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Abstract 

 

Fault tree analysis (FTA) is a widely used methodology in the process industries.  FTA is used for 

the development of failure mechanisms, computation of failure frequencies and the determination of 

the probability of failure on demand of safety systems.  Much of the data used in a FTA study are 

uncertain.  For example, the failure rate of a pump is often not known with great precision.  Likewise 

the failure rates of instrumentation are often known only within some defined limits.  The common 

practice, used by analysts in the quantification of a fault tree, is to use the most likely or best guess 

as to the needed failure rate data.  The use of best guess values as data inputs to the quantification of 

a fault tree creates uncertainty in the computed results.   

This paper presents a general methodology for the determination of the impact of uncertainty on the 

results of a fault tree study.  The general methodology is based on the mathematics of propagation of 

error and variance contribution analysis.  An example is presented to illustrate the application of the 

fault tree uncertainty analysis methodology to a real world problem. 

Keywords: Quantitative Risk Assessment, Fault Tree Analysis, Uncertainty Analysis 

 

1.  Background 

Fault tree analysis is a widely used method for representation of failure mechanisms in chemical 

plants.  The methodology is described in the CCPS CPQRA guideline book [Ref. 1] and is extensively 

discussed in Chapter 9 of Lees [Ref. 2].  Lacking in these discussions is a systematic method to 

quantify the uncertainty of the results of the fault tree calculations. 

Fault tree analysis has also been used in the aircraft and aerospace industries, nuclear power plant 

review and is recognized by the OSHA Process Safety Management (PSM) standard [Ref. 3] as a 

method for process hazards analysis.  
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2.  Review of Error Propagation and Variance Contribution Analysis (VCA) 

Methodology 

The mean and variance of a function of random variables can be approximated using the method 

described by Haugen [Ref. 4] and applied by Freeman [Ref. 5, 6, 7].  Define an arbitrary function of 

a set of random variables, xi, as: 

Let 

 

Y = F(xi)  (Eq 1) 

 

The mean of Y can be estimated using the following approximation:  

E(Y) = F[ E(xi)] (Eq 2) 

 

Where:  

E(Y) = expected value of random variable Y = mean of Y 

E(xi) = expected value of random variable xi = mean of xi 

 

The variance of Y can likewise be estimated as: 

 

V(Y) =  (Eq 3) 

Where: 

V(Y) = variance of random variable Y as defined above in Equation 1 

V(xi) = variance of random variable xi  as defined above in Equation 1 

 

Note that the variance is simply the square of the standard deviation.  Using the variance will 

simplify the mathematics that is described below.  The contribution of each independent random 

variable to the overall variance in the function is: 

V(Y from xi) =  (Eq 4) 
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The relative contribution of each term to the overall variance V(Y) is a measure of the importance in 

the uncertainty in the particular random variable, xi.  In effect, this is a sensitivity analysis combined 

with a uncertainty evaluation.  The variance contribution combines the sensitivity in the answer to 

changes in the uncertain random variable, xi, with a measure of the uncertainty in the random variable, 

xi. The overall variance in Y is found by summing the sensitivity weighted variances from each 

random variable. 

 

Numerical Estimate of the Sensitivity 

Let us return to the fundamental definition of the derivative. 

As before, set y = F(xi) 

 

𝜕𝑦

𝜕𝑥
 =   lim

∆𝑥𝑖→0
[

𝐹(𝑥𝑖+ ∆𝑥𝑖)− 𝐹(𝑥𝑖)

∆𝑥𝑖
] (Eq 5)  

 

We are interested in a numerical estimate of the derivative.  Therefore, we will make the following 

approximation. 

𝜕𝑦

𝜕𝑥
 ~  [

𝐹(𝑥𝑖+ ∆𝑥𝑖)− 𝐹(𝑥𝑖)

∆𝑥𝑖
] (Eq 6) 

 

Linear Functions 

Let us examine the approximation for a simple linear function.   

Let Y = AX + B (Eq 7) 

What is the sensitivity of Y to a change in variable X?  By simple calculus: 

𝜕𝑦

𝜕𝑥
 = 𝐴 (Eq 8) 

We can also find the sensitivity using the numerical approximation as: 

𝜕𝑦

𝜕𝑥
 ~ [

𝐹(𝑥𝑖+ ∆𝑥𝑖)− 𝐹(𝑥𝑖)

∆𝑥𝑖
] (Eq 9) 

𝜕𝑦

𝜕𝑥
 ~  [

(𝐴(𝑥𝑖+ ∆𝑥𝑖)+ 𝐵)−(𝐴(𝑥𝑖)+ 𝐵)

∆𝑥𝑖
]  (Eq 10) 

𝜕𝑦

𝜕𝑥
 ~  [

(𝐴(𝑥𝑖+ ∆𝑥𝑖))−(𝐴(𝑥𝑖))

∆𝑥𝑖
]  (Eq 11) 

𝜕𝑦

𝜕𝑥
 ~  [

((𝐴 𝑥𝑖+𝐴 ∆𝑥𝑖))−(𝐴(𝑥𝑖))

∆𝑥𝑖
]  (Eq 12) 

𝜕𝑦

𝜕𝑥
 ~  [

𝐴 ∆𝑥𝑖

∆𝑥𝑖
]  (Eq 13) 

𝜕𝑦

𝜕𝑥
 =  𝐴   (Eq 14) 

Note that for a simple linear equation the numerical result for the sensitivity is exactly the same as 

the analytical expression.  There is no restriction on the size of the perturbation (∆𝑥𝑖) used in the 



  

calculations.  Previously, Freeman [Ref 7] has suggested using a 10% perturbation in xi to do the 

sensitivity calculations.  However any size of perturbation will work and generate the correct 

sensitivity. 

