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Abstract 

 

Integrated approach for pipe failure prediction and condition scoring in 

water infrastructure systems 

 

Mohamed Talha Rifaai, MSE 

The University of Texas at Austin, 2020 

 

Supervisor:  Polina Sela 

 

With an increasingly aging water infrastructure, decision makers are directing 

their attention to better ways to model and predict asset failure. Failure modeling is a 

discipline that addresses complex deterioration processes to better inform asset 

management practices. These deterioration processes and contributing factors have been 

addressed using a variety of models. One statistical model that has been explored in this 

thesis is the logistic regression model. The proposed approach consisted of developing a 

logistic regression model to estimate pipe-level failure probabilities in a flexible time 

interval. The approach further used the probabilities to estimate a Mean Time to Failure 

and assign pipe condition scores according to a methodology suggested by Opila and 

Attoh-Okine [1]. This thesis contributes with a practical and systematic methodology to 

capitalize on failure records and generate actionable failure probabilities and condition 

scores to integrate in asset prioritization strategies.  
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Chapter 1:  Introduction 

INTRODUCTION 

In the 2017 Infrastructure Report Card, the American Society of Civil Engineers 

qualified the drinking water infrastructure in the United States as poor and at risk. In fact, 

the water infrastructure in the country suffers a poor condition with 240,000 main breaks 

every year wasting more than two trillion gallons of water [2]. In the face of such 

deterioration, water utilities struggle to keep pace with repair orders with little financial 

means and support at hand. To rationalize the use of resources, asset managers need to 

prioritize assets based on evaluating their condition. Condition assessment in turn can be 

carried out by inspection or by identifying and characterizing the influence of 

deterioration factors to estimate a network condition. Although ideal, inspection requires 

large resources and is limited in practice. Water utilities therefore need to characterize 

deterioration by analyzing past information to anticipate future failure. However, water 

utilities have only recently started to diligently record their repair work orders which 

provides only limited information about individual pipes. As a result, water utilities use a 

combination of inspection and analysis methods to determine pipe condition, discern 

trends, and identify priorities.  

As failure data is becoming increasingly available, researchers have grown 

interested in applying physical and statistical methods to discern pipe deterioration 

patterns and predict failure. While physical models are typically complex and generally 

need prohibitive information for individual pipes, statistical models have provided a more 

practical alternative to address asset prioritization on a larger scale. Statistical models are 
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generally classified into deterministic and probabilistic models [3]. Amongst available 

probabilistic models, logistic regression has been a classic framework to estimate the 

probability of failure for each pipe. Several studies employed the framework to assess the 

predictability of pipe failures using classification metrics to measure the performance of 

logistic regression models. However, little research has explored applying logistic 

regression on a flexible time interval and using the outcome probabilities of a logistic 

regression model to estimate the metric of Mean Time to Failure (MTF). Estimating the 

MTF provides additional information to use both in failure prediction and condition 

assessment of the pipes.  

THESIS OBJECTIVES 

This thesis aims at providing a practical framework to assess pipe condition based 

on pipe deterioration factors and to evaluate the predictability of failures using a logistic 

regression model. The specific objectives of the present work are as follows:  

- Provide a review of relevant literature related to pipe deterioration and modeling 

- Provide a systematic methodology for pipe condition assessment and failure 

prediction 

- Evaluate the predictive performance of a logistic regression model 

- Discern actionable insights for a failure history dataset with limited quality and 

size 

- Evaluate a practical and flexible asset prioritization methodology that accounts for 

a water utility’s rehabilitation strategy 
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THESIS CONTRIBUTIONS 

The contributions of the present thesis are as follows:  

- Developing a logistic regression framework at an individual pipe level with a 

flexible prediction time interval 

- Combining the reliability metric of Mean Time to Failure with the logistic 

regression outcome to provide estimates of the expected time between failures for 

each pipe. 

- Using a discount rate curve to assign condition scores to individual pipes which 

can serve as an input to the city’s asset management.  

THESIS ORGANIZATION 

To address the above-mentioned objectives, the thesis is organized in four 

chapters. The present Chapter 1 introduces the scope, objectives, and contributions of the 

thesis. Chapter 2 describes major published research work related to asset deterioration 

factors and pipe failure models. Chapter 3 presents the proposed pipe condition 

assessment and failure prediction methods and results. Finally, Chapter 4 concludes with 

a discussion of results and opportunities for future research. 
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Chapter 2:  Literature review 

INTRODUCTION 

Researchers have long been interested in modeling pipe deterioration processes. 

Interest in pipe deterioration is certainly as old as the earliest wooden pipes installed two 

to three centuries ago. Generations of new pipe materials revolutionized the pipe 

industry, and the structural strength of pipes has been tremendously improved. Although 

drastically extended, life expectancy of a water distribution system is limited, and a pipe 

is due to deteriorate over time.  

Deterioration factors have been studied both separately and collectively to evince 

the nature of their influence. While the fundamental causes for deterioration and failure 

are known to be both mechanical and chemical processes that deplete a pipe’s structural 

capacity, the complexity of the relationship between those processes and a pipe’s internal 

and external environment quickly complicates the task of deterioration modeling. The 

following section presents some factors and related findings that are commonly discussed 

in literature. Later, major published models that attempted to characterize deterioration 

and failure processes are also presented.  

FACTORS CONTRIBUTING TO PIPE DETERIORATION 

Pipe deterioration involves complex processes that researchers are still working 

on thoroughly specifying. A starting point is to determine the underlying causes and 

factors that can trigger and aggravate deterioration and potentially lead to pipe failure.  

Pipe failure is a direct result of applied forces exceeding the structural capacity of 

a pipe. Applied forces can be external and influenced by the environment of the pipe or 

internal resulting from interaction with supply water. In fact, applying increasingly higher 

loads on any pipe material translates as increasing stress and strain that can reach a 
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fatigue or yield point. Past that point, the material loses its elasticity and can eventually 

reach a fracture point where a material can no longer withstand the load, and disruption 

happens. The reaction of a pipe material depends on its structural properties which can 

decline due to the influence of chemical and physical factors relative to the context where 

the pipe is installed.  

 Factors influencing pipe deterioration can be classified as pipe-intrinsic, 

environmental, or operational. Figure 1 shows common factors within these categories 

[4]. Some factors are typically addressed in the literature as presented in the following 

section.  
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Figure 1.Categories of factors affecting pipe failure 

Note. Reprinted from “Improving pipe failure predictions: Factors affecting pipe failure 

in drinking water networks”, by Barton et al. [4] 
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Pipe material 

Structural capacity depends first and foremost upon material properties of the 

pipe. The use of different materials to manufacture pipes has evolved along the years 

based on available practices and processes. In water distribution networks in the USA and 

Canada, materials typically found are listed in Table 1 based on a survey of 308 water 

utilities across both countries [5]. The table shows that a total of 91% of the network 

consists of CI, DI, PVC, and AC pipes which makes them the main materials presently in 

operation. These materials have been extensively analyzed and discussed in the literature 

discussing factors that influence their deterioration.  

Table 1: Pipe material types and their fraction of total surveyed network length 

Pipe material Description Fraction of total 

surveyed network length 

CI Cast Iron 28% 

DI Ductile Iron 28% 

PVC Polyvinyl Chloride 22% 

AC Asbestos Cement 13% 

CSC Concrete Steel Cylinder 3% 

Steel Steel 3% 

HDPE High Density Polyethylene 0.5% 

PVCO Molecularly Oriented PVC 0.05% 

Note. Adapted from “Water Main Break Rates In the USA and Canada: A 

Comprehensive Study”, by Folkman [5] 

As described by Rajani & Kleiner [3], iron pipes have been manufactured since 

the 1880s by pouring molten grey cast iron into a vertical mould. These pipes, named pit 

cast iron pipes, have been used until the 1930s. In the 1920s, spun cast iron pipes were 

introduced as an alternative. These pipes were cast horizontally and spun while external 
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cooling was applied with water. This process provided uniformity and resulted in better 

structural properties. In 1948, ductile iron was introduced and slowly became popularized 

for its advantageous properties until it completely replaced cast iron pipe production by 

1982. For iron pipes, electro-chemical corrosion is determined as the main cause of 

failure by formation of corrosion pits. This corrosion is further accelerated by a pipe 

environment (soil properties, water chemical composition, etc.) and can eventually lead 

to a pipe break. 

As an alternative to iron pipes, AC pipes were introduced and gained currency in 

the 1950s and 1960s. These pipes offered better operational performance due to lower 

friction, lower manufacturing costs, and better resistance to corrosion. However, the 

material is less ductile than DI and therefore less resistant to soil movement [4]. Also, 

corrosive soils containing acids, alkalis, or sulphates can trigger chemical processes that 

infiltrate and form products that are detrimental to the microstructure of the material. 

Acid soils can also corrode reinforcement wiring in prestressed and reinforced concrete, 

thus diminishing its structural strength [6]. As a result of corrosive soils and mechanical 

factors, AC pipes can fail through circumferential or longitudinal breaks, joint failure, or 

chemical degradation [4].  

