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Abstrakt

Při stále se zmenšující velikosti výpočetní techniky a při současném snižování ceny integrovaných
obvodů a senzorů, se objevují další a další oblasti, kde se aktivní řízení postupně stává možným.
Jednou z takových oblastí je raketové modelářství. Přesto, že jako hobby sahá svými počátky až do
50. let 20. století, aktivně stabilizované modely raket se začaly objevovat teprve nedávno.

Dostupných je několik publikací, zabývajících se modelováním řídícího systému raketových mo-
delů. Na druhou stranu zde je málo prací, které by se orientovaly na návrh řídící jednotky, na výběr
hardwaru a na implementaci softwaru.

Tato práce se zaměřuje na výběr vhodného mikrokontroléru a periferií, které budou základem
řídící jednotky, a na tvorbu potřebného softwarového řešení. Vybraný mikrokontrolér nahradí mik-
rokontrolér Atmega328, který tvůrci často používají v řídících jednotkách na některé desce z řady
Arduino. Vybrané senzory budou testovány za letu na modelu rakety a vizualizace a analýza letových
dat bude součástí textu.

Klíčová slova

řídící jednotka letu, model rakety, aktivní stabilizace, mikrokontrolér

Abstract

With the ever increasing density of computational power and with simultaneous decrease of cost of
integrated circuits and sensors, there are fields, where active control is just becoming possible. One
such field is model rocketry. As a hobby, it has been around for decades, dating back all the way
to the 1950s. Though actively controlled model rockets have just recently started appearing.

While there are publications on the topic of modeling the control system of model rockets, there
is little work published about a selection of the hardware for control units, their design and software
implementaion.

This work focuses on selecting the most appropriate microcontroller and peripherals for this
control unit and on implementing the necessary software. The selected microcontroller will replace
the Atmega328 microcontroller, which is commonly used on the control unit as a part of an Arduino
board. Moreover, the selected sensors will be subjected to an actual flight of a model rocket and
data visualization and analysis will be a part of the text.
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Chapter 1

Introduction

The following text deals thoroughly with the design process of a control unit for an actively controlled
model rocket. It starts with model rocket theory and a quick overview of control theory applicable
to these models. Then the text continues with necessary information on how to correctly use the
most important sensor, the Inertial Measurement Unit, or IMU for short, to provide correct input
to a control algorithm. A big part of this text is a selection of hardware. First is a selection of
a microcontroller board and a comparison of several candidates. Next is a selection of necessary
sensors and peripherals. After an overview of developed software and used tools, the text ends with
presenting data from powered flights and with analysis of this data.

Most attention is given to the the selection and usage of the electronics and to the data visu-
alization. There is a comparison of several microcontrollers in terms of their speed, specifications
and their capabilities. Following the comparison, there is a list of important peripherals ant their
alternatives. In terms of software implementation, there is not that much information directly in
the text, but all the source codes are available in the appendix of this work.

During the course of this project, two control units were designed and build. The first one will
be referred to as a data-logging unit and the second one will be called a flight control unit.

The data-logging unit is based on Arduino Nano and it has served as a pathfinder solution for
the more complex flight control unit, which is built around a Teensy 4.0 board. Both units are
based on easily available Through-hole technology components, which makes them relatively cheap
and easy to build.

In addition to the control units, two rockets were designed and built. The designs of these rockets
is described in appendix B, as this is not the primary concern of this work. The first rocket will be
referred to as a data-logging rocket and the second will be called an actively controlled rocket. The
data-logging rocket does not have any way of actively controlling itself. It has been flown several
times with the data-logging unit onboard and it has collected lots of data. The actively controlled
rocket with its flight control unit is yet to fly with power from a rocket motor, but the control unit
was tested to correctly control the servomotors of the rocket.
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Chapter 2

Model rocketry regulations

In the US, National Association of Rocketry defines a safety code for model rockets on a national
level [12]. Despite my very best effort, I have not been able to find a legislation that would regulate
model rocket flights on the territory of the Czech Republic.

There is currently an EU regulation, which defines conditions for flying with drones, RC planes
and helicopters – UAVs. This regulation is effective in Czechia as well [13, 14, 15] and it defines the
maximum altitude for flying with UAVs in the relevant category as 120 m above ground.

However, in an e-mail correspondence with the Czech Civil Aviation Authority, it has been
confirmed to me, that the aforementioned regulation does not apply to model rockets. I have sent
additional e-mails to the Czech Space Office [16], Czech Model Rocketry Club [17] and to ESA. Out
of these, only a member of the Model Rocketry Club replied to me with some relevant information,
but even this person was unable to direct me to a specific policy, since the Club is not concerned
with the work of individuals.

The e-mail correspondence with the member of the Model rocketry club is published as a part
of the digital appendix of this text. I am only publishing the parts, which I have been granted a
permission to share – the permission was given to me through an e-mail. I have also removed any
personal information from the published correspondence.

In the end, I feel like the best I can do is to reason and justify the safety of the performed flights
myself. The baseline for this reasoning was the minimum legal altitude of general aviation aircrafts,
which must be at least 150 m above the highest ground object [18], and rescue helicopters, which
turns out to be 30 m above ground level [19]. However, this 30 m altitude limit of rescue helicopters
is in collision even with legally operated drones.

Even though some of my flights were to an altitude of 210 m above ground, and these flight
will be presented in the text, the rocket will stay above the critical 150 m only for about 10–15 s.
Therefore I conclude, that as long as all other safety measures are met, the safety code is complied
with, there is no air traffic in sight and the flight does not take place in a protected zone around an
airport, the flight is safe and does not violate any regulations.
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Chapter 3

Basic model rocket theory

In this chapter, I will describe only the theory that is truly necessary for the rest of this work. Most
of the terms mentioned in this section will be needed throughout the rest of the text. I want to
highlight certain aspects of model rockets, which guided the design decisions and I hope, that with
this knowledge, the justification of the final choices will be more clear.

3.1 Stability

Conventional rocket models, especially low-power ones, usually do not have any form of active
control. There is no logic to keep the rocket on an intended flight path. These rockets fly straight,
because they are passively stable.

There are two important physical points on the rocket, whose relative position defines the passive
stability. These points are the center of mass (center of gravity, CG) and the center of pressure
(CP). Loosely speaking, CP is the center of cross-sectional area of the rocket. In reality, the analysis
is much more complicated and either a rocket model simulator (section 3.1.1) or a CFD software
can be used to solve this problem. CG is a hypothetical point around which the force of gravity
appears to act.

Passive stability is the primary concern when designing a model rocket. For the rocket to be
stable, CP must be located behind CG [20]. The distance between CG and CP divided by the
diameter of the rocket’s body is called static margin, and its value is positive when the center of
pressure is behind the center of mass, i.e. when the rocket is passively stable. Since the static
margin is a unitless number, its value is given in calibers (cal.). A common value of static margin
is between 1 and 2 cal. [6]. When static margin is negative, the rocket is passively unstable and it
wants to fly engine first, when 0–1 caliber, the rocket is not stable enough and it can veer heavily
off course. Value above 2 cal. is generally not bad, but the rocket tends to curve more into the
wind and hence it can drift further from the launch pad.
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Figure 3.1: OpenRocket simulation software [21]

3.1.1 Rocket model simulators

There are two very good and very well-known programs for designing and simulating model rockets.
These are OpenRocket [21] and RockSim [22], with the former one being free and open source and
the latter one being paid. I have been using OpenRocket, depicted in figure 3.1, for all the rocket
designs and flight simulations associated with this project. This software has consistently produced
very accurate estimates of the center of mass and the center of pressure as well as the maximum
flight altitude (apogee).

3.2 Rocket motors

Second most important area that drives the design process is the rocket motor selection. The
selection itself is constrained by the intention of the rocket, its projected mass and the intended
altitude.

The rocket motor performance is described by their thrust curve, which is a plot of the thrust
force vs. time, visible in figure 3.2. The total impulse of the motor is the area under the thrust
curve and the unit is N·s. Based on the total impulse, the rocket motor is assigned into a class,
which is labeled by a letter. Motors with the total impulse in the range of 1.26–2.50 N·s belong
to the class A. The following classes are labeled with a consecutive letters of the alphabet and the
total impulse is always double, compared to the previous class. The letter designation is usually
written on the casing of rocket motors for a visible indication of the motor’s power.

On the casing, there are two additional numbers written. The first number specifies the average
thrust of the motor. The second one is the ejection charge delay.

15



Figure 3.2: Thrust curve of B6-2 motor, which I have measured using Arduino and a load cell

An example of a motor label is B6-2, which is the motor used in my very first flight tests. This
motor burns for about 1.5 s and has peak thrust of about 7 N, as seen in figure 3.2. The ejection
charge ignites after 2 s after burnout in this motor.

The strongest motor one can use with model rocket is the G class motor with a maximum total
impulse of 160 N·s. Above that, the rocket is no longer considered to be a model rocket, but rather
a mid- or a high-power rocket and a special license is needed to fly such rocket [23, 12].

I must mention that rocket motors are dangerous pyrotechnic devices and should be handled
with maximum care and caution and always by an adult. (Class C and below can be handed under
a supervision of an adult.)

3.3 Rocket parts

Now it is important to take a look onto the rocket as a whole. Usually, the rocket is composed of a
removable nosecone, body tube with fins, motor mount, rocket motor, shock cord and a parachute.

3.4 Flight sequence

If everything goes well, the flight looks like the following:

1. Rocket motor is inserted into the motor mount and secured.

2. Parachute is packed, pushed into the body tube from the front and the body tube is closed
by partially sliding the nosecone into it – again, from the front.

3. The rocket is slid onto a guide rail, which will support the rocket before liftoff.
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4. A loud countdown is given. The rocket motor is ignited and the rocket starts moving up.

5. During the initial phase of the flight, the rocket is sliding along a guide rail. This rail must
be sufficiently long to support the rocket while it is picking up speed.

6. When the rocket leaves the guide rail, it is moving at a velocity at which the fins can provide
enough aerodynamic force to stabilize the rocket.

7. After few seconds, the motor burns out and the delay charge starts burning.

8. After a defined period, the delay charge ignites the ejection change, which pressurizes the
inside of the body tube. This pressure shoots out the nosecone and pushes out the parachute.
This event hopefully occurs when the rocket is at the highest altitude.

9. The body tube and the nosecone are tied together using the shock cord, which is just a long
piece of string. The parachute is attached to the shock cord as well.

10. The body tube and nosecone slowly descend together under the parachute and they safely
touch down, ready to be flown again.
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Chapter 4

Control theory for model rockets

4.1 Coordinate frame, transformations and axes definition

There is a convention for how the following coordinate frames and transformations are defined, when
used with aircrafts [24]. Since rockets operate at a orientation which is different by 90°, relative to
aircrafts, I will swap some axes to make it easier to work with.

4.1.1 Inertial frame

The coordinate frame, where the axes are Earth-fixed is called inertial frame. The z axis is aligned
with magnetic North, y axis is aligned with East and x axis is aligned with the direction of gravi-
tational force. These axes are used as a set of unmoving reference.

4.1.2 Body frame

The coordinate system where the axes are aligned with the sensor axes is called body frame.