This is a general result.  As long as the function can be expressed as a linear function of a number of 

variables, xi, the sensitivity can be directly calculated by a simple perturbation of the function.  The 

resulting sensitivity will be exactly the same as would be obtained using analytical methods. 

 

Non-Linear Expressions 

In the quantification of a fault tree, the top event frequency is computed using failure rates of the 

component devices and time that measures the interval between system validations. In a minimal cut 

set of two or more basic events, the time variable may be the same.  For example the test interval for 

a valve may be the same for a pressure transmitter.  A minimal cut set involving both the valve and 

the pressure transmitter would create a 2rd order term in the test interval.  If the test interval is 

uncertain, how do we compute the sensitivity of the top event frequency with respect to the test 

interval?  We will now explore how to deal with this type of problem when completing the uncertainty 

analysis. 

As before, let 

y = F(xi) = Axin + B (Eq 15) 

What is the sensitivity of Y to a change in variable X?  By simple calculus: 

𝜕𝑦

𝜕𝑥
 = nAxin-1 (Eq 16) 

 

Let us evaluate the numerical approximation for this case.  If n=2, the function of interest is: 

y = F(xi) = Axi2 + B (Eq 17) 

From basic calculus, the exact analytical expression for the sensitivity is: 

𝜕𝑦

𝜕𝑥
 = 2 A(xi) (Eq 18) 

 

If xi = 1 

𝜕𝑦

𝜕𝑥
 = 2 A (Eq 19) 

 

Again the approximation of the derivative is: 

𝜕𝑦

𝜕𝑥
 ~  [

(𝐴(𝑥𝑖+ ∆𝑥𝑖)2+𝐵)−(𝐴𝑥𝑖+𝐵)

∆𝑥𝑖
] (Eq 20) 

𝜕𝑦

𝜕𝑥
 ~  [

𝐹(𝑥𝑖+ ∆𝑥𝑖)− 𝐹(𝑥𝑖)

∆𝑥𝑖
] (Eq 21) 

Inserting the equation for F(xi) we obtain: 

𝜕𝑦

𝜕𝑥
 ~  [

(𝐴(𝑥𝑖+ ∆𝑥𝑖)2+𝐵)−(𝐴𝑥𝑖+𝐵)

∆𝑥𝑖
] (Eq 22) 



  

𝜕𝑦

𝜕𝑥
 ~  [

(𝐴 (𝑥𝑖2+2∆𝑥𝑖+ ∆𝑥𝑖2) +𝐵)−(𝐴𝑥𝑖+𝐵)

∆𝑥𝑖
] (Eq 23) 

𝜕𝑦

𝜕𝑥
 ~  [

𝐴 (𝑥𝑖2+2∆𝑥𝑖+ ∆𝑥𝑖2) −𝐴𝑥𝑖

∆𝑥𝑖
] (Eq 24) 

𝜕𝑦

𝜕𝑥
 ~  𝐴 [

 (𝑥𝑖2+2∆𝑥𝑖 + ∆𝑥𝑖2) −𝑥𝑖

∆𝑥𝑖
] (Eq 25) 

 

Setting xi =1, and using a 10% perturbation as ∆𝑥𝑖 = 0.1 𝑥𝑖 = 0.1 

𝜕𝑦

𝜕𝑥
 ~  𝐴 [

 (12+(2)(0.1)1+0.12 ) −1

0.1 (1)
] (Eq 26) 

𝜕𝑦

𝜕𝑥
 ~  𝐴 [

 (2)(0.1)+ 0.01

0.1 
] (Eq 27) 

𝜕𝑦

𝜕𝑥
 ~  𝐴 [

 0.21 

0.1
] (Eq 28) 

𝜕𝑦

𝜕𝑥
 = 2.1 A (Eq 29) 

Note that the numerical estimate (Eq 29) is approximately 5% greater than the analytical value  

(Eq 19).  As shown in Table 1, for higher order equations the error will increase as the size of the 

perturbation becomes more important.  Table 2 shows the impact of reducing the perturbation size to 

1%. For 10th order variables (say a minimal cut set with 10 basic events) the error is 5%.  For almost 

all engineering evaluations, a maximum error of 5% should be adequate. 

For cases where the test frequency, repair time, or mission time appears in a minimal cut set 3 or 

more times, I suggest that the following perturbation in time be used to compute the sensitivity of the 

top event: 

∆𝑡𝑖𝑚𝑒 = 0.01 𝑡𝑖𝑚𝑒 (Eq 30) 

The sensitivity of the top event frequency to all uncertain variables can be computed using a 

perturbation of 1%. 