In contrast with iron and AC pipes, PVC pipes provide significantly higher 

resistance to corrosion, low manufacturing costs, and an ease of installation. These 

benefits made PVC pipes popularized in the 1970s, and their production has kept rising 

due to improved manufacturing processes [4]. Despite their highly resistant properties, 

PVC pipes can still deteriorate through plasticizers’ biodegradation, oxidation, and 

mechanical exertion [6]. In particular, cyclical soil movement and pressure fatigue can 

cause joint failure or longitudinal fracture in these pipes [4].  
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Considering this structural difference among pipe materials, researchers have 

extensively analyzed the influence of a material type on pipe failure rates. In fact, many 

studies have reported a significant importance of pipe material as a covariate in failure 

assessment and prediction models [7–9]. 

Pipe diameter 

Several studies have suggested that pipe diameter is an important factor in pipe 

deterioration and have generally inferred an inverse relationship with failure rate [8,10–

12]. Bruaset et al. [13] also indicated a negative correlation with both the number of 

recurring failures and the total number of failures. Also, pipe diameters between 100mm 

and 200mm were identified as having the worst failure rates. However, most pipes 

analyzed by the authors were of small diameters. In fact, pipe diameters of 8 inches and 

less make up two thirds of water mains in many water distribution systems in the USA 

and Canada while 10 to 12 inches make up an additional 18% of all pipes [5]. This 

uneven distribution results in a less statistically significant correlation between failure 

rates and pipe diameter. However, a plausible explanation for smaller diameter pipes 

having higher failure rates is a reduced structural capacity due to thinner walls and lower 

joint reliability [13,14]. Also, pipe diameter can have a different influence on 

deterioration depending on pipe material. In fact, Wang et al. [12] noted for example that 

pipe diameter had more effect on failure for CI pipes compared to DI pipes.  

Pipe length 

Pipe length is another factor that can influence failure rates. Many studies have 

only used it as a denominator to failure rates, thus evaluating failure risk per unit of 
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length [8,11,14]. Evaluating failure rates per unit of length without measuring its effect 

typically assumes length having a uniform and proportional contribution to failure rates.  

However, several studies have suggested a clear effect of pipe length on failure 

probability. While some suggested that failure rates per unit of length decrease with 

increasing pipe lengths [12], several others have argued that longer pipes are more 

vulnerable. A possible reason for longer pipes being riskier could be that they are 

exposed to more varying environmental and operational factors like traffic load, pressure 

transients and bedding conditions [9,10]. In particular, Boulos et al. [15] found that water 

distribution systems with pipe lengths shorter than 2,000 ft are less vulnerable to pressure 

transients. The suggested reason was that, in shorter pipes, pressure waves are met sooner 

with junctions, tanks, and similar obstacles that cause wave reflections. These reflections 

tend to counter the initial effect of a transient and limit its impact.  

Pipe age 

An aging water infrastructure has been widely depicted as the main factor leading 

to increased pipe failure rates in recent years, but the influence of pipe age can be more 

complex. In reliability engineering, a common assumption when it comes to a pipe’s life 

cycle is that it follows the “bathtub curve” [3]. The first phase, also called “burn-in” 

phase, is characterized by a steep decline from a high failure rate. These early failures are 

usually due to manufacturing defects or construction practices where the pipe’s structural 

integrity is severely undermined and will not withstand normal levels of loads and stress. 

Once a pipe survives the “burn-in” phase, failure rates are typically constant throughout 

most of the service life of the pipe, and an occurrence of a failure is considered a random 

event. This “in-usage” life period is usually followed by a wear-out phase. During this 

last phase, failure rates rapidly increase as a result of a deteriorating structural capacity. 
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Since pipes are usually considered repairable units, some models use the bathtub curve 

assumption to model the inter-break time between two failures. While some researchers 

evaluate all phases of the bathtub curve, some only consider one or two phases in their 

models [3,10]. 

The effect of pipe age on failure rates can also be considered in terms of 

installation era. In fact, the evolution of practices and industrial processes throughout the 

years has had a direct impact on failure rates. Barton et al. [4] described how the 

evolution in regulation and practices in the UK pipeline industry coincide with changes in 

failure rates throughout a utility’s break history. In particular, the author showed how 

shifting local cast iron production to national and foreign manufacture of spun iron had 

caused an increase in failure rates due to a production of pipes with thinner walls. Also, 

the introduction of pipe coating and lining techniques in the 1950s had drastically 

improved on failure rates in the study. Consequently, some studies explicitly include 

installation time as a covariate or as a grouping criterion to capture those effects [8,12]. 

OVERVIEW OF EXISTING MODELS 

Pipe failure models have been extensively developed in the last 40 years to 

characterize the process of pipe deterioration, evince failure patterns, and anticipate 

failure events. As described by Kleiner & Rajani [6], models can be first classified into 

either physical or statistical. Physical models study the mechanical properties of pipes 

and their environment to determine the nature of the influence and how it impacts a 

pipe’s service life. On the other hand, statistical models evaluate failure patterns on a 

larger scale by analyzing population-wide relationships between failure and pipe 

attributes.  
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Physical models 

To characterize deterioration processes, physical models evaluate loads acting on 

pipes and the structural capacity resisting the resulting stresses. As reviewed by Rajani 

and Kleiner [6], models have approached these mechanical aspects by addressing the 

effect on deterioration for either a single component separately or multiple components at 

once, and approaches relied on both deterministic and probabilistic models. 

Models focused on individual components attempt to characterize the influence of 

a single factor on pipe deterioration. A factor that has been commonly analyzed in the 

literature is frost load. To estimate frost load, empirical methods require several 

properties including a freezing index, soil backfill properties, and pipe depth. Such 

analysis suggested in particular that using a backfill soil with lower frost susceptibility 

compared to the sidewall helps mitigate frost load effect. For pipe soil interaction, models 

incorporate structural factors and consider that stress has in-plane and longitudinal 

components. In particular, stress sensitivity analysis supports the finding that smaller 

pipes suffer increased axial stress [14]. Other models have estimated failure pressure or 

tensile stress for a steel pipe having a corrosion pit using three-dimensional 

characteristics of corrosion pits. Alternatively, a pipe can be scored based on a corrosion 

status index (CSI) depending on the depth of the pit compared to the wall thickness.  

In addition to one component, some models simultaneously integrate the effects 

of multiple factors. Such models can be either deterministic or probabilistic. 

Deterministic models assume no random variation after determining parameter values 

through empirical methods. An example of an empirical model uses a power function to 

predict pipe wall thickness or the pipe hoop stress as a function of corrosion pit depth and 

pipe age. Another conservative linear model estimates residual life with an assumption of 

constant growth rate of the corrosion pit depth. Some combined methodologies attempt to 
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harness various models on a scenario-based approach to determine remaining service life 

based on corrosion pit measurements and pipe characteristics. 

For probabilistic models, instead of assuming determined values for parameters, 

probability distributions are integrated to capture the uncertainty about accurately 

identifying parameters and outcomes. In particular, the probability of steel pipe failure 

can be estimated using a pipe-soil stress model and a power function for the loss of wall 

thickness. Assumptions of probability distributions for parameters can thus be used to 

approximate the mean and variance of the failure tensile stress. Also, several models use 

the residual pipe strength to assist in decision making for inspection schedules. For 

example, a ratio of the residual strength and the predicted deterministic strength was 

assumed to follow a log normal distribution. By modeling the deterioration of the 

strength as a linear birth process, time to failure probabilities can be minimized and thus 

help identify optimal inspection schedules. Other physical models have alternatively 

attempted to evaluate the influence of temperature on failure rates using methods like 

multiple regression analysis. [6] 

To characterize structural stress and identify failure points, these physical models 

in general require detailed pipe-level information. This information can include pipe 

intrinsic properties related to coating, joint types, and wall thickness. Operational 

information might also be needed to evaluate how the pipe reacts to pressure transients, 

chemical water properties, or hydraulic pressure. The environment of the pipe 

additionally brings another set of components to be integrated. These components can 

include pipe burial depth, soil properties, temperature, etc. Ideally, a model that perfectly 

characterizes the physical deterioration process would need to include all such 

information that influences the process. However, in practice, acquiring detailed 

information about an individual pipe and its environment is a costly endeavor. Most 
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water utilities typically only have general information about their pipe network, which 

drastically limits the potential of physical models. Nevertheless, physical models can be 

very useful when detailed analysis is needed for a portion of the network or select pipes 

to understand and model a deterioration behavior of specific interest. 

Statistical models 

As opposed to physical models which are limited in application due to the level of 

detailed and costly information required for each pipe, statistical models provide an 

alternative to assess the condition of large distribution systems. 

Kleiner and Rajani [3] presented an overview of statistical models discussed in 

the literature which the authors classified into three categories: deterministic, 

probabilistic single-variate, and probabilistic multi-variate models. This review was later 

updated in 2012 and included another level of classification related to the type of 

deterioration [16]. The type of deterioration referred to whether a statistical model was 

interested in breakage frequency, survival analysis, or condition rating. According to the 

review, deterministic models have generally used grouped data and included time 

exponential and time linear approaches to estimate the number of breaks or the age at 

failure. In contrast, probabilistic models have incorporated uncertainty in determining 

model parameters to analyze the probability of failure, life expectancy, or failure 

clustering.  

