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Abstract 

Exploring the effect of Discharge Summaries for the Prediction of 30-

day unplanned patient readmission to the ICU  

Sanjana Tripathi, MSInfSt 

The University of Texas at Austin, 2021 

Supervisor: Ying Ding

Healthcare is transforming into a data-intensive industry with the expectation to 

double its own data every 73 days by 2020. Electronic Health Records hold a vast amount 

of information that has the potential of improving care delivery ranging from manage-

ment tasks in hospitals to inferring diagnoses from X-ray images.  The massive volume 

of data, such as demographic data, diagnoses, tests, prescribed medications, and proce-

dures, can be used to predict health risk or diagnose diseases. But few pay attention to the 

medical notes which contain abundant and critical information written by healthcare ser-

vice providers during a patient’s stay or visit to the hospital. Because of the unstructured 

feature in these notes, they are usually underutilized to build prediction models. This 

project incorporates medical notes (e.g., discharge notes) along with demographic data 

available in the MIMIC-III dataset, to visualize patterns and finally train a prediction 

model for readmission of patients in the ICU. 
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Chapter 1: Introduction 

Medical notes have held enormous amounts of important clinical information but went 

underutilized by the data scientists in healthcare. Fortunately, these notes are now avail-

able in an electronic form as a part of EMR (Electronic Medical Record) ready for analy-

sis. With the current advancement in deep learning and the availability of state-of-the-art 

Natural Language Processing (NLP) tools, medical notes can be utilized for improving 

patient care as well as hospital management (Long, 2018). Researchers, over the years, 

have published models and articles around predicting length-of-stay and hospital read-

mission for patients utilizing EHR data about patient history (Desautels et al., 2017), 

medical procedures (Lin et al., 2019), and demographic information (Lin et al., 2019;Fer-

ro et al., 2019). Few have included the diagnosis notes into their prediction models (Wal-

raven et al., 2002). This project aims to demonstrate the value of adding diagnosis notes 

into the hospital readmission prediction for patients using EHR data, especially patients’ 

discharge summaries. “A discharge summary is a clinical report prepared by a health pro-

fessional at the conclusion of a hospital stay or series of treatments. It is the primary 

mode of communication between the hospital care team and aftercare providers, which 

can be considered as a legal document and has potential to jeopardize the patient’s care if 

errors are made” (Kamalodeen, 2020, para 1). 

Rajkomar et al. (2018) built state-of-the-art deep learning models to predict: 1) In-

Hospital Mortality (AUC = 0.93–0.94), 2) 30-Day Unplanned Readmission (AUC = 
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0.75–76), 3) Prolonged Length of Stay (AUC = 0.85–0.86), and 4) Discharge Diagnoses 

(AUC = 0.90). AUC (Area under the ROC Curve) measures the area underneath the en-

tire ROC curve with the range from 0 to 1 (Google Developers, 2020), with 1 as the best.  

Predicting readmissions is the hardest task out of the four since the AUC value is lowest 

(Rajkomar et al., 2018; Deschepper et al., 2019; Zhao, 2021). This project predicts read-

missions for patients with features from discharge summaries and shows the improved 

performance. 

 While there is not a standard, pre-defined performance measure for the clinical 

interpretation of readmission prediction, AUC score for a ROC curve is a widely used 

metric for evaluating the prediction models in the domain (Rajkomar et al., 2018). AUC 

value of a ROC curve helps determine the model’s ability to correctly classify instances 

in the different classes (here, readmission and no readmission) (Google Developer, 2020). 

The choice of AUC of ROC as the performance measure is useful  and relevant since 

identifying the patients with a risk of short-term readmission is a first step to identifying 

and strategizing after-care practices. Although the exact clinical use of these models is as 

yet unknown, one possibility is to conduct greater follow contact with the group assessed 

as likely to be readmitted. For this reason, it may be more important to contact as many 

patients as possible who will likely be re-admitted, even at the cost of contacting more of 

those who are less likely to be admitted. This implies trading higher recall for lower pre-

cision in predicting readmissions. 
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1.1 Clinical Relevance of Hospital Readmission Predictions 

The financial cost of hospital readmissions is estimated to be about $26 billion annually 

(Wilson, 2019). The emotional cost of these hospital readmissions is generally ignored. It 

is noteworthy that patients felt that most of their readmissions were caused by issues in 

“discharge timing, follow-up, home-health, and skilled services” which could be prevent-

ed (Smeraglio et al., 2019; Healthstream, 2020, para. 5). Smeraglio et al. (2019) found 

that review by a Registered Nurse (RN) case manager found that 49% of readmissions the 

hospital system had some amount of opportunity to improve the discharge process. The 

RN case managers more often agreed with the patient’s perspective of readmission than 

the provider’s (Healthstream, 2020, para. 5). Furthermore, the burnout of a care provider 

with high patient volumes and inadequate support, could cause problems in discharge 

planning, care transitions, and patient education; which leads to the increased probability 

of hospital readmissions (Healthstream Blog, 2020).  

Additionally, the rate of mortality associated with ICU readmissions ranges from 26% to 

58%. There has been a growth trend in the ICU readmissions seen from 1989 to 2003 

with the readmission rate rising from 4.6% to 6.4% (Lin et al., 2019). The rate of read-

mission to the ICU reflects poorly on the performance of the ICU facility and service. In 

order to reduce ICU readmissions, patients at high risk of readmission should be identi-
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fied beforehand and taken care of. This will also save manpower and other medical re-

sources incurred by the hospital during readmission (Lin et al. 2019). A model that can 

accurately predict the chance of a patient readmission can be beneficial for both health-

care service providers and patients. 

 A patient discharged from the hospital remains in highly vulnerable and stressful 

state marked by physiological distress, health impairments and psychological impact of 

the illness and hospitalization (Lehn et al., 2019). Short term or 30-day readmission is 

usually categorized by worsening of the existing conditions, new impairments as a result 

of improper after-care, longer stays in the ICU, increased risk of mortality and higher fi-

nancial costs (Li et al., 2019). A 14-day window has been identified where most of the 

unplanned readmissions occur due to improper or no follow-up with the Primary Care 

Physician (Meyers, & Brady, 2020). Various regulations around discharge procedures and 

costs around readmissions and related insurance have been passed to regulate the rate of 

readmission in the United States. In the MIMIC-III dataset used in the project, the days 

between readmissions peaks around the window of 30 days (see Figure. 3). 

1.2 Discharge Summary 

Clinical notes are written by healthcare professionals in the form of free text which are 

unstructured but contain a richer and denser profile of a patient than other kinds of EHR 

data. There are numerous clinical notes associated with a patient’s stay or treatment. This 

project choses clinical notes in the form of Discharge Summaries to predict the possibili-
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ty of hospital readmission. Discharge summaries are believed to improve the efficiency of 

hospital readmission prediction models, especially in shorter time frames. 