∆𝑥𝑖 = 0.01 𝑥𝑖 (Eq 31) 

 

3.  Fault Tree Analysis 

Fault trees are often used to analyze potential failures of an engineered system.  A fault tree is a failure 

logic diagram that shows the relationship of device or system failures leading to an accident.  Fault 

tree analysis is covered in detail in the CCPS CPQRA book [Ref. 1].  A fault tree is constructed by 

starting with a top event or condition and asking the question: 

What conditions lead to this outcome? 

Each condition in the next layer down is then analyzed by asking the same question. What conditions 

lead to this outcome?  The logic of how these intermediate conditions (termed intermediate events) 

are related is expressed using AND and OR logic gates.  An AND gate output is true if and only if 

(iff) all of the inputs to the AND gate are all true simultaneously.   An OR gate output is true iff one 

of the inputs to the OR gate is true.   



  

Once the fault tree logic structure is created, numerical data can be used to calculate the frequency or 

probability of the top event of concern occurring.  For fault trees where a basic event is found in 

multiple branches of the tree, such as power failure, the logic structure of the tree must be simplified 

to remove the impact of the repeated events on the top event of concern.  This simplification is done 

using Boolean Algebra.  Each resulting grouping of basic events can cause the top event to occur.  

These groupings of basic events are called minimal cut sets. As a simple example consider the  the 

Boolean Algebra representation of a fault tree : 

T = BE11 + BE1 • BE2 + BE1 • BE3 + BE2 • BE9 + BE3 • BE7 (Eq 32) 

Where: 

T = Fault Tree Top Event 

BE11 = Basic Event 11 

BE1 = Basic Event 1 

BE2 = Basic Event 2 

BE3 = Basic Event 3 

BE7 = Basic Event 7 

BE9 = Basic Event 9 

+ = Boolean Algebra Addition Symbol 

• = Boolean Algebra Multiplication Symbol 

For this example the top event T, the minimal cut sets are: 

BE11  

BE1 BE2  

BE1 BE3  

BE2 BE9 

BE3 BE7  

For example the existence of basic events BE1 and BE3 guarantees that the top event T will occur.  

Publically available standard computer software such as SAPHIRE [Ref. 8] may be used to find the 

minimal cut sets of a large fault tree. 

 

The representation of the top event in equation 32 can now be used to compute the probability or 

frequency of occurrence of the top event.  If the devices describe by the basic events are non-

repairable and are tested after a period of time TI, the probability of top event, T, may be calculated 

as: 

 

Prob (T)  = 11 TI/2 + (1 TI/2) (2 TI/2) + (1 TI/2) (3 TI/2) +   

(2 TI/2) (9 TI/2) + (3 TI/2) (7 TI/2)  (Eq 33) 

Where: 



  

11 = failure rate of device 11 in basic event BE11, failures per unit time 

1 = failure rate of device 1 in basic event BE1, failures per unit time 

2 = failure rate of device 2 in basic event BE5, failures per unit time 

3 = failure rate of device 3 in basic event BE3, failures per unit time 

7  = failure rate of device 7 in basic event BE7, failures per unit time 

9  = failure rate of device 9 in basic event BE9, failures per unit time 

TI = test interval, time 

Equation 33 assumes that the device failure rates are small and the product  TI < 0.1.   The other 

major assumption is that the values of all of the failure rates and test intervals are known.  In reality 

the failure rate data are not known exactly with only a range or probability distribution representing 

the state of knowledge. 

 

4.  Example Problem 

 

The following example is taken from the ISA technical report on fault tree analysis [Ref. 9].  This 

example should not be considered as a recommendation by either ISA or AIChE.  The example is 

presented to allow for the demonstration of the methods that can be used in a fault tree study to 

quantify the uncertainty in the resulting calculated failure frequency or failure probability. 

Consider the interlock on the intermediate storage tank T101 shown on Piping and Instrument 

Diagram in Figure 1.  The interlock block diagram is shown in Figure 2. The interlock is intended to 

prevent an abnormal condition in the tank which could lead to a uncontrolled release of the tank 

contents.  The process hazards analysis team has recommended that the interlock be designed to safety 

integrity level 2 (SIL 2) with a target probability of failure on demand (PFD) of no greater than 1E-2 

or a  risk reduction factor (RRF) of 100.  Does the proposed interlock shown on Figure 1 meet the 

SIL 2 target?  What is the uncertainty in the predicted PFD of the interlock? 

A fault tree for the failure of this interlock is shown in Figure 3.    A minimal cut set analysis has 

been completed and the resulting minimal cut sets are presented in Table 3.  We can now write the 

Boolean Algebra equation that represents this fault tree as: 

T =PE + TS1 • TS2 + LS1 • LS2 + FT1 • FT2 + FT2 • FT3  + FT1 • FT3 + 

 BV1 • BV2 + BV1 • SOL1  + BV2 • SOL2 + SOL1 • SOL2  + PT1 • PT2 (Eq 34) 

Assuming that the interlock is non-repairable until tested at time TI and using lamda-time (T) 

approximation of the failure rate, the Boolean representation of the fault tree may now be converted 

to a failure probability model as: 

Prob (T)  = Prob(PE) + (TS1 TI/2) (TS2 TI/2) + (LS1 TI/2) (LS2 TI/2) + (FT1 TI/2) (FT2 TI/2) + 

(FT2 TI/2) (FT3TI/2) + (FT1 TI/2) (FT3 TI/2) + (BV1 TI/2) (BV2 TI/2) + 

(BV1 TI/2) (SOL1TI/2) + (BV2 TI/2) (SOL2 TI/2) + 

 (SOL1 TI/2) (SOL2 TI/2) + (PT1 TI/2) (PT2 TI/2)  (Eq 35) 

Where: 

Prob(PE) = failure probability of electronic logic solver, assumed to be constant at 5E-3. 



