
Memory Bandwidth and System Balance in
HPC Systems

John D. McCalpin, PhD
mccalpin@tacc.utexas.edu

Outline
1. Changes in TOP500 Systems

– System Architectures & System Sizes

2. Technology Trends & System Balances
– The STREAM Benchmark
– Computation Rates vs Data Motion Latency and Bandwidth
– Required Concurrency to Exploit available Bandwidths

3. Comments & Speculations…
– Impact on HPC systems and on HPC Applications
– Potential disruptive technologies

CHANGES IN TOP500 SYSTEMS
Part 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
19

93
.5

19
93

.9
19

94
.5

19
94

.9
19

95
.5

19
95

.9
19

96
.5

19
96

.9
19

97
.5

19
97

.9
19

98
.5

19
98

.9
19

99
.5

19
99

.9
20

00
.5

20
00

.9
20

01
.5

20
01

.9
20

02
.5

20
02

.9
20

03
.5

20
03

.9
20

04
.5

20
04

.9
20

05
.5

20
05

.9
20

06
.5

20
06

.9
20

07
.5

20
07

.9
20

08
.5

20
08

.9
20

09
.5

20
09

.9
20

10
.5

20
10

.9
20

11
.5

20
11

.9
20

12
.5

20
12

.9
20

13
.5

20
13

.9
20

14
.5

20
14

.9
20

15
.5

20
15

.9
20

16
.5

20
16

.9

TOP500 Rmax Contributions by System Architecture

VECTOR

RISC x86

1995 2000 2005 2010 2015

MPP

Accelerated

Earth Simulator K Machine

IBM BG/L IBM BG/Q

TaihuLight

ASCI Red
RoadRunner Tianhe-2

Note: A fraction of the
“Accelerated” Rmax is
from x86 as well…

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

1980 1990 2000 2010 2020

HPC "Typical" System Acquisition Price per "Processor"

Vector
RISC
x86 single-core
x86 multi-core ($/socket)
x86 multi-core ($/core)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
19

93
.5

19
93

.9
19

94
.5

19
94

.9
19

95
.5

19
95

.9
19

96
.5

19
96

.9
19

97
.5

19
97

.9
19

98
.5

19
98

.9
19

99
.5

19
99

.9
20

00
.5

20
00

.9
20

01
.5

20
01

.9
20

02
.5

20
02

.9
20

03
.5

20
03

.9
20

04
.5

20
04

.9
20

05
.5

20
05

.9
20

06
.5

20
06

.9
20

07
.5

20
07

.9
20

08
.5

20
08

.9
20

09
.5

20
09

.9
20

10
.5

20
10

.9
20

11
.5

20
11

.9
20

12
.5

20
12

.9
20

13
.5

20
13

.9
20

14
.5

20
14

.9
20

15
.5

20
15

.9
20

16
.5

20
16

.9

TOP500 Rmax Contributions by System Architecture

VECTOR

RISC x86

1995 2000 2005 2010 2015

MPP

Accelerated

4p 16p 32p

100p

250p

1000p

1000p
10,000p

48,000

Heterogeneous Systems
• More sites are building “clusters of clusters”, e.g.:

– Sub-cluster 1: 2-socket nodes with small memory
– Sub-cluster 2: 2-socket nodes with large memory
– Sub-cluster 3: 4-socket nodes with very large memory
– Sub-cluster 4: nodes with accelerators, etc…

• Consistent with observed partial shift to accelerators
– Peaking at ~30% of the aggregate Rmax of the list in 2013-2015

• Under 20% for November 2016 list (after excluding x86 contributions)
– Peaking at ~20% of the systems in 2015, now under 17%

• No more than 16% of systems have had >2/3 of their Rpeak in accelerators
– Accelerators have been split between many-core and GPU

TECHNOLOGY TRENDS &
SYSTEM BALANCES

Part 2

The STREAM Benchmark
• Created in 1991 while on faculty at the University of

Delaware College of Marine Studies
• Intended to be an extremely simplified representation

of the low-compute-intensity, long-vector operations
characteristic of ocean circulation models

• Widely used for research, testing, marketing
• Almost 1100 results in database at main site
• Hosted at www.cs.virginia.edu/stream/