4.1.3 Transformations between frames

To get the body frame from the inertial frame, a set of three transformations is needed.
Rotation around inertial frame z axis by an angle ϕ is called yaw. This creates an intermediate

frame called vehicle-1 frame. Rotation around y axis of the vehicle-1 frame by an angle θ is called
pitch, resulting in an intermediate vehicle-2 frame. Finally, rotation around vehicle-2 x axis by an
angle ψ is called roll and this results in the body coordinate frame [24].

The ψ, θ and ϕ are called Euler angles and will be described in section 4.7.
The body frame x axis will interchangeably be called long axis or roll axis. Body frame y axis

and z axis will be called pitch and yaw axis respectively or either of them as a short axis. This is
to make the naming scheme more intuitive. The rocket motor will accelerate the rocket along the
body frame x axis.
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Figure 4.1: Inertial frame axes used with aircrafts [24]. By the definitions from this section, down
would be x axis, North would be z axis and East would be y axis. Yaw would be roll, roll would be
yaw. The angles stay the same.

4.2 Control unit requirements

The main requirement of this project is that the model rocket must be able to fly straight up. This
is usually achievable, to some extent, even by uncontrolled model rockets. The flight path of these
uncontrolled rockets is however highly susceptible to winds and they usually pick up some rotation
along the long axis as there is very little stabilizing force acting on the rocket in this axis and the
fins are usually not aligned perfectly.

To fulfill the project’s requirement, the control unit must be able to do two things in real-
time. First, it must be able to tell the rocket’s orientation relative to the inertial coordinate
system. Secondly, it must be able to provide control inputs to change the rocket’s orientation. By
implementing these two capabilities, a closed loop control system is created. In other words, the
control unit can estimate the difference between an actual and an intended orientation and it can
issue commands to minimize this difference.

Additional requirement is that the control unit must be able to tell in which phase of the flight
it is. It must be able to detect certain critical events of the flight, such as lift off, burnout, reaching
maximum altitude and landing.

4.3 Control mechanisms for model rockets

There are multiple alternatives on how to provide active control for the model rocket. Probably
the most common one among model rocket hobbyists is to have actuated canards [1]. Additional
approaches include an engine gimbal, actuated fins and a reaction wheel.
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Figure 4.2: 3d-printed gimbal-capable motor mount [25]

4.3.1 Engine gimbal

Engine gimbal is perhaps the most common control mechanism for orbital rockets. In short, the
rocket controls itself by angling (gimballing) the entire engine. This allows large rockets to fly
straight and remain under control even if they are passively unstable. Thanks to this, large rockets
don’t need fins and they remain controllable in a vacuum of space.

This is less practical for model rockets, as the motor only fires for a short period of time during
ascend. When the motor burns out, the model rocket looses the ability to control itself.

4.3.2 Reaction wheel

Although used mainly on satellites and spacecrafts outside of atmosphere, reaction wheel could
theoretically be used on a model rocket as well. The control systems produces action by speeding
up or slowing down a rotation of a disk, which, as a reaction, applies force to the entire spacecraft
in an opposite direction.

This has little application in model rocketry though, as the only reasonable control input this
mechanism can provide is in the roll axis. Yawing and pitching would probably require too much
torque for this to be viable solution. However, this might be used in a High-power rocket in a
combination with an engine gimbal [26].
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Figure 4.3: A variant of actuated fins. In this case only the trailing edge of the fin is moving. This
reduces the issue with high sensitivity of the system [27].

4.3.3 Actuated fins

Actuated fins are located in the back of the model rocket. They provide both passive stability and
active control at once. On the other hand, the electronics and servomotors usually sit at the front
of the rocket, so there must be long cables from the front of the rocket to transfer the control inputs
to the fins. They also make the analysis of the passive stability much harder, because the CP moves
around as the fins are being angled. Perhaps the highest disadvantage is however, that in order to
provide high enough static margins, the fins must be quite large. This makes the control mechanism
more sensitive and harder to use. A workaround of this problem is visible in figure 4.3, where only
the trailing edge of the fins is actuated.

4.3.4 Actuated canards

Canards are small wings located in front of the CG. They are sometimes used on airplanes, but
they can be used with a controlled rocket as well. They are easy to use with model rockets, as they
are physically located close to the electronics, which usually sits at the front of the rocket.

Since they are mounted at at the front of the rocket, they inherently push the CP forward, hence
larger passive fins in the back of the rocket are required to compensate for the canards.

I have chosen this mechanism and the rocket design can be seen in appendix B.2.

4.4 PID controller

PID controller is a control loop mechanism that uses feedback from sensors to calculate an error
between the measured process value and a setpoint. PID stands for proportional-integral-derivative
– those are the three terms which define the output of this controller. Such a controller can be used
in a cruise control in a car for example.
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The proportional term is the error value multiplied by proportional gain Kp. Integral term is the
integration of the error values over time, multiplied by integral gain Ki. In pseudo-code, integral
term can be defined as: integral = integral + error * delta_t * Ki. Derivative term is the
rate of change of the error (or of the measurement), multiplied by derivative gain Kd. Derivative
term in pseudo-code can be written as: derivative = (error - previous_error) / delta_t *

Kp. Such controller is enough to control model rocket in flight [10].

The most difficult aspect of using the PID controller is selection of the individual gains, so called
tuning. When gains are selected wrong, the controller may make the system even more unstable.
The tuning can be either done experimentally or analytically. This is however far beyond the scope
of this project, since the gains heavily depend on the speed of the rocket, which changes quickly
during flight, making the analysis very complex.

In listing 4.1, the derivative term also contains a low-pass filter to filter out high frequency noise.
Furthermore, there is an anti-windup check to prevent the integral term from becoming saturated.
The saturation would prevent the controller from working properly [28].

float PIDControler::Update(float setPoint, float measurement, float deltaT) {

float error = measurement - setPoint;

float proportional = this->Kp * error;

float limMaxInt = max(0, this->limMax - proportional);

float limMinInt = min(0, this->limMin - proportional);

this->integrator = this->integrator + 0.5 * this->Ki * deltaT * (error + this->

prevError);

this->integrator = min(limMaxInt, max(limMinInt, this->integrator)); //Integral

anti-windup

this->differentiator = (2 * this->Kd * (measurement - this->prevMeasurement)

+ (2 * this->tau - deltaT) * this->differentiator) / (2 * this->tau + deltaT);

float output = proportional + this->integrator + this->differentiator;

output = max(this->limMin, min(this->limMax, output)); //Output clamping

this->prevError = error;

this->prevMeasurement = measurement;

return output;

}

Listing 4.1: Implementation of the update method of a PID controller in C++

22



4.5 Attitude estimation

To get the input to the control system, the control unit must be able to estimate rocket’s current
orientation. The inertial measurement unit (IMU) is used for this task. It is a combination of
sensors which provide enough information to the control unit to calculate the body orientation.

The IMU consists of multiple MEMS devices. These include a set of three accelerometers (one
for each axis) and a set of thee gyroscopes. In this configuration, the control unit is able to estimate
the body orientation relative to the ground plane. However, the magnetic reference is missing, i.e.
the IMU cannot provide an absolute information about a compass direction. Hence, the heading
is estimated only in relative terms from the gyroscope measurements. The absence of magnetic
reference causes the estimated orientation to drift around the inertial frame x axis over a period of
time and while experiencing vibrations and/or rapid rotations, as will be later seen in figure 5.3.

4.5.1 Magnetometer

To provide a heading reference, the IMU can be equipped with a set of three magnetometers, which
measure the strength of Earth’s magnetic fields to provide a fixed point in the horizontal plane.
This stops the measured orientation to drift around the inertial frame x axis.

In some literature, for example in the Magdwick’s study [2], a chip which consists only of
accelerometers and gyroscopes is called an IMU, while a chip that also has a set of magnetometers is
called MARG (Magnetic, Angular Rate and Gravity) sensor. In the following text, I will refer to both
of these configurations exclusively as IMU, and I mention the presence or absence of magnetometers
only where it is necessary.

4.5.2 AHRS

Another commonly used term in this context is AHRS (attitude and heading reference system),
which is very similar to an IMU or MARG, but on top of the raw values, the chip can directly
output the estimated orientation.

4.6 Sensor fusion

To get an absolute orientation of the body frame, relative to the inertial frame, raw data from
different sensors of the IMU must be combined together. This is called sensor fusion. There are
many algorithms that do this with a varying degree of precision and speed.

When the sensor is standing still on the ground, the accelerometers essentially output the com-
ponents of a gravity vector. This is enough to estimate the yaw and pitch angles, but roll angle is
impossible to obtain just by reading the accelerometer measurements.
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To get the roll angle, a set of three gyroscopes must be added. These are sensors that measure
rotation speeds. This is still not enough to get an absolute heading, i.e. a compass direction,
but if one does not need use a GPS in their control system, the compass direction is generally
not necessary. Gyroscopes also greatly improve the convergence times of the yaw and pitch angle
estimates [8].

Each type of sensor has its inherit defects which the other sensor(s) try to compensate [8]. Com-
mon algorithms used to fuse sensor data together with a decent speed and precision are Madgwick’s
[2] and Mahony’s [3] sensor fusion algorithms. Both output the estimated orientation in a form of a
quaternion, which can be either used directly or converted to Euler angles. Many other algorithms
are available, such as modified Kalman filters [29, 30].

Both, Madgwick’s and Mahony’s algorithms, support magnetometer input. Having the magnetic
reference is not really needed for the rocket model as long as it does not need to use GPS. If the
GPS is used, it is necessary to know the position of the true North, which can be obtained by
subtracting local magnetic declination [31] from the estimated magnetic heading.

I will be using the magnetometer in the rest of this work.

4.6.1 Comparison of Madgwick’s and Mahony’s algorithm

There are important differences between Madgwick’s and Mahony’s sensor fusion algorithms. Gen-
erally, Mahony’s is reported to be little faster, while Madgwick’s is more accurate [9].

In have confirmed this in my tests as well. Figures 4.4 and 4.5 show the estimated orientation
along with the measured acceleration. In these tests, I have rapidly moved the sensor in one
direction without changing its tilt. It is clearly visible how Madgwick’s filter estimates the Euler
angles correctly, i.e. they all remain constant for the duration of the test, while Mahony’s generates
a phantom pitch and yaw of about 45°. Due to this behavior, I will be using Madgwick’s filter in
the rest of this project.

Mahony’s filter has the advantage of slightly higher speed and a lower memory footprint. A
control unit based on Arduino Nano, and outputting data to an SD card, was running at 49.8 Hz
with Madgwick’s sensor fusion algorithm and at 51.9 Hz with Mahony’s.

4.7 Euler angles

Orbital rockets need to fly in an arc over the horizon to reach orbit. Model rockets usually fly
straight up and down. This greatly simplifies their navigation and control, because the Earth can
be substituted by a flat surface. Furthermore, the range of usual orientations of the model rocket
is fairly narrow.