Discharge summary is a kind of clinical note prepared by a healthcare professional for a 

patient at the end of a patient's stay at the hospital or series of treatment. Discharge sum-

maries are particularly important as they are the primary source of information for the 

aftercare service providers about the patient!s treatment at the hospital and the primary 

mode of communication between the patient!s healthcare service providers and aftercare 

service providers. Appendix A shows the image of a discharge summary for a patient with 

a ruptured appendix. A discharge summary typically includes: patient information, 

healthcare provider!s information, patient history, allergies, diagnoses, medication, inves-

tigations and procedures, management of the patient stay or treatment, and any complica-

tions that arose. The joint commission has mandated that all hospitals in the United States 

follow a structure while creating a discharge summary (Kind & Smith, 2008). Kind & 

Smith (2008) in their work mention that the mandated summary structure must have the 

following six components: 

A. Reason for hospitalization 

B. Significant findings 

C. Procedures and treatments provided 

D. Patient and family instructions 

E. Attending physician’s signature. (p. 1) 
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An example of discharge summary in the MIMIC-III dataset is shown below: 

“Admission Date: [**2151-7-16**] Discharge Date: [**2151-8-4**] Service: 

ADDENDUM: RADIOLOGIC STUDIES: Radiologic studies also included a 

chest CT, which confirmed cavitary lesions in the left lung apex consistent with 

infectious process/tuberculosis. This also moderate-sized left pleural effusion. 

HEAD CT: Head CT showed no intracranial hemorrhage or mass effect, but old 

infarction consistent with past medical history. ABDOMINAL CT: Abdominal CT 

showed lesions of T10 and sacrum most likely secondary to osteoporosis. These 

can be followed by repeat imaging as an outpatient. [**First Name8 (NamePat-

tern2) **] [**First Name4 (NamePattern1) 1775**] [**Last Name (NamePat-

tern1) **], M.D. [**MD Number(1) 1776**] Dictated By:[**Hospital 1807**] 

MEDQUIST36 D: [**2151-8-5**] 12:11 T: [**2151-8-5**] 12:21 JOB#: [**Job 

Number 1808**]” (extracted from MIMIC-III dataset) 

Other key information in the discharge summaries that makes them an indispensable part 

of the EHR and of a biomedical prediction model for patients are: “identification of unre-

solved medical issues at the time of discharge, test results requiring follow-up, and the 

presence of an accurate discharge medication list” (Legault et al., 2012, para. 1). It is also 

anticipated that post discharge adverse drug events are a factor in morbidity and mortality 
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and while the event is predictable it requires better medication documentation, reconcilia-

tion, and management (Legault et al., 2012). A study conducted by van Walraven and col-

leagues (2002) found that patients whose discharge summaries arrive at the PCP office 

before the first outpatient visit were at 0.74 times relative lower risk of hospital readmis-

sion. 
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Chapter 2: Literature Review 

2.1 Prediction of early unplanned intensive care unit readmission in a UK tertiary 

care hospital: a cross-sectional machine learning approach 

Desautels et al. (2017) trained and tested a model for the prediction of unplanned read-

mission of patients to ICU and deaths inside the hospital within 48 hours of the first time 

ICU discharge from the hospital. The study uses a dataset comprising 3,326 ICU episodes 

from the Cambridge University Hospitals NHS Foundation Trust (CUH) collected be-

tween 2014 and 2016 for patients above the age of 16 years old and with at least one 

episode of admission to the ICU. The feature set for training the model is made up of age 

of the patient, vital signs (blood pressure, heart rate, temperature, pulse pressure, respira-

tion rate, SpO2 level), lab tests records (bilirubin, creatinine, international normalized 

ratio (INR), lactate, WBC count, platelet count, pH level), FiO2 and total Glasgow Coma 

Score (GCS). Each patient in the dataset had at least one of the vital sign measurements 

and GCS. An ensemble of classification models using AdaBoost was trained on the 

dataset by dividing the data into 10 cross-validation folds and the results across all folds 

were combined for the evaluation of model performance using the AUROC curve value. 

In the work while the choice of model is a classic yet smart, the data used for the predic-

tion is insufficient in terms of patient demographic information and is totally categorical 

ignoring the large amounts of data hidden in clinical notes written and prepared by 

healthcare service providers during the course of treatment and after the stay. 
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2.2 Effect of Discharge Summary Availability During Post-Discharge Visits on Hos-

pital Readmission 

In this study, Walraven et al. (2002) studied the data collected from patients who partici-

pated in a clinical trial between 1996 and 1997 at the Ottawa Civic Hospital. Walvaren et 

al. collected the discharge summaries of each patient and as a part of the experiment de-

termined if the discharge summary successfully reached the patient’s Physician before the 

first outpatient visit. The study observed and recorded the first non-elective readmission 

of each patient to the hospital within 90 days of discharge. The outcome was determined 

when the patient died, was urgently readmitted to the hospital, or at least three months 

after discharge of the patient (Walraven 2002). The nature of this study is exploratory and 

observatory, and does not predict any outcome. The authors analyzed the correlation be-

tween the post-discharge communication between the hospital and the physician through 

discharge summaries of the patients and their non-elective readmission to the ICU within 

90 days. The factors observed to determine the association are: admission and discharge 

dates, patient age, patient gender, if the patient lived in a nursing home or not, active 

medical problems, admission diagnoses, procedure complications, and socioeconomic 

status of the patient. While the feature set is balanced with categorical and non-categori-

cal data instances, the focus is heavily shifted in the favor of patient problems at the time 

of admission. It is interesting to see that socioeconomic background of the patient is tak-

en into consideration but it is too fuzzy a variable to base trained predictions upon. 
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2.3 Analysis and prediction of unplanned intensive care unit readmission using re-

current neural networks with long short-term memory 

The study uses  (Lin et al., 2019) supervised machine learning models on “comprehen-

sive, longitudinal clinical data” in the MIMIC-III dataset for the 30-day unplanned read-

mission of a patient to the ICU. The features extracted from the dataset include chart 

events, patient demographic information, and chronic diseases. Through chart events, the 

authors extracted patients’ physiological conditions like blood pressure and categorical 

items (e.g. capillary refill rate). For chronic diseases, embeddings (vectors) of ICD-9 

codes are used, and for demographic information, the patient's gender, age, race and eth-

nicity are considered. Three different types of models are used, namely Logistic Regres-

sion with L1 and L2 regularization, Convolutional Neural Network and a bidirectional 

Long Short-Term Memory model. The LSTM model reaches a sensitivity of 0.742 with 

the current feature set for the prediction of short-term unplanned readmission. With com-

plex and hardware intensive models like LSTM and CNN, the pipeline still reaches an 

efficiency that is achievable by using baseline methods but with a more advanced feature 

set as shown in this study. 