The STREAM Benchmark (2)
• Four kernels, separately timed:

Copy: C[i] = A[i]; i=1..N
Scale: B[i] = scalar * C[i]; i=1..N
Add: C[i] = A[i] + B[i]; i=1..N
Triad A[i] = B[i] + scalar*C[i]; i=1..N

• “N” chosen to make each array >> cache size
• Repeated (typically) 10 times, first iteration ignored
• Min/Avg/Max timings reported, best time used for BW

The STREAM Benchmark (3)
• Assumed Memory Traffic per index:

Copy: C[i] = A[i]; 16 Bytes
Scale: B[i] = scalar * C[i]; 16 Bytes
Add: C[i] = A[i] + B[i]; 24 Bytes
Triad A[i] = B[i] + scalar*C[i]; 24 Bytes

• Many systems will read data before updating it (“write
allocate” policy)
– STREAM ignores this extra traffic if present

What are “System Balances”?
• “Performance” can be viewed as an N-dimensional

vector of “mostly-orthogonal” components, e.g.:
– Core performance (FLOPs) – LINPACK
– Memory Bandwidth – STREAM
– Memory Latency – lmbench/lat_mem_rd
– Interconnect Bandwidth – osu_bw, osu_bibw
– Interconnect Latency – osu_latency

• System Balances are the ratios of these components

Performance Component Trends
1. Peak FLOPS per socket increasing at 50%-60% per year
2. Memory Bandwidth increasing at ~23% per year
3. Memory Latency increasing at ~4% per year
4. Interconnect Bandwidth increasing at ~20% per year
5. Interconnect Latency decreasing at ~20% per year
• These ratios suggest that processors should be increasingly

imbalanced with respect to data motion….
– Today’s talk focuses on (1), (2), and a bit of (3)

1

10

100

1,000

10,000

1990 1995 2000 2005 2010 2015 2020

Ba
la

nc
e

Ra
tio

 (F
LO

PS
/m

em
or

y
ac

ce
ss

)

Date of Introduction

Memory Bandwidth is Falling Behind: (GFLOP/s) / (GWord/s)

+14.2%/year
2x / 5.2 years

x86-64 systems (AMD & Intel)RISC systems (IBM, MIPS, Alpha)

1

10

100

1,000

10,000

1990 1995 2000 2005 2010 2015 2020

Ba
la

nc
e

Ra
tio

 (F
LO

PS
/m

em
or

y
ac

ce
ss

)

Date of Introduction

Memory Latency is much worse: (GFLOP/s) / (Memory Latency)

Peak FLOPS per Idle Memory Latency

Peak FLOPS / Word of Sustained Memory BW +24.5%/year
2x / 3.2 years

+14.2%/year
2x / 5.2 years

x86-64 systems (AMD & Intel)RISC systems (IBM, MIPS, Alpha)

1

10

100

1,000

10,000

1990 1995 2000 2005 2010 2015 2020

Ba
la

nc
e

Ra
tio

 (F
LO

PS
/m

em
or

y
ac

ce
ss

)

Date of Introduction

Interconnect Bandwidth is Falling Behind at a comparable rate

Peak FLOPS per Idle Memory Latency
Peak FLOPS / Word of Sustained Memory BW
Peak FLOPS / Word of Sustained Network BW

+24.5%/year
2x / 3.2 years

+14.2%/year
2x / 5.2 years

x86-64 systems (AMD & Intel)RISC systems (IBM, MIPS, Alpha)

+22.3%/year
2x / 3.4 years

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1990 1995 2000 2005 2010 2015 2020

Ba
la

nc
e

Ra
tio

 (F
LO

PS
/m

em
or

y
ac

ce
ss

)

Date of Introduction

Interconnect latency follows a similar trend…

Peak FLOPS per Idle Memory Latency

Peak FLOPS / Word of Sustained Memory BW

Peak FLOPS / Word of Sustained Network BW

Peak FLOPS (core) * Network Latency

Peak FLOPS (chip) * Network Latency

x86-64 systems (AMD & Intel)RISC systems (IBM, MIPS, Alpha)

0

10

20

30

40

50

60

70

80

90

100

Xeon E5-2690
(Sandy Bridge EP)