While the authors presented a comprehensive review of statistical models and 

underlying assumptions, a unified perspective was still needed to compare the models. To 

that end, Scheidegger et al. [17] presented a review of statistical models on a comparable 

basis by formulating the models into their failure rates representation and assessing their 
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predictive power. Prior to presenting the comparison, common model assumptions are 

first introduced.  

Model assumptions 

To specify a statistical model, assumptions about the properties of the model are 

usually required. In general, statistical models consider failure events as a stochastic 

process where pipes can fail at any time, repairs are immediate, and failure counts are 

unbounded. These failure counts are typically assumed to follow a Poisson distribution, 

thus describing Poisson point processes. To characterize such stochastic processes, a 

failure rate 𝜆 is defined as:  

𝜆(𝑡|𝐻(𝑡)) = lim
𝛥→0+

𝑃𝑟𝑜𝑏(𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 [𝑡, 𝑡 + 𝛥]|𝐻(𝑡))

𝛥
         (1) 

Where H(t) represents the failure history at time t. It follows that the failure rate 

represents a probability density function per unit of time and reflects the propensity for 

failure at a given time t. If the failure rate is constant, the Poisson point process is 

characterized as homogeneous. Otherwise, the model is defined as non-homogeneous.  

Also, the life cycle of a pipe is typically assumed to follow the “bathtub” curve. 

At the beginning of the pipe’s life cycle, the failure rate starts high with a quick decline 

during its “burn-in” phase. The high rate is typically due to installation risks related to 

construction mishandling, pipe defects, and similar infant break factors. Then, the failure 

rate stabilizes at a low value during the “in-usage” phase which makes up most of a 

pipe’s life cycle. Towards the end of the pipe’s life cycle, the failure rate increases 

steadily as part of the “wear-out” phase. During that phase, the structural integrity of the 

pipe is undermined, and the pipe is increasingly more prone to failure under the same 

conditions. When a repair follows a pipe’s failure, the pipe’s structural capacity is 

restored, and a new life cycle begins. Incorporating the entirety of a pipe’s life cycle is 
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often a complex task. Therefore, statistical models typically depict one or all phases of 

the cycle [3].  

To specify the relationship between a dependent variable and independent 

variables, parameters of statistical models need to be estimated. If a statistical model 

estimates factors based on observed failure events and uses the factors to predict future 

failures, predictions are considered conditional. Else, predictions are considered 

unconditional if a model does not account for past failure. Two common approaches use 

failure history information to estimate parameters and calibrate a model: Maximum 

Likelihood Estimation (MLE) and Bayesian Inference (BI). Both methods estimate 

parameters by formulating a likelihood function that describes the probability of 

observing available data given those parameters. 

Also, observed data have censorship characteristics that need to be accounted for 

in a statistical model to reduce estimation bias. These characteristics refer to right 

censorship, left truncation, and absence of replaced pipe data [17]. Right censorship 

represents a situation where events are not recorded after the latest failure in the dataset. 

In particular, if pipes are still in service, they are right censored. For left censorship, 

failure information prior to the earliest observation in the dataset is not included. 

Throughout the recording period, there might also be times when data about replaced 

pipes are absent for various reasons including missing, deleted, or corrupted data records. 

As different likelihood functions can be derived based on different censorship 

characteristics, considering these characteristics prior to model calibration is essential to 

reducing bias. 
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Published models 

Statistical models have been presented in the literature via different formulations 

and following different assumption. Following a systematic approach to comparing 

published models, Scheidegger [17] presented a review of the main statistical models in 

their failure rate representation. Table 2 presents those models with their failure rate 

formulation, main characteristics, and assumption. 
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 Table 2: Published statistical models as described by Scheidegger [17] 

Model 

reference 

Failure 

assumption 

Failure rate Model main characteristics 

Eisenbeis 

[18] 

Weibull-

distributed inter-

break times 

𝜆(𝑡, 𝑡𝑛, 𝑛) =

{
 

 
𝜃1(𝑡)

𝜃1−1, 𝑛(𝑡) = 0

𝜃2(𝑡 − 𝑡𝑛(𝑡))
𝜃2−1

, 1 ≤ 𝑛(𝑡) < 4

𝜃3(𝑡 − 𝑡𝑛(𝑡))
𝜃3−1

, 4 ≤ 𝑛(𝑡)

 

- Deterioration factors are integrated through 

proportional hazards approach (pipe 

properties, external conditions, 15 years past 

failure 

- The failure rate restarts at zero at repair times 

(deterioration due to repairs is not modeled) 

Gustafson 

and Clancy 

[19] 

Generalized 

Gamma-

distributed inter-

break times 

𝜆(𝑡, 𝑛) = {

𝜃1𝜃2(𝜃2𝑡)
𝜃1−1, 𝑛(𝑡) = 0

𝜃𝑛(𝑡)+2, 1 ≤ 𝑛(𝑡) < 10

𝜃13, 11 ≤ 𝑛(𝑡)

 

- The model uses exponential distributions 

after the first failure for simplification 

- The constant rates past the first inter-break 

time do not reflect deterioration over time 

- Model calibration requires a large dataset to 

estimate rates up to the 11th failure 
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 Table 2, Continued 

Pelletier 

[20] 

Weibull-

Exponential 

distributions 

𝜆(𝑡, 𝑡𝑛, 𝑛) =

{
 
 

 
 𝜃1𝜃2(𝜃2𝑡)

𝜃1−1, 𝑛(𝑡) = 0

𝜃3𝜃4(𝜃4(𝑡 − t1))
𝜃3−1

, 𝑛(𝑡) = 1

𝜃5, 𝑛(𝑡) = 2
𝜃6, 𝑛(𝑡) ≥ 3

 

- Fewer parameters to estimate require a 

smaller dataset size than previous model 

Røstum 

[21] 

Weibull 

distribution. 

Non-

homogenous 

Point Process 

𝜆(𝑡) =  𝜃1𝜃2𝑡
𝜃2−1 

- It is assumed that the failure rate increases 

with age 

- The model does not account for the influence 

of previous failures (NHPP process is 

memoryless) 

Watson et 

al. [22] 

Homogenous 

Point Process 
𝜆 =  𝜃1 

- The model is too simple to model the 

complexity of pipe deterioration 

- Calibration relied on Bayesian inference with 

a Gamma distributed failure rate prior 

Economou 

et al. [23] 

Weibull 

distribution 
𝜆(𝑡) =  𝜃1𝑡

𝜃1−1 

- Zero-inflation is modelled per pipe but the 

effect on failure rate is unclear 

- Random effects were estimated via Bayesian 

inference 
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 Table 2, Continued 

Le Gat [24] Yule process 𝜆(𝑡, 𝑛) = (1 + 𝜃1𝑛(𝑡))𝜃2𝑡
𝜃2−1 

- The model yields a binomial distribution for 

the likelihood of failure and predictions 

Kleiner and 

Rajani [25] 

Non-

homogenous 

Point Process 

with year-long 

piece-wise 

constant rates  

𝜆(𝑡) = 𝜃1𝑡
𝜃2 

- The model accounts for seasonal effects 

through time-varying covariates. 

- Known previous failures are incorporated as 

a covariate which defies the NHPP 

memoryless assumption 

Scheidegger 

et al. [26] 

Weibull 

distribution for 

first inter-break 

time and 

exponential for 

subsequent 

times 

 

𝜆(𝑡, 𝑛) = {
𝜃1𝜃2(𝜃2𝑡)

𝜃1−1, 𝑛(𝑡) = 0
𝜃3, 1 ≤ 𝑛(𝑡)

 

- Failure rate is not influenced by previous 

failures past the first failure and does not 

represent deterioration over time.  

- The model is practical for small datasets 

since a limited number of parameters is 

included 
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Chapter 3: Integrated approach for pipe failure prediction and condition 

scoring in water infrastructure systems 

INTRODUCTION 

Water distribution systems are critical lifelines of modern infrastructure. Maintaining a 

reliable and efficient water distribution system is crucial to supporting all spheres of human 

activity. To organize maintenance efforts once the components of the distribution system wear 

out, deterioration modeling has always been a concern in asset management. As water 

distribution systems keep needing higher investments for rehabilitation in what has been 

described by the American Water Works Association as the replacement era, researchers have 

been increasingly interested in more accurately modeling deterioration processes. Recent 

advances have been made in collecting more detailed and higher quality pipe-level information 

on asset attributes and failure history, and models are further developed to incorporate more 

complexity and adaptability. Yet, often times, water utilities are confronted with a persistent lack 

of granular information on assets and faulty failure records. Limited information availability 

requires practical failure models that can provide actionable outcomes for water utilities to 

integrate in their asset management practices.  

One set of models that provides practical applicability is logistic regression. Logistic 

regression models are used to estimate the probability of an event based on a set of variables. 

