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CHANGES IN TOP500 SYSTEMS
Part 1
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TOP500 Rmax Contributions by System Architecture
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Note: A fraction of the 
“Accelerated” Rmax is 
from x86 as well…
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Heterogeneous Systems
• More sites are building “clusters of clusters”, e.g.:

– Sub-cluster 1: 2-socket nodes with small memory
– Sub-cluster 2:   2-socket nodes with large memory
– Sub-cluster 3:   4-socket nodes with very large memory
– Sub-cluster 4:   nodes with accelerators, etc…

• Consistent with observed partial shift to accelerators
– Peaking at ~30% of the aggregate Rmax of the list in 2013-2015

• Under 20% for November 2016 list (after excluding x86 contributions)
– Peaking at ~20% of the systems in 2015, now under 17%

• No more than 16% of systems have had >2/3 of their Rpeak in accelerators
– Accelerators have been split between many-core and GPU



TECHNOLOGY TRENDS & 
SYSTEM BALANCES

Part 2



The STREAM Benchmark
• Created in 1991 while on faculty at the University of 

Delaware College of Marine Studies
• Intended to be an extremely simplified representation 

of the low-compute-intensity, long-vector operations 
characteristic of ocean circulation models

• Widely used for research, testing, marketing
• Almost 1100 results in database at main site
• Hosted at www.cs.virginia.edu/stream/



The STREAM Benchmark (2)
• Four kernels, separately timed:

Copy:  C[i] = A[i];  i=1..N
Scale: B[i] = scalar * C[i]; i=1..N
Add:   C[i] = A[i] + B[i]; i=1..N
Triad  A[i] = B[i] + scalar*C[i]; i=1..N

• “N” chosen to make each array >> cache size
• Repeated (typically) 10 times, first iteration ignored
• Min/Avg/Max timings reported, best time used for BW



The STREAM Benchmark (3)
• Assumed Memory Traffic per index:

Copy:  C[i] = A[i];                16 Bytes
Scale: B[i] = scalar * C[i];       16 Bytes
Add:   C[i] = A[i] + B[i];         24 Bytes
Triad  A[i] = B[i] + scalar*C[i];  24 Bytes

• Many systems will read data before updating it (“write 
allocate” policy)
– STREAM ignores this extra traffic if present



What are “System Balances”?
• “Performance” can be viewed as an N-dimensional 

vector of “mostly-orthogonal” components, e.g.:
– Core performance (FLOPs)     – LINPACK
– Memory Bandwidth                  – STREAM 
– Memory Latency              – lmbench/lat_mem_rd
– Interconnect Bandwidth     – osu_bw, osu_bibw
– Interconnect Latency             – osu_latency

• System Balances are the ratios of these components



Performance Component Trends
1. Peak FLOPS per socket increasing at 50%-60% per year
2. Memory Bandwidth increasing at ~23% per year
3. Memory Latency increasing at ~4% per year
4. Interconnect Bandwidth increasing at ~20% per year
5. Interconnect Latency decreasing at ~20% per year
• These ratios suggest that processors should be increasingly 

imbalanced with respect to data motion….
– Today’s talk focuses on (1), (2), and a bit of (3)
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Memory Latency is much worse: (GFLOP/s) / (Memory Latency)

Peak FLOPS per Idle Memory Latency

Peak FLOPS / Word of Sustained Memory BW +24.5%/year
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Interconnect Bandwidth is Falling Behind at a comparable rate

Peak FLOPS per Idle Memory Latency
Peak FLOPS / Word of Sustained Memory BW
Peak FLOPS / Word of Sustained Network BW

+24.5%/year
2x / 3.2 years

+14.2%/year
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Interconnect latency follows a similar trend…

Peak FLOPS per Idle Memory Latency

Peak FLOPS / Word of Sustained Memory BW
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Peak FLOPS (core) * Network Latency
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Why are FLOPS increasing so fast?
• Peak FLOPs per package is the product of several 

terms:
– Frequency
– FP operations per cycle per core

• Product of #FP units, SIMD width of each unit, and complexity of 
FP instructions (e.g., separate ADD & MUL vs FMA)