Xeon Phi SE10P
(KNC, GDDR5)

NVIDIA K20x
(Kepler, GDDR5)

Xeon E5-2690 v4
(Broadwell)

Xeon Phi 7250
(KNL, MCDRAM)

NVIDIA P100
(Pascal, HBM2)

STREAM Balance (FLOPS/Word): Mainstream vs ManyCore vs GPGPU

2012 product releases

2016 product releases

Why are FLOPS increasing so fast?
• Peak FLOPs per package is the product of several

terms:
– Frequency
– FP operations per cycle per core

• Product of #FP units, SIMD width of each unit, and complexity of
FP instructions (e.g., separate ADD & MUL vs FMA)

– Number of cores per package
• Low-level semiconductor technology tends to drive

these terms at different rates…

0.0

1.0

2.0

3.0

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Ba
se

 1
0

lo
g

of
 G

FL
O

PS
 c

on
tri

bu
tio

n
Intel Processor GFLOPS/Package Contributions over time

log10(GHz)

log10(Cores/Socket)

log10(FP/Hz)

Pentium 4

Core 2

Nehalem/
Westmere

Sandy
Bridge /

Ivy Bridge

Haswell /
Broadwell

Skylake
Xeon

2 2 2 2

4 4
4 4

4 4
8 8

16 16 16
32 32

2 2
2 4 6 6 8 10 12 12 14 ~20 ~24

2.8 3.1 3.2 2.53.3 2.5 3.0 3.0 3.1 3.3 3.0 2.9 2.1 2.1 2.1 ~1.9 ~1.8

0.0

1.0

2.0

3.0

4.0

2012.25 2012.75 2016.33 2016.50

Ba
se

 1
0

lo
g

of
 G

FL
O

PS
 c

on
tri

bu
tio

n
Intel Processor GFLOPS/Package Contributions: Mainstream vs ManyCore

log10(GHz) log10(Cores/Socket) log10(FP/Hz)

Xeon Phi
(Knights Corner)

Xeon Phi
(Knights Landing)

Xeon E5 (v1)
(Sandy Bridge)

Xeon E5 (v4)
(Broadwell)

8 60 7214

8

16
16

32

3.0 2.1 1.41.05

5.2x

6.8x

Why is Memory Bandwidth increasing slowly?
• Slow rate of pin speed improvements

– Emphasis has been on increasing capacity, not increasing
bandwidth

– Shared-bus architecture (multiple DIMMs per channel) is
very hard at high frequencies

• DRAM cell cycle time almost unchanged in 20 years
– Speed increases require increasing transfer sizes
– DDR3/DDR4 have minimum 64 Byte transfers in DIMMs

• Slow rate of increase in interface width
– Pins cost money!

Why is Memory Latency stagnant or growing?
• More levels in cache hierarchy

– Many lookups serialized to save power
• More asynchronous clock domain crossings

– Many different clock domains to save power
– Snoop (6): Core -> Ring -> QPI -> Ring -> QPI -> Ring -> Core
– Local Memory (4): Core -> Ring -> DDR -> Ring -> Core
– Remote Memory (8):

Core -> Ring -> QPI -> Ring -> DDR -> Ring -> QPI -> Ring -> Core
• More cores to keep coherent

– Challenging even on a single mainstream server chip
– Two-socket system latency typically dominated by coherence, not data
– Manycore chips have much higher latency

• Decreasing frequencies!

Why is Interconnect Bandwidth growing slowly?
• Slow rate of pin speed improvements

– About 20%/year
• Reluctance to increase interface width

– Switch chips typically pin-limited – wider
interfaces get fewer ports

– Parallel links require more switches – too
expensive and does not always provide improved
real-world bandwidth

Why is Interconnect Latency improving slowly?
• Legacy IO architecture designed around disks, not

communications
– Control operations using un-cached loads/stores –

hundreds of ns per operation and no concurrency
– Interrupt-driven processing requires many thousands of

cycles per transaction
• Mismatch between SW requirements and HW

capabilities

LATENCY, BANDWIDTH, AND
CONCURRENCY

A different implication of these technology trends

Latency, Bandwidth, and Concurrency
• “Little’s Law” from queuing theory describes the relationship

between latency (or occupancy), bandwidth, and concurrency.