2.4 Racial/Ethnic Disparities in Readmissions in US Hospitals: The Role of Insur-

ance Coverage 

This study investigates the rate and risk of readmissions and its association with the race 

and ethnicity of the patients which could be due to “limited access to post-discharge care, 
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disparities in healthcare quality, and socioeconomic factors” (Basu et al., 2018). Another 

factor being considered in the study of readmission rate is insurance held by the patient 

and how the issues posed by insurance for readmission differ for minority patients based 

on their racial and ethnic identities. The dataset  is obtained from Healthcare Cost and 

Utilization Project (HCUP) State Inpatient Databases (SID) of the agency for Healthcare 

Research and Quality (Basu et al., 2018). The abstracted data consists of patient’s dis-

charge data in five US states (e.g., California, Florida, Missouri, New York and Ten-

nessee). This data is linked to the contextual and provider availability data from Area Re-

source File (Health Resources and Service Administration) and American Hospital Asso-

ciation’s (AHA) Annual Survey of hospitals for data on hospital characteristics (Basu et 

al., 2018). The study analyzes the dependency of 30-day readmission excluding elective 

readmissions for patients 18 years and above on several independent variables focused on 

patient data and hospital characteristics. The independent variables related to patients 

used for the analysis are: age, sex, race/ethnicity, insurance type, income, number of 

chronic diseases on record, and health status indicators for disease severity and risk of 

mortality from All Patient Refined Diagnosis Related Group (APR-DRG). For the hospi-

tal characteristics, bed size, mortality rate and teaching status were considered in the de-

pendence analysis. Some Primary Care Service Area (PCSA)-level factors like, primary 

care provider density, population density, PCSAs with urban/rural residence status were 

also accounted for in the analysis. The analysis was done and divided into two parts: 1) 
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direct association between probability of readmission and race/ethnicity of the patient; 

2)association of readmission risk to a patient's race/ethnicity and how it varies by the in-

surance status considering the interactions between insurance and race/ethnicity, and in-

surance and readmission risk (Basu et al., 2018). 

2.5 Patient Readmission Rates for all Insurance Types after Implementation of the 

Hospital Readmissions Reduction Program 

“Hospital Readmissions Reduction Program (HRRP) was implemented in October 2012 

as a part of the Affordable Care Act (ACA)” (Ferro et al., 2019, p. 2). In this research, 

Ferro and the co-authors (2019) studied the trend in readmission rates for patients with all 

types of insurance after the implementation of HRRP and compared it to the trend before 

the program to find a causal relationship. For the study, the dataset used is taken from the 

“Nationwide Readmissions Database which contains discharge data from twenty-two 

states accounting for 51.2% of the U.S. population and 49.3% of hospital admissions in 

2014” (Ferro et al., 2019, p. 3). The authors take a statistical approach and conduct a dif-

ference-in-differences study to determine the trend and relationship between the HRRP 

and readmission rates for patients with different types of insurance (Medicare, Medicaid, 

and private). The different characteristics used in the study were: patient’s age, patient’s 

sex, twenty-nine comorbidities collected by the Nationwide Readmissions Database 

based on the Elixhauser Comorbidity Index, insurance status, length-of-stay, costs of in-

dex admission and readmission, hospital size and teaching and ownership status (Ferro et 
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al. 2019). While the study reveals some interesting insights of trends in the readmission 

rates, it does not shed much light on the role insurance plays in the plausible readmission 

of patients. 
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Chapter 3: Data Exploration and Visualization 

3.1 MIMIC-III Dataset 

MIMIC-III is the third version of MIMIC dataset which is a freely accessible critical care 

dataset created by MIT Lab containing anonymized health-related data from over 40,000 

patients in the ICUs of the Beth Israel Medical Center between 2001 and 2012 (MIMIC-

III Critical Care Database. (n.d.) MIMIC-III v1.4 documentation. https://mimic.phys-

ionet.org/about/mimic/). The birth and death dates of the patients have been timeshifted 

to the future to protect the identities of the patients, but the time between two consecutive 

events for a patient is kept the same as the original in the database. The patient informa-

tion in the MIMIC-III dataset is made of demographics, vital signs, ICD code for diag-

nosed diseases, procedures, notes, medications, lab tests, and more. The dataset compris-

es of 26 different tables that can be largely grouped into four broad categories based on 

the kind of data they hold -  

1. Patient Tracking  

 (ADMISSIONS, ICUSTAYS, PATIENTS, CALLOUT, TRANSFERS) 

2. ICU Data 

 (CHARTEVENTS, INPUTEVENTS_CV, INPUTEVENTS_MV, DATE-

TIMEEVENTS, OUTPUTEVENTS, PROCEDUREEVENTS_MV) 

3. Hospital Data 
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 (CAREGIVERS, CPTEVENTS, DIAGNOSES_ICD, DRGCODES, 

LABEVENTS, MICROBIOLOGYEVENTS, NOTEEVENTS, PRESCRIPTIONS, 

PROCEDURES_ICD, SERVICES) 

4. Dimension Tables 

 (D_CPT, D_ICD_PROCEDURES, D_ITEMS, D_ICD_DIAGNOSES, 

D_LABITEMS) 

Figure 1. Overview of the tables in MIMIC-III Dataset generated by SchemaSpy. Sourced 
from https://mit-lcp.github.io/mimic-schema-spy/. For the legend refer to Appendix C. 

The complete schema of the MIMIC-III dataset sourced from MIT in collaboration with 

SchemaSpy is available in Appendix B. The model in this project uses two tables - AD-

MISSIONS which contains data about a patient admission to the hospital, demographic 

data, discharge/death timings etc., and NOTEEVENTS which holds detailed notes like 

reports, discharge summaries etc.  

15
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3.2 ADMISSIONS Table 

Figure  2. Schema of the ADMISSIONS table in the MIMIC-III dataset. Schema generat-
ed by SchemaSpy. For the legend refer to Appendix C. 

This table houses information about a patient’s admission data, discharge date, death date 

(if applicable) and demographic data like Ethnicity, Marital Status, Gender, Insurance 

etc. ADMISSIONS table has 58,976 unique admissions for 46,520 patients. Most of the 

patients are only admitted once. Table 1 shows the frequency of the number of admis-

sions per patient. 
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Table 1: Number of patients that were admitted once, twice, thrice, four times or more in 
the ICU 

Here, aligning with our goal of predicting unplanned hospital readmission within the next 

30 days, this research considers the first readmission within a month (30 days) after dis-

charge as a positive prediction.  

3.2.1 Readmission Distribution 

To train a model for readmission prediction, a set of ground truth has been built. 

The ground truth for this data is the True (1) or False (0) label for readmission per each 

hospital admission which were generated using the data in the ADMISSIONS table. The 

labels generated focus on readmission within 30 days for this project. If a patient has 1 or 

True as his/her readmission label, then all notes associated with that patient, in the NO-

TEEVENTS table, will be assigned the readmission label as True or 1. Table 2 shows the 

total number of patients in the dataset and the number of readmissions. 

Number of Admissions Patient Count

1  38983

2 5160

3 1342

4 508

>4 527

Total number of admissions 58976

Number of Readmissions 11399
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Table 2: Total number of admissions and readmissions. 