– Number of cores per package
• Low-level semiconductor technology tends to drive 

these terms at different rates…
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Why is Memory Bandwidth increasing slowly?
• Slow rate of pin speed improvements

– Emphasis has been on increasing capacity, not increasing 
bandwidth

– Shared-bus architecture (multiple DIMMs per channel) is 
very hard at high frequencies

• DRAM cell cycle time almost unchanged in 20 years
– Speed increases require increasing transfer sizes
– DDR3/DDR4 have minimum 64 Byte transfers in DIMMs

• Slow rate of increase in interface width
– Pins cost money!



Why is Memory Latency stagnant or growing?
• More levels in cache hierarchy

– Many lookups serialized to save power
• More asynchronous clock domain crossings

– Many different clock domains to save power
– Snoop (6): Core -> Ring -> QPI -> Ring -> QPI -> Ring -> Core
– Local Memory (4): Core -> Ring -> DDR -> Ring -> Core
– Remote Memory (8): 

Core -> Ring -> QPI -> Ring -> DDR -> Ring -> QPI -> Ring -> Core
• More cores to keep coherent

– Challenging even on a single mainstream server chip
– Two-socket system latency typically dominated by coherence, not data
– Manycore chips have much higher latency

• Decreasing frequencies!



Why is Interconnect Bandwidth growing slowly?
• Slow rate of pin speed improvements

– About 20%/year
• Reluctance to increase interface width

– Switch chips typically pin-limited – wider 
interfaces get fewer ports

– Parallel links require more switches – too 
expensive and does not always provide improved 
real-world bandwidth



Why is Interconnect Latency improving slowly?
• Legacy IO architecture designed around disks, not 

communications
– Control operations using un-cached loads/stores –

hundreds of ns per operation and no concurrency
– Interrupt-driven processing requires many thousands of 

cycles per transaction
• Mismatch between SW requirements and HW 

capabilities



LATENCY, BANDWIDTH, AND 
CONCURRENCY

A different implication of these technology trends



Latency, Bandwidth, and Concurrency
• “Little’s Law” from queuing theory describes the relationship 

between latency (or occupancy), bandwidth, and concurrency.

Latency * Bandwidth = Concurrency
• Flat Latency * Increasing Bandwidth à Increasing Concurrency

• Because these are exponential trends, these are not small 
changes…



Time	(ns) -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

Buffer0 Request	0 Data	0

Buffer1 Request	1 Data	1

Buffer2 Request	2 Data	2

Buffer3 Request	3 Data	3

Buffer4 Request	4 Data	4

Buffer5 Request	5 Data	5

Buffer0 Request	6 Data	6

Buffer1 Request	7 Data	7

Buffer2 Request	8 Data	8

Buffer3 Request	9 Data	9

Buffer4 Request	10 Data	10

Buffer5 Request	11 Data	11

Little’s Law: illustration for 2005-era Opteron processor
60 ns latency, 6.4 GB/s (=10ns per 64B cache line)

• 60 ns * 6.4 GB/s = 384 Bytes = 6 cache lines
• To keep the pipeline full, there must always be 6 cache lines “in flight”
• Each request must be launched at least 60 ns before the data is needed



1

10

100

1,000

10,000

1995 2000 2005 2010 2015 2020

Latency-Bandwidth Products per Package (64B units)

NVIDIA GPU

Mainstream Processors

Intel ManyCore

+33%/year



Why is Increasing Concurrency a Problem?
• Architectures are built assuming “flat” memory model

– Location of data is invisible and uncontrollable
– Caches and prefetchers are assumed to be “good enough” 

to cover latency and bandwidth differences
• Implementations support limited L1 Data Cache 

misses per core:
– Xeon E5: 10 L1 misses (maximum)
– L2 Hardware Prefetchers help, but are also “invisible” and 

not directly controllable



Increasing Concurrency (2)
• Many cores are needed just to generate 

concurrency, even if not needed to do computing
– This costs a lot of energy in the cores!

