
all predicates that have an argument that co-refers with a. This is related to the
reasoning of implicit event argument structures, in that we create the synthetic ar-
gument cloze examples in a similar way, as discussed in Section 3.3 and Section 4.3.
We name this supervision NARRATIVE.

Note that while we require some extra information (i.e., dependency parses and
coreference chains, as shown in Figure 5.4a) to construct the auxiliary supervision

85

signals, we do NOT rely on any gold annotations on either the training set or the
test set. All the information can be obtained automatically from running existing
NLP tools. We discuss the pre-processing steps more in Section 5.5.

Training with Auxiliary Supervision If any auxiliary supervision is applied to a
self-attention head, we compute a loss from the supervision matrix S ∈ Rn×n and
the attention weights A ∈ Rn×n as:

Ls =
1

k

n∑
i=1

[
−I∑n

j=1 Sij>=0 · log

(
n∑

j=1

Aij ∗ Sij

)]
(5.2)

where I∑n
j=1 Sij>=0 is an indicator function that returns 1 when there is at least one

non-zero element in the ith row of S and 0 otherwise, and k is the number of rows
in S such that there is at least one non-zero element in the row. To explain, for each
token with at least one supervision target, we compute the negative log-likelihood
loss against all of its supervision targets, and then get the mean value.

The model is trained in an end-to-end fashion, no matter whether any auxiliary
supervision is applied. To train a model with auxiliary supervisions s1, s2, . . . , the
total loss being optimized is:

L = L0 + λ ∗
∑
i

Lsi (5.3)

where L0 is the final prediction loss defined in Equation 5.1, and λ is a hyper-
parameter to balance between the final prediction loss and the auxiliary losses.

5.5 Experiments

5.5.1 Dataset & Pre-processing

When introducing the LAMBADA dataset, Paperno et al. (2016) divided the
BooksCorpus (consisting of 5,325 unpublished novels) randomly into 2 partitions,
and only asked human subjects to filter the second half to create the development
/ test set, while leaving the first half raw data (2,662 novels) untouched to be the
training set (thus not in the same format as development / test set). With the read-

86

ing comprehension setup introduced by Chu et al. (2017), they also constructed a
new training set of ~1.6M instances out of the original raw data. Each training in-
stance consists of a context with 4 to 5 sentences and a target sentence, in which the
last word in the target sentence must exist in the context. Follow-up work (Dhin-
gra et al., 2018, Hoang et al., 2018) further filtered the new training set by removing
all instances where the target word is a stop word, leaving ~700k instances. This is
to reduce the domain discrepancy between training and test, because only about
1% of development set instances have a stop word as the target word. We follow
the latest setup here. A summary of dataset statistics is shown in Table 5.2.

TRAIN DEV TEST

Size 709,568 4,869 5,153
% Answer-in-context 100% 82.4% 81.7%

Filtered by human subjects No Yes Yes

Table 5.2: Statistics of the LAMBADA dataset.

As discussed in Subsection 5.4.1, we also need to obtain the dependency trees
and coreference chains of the context input in order to construct the target atten-
tion weights for auxiliary supervisions. We use the neural dependency parser and
the statistical coreference system from Stanford CoreNLP toolkit (Manning et al.,
2014) to pre-process the whole dataset. Further discussion on the choice of pre-
processing alternatives will be in Section 5.6.

5.5.2 Implementation Details

We build our models and run all the experiments with AllenNLP (Gardner
et al., 2018). For the baseline BIDAF model, we mostly follow the settings of hyper-
parameters of the original model:

• We use the concatenation of 100d GloVe embeddings together with 100 1D
filters each with a width of 5 for Character-CNN embeddings for the embed-
ding layer (with a combined output dimension of 200).

• We use a 1-layer BiGRU for the contextual layer, and 2-layer BiGRU for the
modeling layer, each with a hidden size of 100.

87

• We apply a dropout with rate 0.1 on the character CNN, all BiGRU layers,
and the feed-forward layer before the final prediction.

• We use a batch size of 128, and the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001.

• During training, we maintain a moving average of all model weights with a
exponential decay rate of 0.9999. At test time, the moving average is used
instead of the raw weights.

• We train the model for 10 epochs, and perform early-stopping when the val-
idation accuracy does not increase for two consecutive epochs. We use val-
idation accuracy to select the best epoch, from which then weights are then
used for test set evaluation.

For the self-attention blocks in the BIDAF-SA-* variants:

• We use a size of 200 for the projection of keys, queries, and values respec-
tively (which are then divided by the number of attention heads) in each
multi-head self-attention layer, to maintain the same size on later layers as
the baseline model.

• In each self-attention layer, we also apply a dropout with rate 0.1 on the at-
tention sub-layer, the feed- forward sub-layer, and the residual connections.

In training the BIDAF-SA-* variants, we use almost the same setup as in train-
ing the baseline model, except that we also use the learning rate scheduler as de-
scribed in Vaswani et al. (2017), with a warm-up step size of 8,000, as some prelim-
inary experiments show the importance of such scheduler when using a stacked
self-attention architecture:

lr = d−0.5model ·min(step−0.5, step0.5 · warmup−1.5) (5.4)

For models trained with auxiliary supervision, we use a multiplier λ = 0.3 for
the auxiliary loss in Equation 5.3. We test different λ values: 0.1, 0.3, 0.5, 0.7, 1.0,
and find that 0.3 works the best.

For the multi-head self-attention encoders in the BIDAF-SA-* variants, we al-
ways use 4 attention heads per layer. For BIDAF-SA-EARLY, we include 4 layers

88

in the stacked self-attention encoder, as preliminary studies show that using only
1 or 2 layers damages performance heavily, while using more than 4 layers gives
no significant improvement. Also, in all following sections, unless otherwise spec-
ified, the auxiliary supervision is applied on the 3rd layer.2 For BIDAF-SA-LATE,
we only add 1 multi-head self-attention layer, because again, preliminary results
show no further gain of using 2 or more layers.

In some experiments, we also try replacing the embedding layer with the pre-
trained ELMo embeddings (Peters et al., 2018), on which we use a dropout with
rate 0.2 and a projection down to 200d (to keep the same output dimension as the
original word embedding layer).

We find that performance is very sensitive to the initial random state, possibly
due to the fact that there is a large statistical discrepancy between the training set
and the development / test sets (because the training set is not filtered by human
subjects). We observe a similar effect when we re-train existing models from the
literature (Dhingra et al., 2018, Hoang et al., 2018). Therefore, for each model vari-
ant, we train 4 different runs with different random seeds, and report the average
and maximum performance (in parentheses in the following tables) across the 4
runs.

5.5.3 Main Results

We first experiment with the BIDAF-SA-EARLY model and the COREFALL su-
pervision3, because 1) intuitively, knowledge about coreference chains in the pas-
sage is likely to be the most beneficial factor for solving the task, and 2) some pre-
liminary experiments also show consistent improvement from coreference super-
vision. Results from other model variants and other types of supervision signals
are discussed in Section 5.6.

We compare our method with the two best previous approaches that did not
use large-scale pre-training language models (Dhingra et al., 2018, Hoang et al.,
2018), and the largest GPT-2 model (Radford et al., 2019). Note that we do not
compare to other major pre-trained language models, because BERT (Devlin et al.,

2We discuss this choice in Subsection 5.6.3.
3The supervision is applied on the 3rd layer of the 4-layer stacked self-attention encoder, as

discussed in Subsection 5.5.2

89

2019) and its follow-ups like XLNet (Yang et al., 2019b) and RoBERTa (Liu et al.,
2019) all used the BooksCorpus as part of the pre-training data. As the LAMBADA
task is constructed from the BooksCorpus, BERT and other models would gain an
unfair advantage on the task because all the test instances have been accessed by
these models during pre-training.

Models Accuracy (%)

Dhingra et al. (2018) 55.69
Hoang et al. (2018) 59.23

GPT-2 (1.5B) (Radford et al., 2019) 63.24

BIDAF 59.12 (59.54)
BIDAF-SA-EARLY 60.54 (60.88)
BIDAF-SA-EARLY + COREFALL 61.51 (61.94)
BIDAF-SA-EARLY + ELMo 61.38 (61.87)
BIDAF-SA-EARLY + ELMo + COREFALL 63.71 (64.62)

Table 5.3: Main evaluation results on the LAMBADA test set: average accuracy
across 4 runs, with max accuracy in parentheses.

Table 5.3 shows the evaluation results on the LAMBADA test set. We see that
our BIDAF baseline already performs similarly to the previous best results before
GPT-2. Adding the COREFALL auxiliary supervision consistently improves accu-
racy, with or without ELMo embeddings, but we see larger improvement from
COREFALL with ELMo embeddings (~2.3 points) compared to that without ELMo
embeddings (~1 point). This confirms our hypothesis that the injection of semantic
knowledge via supervised self-attention can be helpful in addition to recent pre-
trained language models. Also, the fact that ELMo itself only brings less than 1
point of improvement without COREFALL emphasizes the difficulty of the task.
With both ELMo embeddings and COREFALL supervision, we achieve an average
accuracy of 63.71% (and the best run achieves 64.62%), outperforming the largest
GPT-2 model. This is quite surprising, considering that our model only contains
2.6 million trainable parameters4, significantly smaller than the number of param-
eters in GPT-2 (1.5 billion).

4Even if we take the ELMo parameters that are not updated in our training into account, the
total number of parameters is still only 96 million.

90

5.6 Analysis

In this section, we aim to understand why auxiliary supervision from semantic
knowledge helps, what is the best possible way to apply auxiliary supervision, and
how different types of supervision signals compare.

5.6.1 Does pre-processing quality affect performance?

The statistical coreference system from Stanford CoreNLP, from which we con-
struct the supervision signals, is not the current best coreference model in terms
of benchmark metrics. We also experimented with a more recent end-to-end neu-
ral coreference model (Lee et al., 2017)5, with much higher benchmark scores, as
the source of supervision for our BIDAF-SA-EARLY + COREFALL model. Surpris-
ingly, this yields inferior performance (61.13% on average, compared to 61.51%
with the Stanford coreference results).

Context: "By the way, Elizabeth asked if I’d seen you,"
Tony lied. He wanted Jon to leave so he could talk with
Ezekiel alone. There was something that aunt Casey, Patella
and Gabriella had said about Tom that had bothered him
ever since meeting Ezekiel earlier that afternoon.

Target sentence: "I’m sure she’ll find me," Jon remarked
curtly, trying to cut short the conversation with ___ .

Target word: Tony Prediction (Wrong) : Ezekiel

Figure 5.5: Does pre-processing quality affect performance? An example where
a wrong coreference chain (color-coded) from a neural coreference system (which
we do not use for our experiments) leads to a wrong prediction. A better coref-
erence output from the Stanford coreference system on this example is shown in
Figure 5.4a.

We manually examined the output of both coreference systems on some data
points, and found that the neural coreference system often produces highly erro-
neous output, possibly because it is overfitting on its news-centric training data,

5We use a re-implementation from AllenNLP.

91

the OntoNotes dataset (Hovy et al., 2006), while LAMBADA consists of narrative
texts. Figure 5.5 shows an example where a wrong coreference chain from the neu-
ral system leads to a wrong prediction. This is the same example as in Figure 5.4a,
which shows the coreference output from the Stanford system. In this example,
it is hard to predict the right answer without knowing that “you” refers to “Jon”
and “he” refers to “Tony”, both of which are predicted correctly by the Stanford
system.

This indicates that a better coreference signal could lead to even better results
on the task. We leave it to future work, given some very recent work that further
improved coreference performance (Joshi et al., 2020, Wu et al., 2020).

5.6.2 Does COREFALL really learn coreference knowledge?

We want to know whether the improvement from COREFALL supervision is
because the supervision will actually allow the model to better learn coreference
structures, or due to some unknown confounding factors. Chu et al. (2017) man-
ually analyzed 100 random instances from the LAMBADA development set to
identify the type of reasoning needed for humans to make the right prediction,
and found that 21 out of the 100 instances require coreference resolution. We test
our models on these 21 instances. To obtain a larger set of instances to inspect the
model, we also compare the cases in the development set where the target word
is a noun to cases where the target is a pronoun, and we compare the cases where
the target word is a PERSON to the cases where it is not a named entity (the most
common named entity type is PERSON, with all other types occurring very rarely,
so we focus on PERSON).6

The results in Table 5.4 show that not only does COREFALL supervision im-
prove accuracy on the 21 instances manually classified as requiring coreference,
it also strongly boosts performance on the “Pronoun” and “PERSON” subsets, in
comparison to their “Noun” and “Not NE” counterparts. Though not a direct
proof, this intuitively supports the claim that the auxiliary supervision does en-
able the model to better capture coreference information, which is likely to help
the reasoning particularly over pronouns and named entities.

6Both the part-of-speech tags and named entity tags come from the Stanford CoreNLP toolkit.

92

dev subset # instances no supervision with supervision

Require coref 21 48.5 ± 4.1 62.0 ± 3.5

Noun 2,006 58.42 ± 0.32 59.48 ± 0.23
Pronoun 2,138 72.31 ± 0.15 76.72 ± 0.53

Not NE 2,848 54.15 ± 0.21 54.90 ± 0.33
PERSON 1,646 72.71 ± 0.08 77.95 ± 0.66

Table 5.4: Does COREFALL learn coreference? Accuracy on some dev subsets,
BIDAF-SA-EARLY + ELMo model with and without COREFALL supervision. We
report average and standard deviation across 4 runs.

5.6.3 Where should the supervision be applied?

Is it more beneficial to apply auxiliary supervision at an earlier stage of the
model, i.e., at the contextual layer as in the BIDAF-SA-EARLY model, or at a later
stage, i.e., after the bidirectional attention layer as in the BIDAF-SA-LATE model?
We compare performance using COREFALL supervision. Also, to disentangle the
effect of architectural change, we experiment with the BIDAF-SA-BOTH model
with supervision being added at different stages.

Models Accuracy (%)

BIDAF-SA-EARLY 60.54 (60.88)
BIDAF-SA-EARLY + COREFALL 61.51 (61.94)

BIDAF-SA-LATE 59.48 (59.58)
BIDAF-SA-LATE + COREFALL 61.19 (61.54)

BIDAF-SA-BOTH 60.88 (61.27)
BIDAF-SA-BOTH + COREFALL (early) 61.72 (62.35)
BIDAF-SA-BOTH + COREFALL (late) 61.54 (61.67)

Table 5.5: Early supervision vs. late supervision: Accuracy (average of 4 runs, with
max in parentheses) on the LAMBADA test set for different locations to fuse in the
self-attention encoder and to apply auxiliary supervision.

Table 5.5 shows that without supervision, BIDAF-SA-EARLY offers much better
results than BIDAF-SA-LATE. Although adding supervision to BIDAF-SA-LATE

leads to a larger relative improvement, applying supervision at an earlier stage
still leads to a better absolute performance than doing so at a later stage, which

93

is also confirmed by the numbers on BIDAF-SA-BOTH. This is not surprising,
as intuitively coreference information about the context input should be beneficial
to getting better query-aware context representations, rather than the other way
around.

As discussed earlier, all our experiments with BIDAF-SA-EARLY have the aux-
iliary supervision applied on the 3rd layer (out of all 4 layers). We also test ap-
plying supervision on other layers, and show the results in Table 5.6. We find
the 3rd layer generally works the best, though the difference is not significant.
One possible explanation is: The hidden states from early layers might not encode
enough contextual information for the self-attention computation to learn the tar-
get weights from the supervision; while the output of the top layer is fed directly
into the bidirectional attention layer to model the interaction between the context
and the query, so enforcing the self-attention computation to comply with corefer-
ence knowledge solely from the context might have a side effect on this interaction.
Therefore, an intermediate layer from the stacked self-attention encoder might be
the best place to apply auxiliary supervision.

Models Accuracy (%)

BIDAF-SA-EARLY 60.54 (60.88)

BIDAF-SA-EARLY + COREFALL (1st layer) 61.27 (61.83)
BIDAF-SA-EARLY + COREFALL (2nd layer) 61.33 (61.48)
BIDAF-SA-EARLY + COREFALL (3rd layer) 61.51 (61.94)
BIDAF-SA-EARLY + COREFALL (4th layer) 61.45 (61.61)

Table 5.6: Which layer to apply auxiliary supervision: Accuracy (average of 4 runs,
with max in parentheses) on the LAMBADA test set from BIDAF-SA-EARLY +
COREFALL with auxiliary supervision applied on each layer of the stacked self-
attention encoder.

5.6.4 Are other types of supervision also useful?

We have so far focused on the COREFALL supervision. In Table 5.7 we show
the results of applying other types of auxiliary supervision.

All other types of auxiliary supervision, except for NARRATIVE, show inferior
performance compared to COREFALL. This is as expected. As the LAMBADA task

94

Models Accuracy (%)

BIDAF-SA-EARLY 60.54 (60.88)
BIDAF-SA-EARLY + COREFALL 61.51 (61.94)

BIDAF-SA-EARLY + DEPPARSE 61.06 (61.34)
BIDAF-SA-EARLY + COREFPREV 60.94 (61.71)
BIDAF-SA-EARLY + COREFNEXT 61.27 (61.63)
BIDAF-SA-EARLY + NARRATIVE 61.86 (62.39)

Table 5.7: Supervision types: Accuracy on the LAMBADA TEST set (average of 4
runs, with max in parentheses) with different types of auxiliary supervision.

is specifically designed to require broader discourse context, intra-sentence syntac-
tic structure (DEPPARSE) should not play an important role. The COREFPREV and
COREFNEXT variants of coreference information only provide guidance towards
the immediately preceding or following mention in the same coreference chain.
Such knowledge will fall short when the reasoning over a long coreference chain
is crucial in making the prediction.