Several studies have used logistic regression to reveal the influence of certain factors on asset 

deterioration [27–29]. In particular, age has been determined as a factor that increases the 

likelihood of deterioration and failure, and pipe diameter has been identified as a factor that 

inversely influences the likelihood of failure [28].  

Logistic regression has also been used to evaluate the predictability of pipe failures [30]. 

By setting a threshold on an estimated failure probability, logistic regression models have been 

used as classifiers, and the performance of the logistic model has been evaluated for several use 

cases. A common measure of this predictive performance has been the receiver operating 
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characteristic curve [31,32]. In some cases, binary logistic regression has performed better than 

other commonly used models [33]. In other cases, models like Artificial Neural Networks and 

Random Forest performed closely higher [34,35]. Other researchers have used the logistic 

regression model to rank pipes per their likelihood of failure [29,36,37]. Cooper et al. [38] 

further associated the likelihood of failure with spatial information on consequences to assign 

risk scores to individual water mains.  

Yet, the predictive performance of logistic regression models remains to be fully 

explored [39]. A logistic regression model estimates the probability of failure in a limited time 

interval, and researchers typically reduce the time interval to a period small enough to include at 

most one failure [40]. However, a given failure may result from unusual stress and not reflect a 

deteriorating trend. It may then be useful to observe failure history in a more flexible period to 

cover longer deterioration trends. Also, little research has used the logistic failure probability to 

generate an estimate of the expected remaining service life as a metric for condition assessment. 

Opila and Attoh-Okine [1] suggested a methodology for calculating the Mean Time to Failure 

(MTF) using failure probability . The authors further converted MTF estimates into condition 

scores according to a flexible scale. Ultimately, the obtained scores incorporated various factors 

in addition to a water utility’s risk attitude.  

This chapter explores the applicability of the methodology using the logistic regression 

model and further expands the scope to allow for a flexible choice of the time interval of the 

dependent variable. The intended contribution of this chapter is threefold: (1) assess the 

performance of a logistic regression model with a flexible time-interval choice, (2) provide a 

measure of the Mean Time to Failure based on a specified logistic regression model, and (3) 

assign and evaluate pipe condition scores based on the MTF measure.  

METHODS 

The proposed approach for pipe failure prediction and condition scoring involves five 

steps: (1) data collection and processing, (2) developing a logistic regression model to estimate 
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the probability of a pipe failure in a given time period, (3) estimating the mean time to failure for 

each pipe, (4) assigning scores to each pipe according to a condition scoring method reflecting a 

water utility’s attitude towards risk, and (5) evaluating model performance. The main steps of the 

proposed approach are illustrated in Figure 2. 

To demonstrate the methods, the proposed approach was applied on a dataset of 4,153 

water distribution pipes with 6,769 failure events covering a time period from 2000 to 2019. 

 

 

Figure 2: Research methodology 

 

Logistic regression model 

Model formulation 

The first step of the modeling approach is to estimate the probability of pipe failure using 

physical, environmental, and historical information of individual pipes. To estimate failure 

probability, the approach relies on a logistic regression model with a flexible prediction time 

interval.  
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In fact, the approach allows for a flexible selection of a prediction period of interest 

consisting of a selected number of years T. One to several years can be chosen as a T-year period 

depending on the resulting model performance and the water utility’s preference. 

 

Figure 3. Diagram of the covariates for an individual pipe 

Figure 3 illustrates the timeline of an individual pipe, a sample of its covariates, and the 

prediction time period T. The covariates are characteristics of an individual pipe measured at the 

beginning of a jth T-year period with 𝑗 = 1,2, … , 𝑛𝑖 and 𝑛𝑖 is the total number of T-year periods 

covered by a single pipe i’s timeline. These covariates include pipe age, material, diameter, soil 

conditions, as well as time elapsed since last failure. In section 3.1, a detailed description of the 

pipe information used in this work is provided. For an individual pipe i, the logistic regression 

model estimates the probability of the pipe failure event 𝑌𝑖𝑗 occurring in a jth T-year period 

given a set of pipe covariates represented using a vector 𝑋𝑖𝑗. Each covariate influences the 

probability of failure according to a coefficient 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝). Eq. (2) represents a mean 

probability 𝑃𝑓 of a failure event 𝑌𝑖𝑗 for a single pipe i in the jth T-year period, and 𝑋𝑖𝑗 is a vector 

of pipe covariates. 

𝜇𝑖𝑗 = 𝑃𝑓(𝑌𝑖𝑗 = 1|𝑋𝑖𝑗) =
1

1+𝑒
−𝑋𝑖𝑗

′𝛽
     (2) 

To specify the relationship between covariates and the response variable, regression 

coefficients 𝛽 are to be estimated. For deterministic models, regression coefficients are typically 

estimated by maximizing a likelihood function. An important assumption in calculating a 
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likelihood function is independence of observations [41]. However, since the dataset included 

observations of a same pipe for different periods, the longitudinal nature of observations could 

potentially induce a correlation across pipe failure response, thus violating the sensitive 

assumption of independence.  

In fact, the raw data is restructured by non-overlapping periods of T years. For each jth T-

year period, a single response 𝑌𝑖𝑗 indicates whether a pipe i failed at least once during the kth T 

years, i.e., 𝑌𝑖𝑗 = 1, or not, 𝑌𝑖𝑗  =  0. Hence, a same pipe appears as a data point j times in the 

model. These repeated measures might create a correlation in the dataset that is similar to the 

standard autocorrelation often exhibited in many time series (e.g., hydrological time series and 

spatial environmental data) where samples are not spaced enough in time or space. Correlated 

samples might not provide an accurate representation of the population. For example, 10 

uncorrelated samples from a population might provide the same accuracy as 100 correlated 

observations. 

However, in statistical models, the purpose is to characterize a population when only a 

sample of the population is available. Hence, the measurements taken of the population - pipe 

failures in the present study - need to be a reliable representation of the population. It follows 

that there is a need to account for a potential correlation between samples. 

To account for a possible correlation between outcomes for each individual pipe, a 

Generalized Estimating Equations (GEE) method estimates regression coefficients by 

incorporating within-cluster effects through their population-average [42]. A cluster in the 

present dataset refers to a single pipe with multiple observations. This method also prevents the 

need to explicitly specify a probability model of the correlation structure.  

Let 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛𝑖)
′ represent the response vector of the ith pipe consisting of 𝑛𝑖 

observations and 𝜇𝑖 = (𝜇𝑖1, 𝜇𝑖2, … , 𝜇𝑖𝑛𝑖)
′ refers to the mean vector of failure probability for pipe 

i. Let 𝑉𝑖 be the variance-covariance matrix for 𝑌𝑖 and is defined as 𝑉𝑖 = 𝐴𝑖
1

2𝑅𝑖(𝛼)𝐴𝑖
1

2 where 𝐴𝑖 =

𝐷𝑖𝑎𝑔{𝜇𝑖1, 𝜇𝑖2, … , 𝜇𝑖𝑛𝑖} and 𝑅𝑖(𝛼) is known as the working correlation structure. 𝑅𝑖(𝛼) is a 

square matrix of elements 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑘) and size 𝑛𝑖 × 𝑛𝑖 and is defined based on one of several 



 

 26 

commonly used types of covariance structures. 𝑅𝑖(𝛼) also depends on a parameter 𝛼 estimated 

iteratively based on the number of regression coefficients p and the response residuals defined as 

𝑒𝑖𝑗 = (𝑦𝑖𝑗 − 𝜇𝑖𝑗)/√𝜇𝑖𝑗 using the current value of the coefficient 𝛽 [43]. Table 3 details these 

matrix elements and parameter estimation for the independent, exchangeable, and autoregressive 

correlation structures used in this study.  

Table 3. Correlation matrix elements for common working correlation structures for a pipe i 

Correlation structure 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑘) Parameter estimator 

Independent 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑘)

= {
1    𝑗 = 𝑘
0   𝑗 ≠ 𝑘

 

- 

Exchangeable 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗, 𝑌𝑖𝑘)

= {
1    𝑗 = 𝑘
𝛼   𝑗 ≠ 𝑘

 

𝛼̂ =
1

𝑁′ − 𝑝
∑∑𝑒𝑖𝑗𝑒𝑖𝑘

𝑗≠𝑘

𝐾

𝑖=1

 

𝑁′ =∑𝑛𝑖(𝑛𝑖 − 1)

𝐾

𝑖=1

 

Autoregressive AR(1) 𝐶𝑜𝑟𝑟(𝑌𝑖𝑗 , 𝑌𝑖,𝑗+𝑚)

= 𝛼𝑚,  

𝑚 = 0,1,… , 𝑛𝑖 − 𝑗 

𝛼̂ =
1

𝐾1 − 𝑝
∑ ∑ 𝑒𝑖𝑗𝑒𝑖,𝑗+1

𝑗≤𝑛𝑖−1

𝐾

𝑖=1

 

𝐾1 =∑(𝑛𝑖 − 1)

𝐾

𝑖=1

 

 

Despite the existing difference among correlation structures, estimates of the regression 

coefficients are asymptotically consistent despite a misspecification of the correlation structure 

[44]. 