To represent any orientation in space, a set of three angles is enough. Those angles are called
yaw angle, pitch angle and roll angle, the Euler angles [24]. Yaw, pitch and roll are a set of transfor-
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Figure 4.4: Estimated orientation by Mahony’s filter vs. measured acceleration
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mations that are required to obtain the body frame from the inertial frame. These transformations
are represented by rotational matrices. By convention, the range of angles for these rotations go
from −180° to 180° for yaw and roll and from −90° to 90° for pitch.

The Euler angles will further simplify the whole problem of controlling the model rocket in
flight, as the rocket can correct the yaw, pitch and roll angles individually and independently of
each other. However, the moment of inertia of the rocket when rotating around its long axis (rolling)
is naturally much smaller then for the rotations around the other two axes, hence the controller
must be much less sensitive in the roll axis. There will be an independent PID controller with
independent gains for each axis. Each controller will be given one Euler angle as its input and the
deflection of individual fins will be the sum of the outputs from relevant controllers.

The Magdwick’s and Mahony’s algorithms both output the orientation estimate in a form of
quaternion. Sample implementation for transforming the quaternion into the Euler angles written
in C++ is the following:

float qw = q[0], qx = q[1], qy = q[2], qz = q[3];

yaw = atan2(2.0 * (qw * qx + qy * qz), 1.0 - 2.0 * (qx * qx + qy * qy));

pitch = asin(2.0 * (qw * qy - qx * qz));

roll = atan2(2.0 * (qx * qy + qw * qz), 1.0 - 2.0 * (qy * qy + qz * qz));

Listing 4.2: Conversion of quaternion to Euler angles

In this code snippet, q is an array with 4 float elements which hold the initial quaternion.
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Chapter 5

Using the IMU

In this chapter, I want to focus on the actual IMU, as it is pretty much the heart of the control
system. Without it, the rocket has no hope of successfully controlling itself. There are some crucial
requirements, that must be met: the IMU must support the range of operating conditions (this will
be more elaborated in section 7.1) and it must be fast and accurate.

5.1 IMU calibration

The sensors in the IMU are not perfect and they need to be calibrated. As stated in section 4.6, I
will be using the magnetometer both in the data-logging unit as well as in the flight control unit.
Magnetometer is possibly the most extreme example of the necessity to calibrate, since the raw
measurements are usually unusable. But even the gyroscope and accelerometer both need the be
calibrated since they all come with built-in biases – factory errors.

The calibration consists of acquiring needed calibration values and using those values in the
control unit’s code to correctly transform the measured values to a calibrated output.

5.1.1 Gyroscope calibration

Easiest to calibrate are the gyroscopes. What is needed is a series of measurements with the sensor
at rest. The bias vector is simply the average of measured values in each axis. This vector then
needs to be subtracted in software from every measurement, to remove the factory error.

Table 5.1 shows an example of factory errors. The raw biases were measured using one of my
IMUs and they would be different with another one. The biases in terms of the rotation speed
are obtained by multiplying the raw values by a factor of 500/32 768. This factor is based on the
currently configured sensitivity, which was 500° s−1 in this case. The gyroscopes, as all the other
sensors, should be recalibrated after changing their sensitivity.

27



Table 5.1: Example factory errors of a particular IMU

Axis Raw bias Bias in terms of rotation speed

x 56.7 0.86° s−1

y -204.2 −3.12° s−1

z 38.4 0.59° s−1

5.1.2 Accelerometer calibration

The set of accelerometers requires more complex calibration. In principle, the raw measurements of
these sensors are not only biased, but also distorted. These inaccuracies are different in each axis.

To achieve a basic calibration, we need to find the maximum and minimum measured value in
each axis. The bias vector b⃗ is then determined as

bi = vimax + vimin

2 (5.1)

where i stands for x, y and z axes, vimin and vimax are the minimum and maximum measured values
in the corresponding axis.

Equally, the correction factor vector f⃗ for the distortion error is determined as

fi = n

vmax − vmin
(5.2)

where n is the desired vector norm – this value depends on the filtering algorithm used, but for
Madgwick’s and Mahony’s algorithms, n can be an arbitrary number. It is important, that the
value of n is the same in each axis.

To get the calibrated vector u⃗ from the raw measurement v⃗, following formula is used:

ui = (vi − bi)fi (5.3)

5.1.3 Magnetometer calibration

The magnetometer calibration is very similar to the calibration of the accelerometers. Although one
can probably get away with using the IMU without calibrating the accelerometers, it is absolutely
crucial to calibrate the magnetometers. The factory error is much greater with these sensors and
they are also much more sensitive to the outer environment. Radio signals or even home power
lines greatly affect the measurements, hence they should ideally be re-calibrated before every use.

In the magnetometer, there are two mechanisms that contribute to the errors. One mechanism
is a so-called hard iron distortion. This is produced by an object which is creating magnetic fields,
such as a live circuit or a magnet. If this object is physically attached to the rocket, it will cause a
constant and permanent bias of the measurements which needs to be compensated for.
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The other mechanism is a so called soft iron distortion and it is caused by materials that distort
existing magnetic fields, such as nickel or iron. This kind of error is however much less significant
compared to the hard iron distortion [32]. Along with these distortions, it is necessary to compensate
for the imperfections of the sensors’ sensitivity and alignment.

Even though the error sources are more complex, than in the case of accelerometers, the same
basic correction method can be used even with magnetometers. Again, it is necessary to deter-
mine the the offset and the correction factor using the equations (5.1) and (5.2) and to apply this
correction using equation (5.3).

In figures 5.1 and 5.2, it is evident, that the uncalibrated plot is not centered and it is not
spherical. The calibrated plot is almost a perfect sphere with a predefined radius and its center in
the origin.

5.2 More accurate calibration of accelerometer and magnetometer

To calibrate the set of accelerometers or magnetometers more accurately, it is important to notice,
that there is a factory error even in the alignment of the individual sensors.

This means, that all three accelerometer will, to some extent, contribute to a measured accel-
eration in any given body axis. Similarly all the magnetometers will contribute to the measured
value in any axis. Contribution of one sensor will be dominant for a given axis, the contribution of
other two sensors will be very small.

To get the vector of calibrated values u⃗ from raw measurement vector v⃗, a calibration matrix
M and a bias vector b⃗ must be used in the following form:

u⃗ = (v⃗ − b⃗)M (5.4)

The calibration values for the accelerometer can look like this:

M =

⎡⎢⎢⎢⎣
0.998694 0.005377 −0.002012
0.005377 0.998725 −0.000803

−0.002012 −0.000803 0.976216

⎤⎥⎥⎥⎦
b⃗ =

(︂
21.22 55.93 −278.88

)︂
Notice the significance of the values in the main diagonal of matrix M . If the simple calibration

method from sections 5.1.2 and 5.1.3 was used, the values outside of the main diagonal would be 0.
To obtain the calibration matrix and the bias vector, a program called Magneto v1.2 was

used (section 10.3.2).
To go through the calibration properly, I used the following guides and threads: [4, 5].
Another method for advanced calibration is to use AI [32].
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Figure 5.4: Comparison of using calibrated and uncalibrated magnetometer

5.3 Effects of magnetometer and poor calibration

The drift around the inertial frme x axis when using Madgwick’s algorithm without magnetometer
can be seen in figure 5.3. Madgwick’s algorithm provides a compensation mechanism for the drift,
by supplying the approximate drift rate. This method is still susceptible to noise and to inaccurate
measurements. In my test the roll angle estimate (R) had drifted by about 45° in 2 min when not
using any compensation. Had the magnetometer been used, the roll estimate would have stayed
constant, just like the yaw (Y) and pitch (P) angles.

Figure 5.4 shows the difference between using calibrated and uncalibrated magnetometer. In
both cases the IMU was rotated 4 times by 90° around the inertial frame x axis. In figure 5.4b, it
is visible, that the sensor fusion algorithm does not converge to a correct orientation.

It is evident, that for a model rocket, which needs to know its orientation for a period of
several seconds, avoiding the use of magnetometer is far better than using an uncalibrated or
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Figure 5.5: Gimbal lock illustration

poorly calibrated one. This can result in an option of buying a cheaper chip.
It is also clearly visible, that the algorithm initially needs about 3 s to converge. Figure 5.4

shows that the convergence time of roll angle estimate, when using magnetometer, can be as high
as 7 s.

5.4 Gimbal lock

When the pitch angle approaches ±90°, the transformations achieved by yaw and roll become
ambiguous and the result is an unreliable information about yaw and roll. This phenomena is
called a gimbal lock. For applications, where the range of possible pitch angles is small, such as
passenger airplanes, this does not pose a thread. Since model rockets ideally fly within a very
narrow band of pitch angles, the gimbal lock should not be a problem for them either. It will be
noticeable only when the rocket reaches apogee and the nose starts dropping below the horizon. In
this phase of the flight, the parachute will hopefully be about to open, so there is no need for the
control system to still be controlling the rocket at this point.

An example behavior of the Euler angles, while experiencing gimbal lock, is seen in figure 5.5.
The pitch angle is about −90°. Very little movements of the sensor cause the yaw and roll estimate
to jump around. These angles still represent the real orientation, but this orientation can now be
achieved in two different ways with the Euler angles, instead of just one [24]. Euler angles near
gimbal lock cannot be used as an input to a control system.

5.4.1 Avoiding the gimbal lock during ascend

In order to avoid gimbal lock, the pitch angle must never approach ±90°. But it is possible, that
the IMU will be mounted at a 90° angle in the rocket from the very beginning and therefore the
pitch angle would always be close to 90°. There are at least two ways to mitigate this problem.
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First way is to never physically mount the IMU in this orientation. This is less ideal, because
it constraints the physical layout of the control unit. And if the IMU itself is on the same PCB as
the microcontroller, it will very likely need to be mounted at this problematic angle.

Second option is to swap axes of the IMU in code. This means that the sensor fusion algorithm
will be given the measured values in a different order and/or with different signs and it will output
a pitch angle of 0° when the chip is mounted vertically in a standing rocket. This trick is much
more flexible and will be used throughout the rest of this work. It means that the IMU can be
mounted in any orientation and still output the desired angles.

// The order of arguments passed to the sensor fusion algorithm for the MPU-9250.

This produces 0 deg pitch when the chip is horizontal

MadgwickQuaternionUpdate(Axyz[0], Axyz[1], Axyz[2], Gxyz[0], Gxyz[1], Gxyz[2],

Mxyz[1], Mxyz[0], -Mxyz[2], deltat);

// The order of arguments to produce 0 deg pitch when the MPU-9250 mounted

vertically in a rocket

MadgwickQuaternionUpdate(-Axyz[2], Axyz[1], Axyz[0], -Gxyz[2], Gxyz[1], Gxyz[0], -

Mxyz[2], -Mxyz[0], Mxyz[1], deltat);

Listing 5.1: Swapping axes in code to avoid gimbal lock in the expected orientations

Either of these methods does not eliminate the possibility of the gimbal lock, they just push this
phenomena to an orientation where it is no longer problematic. Quaternions, as directly outputted
from the Madgwick’s sensor fusion algorithm, do not suffer from gimbal lock and these can be used
for control as well. They would be the next logical step to improve the control system.

33



Chapter 6

Selection of microcontrollers

This chapter will document the requirements, comparison, testing and a final selection of a micro-
controller, which will be used to build the flight control unit for an actively controlled rocket.