The NARRATIVE supervision provides slightly better performance than CORE-
FALL. This is also not surprising, as the NARRATIVE signal is derived from both
dependency parses and coreference chains. Theoretically, this type of supervision
should capture useful linguistic structures from both COREFALL, which makes the
main contribution to the performance improvement, and DEPPARSE, which might
offer some additional boost. We further verify the hypothesis by computing the
agreement between the predictions of two models on the dev set, and find that
on average, a run with COREFALL and a run with NARRATIVE agree on 89.3%
of all dev instances, confirming that it is largely the coreference signal that leads
to the performance improvement observed with the NARRATIVE supervision. We
also briefly test combining multiple supervision signals, and find that COREFALL

+ NARRATIVE leads to slightly better performance (with an average accuracy of
62.05%) than using NARRATIVE alone, but the difference is not significant as well.

95

5.7 Chapter Summary

In this chapter we investigate whether the injection of semantic knowledge into
an existing model (BIDAF) via supervised self-attention can lead to better perfor-
mance on tasks requiring complex and long-distance reasoning. On the LAM-
BADA dataset, where the current best result from GPT-2 (Radford et al., 2019) is
still far below human performance, we show that a BIDAF model trained with
coreference as auxiliary supervision achieves the new state-of-the-art, while re-
quiring only a tiny fraction of the parameters in GPT-2. We further test model
variants to test where in a BIDAF model it is most useful to add a self-attention
layer with supervision, and how different types of linguistic knowledge compare
as supervision signals.

96

Chapter 6

Semantic Knowledge on Pre-trained Language Models

This chapter introduces ongoing work on integrating semantic knowledge into
large-scale pre-trained language models. We explore several different approaches
of integrating semantic knowledge, and present some preliminary findings. We
also discuss possible future directions. All work in this chapter has not been pub-
lished and constitutes original contributions.

6.1 Chapter Overview

Pre-trained language models (LMs) have recently made impressive progress
on many NLP tasks. For example, on the GLUE benchmark (Wang et al., 2019b),
RoBERTa (Liu et al., 2019) achieves an average score of 88.1, outperforming the
estimated human performance of 87.1. On the SQuAD 1.1 reading comprehension
dataset (Rajpurkar et al., 2016), XLNet (Yang et al., 2019b) achieves an F1 score of
95.1, well above human performance (91.2). However, this does not imply that
these models possess the power of understanding human language, as several re-
cent studies on adversarial attacks show that most of the high performance is likely
due to dataset biases and the models memorizing superficial patterns:

• Jia and Liang (2017) introduce the SQuAD Adversarial dataset, by append-
ing an adversarial distracting sentence to the paragraph, and find that the
performance of sixteen published models at the time all drops significantly
on the adversarial test set, from 75 to 36 on average. Large-scale pre-trained
LMs are also not robust against this attack, as Yang et al. (2019c) report the
performance of BERT (Devlin et al., 2019) drops from 91.4 on SQuAD 1.1 to
61.0 on SQuAD Adversarial.

• Wallace et al. (2019) study universal adversarial triggers, by using gradient-
guided search to find an input-agnostic sequence of tokens that triggers a
model to produce a certain output when concatenated to any input data. For
example, they find that a specific sequence of six sub-word tokens will trig-
ger a GPT-2 model (Radford et al., 2019) to always generate racist outputs.

97

They also find that on the SQuAD dataset, concatenating a sequence of “why
how because [adversarial answer span]” will often fool an ELMo-based model
(Peters et al., 2018) to predict [adversarial answer span] as the answer to any
why questions.

These findings suggest that pre-trained LMs might not be fully capable of rea-
soning over the semantics of language. Since these models are usually pre-trained
with some variants of the language modeling objective on a gigantic corpus, their
success might as well be attributed to memorizing the distributional characteris-
tics of language. In Chapter 5, we observe that integrating coreference knowledge
as auxiliary supervision for self-attention can benefit tasks requiring long-distance
reasoning. Experiments show that a relatively small transformer encoder trained
with coreference supervision can outperform GPT-2, a much larger pre-trained
LM. Therefore, a natural question to ask next is, whether semantic knowledge can
be integrated into pre-trained LMs in a similar fashion to learn representations that
are more “semantic-aware”, and as a result, further benefit downstream tasks.

To answer this question, we first need to choose some benchmark datasets to
evaluate the models’ performance before and after injecting semantic knowledge.
This is non-trivial, as on many existing natural language understanding datasets,
the best performance of pre-trained models is already close to or even surpassing
human performance. We hypothesize that semantic knowledge is unlikely to help
in such cases, because these datasets often exhibit some level of annotation biases
(Gururangan et al., 2018, Geva et al., 2019, Gardner et al., 2020) that allow mod-
els to make simple predictions from surface-level cues or distributional statistics.
Therefore, instead of studying the effect of semantic knowledge on any specific
dataset, we ask the following question: Does the integration of semantic knowledge
make pre-trained LMs more generalizable across different datasets? Theoretically, the
better a model does on out-of-domain datasets that it has not been trained on, the
less likely that it relies merely on domain-specific biases to make correct predic-
tions.

In this chapter, we experiment with the recent MRQA 2019 Shared Task (Fisch
et al., 2019), a collection of 18 question answering datasets designed to test how
well MRQA (machine reading for question answering) systems can generalize to
new domain. This is exactly what we need: a diversified testbed to study whether

98

semantic knowledge can make pre-trained LMs more generalizable. We discuss
the task setup in more detail in Section 6.3.

We explore three variants of integrating semantic knowledge: as edge prob-
ing instances in a multi-task learning objective; as a target attention matrix for
supervised self-attention; or as a semantically-informative masking strategy for
language modeling. In preliminary experiments using the knowledge of SRL and
coreference, we find that none of the three methods can provide consistent and sig-
nificant improvement across several variants of the BERT model. We also discuss
possible defects of the current methods.

6.2 Prior Work

We have briefly reviewed existing work on integrating knowledge into neural
architectures in Section 2.3. Here, we focus on integrating semantic knowledge
into pre-trained LMs, and thus elaborate some related work in more detail.

Probably the most relevant prior work is LIBERT (Lexically-informed BERT,
Lauscher et al., 2019), that adds a third pre-training objective to BERT (Devlin et al.,
2019) to predict lexical relations between input tokens. The lexical relations, such
as synonyms and hypernym-hyponym pairs, are extracted from WordNet (Miller,
1995). Experiments show that LIBERT slightly outperform BERT on the GLUE
benchmark. Another loosely related work is SemBERT (Zhang et al., 2020), who
concatenate the BERT embedding for each token with a learned embedding for the
token’s semantic role labels, which is predicted by an off-the-shelf parser. How-
ever, the usage of semantic information in this model, that is, vector concatenation
at the last layer without changing any behavior of the pre-trained BERT, is at a rela-
tively superficial level, thus we do not consider it as truly “integration of semantic
knowledge”.

On a broader sense, there has been more prior work on integrating background
knowledge into pre-trained LMs. One line of work is to retrieve relevant knowl-
edge elements from a background KB to assist machine reading comprehension.
Yang et al. (2019a) enhance the BERT embedding of each input token with an at-
tention mechanism over concept embeddings learned from WordNet (Miller, 1995)
and NELL (Mitchell et al., 2015), and show improved performance on tasks like

99

SQuAD and ReCoRD (Zhang et al., 2018). Also on the ReCoRD dataset, Qiu et al.
(2019) extract a sub-graph for each input token from WordNet and ConceptNet
(Speer et al., 2017) and then use graph attention networks (Veličković et al., 2018)
to update the token embedding with information from the sub-graph. Similarly,
Lin et al. (2019) ground each question-answer pair in the CommensenseQA dataset
(Talmor et al., 2019) to a “schema graph” extracted from ConceptNet, and perform
joint encoding of BERT and the schema graph to derive the plausibility score of the
answer.

Another line of work has been on extending the pre-training of BERT to inte-
grate the knowledge of real-world entities. Zhang et al. (2019b) propose the ERNIE
model, by adding a knowledgeable encoder on top of the BERT contextualized en-
coder to incorporate entity embeddings trained on Wikidata. The entity embed-
dings are obtained by aligning input tokens to Wikipedia entities. In addition to
the MLM and NSP objectives used in BERT (see Subsection 2.2.3), ERNIE also adds
a “denoising entity auto-encoder” objective to predict masked token-to-entity align-
ments. The KnowBERT model (Peters et al., 2019a) applies a KAR (Knowledge At-
tention and Recontextualization) mechanism to one of the self-attention layers in
BERT, by first retrieving a set of relevant entities for each token and then updating
the token representations by an attention computation over the entity embeddings.
The WKLM model (Xiong et al., 2020) adds a new “entity replacement” pre-training
objective to BERT, by randomly replacing an entity mention that can be linked to
a Wikipedia entity with mentions of other entities that have the same entity type,
for example, from “... comic books published by Marvel Comics” to “... comic books
published by DC Comics”. All these enhanced models outperform standard BERT
on a number of downstream tasks like question answering, relation classification,
and entity typing.

6.3 The MRQA 2019 Shared Task

The MRQA 2019 Shared Task (Fisch et al., 2019) is designed to evaluate the gen-
eralization capabilities of reading comprehension models on out-of-domain data.
The organizers collect 18 distinct question answering datasets, including SQuAD
(Rajpurkar et al., 2016), TriviaQA (Joshi et al., 2017), DROP (Dua et al., 2019), RACE

100

(Lai et al., 2017), MCTest (Richardson et al., 2013), QAMR (Michael et al., 2018), and
so on. These datasets vary in sources (Wikipedia, news articles, web snippets, etc),
question styles (entity-centric, relational, quantitative reasoning, etc), annotators
(crowdworkers, domain experts, etc), and annotation schemes (writing questions
based on passages, or retrieving passages from independently-written questions),
providing a relatively broad coverage on real-world question answering scenarios.

The datasets are partitioned into three splits:

• Split I: 6 datasets for model training and development, but not included in
evaluation.

• Split II: 6 datasets for model development but not for training. There is also
a hidden test portion for each of the dataset in this split.

• Split III: 6 datasets only with hidden test portions for evaluation. They are
not available for model training and development.

Participants can use Split I and the development portions of Split II to train their
models, which will be submitted and evaluated on the hidden test portions of
the 12 datasets in Split II and Split III, using both EM (exact match) and F1 as
evaluation metrics.

All of the datasets are adapted to a unified format of extractive reading compre-
hension: Given a passage p = {p1, p2, . . . , pn} and a question q = {q1, q2, . . . , qm},
the model predicts a continuous span (i, j) = {pi, pi+1, . . . , pj} from the passage
as the answer. We will use the following example from SQuAD (Rajpurkar et al.,
2016) as a running example throughout the chapter:

(6.1)

Passage: The Broncos took an early lead in Super Bowl 50 and never
trailed. Newton was limited by Denver’s defense, which sacked him
seven times and forced him into three turnovers, including a fumble
which they recovered for a touchdown. Denver linebacker Von Miller
was named Super Bowl MVP, recording five solo tackles, 2½ sacks,
and two forced fumbles.
Question: Which team held the scoring lead throughout the entire
game?
Answer: Broncos

101

Dataset # Train # Dev # Test

Split I

SQuAD 86,588 10,507 –
NewsQA 74,160 4,212 –
TriviaQA 61,688 7,785 –
SearchQA 117,384 16,980 –
HotpotQA 72,928 5,904 –
Natural Questions 104,071 12,836 –

Split II

BioASQ – 1,504 1,518
DROP – 1,503 1,501
DuoRC – 1,501 1,503
RACE – 674 1,502
RelationExtraction – 2,948 1,500
TextbookQA – 1,503 1,508

Split III

BioProcess – – 219
ComplextWebQuestions – – 1,500
MCTest – – 1,501
QAMR – – 1,524
QAST – – 220
TREC – – 1,021

Table 6.1: Overview of the datasets in the MRQA Task, from Fisch et al. (2019).

Datasets that are originally multi-choice are converted to this extractive format
by matching the correct answer string to a passage span and discarding questions
where the correct answer cannot be matched. Also, only the first 800 tokens of the
passage are kept to alleviate computational requirements1.

Table 6.1 provides an overview of the statistics of the 18 datasets. For more
information about the datasets and setups, we refer readers to the task description
paper (Fisch et al., 2019) and their GitHub repository at https://github.com/mrqa/

MRQA-Shared-Task-2019.
The task organizers also implement two BERT baselines (Devlin et al., 2019),

one with BERTBASE, and the other with BERTLARGE, which we will discuss in more
detail in Section 6.4. There are ten participating systems in the shared task, most
of which are developed on top of the official baseline model. The best perform-
ing system, D-Net (Li et al., 2019), adopts other pre-trained LMs including XLNet
(Yang et al., 2019b) and ERNIE (Zhang et al., 2019b). Their submitted system is

1QA pairs where the answer cannot be located in the first 800 tokens are discarded.

102

https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/mrqa/MRQA-Shared-Task-2019

an ensemble of an XLNet-based model and an ERNIE-based model. The second
best performing system, Delphi (Longpre et al., 2019), explores different data sam-
pling strategies and data augmentation techniques. Their submitted system is an
XLNet-based model trained with additional negative sampling (examples where
no answer exists in the passage).

Participants have also tried some other enhancements, for example, multi-task
learning with natural language inference and paragraph re-ranking (Takahashi
et al., 2019, Li et al., 2019), or adversarial training to learn domain-invariant fea-
tures (Lee et al., 2019), but find that these techniques only provide marginal im-
provement. The most significant factor on performance is the choice of pre-trained
LMs, as models using XLNet as the base LM consistently outperform models using
BERT as the base LM. The evaluation results of the two best performing systems
and two official baselines are summarized in Table 6.2.

Split I Split II Split II Split III
Dev (6) Dev (6) Test (6) Test (6)

D-Net (Li et al., 2019) 84.1 69.7 68.9 76.1
Delphi (Longpre et al., 2019) 82.3 68.5 66.9 74.6
BERTLARGE (Fisch et al., 2019) 76.3 57.1 57.4 66.1
BERTBASE (Fisch et al., 2019) 74.7 54.6 54.6 62.4

Table 6.2: Performance of the two best performing participating systems and two
official baselines on MRQA. Numbers are reported as average F1 scores on certain
portions of all datasets in a split.

6.4 Methods

Like most participating systems on the shared task, we also adopt the official
baseline as our starting point. We first describe the baseline model, then describe
several variants of integrating semantic knowledge into the model.

6.4.1 Baseline Model

The baseline model is simply a BERT-based QA model. To illustrate, the ques-
tion q = {q1, . . . , qm} and the passage p = {p1, . . . , pn} are first concatenated into a

103

single sequence x:

x1:T = {[CLS], q1, . . . , qm, [SEP], p1, . . . , pn, [SEP]} (6.1)

Note that since BERT takes sub-word tokens (i.e., word pieces) as input, here x1:T
also represent word pieces rather than whole words. The input sequence for Ex-
ample (6.1) would be:

(6.2)

[CLS] who was the super bowl 50 mvp ? [SEP] the broncos took an
early lead in super bowl 50 and never trailed . newton was limited
by denver ’ ##s defense , which sacked him seven times and forced
him into three turnover ##s, ...

The sequence is encoded by BERT to obtain a list of contextualized representa-
tions:

{y1, . . . ,yT} = BERT({x1, . . . , xT}) (6.2)

Then, two separate MLP classifiers are applied on the contextualized representa-
tions of all passage tokens {ye1 , . . . ,yen} (e1, . . . , en are the corresponding indices
of passage tokens p1, . . . , pn in the input sequence x1:T) to predict the start and end
indices independently:

pstart(i) = softmax(MLP1(yi)), i = e1, . . . , en

pend(j) = softmax(MLP2(yj)), j = e1, . . . , en
(6.3)

During training, the BERT parameters and the MLP parameters are jointly opti-
mized to maximize the log-likelihood of the first occurrence of the correct answer.
Denoting the correct answer span as (ai, aj), the loss function can be written as:

L = − log pstart(ai)− log pend(aj) (6.4)

At test time, the start and end probabilities are combined and a greedy search
is applied to decode the answer span with the highest combined probability, by
optimizing

argmaxi,j{pstart(i)× pend(j)} (6.5)

Because BERT supports a sequence length up to 512, longer sequences are con-

104

verted into multiple chunks using a sliding window. Also, following the MultiQA
model (Talmor and Berant, 2019), the baseline model is trained with a multi-task
objective, by sampling up at most 75k examples from each of the Split I training
datasets and iterating through them to create mixed batches of examples (so each
batch can contain examples from different datasets).

6.4.2 Integrating Semantic Knowledge

In this chapter, we focus on two types of semantic knowledge: semantic role
labeling (SRL), and coreference resolution (Coref). To get these additional annota-
tions, we pre-process the MRQA datasets with existing tools for SRL and corefer-
ence. Note that while the performance of SRL and coreference tools has improved
a lot recently, the automatic annotations are still noisy, especially on the domain of
web text that these tools are not trained on. Nevertheless, we still expect the noisy
annotations to provide helpful semantic information.