  

TS1 = failure rate of temperature switch 1, failures per unit time 

TS2 = failure rate of temperature switch 2, failures per unit time 

LS1 = failure rate of level switch 1, failures per unit time 

LS2  = failure rate of level switch 2, failures per unit time 

FT1  = failure rate of flow transmitter 1, failures per unit time 

FT2  = failure rate of flow transmitter 2, failures per unit time 

FT3 = failure rate of flow transmitter 3, failures per unit time 

BV1 = failure rate of block valve 1, failures per unit time 

BV2 = failure rate of block valve 2, failures per unit time 

SOL1 = failure rate of solenoid valve 1, failures per unit time 

SOL2  = failure rate of solenoid valve 2, failures per unit time 

PT1  = failure rate of pressure transmitter 1, failures per unit time 

PT2  = failure rate of pressure transmitter 2, failures per unit time 

TI = test interval, time 

The electronic logic solver PE is assumed to have a constant failure probability of 5E-3. 

Failure rate data for the other devices are present in Table 4.  The mode (most likely value) of the 

failure rate is set equal to the point value taken from the ISA example [Ref. 9].  The triangular 

probability distribution (Appendix A) was assumed to represent the failure rate data for the equipment 

items.  The upper and lower limits are based on the failure rate data of Appendix 4 of Smith [Ref. 

10].  

Using the device failure rates represented by the Table 4 column labeled as the mode and the minimal 

cut sets presented in Table 3, the ISA technical report [Ref.9, page 35] computes an interlock PFD as 

7.5E-3 (RRF of 133).  This would satisfy the requirement for a SIL 2 interlock {PFD of 1E-2 or a 

RRF of 100}.  Now what is the uncertainty in the interlock PFD? 

The first thing to remember is that the PFD should be calculated based on the mean value of the 

failure rate lambda (), not the mode of the failure rate.  For a data set, the mean is the best single 

point representation of the data set.  Table 5 presents the PFD of each minimal cut set using the mean 

of the device failure rate lambda ().  The total of the PFD becomes 1.47E-2 (RRF of 68).  This would 

not satisfy a SIL 2 interlock requirement.   

Now we will compute the variance of the predicted probability of top event, T.  To compute the 

variance of the probability of the top event, T, we will need to compute the sensitivity of the top event 

to each of the variables.  

 

Sensitivity Using Numerical Perturbation Calculation  

We will use the ISA interlock example previously analyzed by Freeman (Ref. 7).  Using public data 

sources Freeman found that the probability of failure on demand (PFD) was 1.49E-2.  To use the 



  

perturbation method for the evaluation of the sensitivities requires evaluating the impact of small 

changes in the uncertain input parameters.  To enable these calculations to be completed numbers 

using 8 significant digits were used.  The calculations were completed using Microsoft Excel which 

uses double-precision floating-point arithmetic compliant with IEEE 754 specification.  Excel 

nominally carries 15 significant figures in calculations.  We will complete the calculations with Excel 

displaying 5 significant digits and round the result at the end of the calculations to 4 significant digits.  

We will illustrate the calculations by looking at the Flow Transmitter, FT1. 

a. First we recalculate the PFD of the example and find it to be 1.4594E-02.  This is the 

base number that we will use in the perturbation calculations. 

b. We now make a small change in mean failure rate of FT1.  The mean failure rate is 

8E-6 failures/hour.  A 1% perturbation is used or an increase of 0.08E-6 

failures/hour.   

c. The perturbed value of the failure rate of FT1 becomes  

(8 + 0.08) * 1E-6 failures/hour or 8.08E-6 failures/hour. 

d. The perturbed value of the failure rate of FT1 is now used to re-calculate the PFD of 

the interlock.  The resulting re-calculation finds that the PFD is 1.4618E-02 

e. The change in the PFD  from the base number due to the perturbation of the failure 

rate of FT1 is now computed as:  

  delta PFD = 1.4618E-02 - 1.4594E-02 = 2.4556E-05 

f. The sensitivity of the PFD to a change in the failure rate of FT1 is now computed by 

dividing the change in the PFD by the change FT1 failure rate as: 

  sensitivity = (2.4556E-05)/(0.08E-6 failures/hour) = 307.0 hours  

  Result is rounded to 4 significant digits. 

We now note that in the paper by Freeman (Ref. 7) that equation 32 presents the sensitivity for FT1 

as: 

 
𝜕𝑃𝑟𝑜𝑏(𝑇) 

𝜕FT1
 =  307.0 hr (Eq 32 of Ref 7) 

The answers are exactly the same.  The sensitivity calculations for all of the devices are presented in 

Table 6.  Note that in every case the sensitivity found using the analytical expression and the 

numerical estimate are the same.  This is a general result which will be true for all basic event 

equipment failure rates found in a fault tree minimal cut set. 