In the following sections, I will be comparing microcontroller development boards, instead of
microcontrollers alone, since the control unit will be built with the MCU development board soldered
to a prototype board. Ideally, the control unit would be assembled using a custom-made PCB
with most of the components used in their SMD variants, but that is outside of the scope of this
project. The development board will be connected to the selected sensors using wires and traces
on the prototype board. For the sensors, available breakout boards will be used and those will be
soldered to the same prototype board as the microcontroller development board. Hence the physical
dimensions of all the boards will be really important.

Initially, I have developed and built a very simple data-logging unit based on Arduino Nano,
which is small and cheap. The data-logging unit was used to test the selected sensors, write the
initial code, pinpoint the shortcomings of Arduino for a better selection of the microcontroller for
the flight control unit and to gather data from flights of the data-logging model rocket (appendix
B.1). Moreover, I will be able to use the flight data to test algorithms for detecting different stages
of the flight.

I will talk about the design and assembly of the data-logging unit in section 8.1 and about the
flight control unit in section 8.2. The selection of sensors will be described in chapter 7.

6.1 Hardware requirements for the control units

From the development and usage of the data-logging control unit, it was evident, that a fast mi-
crocontroller with a rather large Flash memory and RAM will be needed to build the flight control
unit. The theory listed in the previous chapters now becomes really important, because it defines
a set of attributes and capabilities that the selected microcontroller must possess.
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The selected development board must be rather small, as the inside diameter of the actively
controlled model rocket is 5 cm (appendix B.2). The microcontroller must have at least one I2C
interface, an SPI interface, ideally an UART interface and it must have enough I/O pins for at least
one LED, a button and five servomotors. The required connectivity is however fulfilled by pretty
much any MCU. Additionally, the microcontroller must have at least 64 kB of Flash memory. The
size of RAM wasn’t an issue in the data-logging unit with the Atmega328 and its 2 kB, but I expect
the RAM requirements to grow beyond just 2 kB. Ideally, the microcontroller should not be very
expensive, because there is a rather high change of it being destroyed.

Debugging interface, wireless connectivity, rich documentation and good support are very ben-
eficial and will be considered as well.

I will include the Arduino Nano in this comparison, to serve as a baseline for all the other
microcontrollers.

6.2 Comparison of considered development boards

The development boards compared in the following sections are:

• Arduino Nano

• ESP-WROVER-KIT

• FRDM-K64F

• Teensy 4.0

• Nucleo-L432KC

The comparison of the features of all the MCUs is available in a table C.2 in the appendix.

6.2.1 Arduino Nano

Arduino Nano [33] is the smallest official Arduino development board, it is very common, cheap
and easy to work with. I have build the data-logging unit around this board.

It features the Atmega328 microcontroller with an 8-bit AVR architecture [34]. It operates
at 5 V. The clock speed is 16 MHz, it has 32 kB of Flash memory, out of which 2 kB is used for
bootloader. The size of SRAM si 2 kB and it also has 1024 B of EEPROM. There is a single SPI,
an I2C and an UART interface.

The layout of the development board is open-source which allows for very cheap clones to be
sold. Original Arduino Nano costs $20, but it can be bought from other sources for as low as $2.50.

The amount of peripheral connectivity with this board is more than sufficient to control model
rocket. With the data-logging unit, I have used 8 digital pins to connect the sensors, button, LED
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and an SD card reader. This leaves 14 more pins to connect the servomotors and any additional
chips, buzzers, LEDs or buttons.

During the programming of the data-logging unit, it became apparent, that 32 kB of Flash
memory would not be enough for the flight control unit. I have had problems fitting just the data-
logging program to the Arduino, let alone a program with some control algorithm and additional
libraries for controlling the servomotors. I have also found it rather slow for a real-time control of
a model rocket.

Despite being a very poor choice, the Arduino Nano in the data-logging unit gave me a great idea
about what the final microcontroller will need to be like. Additionally, it has one great advantage,
I am familiar with its programming model (section 9.1.1). Therefore, I want to aim for a board
which is similarly easy to program and use.

6.2.2 ESP-WROVER-KIT

This rather large board is one of the development boards available for the ESP32 microcontroller.
This board in particular features the ESP32-WROVER-B module, an ESP32 based MCU. There
is also an SD-card reader, LCD display, RGB LED and an FTDI FT2232 chip directly on the
board [35].

The ESP32 is a very popular system on a chip microcontroller developed by Espressif Systems. It
has a powerful Tensilca Xtensa LX6 32-bit dual-core microprocessor and it operates at 240 MHz. The
microcontroller has 4 MB of Flash memory and 320 kB of SRAM. The MCU operates at 3.3 V [36].

The FT2232 chip provides USB-to-serial and USB-to-JTAG interfaces which allow for commu-
nication and debugging of the software. However, I was not able to make the debugging work with
this development board, although I suspect that it was a problem caused by my of OS.

ESP32 supports the Arduino programming model, along with Espressif’s own ESP-IDF (IoT
Development Framework, section 9.1.3). The ESP-IDF delivers a multitude of libraries for an IoT
development [37] as well as tools necessary to compile code, upload it and debug. These tools are
cross-platform and they are used through a CLI.

However, using the Arduino programming model in PlatformIO (section 9.2.1), I have had a
hard time using the board. Especially when I wanted to use the same libraries which worked on
the Arduino Nano. Since this board is very large and it would not fit into the rocket frame anyway,
I didn’t want to spend too much time with it. But there are other ESP32 boards available, which
are way smaller. The average price of ESP-WROOM-32-based development board is about $10 in
local e-shops and it can be bought for as low as $4 from international sources.

Overall, the connectivity and the performance is really good on paper. Had I figured out how to
make the needed libraries work, a smaller ESP32 development board would have been be a really
good choice for the flight control unit.
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6.2.3 FRDM-K64F

FRDM-K64F is a development board for the K64F microcontroller [38]. K64F is an MCU based on
the ARM Cortex-M4 32-bit core with an FPU. It operates at 3.3 V, has a clock speed of 120 MHz,
1 MB of Flash memory and 256 kB of SRAM [39].

The microcontroller supports many communication interfaces, including 10/100 Mbit/s Eth-
ernet, 3x I2C interface, 3x SPI interface and some more. The development board also features
FXOS8700CQ – a chip with a set of accelerometers and magnetometers; a micro SD card socket
and an RJ45 connector. The board has two rows of pins with the outer row being compatible with
the Arduino R3 standard. There are 40 I/O pins available in total, out of which 24 can be used as
analog input. To board supports CMSIS-DAP [40] or J-LINK debugging through a USB cable.

This board is very feature rich, however it is a little bit too heavy and large for the 5 cm diameter
of the controlled rocket. I have not been able to find any other development board featuring this
microcontroller and hence the only option to use this MCU in this project would be to build a
custom board with it.

The cost of the development board is around $40, which is more on the expensive side.
As for the programming models, it supports ARM Mbed (section 9.1.2). There is no support

for the Arduino programming model, which makes this board a little harder to use for me. But
ironically, I have found it easier to use than the ESP-WROVER-KIT. However, must of the libraries
that are needed for this project would need to be rewritten for Mbed.

6.2.4 Teensy 4.0

Teensy is a series of very popular, Arduino-compatible boards. Developed and sold by PJRC,
Teensy 4.0 features an IMXRT1062 microcontroller based on a very powerful Cortex-M7 processor
core [41]. The clock speed of this chip is 600 MHz, it contains a 32-bit and 64-bit FPU, has 1984 kB
of Flash memory, 1024 kB of RAM and 1 kB of emulated EEPROM. Cortex-M7 is also the first ARM
microcontroller core to feature branch prediction, which should further improve the performance of
this board.

The board has 40 I/O pins, out of which 31 can be used as PWM and 14 as analog input. It
also supports as much as 7 serial ports, 3 SPI and 3 I2C ports, cryptographic acceleration and few
other functions. Physically the board is very small, at around 35 mm×18 mm.

For the programming models, Teensy supports the Arduino programming model and, to a
limited extent, CircuitPython. Teensy code can also be compiled with a GNU Make a in terminal.
It does not support ARM Mbed or any other development platform and it is also not equipped with
on-board debugging, therefore external J-LINK probe would need to be used to allow for debugging
the software [42].
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The cost of this board is $20 from the official PJRC shop, which is not that expensive, but
together with the shipping cost, it is considerably more expensive than the Arduino Nano or the
ESP32.

Except for the missing on-board debugging support, this board seems like a very good choice.
It is very small and it is compatible with the Arduino. I have found that all the needed libraries
for this project worked well practically without any modification. I have observed the MCU to be
heating up significantly more than other microcontrollers, but this should not pose a risk.

6.2.5 Nucleo-L432KC

Nucleo-L432KC is a rather cheap alternative to Arduino Nano, with very low power consump-
tion, designed and manufactured by STMicroelectronics. The microcontroller on this board is an
STM32L432KCU6, based on the ARM Cortex-M4 core with FPU [43]. This 32-bit processor oper-
ates at 80 MHz, has 256 kB of Flash memory and 64 kB.

Great advantage of this board is the great compatibility with the Arduino Nano. The pin layout
of this board is practically identical to the Arduino board, although the functions of some pins
slightly differ. In total there are 14 digital I/O pins and 8 analog pins, same as with the Arduino
Nano. In contrast to Atmega328, the STM32L432KCU6 features 2 I2C, 2 SPI and 2 USART
interfaces.

The microcontroller is ARM Mbed enabled, but it supports the Arduino programming model
as well. The support for Arduino programming model and the same pin layout should theoretically
mean very few differences between the data-logging unit and the flight control unit, if I were to
choose this board.

This board also supports debugging using ST-LINK/V2-1 debugger, which transfers data over
USB cable, no additional debugging probe is needed. This has worked really well for me with the
PlatformIO IDE.

The dimensions of this board are about the same as the Arduino Nano at around 50 mm×15 mm.
It costs about $10.

Overall, this board seems like a really good choice for the flight control unit. The price is
reasonable and the supported models and the ease of use certainly help. The downsides of this
board are the relatively small Flash memory and slower clock speed compared to the other boards.

6.3 Benchmarking of MCUs

Speeds of the considered MCUs will be shown here. I have focused my benchmarks on operations
and functions which will be used heavily in the control unit software. The plots in figures 6.1, 6.2
and 6.3 show times per 1 000 000 iterations of critical operation on given development boards in
microseconds.
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Figure 6.1: Microseconds to 1 million floating point operations on selected microcontrollers
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Figure 6.2: Microseconds to 1 million 8-bit integer, 32-bit integer and 32-bit float additions on
selected microcontrollers
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Figure 6.3: Microseconds to 1 million iterations of of important functions as well as Madgwick’s
sensor fusion algorithm

void floatMultiplication() {

float number = 1;

unsigned long endTime;

unsigned long startTime = micros();

while(1) {

for(unsigned long counter = 0; counter < iterCount; counter++) {

number *= 1.00001f;

}

endTime = micros();

Serial.printf("%d -- %d\n", number, endTime - startTime);

delay(1000);

startTime = micros();

number = 1;

}

}

Listing 6.1: The general structure of the benchmark. This specific case is for float multiplication in
the Arduino programming model.
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I have omitted Arduino Nano from the plots, since it was on average 80× worse than all the
other boards and it would make it much harder to see the differences between those other boards.
Square root and trigonometric functions were very decent on the Atmega328, only about 4× slower
than the rest of the MCUs on average. However, floating point operations were more than 100×
slower than the rest. This is partly due to the fact, that Atmega328 does not feature FPU.