Figure 3. Readmission counts based on days between admissions 

Figure 3 shows the counts of number of readmissions based on the number of days be-

tween two admissions for patients who were readmitted to the hospital due to emergency. 

This figure shows that most readmissions happened within 30 days of discharge. This in-

ference, supported with the claim stating the use of discharge summaries in predicting 

readmission for a shorter time frame, I decided to generate and use labels for readmission 

within 30 days. No NEWBORN admissions are included in the dataset. 
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3.3 NOTEEVENTS Table and Clinical Notes 

Figure 4. Schema of the NOTEEVENTS table in the MIMIC-III dataset. Schema gener-
ated by SchemaSpy. For the legend refer to Appendix B. 

The NOTEEVENTS table contains clinical notes associated with each admission. These 

notes are unstructured texts grouped under different categories. Table 3 shows the differ-

ent categories of clinical notes in the table and their counts for each hospital stay. 

Category of Associated Clinical Note Number of Admissions
Case Management 954

Consult 98
Discharge summary 59652

ECG 138190
Echo 34037

General 8209
Nursing 220758

Nursing/other 821258
Nutrition 9378
Pharmacy 102
Physician 140100
Radiology 378920

Rehab Services 5409
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Table 3: Distribution of different types of clinical notes by admissions in the ICU. 

Most categories in the clinical notes focus on the categorical variables and have 

already been used in previous research mentioned in the literature review. While each 

category is important in its own standing, and researchers can argue for and against each, 

one of the clinical notes often ignored are the discharge summaries. Many researchers 

have explored and successfully established that patient’s physicians not having access to 

Respiratory 31667
Social Work 2612

20

Figure 5. Graphical representation of the frequency distribution of different 
types of clinical notes by admissions in the ICU



patient’s discharge summary before their first outpatient visit after discharge from the 

ICU is related to the unplanned readmission of patients to the ICU (Walraven et al., 

2002). Taking into account the clinical relevance of discharge summaries for after patient 

care, in predicting readmission for shorter time frame and the presence of a sufficient 

number of discharge summaries in the dataset, I decided to move forward with using dis-

charge summaries as my chosen unstructured text data for readmission prediction. All 

patients without a readmission had one or more discharge summaries associated with 

them (see Figure 6).  

Figure 6. Distribution of discharge summaries for readmitted and not readmitted patients. 
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3.4 Demographic Data and Readmission  

To get a better understanding of the data, specifically how the rate of readmissions relates 

to the different attributes of the patients’ data, I started with creating various visualiza-

tions of the data contained in the MIMIC III dataset. Figure 7 shows the distribution of 

patients based on their insurance providers. We can see there is a clear majority of pa-

tients with Medicare, followed by privately insured patients. The number of self-paying 

or patients with no insurance is significantly less and nearly tending to zero. 

Figure 7. Graphical representation of patients by the type of insurance providers 

Starting with simple visualization approaches, I chose to create the correlation 

heatmap of different features. Correlation heatmap is popularly used in statistical analysis 

and machine learning models. The features considered here were on the basis of existing 
22



research on patient ethnography and readmission relationship. Figure 8 shows the correla-

tion between the demographic attributes and the patient readmission prediction variable. 

There is very little correlation between the different variables considered here. 

Figure 8. Correlation heatmap of patient demographic data and readmission prediction 
variable. 

Whitney and Chuang (2016) found that patients in a hospice program eligible for 

both Medicare and Medicaid have lower rates of 30-day readmission because insurance 

that makes post-discharge custodial care accessible decreases the possibility of readmis-

sion in older patients. Ferro et al. (2019) found that the implementation of HRRP (Hospi-

tal Readmissions Reduction Program) was associated with a decrease in readmissions for 

both Medicare and Medicaid patients with target condition however patients with private 

insurance (with the lowest aggregate readmission rates during the course of the study) did 
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not see a decrease in the readmission rate after the HRRP implementation on a composite 

level. 

In a study conducted by Jayasree Basu, Amresh Hanchate and Arlene Bierman 

(2018), the authors explored through a regression analysis the association between the 

likelihood of 30-day readmission for any disease or cause and insurance type and race of 

patients (above 18 years of age) in California, Florida, Missouri, New York and Ten-

nessee. When comparing the insurance types, patients without insurance had a less likeli-

hood of readmission in all states as compared to patients with private insurance. And pa-

tients with Medicaid and Medicare were much more likely to be readmitted in contrast 

with the privately insured patients in all five states. 
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Figure 9. Mean of independent attributes/variables categorized by state (Base et al,. 2018) 

In the same study, the data for race or ethnic groups is shown in Figure 9. Com-

paring Hispanic and non-Hispanic white patients, Hispanic patients had significantly 

lower rates of readmission in four out of five states (e.g., California, Florida, Missouri 

and Tennessee, Basu et al. 2018). For black patients, the risk-adjusted likelihood of read-

mission as compared to whites was higher on a composite level, and higher specifically 

in California, New York and Tennessee (Basu et al. 2018). The ADMISSIONS table in 

the MIMIC-III dataset being used for the readmission prediction in this project contains 

patient ethnographic attributes like: race/ethnicity, language, marital status, religion and 

insurance, and the diagnosis of the patient. Since the correlation heatmap did not provide 
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any insight into the dependence of readmission on demographic and ethnographic attrib-

utes of a patient, visualization of the association of readmission labels to the aforemen-

tioned independent attributes using PCA (Principal Component Analysis), Parallel Coor-

dinates and t-SNE provided some clarity. 

For PCA dimensionality reduction and visualization, we encode the values using a Label 

Encoder and then use min-max scaling as the normalization technique. Figure 10 visual-

izes the output variables for a feature set with dimensionality reduced to two components. 

Figure 10. PCA graph showing the analysis between the demographic features and readmission vari-
able reducing the demographic features set to a dimensionality=2

Figure 11 shows a parallel coordinate visualization of the readmission output variable (0: 

negative or no readmission, 1: positive readmission) in association with the ethnographic 

variables - insurance, ethnicity and language, and patient diagnosis. Each vertical line 
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represents one of the four attributes - Language, Insurance Type, Ethnicity and Diagnosis, 

and each green line across the 2-D graph represents a patient with the light green lines 

representing patients with a readmission and the one with darker green are the patients 

without readmission. Even after compressing the feature space to a 2-D representation 

there is no substantial trend visible in between the features and the rate of readmissions.    

Figure 11. Parallel Coordinates graph between the different demographic attributes of pa-
tients and the readmission prediction variable. There is no clear clustering of readmitted 
patients when analysed for demographic attributes. 

Figure 12 shows a t-SNE scatterplot visualization of the same feature set and unlikely it 

does not show much improvement over the PCA plot. The negative and positive readmis-

sion instances are dispersed all over the place and however there is some visual clustering 

of a single class data instance together, there is not a clear difference between two clus-
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ters of negative and positive readmissions. This is perhaps because t-SNE works well for 

high-dimensional data with complex polynomial relationships in between attributes 

which does not seem like the case (see Figure 8, Figure 10) for the attributes being used 

for the t-SNE plot. 