Latency * Bandwidth = Concurrency
• Flat Latency * Increasing Bandwidth à Increasing Concurrency

• Because these are exponential trends, these are not small
changes…

Time	(ns) -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

Buffer0 Request	0 Data	0

Buffer1 Request	1 Data	1

Buffer2 Request	2 Data	2

Buffer3 Request	3 Data	3

Buffer4 Request	4 Data	4

Buffer5 Request	5 Data	5

Buffer0 Request	6 Data	6

Buffer1 Request	7 Data	7

Buffer2 Request	8 Data	8

Buffer3 Request	9 Data	9

Buffer4 Request	10 Data	10

Buffer5 Request	11 Data	11

Little’s Law: illustration for 2005-era Opteron processor
60 ns latency, 6.4 GB/s (=10ns per 64B cache line)

• 60 ns * 6.4 GB/s = 384 Bytes = 6 cache lines
• To keep the pipeline full, there must always be 6 cache lines “in flight”
• Each request must be launched at least 60 ns before the data is needed

1

10

100

1,000

10,000

1995 2000 2005 2010 2015 2020

Latency-Bandwidth Products per Package (64B units)

NVIDIA GPU

Mainstream Processors

Intel ManyCore

+33%/year

Why is Increasing Concurrency a Problem?
• Architectures are built assuming “flat” memory model

– Location of data is invisible and uncontrollable
– Caches and prefetchers are assumed to be “good enough”

to cover latency and bandwidth differences
• Implementations support limited L1 Data Cache

misses per core:
– Xeon E5: 10 L1 misses (maximum)
– L2 Hardware Prefetchers help, but are also “invisible” and

not directly controllable

Increasing Concurrency (2)
• Many cores are needed just to generate

concurrency, even if not needed to do computing
– This costs a lot of energy in the cores!

• Large buffers and complex memory controllers are
needed to handle the concurrent operations
– DRAM page management requires memory schedule to be

updated frequently as new transactions appear
– DRAM open page hit rates still go down, so DRAM power

increases too
– Design cost up, power cost up, BW utilization down

Increasing Concurrency (3)
• More cores create more concurrent memory access streams,

which requires more DRAM banks
• Examples:

– 8-core Xeon E5 v1 with 2 streams per core needs >= 16 banks
Requires 2 ranks of DDR3 DRAM (one dual-rank DIMM)

– 12-core Xeon E5 v3 with 2 streams per core needs >= 24 banks
Requires 2 ranks of DDR4 DRAM (one dual-rank DIMM)

• Problems:
– Some codes generate many address streams per core – LBM >32
– HyperThreading can double address streams per core
– Adding more DIMMs can *decrease* performance due to rank-to-rank

bus stalls

POWER AND ENERGY
Another angle…

What about Power/Energy?
• Power density is important in processor implementations

– Frequencies can be limited by small-scale (core-sized) hot spots
– Multi-core frequencies are now limited by package cooling
– E.g., Xeon E5 v3 (Haswell) can only run DGEMM or LINPACK on ½ of

the cores before running out of power & needing to throttle frequency
• Power is not a first-order concern in operating cost!!!

– Purchase price is $2500-$4000/socket
– Socket draws 100-150 Watts & needs 40-50 Watts for cooling
– At $0.10/kWh, this is 5%-7% of purchase price per year
– This ratio is very hard to change!!!

What about Power/Energy later?
• If much cheaper processors become available, power would

become a first-order cost
• Example 1: “client” multicore processors

– Use the same core architecture, but at much lower price
– Typical configuration needs 25% of purchase cost per year for power
– (High performance interconnect solution not available at reasonable price)

• Example 2: “embedded” processors
– Hypothetical $5 processor using 5 Watts requires $7/year for power
– Not a problem for mobile – not credible for HPC
– Response will be sociological and bureaucratic, as well as technical

COMMENTS & SPECULATIONS
Part 3

Implications for HPC Systems?
• Applications have very different requirements

for various performance components….
– It is relatively easy to find 100:1 ratios in memory

bandwidth requirements across applications
– Ratios in other axes are mostly smaller due to

self-selection, but 100:1 examples certainly exist
• E.g., bisection bandwidth for 3D DNS Turbulence

• Example: CPU + Memory BW + Memory Latency model from
2007 – most of these applications are still in broad use

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPECfp_rate2006 run-time contributions on late 2006-era reference system

T_BW

T_Lat

T_CPU

Recent testing shows
WRF has increased from
this 2007 value of 32%
memory time to 70%

memory time on a 12-core
Haswell EP

A note on “optimization”
• Under fairly general assumptions, it can be easily proven that

A homogeneous system cannot be “optimal” for a
heterogeneous workload!