For K pipes and p covariates, regression coefficients 𝛽 can be estimated by solving the 

GEE in Eq. (3):  

𝐹𝑜𝑟 𝑗 = 1,… , 𝑝:   ∑
𝜕𝜇𝑖
𝜕𝛽𝑗

𝐾

𝑖=1

𝑉𝑖
−1(𝑌𝑖 − 𝜇𝑖) = 0      (3) 

To decide upon the goodness of fit of a logistic model based on a specified correlation 

structure that accounts for potential correlation from multiple observations from each pipe, the 
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Quasi-likelihood under the Independence model Criterion (QIC) is used [45]. Unlike likelihood-

based methods such as the Maximum-Likelihood (ML), GEE-based models do not explicitly 

specify a likelihood function. However, the QIC metric provides an alternative to the commonly 

used Akaike Information Criterion (AIC) metric to compare the goodness of fit for different GEE 

models, such that a GEE model with a lower QIC value is considered a better fit for the dataset. 

Selection of covariates 

An important step of developing a logistic regression model is the selection of covariates. 

Covariate selection can improve a model’s interpretability, avoid overfitting by diminishing the 

effect, filter out covariates with low relevance without compromising model accuracy, and even 

improves prediction performance for new observations.  

In this study, covariate selection is carried out in two steps. First, Least Absolute 

Shrinkage and Selection Operator (LASSO) regression reduces the number of covariates based 

on their contribution to the performance of the logistic regression model. Secondly, a Recursive 

Feature Elimination (RFE) method is performed to further reduce the number of covariates. 

LASSO regression is a statistical tool that performs variable selection by shrinking less 

significant regression coefficients to zero [46]. Coefficient shrinkage is possible by integrating 

an additional term to the error minimization such that the goal of lasso regression is to solve Eq. 

(4):  

min
𝛽∈ℝ𝑝

{
1

𝑁
‖𝑙𝑜𝑔𝑖𝑡(𝜇) − 𝑋′𝛽‖2

2 + 𝜆‖𝛽‖1}       (4) 

Where logit is the logistic function defined as 𝑙𝑜𝑔𝑖𝑡(𝑃𝑓) = ln (
𝑃𝑓

1−𝑃𝑓
), 𝜆 is a regularization 

parameter that balances between two objectives: minimizing the sum of squared error between 

the fitted and observed failures (first term) and regularization (second term). ‖ ‖2 is the Euclidian 

norm l2 defined such that ‖𝑙𝑜𝑔𝑖𝑡(𝜇) − 𝑋′𝛽‖2
2 = ∑ ∑ (𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑗) − 𝑋𝑖𝑗

′𝛽)2
𝑛𝑖
𝑗=1

𝐾
𝑖=1 . ‖ ‖1 is the l1 

norm defined such that ‖𝛽‖1 = ∑ |𝛽𝑖|
𝑝
𝑖=1 . The 𝑙1 regularization penalizes a model with many 

covariates. The rationale for including the 𝑙1 penalty is that it modifies the estimation to achieve 

sparsity by eliminating the predictors that explain the response variable the least. It also prevents 
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overfitting the model. By cross-validating over 𝜆 values, the value that yields the lowest 

objective function was chosen for the present dataset.  

An additional step of covariate selection was performed using RFE. The goal of RFE is to 

select covariates by recursively considering a decreasing number of covariates [47]. First, a 

logistic regression model is trained on the set of covariates selected after the LASSO 

regularization step, and the statistical significance of each covariate is obtained through p-values 

for each covariate’s coefficient. The covariate with the highest p-value is eliminated from the 

current set of covariates. This procedure is repeated on the resulting subsets until the highest p-

value is below a specified cutoff of 0.10. The final subset of covariates was then used to develop 

the final logistic regression model that estimates pipe failure probability for a given T-year 

period. 

The outcome of the logistic regression model provides an estimate of the probability of a 

pipe failure in a T-year period by integrating the effects of the correlation structure and selected 

physical, environmental, and historical information. Then, a discrete decision about the state of 

the pipe can be made by setting a discrimination threshold on a given failure probability of a 

pipe. If the failure probability exceeds this threshold value, a pipe is expected to fail, i.e., the 

failure outcome is equal to 1. If the estimated probability is below the designated threshold 

value, the pipe is expected to survive, i.e., the failure outcome is equal to 0. 

Estimating Mean Time to Failure (MTF) 

The developed logistic regression model estimates failure probabilities for each pipe, 

which provides a measure of criticality for a given T-year period. While such a measure can 

assist a water utility in defining maintenance priorities for a planning period, it does not provide 

a direct measure of the expected time to failure. To estimate the remaining time to pipe failure, 

the proposed approach relies on calculating the Mean Time to Failure (MTF). MTF is a 

reliability parameter typically used to account for the expected life expectancy in the design of 
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products [40]. For repairable systems, MTF refers to the time between failures, i.e., inter-arrival 

time, and it can be estimated as the arithmetic mean of the survival probability over time:  

𝑀𝑇𝐹 = ∫ 𝑃𝑠(𝑡)𝑑𝑡
∞

𝑡0

         (5) 

Where 𝑡0 denotes the pipe’s repair time and 𝑃𝑠(𝑡) is the survival function defined as the 

probability that a pipe will survive past a time t.  

Assuming an independence across failure events for a given pipe, the probability that a 

pipe survives past a time t was approximated by the product of the probabilities that the pipe 

survives during each of the successive T-year periods leading to the time t, each T-year survival 

event being conditional on the pipe surviving up to the beginning of the T-year period. The MTF 

can, thus, be approximated following Eq. (6):  

𝑀𝑇𝐹 = 𝑇 ∙∑∏𝑃𝑠(𝑘)

𝑛

𝑘=0

∞

𝑛=0

       (6) 

Where 𝑃𝑠(𝑘) refers to the probability of survival during the kth T-year period with 𝑘 =

1, 2, … , n𝑖. Since the event “at least one failure” is the complement of a survival event, the 

probability of failure in a T-year period 𝑃𝑓, as estimated by the developed logistic regression 

model, was used to calculate the MTF following Eq. (7).  

𝑀𝑇𝐹 = 𝑇 ∙∑∏(1 − 𝑃𝑓(𝑘))

𝑛

𝑘=0

∞

𝑛=0

= 𝑇 ∙∑∏
1

1+ 𝑒𝑋(𝑘)
𝑇𝛽

𝑛

𝑘=0

∞

𝑛=0

         (7) 

Where 𝑋(𝑘) represents the vector of covariates measured at the beginning of the kth T-year 

period. This method converts the failure probabilities in a limited time interval to a measure of 

expected time to the next failure. The MTF is a direct measure that can be used by water utilities 

to decide whether to include pipes in repair and improvement projects. 

Condition scoring 

The first outcome of the proposed approach was a T-year probability of pipe failure, and 

the second yielded estimates of the mean time to next failure. The third step assigns pipe 

condition scores to facilitate the water utility’s risk assessment and prioritize maintenance, 
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replacement, and decide on project scope. Furthermore, the scoring approach is flexible to the 

utility’s risk attitude and the granularity of scores it desires. 

The condition scoring method, as suggested by Opila & Attoh-Okine [1], uses the 

economic concept of discount rate to assign condition scores to pipes based on MTF estimates. 

According to its economic interpretation, a discount rate typically implies the extent to which 

future benefits are valued, where a higher discount rate implies a lower present value of money 

accrued in the future, compared to a higher present value of money with a lower discount rate. In 

this study, a discount rate 𝑑 refers to a factor that penalizes shorter times to failure and resulting 

in a more critical condition score of pipes. Given a maximum desired criticality score 𝑆𝑚𝑎𝑥, a 

discount rate 𝑑, and the MTF of a pipe, a pipe’s condition score can be determined as:  

𝑆 =
𝑆𝑚𝑎𝑥

(1 + 𝑑)𝑀𝑇𝐹
     (8) 

This condition scoring method assigns a single score to a pipe, which lumps the impact of 

various environmental and physical covariates, pipe failure history, as well as a utility’s attitude 

towards risk and decision scale. Higher scores indicate higher criticality, and higher discount 

rates suggest that fewer pipes will have high scores for a given MTF, thus reflecting a lower 

level of rehabilitation priority [1]. Figure 4 illustrates the condition scoring proposed in Eq. (8) 

as a function of the calculated MTF proposed in Eq. (7). Based on the curve, scores can be 

assigned to pipes on either a continuous (solid line in Figure 4) or a discrete (dashed line in 

Figure 4) scale. In the present study, scores were assigned using a discrete scale, which allowed 

to categorize pipes into a finite number of groups for a practical input for asset management. 
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Figure 4. Condition scoring curve 

Model evaluation 

The proposed framework includes a logistic regression model for pipe failure prediction 

based on estimated failure probabilities and a condition scoring method using the concept of 

MTF. In order to evaluate the accuracy of the proposed framework, several classification and 

error metrics were employed.  