Figure 12. t-SNE scatter plot of 30-day unplanned readmission output labels plotted for a 
feature set comprising of patient ethnicity, language, marital status, religion and insurance 
type. 

In all of the visualizations exploring the association or dependence of the output variable 

of 30-day unplanned readmission on the demographic and ethnographic features of the 
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patient available in the MIMIC-III dataset, there is not a direct correlation or strong asso-

ciation that exists between the readmission variable and the feature set. This is another 

evidence-based reason that analysing the effect of data hidden in clinical notes for predic-

tion of long-term and short-term readmission to the ICU is crucial. "
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Chapter 4: Data Preparation 

As already mentioned, data from ADMISSIONS and NOTEEVENTS tables was used to 

predict the probability of 30-day readmission for each patient. To prepare the data for 

training the model, data-type mismatch, missing data and existing biases in the dataset 

had to be accounted for. 

 The process started by converting all the dates (e.g., admit date, discharge 

date and death date) in the ADMISSIONS table to a manipulatable format and then used 

the dates to find the next ‘unplanned’ admission for each patient and the days between 

admissions. 

Next, to merge this data with the clinical notes data in the NOTEEVENTS table 

we started by filtering and merging only the discharge summaries for an admission. For 

this project, only the last discharge summary per patient was used. The reason behind this 

being combining all the discharge summaries for a patient made the training dataset too 

large to train for the available hardware and memory. And given the structure of the dis-

charge summaries in the dataset, which is very close to the structure mandated by the 

Joint Commission (Kind & Smith, 2008), the last discharge summary was sufficient in 

determining the history, patient problems, allergies, medication and any medical outliers 

which might or might not be present in the discharge summaries earlier. Some investiga-

tion into the data revealed that about 10.6% of the admissions were missing discharge 

summaries. Diving deeper into the missing notes, I discovered that about 53% of the 
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NEWBORN admissions were missing discharge summaries as compared to a very small 

percentage of the other categories. Thus, I decided to remove all NEWBORN admissions 

from the data.  

 Then to create the ground truth for our training model, we needed an out-

put label which I created by using the time between admissions for a patient. If the days 

to next admission was less than 30, the patient was assigned a label of 1 (= TRUE); oth-

erwise 0 (=FALSE). The merged dataset with the output labels was biased towards the 

negative samples with a difference of about 45,000 samples. We needed to address the 

imbalance in the dataset before using it to train our model to prevent the trained model 

from predicting negative heavily. I first split the data into training, validation and test sets 

because you always want the validation and test set to be as close to real data as possible. 

Then, I sampled the negative values to balance the training dataset. I also tried over-sam-

pling the positive values and it led to the similar prevalence and model performance. I 

refrained from balancing the data by creating synthetic data (SMOTE) because of the 

hardware restrictions. 

31



Chapter 5: Natural Language Processing 

Natural Language Processing is the branch of computer science and artificial intelligence 

that helps computers and digital systems to interpret human language in textual form 

(Garbade, 2018; IBM Cloud Education, 2020; Yse, 2019). NLP has gained impetus in the 

past few years and the domain of healthcare has also started to realise its potential. There 

are enormous amounts of data buried, unused and untapped in the EHR of patients in the 

form of notes from doctors, care-takers and other healthcare service providers. Since this 

unstructured form of data and language in itself is very complex to understand and mod-

el, the true potential of NLP for healthcare data is yet to be explored. Structured data like 

Consolidated Clinical Document Architecture (CCDA) and Fast Healthcare Interoperabil-

ity Resources (FHIR) gives a very limited insight into the actual patient record, which 

doctors spend a lot of time inputting and recording in the charts and other clinical notes 

(Foreseemed, n.d.). 

Figure 13. Natural Language Processing models help with improve the efficiency and ac-
curacy of biomedical tasks by converting the information in the unstructured data into 
structured data understandable by machines. (Foreseemed, n.d.) 
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Some of the latest and more popular problems being explored in the NLP in 

healthcare space are focused on EHR usability, predictive analytics, phenotyping, and 

quality improvement (Health Catalyst Editors, 2019). This project uses NLP to under-

stand and analyse the data contained in the discharge notes of patients for the prediction 

of short-term (30-days) unplanned readmission to the ICU. "
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Chapter 6: Data Pre-Processing 

In addition to the demographic features, the project uses the associated discharge sum-

maries to predict 30-day unplanned readmission. This text data is in an unstructured for-

mat and to process it, the project uses the BC5CDR variant of the scispaCy model over 

the more popular and widely used NLTK model. For the project, scispaCy model is cho-

sen over NLTK, because scispaCy affords bio-entity extraction, while NLTK just uses a 

Bag-of-Words approach to process text data. In the medical domain, using a Bag-of-

Words approach will prioritize the words representing regular real-world entities over the 

biomedical entities. The Named Entity Recognition (NER) function afforded by the mod-

el was used to identify chemicals/drugs and diseases in the discharge summaries. The 

recognized entities were converted to word vectors and a CountVectorizer was trained on 

these converted tokens to create a sparse matrix of the count of the different tokens in the 

summaries. 

To continuously improve the model, the stop words list was iteratively updated 

based on token occurrence ranking in the discharge summaries using Zipf's Law. 

6.1 scispaCy Model 

Neumann et al. (2019) introduced scispaCy which is a Python library containing models 

developed and trained for real-time biomedical text processing. The model is built on the 

spaCy library and offers features like Part of Speech Tagging, Dependency Parsing, 

Named entity Recognition and Sentence Segmentation. The robust POS Tagger and De-
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pendency Parser features of the model are trained and tested using the GENIA 1.0 corpus 

as well as the OntoNotes corpus, which perform just as well as the other state-of-the-art 

models/packages.  

GENIA corpus contains abstracts and texts extracted from the articles in the 

MEDLINE database and the title and abstracts are annotated specifically for biomedical 

text processing and data mining (Kim et al., 2003). Along with the annotations in the cor-

pus, the semantic associations using the GENIA ontology (e.g., 47 relevant nominal cate-

gories in the biomedical domain) in the extracted biomedical terms are also a part of the 

annotated corpus (Kim et al., 2003). OntoNotes corpus is a large annotated corpus of text 

ranging from (news, conversational telephone speech, weblogs, usenet newsgroups, 

broadcast, talk shows) in three different languages (e.g., English, Chinese and Arabic) 

(Weischedel et al., 2017). In addition to the annotation the corpus also contains some 

base-level semantic associations like ontology in the text and structural information on 

subject and predicate (Weischedel et al., 2017). 