– “Optimal” here can refer to performance, power, overall cost.

• “Optimized for General-Purpose Workloads” is a contradiction
– As systems get larger and the ratios of performance requirements

increase, the advantage of specialization increases

Implications for HPC Systems?
• System Balance trends are due to a combination of

technology factors and market factors
– Technology trends suggest that balances will either get

worse, or performance will stagnate
• Some applications will be able to exploit the

increasing capabilities, while others will not
– Changing algorithms may be required to obtain continuing

performance increases, e.g.
• Increasing computational intensity, increasing locality

Implications for HPC Applications?
• As systems scale, the number of performance axes

that need to be considered will continue to increase
• Effective use of new & future hardware will require

effective exploitation of
– Node-level parallelism (e.g., MPI)
– Multi-core parallelism (e.g., OpenMP)
– SIMD Vector parallelism

• Multiple independent SIMD vector ops to tolerate pipeline latency
– Unit-stride memory access with increasing data re-use

For more information:
www.tacc.utexas.edu

John D. McCalpin, PhD
mccalpin@tacc.utexas.edu

512-232-3754

Disruptive Technology Ideas (1)
• Quit fighting the physics of data motion
• Move simple cores to the data

• Distances are shorter – less energy for data transfer
• Design is simpler – less development money to recover
• Use more efficient point-to-point DRAM interfaces

– GDDR5/6, LPDDR4/5
• Core Performance requirements are lower

– Lower frequency to exploit P ~ f3

• Save high-power processors for complex processing

Disruptive Technology Ideas (2)
• Move out of the 1980’s – memory is not flat!
• The architecture must include functionality to enable

control over the most “expensive” operations
– This must include data motion through a memory hierarchy

as a first-order architectural concept
– Provide semantic information to outer levels of the

hierarchy to enable efficient and performant scheduling of
operations on multiple data streams of differing priorities
and consumption rates.

Disruptive Technology Ideas (3)
• Quit fighting physics – cache coherence

– Limit coherence to small areas in physical space and small
areas in address space that can be tightly constrained

– Don’t use cache coherence for communication!
• Data motion through the memory hierarchy is

fundamentally different than communication or
synchronization

• Optimal behaviors are different, so these must be
exposed as different operation types

Disruptive Technology Ideas (4)
• Admit that computers are parallel!
• Current architectures don’t include communication or

synchronization as concepts
– Communication and Synchronization can be implemented

as side effects of sequences of ordered memory reference
– Indirect, inefficient, ugly

• Hardware is capable of extremely efficient
communication and synchronization

Disruptive Technology Ideas (5)
• Design for Performance Predictability
• Programming languages that describe algorithms at

higher levels of abstraction require significant
transformations to map to hardware
– Currently very limited because performance cannot be

modeled!
• New HW architectures will require human cost for

SW re-development but we a paying a cost now for
incomprehensibly complex systems

Summary
• Technology trends suggest that data access is

increasingly expensive compared to computation
– Benchmark data from 25 years confirms these trends

• Multi-level caching and aggressive prefetching have
mitigated the impact of the imbalance, but
– These are expensive to design
– These are not energy-efficient