Once found, the sensitivities can now be used to compute the variance contribution of each particular 

device to the overall variance of the top event PFD in the same manner as Freeman previously 

presented. 

The sensitivities of the top event probability are summarized in Table 6.  We may now compute the 

variance contribution of each uncertain variable using Equations 1 – 4 in the methodology section of 

this paper.  The relative variance contribution is expressed as a percent of the total variance of the top 

event probability.  The top event variance is found to be 8.24E-6 (failures per hour)2 or equivalently 

the top event standard deviation is 2.78E-3 failures per hour. 

In this example the variance (measure of uncertainty) is dominated by the flow transmitters.  The 

flow transmitters account for almost 2/3 of the uncertainty in the top event probability.  Failures of 

the flow transmitters appear in 3 of the minimal cut sets.  Since the uncertainty in the transmitter 



  

failure rates is large, the flow transmitters should contribute a significant amount to the variance of 

the fault tree top event.   

We can use the variance in the top event to define the likelihood of achieving SIL 2 performance of 

the interlock. The calculations are done using the normal probability distribution.  The normal 

distribution is tabulated as the standard normal distribution using a normalization factor Z.    

The standard normal factor, Z, [Ref. 11] is defined as: 

 

Z =  [
𝑥𝑖−𝐸(𝑥)

𝜎
]      (Eq 36) 

Where: 

σ     =  standard deviation. Note that the variance of a random variable is the square of the standard 

deviation of the random variable. 

E(x) = Expected value of the random variable xi 

 

For the example, the expected value of the probability of the top event of concern was calculated as  

E[Prob(T)] =1.47E-2  (Eq 37) 

From Table 4, the standard deviation in the probability of the top event is  

σT     = 2.78E-3  (Eq 38) 

The target PFD for a SIL 2 interlock must not be worse than 1E-2 (RRF of 100). 

We compute the normal distribution Z factor at the SIL 2 target value as 

Z = (0.01 – 0.0147)/2.78E-3  (Eq 39) 

Z = -1.69065  (Eq 40) 

Tabulations of standard normal distribution are presented in most statistics books such as Meyer [Ref. 

11].  For this value of Z, the corresponding probability that the interlock will achieve SIL 2 

performance is 4.55 percent.  We can also compute the risk reduction that the proposed interlock 

design will achieve.   

What is the interlock probability of failure on demand (PFD) that we can be 95% certain that the 

interlock will provide?  At the 95% level, the corresponding Z factor is 1.65 [Ref 11].  We now 

compute the corresponding PFD of the interlock that corresponds to this Z factor. 

Z =  [
x95%−E[Prob(T)]

𝜎
]      (Eq 41) 

In this case: 

x95% = the PFD that we can be confident that the interlock will achieve 

σT     =2.78E-3  (Eq 42) 

E[Prob(T)] =1.47E-2  (Eq 43) 

Z= 1.65 (Eq 44) 



  

Rearranging equation 40 to find x95%we obtain: 

x95% = E[Prob(T)] + Z σT  (Eq 45) 

 

x95% = 1.47E-2 + (1.65) (2.78E-3) = 0.0193  (Eq 46) 

or a 95% certain risk reduction factor of 

RRF = 1/PFD = 1/0.0193 = 52  (Eq 47) 

By the same logic there is  5%  chance that the risk reduction is a PFD of 0.01 or an RRF of 99. In 

summary, this interlock is likely to perform as a mid-range SIL 1 interlock, not the SIL 2 interlock 

desired by process hazards analysis team. 

 

5.  Methodology for Fault Tree Uncertainty Analysis 

We can now generalize the methods used in the above example to a proposed method for the 

evaluation of the uncertainty in a fault tree.  The following step-by-step procedure is modified from 

that that previously published by Freeman (Ref 7) to indicate the use of numerical methods to 

compute the sensitivity. Step 8 shown in italics indicates the modification.. 

1. Create the fault tree using standard methods outline in the CPQRA book [Ref 1]. 

2. Determine minimal cut sets by hand or using standard computer software such as SAPHIRE 

[Ref 12]. 

3. Define the needed failure rate data for each basic event. 

4. Define those basic events that are considered to be uncertain.  

5. For the basic events that are uncertain, define the probability distribution and associated 

parameters needed to numerically define the probability distribution. Appendix B of this paper 

presents the needed description of 4 commonly used probability distributions.  In many cases 

the triangular distribution will be selected. The minimum, maximum and mode (most likely) 

parameters will be needed for the triangular distribution. 

6. Compute the mean of each of the uncertain variable 

7. Compute the probability or frequency of the fault tree top event of interest using the mean 

value for each uncertain variable. 

8. Compute the sensitivity of the top event probability or frequency using the numerical methods 

outlined in this paper.  

9. Compute the variance of each of the uncertain variables 

10. Compute the variance contribution of for each of the uncertain variables to the top event 

probability or frequency using equation 6. 

11. Compute the total variance of the top event of interest probability or frequency by summing 

all of the contributions determined in Step 10. 

12. Compute the variance contribution percent of each uncertain variable by dividing the variable 

contribution (Step 10) by the total variance of the top event of interest (Step 11). 