For more accurate and fine-grained Named Entity Recognition (NER) models, 

scispaCy released additional packages (en_ner_bc5cdr_md, en_ner_craft_md, en_n-

er_jnlpba_md, en_ner_bionlp13cg_md) which are trained on four different datasets - 

BC5CDR (for chemicals and diseases; Li et al., 2016), CRAFT (for cell types, chemicals, 

proteins, genes; Bada et al., 2011), JNLPBA (for cell lines, cell types, DNAs, RNAs, pro-

teins; Collier and Kim, 2004) and BioNLP13CG (for cancer genetics; Pyysalo et al., 
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2015) respectively. This project selected the scispaCy BC5CDR model to detect names of 

drugs/chemicals and diseases in the discharge summaries and use them as a part of the 

feature set for readmission prediction. 

  

6.2 Word Vectors 

Some alternate approaches to textual data representation in Natural Language Processing 

include Bag-of-Words and One-hot encoding. Both these models focus on multiplicity 
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of the words and ignore the word association, relationship, context and meanings of the 

words. Contrary to the traditional models, word vectors enable us to analyze the relation-

ships across words, sentences, and documents. These vectors are modeled in the space 

based on the meaning and context of the word.  

In simple terms, word vectors are numerical representations of words that take 

into account the meaning of a word while representing it numerically in the form of a 

vector. These vector representations of the words allow a model to train on textual data 

for prediction or classification. “A word vector is a row of real-valued numbers (as op-

posed to dummy numbers) where each point captures a dimension of the word's meaning 

and where semantically similar words have similar vectors. Words that are used in a simi-

lar context will be mapped to a proximate vector space” (Ahire, 2018, para 4). When 

words are represented as vectors in the aforementioned way, mathematical operators can 

be used on the words for manipulation, thus rendering them as an even more useful and 

meaningful feature for a prediction model. 
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Figure 15. Word vector representation of different animals where the different colored number repre-
sent how closely the animal is associated with the attribute (legend on top right) (Ahire, 2018).

Figure 14 shows what the vectors for some words (animal names) look like. From 

this figure, we know that the dimensions in the vector represent a meaning and the value 

for the dimension is an indication of the word numerical weight on that dimension which 

in turns represents the word’s association with and to the dimension meaning (Ahire, 

2018). 

6.3 Zipf’s Law 

Zipf’s Law is an empirical law that states that “in a large sample of words the frequency 

of a word is inversely proportional to its ranking in the frequency table” (“Zipf’s Law”, 

n.d., para. 2). In other words,  the r-th most frequent word will have frequency f(r) which 

can be determined using (Piantadosi, 2014): 

 f (r) ∝ 1/rα
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where  is approximately 1; r=frequency rank of the word; f(r)=frequency in the   

 sample. 

 The law was proposed by and named after George Kingslay Zipf. In Natural 

Language Processing terms, the law provides a probability distribution that helps predict 

the probability of a word in a given sample text. The probability mass function in Zip’s 

Law can be written as (Hasan, 2019): 

 

where, k: rank of the word whose probability of appearance in the corpus i 

  being calculated 

N: size of the vocabulary of the corpus 

: probability mass function distribution parameter. Normally set to 1.   

  (paras. 4-5). 

When working with NLP models, the training datasets are huge and contain an 

enormous collection of textual data where even the more frequent word is only a very 

small fraction of the entire corpus (Hasan, 2019). Most of the latest NLP models choose 

to represent the tokens extracted from the text in a multi-dimensional vector format. Now 

given the massiveness of the corpus and the high-dimensional word vector representa-

tions our models perform well for predicting more common words and perform worse for 

rare words since the rare words occur less or have lesser examples than common words 

(Zipf’s Law) in the corpus but are modeled in the same dimension in the vector space as 

α

f (k; α, N ) = (1/kα)/(∑
N

n=1
1/nα)

α

39



the popular or common words. Therefore, Zipf’s law can be used to address some of 

these biases by taking notice of word frequencies and accounting for over-fitting. "
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Chapter 7: Prediction Models 

7.1 Logistic Regression 

Logistic Regression is a regression analysis model used for classification of the depen-

dent variable based on one or more independent variables (Swaminathan, 2018; Thanda, 

2021).  

Model Output =  0 or 1; Hypothesis: Z=WX+B ;  

Figure 16. Sigmoid Activation function for Logistic Regression (Swaminathan, 2018) 

When Z → , Y (dependent/prediction variable) becomes 1; and when Z → 

, Y becomes 0. This hypothesis gives us the estimated probability of a certain predic-

tion, meaning how confident is the correctness of the predicted value as compared to the 

actual value of the independent variable. Mathematically, 

 

 +  

hΘ(x) = sigmoid(Z)

∞

−∞

hΘ(x) = P(Y = 1 |X; theta)

P(Y = 1 |X; theta) P(Y = 0 |X; theta) = 1
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 = 1 -  

: Probability of Y being 1 given X is parameterised by 

‘theta’ 

Cost function for a logistic regression variable is defined as: 

=  

            

Given the large sample size of our dataset, the dichotomous nature of the predic-

tor variable and the little correlation between the independent variables, binary logistic 

regression is a wise choice of model to be used for the prediction of 30-day unplanned 

readmission for the project. 

7.2 Gaussian Naive Bayes Model 

Bayes theorem provides a way of selecting the best hypothesis (h) for a given data (d). 

The probability of hypothesis is calculated based on the prior information (Brownlee, 

2016). The model is based on the Bayes theorem defines as: 

 

where, P(h|d) is probability of hypothesis given data d (conditional probability) 

P(d|H) : probability of data d if the hypothesis were true (conditional probability) 

P(h) : probability of hypothesis h 

P(d) : probability of data 

P(Y = 0 |X; theta) P(Y = 1 |X; theta)

P(Y = 1 |X; theta)

Cost(hΘ(x), Y(actual )) −log(hΘ(x))i f y = 1

−log(1 − hΘ(x))i f y = 0

P(h |d ) = (P(d |h)*P(h))/P(d )
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Once the conditional probability of different hypotheses given the dataset is 

known, the hypothesis with maximum posterior probability (probability of hypothesis 

given the data) is chosen to classify the data. The Naive Bayes model is used for a classi-

fication problem to classify data instances into different classes (or hypotheses) based on 

the maximum probability of a class given the dataset. This model can be extended to real-

time data and attributes by assuming that the data follows a Gaussian (or normal) distrib-

ution. The probability of hypothesis being true for a given data instance is defined by the 

Probability Density Function that makes use of mean and standard deviation of the 

dataset and is given by (Brownlee, 2016): 

pdf(x, mean, sd) = (1 / (sqrt(2 * PI) * sd)) * exp(-((x-mean^2)/(2*sd^2))) 

Because of its straightforward approach, Gaussian Naive Bayes model is simple 

and fast and can be used on complex, large datasets for classifications. It is also widely 

used as a model of choice in sentiment analysis and text classification problems (Kelly & 

Johnson, 2021; Jurafsky & Martin, 2009). 