We explore three alternatives of integrating semantic knowledge into the base-
line model: EP (Edge Probing), SA (Supervised Attention), and LM (Semantically-
Informative Language Modeling). Before diving into the detail, we first define
some common notations. Given an input sequence [x1, . . . , xT], denote the hidden
states after layer ` as H(`) = [h1

(`), . . . ,hT
(`)] ∈ RT×d, where d is the hidden di-

mension. We also denote the self-attention weights of the h-th head in layer ` as
A(`,h) ∈ RT×T .

Also, the SRL knowledge for each example is a list of tuples {Si}, each tuple
representing a predicate-argument relation as Si = (sp1, sp2, sa1, sa2, sl), where sp1
and sp2 are the start and end indices of the predicate span2, sa1 and sa2 are the
start and end indices of the argument span, and sl is the semantic role label. On
Example (6.2), some of the SRL tuples would be:

(12, 12, 10, 11,ARG0)→ “the broncos” is the ARG0 of “took”

(12, 12, 13, 19,ARG1)→ “an early lead in super bowl 50” is the ARG1 of “took”

Similarly, the coreference knowledge for each example is a list of set {Ci}, each
2Current SRL tools usually predict a single word as the predicate. However, a single word

might be tokenized into multiple word pieces as required by BERT. Therefore, we still represent a
predicate as a span to avoid ambiguity.

105

set representing a coreference cluster as Ci = {(m1
1,m

2
1), (m

1
2,m

2
2), . . . }, where m1

k

and m2
k are the start and end indices of a mention in the cluster. On Example (6.2),

some coreference clusters would be:

{(10, 11), (28, 28)} → “the broncos” and “denver” are coreferent

{(24, 24), (35, 35)} → “newton” and “him” are corefent

Now we describe the three alternatives of integrating semantic knowledge,
with a graphical illustration provided in Figure 6.1.

Edge Probing (EP) An intuitive way to integrate semantic knowledge is to ask
the model to predict semantic relations as an auxiliary task. Partly inspired by a
line of previous work by Tenney et al. (2019b;a), who design a suite of “edge prob-
ing” tasks to study how well do BERT embeddings capture the linguistic structure
of the input text, we create similar edge probing tasks for SRL and coreference as
a multi-task learning objective.

The probing task takes a left span s1 and a right span s2 as input, and predicts
a label l between the two spans. For both spans, we aggregate token embeddings
at layer ` via a self-attentive pooling mechanism (Lee et al., 2017) to get the span
representations s(`)1 , s

(`)
2 . The two span representations are then fed into an MLP to

predict the edge label. For SRL, the probing task is straightforward, as each SRL
tuple Si naturally resembles an edge probing instance, by viewing the predicate
span as s1, the argument span as s2, and the semantic role as the target label. For
coreference, we sample positive and negative mention pairs as the input. In pos-
itive pairs, the two mention spans are from the same coreference cluster, while
in negative pairs, they come from different clusters. The target label is thus 1
for positive pairs and 0 for negative pairs. With a list of edge probing instances
{s(k)1 , s

(k)
2 , l(k)}Kk=1, we compute the cross-entropy loss by:

LEP =
1

K

K∑
k=1

cross_entropy
(
MLP (s

(`,k)
1 , s

(`,k)
2), l(k)

)
(6.6)

Supervised Attention (SA) Another alternative is to use semantic knowledge as
a supervision signal for self-attention weights A(`,h). This is a direct extension of

106

[CLS] who was [SEP] [SEP]the broncos took… …

…

… …

…

… … … … … … … …

… … … … … … … …

layer `

<latexit sha1_base64="ThvVihaFvVAJA9NMZsvg8RO6mGY=">AAACAHicbVDLSgNBEOyNrxhfUY9eFoPgKexKQL0FvHiMYB6QLGF20psMmZ1ZZmaFEHLxA7zqJ3gTr/6JX+BvOJvswSQWNBRV3XR3hQln2njet1PY2Nza3inulvb2Dw6PyscnLS1TRbFJJZeqExKNnAlsGmY4dhKFJA45tsPxXea3n1BpJsWjmSQYxGQoWMQoMZnUQ8775YpX9eZw14mfkwrkaPTLP72BpGmMwlBOtO76XmKCKVGGUY6zUi/VmBA6JkPsWipIjDqYzm+duRdWGbiRVLaEcefq34kpibWexKHtjIkZ6VUvE//zuqmJboIpE0lqUNDFoijlrpFu9rg7YAqp4RNLCFXM3urSEVGEGhvP0paEcJuOkDObjL+awzppXVX9WvX2oVape3lGRTiDc7gEH66hDvfQgCZQGMELvMKb8+y8Ox/O56K14OQzp7AE5+sXKsaXeA==</latexit>

… …

… …

hidden states

hidden states

attention weights

A(`,0), . . . ,A(`,H−1)

<latexit sha1_base64="KRAp/MmOQqjbcE4ueC32VZAos08=">AAACNXicbVDLTgIxFO3gC/E16tJNIzGBBMmMIUF3GDcsMREkYZB0SgcaOp1J2zEhk/kUv8MPcKsf4MKd0aW/YAdmIeBJmp6cc2/v7XFDRqWyrHcjt7a+sbmV3y7s7O7tH5iHRx0ZRAKTNg5YILoukoRRTtqKKka6oSDIdxm5dyc3qX//SISkAb9T05D0fTTi1KMYKS0NzLrjIzV2vfg6eYhLDmGsAq1yUoHOMFBSX6t289wuJwOzaFWtGeAqsTNSBBlaA/Nbv4gjn3CFGZKyZ1uh6sdIKIoZSQpOJEmI8ASNSE9Tjnwi+/Hsgwk808oQeoHQhys4U/92xMiXcuq7ujLdVy57qfif14uUd9mPKQ8jRTieD/IiBlUA07TgkAqCFZtqgrCgeleIx0ggrHSmC1NCxHSkPEiTsZdzWCWdi6pdq17d1ooNK8soD07AKSgBG9RBAzRBC7QBBk/gBbyCN+PZ+DA+ja95ac7Ieo7BAoyfX2IHqrg=</latexit>

("took", "the broncos", Arg0)
("took", "an early lead …", Arg1)
…

SRL

{"the broncos", "denver", …}
{"newton", "him", …}
…

Coref

took

the broncos

took

an early lead …

the broncos

denver

the broncos

him

Arg0

Arg1

1

0

left/right span
representations

target
label

M
L

P
 C

la
ss

ifi
er

Edge Probing Supervised Attention

took

b
ro

n
co

s

broncos

d
en

v
er

target matrix
for self-attention

NLL loss

one attention head A(`,0)

<latexit sha1_base64="x1/2BL92oBfR7r2iSi6c9YjEtd8=">AAACFHicbVDLSsNAFJ3UV62vqODGzWARKkhJpKDuKm5cVrAPaGKZTCft0MlMmJkIJeY3/AC3+gnuxK17v8DfcNJ2YasHLhzOuZd7OEHMqNKO82UVlpZXVteK66WNza3tHXt3r6VEIjFpYsGE7ARIEUY5aWqqGenEkqAoYKQdjK5zv/1ApKKC3+lxTPwIDTgNKUbaSD37wIuQHgZhepXdpxWPMHYKnZOsZ5edqjMB/EvcGSmDGRo9+9vrC5xEhGvMkFJd14m1nyKpKWYkK3mJIjHCIzQgXUM5iojy00n+DB4bpQ9DIc1wDSfq74sURUqNo8Bs5mnVopeL/3ndRIcXfkp5nGjC8fRRmDCoBczLgH0qCdZsbAjCkpqsEA+RRFibyua+xIiZxrjIm3EXe/hLWmdVt1a9vK2V686soyI4BEegAlxwDurgBjRAE2DwCJ7BC3i1nqw36936mK4WrNnNPpiD9fkDcQKehw==</latexit>

Semantically-Informative Language Modeling

[MASK] [MASK]

sample argument spans or mention spans to mask

Semantic Knowledge

boundary
token

boundary
token

the broncos predict masked tokens
from boundary tokens

input sequence X

<latexit sha1_base64="juVX5cuIQ3goy1ywb+8dPUNkAzY=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsxIoboruHFZwT6wHUomzbShmWRIMkIZuvcD3OonuBO3/oZf4G+YaWdhWw8EDufcyz05QcyZNq777RQ2Nre2d4q7pb39g8Oj8vFJW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3GZ+54kqzaR4MNOY+hEeCRYygo2VHvsRNuMgTLuzQbniVt050DrxclKBHM1B+ac/lCSJqDCEY617nhsbP8XKMMLprNRPNI0xmeAR7VkqcES1n84Tz9CFVYYolMo+YdBc/buR4kjraRTYySyhXvUy8T+vl5jw2k+ZiBNDBVkcChOOjETZ99GQKUoMn1qCiWI2KyJjrDAxtqSlKzHmtiMhs2a81R7WSfuq6tWqN/e1SsPNOyrCGZzDJXhQhwbcQRNaQEDAC7zCm/PsvDsfzuditODkO6ewBOfrFx9vmjk=</latexit>

H(`−1)

<latexit sha1_base64="HOWMRGFkF+qCCKFb8Q4nUt+h3nI=">AAACE3icbVDLSsNAFJ3UV62vqLhyM1iEurAkUlB3BTddVrAPaGKZTCft0MlMmJkIJeQz/AC3+gnuxK0f4Bf4G07aLmzrgQuHc+7lHk4QM6q043xbhbX1jc2t4nZpZ3dv/8A+PGorkUhMWlgwIbsBUoRRTlqaaka6sSQoChjpBOO73O88Eamo4A96EhM/QkNOQ4qRNlLfPvEipEdBmDayx7TiEcYu3Yusb5edqjMFXCXunJTBHM2+/eMNBE4iwjVmSKme68TaT5HUFDOSlbxEkRjhMRqSnqEcRUT56TR+Bs+NMoChkGa4hlP170WKIqUmUWA287Bq2cvF/7xeosMbP6U8TjThePYoTBjUAuZdwAGVBGs2MQRhSU1WiEdIIqxNYwtfYsRMYVzkzbjLPayS9lXVrVVv72vlujPvqAhOwRmoABdcgzpogCZoAQxS8AJewZv1bL1bH9bnbLVgzW+OwQKsr18gL55m</latexit>

H(`)

<latexit sha1_base64="7FLBMsjdwayAzEMS0/tpLrJ4ahw=">AAACEXicbVDLSsNAFJ3UV62vaJduBotQNyWRgroruOmygm2FppbJdNIOncyEmYkQQr7CD3Crn+BO3PoFfoG/4aTNwrYeuHA4517u4fgRo0o7zrdV2tjc2t4p71b29g8Oj+zjk54SscSkiwUT8sFHijDKSVdTzchDJAkKfUb6/uw29/tPRCoq+L1OIjIM0YTTgGKkjTSyq16I9NQP0nb2mNY9wthFNrJrTsOZA64TtyA1UKAzsn+8scBxSLjGDCk1cJ1ID1MkNcWMZBUvViRCeIYmZGAoRyFRw3QePoPnRhnDQEgzXMO5+vciRaFSSeibzTyqWvVy8T9vEOvgephSHsWacLx4FMQMagHzJuCYSoI1SwxBWFKTFeIpkghr09fSlwgxUxcXeTPuag/rpHfZcJuNm7tmreUUHZXBKTgDdeCCK9ACbdABXYBBAl7AK3iznq1368P6XKyWrOKmCpZgff0CMT+d9A==</latexit>

Figure 6.1: A graphical illustration of the three alternatives of integrating semantic
knowledge.

107

our previous work in Chapter 5. We first construct a target 0/1 matrix for self-
attention Atarget from semantic knowledge, and the compute an additional loss
term from the auxiliary supervision as:

LSA =
1

T

T∑
i=1

− log

(
T∑

j=1

A
(`,h)
i,j · Atarget

i,j

)
(6.7)

For SRL, the target matrix Atarget is constructed by setting Atarget
ij to 1 only if

there exists a predicate-argument relation between xi and xj , i.e., either xi is within
an argument span of predicate xj , or vice versa. For coreference, similarly, we
set Atarget

ij to 1 only if a mention containing xi and a mention containing xj are
coreferent.

Semantically-Informative Language Modeling (LM) As we will find out in Sec-
tion 6.5, swapping the base LM from BERT to some of its variants with different
masking strategies in pre-training leads to different results, especially on out-of-
domain datasets. For example, while BERT randomly samples sub-word tokens
to mask, BERT-whole-word-masking3 first samples full words and then masks
all sub-word tokens within the sampled words. SpanBERT (Joshi et al., 2020)
further augments that by sampling continuous spans of words and masking all
sub-word tokens within the spans. We see that with everything else identical (in-
cluding the model architecture and the number of parameters), BERT-whole-word-
masking outperforms BERT, and SpanBERT further improves over BERT-whole-
word-masking.

This leads us to hypothesize that a better masking strategy might be a key to
higher generalization capabilities. Therefore, we try a third alternative to inte-
grate semantic knowledge, that is, randomly sampling and masking some argu-
ment spans from the SRL tuples, or some mention spans from the coreference clus-
ters, and then asking the model to recover masked spans via a language modeling
objective. We consider the argument spans from SRL and the mention spans from
coreference to be “semantically informative”, as they usually hold essential infor-
mation to the core meaning of the input text. Therefore, being able to recover these
spans should principally indicate that the model understands semantics better.

3https://github.com/google-research/bert

108

https://github.com/google-research/bert

For each sampled span (xs, xe) where (s, e) indicates its inclusive start and end
positions, we use the “Span Boundary Objective” (SBO) from SpanBERT (Joshi
et al., 2020) as an auxiliary loss term:

LLM = −
e∑

i=s

logP (xi|f(h
(`)
s−1,h

(`)
e+1,pi−s+1)) (6.8)

where function f(·) is a 2-layer MLP, pi−s+1 is a learned positional embedding to
encode the relative position of xi within the span, and ` is the index of the layer to
get token embeddings from.

6.5 Experiments

We present some preliminary experimental results on the MRQA task. Since
the test portions in Split II and Split III are not publicly available, we here focus
on evaluating on the development portions in Split I and Split II, with the for-
mer being “in-domain” evaluation and the latter “out-of-domain” evaluation. In
Table 6.2 we observe a strong correlation between performances on different por-
tions of different splits. Therefore, we can faithfully assume that the scores on the
development sets also indicate the model’s performance on hidden test sets.

6.5.1 Implementation Details

Pre-processing As discussed in Subsection 6.4.2, we need to pre-process the data
to get automatic annotations for SRL and coreference. Since SRL is labeled on
a per-sentence basis, we first perform sentence segmentation on the passage text
with the Pragmatic Segmenter tool4. For SRL prediction, we use an AllenNLP re-
implementation of the BERT-based model from Shi and Lin (2019). For coreference
resolution, we use the SpanBERT-based model5 from Joshi et al. (2020).

Hyperparameters We largely follow the hyperparameter settings of the official
baseline. We sample at most 75k examples from each of the 6 training datasets.

4https://github.com/diasks2/pragmatic_segmenter
5https://github.com/mandarjoshi90/coref

109

https://github.com/diasks2/pragmatic_segmenter
https://github.com/mandarjoshi90/coref

We use a batch size of 12 and train on 4 GPUs (thus an effective batch size of
48). We train the model for 2 epochs, using the Adam optimizer (Kingma and Ba,
2015) with weight decay, a learning rate of 3× 10−5, and a learning rate scheduler
with linear warmup over the first 2,000 steps and linear decay afterwards. We
implement our models using AllenNLP (Gardner et al., 2018) and the Transformers
library from Hugging Face6.

Base LMs The official baseline tests two variants of BERT: BERTBASE, a 12-layer
model with a hidden dimension of 768, and BERTLARGE, a 24-layer model with
a hidden dimension of 1024. In addition to that, we also experiment with two
more variants of BERT as the base LM: BERTLARGE-WWM (whole word masking) and
SpanBERTLARGE. They both share the exactly same architecture with BERTLARGE,
but use different masking strategies for pre-training, as briefly discussed in Sub-
section 6.4.2. We use the pre-trained uncased models from the Transformers library
for the former three, and the pre-trained cased model for SpanBERT7.

Semantic Knowledge For the edge probing (EP) variant, we sample at most 30
SRL instances per example, or at most 15 positive instances and 15 negative in-
stances when using coreference as the knowledge source. For the semantically-
informative language modeling (LM) variant, we sample at most 10 spans to mask,
with each span consisting of no more than 15 tokens. Also, the total number of
masked tokens should not exceed 15% of all passage tokens. When training any
of three variants, we use the hidden states or the attention weights of the top layer
(i.e., set ` = 12 for *BASE models and ` = 24 for *LARGE models in Equation 6.6, 6.7,
and 6.8) to compute the additional loss, which will be added to the original QA
loss as defined in Equation 6.4.