• Large buffers and complex memory controllers are 
needed to handle the concurrent operations
– DRAM page management requires memory schedule to be 

updated frequently as new transactions appear
– DRAM open page hit rates still go down, so DRAM power 

increases too
– Design cost up, power cost up, BW utilization down



Increasing Concurrency (3)
• More cores create more concurrent memory access streams, 

which requires more DRAM banks
• Examples:

– 8-core Xeon E5 v1 with 2 streams per core needs >= 16 banks
Requires 2 ranks of DDR3 DRAM (one dual-rank DIMM)

– 12-core Xeon E5 v3 with 2 streams per core needs >= 24 banks
Requires 2 ranks of DDR4 DRAM (one dual-rank DIMM)

• Problems:
– Some codes generate many address streams per core – LBM >32
– HyperThreading can double address streams per core
– Adding more DIMMs can *decrease* performance due to rank-to-rank 

bus stalls



POWER AND ENERGY
Another angle…



What about Power/Energy?
• Power density is important in processor implementations

– Frequencies can be limited by small-scale (core-sized) hot spots
– Multi-core frequencies are now limited by package cooling
– E.g., Xeon E5 v3 (Haswell) can only run DGEMM or LINPACK on ½ of 

the cores before running out of power & needing to throttle frequency
• Power is not a first-order concern in operating cost!!!

– Purchase price is $2500-$4000/socket
– Socket draws 100-150 Watts & needs 40-50 Watts for cooling
– At $0.10/kWh, this is 5%-7% of purchase price per year
– This ratio is very hard to change!!!



What about Power/Energy later?
• If much cheaper processors become available, power would 

become a first-order cost
• Example 1: “client” multicore processors

– Use the same core architecture, but at much lower price
– Typical configuration needs 25% of purchase cost per year for power
– (High performance interconnect solution not available at reasonable price)

• Example 2: “embedded” processors
– Hypothetical $5 processor using 5 Watts requires $7/year for power
– Not a problem for mobile – not credible for HPC
– Response will be sociological and bureaucratic, as well as technical



COMMENTS & SPECULATIONS
Part 3



Implications for HPC Systems?
• Applications have very different requirements 

for various performance components….
– It is relatively easy to find 100:1 ratios in memory 

bandwidth requirements across applications
– Ratios in other axes are mostly smaller due to 

self-selection, but 100:1 examples certainly exist
• E.g., bisection bandwidth for 3D DNS Turbulence



• Example: CPU + Memory BW + Memory Latency model from 
2007 – most of these applications are still in broad use
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A note on “optimization”
• Under fairly general assumptions, it can be easily proven that

A homogeneous system cannot be “optimal” for a 
heterogeneous workload!

– “Optimal” here can refer to performance, power, overall cost.

• “Optimized for General-Purpose Workloads” is a contradiction
– As systems get larger and the ratios of performance requirements 

increase, the advantage of specialization increases



Implications for HPC Systems?
• System Balance trends are due to a combination of 

technology factors and market factors
– Technology trends suggest that balances will either get 

worse, or performance will stagnate
• Some applications will be able to exploit the 

increasing capabilities, while others will not
– Changing algorithms may be required to obtain continuing 

performance increases, e.g.
• Increasing computational intensity, increasing locality



Implications for HPC Applications?
• As systems scale, the number of performance axes 

that need to be considered will continue to increase
• Effective use of new & future hardware will require 

effective exploitation of
– Node-level parallelism (e.g., MPI)
– Multi-core parallelism (e.g., OpenMP)
– SIMD Vector parallelism

• Multiple independent SIMD vector ops to tolerate pipeline latency
– Unit-stride memory access with increasing data re-use