I have also included Teensy 3.5 in the plots, because I have had one available. It is evident,
that the performance of this board is pretty much the same as the performance of FRDM-K64F.
They both feature very similar MCU, however the Teensy board is much smaller and it supports
the Arduino programming model.

The times of all the tests, including the Arduino Nano, are shown in a table C.1.

Table 6.1: Sizes of basic data types of the selected MCUs in bits

Board Arduino
Nano

ESP-
WROVER-
KIT

FRDM-
K64F

Teensy
3.5

Nucleo-
L432KC

Teensy
4.0

Integer 16 32 32 32 32 32
Long 32 32 32 32 32 32
Float 32 32 32 32 32 32
Double 32 64 64 64 64 64

6.3.1 Teensy 4.0 speed

What immediately becomes evident is the shear speed of the Teensy 4.0 with its Cortex-M7-based
MCU. Even tough the purple bar is sometimes so small, that it is barely visible, it is always there.

A great advantage of Teensy 4.0 is the fact, that the clock speed is about 5× faster than the
rest of the boards. The other factor that helps Teensy 4.0 a lot is the fact, that Cortex-M7 core has
branch prediction. My benchmark was a simple loop with a million iterations of a single operation.
The branch prediction should help a lot in such case. The real-world performance of this MCU
should therefore be slower.

That being said, figure 6.3 shows a speed of the Madgwick’s sensor fusion algorithm plotted in
the two rightmost groups. This is much more complicated than a single instruction and there are
no conditions in the algorithm itself. Still the Teensy dominates over the rest of the boards. The
Sensor fusion fast benchmark uses an implementation of a fast inverse square root [44].

6.4 MCU selection

Taking all the information from this chapter into account, I have decided to use the Teensy 4.0
board as the base for the flight control unit.
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Figure 6.4: Teensy 4.0 development board

The main decision factors were the speed, the ease of use, large Flash size, enough RAM and
a great compatibility with the data-logging unit, which had already been developed during making
this selection.

I have taken into account the lack of support for the on-board debugging. I have also considered
the increased heating and larger power consumption, neither of which will be an issue, since the
control unit will need to operate only for several minutes at a time and the largest compute load
will fit into just few seconds.
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Chapter 7

Peripherals for the control units

7.1 MPU-9250

As the IMU for both of the control units, I have chosen the MPU-9250 [45]. It features 3-axis
accelerometer, 3-axis gyroscope and 3-axis magnetometer.

It uses either I2C or SPI interface for communication. The I2C address of this sensor is b110100X,
where X is determined by the logic level on an AD0 pin. If the voltage is high, X is 1 and if it’s
low, X is 0. This allows for 2 different MPU-9250s to be connected to the same bus when using
I2C. The I2C communication is done at 400 kHz.

The MPU-9250 is a single package which consists of two chips. First chip is an MPU-6050 –
an IMU without magnetometers; and the second is an AK8963 – a chip with a set of magnetometers.
These chips are connected via an internal I2C line and the MPU-9250 package contains a register,
which, after setting the right value, allows for direct communication to the AK8963 over the external
I2C. This is used to configure the AK8963 and to read data from the magnetometers.

The accelerometers support ranges of ±2 g’s, ±4 g’s, ±8 g’s and ±16 g’s1, the gyroscopes support
rotation rates of ±250° s−1, ±500° s−1, ±1000° s−1 and ±2000° s−1 and the magnetometers have a
range of ±4800 µT. All of these values are well within what is needed for the model rocket control
unit.

Apart from normal measurements, the MPU-9250 can provide an external interrupt via its INT

pin. This interrupt can be configured to trigger during different events. Possibly the most useful
one being the "wake up on motion" function, that would signalize the lift-off of the model rocket.
However, I have decided not to use this functionality.

The alignment of axes between accelerometers/gyroscopes and magnetometers is not consistent.
Accelerometers and gyroscopes use an NED convention (North, east, down), whereas magnetometers
uses ENU (East, north, up). This must be taken into account when passing the measured values

11 g is an acceleration equivalent of 9.8 m·s−2
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into the sensor fusion algorithm. See section 5.4.1 for the correct order of arguments passed into
the sensor fusion algorithm.

The reason for selecting this board is very simple. It is relatively cheap, easy to use and very
easy to obtain. It might currently be the most common IMU among hobbyists, which results in
plenty of online resources which help greatly with using this board. It also operates fine both on
3.3 V and on 5 V.

7.1.1 MPU-9250 alternatives

7.1.1.1 BNO055

BNO055 is an IMU designed by Bosch [46]. It is more precise than MPU-9250, can communicate
over I2C and, perhaps most notably, it can perform sensor fusion on an integrated MCU and output
the orientation quaternion directly, if desired. Therefore, this chip should be called AHRS, rather
than IMU.

The ability to perform sensor fusion can offload a lot of work from the main microcontroller.
The individual sensors also feature configurable low-pass filters and they can operate in several
different modes. The maximum ranges of measurements are comparable to the MPU-9250 [47].

However, this device is about twice as expensive than the MPU-9250, and I was not able to find
a breakout board for this sensor in local online stores.

7.1.1.2 ICM-20948

This device is very low power and, functionally, it is comparable to the MPU-9250. It does not
support any of the on-board logic, like the BNO055 does. It communicates over I2C and SPI and
has equal measurement ranges like the previous sensors [48]. However, it is primarily designed for
smartphones and wearables and I would probably not trust this sensor on a model rocket. Due to
its low power consumption, this can be used as a backup IMU though. I was not able to find a
breakout board for this device.

7.2 BMP280

BMP280 is the sensor of choice to measure pressure and hence to determine the barometric altitude
of the rocket. It is a tiny sensor which can measure a pressure range of 1100–300 hPa, which is
an equivalent of −500 to 9000 m below/above sea level. The relative accuracy of this sensor is
±0.12 hPa, which, at sea level, is equivalent to a resolution of about ±1 m of altitude [49].

This sensor communicates both over I2C and SPI. The I2C slave address in defined by connecting
pin SD0 either to GND (address 0x76) or to VDDIO (address 0x77). The sensor operates at 3.3 V.

The reason for choosing this device is the same as with the MPU-9250. It is cheap and easily
available in a form of a breakout board. It is very common, so there is a lot of resources online.
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It works well both with the Arduino Nano and with the 3.3 V MCUs. The pressure range and the
precision is well within of what is required for low-power model rockets.

7.2.1 BMP280 alternatives

7.2.1.1 MS5607-02BA03

This sensor is far more accurate than the BMP280 with the resolution as high as 20 cm. The
minimum pressure is also significantly lower, at 10 hPa. Neither of these benefits would probably
be enough to justify the use of this sensor over BMP280 in my intended use case, especially since I
was not able to find a breakout board for it. The chip can use either an I2C or an SPI interface for
communication and it operates at 3.3 V [50].

7.2.2 MicroSD slot

There are a lot of available breakout boards with a MicroSD slot to log the flight data to an external
storage. Pretty much any of those boards can be used.

My board of choice operates at 3.3 V and it uses SPI for communication with the SD card [51].
However, it is not ideal to rely on a physical connection to the SD card during high vibrations in
flight, as the card could momentarily disconnect. Ideally, one should store the flight data temporarily
on an external Flash memory and then, after a safe landing, transfer the data from the Flash onto
the SD card.

This was not done in this project though, and I was writing data directly to the SD card during
flight, risking the potential data loss. However, I have not encountered a problem in any of my
flights.

7.3 Not used peripherals

7.3.1 GPS

The GPS module was not used as a part of this project, but it was selected. I wanted to use the
NEO-6M GPS. It sends data at 5 Hz with a claimed resolution of 2.5 m [52]. In my tests, I saw the
module to be able to distinguish distances of about 7 m. After considering the benefits, the added
complexity, the module size and weight and its precision, I have decided against the use of this
module as a part of the flight control unit.

7.3.2 Radio antenna, telemetry

To receive a real-time information about the current state of the rocket, especially during flight,
some model rocket makers include chips and antennas for wireless communication as a part of the
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Figure 7.1: Response to the control input of the SG-90 servomotor

control unit. I have decided not to include telemetry in this project, since the added complexity
and weight far exceed the advantages of such system when flying in low altitudes.

7.3.3 External Flash memory

This probably should have been included, but I was not able to find a breakout board for the Flash
memory module in time and therefore this peripheral was not used in neither the data-logging unit
or the flight control unit. As stated in section 7.2.2, writing data directly onto an SD card during
flight is a bad idea, since the card can get disconnected due to vibrations and acceleration. Safer
approach is to log data to a Flash memory and transfer this data to the SD card after landing.

7.4 Servomotor

For the actively controlled model rocket, having reliable, fast and precise servomotors is crucial.
However, I decided to start with cheap servos in the beginning, since there is a large chance of crash.
The servomotor that I have selected is the TOWERPRO SG-90 Micro Servo [53].

It weighs 9 g, has a torque of 1.8 kg·cm, speed of 0.1 s/60◦, operates at a voltage of 5 V and it
costs about $3.

None of the pins on any MCU development board can deliver sufficient current to supply power
to even one servo, experiencing the expected loads, and therefore the servomotors must be powered
separately – in parallel to the other boards. The LiPo battery that I have decided to use has a
nominal voltage of 7.4 V, which is just at the edge of tolerable voltages for the servo. I don’t want
to risk long-term damage to the servo due to high voltage, so I decided to step the battery voltage
down using several diodes, that can deliver high enough current, in series. A 5 V DC-DC converter
would be a much better choice, but due to size constraints it wasn’t really possible in my case.
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7.4.1 Servomotor behavior and data - speed, precision, delay

I wanted to see how the servo reacts to a control input, so I have built a small rig to connect the
servo to a potentiometer and I have logged the response using an Arduino.

In figure 7.1, you can see the green plot of the control input and the red plot of the response. The
servomotor has about 32 ms delay before it starts moving. This delay can be caused by margins in
the servomotor and in the measuring device. The maximum speed at 6 V is about 0.1 s/67◦, which
is consistent with the documentation. The angles range from 6° to 175°, which is 11° less than the
servomotor should have been able to achieve. This was also confirmed by visually observing these
tests, but it is not an issue.
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Chapter 8

Design and assembly of the control units

8.1 Design and assembly of the data-logging unit

The data-logging unit is based around Arduino Nano. The IMU is an MPU-9250 (section 7.1),
there is a BMP280 as a pressure sensor (section 7.2) and a slot for a MicroSD card.

Both the MPU-9250 and the BMP280 are connected to the same I2C bus and data is written
to the SD card over SPI. The logic level of the I2C bus is held at 3.3 V by 10 kΩ pull-up resistors in
the breakout boards of both the MPU-9250 and the BMP280. The schematic design and pictures
of this unit are shown in appendix D.