To evaluate the performance of the logistic regression model, a confusion matrix is used. 

As shown in Figure 5, a confusion matrix summarizes the performance of a classification model 

by showing both discrepancy and agreement between true labels and predicted labels [48]. 

Before computing the confusion matrix, predictions are obtained by converting failure 

probabilities to a binary outcome (i.e., pipe failure or pipe survival) by setting a probability 

threshold. Following the confusion matrix terminology, correctly predicted labels are either True 

Positives (TP) or True Negatives (TN), and incorrectly predicted labels are either False Positives 

(FP) or False Negatives (FN). Here, positives represent pipe failure event and negatives represent 

pipe survival. 
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Figure 5. Confusion matrix 

Additionally, based on the confusion matrix, several performance metrics were 

calculated. Table 4 shows the calculated metrics and their definitions. 

Table 4. Classification metrics and definitions 

Classification metric Definition 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall or True Positive Rate 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False Positive Rate 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Matthews Correlation Coefficient 

(MCC) 

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Since predictions are made based on a chosen probability threshold, the defined 

classification metrics can only be comprehensively interpreted if a threshold value is justified. To 

decide upon the choice of a probability threshold, Receiving Operating Characteristic (ROC) and 
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Precision-Recall curves are common tools to analyze the impact of a varying threshold on model 

performance [31,48,49]. As shown in Figure 6, a ROC curve is a graphical tool that plots True 

Positive Rate (TPR) values versus False Positive Rate (FPR) values for a varying threshold, 

where 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 and 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
. A high TPR indicates the rate of correctly predicted 

pipes that are expected to fail and a low FPR indicates the rate of pipes whose failure was 

incorrectly predicted by the model. Hence, the goal is to achieve a high TPR and a low FPR. A 

performance metric associated with a ROC curve is the Area Under the Curve (AUC). The closer 

AUC is to 1, the better the model is at correctly predicting the true events and simultaneously 

minimizing false predictions.  

 

Figure 6. ROC curve 

While a ROC curve allows to visualize how well a classifier captures true labels, ROC 

curves can be influenced by imbalanced true and positive events. When the number of negative 

events is much greater than the number of positive events (as typically occurs for pipe failure 

data where a majority of pipes do not exhibit failures), the FPR can be artificially suppressed 

making it more difficult to assess model performance. Instead, Precision-Recall curve performs 

better for imbalanced datasets, where precision indicates the fraction of pipes identified by the 

model that are expected to fail that indeed experience failure, and recall indicates the sensitivity 
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of model prediction [49]. A tradeoff applies between precision and recall as the probability 

threshold varies. When the probability threshold is low, the number of unidentified failure events 

is expected to decrease, thus having higher recall values. However, the number of events 

incorrectly classified as failures will increase as well, thus decreasing the model’s precision. As 

the probability threshold increases, fewer relevant events will be identified (i.e. lower recall), 

however the confidence (i.e., precision) of correctly identified events will be greater. It is useful 

to plot precision and recall curves against the threshold settings, as illustrated in Figure 7, thus 

visualizing how different threshold levels specifically influence both curves. Visualizing the 

precision and recall tradeoff curves allows the water utility to directly set the probability 

threshold to achieve a desired level of performance. 

 

 

Figure 7. Precision (solid) & Recall (dashed) vs Threshold 

Classification metrics listed in Table 4 and ROC and Precision-Recall curves are useful 

to improve failure predictability and, in turn, the MTF and condition scoring by determining the 

probability threshold. For MTF calculation and condition scoring, results can be evaluated 



 

 35 

against the observations by comparing the MTF to the actual time to failure for pipes that failed 

more than once in the observation period by using qualitative and quantitative measures such as 

histograms, boxplots, and the Root Mean Square Error (RMSE).  

APPLICATION & RESULTS 

The proposed framework is demonstrated using the information provided by the City of 

Austin, which included data about pipe characteristic, location, and failure history. All models 

developed in this work were implemented in Python 3.7, and some preliminary data processing 

was executed in ArcGIS Pro 2.4.0.  

Data description and preprocessing 

The studied drinking water distribution system consists of 244,830 pipe segments with a 

total network length of 5,202.1 miles. A unit in the pipe network was either a whole pipe or only 

a segment of a whole pipe. Because the utility’s records did not explicitly make such a 

distinction, the present study refers to both types as pipes. Out of the total number of pipes on 

file, past failure was only recorded for 4,425 pipes. These repaired pipes account for a total 6,989 

recorded repair events spanning from 2000 to 2019. A repair event is typically triggered by a 

reported leak and refers to an intervention from a utility’s maintenance team to restore a pipe into 

service.  

Prior to considering pipe attributes, the dataset had to be screened for duplicates and 

other inconsistencies. In addition to removing duplicates, a portion of failure events was not 

stored in a readable format, which practically resulted in a total 6,769 failure events from 4,153 

pipes. Finally, the dataset with failure history had a total network length of 336.48 miles 

representing 6.5% of the entire network length. 

Figure 8 shows the annual failure rate per the length of the entire network from 2001 to 

2018. The first year 2000 and last year 2019 were excluded from this figure as failure data 

collection may not have been complete. Across the 2001 to 2018 period, pipes had in average 
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7.35 failures per 100 miles per year with a standard deviation of 3.29 years. Break rates mostly 

fluctuated between 5 and 11 failures per 100 miles per year. A 2018 survey of water utilities in 

the USA and Canada reported an average failure rate of 14 breaks per 100 miles per year, which 

was compared to other sources reporting failure rates ranging from 21 to 30 breaks per 100 miles 

per year [5]. This report also refers to typical industry targets of 11 to 15 breaks per 100 miles 

per year. This suggests that the failure rate calculated based on the dataset provided by the city of 

Austin was low. Because the failure records in the dataset only consisted of pipes representing 

6.5% of the entire network, another portion of the network must have suffered past failures. 

Also, as can be seen in Figure 8, unusually low failure rates were recorded in 2001 and 2002 

with no provided explanation. Despite years with unusual rates, the entire pipe failure dataset 

was considered in the analysis. Excluding outliers was not warranted since individual events 

could not be directly associated with any identified variability in trends. Also, rejecting some 

events might influence potential correlations across the pipe network since a pipe failure might 

have an impact on adjacent pipes or other parts of the network.  

 

 

Figure 8. Failure rate per year 
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Relevant attributes that were provided with the dataset included pipe length, diameter, 

age, material, and pressure zone. Physical, environmental, and historical information used in this 

analysis are briefly summarized as follows. 

Pipe material. The majority of pipes consist of cast iron (CI) pipes (71.2% of pipe length) 

followed by ductile iron (DI) (6.1%), Polymerizing Vinyl Chloride (PVC) (5%), and Asbestos 

Cement (AC) (13.7%). Other pipe materials included concrete steel cylinder, polybutylene, and 

copper, which comprised less than 4%. More than half of the pipes had only one past failure and 

77.3% had either one or two past failures in the 20 years observation period. 

Pressure zones. Pipe attributes included six main pressure zones, North (NO), Central 

North (CN), North West (NW), South (SO), Central South (CS), South West (SW), and Others. 

CS, CN, and N pressure zones included 73.6% of the pipes with recorded past failures. 

The analyzed dataset thus consisted primarily of CI pipes with one or two past failures 

and around the central area of the city. On the other hand, only 25.5% of the entire 5,202.1 miles 

of the network consisted of CI pipes, and the central south, central north, and northern pressure 

zones make up only 35.4%. Therefore, this difference between the studied sample and the total 

population needs to be considered when interpreting results. 

Pipe age. As common with pipe records, approximately 12% of pipes were missing pipe 

age. The age of the remaining pipes was approximated using spatial interpolation based on radial 

basis function [50]. The age of CI pipes was further adjusted based on our discussions with the 

water utility following the changes in installation practices. As suggested by the water utility, CI 

pipe installation ceased in the early 1980s. A cutoff was therefore defined such that estimated 

installation dates for CI pipes that were dated after 1980 (approximately 3% of all the pipes) 

were instead approximated by assigning an age value from the geographically nearest pipe that 

was installed before 1980. This approximation assumed that those CI pipes were installed in the 

same year as the nearest pipes that were installed before 1980. Such an assumption is reasonable 
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considering that rehabilitation efforts typically target several pipes in a given geographical area 

for cost considerations.  

Figure 9 shows the distribution of resulting pipe ages by pipe length and material. Newer 

pipes consist mostly of DI and PVC, and older pipes consist mostly of CI and AC pipes.  

 

Figure 9. Distribution of pipe age and material 

Soil and land use. Soil information was extracted from the Soil Survey Geographic 

(SSURGO) Database as provided by the National Cooperative Soil Survey. The database is made 

publicly available by the United States Department of Agriculture (USDA) [51]. Soil attributes 

included the dominant soil order, which is defined in accordance with USDA soil taxonomy [52]. 