For more information:
www.tacc.utexas.edu

John D. McCalpin, PhD
mccalpin@tacc.utexas.edu

512-232-3754



Disruptive Technology Ideas (1)
• Quit fighting the physics of data motion
• Move simple cores to the data

• Distances are shorter – less energy for data transfer
• Design is simpler – less development money to recover
• Use more efficient point-to-point DRAM interfaces

– GDDR5/6, LPDDR4/5
• Core Performance requirements are lower

– Lower frequency to exploit P ~ f3

• Save high-power processors for complex processing



Disruptive Technology Ideas (2)
• Move out of the 1980’s – memory is not flat!
• The architecture must include functionality to enable 

control over the most “expensive” operations
– This must include data motion through a memory hierarchy 

as a first-order architectural concept
– Provide semantic information to outer levels of the 

hierarchy to enable efficient and performant scheduling of 
operations on multiple data streams of differing priorities 
and consumption rates.



Disruptive Technology Ideas (3)
• Quit fighting physics – cache coherence

– Limit coherence to small areas in physical space and small 
areas in address space that can be tightly constrained 

– Don’t use cache coherence for communication! 
• Data motion through the memory hierarchy is 

fundamentally different than communication or 
synchronization

• Optimal behaviors are different, so these must be 
exposed as different operation types



Disruptive Technology Ideas (4)
• Admit that computers are parallel!
• Current architectures don’t include communication or 

synchronization as concepts
– Communication and Synchronization can be implemented 

as side effects of sequences of ordered memory reference
– Indirect, inefficient, ugly

• Hardware is capable of extremely efficient 
communication and synchronization



Disruptive Technology Ideas (5)
• Design for Performance Predictability
• Programming languages that describe algorithms at 

higher levels of abstraction require significant 
transformations to map to hardware
– Currently very limited because performance cannot be 

modeled!
• New HW architectures will require human cost for 

SW re-development but we a paying a cost now for 
incomprehensibly complex systems



Summary
• Technology trends suggest that data access is 

increasingly expensive compared to computation
– Benchmark data from 25 years confirms these trends

• Multi-level caching and aggressive prefetching have 
mitigated the impact of the imbalance, but
– These are expensive to design
– These are not energy-efficient

• Architectural changes are needed to address design 
cost and energy efficiency



BACKUP SLIDES
For the insomniacs among us…
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Why?
• FLOPS

– More cores
– More FLOPS/Cycle

• Memory Bandwidth
– Slow rate of pin speed improvements

• DRAM cell cycle time almost unchanged in 20 years
• Speed increases require increasing transfer sizes

– Slow rate of increase in interface width
• Pins cost money!

• Memory Latency
– More levels in of cache
– More asynchronous clock domain crossings
– More cores to keep coherent

• Interconnect Bandwidth
– Slow rate of pin speed improvements
– Slow rate of increase in interface width

• Interconnect Latency
– Legacy IO architecture designed around disks, not communications
– Mismatch between SW requirements and HW capabilities



SPEC CPU 2006 codes
In decreasing order of computational intensity on reference system:

• NAMD molecular dynamics
• GAMESS quantum chemistry
• CalculiX nonlinear structure finite element
• POV-Ray ray-tracing
• GROMACS molecular dynamics
• Tonto quantum crystallography
• ZEUS-MP CFD/MHD
• CactusADM General Relativity
• Deal.II adaptive finite element elliptic equation solver
• WRF numerical weather prediction (limited area)
• Sphinx-3 speech recognition
• LESlie3d CFD (finite volume explicit)
• Bwaves CFD (transonic, implicit Bi-CGstab)
• SoPlex Simplex Linear Programming solver
• GemsFDTD computational electromagnetics, finite difference, explicit
• MILC quantum chromodynamics
• LBM CFD (Lattice-Boltzmann)
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Strawman: Processor At Memory (PAM)
1 GiB GDDR5
1W, 1-2GF CPU …

Big CPU