6.5.2 Preliminary Results

We present some preliminary results in Table 6.3. Integrating semantic knowl-
edge via edge probing (cells in light green) has almost no effect on in-domain
performance, but gives a relatively consistent out-of-domain performance boost

6https://github.com/huggingface/transformers
7https://github.com/facebookresearch/SpanBERT

110

https://github.com/huggingface/transformers
https://github.com/facebookresearch/SpanBERT

across the first 3 base LMs, though the scale of the improvement is quite marginal
(usually below 1 point). The supervised attention approach (cells in light yellow),
while usually leading to better in-domain performance, offers more varying im-
provement on out-of-domain data. The effect of the last alternative, semantically-
informative language modeling (cells in light blue), is more mixed up, as some-
times it even leads to worse F1 scores.

We also briefly try combining the semantic knowledge from SRL and Coref
via the edge probing approach, as shown in cells in green . We do not observe
consistent further improvement by the combination of two knowledge sources. In
fact, in some cases we see even worse results than using a single knowledge source
as supervision.

Another interesting observation is the comparison between BERTLARGE-WWM

and SpanBERTLARGE. While they achieve almost the same in-domain performance,
there is a more than 2 points gap on out-of-domain performance. This supports
our hypothesis that masking strategies might be critical to generalization, though
the underlying reason is still unclear. Also, the EP approach gives a much larger
improvement on BERTLARGE-WWM than on SpanBERTLARGE. A possible explanation
is that the span-based masking strategy in SpanBERT pre-training might already
allow the model to learn representations that are more “span-aware” and better at
predicting the edge labels.

Our best F1 score on the out-of-domain Split II Dev sets, from integrating coref-
erence knowledge as supervised attention on SpanBERTLARGE, is already on par
(69.37 vs. 69.7) with D-Net (Li et al., 2019), the best performing system in the
shared task. However, since our goal is to examine whether semantic knowledge
makes pre-trained LMs more generalizable to new domains, the numbers reported
here are still disappointing, as we cannot see any consistent and significant im-
provement from any of the three alternatives of integrating semantic knowledge.
Note that this does not conclude that semantic knowledge is not helpful, as we will
discuss next some possible shortcomings of our current approaches.

6.5.3 Analysis

In Chapter 5, we find that coreference knowledge is particularly helpful on
the LAMBADA task when applied as auxiliary supervision for self-attention on

111

Base
LM

Semantic
Knowledge

In-domain F1

(Split I Dev)
Out-of-domain F1

(Split II Dev)

BERTBASE

– 76.27 56.73

EP
SRL 76.21 57.41 (+0.68)
Coref 76.34 57.28 (+0.55)
SRL + Coref 77.31 56.76 (+0.03)

SA SRL 77.67 56.83 (+0.10)
Coref 77.87 57.43 (+0.70)

LM SRL 77.27 56.87 (+0.14)
Coref 77.32 56.58 (−0.15)

BERTLARGE

– 79.51 61.60

EP
SRL 79.40 62.04 (+0.44)
Coref 79.61 62.26 (+0.66)
SRL + Coref 80.81 62.52 (+0.92)

SA SRL 81.11 62.25 (+0.65)
Coref 80.46 61.86 (+0.26)

LM SRL 80.40 61.54 (−0.06)
Coref 79.41 60.77 (−0.83)

BERTLARGE-WWM

– 82.23 65.89

EP
SRL 81.89 66.94 (+1.05)
Coref 82.02 66.46 (+0.57)
SRL + Coref 82.99 66.86 (+0.97)

SA SRL 83.00 66.13 (+0.24)
Coref 82.88 66.36 (+0.47)

LM SRL 82.66 65.74 (−0.15)
Coref 82.62 64.28 (−1.61)

SpanBERTLARGE

– 82.55 68.21

EP
SRL 82.28 68.30 (+0.09)
Coref 82.21 68.60 (+0.39)
SRL + Coref 83.63 68.54 (+0.33)

SA SRL 83.45 68.89 (+0.68)
Coref 83.13 69.37 (+1.16)

LM SRL 83.08 68.02 (−0.19)
Coref 83.15 68.21 (+0.00)

Table 6.3: Evaluation results on MRQA by integrating semantic knowledge. The
numbers in parentheses on the last column indicate the performance increase (+)
or decrease (−) over the corresponding base LM without semantic knowledge.

112

a 4-layer transformer encoder. In this chapter, however, we do not get to the
same conclusion. One possible explanation is that, these pre-trained LMs, con-
taining hundreds of millions of parameters, are so powerful that they probably do
not need all of the parameters to learn good representations for any downstream
tasks. Therefore, whichever approach we choose to integrate semantic knowledge,
as long as the knowledge is only used as an auxiliary multi-task learning objec-
tive, the model might be optimizing towards multiple objectives in a relatively
independent manner. For example, in the supervised attention (SA) setting, we
are only enforcing one attention head to attend to semantically-relevant part of the
text, while the model could just rely on the remaining 11 (or 23) heads to do answer
span prediction.

Also, the semantic knowledge as encoded in the edge probing task might just
be too easy for pre-trained LMs to pick up. This is indicated by the observation that
the additional loss termLEP usually drops to a very small number (~0.2) compared
to the main loss term for answer prediction at the end of training. Also, Tenney
et al. (2019b) find that the pre-trained embeddings from BERT, even without any
fine-tuning, are already doing very well at predicting SRL labels and coreference
relations. This suggests that we might want some harder semantic task for the
pre-trained LMs to actually learn from it.

We still believe that semantic knowledge can play an important role in making
pre-trained LMs more robust and generalizable, and we discuss possible future
directions in Section 7.1.

6.6 Chapter Summary

In this chapter, we present an ongoing study on how to integrate semantic
knowledge, including SRL and coreference, into large-scale pre-trained language
models. We propose three different methods for the integration: edge probing,
supervised attention, or semantically-informative language modeling. Some pre-
liminary experiments on the MRQA 2019 Shared Task do not show positive results,
as we observe marginal and inconsistent improvement from injecting semantic
knowledge. We further analyze possible shortcomings of our current approaches
and provide some insights for future directions.

113

Chapter 7

Conclusion

Neural network models have been the main driving force behind the rapid
progress of NLP research in the past decade. With massive training data and
complex neural architectures, we have seen models approaching human perfor-
mance on many natural language understanding benchmarks. However, the vul-
nerability of many models against adversarial attacks has raised questions about
the extent to which these models truly understand human language, and whether
they are merely memorizing statistical patterns. This raises the question to us of
whether the traditional linguistic knowledge of semantics can still be beneficial in
the neural era.

In this thesis, we investigated the idea of combining semantic knowledge with
neural models. There has been a long line of prior work on learning from syn-
tactic structure for downstream tasks, but very little work on exploiting seman-
tic structure. We started with a certain type of semantic knowledge, the implicit
predicate-argument relations, and studied how the knowledge of event and entity
structures can help inferring implicit arguments. We then focused on integrating a
wider variety of types of semantic knowledge into neural models in a more latent
fashion.

Implicit argument prediction has been considered a very hard task, mainly due
to the lack of human-annotated data. We proposed an argument cloze task to allow
automatic creation synthetic data at scale (Chapter 3). The task is to recover a ran-
domly removed event argument from a list of candidates, where event structures
are extracted from dependency parsing, and all other arguments in the context
are treated as candidates. With the argument cloze task, we created a large-scale
training dataset from Wikipedia by running off-the-shelf dependency parsing and
coreference resolution tools. We also created a synthetic evaluation dataset using
the gold annotations of syntax and coreference in the OntoNotes corpus, which is
larger and more diversified than existing human-annotated datasets.

With the synthetic training data, we developed two neural models for inferring
implicit arguments. The first model, EVENTCOMP, draws on local narrative coher-
ence, that is, whether a pair of events are likely to occur in the same context (Chap-

114

ter 3). We also found that entity salience features significantly boost performance.
The second model, Pointer Attentive Reader, instead measures global narrative
coherence, by casting the problem as reading comprehension (Chapter 4). We also
introduced a multi-hop attention mechanism to tackle the harder cases with more
than one implicit argument in a single event. Both these models perform well on a
human-annotated nominal implicit arguments dataset based on NomBank, as well
as the synthetic evaluation data from OntoNotes.

We also studied whether semantic knowledge can be integrated into neural
models in a latent fashion, and thus benefiting downstream tasks. We proposed to
inject semantic knowledge into a transformer encoder as the auxiliary supervision
for self-attention (Chapter 5). On the LAMBADA word prediction task, which is
designed to require long-distance reasoning, we demonstrated that a small model
paired with coreference knowledge sets the new state-of-the-art, outperforming
GPT-2, a much larger pre-trained language model.

Finally, we extended the idea of integrating semantic knowledge to the recent
large-scale pre-trained LMs, like BERT and SpanBERT (Chapter 6). We explored
the supervised self-attention approach which has been successful on in our pre-
vious work, along with two other alternatives of applying semantic knowledge:
as edge probing instances for multi-task learning, or as semantically-informative
masking for language modeling. On the MRQA 2019 Shared Task, we found that
none of the three approaches can offer consistent and significant improvement
across different base LMs. A possible explanation is that the approaches we have
tried only provide a relatively weak signal that might not be enough to inject se-
mantic knowledge into the highly-parameterized pre-trained LMs.

Overall, we showed that semantic knowledge can be utilized in many different
ways to enhance neural models, and learn better representations. Even we faced
some setback in our ongoing work of applying semantic knowledge to large-scale
pre-trained LMs, we are still optimistic that semantic knowledge can be useful
when integrated with some better approaches, which we will discuss in the next
section. We look forward to continuing this exciting thread of research on design-
ing more generalizable and robust models for language understanding.

115

7.1 Future Work

As with all areas of research, the work in this thesis answers some questions,
but it also raise new ones. In this section, we discuss some possible future direc-
tions of research.

7.1.1 More Evaluation on Implicit Arguments

In Chapter 3 and Chapter 4, we mainly focus on evaluating our models for
predicting implicit arguments on the G&C dataset (Gerber and Chai, 2010). While
being one of the most widely used benchmark on implicit arguments, the dataset is
still very small and limited, consisting of 1,247 examples covering just 10 nominal
predicates. Therefore, performance on the G&C dataset might not fully reveal a
model’s strengths and weaknesses in reasoning implicit arguments.

The main reason for the sparsity of data is the difficulty in explicitly annotating
implicit arguments, even for domain experts. Nonetheless, there has been some
work on adapting resources from other domains to the task of implicit arguments.
We describe some of them below. These datasets are considerable larger and more
diverse than G&C. So it would be interesting to see how well our synthetic training
data and proposed models can handle these different test cases.

Implied Predicate-Argument Relationships in RTE Stern and Dagan (2014) pro-
posed a task of recognizing “Implied Predicate-Argument Relationships” in the
context of textual inference, using the setting of Recognizing Textual Entailment
(RTE). The task of RTE (Dagan et al., 2005), is when given a pair of text fragments
termed Text and Hypothesis, to recognize whether a human reading the Text would
infer that the Hypothesis is most likely true. Here is a positive example:

(7.1)

Text: The crucial role Vioxx plays in Merck’s portfolio was apparent
last week when Merck’s shares plunged 27 percent to 33 dollars after
the withdrawal announcement.
Hypothesis: Merck withdrew Vioxx from the market.

To infer whether the entailment holds or not, one would typically need to match
the lexical items and their relationships between the Text and the Hypothesis. In

116

this example, all important lexical items in the Hypothesis (e.g., “Merck”, “with-
drew”, and “Vioxx”) can be matched to corresponding words in the Text. How-
ever, while “Vioxx” is clearly the direct object of “withdrew” in the Hypothesis,
there is no explicit syntactic relation between “withdrawal” and “Vioxx” in the
Text. Therefore, if the entailment does hold, it is very likely that there is an im-
plied relationship between “withdrawal” and “Vioxx”.

Building on this observation, Stern and Dagan (2014) construct a dataset of im-
plied predicate-argument relationships semi-automatically from the RTE-6 dataset
Bentivogli et al. (2010). First, all explicit predicate-arguments relationships in the
Text and the Hypothesis are automatically extracted using a dependency parser.
Predicates and arguments in the Text are also aligned to the Hypothesis with some
simple heuristics. Then, for every predicate-argument relationship that is explicitly
stated in the Hypothesis but not in the Text, a human reader is asked to annotate
whether the implied relationship indeed holds in the Text. The dataset consists of
4,022 instances, where 56% of them are annotated as positive instances.

Multi-sentence AMR O’Gorman et al. (2018) annotate a multi-sentence AMR
(MS-AMR) corpus on top of exiting gold AMR annotations, extending them with
coreference relations and implicit semantic roles cross sentence boundaries. In
Example (7.2), annotators link coreferent variables (e.g., ARG0 of the predicate
“leave-11” and ARG1 of the predicate “arrive-01” both refer to the person “Bill”,
as marked in red), as well as fillers for implicit roles (e.g., ARG2 of “leave-11” is
also the implicit ARG4 of “arrive-01”, as marked in blue).

(7.2)

Bill left for Paris.
(l / leave-11

:ARG0 (p / person :wiki - :name (n / name :op1 “Bill”))
:ARG2 (c / city :wiki “Paris” :name (n / name :op1 “Paris”)))

He arrived at noon.
(a / arrive-01

:ARG1 (h / he)
:ARG3 (i / implicit role: start point)
:ARG4 (i2 / implicit role: end point; destination)
:TIME (d / date-entity :dayperiod (n3 / noon)))

117

O’Gorman et al. (2018) annotate 293 documents, covering roughly 10% of the
total AMR corpus. The dataset contains ~8,000 predicates, with ~2,400 implicit
roles identified. The MS-AMR annotation is included as part of the most recent
AMR public release1.

RAMS Ebner et al. (2020) construct a Roles Across Multiple Sentences dataset,
by applying the AIDA-1 ontology2 (Phase 1 of the DARPA AIDA project, devel-
oped for recent geopolitical events related to Russia and Ukraine) to annotate news
articles. The authors first collect a set of topically relevant news articles, and man-
ually map each event ((sub-)sub)type in the ontology to a list of high-precision
event triggers (lexical units likely to evoke the event, for example, arson is a trig-
ger for the Conflict.Attack.SetFire event). The Crowd workers are then asked to
label the closes argument span for each role of each matched event trigger in a 5-
sentence context window (two sentences before the sentence with the trigger and
two sentences after).

The dataset contains over 9,000 events and 21,000 arguments, covering all 139
event types and 65 role types in the AIDA-1 ontology. About 18% of the labeled
arguments are implicit arguments, occurring outside the sentence with the event
trigger. In the following example, the word “bombarding” in the second sentence
triggers an event of type Conflict.Attack.AirstrikeMissileAttack. The event is la-
beled with four arguments, two in the same sentence: “Russian” as the attacker,
“rebel post” as the target, and two in the previous sentence: “aircraft” as the in-

strument, “Syria” as the place.

(7.3)

When Russian aircraft bombed a remote garrison in southeastern
Syria last month, alarm bells sounded at the Pentagon and the Min-
istry of Defense in London.
The Russians weren’t bombarding a run-of-the-mill rebel outpost, ac-
cording to U.S. officials.

1LDC Catalog No. LDC2020T02
2https://tac.nist.gov/2019/SM-KBP/data.html

118

https://tac.nist.gov/2019/SM-KBP/data.html

7.1.2 New Methods for Integrating Semantic Knowledge

In Chapter 5, we find that integrating coreference knowledge into a relatively
small-scale model significantly improves performance on the LAMBADA task. In
Chapter 6, however, the same technique and two other alternatives of integrating
semantic knowledge do not help as much when applied on large-scale pre-trained
models. We analyze some possible reasons of the setback in Subsection 6.5.3, here
we discuss future directions for new methods to address them.

Stronger Supervision from Auxiliary Tasks The edge probing approach applies
semantic knowledge as a simple pair-wise classification problem. For SRL, it pre-
dicts the semantic role label between a predicate and an argument. For coreference,
it predicts whether two mentions are coreferent or not. This setting, however, does
not fully exploit the complexity of SRL and coreference structures, by assuming
that the gold spans and the predicate-argument alignments are all known as in-
put. As a result, the auxiliary loss value drops quickly during training, indicating
that the model might not be actually learning semantic knowledge from it.

One possible fix is for the model to do full-scale structural predictions of SRL
and coreference via multi-task learning. For example, taking the hidden states
from one transformer layer, the model needs to first identify all predicates and
then perform argument identification and classification for each predicate as a se-
quence labeling task, similar to the framework in recent end-to-end SRL systems
(He et al., 2018, Shi and Lin, 2019). Or in the context of coreference knowledge,
instead of doing binary prediction of positive / negative mention pairs, the model
first computes all span representations and then jointly predicts the antecedent
of every mention, also similar to recent coreference resolution models (Lee et al.,
2017; 2018). In principle, these structural prediction tasks are much harder than the
edge probing tasks we have already experimented, and would hopefully provide
stronger supervision signals for the model to better learn semantic knowledge.