The dominant soil order refers to a soil classification that lumps soil properties like depth, 

structure, and moisture. Additionally, land attributes were assigned to pipes with information on 
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road type and land use as potential covariates [53]. Annual precipitation was also considered as a 

model covariate and was provided as an average rainfall associated with soil information. 

Table 5 summarizes the considered covariates in terms of categories, units, and important 

values. Overall, 15 different continuous and categorical covariates were considered in the 

regression model. 
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Table 5. List of covariates per category 

Category Covariate Alias Unit Important values 

Pipe 

characteristic 

Length pipeLength Ft Mean: 419.18; Std: 424.18 

Diameter pipeDiameter In Mean: 7.13; Std: 4.64 

Age pipeAge Years Mean: 45.17; Std: 18.74 

Material pipeMaterial − CI; DI; AC; PVC; Other 

Failure history Number of past failures NOPF Break Mode: 0; Mean: 0.51 

Years from last failure upTime Years Mean: 5.58; Std: 3.80 

Soil attribute Elevation  terrainElevation Ft Mean: 611.41; Std:103.34 

Concrete corrosion potential corrosionConcrete − Low/Moderate/High 

Steel corrosion potential corrosionSteel − Low/Moderate/High 

Saturated hydraulic conductivity Ksat inch/hr Mean: 20.75; Std: 30.44 

Mean annual precipitation rainFall mm Mean: 876.81; Std: 79.70 

Dominant soil order soilOrder − Mollisols/Vertisols/Entisols/… 

Land attribute Land use landUse − Commercial/Residential/Office 

Road type roadType − Interstate; Minor Arterials; Private 

Road;  

Operational Pressure zone pressureZone − CN; NO; CS; SO; NW; SW; Other 
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Logistic regression results 

Model selection 

For model training, 75% of the dataset with observations from 2000 to 2014 was 

selected and used to develop the logistic regression model. The remaining records from 

2015 to 2019 were held out for testing and validation. For the response variable, a period 

of 5 years was chosen as a T-year response window. In other words, the output of the 

regression model estimates the failure probability of a pipe in the next 5 years. The 

choice of the T-year period was based on three criteria: (a) a high resulting AUC score 

after developing the logistic regression model, (b) a period that offers practical 

implementation for the utility’s asset management, and (c) a period that reduces 

imbalanced classification [54]. Table 6 shows that a period of 5 years scored the highest 

AUC compared to other periods. Also, the water utility’s Capital Improvement Program 

follows a 5-year planning window, according to which a budget is allocated for pipe 

rehabilitation. It follows that a measure of pipe failure risk that covers the allocation 

period ensures a coherent approach to rehabilitation. In terms of data imbalance (i.e., the 

number of failure events versus the survival events), the shorter the T-year period is, the 

more imbalanced the dataset becomes. Preprocessing the dataset with a 5-year response 

variable yielded 32% failure events versus 68% survival events, which considerably 

reduced class imbalance. Consequently, a 5-year period was chosen for its practical 

application and the higher predictive accuracy that it provided.  
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Table 6. AUC scores for time interval selection 

Time interval (years) AUC 

1 52% 

2 68% 

3 69% 

4 67% 

5 70% 

6 67% 

To estimate the effects of covariates, the logistic regression model used the GEE 

with an independence covariance structure. In fact, when compared to an exchangeable 

correlation, the independence structure provided a better fit as shown in Table 7, whereas 

the model failed to converge with an autoregressive covariance structure.  

Table 7. Goodness of fit and covariance structures 

Covariance structure QIC 

Independent 13,721.76 

Exchangeable 13,859.32 

The goodness of fit with an independent covariance structure suggests that failure 

events across pipes do not display a significant correlation in the present dataset. 

Additionally, estimates of covariates effects are still consistent despite a possible 

misspecification of the correlation structure [44]. Therefore, the final model estimated 

coefficients and failure probabilities based on an independent covariance structure. 

Effects of covariates 

The initial set of covariates was included into a LASSO regression model that was 

cross-validated across a range of continuous values for the regularization parameter 𝜆. 

LASSO regression reached an optimum at 𝜆 = 0.03, thus filtering out 22 continuous and 

categorical covariates. The 25 retained covariates were recursively modeled into a GEE 

logistic regression model with an independent covariance structure, and variables with 
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the highest p-value were filtered out until the highest p-value of a subset was below a 

0.10 cutoff. As an exception, despite its low statistical significance in the dataset, pipe 

age was retained considering its proven importance in the literature [4,8,12]. The 

resulting subset of covariates is shown in Table 8 with corresponding coefficients and p-

values. 

Table 8. Covariates effects as estimated by the LR model 

Covariate Description Coefficient p-value 

Intercept Intercept -0.83 <0.01 

pipeAge Pipe age 0.04 0.15 

pipeDiameter Pipe diameter -0.07 <0.01 

pipeLength Pipe length 0.20 <0.01 

NOPF Number of past failures 0.15 <0.01 

upTime Years from last failure 0.87 <0.01 

landUse_residential Residential land use 0.07 <0.01 

pipeMaterial_CI CI pipe material 0.08 <0.01 

pressureZone_NW North-West pressure 

zone 

-0.09 <0.01 

soilOrder_Vertisols Soil order: Vertisols 0.08 <0.01 

For pipe material, only the CI type was retained, which suggests that other 

material types did not provide sufficient statistical significance to count towards the final 

subset of covariates. In fact, over 70% of the studied dataset consisted of CI pipes. The 

consideration of a larger representation of other materials should allow for their analysis 

with more certainty in terms of impact on failure. Also, despite an expected high 

influence of steel and concrete corrosivity covariates, their values were only available for 

a portion of the dataset which might have led to their exclusion from significant 

covariates.   
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Figure 10: Logistic regression coefficients plot 

When coefficients are ranked from most to least influential as in Figure 10, 

covariates related to failure history show some of the highest effects on pipe failure. The 

number of years from last failure (upTime) appears as the most influential attribute, thus 

suggesting that the more time elapses from a previous break, the more likely a pipe is to 

fail within the next 5-year period. This correlation is illustrated in Figure 11. A possible 

explanation for this effect is that a longer period without failure might indicate a longer 

exposure to internal and external factors affecting a pipe until its structural integrity is 

restored again. This interpretation supports the “in-usage” and “wear-out” phases of the 

bathtub failure rate curve assumption where the failure rate is expected to rise until a 

failure occurs [3].  
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Figure 11. Failure probabilities versus the time from last failure. 

Note. Whiskers are 1.5 times the interquartile range, any data point beyond is considered 

an outlier. 

Additionally, the more total previous breaks are recorded at a pipe level, as integrated by 

the number of previous failures (NOPF) covariate, the higher the pipe failure probability 

is. This observation also coincides with the conceptual failure rate ‘bathtub’ model, in 

which the failure rate increases as the number of previous failures increases [17]. A rich 

failure history of a pipe could suggest a structural integrity that is undermined by 

repeated repairs. 

In terms of pipe characteristics, covariates’ importance was generally consistent 

with previous research findings. Pipe length has been associated with higher failure 

probability [9,10,15]. Beyond an additional exposure directly correlated to pipe length, 
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longer pipes could be more exposed to varying environmental conditions and more 

sensitive to effects like pressure transients [15]. Also in consistence with literature 

findings, smaller pipes inversely affect failure probability such that pipes with small 

diameters are associated with thinner walls which translate into a lower structural 

strength [8,10–12].  

Model evaluation 

In order to define a discrimination threshold for the developed logistic regression 

model and make predictions, the ROC curve is first generated for the test data, as shown 

in Figure 12. The corresponding AUC is 0.68, thus suggesting a reasonable 

discrimination strength for predicting pipe failures. By setting a discrimination threshold, 

the model can be positioned at a specific point along the ROC curve. As can be seen on 

the curve, a plausible discrimination threshold could be set at 0.75 so that the TPR is 

60%, just before the slope is sharply reduced. However, while the ROC curve evinces the 

discrimination strength of the model, it is insensitive to the balance of the dataset and 

gives no measure of precision. In fact, TPR and FPR do not treat a misclassified event 

equally in percent terms. It might be tempting to seek an additional 10% of TPR by 

conceding 20% of FPR (by adjusting the probability threshold from 0.69 to 0.53), but a 

marginal increase in the FPR, which is twice the marginal increase in the TPR, could 

result in a number of false alarms that is much higher than twice the additional number of 

correct predictions.  
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Figure 12. ROC curve of the logistic regression model 

To account for the model’s precision, the precision-recall versus discrimination 

threshold curves are plotted in Figure 13. The precision-recall curves can be visually used 

to control for the correct proportion of total predictions based on threshold values. While 

the objective is to maximize both precision and recall, the two metrics are conflicting, 

and the level of compromise needs to be determined. A choice of a discrimination 

threshold should be determined based on an acceptable level of performance for each 

metric. Acceptable levels may be determined per the priorities of the water utility. For 

example, a water utility might want to account for the fact that missing a true failure 

event is worse than having a false alarm. In fact, because the loss in recall is typically 

more costly than a loss in precision, setting a recall level that is higher than precision 
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could be warranted. In this study, no such preference was expressed by the utility, so the 

chosen probability discrimination threshold (0.69) was determined as the intersect of 

precision and recall such that both metrics are at 67%. By defining such a threshold, 67% 

of true failure events were correctly predicted by the model, and 67% of predicted 

failures corresponded to true failure events.  