The Arduino Nano is connected directly to a 7.4 V LiPo battery (pins VIN and GND). The 7.4 V
is well within the range of tolerable supply voltages for the Arduino. All the mentioned peripherals
are powered from the Arduino 3.3 V output, which can deliver a maximum of 50 mA. According
to the datasheets, the BMP280 and MPU-9250 together should draw a maximum of around 4 mA,
which is fine. The Micro SD card should draw around 30 mA while writing and reading. However,
from my measurements, the total current consumption through the 3V3 pin on the Arduino Nano
peaked at 25 mA during initialization and at around 5 mA during continuous operation. The average
current consumption through the 3V3 pin was 1.5 mA.

Measured current draw from the battery was a constant 40 mA during initialization and 34 mA
during continuous operation. Single 450 mAh 7.4 V LiPo battery should last for more than 12 h
when fully charged.

8.1.1 Basic peripherals

Basic peripherals of this unit consist of one LED and a button.
The button is connected to pin A0, which is held high by Arduino’s internal pull-up resistor.

The other side of the button is connected to GND. This button is only used to start the data-logging
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process once the rocket is in the vertical position and ready to fly. After the button is pressed, the
data-logging loop starts and the button no longer has any purpose.

The LED signalizes the readiness of the control unit, different error states and finally the data-
logging procedure. When the unit is ready, the LED shines continuously. Upon error, the LED
blinks certain amounts of time, which encodes the error message, and then stays off for 1 s before
repeating the cycle. When the data-logging process is happening, the LED changes state every
iteration, resulting in rapid blinking.

8.2 Design and assembly of the flight control unit

The schematic design of this unit is show in appendix E. The selected MCU board for this control
unit is the Teensy 4.0. The sensors have remained the same as with the data-logging unit – MPU-
9250 as the IMU and BMP280 as the pressure sensor. There is the same MicroSD slot and the same
basic peripherals – a button and an LED.

On top of that, the circuitry contains an L7805 – a 5 V voltage regulator; and a connector for five
servomotors. The regulator must be there, because the battery voltage is outside of the tolerable
range for the VIN pin of the Teensy.

Initially, there were two L7805s. One was powering the Teensy and two servomotors and the
other was powering the remaining three servomotors. However, the regulators could not handle
the current needed by the servomotors and once a servo started moving, the Teensy would restart.
Hence, I have decided to keep a single L7805 just for the Teensy, since it needs more steady voltage,
and step down the voltage for the servomotors using diodes (D2 – D7 in the schematic). The output
voltage to the servos is now at around 6.4 V with no load, when the battery is fully charged. The
servomotors should be able to handle these levels without long-term damage. An input capacitor
for the servomotors would probably protect them from voltage fluctuations, but I have ran out of
space on the board.

The entire control unit has been measured to draw around 200 mA without the servomotors.
Each servo can draw 100–350 mA. Single 450 mAh 7.4 V LiPo battery should last for more than
30 min with this unit. This is still more than enough, but it is significantly less than the data-logging
unit.

A PCB version of this control unit would use a 5 V DC-DC converters for the MCU and for the
servos, as these are much more efficient and suitable for this application.
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Chapter 9

Programming models and tools

In this chapter, I will first list the most relevant programming models for the control units. I will
then compare available IDEs and finally, I will mention command line tools, which can be used with
the mentioned programming models.

9.1 Programming models

9.1.1 Arduino

The Arduino programming model is a set of open-source libraries and functions for C++. Initially
intended for the AVR architecture, those libraries have been ported to support a variety of boards
and MCUs [54].

In my case, this programming model is supported by the Nucleo-L432KC, Teensy 4.0 and ESP-
WROVER-KIT and, of course, Arduino Nano. The only board which does not support this model
is the FRDM-K64F board.

This model, is very popular, it is very simple to use and there are lots of resources available
online. There is a lot of libraries for many different peripherals, including libraries for all the
peripherals which I have been using during the development of the control units.

Since I was using the Arduino Nano and Teensy 4.0 boards for the control units, I was practically
forced to use this programming model. However, I have found the development to be easy and I
didn’t really miss the features of more advanced programming models, e.g. the Mbed OS. That
being said, the program running on the control units is currently rather simple and the Arduino
programming model might eventually start showing its limitations.

9.1.2 Mbed OS

Mbed OS is intended as a programming platform for IoT devices based on the Cortex-M boards.
It provides an abstraction layer for the microcontroller, which allows the same code to run on any
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Mbed-enabled board [55].
It provides two profiles. First profile is called full profile, which contains RTOS functionality

and a full set of supported features. This profile allows to run fully deterministic, multithreaded,
real-time application on the Mbed-enabled boards. The other profile is called bare metal profile.
This is designed for applications without the need for complex thread management. Compared to
the full profile, the bare metal profile contains only the minimum subset of the available APIs and
it does not support any of the RTOS features.

From my selection of boards, the Mbed OS is supported on the Nucleo-K432KC board and on
the FRMD-K64F. It is not supported on the Arduino Nano and Teensy boards or on the ESP-
WROVER-KIT.

Had the Teensy 4.0 in the flight control unit supported this programming model I would have
seriously considered it. For a larger project I would tend to prioritize this Mbed OS over the Arduino
programming model.

9.1.3 ESP-IDF

Espressif IoT Development framework is the official development framework for the ESP32-based
MCUs [56]. It supports only boards by Espressif, so it is not really interesting to this project.

9.2 Development environments

9.2.1 PlatformIO

PlatformIO is a great open-source tool, which I have been using to program all the MCU code for
this project. It consists of a cross-platform IDE and a set of CLI tools, so called PlatformIO Core.
The IDE is delivered as a plugin to VSCode [57].

It supports all the common programming models, such as Arduino programming model, Mbed
OS or ESP-IDF and it has native support for over 1000 boards. It hosts a repository with almost
11 000 libraries, most of which have been submitted by the community. This repository includes all
of the popular Arduino libraries, libraries for the ESP32 boards, etc. A library can be added to the
project either manually or via a graphical tool available in VSCode.

When creating new project, one selects the target board and programming model and a pre-
configured project is created. Connecting a board and uploading a program to the board by clicking
an upload button added into VSCode by PlatformIO is usually all that is needed, regardless of the
programming model used. If the board comes with on-board debugging, there is usually a default
configuration in PlatformIO that works out of the box. I have been able to debug both the Nucleo-
K432KC and FRDM-K64F boards without any additional configuration. However, I have not been
able to debug the ESP-WROVER-KIT at all.
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Figure 9.1: VSCode with PlatformIO. The screenshot shows PlatformIO’s library manger.

9.2.2 Arduino IDE

Arduino IDE is the official development environment for the Arduino boards. The list of supported
boards can be expanded to Teensy or STM32 boards, but the feature set is inferior compared to
PlatformIO and any non-Arduino programming model cannot be used. Navigation in projects is
much harder and there is no support for on-board debugging [58].

9.2.3 MCUXpresso

MCUXpresso is an IDE developed by NXP. It is intended for Cortex-M-based microcontrollers by
NXP. Based on Eclipse IDE, it provides features such as code compilation, advanced debugging,
profiling and more [59].

I have not found it very useful in my case, since I needed to work also with boards, which are not
based on a Cortex-M core, during this project and having one tool (PlatformIO) for any platform
was much more convenient for me.

9.3 Software tools

9.3.1 Mbed CLI

To compile code written using the Mbed OS, the Mbed website provides an online Mbed com-
piler [60]. However, there is another tool, which I would personally prefer much more – the Mbed
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CLI [61]. It is a Python-based package that allows compilation, uploading, debugging, etc. using a
command line interface.

9.3.2 Arduino CLI

Official Arduino website provides a download for its own CLI tool for compilation and uploading
the programs onto the Arduino MCUs. It is called Arduino CLI [62] and I have found it very
convenient. It is simple to use and it is independent of the text editor, which is what I always
prefer.
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Chapter 10

Implementation of the MCU software

All the code for the MCUs was written in VSCode, using the PlatformIO extension. All the source
codes are listed in the appendix A.

10.1 Software for the data-logging unit

The software for the data-logging unit is dependent on libraries for the MPU-9250, BMP280 and the
SD card reader. The MPU-9250 library has been provided in a thread at the Arduino forum [5]. The
library for BMP280 has been developed by Adafruit and it is available through the PlatformIO’s
library manager.

The SD card interface is provided by a library called SdFat, which is also available through
the library manager in PlatformIO. I have used the SdFat library, rather than the default Arduino
SD library, because of its reduced Flash memory usage. This library also contains a class called
MinimumSerial, which is a minimal implementation of the serial communication protocol used to
talk to a computer over a USB cable. This has further reduced the program’s memory usage.

The main loop of the program runs at around 50 Hz with the data being logged only onto the
SD card – this is reasonable configuration for flight. With both the serial output and the SD card
output enabled, the loop runs at around 32 Hz.

The program logs raw data from all the sensors and it runs the Madgwick’s sensor fusion
algorithm during each iteration. I have tried to remove the sensor fusion algorithm, since it does
not provide any additional value, but that only increased the output speed by about 10 Hz. Thus,
I have decided to keep the sensor fusion as a part of the code.

10.2 Software for the flight control unit

The software running inside of the flight control unit is based on the same libraries as the software
for the data-logging unit. Additionally, it uses an Arduino library for controlling the servomotors.
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The MinimumSerial class is not used, because it does not work with the Teensy 4.0 board and the
lack of Flash memory is no longer an issue on this board.

From an architectural point of view, the most dominant feature is the use of the State pattern [7]
to easily toggle between different states of the control unit. The AbstractSequencer interface
defines Init and Update methods. The software currently has three classes which implement this
interface – MenuSequencer, CalibrationSequencer and RocketSequencer. The use of this pattern
was guided by the convenience of having the calibration routine as a part of the main software. This
means that there is no need to separately upload the calibration routine as a standalone program.

In every iteration of the main loop, the Update method of the current state is called. The
Update method returns the name of the state which should be used in the next iteration of the
main loop. This determines, whether the state will get changed or not. When the state is changed,
the Init method of the newly selected state is called.

The entire rocket’s state, including raw sensor data, sensor fusion output, references to sensor
objects, etc. are located in the RocketState object. This class could have probably been imple-
mented as a Singleton [7], but since the instance of this class is created statically in the beginning
of the program, there should not be a risk of having multiple RocketState objects.

This software also uses an implementation of a PID controller from section 4.4. The logic is
encapsulated in a PIDController class with the gains and limits of the controller passed to the
constructor of this class. There are three instances of the PIDController in the code, one for each
axis and with potentially different gains. An instance of the RocketSequencer class handles the
output to the servomotors. As stated before, this output is the sum of the outputs from the relevant
PID controllers.

10.3 Additional software

During the course of this project, it was needed to use and/or create some extra software. This
included a data collection routine to collect raw data from the IMU, a calibration software, real-time
plotter, which was of great help, and scripts to visualize calibration and flight data.

10.3.1 Raw IMU data collection routine

Both control units occasionally need to run a routine to collect the raw measurements from the
IMU. This is used to determine the maximum and minimum measured values of magnetometers
and accelerometers in all axes. These ranges are used with the Magneto v1.2 calibration software
(section 10.3.2) to obtain the bias vectors and calibration matrices.