Explicitly Modeling Events and Entities So far, our efforts in integrating se-
mantic knowledge have been on applying it through multi-task learning, with-
out changing the underlying model architecture. This implicit way of integration
could be less ideal, in that large-scale pre-trained LMs might have excessive ex-

119

pressing power to learn different tasks independently without effectively posing
inductive biases on the end task. Therefore, we want to see if it is possible to
integrate semantic knowledge in a more explicit manner. As a quick reminder,
SRL models the predicate-argument relations in events, and coreference resolu-
tion models coreferent mentions of entities. We can thus try to first dynamically
compute representations of events and entities in the text using the knowledge of
SRL and coreference as an intermediate , and then integrate these event and entity
representations back to the model to update token-level representation.

layer `

<latexit sha1_base64="ThvVihaFvVAJA9NMZsvg8RO6mGY=">AAACAHicbVDLSgNBEOyNrxhfUY9eFoPgKexKQL0FvHiMYB6QLGF20psMmZ1ZZmaFEHLxA7zqJ3gTr/6JX+BvOJvswSQWNBRV3XR3hQln2njet1PY2Nza3inulvb2Dw6PyscnLS1TRbFJJZeqExKNnAlsGmY4dhKFJA45tsPxXea3n1BpJsWjmSQYxGQoWMQoMZnUQ8775YpX9eZw14mfkwrkaPTLP72BpGmMwlBOtO76XmKCKVGGUY6zUi/VmBA6JkPsWipIjDqYzm+duRdWGbiRVLaEcefq34kpibWexKHtjIkZ6VUvE//zuqmJboIpE0lqUNDFoijlrpFu9rg7YAqp4RNLCFXM3urSEVGEGhvP0paEcJuOkDObjL+awzppXVX9WvX2oVape3lGRTiDc7gEH66hDvfQgCZQGMELvMKb8+y8Ox/O56K14OQzp7AE5+sXKsaXeA==</latexit>

span
extractor

SRL structures

(pred1, [(arg11, role11), (arg12, role12), …])

(pred2, [(arg21, role21), (arg22, role22), …])

…

Coref structures

[mention11, mention12, mention13, …]

[mention21, mention22, mention23, …]

…

layer ` + 1

<latexit sha1_base64="HVDRp/IGBdzlBuf8troYw3z171U=">AAACAnicbVDLSgNBEOyNrxhfUY9eBoMgCGFXAuot4MVjBPOAZAmzk04yZnZ2mZkVwpKbH+BVP8GbePVH/AJ/w0myB5NY0FBUddPdFcSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfywYxj9EM6kLzPGTVWanRQiAuvWyy5ZXcGskq8jJQgQ61b/On0IpaEKA0TVOu258bGT6kynAmcFDqJxpiyER1g21JJQ9R+Ort2Qs6s0iP9SNmShszUvxMpDbUeh4HtDKkZ6mVvKv7ntRPTv/ZTLuPEoGTzRf1EEBOR6eukxxUyI8aWUKa4vZWwIVWUGRvQwpaYCpuPjCY2GW85h1XSuCx7lfLNfaVUdbOM8nACp3AOHlxBFe6gBnVg8Agv8ApvzrPz7nw4n/PWnJPNHMMCnK9fCy6X6A==</latexit>

…H(`)

<latexit sha1_base64="7FLBMsjdwayAzEMS0/tpLrJ4ahw=">AAACEXicbVDLSsNAFJ3UV62vaJduBotQNyWRgroruOmygm2FppbJdNIOncyEmYkQQr7CD3Crn+BO3PoFfoG/4aTNwrYeuHA4517u4fgRo0o7zrdV2tjc2t4p71b29g8Oj+zjk54SscSkiwUT8sFHijDKSVdTzchDJAkKfUb6/uw29/tPRCoq+L1OIjIM0YTTgGKkjTSyq16I9NQP0nb2mNY9wthFNrJrTsOZA64TtyA1UKAzsn+8scBxSLjGDCk1cJ1ID1MkNcWMZBUvViRCeIYmZGAoRyFRw3QePoPnRhnDQEgzXMO5+vciRaFSSeibzTyqWvVy8T9vEOvgephSHsWacLx4FMQMagHzJuCYSoI1SwxBWFKTFeIpkghr09fSlwgxUxcXeTPuag/rpHfZcJuNm7tmreUUHZXBKTgDdeCCK9ACbdABXYBBAl7AK3iznq1368P6XKyWrOKmCpZgff0CMT+d9A==</latexit>

Event Embeddings

v
(`)
1

<latexit sha1_base64="XoOL9j0GzkW3LDvLjEEx/7uMBrU=">AAACE3icbVDLSsNAFJ34rPUVFVduBotQNyWRgroruHFZwT6giWEynbRDJzNhZlIoIZ/hB7jVT3Anbv0Av8DfcNpmYVsPXDiccy/3cMKEUaUd59taW9/Y3Nou7ZR39/YPDu2j47YSqcSkhQUTshsiRRjlpKWpZqSbSILikJFOOLqb+p0xkYoK/qgnCfFjNOA0ohhpIwX2qRcjPQyjbJw/ZVWPMHaZB25gV5yaMwNcJW5BKqBAM7B/vL7AaUy4xgwp1XOdRPsZkppiRvKylyqSIDxCA9IzlKOYKD+bxc/hhVH6MBLSDNdwpv69yFCs1CQOzeY0rFr2puJ/Xi/V0Y2fUZ6kmnA8fxSlDGoBp13APpUEazYxBGFJTVaIh0girE1jC18SxExhXOSmGXe5h1XSvqq59drtQ73ScIqOSuAMnIMqcME1aIB70AQtgEEGXsAreLOerXfrw/qcr65Zxc0JWID19Qu8eZ7G</latexit>

v
(`)
2

<latexit sha1_base64="G0DQl3Kax3vhEpIsnfc3nzBy1Pg=">AAACE3icbVDLSsNAFJ3UV62vqLhyEyxC3ZSkFNRdwY3LCvYBTQyT6aQdOpkJM5NCCfkMP8CtfoI7cesH+AX+hpM2C9t64MLhnHu5hxPElEhl299GaWNza3unvFvZ2z84PDKPT7qSJwLhDuKUi34AJaaE4Y4iiuJ+LDCMAop7weQu93tTLCTh7FHNYuxFcMRISBBUWvLNMzeCahyE6TR7SmsupvQq8xu+WbXr9hzWOnEKUgUF2r754w45SiLMFKJQyoFjx8pLoVAEUZxV3ETiGKIJHOGBpgxGWHrpPH5mXWplaIVc6GHKmqt/L1IYSTmLAr2Zh5WrXi7+5w0SFd54KWFxojBDi0dhQi3FrbwLa0gERorONIFIEJ3VQmMoIFK6saUvMaS6MMYz3Yyz2sM66TbqTrN++9CstuyiozI4BxegBhxwDVrgHrRBByCQghfwCt6MZ+Pd+DA+F6slo7g5BUswvn4BvhKexw==</latexit>

pred1

arg11

role11

…
…

Entity Embeddings

m11

m12

m13

e
(`)
1

<latexit sha1_base64="Xfnm29if6c5cxY5a4eogswYg/rI=">AAACE3icbVDLSsNAFJ3UV62vqLhyEyxC3ZRECuqu4MZlBfuAJpbJ9KYdOpmEmYlQQj7DD3Crn+BO3PoBfoG/4aTNwrYeuHA4517u4fgxo1LZ9rdRWlvf2Nwqb1d2dvf2D8zDo46MEkGgTSIWiZ6PJTDKoa2oYtCLBeDQZ9D1J7e5330CIWnEH9Q0Bi/EI04DSrDS0sA8cUOsxn6QQvaY1lxg7CIbOAOzatftGaxV4hSkigq0BuaPO4xIEgJXhGEp+44dKy/FQlHCIKu4iYQYkwkeQV9TjkOQXjqLn1nnWhlaQST0cGXN1L8XKQ6lnIa+3szDymUvF//z+okKrr2U8jhRwMn8UZAwS0VW3oU1pAKIYlNNMBFUZ7XIGAtMlG5s4UuMmS6MR5luxlnuYZV0LutOo35z36g27aKjMjpFZ6iGHHSFmugOtVAbEZSiF/SK3oxn4934MD7nqyWjuDlGCzC+fgGghJ61</latexit>

e
(`)
2

<latexit sha1_base64="+4jcCC1ewT9txGEcPy3raFlCfZQ=">AAACE3icbVDLSsNAFJ34rPUVFVdugkWom5KUgroruHFZwT6giWEyvWmHTiZhZiKUkM/wA9zqJ7gTt36AX+BvOG2zsK0HLhzOuZd7OEHCqFS2/W2srW9sbm2Xdsq7e/sHh+bRcUfGqSDQJjGLRS/AEhjl0FZUMeglAnAUMOgG49up330CIWnMH9QkAS/CQ05DSrDSkm+euhFWoyDMIH/Mqi4wdpn7dd+s2DV7BmuVOAWpoAIt3/xxBzFJI+CKMCxl37ET5WVYKEoY5GU3lZBgMsZD6GvKcQTSy2bxc+tCKwMrjIUerqyZ+vciw5GUkyjQm9Owctmbiv95/VSF115GeZIq4GT+KEyZpWJr2oU1oAKIYhNNMBFUZ7XICAtMlG5s4UuCmS6Mx7luxlnuYZV06jWnUbu5b1SadtFRCZ2hc1RFDrpCTXSHWqiNCMrQC3pFb8az8W58GJ/z1TWjuDlBCzC+fgGiHZ62</latexit>

…
…

…Ĥ(`)

<latexit sha1_base64="nu4D6KArbwswlIRpTGN+MZwjKVA=">AAACF3icbZDLSgMxFIYz9VbrbdSVuAkWoW7KjBTUXcFNlxXsBTq1ZNJMG5pJhiQjlGHwOXwAt/oI7sStS5/A1zDTzsK2/hD4+c85nJPPjxhV2nG+rcLa+sbmVnG7tLO7t39gHx61lYglJi0smJBdHynCKCctTTUj3UgSFPqMdPzJbVbvPBKpqOD3ehqRfohGnAYUI22igX3ihUiP/SDxxkgnjTR9SCoeYewiHdhlp+rMBFeNm5syyNUc2D/eUOA4JFxjhpTquU6k+wmSmmJG0pIXKxIhPEEj0jOWo5CofjL7QgrPTTKEgZDmcQ1n6d+JBIVKTUPfdGYHq+VaFv5X68U6uO4nlEexJhzPFwUxg1rAjAccUkmwZlNjEJbU3ArxGEmEtaG2sCVCzEDjIiPjLnNYNe3Lqlur3tzVynUnZ1QEp+AMVIALrkAdNEATtAAGT+AFvII369l6tz6sz3lrwcpnjsGCrK9fYGegwQ==</latexit>

multi-head attention
on event/entity

embeddings

Figure 7.1: A diagram of the proposed method to explicitly model events and en-
tities using semantic knowledge.

To illustrate, given some annotations of SRL and coreference, from the hidden
states H(`) after layer `, we construct a list of event embeddings {v(`)

1 , . . . ,v
(`)
M } by

aggregating predicate span representations and argument span representations,
and a list of entity embeddings {e(`)1 , . . . , e

(`)
N } by aggregating the mention span

representations in each coreference chain. Then we apply a multi-head attention
layer between H(`) and the event / entity embeddings to get enhanced token-level

120

representations Ĥ(`), which are fed into the next layer ` + 1 as input. Figure 7.1
provides a graphical illustration.

The downside of the approach is that we would also need SRL and coreference
information at test time. This might be addressed by combining this approach
with the previous future direction we just discussed, i.e., at training time, we can
also take the hidden states of another transformer layer j (j < `) to do a multi-task
learning on the structural prediction of SRL and coreference. Then at test time, we
can derive events and entities from the predicted SRL and coreference labels.

The idea is inspired by several lines of previous work. The most relevant recent
work is KnowBERT (Peters et al., 2019a), in which a KAR (Knowledge Attention
and Recontextualization) mechanism in proposed to integrate background knowl-
edge of world entities from external KBs into the pre-training of BERT. This is
also related to the work by Ji et al. (2017) on enhancing a neural language model
by explicitly modeling entities. The proposed ENTITYNLM model keeps track of
whether each word is part of an entity mention and which entity it refers to via a
set of latent variable, and dynamically updates entity representations which will
be used to predict the next word during the generation process. Also, the idea
can be linked to the previous line of work on memory networks (Weston et al.,
2015, Sukhbaatar et al., 2015), as it can be viewed as storing the information about
entities and events in a set of memory slots.

121

Bibliography

Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and Yoshua Bengio. A neural knowl-
edge language model. arXiv preprint arXiv:1608.00318, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Amit Bagga and Breck Baldwin. Algorithms for scoring coreference chains. In
Proc. Linguistic Coreference Workshop at the first Conf. on Language Resources and
Evaluation (LREC), Granada, Spain, May 1998, volume 1, pages 563–566, 1998.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In International Conference on
Learning Representations, 2015. URL https://arxiv.org/abs/1409.0473.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet
project. In 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 1, pages 86–90,
Montreal, Quebec, Canada, August 1998. Association for Computational Lin-
guistics. doi:10.3115/980845.980860. URL https://www.aclweb.org/anthology/

P98-1013.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schnei-
der. Abstract Meaning Representation for sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse, pages 178–186,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W13-2322.

Srinivas Bangalore and Aravind K. Joshi. Supertagging: An approach to almost
parsing. Computational Linguistics, 25(2):237–265, 1999. URL https://www.

aclweb.org/anthology/J99-2004.

Lisa Bauer, Yicheng Wang, and Mohit Bansal. Commonsense for generative
multi-hop question answering tasks. In Proceedings of the 2018 Conference

122

https://arxiv.org/abs/1409.0473
https://doi.org/10.3115/980845.980860
https://www.aclweb.org/anthology/P98-1013
https://www.aclweb.org/anthology/P98-1013
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/J99-2004
https://www.aclweb.org/anthology/J99-2004

on Empirical Methods in Natural Language Processing, pages 4220–4230, Brus-
sels, Belgium, October-November 2018. Association for Computational Linguis-
tics. doi:10.18653/v1/D18-1454. URL https://www.aclweb.org/anthology/D18-

1454.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The sixth
PASCAL recognizing textual entailment challenge. In Proceedings of the Third
Text Analysis Conference, TAC 2010, Gaithersburg, Maryland, USA, November 15-
16, 2010. NIST, 2010. URL https://tac.nist.gov/publications/2010/additional.

papers/RTE6_overview.proceedings.pdf.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 632–642, Lisbon, Portugal, September 2015. Association for Com-
putational Linguistics. doi:10.18653/v1/D15-1075. URL https://www.aclweb.

org/anthology/D15-1075.

Rui Cai and Mirella Lapata. Syntax-aware semantic role labeling without parsing.
Transactions of the Association for Computational Linguistics, 7:343–356, March 2019.
doi:10.1162/tacl_a_00272. URL https://www.aclweb.org/anthology/Q19-1022.

Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature
structures. In Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 748–752, Sofia, Bulgaria, August
2013. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/P13-2131.

Xavier Carreras and Lluís Màrquez. Introduction to the CoNLL-2005 shared
task: Semantic role labeling. In Proceedings of the Ninth Conference on Com-
putational Natural Language Learning (CoNLL-2005), pages 152–164, Ann Arbor,
Michigan, June 2005. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/W05-0620.

123

https://doi.org/10.18653/v1/D18-1454
https://www.aclweb.org/anthology/D18-1454
https://www.aclweb.org/anthology/D18-1454
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://tac.nist.gov/publications/2010/additional.papers/RTE6_overview.proceedings.pdf
https://doi.org/10.18653/v1/D15-1075
https://www.aclweb.org/anthology/D15-1075
https://www.aclweb.org/anthology/D15-1075
https://doi.org/10.1162/tacl_a_00272
https://www.aclweb.org/anthology/Q19-1022
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/W05-0620
https://www.aclweb.org/anthology/W05-0620

Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative event
chains. In Proceedings of ACL-08: HLT, pages 789–797, Columbus, Ohio, June
2008. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/P08-1090.

Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative
schemas and their participants. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 602–610, Suntec, Singapore, August
2009. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/P09-1068.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. One billion word benchmark for measuring
progress in statistical language modeling. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

Danqi Chen and Christopher Manning. A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 740–750, Doha, Qatar, Octo-
ber 2014. Association for Computational Linguistics. doi:10.3115/v1/D14-1082.
URL https://www.aclweb.org/anthology/D14-1082.

Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough exami-
nation of the CNN/Daily Mail reading comprehension task. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2358–2367, Berlin, Germany, August 2016. Associ-
ation for Computational Linguistics. doi:10.18653/v1/P16-1223. URL https:

//www.aclweb.org/anthology/P16-1223.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. Neural
natural language inference models enhanced with external knowledge. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 2406–2417, Melbourne, Australia, July 2018.
Association for Computational Linguistics. doi:10.18653/v1/P18-1224. URL
https://www.aclweb.org/anthology/P18-1224.

124

https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P09-1068
https://www.aclweb.org/anthology/P09-1068
https://doi.org/10.3115/v1/D14-1082
https://www.aclweb.org/anthology/D14-1082
https://doi.org/10.18653/v1/P16-1223
https://www.aclweb.org/anthology/P16-1223
https://www.aclweb.org/anthology/P16-1223
https://doi.org/10.18653/v1/P18-1224
https://www.aclweb.org/anthology/P18-1224

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 551–561, Austin, Texas, November 2016.
Association for Computational Linguistics. doi:10.18653/v1/D16-1053. URL
https://www.aclweb.org/anthology/D16-1053.

Pengxiang Cheng and Katrin Erk. Implicit argument prediction with event knowl-
edge. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 831–840, New Orleans, Louisiana, June 2018. Associa-
tion for Computational Linguistics. doi:10.18653/v1/N18-1076. URL https:

//www.aclweb.org/anthology/N18-1076.

Pengxiang Cheng and Katrin Erk. Implicit argument prediction as reading com-
prehension. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6284–6291, 2019.