• Architectural changes are needed to address design
cost and energy efficiency

BACKUP SLIDES
For the insomniacs among us…

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
19

93
.5

19
93

.9
19

94
.5

19
94

.9
19

95
.5

19
95

.9
19

96
.5

19
96

.9
19

97
.5

19
97

.9
19

98
.5

19
98

.9
19

99
.5

19
99

.9
20

00
.5

20
00

.9
20

01
.5

20
01

.9
20

02
.5

20
02

.9
20

03
.5

20
03

.9
20

04
.5

20
04

.9
20

05
.5

20
05

.9
20

06
.5

20
06

.9
20

07
.5

20
07

.9
20

08
.5

20
08

.9
20

09
.5

20
09

.9
20

10
.5

20
10

.9
20

11
.5

20
11

.9
20

12
.5

20
12

.9
20

13
.5

20
13

.9
20

14
.5

20
14

.9
20

15
.5

20
15

.9
20

16
.5

20
16

.9

TOP500 Rmax Contributions by Microprocessor Family
1995 2000 2005 2010 2015

SPARC

i860

Alpha

MIPS

IA-64

Intel x86

SPARC
POWER

HP

AMD x86

Note: a fraction of Rmax from
Accelerated systems is also

from x86 processors…

0%

5%

10%

15%

20%

25%

30%

35%

2006.9 2007.5 2007.9 2008.5 2008.9 2009.5 2009.9 2010.5 2010.9 2011.5 2011.9 2012.5 2012.9 2013.5 2013.9 2014.5 2014.9 2015.6 2015.9 2016.5

Pe
rc

en
t o

f A
gg

re
ga

te
 R

Pe
ak

 o
f E

nt
ire

 L
is

t
Contributions of Various Accelerator Families to TOP500 RPeak

%Total Rpeak (other & mixed)
%Total Rpeak in AMD GPUs
%Total Rpeak in Xeon Phi
%Total Rpeak in NVIDIA GPUs
%Total Rpeak in IBM Cell

IBM Cell

NVIDIA GPU

Intel Xeon Phi

0.01

0.1

1

10

100

1000

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

1980 1990 2000 2010 2020

C
ores available for a $50,000 budget

Decreasing Price/Core Leads to Increasing Available Core Counts

Vector
RISC
x86 single-core
x86 multi-core ($/socket)
x86 multi-core ($/core)
Cores/budget

Why?
• FLOPS

– More cores
– More FLOPS/Cycle

• Memory Bandwidth
– Slow rate of pin speed improvements

• DRAM cell cycle time almost unchanged in 20 years
• Speed increases require increasing transfer sizes

– Slow rate of increase in interface width
• Pins cost money!

• Memory Latency
– More levels in of cache
– More asynchronous clock domain crossings
– More cores to keep coherent

• Interconnect Bandwidth
– Slow rate of pin speed improvements
– Slow rate of increase in interface width

• Interconnect Latency
– Legacy IO architecture designed around disks, not communications
– Mismatch between SW requirements and HW capabilities

SPEC CPU 2006 codes
In decreasing order of computational intensity on reference system:

• NAMD molecular dynamics
• GAMESS quantum chemistry
• CalculiX nonlinear structure finite element
• POV-Ray ray-tracing
• GROMACS molecular dynamics
• Tonto quantum crystallography
• ZEUS-MP CFD/MHD
• CactusADM General Relativity
• Deal.II adaptive finite element elliptic equation solver
• WRF numerical weather prediction (limited area)
• Sphinx-3 speech recognition
• LESlie3d CFD (finite volume explicit)
• Bwaves CFD (transonic, implicit Bi-CGstab)
• SoPlex Simplex Linear Programming solver
• GemsFDTD computational electromagnetics, finite difference, explicit
• MILC quantum chromodynamics
• LBM CFD (Lattice-Boltzmann)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1990 1995 2000 2005 2010 2015 2020

Required Memory BW for DGEMM vs Maximum Sustainable Memory BW

BDWHSW

KNC
KNL

Taihu Light

IVBSNB

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TOP500 x86 System Rmax Contributions by Cores/Package
60+ Core/Pkg
18-20 Core/Pkg
16 Core/Pkg
14 Core/Pkg
12 Core/Pkg
10 Core/Pkg
8 Core/Pkg
6 Core/Pkg
4 Core/Pkg
2 Core/Pkg
1 Core/Pkg

Note: x86 processors in
Accelerated Systems are
not included in these
Rmax contributions.

2005 2010 2015

1

2

4
6

8
10

12

16

Strawman: Processor At Memory (PAM)
1 GiB GDDR5
1W, 1-2GF CPU …

Big CPU