7.3 Support Vector Machine 

Support Vector Machines is a supervised-learning classification model that attempts to 

find a hyperplane in the data distribution that categorizes the data instance into different 

classes (#Support-vector machine”, n.d., para. 1; Gandhi, 2018). 
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Figure 17. Possible hyperplanes for Support Vector Machine (Gandhi, 2018) 

To classify the data points correctly, the possibility of hyperplanes can be endless 

but the model tries to find a hyperplane with maximum margin, i.e, maximizing the dis-

tance between the plane and nearest data-points or instances on each side. These data 

points that are near or on the hyperplane determine the position and width of the hyper-

plane and are called Support Vectors. SVMs help capture complex relationships between 

data instances without a lot of manual transformation required. Using the correct kernel 

and optimal parameters, it helps provide accurate predictions. 
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Figure 18. Support Vectors - data instances or points that are closest to the hyperplane or 
lie on the hyperplane (Gandhi, 2018). 

7.4 AdaBoost Classifier  

AdaBoost (Adaptive Boosting) is a boosting ensemble classifier proposed by Yoav Fre-

und and Robert Schapire in 1996 (Navlani, 2018). An ensemble machine learning model 

follows one of the three approaches: Bagging, Boosting and Stacking to improve the pre-

diction accuracy of the final model. Adaboost is an ensemble of multiple classification 

models, using a Boosting approach, whose performance is improved through iterative 

training and adjusting of weights in the model based on the training error to account for 

any unusual instances in the training dataset. Boosting helps address bias in the dataset 

and avoids overfitting which makes it a good fit for this project. 
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Figure 19. Working mechanism of a typical AdaBoost ensemble model (Navlani, 2018) 

7.5 BERT 

BERT is the latest state-of-the-art model in the NLP and NLU domain proposed by Jacob 

Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova in 2019. BERT stands for 

Bidirectional Encoder Representations from Transformers (Devlin et al., 2019). BERT is 

a bidirectional transformer model that pretrains on bidirectional representations from un-

labeled text data by conditioning on right as well as left context in all layers (Devlin et 

al., 2019). The BERT model can be used and fine-tuned for a specific problem by just 

adding another training layer on top of the existing model. BERT is highly accurate and 

efficient for many NLP and NLU tasks without the need of any architectural modifica-
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tions to the model (Devlin et al., 2019). There are many pre-trained versions of BERT 

available and this project fine-tunes blueBERT for the readmission prediction task. 

BlueBERT or NCBI BERT was developed by the National Library of Medicine 

and National Institute of Health specifically for tasks in the clinical domain. The BLUE in 

BlueBERT stands for Biomedical Language Understanding Evolution (Peng et al., 2019). 

This variant of the BERT model is pretrained on MIMIC-III clinical notes and abstracts 

PubMed dataset and performs better than other variants of BERT for biomedical tasks 

(Peng et al., 2019). The project utilizes the built-in pipeline with the pre-trained weights 

in the model for prediction and evaluation. 
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Chapter 8: Method 

In the project, all models mentioned in the previous section are trained and evaluated 

based on AUC score for 30-day unplanned readmission prediction. The final dataset used 

for training and evaluating the models is prepared by cleaning and processing the data in 

the table NOTEEVENTS and ADMISSIONS of the MIMIC-III dataset, as described in 

the Chapter 4: Data Preparation and Chapter 5: Data Pre-Processing. The processed 

feature-set is transformed into a sparse matrix before being used for training the five 

models: Logistic Regression, SVM with kernel, Adaboost ensemble and Guassian Naive 

Bayes. Each model is trained separately and evaluated based on accuracy and AUC score 

to identify scopes for improvement. Using the zipf’s law as the guiding principles, the list 

of stop words is updated iteratively and the vectorizer is trained again to get an updated 

and more efficient feature set.  
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Figure 20. Importance of words in the discharge summaries calculated and plotted based 
on the Zipf’s law 
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To improve the model efficiency and performance, each model cross-validated over five 

iterations to get a smoother AUC curve on the training and validation dataset. Finally, the 

vectorizer is re-trained on a range of max_features value and the models are trained and 

evaluated on the feature set of each dimension for comparison. 

To try prediction using a transformer model, BERT is used with Huggingface transform-

ers for training on the created feature set. BERT model is trained on created feature-set 

abstracted from the MIMIC-III dataset for 30-day unplanned readmission and the pre-

trained checkpoints available in the blueBERT model are updated. This is done by down-

loading the pre-trained checkpoints for BERT and adding another layer on top of the core 

model and updating the pre-trained checkpoints. The pretrained checkpoints used are de-

rived from the blueBERT model which is trained on MIMIC and PubMed datasets. 

For the baseline results, a logistic regression and support vector machine models are 

trained and evaluated on the basic demographic and ethnographic attributes of patients 

data available in the ADMISSIONS table of the dataset. The output labels are generated 

in the same way as described in the Chapter 5: Data Preparation and the categorical data 

is encoded first using a label encoder and then encoded using the one-hot encoding tech-

nique before feeding into the model for training and evaluation. "
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Chapter 9: Results 

The baseline model developed as a part of the project uses the demographic information 

of patients as it’s feature set and even though has an accuracy high enough, does not per-

form distinguishing between the two classes - positive and negative readmissions. Table 4 

shows the AUC scores attained by the baseline models on the MIMIC-III dataset. 

Table 4. AUC scores for the baseline models on the training and validation dataset. 

Figure 21 shows the AUC graph for both the models (which look exactly the same) which 

outlines an AUC score of 0.5 with no ability to distinguish between the positive and nega-

tive classes. 

Model Train AUC Valid AUC

Logistic Regression 0.500 0.500

Poly-kernel SVM 0.500 0.500
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Figure 21. ROC curve for the baseline logistic regression and poly 
-kernel SVM models at a threshold value of 0.5 

The project trains and compares a variety of models to see how they perform against each 

other. The hyperparameter tuning is primarily done manually and performance was eval-

uated based primarily on the AUC curve. Table 5 and Table 6 show the model perfor-

mance without any improvement or modifications on the train dataset. 

Table 5. Model evaluation on the training dataset 

Model AUC Accuracy Recall Precision Specificity Prevalence

Logistic Re-
gression

0.754 0.685 0.624 0.712 0.747 0.500

SVM 0.913 0.808 0.635 0.982 0.980 0.500

Adaboost 0.781 0.710 0.691 0.718 0.729 0.500

Guassian 
Naive Bayes

0.714 0.664 0.566 0.703 0.761 0.500

Model AUC Accuracy Recall Precision Specificity Prevalence

Logistic 
Regres-
sion

0.706 0.714 0.595 0.114 0.721 0.057

SVM 0.668 0.749 0.449 0.114 0.767 0.057

Adaboost 0.680 0.658 0.604 0.097 0.662 0.057
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Table 6. Model evaluation on the validation dataset. 

Figure 22, 23, 24 and 25 show the cross-validation training and the regular training AUC 

score of the model’s while learning on the training dataset. 