Pengxiang Cheng and Katrin Erk. Attending to entities for better text understand-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
2020.

Christian Chiarcos and Niko Schenk. Memory-based acquisition of argument
structures and its application to implicit role detection. In Proceedings of the
16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages
178–187, Prague, Czech Republic, September 2015. Association for Computa-
tional Linguistics. doi:10.18653/v1/W15-4626. URL https://www.aclweb.org/

anthology/W15-4626.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase represen-
tations using RNN encoder–decoder for statistical machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for Compu-
tational Linguistics. doi:10.3115/v1/D14-1179. URL https://www.aclweb.org/

anthology/D14-1179.

125

https://doi.org/10.18653/v1/D16-1053
https://www.aclweb.org/anthology/D16-1053
https://doi.org/10.18653/v1/N18-1076
https://www.aclweb.org/anthology/N18-1076
https://www.aclweb.org/anthology/N18-1076
https://doi.org/10.18653/v1/W15-4626
https://www.aclweb.org/anthology/W15-4626
https://www.aclweb.org/anthology/W15-4626
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179

Sumit Chopra, Michael Auli, and Alexander M. Rush. Abstractive sentence sum-
marization with attentive recurrent neural networks. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 93–98, San Diego, California, June
2016. Association for Computational Linguistics. doi:10.18653/v1/N16-1012.
URL https://www.aclweb.org/anthology/N16-1012.

Zewei Chu, Hai Wang, Kevin Gimpel, and David McAllester. Broad context lan-
guage modeling as reading comprehension. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers, pages 52–57, Valencia, Spain, April 2017. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/E17-2009.

Christopher Clark and Matt Gardner. Simple and effective multi-paragraph
reading comprehension. In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 845–855,
Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi:10.18653/v1/P18-1078. URL https://www.aclweb.org/anthology/P18-1078.

Kevin Clark and Christopher D. Manning. Entity-centric coreference resolution
with model stacking. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1405–1415, Beijing, China,
July 2015. Association for Computational Linguistics. doi:10.3115/v1/P15-1136.
URL https://www.aclweb.org/anthology/P15-1136.

Kevin Clark and Christopher D. Manning. Improving coreference resolution by
learning entity-level distributed representations. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 643–653, Berlin, Germany, August 2016. Association for Computa-
tional Linguistics. doi:10.18653/v1/P16-1061. URL https://www.aclweb.org/

anthology/P16-1061.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising tex-
tual entailment challenge. In Machine Learning Challenges Workshop, pages 177–
190. Springer, 2005.

126

https://doi.org/10.18653/v1/N16-1012
https://www.aclweb.org/anthology/N16-1012
https://www.aclweb.org/anthology/E17-2009
https://doi.org/10.18653/v1/P18-1078
https://www.aclweb.org/anthology/P18-1078
https://doi.org/10.3115/v1/P15-1136
https://www.aclweb.org/anthology/P15-1136
https://doi.org/10.18653/v1/P16-1061
https://www.aclweb.org/anthology/P16-1061
https://www.aclweb.org/anthology/P16-1061

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances
in neural information processing systems, pages 3079–3087, 2015.

Zeyu Dai and Ruihong Huang. A regularization approach for incorporating
event knowledge and coreference relations into neural discourse parsing. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2976–2987, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi:10.18653/v1/D19-1295. URL
https://www.aclweb.org/anthology/D19-1295.

Pradeep Dasigi, Nelson F. Liu, Ana Marasović, Noah A. Smith, and Matt Gardner.
Quoref: A reading comprehension dataset with questions requiring coreferential
reasoning. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5925–5932, Hong Kong, China, November
2019. Association for Computational Linguistics. doi:10.18653/v1/D19-1606.
URL https://www.aclweb.org/anthology/D19-1606.

Donald Davidson. The logical form of action sentences. The logic of decision and
action, pages 81–95, 1967.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers. In International Conference on Learning Represen-
tations, 2019. URL https://arxiv.org/abs/1807.03819.

Pascal Denis and Jason Baldridge. Specialized models and ranking for coreference
resolution. In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, pages 660–669, Honolulu, Hawaii, October 2008. Associa-
tion for Computational Linguistics. URL https://www.aclweb.org/anthology/

D08-1069.

Pascal Denis and Jason Baldridge. Global joint models for coreference resolution
and named entity classification. Procesamiento del Lenguaje Natural, 42, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In

127

https://doi.org/10.18653/v1/D19-1295
https://www.aclweb.org/anthology/D19-1295
https://doi.org/10.18653/v1/D19-1606
https://www.aclweb.org/anthology/D19-1606
https://arxiv.org/abs/1807.03819
https://www.aclweb.org/anthology/D08-1069
https://www.aclweb.org/anthology/D08-1069

Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Asso-
ciation for Computational Linguistics. doi:10.18653/v1/N19-1423. URL https:

//www.aclweb.org/anthology/N19-1423.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William Cohen, and Ruslan Salakhut-
dinov. Gated-attention readers for text comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1832–1846, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi:10.18653/v1/P17-1168. URL https://www.aclweb.

org/anthology/P17-1168.

Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Cohen, and Ruslan Salakhutdi-
nov. Neural models for reasoning over multiple mentions using coreference.
In Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 42–48, New Orleans, Louisiana, June 2018. Association for Com-
putational Linguistics. doi:10.18653/v1/N18-2007. URL https://www.aclweb.

org/anthology/N18-2007.

Quynh Ngoc Thi Do, Steven Bethard, and Marie-Francine Moens. Improving im-
plicit semantic role labeling by predicting semantic frame arguments. In Proceed-
ings of the Eighth International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 90–99, Taipei, Taiwan, November 2017. Asian Federa-
tion of Natural Language Processing. URL https://www.aclweb.org/anthology/

I17-1010.

David Dowty. Thematic proto-roles and argument selection. Language, 67(3):547–
619, 1991.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh,
and Matt Gardner. DROP: A reading comprehension benchmark requiring
discrete reasoning over paragraphs. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 2368–2378,

128

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/P17-1168
https://www.aclweb.org/anthology/P17-1168
https://www.aclweb.org/anthology/P17-1168
https://doi.org/10.18653/v1/N18-2007
https://www.aclweb.org/anthology/N18-2007
https://www.aclweb.org/anthology/N18-2007
https://www.aclweb.org/anthology/I17-1010
https://www.aclweb.org/anthology/I17-1010

Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics. doi:10.18653/v1/N19-1246. URL https://www.aclweb.org/anthology/N19-

1246.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(Jul):2121–2159, 2011.

Jesse Dunietz and Daniel Gillick. A new entity salience task with millions of train-
ing examples. In Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, volume 2: Short Papers, pages 205–209,
Gothenburg, Sweden, April 2014. Association for Computational Linguistics.
doi:10.3115/v1/E14-4040. URL https://www.aclweb.org/anthology/E14-4040.

Greg Durrett and Dan Klein. Easy victories and uphill battles in coreference resolu-
tion. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1971–1982, Seattle, Washington, USA, October 2013. Associa-
tion for Computational Linguistics. URL https://www.aclweb.org/anthology/

D13-1203.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins, and Benjamin Van Durme.
Multi-sentence argument linking. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020. URL https://arxiv.org/abs/1911.

03766.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S Weld. Open in-
formation extraction from the web. Communications of the ACM, 51(12):68–74,
2008.

Parvin Sadat Feizabadi and Sebastian Padó. Combining seemingly incompatible
corpora for implicit semantic role labeling. In Proceedings of the Fourth Joint Con-
ference on Lexical and Computational Semantics, pages 40–50, Denver, Colorado,
June 2015. Association for Computational Linguistics. doi:10.18653/v1/S15-
1005. URL https://www.aclweb.org/anthology/S15-1005.

129

https://doi.org/10.18653/v1/N19-1246
https://www.aclweb.org/anthology/N19-1246
https://www.aclweb.org/anthology/N19-1246
https://doi.org/10.3115/v1/E14-4040
https://www.aclweb.org/anthology/E14-4040
https://www.aclweb.org/anthology/D13-1203
https://www.aclweb.org/anthology/D13-1203
https://arxiv.org/abs/1911.03766
https://arxiv.org/abs/1911.03766
https://doi.org/10.18653/v1/S15-1005
https://doi.org/10.18653/v1/S15-1005
https://www.aclweb.org/anthology/S15-1005

Charles Fillmore. The case for case. Universals in Linguistic Theory, 1968.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,
1957.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen.
MRQA 2019 shared task: Evaluating generalization in reading comprehension.
In Proceedings of the 2nd Workshop on Machine Reading for Question Answering,
pages 1–13, Hong Kong, China, November 2019. Association for Computa-
tional Linguistics. doi:10.18653/v1/D19-5801. URL https://www.aclweb.org/

anthology/D19-5801.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith.
A discriminative graph-based parser for the Abstract Meaning Representa-
tion. In Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1426–1436, Baltimore, Maryland,
June 2014. Association for Computational Linguistics. doi:10.3115/v1/P14-1134.
URL https://www.aclweb.org/anthology/P14-1134.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nel-
son F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. AllenNLP:
A deep semantic natural language processing platform. In Proceedings of Work-
shop for NLP Open Source Software (NLP-OSS), pages 1–6, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi:10.18653/v1/W18-
2501. URL https://www.aclweb.org/anthology/W18-2501.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao
Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al.
Evaluating NLP models via contrast sets. arXiv preprint arXiv:2004.02709, 2020.

Matthew Gerber and Joyce Chai. Beyond NomBank: A study of implicit argu-
ments for nominal predicates. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 1583–1592, Uppsala, Sweden, July
2010. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/P10-1160.

130

https://doi.org/10.18653/v1/D19-5801
https://www.aclweb.org/anthology/D19-5801
https://www.aclweb.org/anthology/D19-5801
https://doi.org/10.3115/v1/P14-1134
https://www.aclweb.org/anthology/P14-1134
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://www.aclweb.org/anthology/W18-2501
https://www.aclweb.org/anthology/P10-1160
https://www.aclweb.org/anthology/P10-1160

Matthew Gerber and Joyce Y. Chai. Semantic role labeling of implicit ar-
guments for nominal predicates. Computational Linguistics, 38(4):755–798,
2012. doi:10.1162/COLI_a_00110. URL https://www.aclweb.org/anthology/

J12-4003.

Mor Geva, Yoav Goldberg, and Jonathan Berant. Are we modeling the task or the
annotator? an investigation of annotator bias in natural language understanding
datasets. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1161–1166, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi:10.18653/v1/D19-1107. URL
https://www.aclweb.org/anthology/D19-1107.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. In
Proceedings of the 38th Annual Meeting of the Association for Computational Lin-
guistics, pages 512–520, Hong Kong, October 2000. Association for Computa-
tional Linguistics. doi:10.3115/1075218.1075283. URL https://www.aclweb.org/

anthology/P00-1065.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. Compu-
tational Linguistics, 28(3):245–288, 2002. doi:10.1162/089120102760275983. URL
https://www.aclweb.org/anthology/J02-3001.

Philip Gorinski, Josef Ruppenhofer, and Caroline Sporleder. Towards weakly su-
pervised resolution of null instantiations. In Proceedings of the 10th International
Conference on Computational Semantics (IWCS 2013) – Long Papers, pages 119–
130, Potsdam, Germany, March 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/W13-0111.

Mark Granroth-Wilding and Stephen Clark. What happens next? event prediction
using a compositional neural network model. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel
Bowman, and Noah A. Smith. Annotation artifacts in natural language inference
data. In Proceedings of the 2018 Conference of the North American Chapter of the

131

https://doi.org/10.1162/COLI_a_00110
https://www.aclweb.org/anthology/J12-4003
https://www.aclweb.org/anthology/J12-4003
https://doi.org/10.18653/v1/D19-1107
https://www.aclweb.org/anthology/D19-1107
https://doi.org/10.3115/1075218.1075283
https://www.aclweb.org/anthology/P00-1065
https://www.aclweb.org/anthology/P00-1065
https://doi.org/10.1162/089120102760275983
https://www.aclweb.org/anthology/J02-3001
https://www.aclweb.org/anthology/W13-0111

Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), pages 107–112, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi:10.18653/v1/N18-2017. URL https://www.

aclweb.org/anthology/N18-2017.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,
Maria Antònia Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebas-
tian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and
Yi Zhang. The CoNLL-2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL 2009): Shared Task, pages 1–18,
Boulder, Colorado, June 2009. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W09-1201.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Deep semantic role
labeling: What works and what’s next. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 473–
483, Vancouver, Canada, July 2017. Association for Computational Linguistics.
doi:10.18653/v1/P17-1044. URL https://www.aclweb.org/anthology/P17-1044.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettlemoyer. Jointly predict-
ing predicates and arguments in neural semantic role labeling. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 364–369, Melbourne, Australia, July 2018. Associ-
ation for Computational Linguistics. doi:10.18653/v1/P18-2058. URL https:

//www.aclweb.org/anthology/P18-2058.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and com-
prehend. In Advances in neural information processing systems, pages 1693–1701,
2015.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The Goldilocks Prin-
ciple: Reading children’s books with explicit memory representations. In Inter-
national Conference on Learning Representations, 2016. URL http://arxiv.org/abs/

1511.02301.

132

https://doi.org/10.18653/v1/N18-2017
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/W09-1201
https://doi.org/10.18653/v1/P17-1044
https://www.aclweb.org/anthology/P17-1044
https://doi.org/10.18653/v1/P18-2058
https://www.aclweb.org/anthology/P18-2058
https://www.aclweb.org/anthology/P18-2058
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301

Luong Hoang, Sam Wiseman, and Alexander Rush. Entity tracking improves
cloze-style reading comprehension. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 1049–1055, Brussels,
Belgium, October-November 2018. Association for Computational Linguis-
tics. doi:10.18653/v1/D18-1130. URL https://www.aclweb.org/anthology/D18-

1130.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel. OntoNotes: The 90% solution. In Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers, pages 57–
60, New York City, USA, June 2006. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/N06-2015.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT learn about
the structure of language? In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 3651–3657, Florence, Italy, July 2019.
Association for Computational Linguistics. doi:10.18653/v1/P19-1356. URL
https://www.aclweb.org/anthology/P19-1356.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, and Noah A. Smith.
Dynamic entity representations in neural language models. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pages
1830–1839, Copenhagen, Denmark, September 2017. Association for Computa-
tional Linguistics. doi:10.18653/v1/D17-1195. URL https://www.aclweb.org/

anthology/D17-1195.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In
Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 12–22, Berlin, Germany, August 2016.
Association for Computational Linguistics. doi:10.18653/v1/P16-1002. URL
https://www.aclweb.org/anthology/P16-1002.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading compre-
hension systems. In Proceedings of the 2017 Conference on Empirical Methods in Nat-

133

https://doi.org/10.18653/v1/D18-1130
https://www.aclweb.org/anthology/D18-1130
https://www.aclweb.org/anthology/D18-1130
https://www.aclweb.org/anthology/N06-2015
https://doi.org/10.18653/v1/P19-1356
https://www.aclweb.org/anthology/P19-1356
https://doi.org/10.18653/v1/D17-1195
https://www.aclweb.org/anthology/D17-1195
https://www.aclweb.org/anthology/D17-1195
https://doi.org/10.18653/v1/P16-1002
https://www.aclweb.org/anthology/P16-1002

ural Language Processing, pages 2021–2031, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi:10.18653/v1/D17-1215.
URL https://www.aclweb.org/anthology/D17-1215.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large
scale distantly supervised challenge dataset for reading comprehension. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1601–1611, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi:10.18653/v1/P17-1147. URL
https://www.aclweb.org/anthology/P17-1147.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and Daniel Weld. BERT for coref-
erence resolution: Baselines and analysis. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5803–5808,
Hong Kong, China, November 2019. Association for Computational Linguis-
tics. doi:10.18653/v1/D19-1588. URL https://www.aclweb.org/anthology/D19-

1588.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and
Omer Levy. SpanBERT: Improving pre-training by representing and predicting
spans. Transactions of the Association for Computational Linguistics, 8:64–77, 2020.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text under-
standing with the attention sum reader network. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 908–918, Berlin, Germany, August 2016. Association for Computa-
tional Linguistics. doi:10.18653/v1/P16-1086. URL https://www.aclweb.org/

anthology/P16-1086.

Jungo Kasai, Dan Friedman, Robert Frank, Dragomir Radev, and Owen Rambow.
Syntax-aware neural semantic role labeling with supertags. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 701–709, Minneapolis, Minnesota, June 2019. Association for Computa-

134

https://doi.org/10.18653/v1/D17-1215
https://www.aclweb.org/anthology/D17-1215
https://doi.org/10.18653/v1/P17-1147
https://www.aclweb.org/anthology/P17-1147
https://doi.org/10.18653/v1/D19-1588
https://www.aclweb.org/anthology/D19-1588
https://www.aclweb.org/anthology/D19-1588
https://doi.org/10.18653/v1/P16-1086
https://www.aclweb.org/anthology/P16-1086
https://www.aclweb.org/anthology/P16-1086

tional Linguistics. doi:10.18653/v1/N19-1075. URL https://www.aclweb.org/

anthology/N19-1075.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association for Compu-
tational Linguistics. doi:10.3115/v1/D14-1181. URL https://www.aclweb.org/

anthology/D14-1181.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015. URL https://arxiv.

org/abs/1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In International Conference on Learning Representations, 2017.
URL https://arxiv.org/abs/1609.02907.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Her-
mann, Gábor Melis, and Edward Grefenstette. The NarrativeQA reading com-
prehension challenge. Transactions of the Association for Computational Linguis-
tics, 6:317–328, 2018. doi:10.1162/tacl_a_00023. URL https://www.aclweb.org/

anthology/Q18-1023.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE:
Large-scale ReAding comprehension dataset from examinations. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 785–794, Copenhagen, Denmark, September 2017. Association for Com-
putational Linguistics. doi:10.18653/v1/D17-1082. URL https://www.aclweb.

org/anthology/D17-1082.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity
recognition. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 260–270, San Diego, California, June 2016. Associ-
ation for Computational Linguistics. doi:10.18653/v1/N16-1030. URL
https://www.aclweb.org/anthology/N16-1030.