13. Define the level of risk the project is willing to take. What chance will the project management 

accept for potential failure of the interlock to achieve the desired  risk reduction?   In the 

above example, I have used a 5% risk of failure or a 95% certainty that the interlock will 

achieve a risk reduction factor of 52.  In the example, there is a very low probability that the 

interlock will achieve a SIL 2 PFD of 0.01 or an RRF of 100. 



  

Alternately you can report the 90% range for the top event of interest.  For the example the 90% range 

starts at the 5% RRF of 99 and there is a 95% certainty that that an RRF of at least 52 will be achieved.  

The expected risk reduction for this interlock is an RRF of 68. 

 

6.  Conclusions 

A general procedure has been presented to quantify the uncertainty in calculations of failure 

frequencies using the fault tree methodology.  The uncertainty analysis procedure is based on the 

application of propagation of error and variance contribution analysis techniques to the minimal cut 

sets created during a fault tree study.  The procedure is simple and can be incorporated into standard 

fault tree analysis programs such as SAPHIRE [Ref 8]. This procedure is based on perturbation 

calculation of the frequency of the top event from changes in the uncertain variables.   Incorporation 

of a numerical  perturbation  method into standard fault tree software such as SAPHIRE would be 

easy to implement and would provide the means for evaluation of the uncertainty in the quantified 

fault tree results. 

For the example interlock presented in this paper, the uncertainty in the device failure rates degrades 

the predicted interlock SIL from meeting SIL 2 requirements to becoming a mid range SIL 1 

interlock.  This is a general result.  Uncertainty in design parameters will reduce the likelihood that 

the equipment will achieve desired results.  The design engineer has two choices: 

 Accept the conclusion that the interlock will not perform as SIL 2 

 Re-design the interlock using more reliable components to achieve the SIL 2 target 

The variance contribution analysis shown in Table 7 indicates that the major contributor to the 

uncertainty in the interlock performance is the Flow Transmitters.  Flow transmitters certified to SIL-

2 or SIL-3 performance with lower failure rates could improve the calculated PFD of the interlock.  
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Table 1. Comparison of Analytical Sensitivity with Numerical Approximation  

with Perturbation of 10% in xi for the equation: y = F(xi) = Axin + B 

Order of 

Equation 

n 

Equation for 

Analytical Sensitivity 

𝜕𝑦

𝜕𝑥
 = nAxin-1 

Sensitivity with 

xi = 1  

and A=1 

Numerical 

Sensitivity with 

∆𝑥𝑖 = 0.1 𝑥𝑖 

Error 

% 

1 
𝜕𝑦

𝜕𝑥
 = 1A(xi)0 1 1 0 

2 
𝜕𝑦

𝜕𝑥
 = 2A(xi)1 2 2.1 5 

3 
𝜕𝑦

𝜕𝑥
 = 3A(xi)2 3 3.31 -10% 

4 
𝜕𝑦

𝜕𝑥
 = 4A(xi)3 4 4.64 -16% 

5 
𝜕𝑦

𝜕𝑥
 = 5A(xi)4 5 6.11 -22% 

6 
𝜕𝑦

𝜕𝑥
 = 6A(xi)5 6 7.72 -29% 

7 
𝜕𝑦

𝜕𝑥
 = 7A(xi)6 7 9.49 -36% 

8 
𝜕𝑦

𝜕𝑥
 = 8A(xi)7 8 11.44 -43% 

9 
𝜕𝑦

𝜕𝑥
 = 9A(xi)8 9 13.58 -51% 

10 
𝜕𝑦

𝜕𝑥
 = 10A(xi)9 10 15.94 -59% 

Error = (Analytical- Numerical)/Analytical 

 

  



  

Table 2. Comparison of Analytical Sensitivity with Numerical Approximation  

with Perturbation of 1% in xi for the equation: y = F(xi) = Axin + B 

Order of 

Equation 

n 

Equation for Analytical 

Sensitivity 

𝜕𝑦

𝜕𝑥
 = nAxin-1 

Sensitivity with 

xi = 1  

and A=1 

Numerical 

Sensitivity with 

∆𝑥𝑖 = 0.1 𝑥𝑖 

Error 

% 

1 
𝜕𝑦

𝜕𝑥
 = 1A(xi)0 1 1 0 

2 
𝜕𝑦

𝜕𝑥
 = 2A(xi)1 2 2.01 -1% 

3 
𝜕𝑦

𝜕𝑥
 = 3A(xi)2 3 3.03 -1% 

4 
𝜕𝑦

𝜕𝑥
 = 4A(xi)3 4 4.06 -2% 

5 
𝜕𝑦

𝜕𝑥
 = 5A(xi)4 5 5.10 -2% 

6 
𝜕𝑦

𝜕𝑥
 = 6A(xi)5 6 6.15 -3% 

7 
𝜕𝑦

𝜕𝑥
 = 7A(xi)6 7 7.21 -3% 

8 
𝜕𝑦

𝜕𝑥
 = 8A(xi)7 8 8.29 -4% 

9 
𝜕𝑦

𝜕𝑥
 = 9A(xi)8 9 9.37 -4% 

10 
𝜕𝑦

𝜕𝑥
 = 10A(xi)9 10 10.46 -5% 

Error = (Analytical- Numerical)/Analytical 

 



  

 

 