Figure 22. Learning curve showing AUC scores on the training dataset for  
the Logistic Regression model  

Guassian 
Naive 
Bayes

0.668 0.709 0.535 0.104 0.720 0.057
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Figure 23. Learning curve showing AUC scores on the training dataset for  
the Gaussian Naive Bayes model  

Figure 24. Learning curve showing AUC scores on the training dataset for  
the AdaBoost model  
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Figure 25. Learning curve showing AUC scores on the training dataset for  
the Poly-kernel SVM  model  

Next, the project evaluates the model by varying the number of features on which the 

word vectors are trained and evaluates each of the four models iteratively by varying the 

number of features used in the word vector and plotting a learning curve to see how each 

model learns and the learning trend they follow. The logistic regression model performs 

the best, reaching the highest AUC score of 0.708 on the validation dataset and does not 

show any signs of over-fitting on the training dataset. 
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Table 7. Evaluation (AUC scores) for the Logistic Regression model on the training and 
validation dataset by varying the features in the word vector. 

In the Figure 26 (below), the learning of logistic regression models over a range of fea-

tures is plotted against the fine-tuning of the cost-function parameter or decay variable 

(C) of the model.  

Model Number of fea-
tures

Training AUC Score Validation AUC Score

Logistic 
Regression

100 0.686 0.667

300 0.712 0.684

1000 0.736 0.700

3000 0.753 0.707

10,000 0.758 0.708

30,000 0.759 0.708
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Figure 26. Graphical representation of the performance (AUC score) of the Logistic Re-
gression model as the decay factor, C, is fine-tuned over a range of values. 

The fine-tuning of the other models in the project is done through GridSearchCV to op-

timize fitting of the model and parameters on the train dataset. Table 8, 9, 10 show the 

AUC scores obtained by the different models on train and validation dataset for a range 

of feature values after parameter fine-tuning. 

Table 8. Evaluation (AUC scores) for the Gaussian Naive Bayes model on the training 
and validation dataset by varying the features in the word vector. 

Model Number of 
features

Training AUC Score Validation AUC Score

Gaussian 
Naive Bayes

100 0.629 0.632

300 0.628 0.635

1000 0.652 0.644

3000 0.714 0.668

10,000 0.835 0.617

30,000 0.925 0.559

Model Number of fea-
tures

Training AUC Score Validation AUC Score

Poly 
Kernel 
SVM

100 0.825 0.642

300 0.867 0.652

1000 0.900 0.661

3000 0.912 0.668

10,000 0.910 0.670

30,000 0.908 0.670
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Table 9. Evaluation (AUC scores) for the Poly-kernel SVM model on the training and 
validation dataset by varying the features in the word vector. 

Both the Poly kernel SVM and Gaussian Naive Bayes model do not show a significant 

improvement in the AUC score as the feature values are varied. The models peak at an 

optimal hyper-parameter value and show only a slight increase in the AUC score as the 

number of features are increased. While the Gaussian model does not overfit and per-

forms consistently, the poly-kernel SVM model tends to overfit as the features are in-

creased reaching a peak in AUC value because of the 5-fold cross-validation training 

technique. 

Table 10. Evaluation (AUC scores) for the AdaBoost model on the training and validation 
dataset by varying the features in the word vector. 

Model Number of fea-
tures

Training AUC Score Validation AUC Score

Adaboost 100 0.908 0.670

300 0.908 0.670

1000 0.908 0.670

3000 0.908 0.670

10,000 0.908 0.670

30,000 0.908 0.670
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Figure 27. Graphical representation of the performance (AUC score) of the AdaBoost 
model the number of features in the word vector are varied. 

We see that the learning and performance of Adaboost show no change and AUC score 

remains constant across the range of feature values (see Figure 27). A valid explanation 

behind this is the tendency of an Adaboost model to not overfit (Malfanti et al., 2017), 

but the difference between the AUC scores for train and validation sets shows that the 

model is biased which is a problem with shallow decision trees used in the Adaboost en-

semble approach (Misra & Li, 2019). 

Using the BlueBERT (base) pre-trained model with Huggingface transformers, the model 

reaches an accuracy level of 72% on the validation dataset. A disadvantage with using the 

pre-trained BERT models is that these models are trained for performing on predefined 

tasks and thus the weights in the outer layer of the model are biased to the task the model 
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was trained for during development. Adjusting and fine-tuning the weights and embed-

ding in different layers of the model is computationally and time intensive, and was be-

yond the scope of this project. 
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10. Conclusion 

The existing research, data exploration and model evaluations done in the project bear 

evidence to the importance of unstructured data stored in the clinical notes for the predic-

tion of 30-day unplanned readmission to the ICU. The prediction model performs better 

when trained on the data in the clinical notes, specifically discharge summaries used in 

this project. Ther performance in terms of AUC scores sees a growth from 0.5 using cate-

gorical demographic and ethnographic features to 0.71 on the validation data using dis-

charge summaries. Future work in the space needs to focus on using other clinical notes 

data like nursing notes/charts, nutrition data, physician notes, daily chart data, case man-

agement, consultation prescriptions etc. for the prediction of unplanned readmission. 

Harnessing the information stored in the unstructured data could open possibilities for 

better and more accurate prediction of not just readmission but also plausible diagnosis 

and prognosis. It would also be interesting to analyse and correlate how often patients 

with different cultural and demographic backgrounds are readmitted to the ICU for simi-

lar disease diagnosis and prognosis and how is the readmission rate influenced by the 

length of stay of a patient in the ICU for a certain disease. 

scispaCy (Neumann et al., 2019) and blueBERT (Peng et al., 2020) models used and 

trained in this project have been developed specifically for biomedical data, but they need 

to be trained and evaluated on larger amounts of data for a variety of prediction and clas-
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sification problems to realise their full potential. The information hidden in EHR/EMR 

has the power of revolutionizing the healthcare industry through prediction of variables 

that can help patients, their family and friends and the hospital management and staff plan 

better for a more efficient case management which is financially effective and medically 

beneficial. For the future, it would be interesting to evaluate the model based on clinically 

accepted performance measures and use them for model fine-tuning. The project though 

calculates the precision and recall for the trained models, the values are not used for fine-

tuning and improving the models. It might be beneficial to see how a tradeoff between 

precision and recall impacts the model performance for 30-day unplanned readmission 

prediction. Often for problems in the medical and clinical domain, given the loss and cost 

associated with a False Negative prediction, recall is valued over precision. Considering 

the influence of demographic and socioeconomic factors on patient after-care, thus im-

pacting readmission possibility, it is important that for the given feature set a precision 

versus recall tradeoff is accounted for parameter fine-tuning and model evaluation in fu-

ture works. "
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Appendix 

A. An example image of the discharge summary for a ruptured appendix case. 

 

Fig 1. An example of discharge summary retrieved from Flickr. Ruptured Appendix - Discharge 
Letter p2 by Jimee, Jackie, Tom & Asha is licensed under CC BY-SA 2.0
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B. The complete schema of the MIMIC-III dataset. Generated by SchemaSpy 
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