135

https://doi.org/10.18653/v1/N19-1075
https://www.aclweb.org/anthology/N19-1075
https://www.aclweb.org/anthology/N19-1075
https://doi.org/10.3115/v1/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://doi.org/10.1162/tacl_a_00023
https://www.aclweb.org/anthology/Q18-1023
https://www.aclweb.org/anthology/Q18-1023
https://doi.org/10.18653/v1/D17-1082
https://www.aclweb.org/anthology/D17-1082
https://www.aclweb.org/anthology/D17-1082
https://doi.org/10.18653/v1/N16-1030
https://www.aclweb.org/anthology/N16-1030

Egoitz Laparra and German Rigau. ImpAr: A deterministic algorithm for im-
plicit semantic role labelling. In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 1180–1189,
Sofia, Bulgaria, August 2013a. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P13-1116.

Egoitz Laparra and German Rigau. Sources of evidence for implicit argument
resolution. In Proceedings of the 10th International Conference on Computational Se-
mantics (IWCS 2013) – Long Papers, pages 155–166, Potsdam, Germany, March
2013b. Association for Computational Linguistics. URL https://www.aclweb.

org/anthology/W13-0114.

Anne Lauscher, Ivan Vulić, Edoardo Maria Ponti, Anna Korhonen, and Goran
Glavaš. Specializing unsupervised pretraining models for word-level semantic
similarity. arXiv preprint arXiv:1909.02339, 2019.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Sur-
deanu, and Dan Jurafsky. Deterministic coreference resolution based on
entity-centric, precision-ranked rules. Computational Linguistics, 39(4):885–916,
2013. doi:10.1162/COLI_a_00152. URL https://www.aclweb.org/anthology/

J13-4004.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural
coreference resolution. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 188–197, Copenhagen, Denmark, Septem-
ber 2017. Association for Computational Linguistics. doi:10.18653/v1/D17-
1018. URL https://www.aclweb.org/anthology/D17-1018.

Kenton Lee, Luheng He, and Luke Zettlemoyer. Higher-order coreference resolu-
tion with coarse-to-fine inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 687–692, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi:10.18653/v1/N18-
2108. URL https://www.aclweb.org/anthology/N18-2108.

Seanie Lee, Donggyu Kim, and Jangwon Park. Domain-agnostic question-
answering with adversarial training. In Proceedings of the 2nd Workshop on Ma-

136

https://www.aclweb.org/anthology/P13-1116
https://www.aclweb.org/anthology/W13-0114
https://www.aclweb.org/anthology/W13-0114
https://doi.org/10.1162/COLI_a_00152
https://www.aclweb.org/anthology/J13-4004
https://www.aclweb.org/anthology/J13-4004
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://www.aclweb.org/anthology/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://www.aclweb.org/anthology/N18-2108

chine Reading for Question Answering, pages 196–202, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi:10.18653/v1/D19-
5826. URL https://www.aclweb.org/anthology/D19-5826.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Hongyu Li, Xiyuan Zhang, Yibing Liu, Yiming Zhang, Quan Wang, Xiangyang
Zhou, Jing Liu, Hua Wu, and Haifeng Wang. D-NET: A pre-training and fine-
tuning framework for improving the generalization of machine reading com-
prehension. In Proceedings of the 2nd Workshop on Machine Reading for Ques-
tion Answering, pages 212–219, Hong Kong, China, November 2019. Associa-
tion for Computational Linguistics. doi:10.18653/v1/D19-5828. URL https:

//www.aclweb.org/anthology/D19-5828.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. KagNet: Knowledge-
aware graph networks for commonsense reasoning. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
2829–2839, Hong Kong, China, November 2019. Association for Computa-
tional Linguistics. doi:10.18653/v1/D19-1282. URL https://www.aclweb.org/

anthology/D19-1282.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh.
Barack’s wife Hillary: Using knowledge graphs for fact-aware language model-
ing. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 5962–5971, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi:10.18653/v1/P19-1598. URL https://www.aclweb.org/

anthology/P19-1598.

137

https://doi.org/10.18653/v1/D19-5826
https://doi.org/10.18653/v1/D19-5826
https://www.aclweb.org/anthology/D19-5826
https://doi.org/10.18653/v1/D19-5828
https://www.aclweb.org/anthology/D19-5828
https://www.aclweb.org/anthology/D19-5828
https://doi.org/10.18653/v1/D19-1282
https://www.aclweb.org/anthology/D19-1282
https://www.aclweb.org/anthology/D19-1282
https://doi.org/10.18653/v1/P19-1598
https://www.aclweb.org/anthology/P19-1598
https://www.aclweb.org/anthology/P19-1598

Shayne Longpre, Yi Lu, Zhucheng Tu, and Chris DuBois. An exploration of data
augmentation and sampling techniques for domain-agnostic question answer-
ing. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering,
pages 220–227, Hong Kong, China, November 2019. Association for Computa-
tional Linguistics. doi:10.18653/v1/D19-5829. URL https://www.aclweb.org/

anthology/D19-5829.

Xiaoqiang Luo. On coreference resolution performance metrics. In Proceedings
of Human Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing, pages 25–32, Vancouver, British Columbia, Canada,
October 2005. Association for Computational Linguistics. URL https://www.

aclweb.org/anthology/H05-1004.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches
to attention-based neural machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pages 1412–1421,
Lisbon, Portugal, September 2015. Association for Computational Linguis-
tics. doi:10.18653/v1/D15-1166. URL https://www.aclweb.org/anthology/D15-

1166.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 55–60, Baltimore, Maryland, June 2014.
Association for Computational Linguistics. doi:10.3115/v1/P14-5010. URL
https://www.aclweb.org/anthology/P14-5010.

Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolu-
tional networks for semantic role labeling. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, pages 1506–1515,
Copenhagen, Denmark, September 2017. Association for Computational Lin-
guistics. doi:10.18653/v1/D17-1159. URL https://www.aclweb.org/anthology/

D17-1159.

Diego Marcheggiani and Ivan Titov. Graph convolutions over constituent trees for
syntax-aware semantic role labeling. arXiv preprint arXiv:1909.09814, 2019.

138

https://doi.org/10.18653/v1/D19-5829
https://www.aclweb.org/anthology/D19-5829
https://www.aclweb.org/anthology/D19-5829
https://www.aclweb.org/anthology/H05-1004
https://www.aclweb.org/anthology/H05-1004
https://doi.org/10.18653/v1/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://doi.org/10.3115/v1/P14-5010
https://www.aclweb.org/anthology/P14-5010
https://doi.org/10.18653/v1/D17-1159
https://www.aclweb.org/anthology/D17-1159
https://www.aclweb.org/anthology/D17-1159

Diego Marcheggiani, Anton Frolov, and Ivan Titov. A simple and accurate syntax-
agnostic neural model for dependency-based semantic role labeling. In Proceed-
ings of the 21st Conference on Computational Natural Language Learning (CoNLL
2017), pages 411–420, Vancouver, Canada, August 2017. Association for Com-
putational Linguistics. doi:10.18653/v1/K17-1041. URL https://www.aclweb.

org/anthology/K17-1041.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a
large annotated corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313–330, 1993. URL https://www.aclweb.org/anthology/J93-2004.

Christian Matthiessen and John A Bateman. Text generation and systemic-functional
linguistics: experiences from English and Japanese. Pinter Publishers, 1991.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. In Advances in Neural Information
Processing Systems, pages 6294–6305, 2017.

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielin-
ska, Brian Young, and Ralph Grishman. The NomBank project: An interim re-
port. In Proceedings of the Workshop Frontiers in Corpus Annotation at HLT-NAACL
2004, pages 24–31, Boston, Massachusetts, USA, May 2 - May 7 2004. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/W04-

2705.

Julian Michael, Gabriel Stanovsky, Luheng He, Ido Dagan, and Luke Zettlemoyer.
Crowdsourcing question-answer meaning representations. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 560–
568, New Orleans, Louisiana, June 2018. Association for Computational Linguis-
tics. doi:10.18653/v1/N18-2089. URL https://www.aclweb.org/anthology/N18-

2089.

Todor Mihaylov and Anette Frank. Knowledgeable reader: Enhancing cloze-
style reading comprehension with external commonsense knowledge. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 821–832, Melbourne, Australia, July 2018.

139

https://doi.org/10.18653/v1/K17-1041
https://www.aclweb.org/anthology/K17-1041
https://www.aclweb.org/anthology/K17-1041
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/W04-2705
https://www.aclweb.org/anthology/W04-2705
https://doi.org/10.18653/v1/N18-2089
https://www.aclweb.org/anthology/N18-2089
https://www.aclweb.org/anthology/N18-2089

Association for Computational Linguistics. doi:10.18653/v1/P18-1076. URL
https://www.aclweb.org/anthology/P18-1076.

Todor Mihaylov and Anette Frank. Discourse-aware semantic self-attention for
narrative reading comprehension. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2541–2552,
Hong Kong, China, November 2019. Association for Computational Linguis-
tics. doi:10.18653/v1/D19-1257. URL https://www.aclweb.org/anthology/D19-

1257.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Eleventh annual
conference of the international speech communication association, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Justin Bet-
teridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew Gardner, Bryan
Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed,
Ndapa Nakashole, Emmanouil Platanios, Alan Ritter, Mehdi Samadi, Burr
Settles, Richard Wang, Derry Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair
Saparov, Malcolm Greaves, and Joel Welling. Never-ending learning. In AAAI
Conference on Artificial Intelligence, 2015. URL https://www.aaai.org/ocs/index.

php/AAAI/AAAI15/paper/view/10049.

Timothy Niven and Hung-Yu Kao. Probing neural network comprehension of nat-
ural language arguments. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 4658–4664, Florence, Italy, July 2019.
Association for Computational Linguistics. doi:10.18653/v1/P19-1459. URL
https://www.aclweb.org/anthology/P19-1459.

140

https://doi.org/10.18653/v1/P18-1076
https://www.aclweb.org/anthology/P18-1076
https://doi.org/10.18653/v1/D19-1257
https://www.aclweb.org/anthology/D19-1257
https://www.aclweb.org/anthology/D19-1257
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10049
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10049
https://doi.org/10.18653/v1/P19-1459
https://www.aclweb.org/anthology/P19-1459

Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf Hermjakob, Kevin Knight, and
Martha Palmer. AMR beyond the sentence: the multi-sentence AMR corpus. In
Proceedings of the 27th International Conference on Computational Linguistics, pages
3693–3702, Santa Fe, New Mexico, USA, August 2018. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/C18-1313.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. The Proposition Bank: An
annotated corpus of semantic roles. Computational Linguistics, 31(1):71–106, 2005.
doi:10.1162/0891201053630264. URL https://www.aclweb.org/anthology/J05-

1004.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raf-
faella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fer-
nández. The LAMBADA dataset: Word prediction requiring a broad discourse
context. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1525–1534, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi:10.18653/v1/P16-
1144. URL https://www.aclweb.org/anthology/P16-1144.

Terence Parsons. Events in the Semantics of English, volume 334. MIT press Cam-
bridge, MA, 1990.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vec-
tors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,
October 2014. Association for Computational Linguistics. doi:10.3115/v1/D14-
1162. URL https://www.aclweb.org/anthology/D14-1162.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Associ-
ation for Computational Linguistics. doi:10.18653/v1/N18-1202. URL https:

//www.aclweb.org/anthology/N18-1202.

141

https://www.aclweb.org/anthology/C18-1313
https://doi.org/10.1162/0891201053630264
https://www.aclweb.org/anthology/J05-1004
https://www.aclweb.org/anthology/J05-1004
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://www.aclweb.org/anthology/P16-1144
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202

Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi,
Sameer Singh, and Noah A. Smith. Knowledge enhanced contextual word rep-
resentations. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 43–54, Hong Kong, China, November 2019a.
Association for Computational Linguistics. doi:10.18653/v1/D19-1005. URL
https://www.aclweb.org/anthology/D19-1005.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. To tune or not to
tune? adapting pretrained representations to diverse tasks. In Proceedings
of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages
7–14, Florence, Italy, August 2019b. Association for Computational Linguis-
tics. doi:10.18653/v1/W19-4302. URL https://www.aclweb.org/anthology/

W19-4302.

Karl Pichotta and Raymond Mooney. Statistical script learning with multi-
argument events. In Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics, pages 220–229, Gothenburg, Sweden,
April 2014. Association for Computational Linguistics. doi:10.3115/v1/E14-
1024. URL https://www.aclweb.org/anthology/E14-1024.

Karl Pichotta and Raymond J Mooney. Learning statistical scripts with LSTM re-
current neural networks. In Thirtieth AAAI Conference on Artificial Intelligence,
2016a.

Karl Pichotta and Raymond J. Mooney. Using sentence-level LSTM language
models for script inference. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 279–
289, Berlin, Germany, August 2016b. Association for Computational Linguistics.
doi:10.18653/v1/P16-1027. URL https://www.aclweb.org/anthology/P16-1027.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech
tagging with bidirectional long short-term memory models and auxiliary loss.
In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 412–418, Berlin, Germany, August 2016.

142

https://doi.org/10.18653/v1/D19-1005
https://www.aclweb.org/anthology/D19-1005
https://doi.org/10.18653/v1/W19-4302
https://www.aclweb.org/anthology/W19-4302
https://www.aclweb.org/anthology/W19-4302
https://doi.org/10.3115/v1/E14-1024
https://doi.org/10.3115/v1/E14-1024
https://www.aclweb.org/anthology/E14-1024
https://doi.org/10.18653/v1/P16-1027
https://www.aclweb.org/anthology/P16-1027

Association for Computational Linguistics. doi:10.18653/v1/P16-2067. URL
https://www.aclweb.org/anthology/P16-2067.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Daniel Juraf-
sky. Semantic role labeling using different syntactic views. In Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 581–588, Ann Arbor, Michigan, June 2005. Association for Computa-
tional Linguistics. doi:10.3115/1219840.1219912. URL https://www.aclweb.org/

anthology/P05-1072.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and
Yuchen Zhang. CoNLL-2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on EMNLP and CoNLL - Shared
Task, pages 1–40, Jeju Island, Korea, July 2012. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W12-4501.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders
Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. Towards robust lin-
guistic analysis using OntoNotes. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 143–152, Sofia, Bulgaria, August
2013. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/W13-3516.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. The importance of syntactic pars-
ing and inference in semantic role labeling. Computational Linguistics, 34(2):
257–287, 2008. doi:10.1162/coli.2008.34.2.257. URL https://www.aclweb.org/

anthology/J08-2005.

Delai Qiu, Yuanzhe Zhang, Xinwei Feng, Xiangwen Liao, Wenbin Jiang, Yajuan
Lyu, Kang Liu, and Jun Zhao. Machine reading comprehension using struc-
tural knowledge graph-aware network. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5896–5901,
Hong Kong, China, November 2019. Association for Computational Linguis-
tics. doi:10.18653/v1/D19-1602. URL https://www.aclweb.org/anthology/D19-

1602.

143

https://doi.org/10.18653/v1/P16-2067
https://www.aclweb.org/anthology/P16-2067
https://doi.org/10.3115/1219840.1219912
https://www.aclweb.org/anthology/P05-1072
https://www.aclweb.org/anthology/P05-1072
https://www.aclweb.org/anthology/W12-4501
https://www.aclweb.org/anthology/W13-3516
https://www.aclweb.org/anthology/W13-3516
https://doi.org/10.1162/coli.2008.34.2.257
https://www.aclweb.org/anthology/J08-2005
https://www.aclweb.org/anthology/J08-2005
https://doi.org/10.18653/v1/D19-1602
https://www.aclweb.org/anthology/D19-1602
https://www.aclweb.org/anthology/D19-1602

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding with unsupervised learning. 2018. URL https:

//openai.com/blog/language-unsupervised/.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019. URL
https://openai.com/blog/better-language-models/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019.

Altaf Rahman and Vincent Ng. Supervised models for coreference resolution. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 968–977, Singapore, August 2009. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/D09-1101.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–
2392, Austin, Texas, November 2016. Association for Computational Linguis-
tics. doi:10.18653/v1/D16-1264. URL https://www.aclweb.org/anthology/D16-

1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unan-
swerable questions for SQuAD. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi:10.18653/v1/P18-2124. URL https://www.aclweb.org/anthology/P18-2124.

Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.

cz/publication/884893/en.