In the case of the data-logging unit, this routine always has to be uploaded to the MCU, instead
of the data-logging program, because both of these programs would not fit into the Flash memory
at once. This is very inconvenient, especially before a rocket launch, since uploading these programs
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back and forth takes a lot of time. But it has to be done, because the magnetometer must always
be calibrated.

This routine depends on the same MPU-9250 library as the primary software for control units.
When this routine is started, it first collects an average bias of the gyroscope. During this

phase, the control unit must be at rest. After that, the routine collects specified number of samples
from accelerometers and magnetometers. While collecting, the unit must be rotated slowly, to
correctly capture the maximum range of values for all the sensors. The collected accelerometer and
magnetometer samples are both saved into a single csv file, where each line has six elements, three
for accelerometers and three for magnetometers. The routine also writes all the data to a serial
port.

10.3.2 Magneto v1.2

Magneto v1.2 is used to obtain the calibration matrices and a bias vectors, which are used to
transform the raw measurements into usable values for a sensor fusion algorithm.

It was originally written as a GUI application for Windows, but its source code is now available1.
In order to compile, it must be provided with several algebraic functions2. In addition to the original
implementation, I have added an option for a command line argument to pass the name of a file
with the raw data. I was then able to run this program from an Ubuntu 20.04 terminal.

Furthermore, I have created a Python wrapper script on top of Magneto v1.2. This script
first separates the input file, obtained by the aforementioned IMU raw data collection routine, into
two separate files, one for magnetometer measurements and the other for accelerometer data. The
scripts then calls Magneto v1.2 for both of these files individually.

Listing 10.1 shows an example call of the Magneto v1.2 wrapper script. The script reads the
MAGACCEL.CSV file directly from an SD card. The path to this file is given as the first argument. The
second argument to the wrapper is the norm of the gravity vector, third is the norm of magnetic
field vector and the last argument is a path to a file with the average offsets of the gyroscopes.

The wrapper first outputs the data in a format which is convenient for use with a Jupyter
notebook. This helps with visualizing the calibration, if desired. Below the "=== CONTROL UNIT

CALIBRATION ===" line is the output with the correct calibration values in C syntax and the text
can be directly copied into the source code of the control unit program. Notice the accelerometer
bias vector in array A at indexes 0 – 2 and the accelerometer calibration matrix in array A at indexes
3 – 11. These are values are similar to what has been seen in section 5.2.

The output has been trimmed, because the accelerometer and magnetometer calibration is done
in the same way.

111, Available from: https://sites.google.com/site/sailboatinstruments1/c-language-implementation.
263, Available from: http://www.mymathlib.com/matrices/.
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jakub@kuba-linux:~/School/Bakalarka/Magneto-C$ ./magneto-wrapper.py /media/jakub/

E887-A82A/MAGACCEL.CSV 2048 400 /media/jakub/E887-A82A/GYRO.CSV

=== JUPYTER literals ===

ACCEL OFFSET

[0.734263, 13.610052, -153.658549]

ACCEL MATRIX

[0.994287, -0.014832, -0.011972, -0.014832, 0.994467, 0.009378, -0.011972,

0.009378, 0.978073]

MAG OFFSET

...

=== CONTROL UNIT CALIBRATION ===

ax = ax - 0.734263; // A[0]

ay = ay - 13.610052; // A[1]

az = az - -153.658549; // A[2]

Axyz[0] = (ax * 0.994287 + ay * -0.014832 + az * -0.011972) * ascale; // A[3] A[6]

A[9]

Axyz[1] = (ax * -0.014832 + ay * 0.994467 + az * 0.009378) * ascale; // A[4] A[7]

A[10]

Axyz[2] = (ax * -0.011972 + ay * 0.009378 + az * 0.978073) * ascale; // A[5] A[8]

A[11]

Gxyz[0] = ((float)gx - 4.6) * gscale;

Gxyz[1] = ((float)gy - -26.4) * gscale;

Gxyz[2] = ((float)gz - -0.7) * gscale;

mx = mx - 83.135251; // M[0]

...

Listing 10.1: Calling the Magneto v1.2 wrapper with a real input

10.3.3 Real-time plotter

I wanted to see the data from the control units in real-time. For this purpose, I have created a
simple Python script, which reads data from a serial port the control unit and it plots this data.
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This gave me a great insight into the performance of the control unit and especially the into the
sensor performance and the sensor fusion algorithm estimation correctness.

This script is based on Python libraries serial and matplotlib, also available through pip. It
expects certain format of the data from the control unit. The last message before the data starts
flowing must be "Logging". This string is detected by the real-time plotter. Immediately after this
line, names of the columns must be printed and these must be separated by \t, just like a csv file
would have. The column names must also contain the expected range of values – this is required to
be an integer after a hyphen. This information is used to construct the charts. Finally, the data is
read from the serial port line-by-line and is used to update the plots.

Logging

Tmstmp Y-200 P-100 R-200 AccX-4 AccY-4 AccZ-4 GrX-6 GrY-6 GrZ-6 MgX-500 MgY-500

MgZ-500 hPa-1500 Btn-2 Frq-100

3133 136 54 172 0.061662 -0.122814 0.983335 0.005273 0.031825 -0.019548 0.723665

-0.047183 0.818920 989.34 1 0.32

...

Listing 10.2: Required output of a control unit which is used to plot data in real-time
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Figure 10.1: Real-time plotter window. Y, P, R means Yaw, Pitch, Roll, Btn is a button state.
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Chapter 11

Testing and visualized data

In this chapter, I will present the results of several tests of the developed control units. Shortcuts or
abbreviations are often used in the plots. This was needed to save Flash memory in the data-logging
unit. Hopefully the meaning of the labels will be clear.

In the plots, Tmstmp means timestamp and its value is in ms. The time starts from 0 ms when
the unit is powered up. Similarly, Y means yaw angle, P means pitch angle and R means roll angle.

All of the plots have been trimmed to show only the significant events, e.g. the entire flight.
The visualization has been done in jupyter notebook [64] using pandas [65] and matplotlib

[66] libraries. The visual style of the plots is modified by SciencePlots library [67].

11.1 Data-logging rocket flights

This section shows the best data that I have obtain from 3 flights with the data-logging rocket and
with the data-logging unit onboard. The plots in figure 11.1 are taken from two different flights.
This is the reason why the timestamps don’t match.

Figure 11.1a depicts the estimated orientation of the rocket, as represented by Euler angles.
The roll estimate seems reasonable, as it shows the rocket spinning along the vertical axis with

a period of about 0.75 s – this is normal and an actively controlled rocket with similar control unit
onboard should therefore have correct information to control its roll.

However, the pitch, and especially the yaw angle estimates are both terrible. The plots in figure
11.1a are unfortunately not very clear, but it should hopefully be visible. These plots show that the
sensor fusion algorithm started estimating an upside-down orientation very shortly after burnout.
This is, of course, incorrect. Further more, the pitch angle estimates are oscillating heavily at a
frequency of about 1 Hz long before the parachute has opened.

This is probably caused by a combination of factors. A minor factor is the fact, that the gyro-
scope measurements, visible in figure 11.1c, are saturated and are clipping. This is a configuration
issue and the gyroscopes can be set to a higher range. More significant factor is the negative accel-
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Figure 11.1: Yaw, pitch and roll, acceleration, rotation speed and altitude plots of data-logging
rocket flights

eration, caused by atmospheric drag, after the motor burnout, visible in figure 11.1b. This probably
confuses the sensor fusion algorithm into thinking that the rocket is upside down. This issue has to
be solved before any attempt of actively controlling the yaw and pitch of the rocket.

I am very happy with the figure 11.1b, which shows the measured acceleration. The plot looks
exactly as expected. There is a period of no activity before launch. Then, high acceleration begins,
which peaks at about 11 g’s, followed by sustained acceleration of about 4.5 g’s, which lasts for
approximately 2 s. This exactly matches the general thrust profile of model rocket motor visible in
figure 3.2. After burnout, there is a very clear deceleration, which exponentially dies away. The
deceleration is caused by atmospheric drag acting on the rocket. The drag is a function of velocity
squared, so as the rocket slows down, this negative acceleration decreases. After about 5 s after
burnout, parachute deployment is visible as the large spikes. From this point on, the nosecone with
the data-logging unit are tumbling upside down under a parachute, before the rocket touches down,
again visible as the large spikes.

The altitude data is not directly measured by the rocket, but it is derived from the measured
pressure and known elevation of the launch site. The rocket has reached maximum altitude of 212 m
above ground.

Both, the maximum altitude and the acceleration, very closely match a simulation done in
OpenRocket.

The data from these flight can be used to modify the software and these changes could then be
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Figure 11.2: Estimated orientation vs. reality during the tangled test

verified by future flights. These flight have greatly helped me to understand the behavior of the
sensors and the sensor fusion algorithm and it allowed me to find what changes need to be made. I
have also verified that the connection to the SD card is secure and that it did not disconnect during
flight. I have been monitoring state of the button, and it too was not being accidentally pressed.

11.2 Tangled tests of the data-logging rocket

To test the control system of the actively controlled rocket, I wanted to use a technique, where the
model rocket connected to a 2 to 3 m long string in its CG. The rocket is then manually span above
head in a circle while holding the string in hands.

I have tested this technique with the passively stabilized rocket and figure 11.2a shows the
estimated orientation. Note that in this figure, yaw and roll axes are swapped, relative to the
rocket’s body frame, therefore roll still shows magnetic heading.

Although not as bad is the estimate of powered flights, the yaw and pitch angles are still quite
different from reality. The actual pitch and yaw angles were oscillating between ±10° at most, which
is clearly visible in figure 11.2b. The string is connected to the rocket in a specific point, so the
IMU should be almost perfectly horizontal and therefore, the estimate of the yaw angle should be
very close to 0°, regardless of the rocket’s pitch angle.

The discrepancy between the estimate and reality is probably due to the centrifugal force caused
by the rotation. This result is too bad for an attempt of active control during such test and hence
I cannot use this technique for the actively controlled rocket.
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11.3 Actively controlled rocket tests

Although I have been able to verify, that the flight control unit works and that it can reliably
control the servomotors and thus the canards, I couldn’t find a way to test the control system
without risking damage to the rocket. My hopes were high for the tangled test described in section
11.2. However, the estimated angles from the Madgwick’s sensor fusion algorithm are not good
enough in such a test. This has stopped me from developing the control unit software, until I can
find more suitable and reliable method for estimating the rocket’s orientation.
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Chapter 12

Conclusion

This project’s primary goal was to design, build and test a control unit for a model rocket. The text
thoroughly describes the design process and comments on the required software solutions, which
include the software for the control units, data visualization scripts and some auxiliary programs.
The work goes into greater detail of the control unit design from a hardware perspective.

This project fulfills all the specified tasks and personally, I rate this project as very successful,
even though the flight control unit was never tested in an actively stabilized flight. To accomplish
such thing, a much deeper analysis of the entire control system, precise modeling and tuning of the
control loop would be needed. However, this would be a subject of a completely different scientific
field.