Table 3.  Basic Events in Minimal  

Cut Sets For Example 

Cut Set 

No 
BE 1 BE 2 

1 PE - 

2 TS1 TS2 

3 LS1 LS2 

4* FT1 FT2 

5* FT2 FT3 

6* FT1 FT3 

7* BV1 BV2 

8* BV1 SOL1 

9* BV2 SOL2 

10* SOL1 SOL2 

11 PT1 PT2 

   
* Minimal cut Set with same basic event 

as another cut set 

 

  



  

Table 4.  Lamda (  ) Failure Rate Data  With Uncertainty Limits 

Device 

Minimum 

Failures 

per 1E6 

Hours 

Mode 

Failures 

per 1E6 

Hours 

Maximum 

Failures 

per 1E6 

Hours 

Mean 

Failures 

per 1E6 

Hours 

Lamda Variance 

(Failures per 1E6 

Hours)2 

Flow Transmitters 

FT1, FT2 and FT3 
1.0 2.9 20.0 8.0 18.3 

Pressure 

Transmitters  

PT1 and PT2 

1.0 2.3 20.0 7.8 18.8 

Temperature 

Switch 

TS1 and TS2 

3.0 7.6 20.0 10.2 12.9 

Level Switch 

LS1 and LS2 
2.0 4.6 20.0 8.9 15.8 

Block Valves 

BV1 and BV2 
0.2 2.3 10.0 4.2 4.4 

Solenoid Valves 

SOL1 and SOL2 
1.0 2.3 8.0 3.8 2.3 

 

 

Table 5.  Probability of Minimal Cut Sets Based on Mean Failure Rates 

Cut Set No BE 1 BE 2 
PFD based 

on mean  

1 PE - 5.00E-03 

2 TS1 TS2 2.00E-03 

3 LS1 LS2 1.52E-03 

4 FT1 FT2 1.23E-03 

5 FT2 FT3 1.23E-03 

6 FT1 FT3 1.23E-03 

7 BV1 BV2 3.38E-04 

8 BV1 SOL1 3.38E-04 

9 BV2 SOL2 3.38E-04 

10 SOL1 SOL2 2.77E-04 

11 PT1 PT2 1.17E-03 

 



 

  

Table 6.  Sensitivity of Example System PFD to Basic Event Failure Rates Based on a 1% Perturbation 

Basic 

Event 

Label 

Device Type 

Mean 

Failures 

per 1E6 

Hours 

Failure 

Perturbation 

of 1% of 

Mean 

Failures per 

1E6 Hours 

Perturbed 

Failure Rate  

Failures per 1E6 

Hours 

Total System 

PFD Using 

Peturbed 

Failure Rate of 

Basic Event 

Change in Total 

System PFD 

Sensitivity of 

PFD to Change 

in Failure Rate  

Hours 

FT1 Flow Transmitter 8 0.08 8.08 1.461848E-02 2.455603E-05 307.0 

FT2 Flow Transmitter 8 0.08 8.08 1.461848E-02 2.455603E-05 307.0 

FT3 Flow Transmitter 8 0.08 8.08 1.461848E-02 2.455603E-05 307.0 

PT1 Pressure Transmitter 7.8 0.078 7.878 1.460560E-02 1.167179E-05 149.6 

PT2 Pressure Transmitter 7.8 0.078 7.878 1.460560E-02 1.167179E-05 149.6 

TS1 Temperature Switch 10.2 0.102 10.302 1.461389E-02 1.995945E-05 195.7 

TS2 Temperature Switch 10.2 0.102 10.302 1.461389E-02 1.995945E-05 195.7 

LS1 Level Switch 8.9 0.089 8.989 1.460912E-02 1.519596E-05 170.7 

LS2 Level Switch 8.9 0.089 8.989 1.460912E-02 1.519596E-05 170.7 

BV1 Block Valves 4.2 0.042 4.242 1.460037E-02 6.445958E-06 153.5 

BV2 Block Valves 4.2 0.042 4.242 1.460037E-02 6.445958E-06 153.5 

SOL1 Solenoid Valves 3.8 0.038 3.838 1.459976E-02 5.832058E-06 153.5 

SOL2 Solenoid Valves 3.8 0.038 3.838 1.459976E-02 5.832058E-06 153.5 

 

 

  



 

  