144

https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/better-language-models/
https://www.aclweb.org/anthology/D09-1101
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://doi.org/10.18653/v1/P18-2124
https://www.aclweb.org/anthology/P18-2124
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Matthew Richardson, Christopher J.C. Burges, and Erin Renshaw. MCTest: A chal-
lenge dataset for the open-domain machine comprehension of text. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 193–203, Seattle, Washington, USA, October 2013. Association for Com-
putational Linguistics. URL https://www.aclweb.org/anthology/D13-1020.

Michael Roth and Anette Frank. Inducing implicit arguments from comparable
texts: A framework and its applications. Computational Linguistics, 41(4):625–
664, December 2015. doi:10.1162/COLI_a_00236. URL https://www.aclweb.

org/anthology/J15-4003.

Michael Roth and Mirella Lapata. Neural semantic role labeling with depen-
dency path embeddings. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 1192–
1202, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi:10.18653/v1/P16-1113. URL https://www.aclweb.org/anthology/P16-1113.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro, and Benjamin Van Durme.
Script induction as language modeling. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1681–1686,
Lisbon, Portugal, September 2015. Association for Computational Linguis-
tics. doi:10.18653/v1/D15-1195. URL https://www.aclweb.org/anthology/D15-

1195.

Josef Ruppenhofer, Caroline Sporleder, Roser Morante, Collin Baker, and Martha
Palmer. SemEval-2010 task 10: Linking events and their participants in dis-
course. In Proceedings of the 5th International Workshop on Semantic Evaluation,
pages 45–50, Uppsala, Sweden, July 2010. Association for Computational Lin-
guistics. URL https://www.aclweb.org/anthology/S10-1008.

Roger C Schank and Robert Abelson. Scripts, goals, plans, and understanding,
1977.

Niko Schenk and Christian Chiarcos. Unsupervised learning of prototypical
fillers for implicit semantic role labeling. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1473–1479, San Diego, California, June 2016.

145

https://www.aclweb.org/anthology/D13-1020
https://doi.org/10.1162/COLI_a_00236
https://www.aclweb.org/anthology/J15-4003
https://www.aclweb.org/anthology/J15-4003
https://doi.org/10.18653/v1/P16-1113
https://www.aclweb.org/anthology/P16-1113
https://doi.org/10.18653/v1/D15-1195
https://www.aclweb.org/anthology/D15-1195
https://www.aclweb.org/anthology/D15-1195
https://www.aclweb.org/anthology/S10-1008

Association for Computational Linguistics. doi:10.18653/v1/N16-1173. URL
https://www.aclweb.org/anthology/N16-1173.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidi-
rectional attention flow for machine comprehension. In International Conference
on Learning Representations, 2017. URL http://arxiv.org/abs/1611.01603.

Peng Shi and Jimmy Lin. Simple BERT models for relation extraction and semantic
role labeling. arXiv preprint arXiv:1904.05255, 2019.

Carina Silberer and Anette Frank. Casting implicit role linking as an anaphora
resolution task. In *SEM 2012: The First Joint Conference on Lexical and Computa-
tional Semantics – Volume 1: Proceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evalua-
tion (SemEval 2012), pages 1–10, Montréal, Canada, 7-8 June 2012. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/S12-1001.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. A machine learning
approach to coreference resolution of noun phrases. Computational Linguistics, 27
(4):521–544, 2001. doi:10.1162/089120101753342653. URL https://www.aclweb.

org/anthology/J01-4004.

Robyn Speer and Catherine Havasi. Representing general relational knowledge
in ConceptNet 5. In Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC’12), pages 3679–3686, Istanbul, Turkey, May 2012.
European Language Resources Association (ELRA). URL http://www.lrec-conf.

org/proceedings/lrec2012/pdf/1072_Paper.pdf.

Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An open multi-
lingual graph of general knowledge. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Asher Stern and Ido Dagan. Recognizing implied predicate-argument relation-
ships in textual inference. In Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), pages 739–744,
Baltimore, Maryland, June 2014. Association for Computational Linguistics.
doi:10.3115/v1/P14-2120. URL https://www.aclweb.org/anthology/P14-2120.

146

https://doi.org/10.18653/v1/N16-1173
https://www.aclweb.org/anthology/N16-1173
http://arxiv.org/abs/1611.01603
https://www.aclweb.org/anthology/S12-1001
https://doi.org/10.1162/089120101753342653
https://www.aclweb.org/anthology/J01-4004
https://www.aclweb.org/anthology/J01-4004
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.pdf
https://doi.org/10.3115/v1/P14-2120
https://www.aclweb.org/anthology/P14-2120

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCal-
lum. Linguistically-informed self-attention for semantic role labeling. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 5027–5038, Brussels, Belgium, October-November 2018. Associ-
ation for Computational Linguistics. doi:10.18653/v1/D18-1548. URL https:

//www.aclweb.org/anthology/D18-1548.

Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. End-to-end memory net-
works. In Advances in neural information processing systems, pages 2440–2448,
2015.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks
for language modeling. In Thirteenth annual conference of the international speech
communication association, 2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer,
and Noah A. Smith. Syntactic scaffolds for semantic structures. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
3772–3782, Brussels, Belgium, October-November 2018. Association for Compu-
tational Linguistics. doi:10.18653/v1/D18-1412. URL https://www.aclweb.org/

anthology/D18-1412.

Takumi Takahashi, Motoki Taniguchi, Tomoki Taniguchi, and Tomoko Ohkuma.
CLER: Cross-task learning with expert representation to generalize reading and
understanding. In Proceedings of the 2nd Workshop on Machine Reading for Ques-
tion Answering, pages 183–190, Hong Kong, China, November 2019. Associa-
tion for Computational Linguistics. doi:10.18653/v1/D19-5824. URL https:

//www.aclweb.org/anthology/D19-5824.

Alon Talmor and Jonathan Berant. MultiQA: An empirical investigation of
generalization and transfer in reading comprehension. In Proceedings of the

147

https://doi.org/10.18653/v1/D18-1548
https://www.aclweb.org/anthology/D18-1548
https://www.aclweb.org/anthology/D18-1548
https://doi.org/10.18653/v1/D18-1412
https://www.aclweb.org/anthology/D18-1412
https://www.aclweb.org/anthology/D18-1412
https://doi.org/10.18653/v1/D19-5824
https://www.aclweb.org/anthology/D19-5824
https://www.aclweb.org/anthology/D19-5824

57th Annual Meeting of the Association for Computational Linguistics, pages 4911–
4921, Florence, Italy, July 2019. Association for Computational Linguistics.
doi:10.18653/v1/P19-1485. URL https://www.aclweb.org/anthology/P19-1485.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Common-
senseQA: A question answering challenge targeting commonsense knowledge.
In Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4149–4158, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi:10.18653/v1/N19-1421. URL
https://www.aclweb.org/anthology/N19-1421.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical
NLP pipeline. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601, Florence, Italy, July 2019a. Associ-
ation for Computational Linguistics. doi:10.18653/v1/P19-1452. URL https:

//www.aclweb.org/anthology/P19-1452.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas Mc-
Coy, Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das, and
Ellie Pavlick. What do you learn from context? probing for sentence structure
in contextualized word representations. In International Conference on Learning
Representations, 2019b. URL https://arxiv.org/abs/1905.06316.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph attention networks. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=

rJXMpikCZ.

Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette
Hirschman. A model-theoretic coreference scoring scheme. In Proceedings of
the 6th conference on Message understanding, pages 45–52. Association for Compu-
tational Linguistics, 1995.

148

https://doi.org/10.18653/v1/P19-1485
https://www.aclweb.org/anthology/P19-1485
https://doi.org/10.18653/v1/N19-1421
https://www.aclweb.org/anthology/N19-1421
https://doi.org/10.18653/v1/P19-1452
https://www.aclweb.org/anthology/P19-1452
https://www.aclweb.org/anthology/P19-1452
https://arxiv.org/abs/1905.06316
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances
in neural information processing systems, pages 2692–2700, 2015.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Uni-
versal adversarial triggers for attacking and analyzing NLP. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2153–2162, Hong Kong, China, November 2019. Association for Compu-
tational Linguistics. doi:10.18653/v1/D19-1221. URL https://www.aclweb.org/

anthology/D19-1221.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel Bowman. SuperGLUE: A stickier
benchmark for general-purpose language understanding systems. In Advances
in Neural Information Processing Systems, pages 3261–3275, 2019a.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In International Conference on Learning Repre-
sentations, 2019b. URL https://arxiv.org/abs/1804.07461.

Chao Wang and Hui Jiang. Explicit utilization of general knowledge in machine
reading comprehension. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 2263–2272, Florence, Italy, July 2019.
Association for Computational Linguistics. doi:10.18653/v1/P19-1219. URL
https://www.aclweb.org/anthology/P19-1219.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. A transition-based algorithm
for AMR parsing. In Proceedings of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
pages 366–375, Denver, Colorado, May–June 2015. Association for Computa-
tional Linguistics. doi:10.3115/v1/N15-1040. URL https://www.aclweb.org/

anthology/N15-1040.

Shuohang Wang and Jing Jiang. Machine comprehension using match-LSTM and
answer pointer. In International Conference on Learning Representations, 2017. URL
https://arxiv.org/abs/1608.07905.

149

https://doi.org/10.18653/v1/D19-1221
https://www.aclweb.org/anthology/D19-1221
https://www.aclweb.org/anthology/D19-1221
https://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/P19-1219
https://www.aclweb.org/anthology/P19-1219
https://doi.org/10.3115/v1/N15-1040
https://www.aclweb.org/anthology/N15-1040
https://www.aclweb.org/anthology/N15-1040
https://arxiv.org/abs/1608.07905

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-
matching networks for reading comprehension and question answering. In
Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 189–198, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi:10.18653/v1/P17-1018. URL
https://www.aclweb.org/anthology/P17-1018.

Dirk Weissenborn, Tomáš Kočiskỳ, and Chris Dyer. Dynamic integration of back-
ground knowledge in neural nlu systems. arXiv preprint arXiv:1706.02596, 2017.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for
multi-hop reading comprehension across documents. Transactions of the Asso-
ciation for Computational Linguistics, 6:287–302, 2018. doi:10.1162/tacl_a_00021.
URL https://www.aclweb.org/anthology/Q18-1021.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Inter-
national Conference on Learning Representations, 2015. URL http://arxiv.org/abs/

1410.3916.

Terry Winograd. Understanding natural language. Cognitive psychology, 3(1):1–191,
1972.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. Coreference resolution
as query-based span prediction. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020. URL https://arxiv.org/abs/1911.

01746.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks
for question answering. In International Conference on Learning Representations,
2017. URL https://arxiv.org/abs/1611.01604.

Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. Pretrained
encyclopedia: Weakly supervised knowledge-pretrained language model. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=BJlzm64tDH.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu, Hua Wu, Qiaoqiao She, and
Sujian Li. Enhancing pre-trained language representations with rich knowledge

150

https://doi.org/10.18653/v1/P17-1018
https://www.aclweb.org/anthology/P17-1018
https://doi.org/10.1162/tacl_a_00021
https://www.aclweb.org/anthology/Q18-1021
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.3916
https://arxiv.org/abs/1911.01746
https://arxiv.org/abs/1911.01746
https://arxiv.org/abs/1611.01604
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH

for machine reading comprehension. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 2346–2357, Florence, Italy, July
2019a. Association for Computational Linguistics. doi:10.18653/v1/P19-1226.
URL https://www.aclweb.org/anthology/P19-1226.

Bishan Yang and Tom Mitchell. Leveraging knowledge bases in LSTMs for im-
proving machine reading. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1436–
1446, Vancouver, Canada, July 2017. Association for Computational Linguistics.
doi:10.18653/v1/P17-1132. URL https://www.aclweb.org/anthology/P17-1132.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse,
explainable multi-hop question answering. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pages 2369–2380, Brus-
sels, Belgium, October-November 2018. Association for Computational Linguis-
tics. doi:10.18653/v1/D18-1259. URL https://www.aclweb.org/anthology/D18-

1259.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. XLNet: Generalized autoregressive pretraining for language
understanding. In Advances in neural information processing systems, pages 5754–
5764, 2019b.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. Reference-aware lan-
guage models. In Proceedings of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1850–1859, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi:10.18653/v1/D17-1197.
URL https://www.aclweb.org/anthology/D17-1197.

Ziqing Yang, Yiming Cui, Wanxiang Che, Ting Liu, Shijin Wang, and Guoping
Hu. Improving machine reading comprehension via adversarial training. arXiv
preprint arXiv:1911.03614, 2019c.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong, Rui Zhao, and Kai Chen.
Fast and accurate reading comprehension by combining self-attention and con-

151

https://doi.org/10.18653/v1/P19-1226
https://www.aclweb.org/anthology/P19-1226
https://doi.org/10.18653/v1/P17-1132
https://www.aclweb.org/anthology/P17-1132
https://doi.org/10.18653/v1/D18-1259
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D18-1259
https://doi.org/10.18653/v1/D17-1197
https://www.aclweb.org/anthology/D17-1197

volution. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B14TlG-RW.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-
scale adversarial dataset for grounded commonsense inference. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
93–104, Brussels, Belgium, October-November 2018. Association for Computa-
tional Linguistics. doi:10.18653/v1/D18-1009. URL https://www.aclweb.org/

anthology/D18-1009.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin
Van Durme. ReCoRD: Bridging the gap between human and machine common-
sense reading comprehension. arXiv preprint arXiv:1810.12885, 2018.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van Durme. AMR parsing
as sequence-to-graph transduction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 80–94, Florence, Italy, July
2019a. Association for Computational Linguistics. doi:10.18653/v1/P19-1009.
URL https://www.aclweb.org/anthology/P19-1009.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
ERNIE: Enhanced language representation with informative entities. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 1441–1451, Florence, Italy, July 2019b. Association for Computational Lin-
guistics. doi:10.18653/v1/P19-1139. URL https://www.aclweb.org/anthology/

P19-1139.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou,
and Xiang Zhou. Semantics-aware BERT for language understanding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34, 2020.

Jie Zhou and Wei Xu. End-to-end learning of semantic role labeling using recur-
rent neural networks. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1127–1137, Beijing, China,
July 2015. Association for Computational Linguistics. doi:10.3115/v1/P15-1109.
URL https://www.aclweb.org/anthology/P15-1109.

152

https://openreview.net/forum?id=B14TlG-RW
https://doi.org/10.18653/v1/D18-1009
https://www.aclweb.org/anthology/D18-1009
https://www.aclweb.org/anthology/D18-1009
https://doi.org/10.18653/v1/P19-1009
https://www.aclweb.org/anthology/P19-1009
https://doi.org/10.18653/v1/P19-1139
https://www.aclweb.org/anthology/P19-1139
https://www.aclweb.org/anthology/P19-1139
https://doi.org/10.3115/v1/P15-1109
https://www.aclweb.org/anthology/P15-1109

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, An-
tonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In Proceedings of the
IEEE international conference on computer vision, pages 19–27, 2015.

153

Vita

Pengxiang Cheng was born in 1992 in Huangshan, China. He graduated from
Tsinghua University in 2013, with a Bachelor of Engineering in Automation, and a
second Bachelor’s degree in Economics. After that, he entered the Graduate School
at the University of Texas at Austin for his doctoral studies in Computer Science,
where he has been working on natural language understanding.

Address: pengxiang.cheng@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

154

	List of Tables
	List of Figures
	Introduction
	Thesis Outline
	List of Contributions

	Background
	Semantic Knowledge
	Semantic Roles
	Coreference Resolution
	Abstract Meaning Representation

	Neural Network Architectures
	Sequence Modeling
	Attention & Transformer
	Pre-training & Contextualization

	Integrating Knowledge into Neural Models
	Integrating Linguistic Knowledge
	Integrating Background Knowledge

	Inferring Implicit Arguments by Local Coherence
	Chapter Overview
	Prior Work
	Implicit Arguments
	Narrative Coherence

	The Argument Cloze Task
	Methods
	Modeling Narrative Coherence
	The EventComp Model
	Training for Argument Prediction
	Entity Salience

	Experiments
	Datasets
	Implementation
	Results on Argument Cloze
	Results on G&C

	Chapter Summary

	Inferring Implicit Arguments by Global Coherence
	Chapter Overview
	Prior Work
	Revisiting the Argument Cloze Task
	Methods
	Pointer Attentive Reader
	Training Objective
	Multi-hop Attention
	Auxiliary Supervision

	Experiments
	Implementation
	Results on Argument Cloze
	Results on G&C

	Chapter Summary

	Semantic Structure as Supervision for Self-Attention
	Chapter Overview
	Prior Work
	The LAMBADA Task
	Methods
	Task Formulation
	Model
	Auxiliary Supervision for Self-Attention

	Experiments
	Dataset & Pre-processing
	Implementation Details
	Main Results

	Analysis
	Does pre-processing quality affect performance?
	Does CorefAll really learn coreference knowledge?
	Where should the supervision be applied?
	Are other types of supervision also useful?

	Chapter Summary

	Semantic Knowledge on Pre-trained Language Models
	Chapter Overview
	Prior Work
	The MRQA 2019 Shared Task
	Methods
	Baseline Model
	Integrating Semantic Knowledge

	Experiments
	Implementation Details
	Preliminary Results
	Analysis

	Chapter Summary

	Conclusion
	Future Work
	More Evaluation on Implicit Arguments
	New Methods for Integrating Semantic Knowledge

	Bibliography
	Vita