When doing research for this thesis, I have found several publications that go into a great detail
on modeling the rocket’s aerodynamics and dynamic behavior of the control mechanism, but I have
not been able to find a work which would be mainly concerned with building and programming the
control unit. From this point of view, I see the text as beneficial and it can serve as a reference for
further research and, hopefully, even for hobbyists when trying to build a controlled model rocket.
Additionally, I provide the source codes for the control units in the appendix of this work, which
can also be of a great help to anyone.

The assembled flight control unit worked exactly as it was designed to. The voltage levels for
the servomotors, for the MCU and for the sensors were in the expected and tolerable ranges, the
power usage was reasonable and the performance of the MCU and sensors themselves was excellent.

To build and fly the data-logging unit before designing the flight control unit has proven to
be an incredibly helpful decision. This allowed me to deeply analyze the flight data and see the
shortcoming of this initial solution.

The one result, which is really concerning is the performance of the Madgwick’s sensor fusion
algorithm on a model rocket. Although it works fine on the ground and in powered portion of the
flight, once a negative acceleration occurs, the algorithm quickly starts outputting unusable values.
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12.1 Further work

12.1.1 More suitable sensor fusion

Perhaps the quickest and easiest improvement of the current results would be to find a more appro-
priate sensor fusion algorithm or to change the method of estimating orientation altogether. The
desired outcome is to have the correct estimate of the rocket’s orientation during both powered and
unpowered parts of the ascend, all the way to the maximum altitude.

This improvement can be achieved by using the already collected raw data, since this data is not
dependent on the used sensor fusion algorithm. This way, the change can be implemented without
a need for another flight of the model rocket. An optional flight might however be performed to
verify the correctness of this change.

12.1.2 Controlled powered flight

Once the attitude estimation algorithm outputs correct values and once the control system has
been correctly tuned, the flight control unit can be flown in the actively stabilized rocket which has
already been built for this purpose.

12.1.3 Single-board control unit

Great addition to this work would be to take the selected sensors, peripherals and microcontroller,
or any of the alternatives, and build a board on a custom-made PCB with those components’ SMD
variants. This would allow to shrink the board greatly, to add a lot of useful components, and
it would greatly simplify the wiring. On the other hand, the unit would be more expensive and
soldering the SMD components is harder and it might require additional equipment.

12.1.4 Simulation

Another possible extension of this work would be to write a software to simulate the flight and the
control unit. OpenRocket already provides a Java interface to manipulate the simulation parame-
ters, such as the rocket’s fin angle [68]. However, I have found that it is only possible to affect the
roll angle of the rocket using this method. Controlling pitch and yaw seems not to be supported
by OpenRocket right now. Therefore an improvement of this simulator or creating a brand new
software would greatly help with building actively controlled model rockets.
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Appendix A

Digital appendix

All the digital appendices are available in the IS Edison. What follows is an overview of the directory
names and a short description.

A.1 Datasheets

The most important datasheets are available in the Datasheets directory.

A.2 Websites

Several websites, from which critical information was taken, are located in the Websites directory.

A.3 E-mail correspondence

An e-mail correspondence with a member of the Czech Model Rocketry Club is in the E-mails

directory as a text file. Any personal information has been removed from the file and only the
allowed sections are shared. The permission was given to me via an a-mail.

A.4 Software

A.4.1 Arduino benchmark

The code of the benchmark, which was used with MCUs which support the Arduino programming
mode, is located in the Software/Arduino-benchmark directory.
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A.4.2 Mbed benchmark

The source code of the benchmark for the FRDM-K64F board is available in the Software/Mbed-benchmark

directory.

A.4.3 Magneto

Software/Magneto_and_MagnetoWrapper contains the Magneto v1.2 and my custom wrapper, de-
scribed in section 10.3.2.

The Magneto source files are empty, due to potential license issues, but references to the websites
with the source code are listed in this text. It should be possible to recreate the program.

A.4.4 IMU calibration

Calibration routine for the data-logging control unit is available in Software/MCU_calibration_program.

A.4.5 Data-logging software

The main program for the data-logging control unit is located in Software/MCU_data_logging_program.

A.4.6 Flight control software

The program to run on the flight-control unit is located inside of the Software/MCU_flight_control_program

directory.

A.4.7 Visualization scripts

Software/Visualizations directory groups the Jupyter notebooks for visualization of calibration
and flights, and a Python script used for the real-time serial port visualization.

These programs require pandas, numpy, matplotlib and SciencePlots libraries to be available
in the environment. All of those libraries can be installed via pip.

A.5 Miscellaneous

In the MISC directory, there are two downloaded documents, which deal with the regulations of
UAVs.
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Appendix B

Model rocket designs

B.1 Data-logging rocket design

The data-logging rocket was designed as a pathfinder for the construction and to eventually carry a
small data-logging unit, to test the sensors and the rest of the electronics. As seen in figure B.1 this
rocket is designed to initially fly with B6-2 motor to an altitude of about 40 meter above ground.
It has rather long payload section at the front, which is depicted as the blue tube between the
nosecone and the purple cylinder. This section will house the data-logging unit and battery. The
rocket will need to switch to stronger D9-5 motor for flights with the data-logging unit onboard,
since the added hardware is quite heavy. The configuration with the D9-5 motor and the data-
logging unit is not shown in the figure B.1, because OpenRocket does not allow to mix different
motor configurations with different components in the rocket.

The body diameter is 36 mm and stability in the depicted configuration is around 1.5 calibers.

B.2 Actively controlled rocket design

For the actively controlled rocket, I needed to use a 5 cm body diameter, since it will need to house
four servomotors and a parachute deployment mechanism with additional fifth servomotor. For
actively controlled flights, motors with no ejection charge will be used and the parachute will be
deployed mechanically by a servo.

The rocket weights about 420 g and is 95 cm tall. The static margin of this rocket is close to 3.
The control mechanism selected for this rocket are the actuated canards. Those can clearly be

seen in figure B.3, along with the mechanical connections of the canards to the servomotors. There
is a door, starting just above the canards, which is meant to house the parachute. It is held shut
by another servomotor, just barely visible in figure B.3a. In the same area as the parachute door,
but from the other side, there is a space for the flight control unit and battery. This is visible in
figure E.3.
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Rocket Design

 B6-2 

D9-5

C6-3

Rocket
Stages: 1
Mass (with motor): 122 g
Stability: 1.45 cal
CG: 346 mm
CP: 403 mm

Altitude 39.6 m

Flight Time 14.7 s

Time to Apogee 3.62 s

Optimum Delay 2.05 s

Velocity off Pad 6.36 m/s

Max Velocity 22 m/s

Velocity at
Deployment

1.39 m/s

Landing
Velocity

3.94 m/s

Motor Avg Thrust Burn Time Max Thrust Total Impulse Thrust to Wt Propellant Wt Size

B6 3.18 N 1.34 s 6.79 N 4.29 Ns 2.66:1 5.6 g 18/70
mm

Altitude 350 m

Flight Time 100 s

Time to Apogee 7.67 s

Optimum Delay 5.67 s

Velocity off Pad 17 m/s

Max Velocity 101 m/s

Velocity at
Deployment

6.82 m/s

Landing
Velocity

4.03 m/s

Motor Avg Thrust Burn Time Max Thrust Total Impulse Thrust to Wt Propellant Wt Size

D9 9.16 N 2.18 s 25 N 20 Ns 7.00:1 16.1 g 18/70
mm

Figure B.1: Data-logging rocket design in OpenRocket

Figure B.2: Data-logging rocket on a guide rail just after ignition
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(a) Actively controlled rocket in two halves, un-
painted

(b) Control mechanism of the actively con-
trolled rocket

Figure B.3: Actively controlled rocket
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Appendix C

MCU comparison

Table C.1: Microseconds to 1 000 000 iterations of certain operations on selected development boards

Board Arduino
Nano

ESP-
WROVER-
KIT

FRDM-
K64F

Teensy
3.5

Nucleo-
L432KC

Teensy
4.0

Float division 31692336 789958 127345 125189 187695 30003
Float multiplication 1050014 41988 50942 4174 75137 5009
Double division 2552238 5688187 5718754 7868026 53338
Double multiplication 470259 891383 1001795 963264 11669
8-bit addition 75466 33584 42443 50081 8764 5002
32-bit addition 943304 33588 42563 41738 75054 3335
Float addition 10087808 50371 50942 41738 75132 5001
Sqrt 34858944 4297146 10584643 10676101 17162523 73339
Sin 131939884 13194127 43813376 40459645 49398698 463558
Atan2 179115432 9324215 22158116 20369909 30846549 451693
Sensor fusion 17697124 15697628 35431761 36005082 59492979 3296033
Sensor fusion fast 18326444 12610983 28340745 2695529 41407385 996051
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Table C.2: Feature comparison of considered MCU development boards

Board Arduino
Nano

ESP-
WROVER-
KIT

FRDM-
K64F

Teensy 3.5 Nucleo-
L432KC

Teensy 4.0

MCU Atmega328P ESP32-
WROVER-B

MK64FN
1M0VLL12

MK64FX512 STM32
L432KCU6

IMXRT1062

Processor core 8-bit AVR 32-bit
Xtensa
dual-core

32-bit
Cortex-M4

32-bit
Cortex-M4F

32-bit
Cortex-M4

32-bit
Cortex-M7

FPU No No 32-bit 32-bit 32-bit 32-bit and
64-bit

Clock speed 16 MHz 240 MHz 120 MHz 120 MHz 80 MHz 600 MHz
FLASH mem-
ory

32 kB 4 MB 1 MB 512 kB 256 kB 1984 kB

(S)RAM 2 kB 320 kB 256 kB 256 kB 64 kB 1024 kB
EEPROM 1 kB None None 4 kB None 1 kB emu-

lated
UART 1 3 5 6 2 7
SPI 1 3 2 3 2 3
I2C 1 2 2 3 2 3
I/O pins 22 34 40 64 22 40
External input
voltage

7–12 V 5 V 5–9 V 5 V 7–12 V 5 V

Logic level
voltage

5 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V

Size 45×18 mm 84×85 mm 87×53 mm 61×18 mm 50×15 mm 36×18 mm
Cost $2 – $20 $40 $41 $24.25 $10 $20
Programming
models

Arduino Arduino,
ESP-IDF

Mbed OS Arduino Arduino,
Mbed OS,
CMSIS

Arduino

Built-in con-
nectivity

No 802.11b/g/n,
Bluetooth
v4.2, BLE

Ethernet
10/100
Mbit/s

No No No

Debugging No FTDI chip CMSIS-
DAP

External
J-LINK

ST-LINK External
J-LINK
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Appendix D

Data-logging unit
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Figure D.1: Schematic design of the data-logging unit
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(a) Wiring (b) Back side (c) With sensors (d) Assembled

Figure D.2: Data-logging unit built on a prototype board
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Appendix E

Flight control unit
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Figure E.1: Schematic design of the flight control unit
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(a) Wiring (still with two L7805) (b) Traces (c) Assembled unit

Figure E.2: Flight control unit assembly

Figure E.3: Flight control unit fitted into the rocket payload section with battery and servomotors
connected
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