Table 7. Variance of Top Event Probability Due to Uncertain Device Failure Rates 

Device 

No 
Device Type Label 

Sensitivity of Top 

Event Probability to 

Device Failure Rate 

 Hour-1 

Variance of Device 

Failure Rate 

(Failures per 1E6 

Hour)2 

Variance 

Contribution 

to Top Event 

Variance 

Contribution 

to Top Event 

Variance  

% 

1 Logic Solver PE - 0 0.00E+00 0% 

2 
Temperature 

Switch 
TS1 195.7 12.9 4.94E-07 6% 

3 
Temperature 

Switch 
TS2 195.7 12.9 4.94E-07 6% 

4 Level Switch LS1 170.7 15.8 4.60E-07 6% 

5 Level Switch LS2 170.7 15.8 4.60E-07 6% 

6 Flow Transmitter FT1 307 18.3 1.72E-06 21% 

7 Flow Transmitter FT2 307 18.3 1.72E-06 21% 

8 Flow Transmitter FT3 307 18.3 1.72E-06 21% 

9 Block Valve BV1 153.5 4.4 1.04E-07 1% 

10 Block Valve BV2 153.5 4.4 1.04E-07 1% 

11 
Pressure 

Transmitter 
PT1 149.6 18.8 4.21E-07 5% 

12 
Pressure 

Transmitter 
PT2 149.6 18.8 4.21E-07 5% 

13 Solenoid valve SOL1 153.5 2.3 5.42E-08 1% 

14 Solenoid valve SOL2 153.5 2.3 5.42E-08 1% 
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Figure 1.   P&ID Diagram for Example 
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Figure 2.  Interlock Block Diagram 
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Figure 3.  Fault Tree for Example Interlock 
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Appendix A – Commonly Encounter Probability Distributions  

There are four probability distributions used to represent the failure rate of equipment items.  

These are: 

1. Uniform Distribution 

2. Triangular Distribution 

3. Normal Distribution 

4. Log-Normal Distribution 

This appendix reviews the properties of these four probability distributions. 

 

1.  Uniform Distribution 

The uniform distribution [Ref. A-1, pg 74; A-2, pg 687-688] is used when a variable is only known 

within a defined range.  Figure A-1 presents a plot of the probability density function (pdf) for the 

uniform distribution.  The distribution is defined using two parameters, A and B. 

Where: 

A = minimum value of the random variable 

B = maximum value of the random variable 

The mean or expected value of a random variable, x, that follows the uniform distribution is: 

Mean = Expected Value – E(x) = (A+B)/2 (Eq A-1) 

The variance of a random variable, x, that follows the uniform distribution is: 

Variance = V(x) = (B-A)2/12 (Eq A-2)  

The standard deviation of a random variable, x, that follows the uniform distribution is: 

Standard Deviation = (Variance)1/2 = (B-A)/(12)1/2 (Eq A-3)  

 

2.  Triangular Distribution 

The triangular distribution [Ref. A-2, pg 686-687] is used when a variable is known to lie within 

a defined range and a “best guess” or estimate can be made as to the most likely value to the 

variable.  Figure A-2 presents a plot of the probability density function (pdf) for the triangular 

distribution.  The distribution is defined using three parameters, A. B and C.   

Where: 

A = minimum value of the random variable 

B = maximum value of the random variable 

C = most likely (mode) of the random variable 

The mean or expected value of a random variable, x, that follows the triangular distribution is: 

Mean = Expected Value – E(x) = (A+B+C)/3 (Eq A-4)  

The variance of a random variable, x, that follows the triangular distribution is: 



 

  

Variance = V(x) = [A2 + B2+ C2-AB – AC –BC]/18 (Eq A-5)  

The standard deviation of a random variable, x, that follows the triangular distribution is: 

Standard Deviation = (Variance)1/2 = {[A2 + B2+ C2-AB – AC –BC]/18}1/2 (Eq A-6)  

 

3.  Normal distribution 

The normal distribution [Ref A-2, pg 665-666] is used when a variable when data analysis finds 

the normal distribution is the best model to describe the spread in the measured variable.  Figure 

A-3 presents a plot of the probability density function (pdf) for the normal distribution.  The 

distribution is defined using two parameters, μ and σ.   

Where: 

μ = mean of the measured data for variable 

σ = standard deviation of the measured data for variable 

The expected value of a random variable, x, that follows the normal distribution is: 

Expected value = mean = E(x) = μ (Eq A-7)  

The variance of a random variable, x, that follows the normal distribution is: 

Variance = square of standard deviation = V(x) = σ2  (Eq A-8)  

The standard deviation of a random variable, x, that follows the normal distribution is: 

Standard deviation = σ  (Eq A-9)  

 

4.  Lognormal Distribution 

The lognormal distribution [Ref. A- 2, pg 658-659] is used when a variable when data analysis 

finds the lognormal distribution is the best model to describe the spread in the measured variable.  

Figure A-4 presents a plot of the probability density function (pdf) for the lognormal distribution.  

Many variables in nature are lognormally distributed (for example the height of people).  The log 

normal distribution is used when the variable of interest has a known physical lower limit of zero.  

A variable, x, is lognormally distributed if ln(x) is normally distributed. The lognormal distribution 

is defined using two parameters, μy and σy.   

 

Let the original data be defined by the variable x with mean and standard deviation as: 

μx = mean of the measured data for variable x 

σx = standard deviation of the measured data for variable x 

 

Define a new variable y as: 

y = Ln(x)  (Eq A-10)  

Then variable x is said to be lognormally distributed if y is normally distributed.  We can now 

write the mean and standard deviation of y (μy and σy.) [Ref. A-3,  A-4 and A-5] as  



 

  

μy = Ln[μx
2 /((σx

2+ μx
2)½)]  (Eq A-11) 

σy = [Ln(σx
2/ μx

2 + 1)] ½ (Eq A-12)  

 

Where: 

Ln is the natural logarithm (base e) of the argument 
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Figure A-1.  Uniform Probability Distribution 
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Figure A-2.  Triangular Probability Distribution 
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Figure A-3.  Normal Probability Distribution 

  



 

  

 

Figure A-4.  Lognormal Probability Distribution 
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