 

Figure 13. Precision-recall versus discrimination threshold 

Using the designed discrimination threshold of 0.69, the confusion matrix is 

computed for the test set in Table 9. According to this confusion matrix, the model 

accuracy was calculated at 80%, and the MCC was equal to 0.53. An MCC equal to 1 
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reflects a perfect prediction, a 0 value represents a random prediction, and -1 reflects an 

inverse prediction. The model’s predictive strength was therefore satisfactory.  

Table 9: Confusion matrix with the 0.69 probability threshold 

 Predicted non-failure Predicted failure 

True non-failure 2,526 411 

True failure 411 845 

 

Predictions 

Following the 69% probability threshold, predictions can be made for future 

failures. A pipe age can be set at a year of interest, and predictions would be made for a 

time interval starting in that year. By setting the year at 2019, the specified logistic 

regression model generates failure and survival predictions for the period from 2019 to 

2023 as shown in Figure 14.  
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Figure 14: Map of predicted failures in the period from 2019 to 2013 

According to the predictions, 44.6% of the network length corresponds to pipes 

that are predicted to fail at least once during the designated period. This proportion is 

roughly in line with the overall failure rate in the dataset. 6,769 failure events spanning 

20 years are equivalent to 1,692.25 failures in a 5-year period. The studied portion of the 

network represents 4,153 pipes, which therefore yields an average 40.7% 5-year failure 
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rate assuming a constant rate across the network. It can also be noted that there is no 

distinguished spatial concentration of failure predictions despite a few scattered areas.  

Because the water utility in this study plans its Capital Improvement Programs on 

a 5-year basis, such 5-year predictions incorporate information from deterioration factors 

to provide a practical measure of risk for the decision-making process of rehabilitation 

efforts. 

Mean Time to Failure and condition scoring 

Logistic regression provided failure probabilities for limited time intervals. The 

MTF equation allowed to further use those probabilities to compute the expected times to 

failure given the selected covariates of each pipe (as listed in Table 8). Figure 15 shows 

how the obtained values evolve over time from the previous failure for the entire data set. 

As can be seen, the expected time to failure is shorter as the time from last failure 

increases. Also, the MTF average values decrease from around 6 years to below 1 year 

with decreasing standard deviations. Low uncertainty associated with shorter MTF values 

for longer elapsed times since last failure reflect pipes with a higher failure probability. It 

is noteworthy to mention that MTF values do not exceed 12 years, which is induced by a 

high failure rate in the dataset. In fact, the dataset that was used in this study consisted of 

only pipes with at least 1 failure event in a 20-year observation period. Consequently, 

MTF calculations do not reflect normal expected pipe life expectancies in the entire 

network, but instead give an expected time between failures for pipes with characteristics 

and a failure history similar to those in the studied dataset.  
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Figure 15. Mean time to failure versus time from last failure. 

Note. Whiskers are 1.5 times the interquartile range, any data point beyond is considered 

an outlier. 

To validate the estimates, an error was measured as the difference between MTF 

values for the entire studied dataset and the actual time between failures. The error was 

calculated for 1,222 pipes that failed in at least two different years, so that the actual time 

between failures could be measured. As a result, the error had a near normal distribution 

with a mean equal to 0.54 years and a standard deviation of 3.10 years. The Root Mean 

Square Deviation (RMSD) associated with the error was equal to 3.29 years. Although an 

MTF value was in average off by more than 3 years, the near zero mean suggests a 
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tendency towards correct predictions. A larger sample could potentially reduce the 

deviation and lead to more accurate MTF estimates. 

Finally, the MTF estimates that include useful information about the likelihood of 

failure were incorporated into a pipe scoring method. Figure 16 shows the condition 

scores of the pipes as a function of MTF based on the entire studied dataset. These scores 

were computed using the pipe scoring equation (Eq. 7) by setting the maximum criticality 

score of 5 and for different discount rates. The maximum criticality score represents an 

instant failure and was defined such that the scoring scale matched the water utility’s 

scoring scale, ranging from 1 to 5, respectively indicating low and high criticality levels. 

The choice of the discount rate should reflect a water utility’s attitude towards risk, and 

maintenance and replacement strategy. As can be seen, a higher discount rate leads to a 

decreased condition score for a given MTF, thus reflecting a propensity to delay 

rehabilitation efforts by increasing the portion of pipes with low scores. 
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Figure 16. Condition scores as a function of MTF for different discount rates 

In order to facilitate rehabilitation, pipes are typically categorized into separate 

classes by assigning discrete scores instead of continuous ones. Figure 17 shows this 

categorization as a stepwise pipe scoring curve using a discount rate of 0.2 assigned to 

each pipe in the studied system. 
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Figure 17. Stepwise scoring curve using a 0.2 discount rate 

To evaluate the scoring method, scores were assessed against time to next failure. 

Only 1,222 pipes failed more than in one year, and true times between failures were 

measured. Pipes with higher condition scores in general took less time to fail again. This 

result suggests that assigned condition scores can give a plausible measure of the 

criticality for the pipes’ condition. An advantage of using pipe scores is the ability to 

capture the likelihood of failure as inferred from the dataset without specifically 

estimating time to failure. In fact, this scoring method incorporates pipes covariates, 

probability of failure, as well as utilities’ preferences in a simple and easily interpretable 

single metric that can be used to rank pipes and prioritize rehabilitation efforts.  

While condition scores incorporate how deterioration factors influence failure 

probability for each pipe, they do not provide a measure of the consequence of failure. 

Risk assessment methods typically include both criticality and consequence scores when 
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prioritizing asset management. Yet, to assign an integrated risk score, an advantage of the 

described condition scoring method is its linear scale. As explained in [1], because 

condition scores are considered a present value of a future failure event based on a 

chosen discount rate, the scoring scale can be considered linear. For example, a pipe with 

a condition score of 4 is twice as critical as a pipe with a score of 2. A risk score can thus 

be simply obtained by multiplying the assigned condition score by a consequence score. 

The resulting risk score can eventually be used to rank pipes per risk level [1].  

As in MTF calculation, assigned scores were also updated each time an annual 

failure was recorded. By using the last assigned scores, a water utility can visualize the 

criticality of its pipes. Figure 18 displays a map of the city’s water distribution network 

by categorizing pipes based on the latest scores assigned in the dataset. This condition 

scoring map can be easily integrated in any spatial and hydraulic software, e.g., ArcGIS, 

WaterGems, InfoWater, KYPipe, which are commonly used by water utilities and shared 

among different divisions involved in pipe condition assessment, including operations, 

planning and management, and asset management. 

By analyzing the proportions of network length per condition score, it is noted 

that 8.4% of the studied pipe network’s length has a score of 5, 29.6% has a score 4, 

28.2% has a score of 3, 29.5% with a score of 2, and 4.4% has a score of 1. These 

proportions depend partly on the chosen discount rate. By increasing the discount rate, 

more pipes would have lower scores, and vice versa. If for example a water utility only 

has a budget to inspect 50% of the pipes with two levels of priorities, a discount rate 

could be chosen so that score 5 and 4 pipes make up 50% of all scores. Also, out of the 

portion of the network having a score of 5, 88.9% of the length consisted of pipes with 15 

to 19 years elapsed from last failure. This proportion is consistent with the inferred 
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covariates’ effects which suggested that a longer time from last failure leads to higher 

failure probability. 

 

Figure 18. Pipe condition scores as of 2019 
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Spatial analysis 

As a final step in the analysis, the focus was on whether the pipe failures 

exhibited any spatial correlation for higher failure rates. Spatial Autocorrelation Analysis 

(SAA) was employed to uncover the locations of hotspot/coldspot pipes that encountered 

a statistically significantly higher/lower number of failures than other pipes in the system. 

The implemented SAA approach included two main steps, namely global and local SAA. 

In the first step, the global Moran’s I index [55] was computed to reveal the degree of 

spatial clustering in the pipe failure data. This was followed by computing the local 

Moran’s I index [56] for each individual pipe to reveal its hotspot/coldspot classification. 

This approach was recently used in [57] to reveal spatial patterns in a water system using 

aggregated data. In this work, a similar approach is adopted to reveal spatial patterns in 

individual pipes. 

 

Global Spatial Autocorrelation Analysis 

The global index of Moran’s I was first implemented to determine whether the 

number of failures recorded for each pipe in the database is spatially autocorrelated on a 

global scale. If existing, this spatial correlation would reflect either a strong clustering 

behavior, in which neighboring pipes have similarly high or low number of failures, or a 

strong dispersion that takes place when neighboring pipes have a vastly dissimilar 

number of previous failures. 

The global Moran’s I index was calculated as [58]: 

𝐼 =  
𝑁

𝑊

∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1 (𝑓𝑖 − 𝑓)̅(𝑓𝑗 − 𝑓)̅

∑ (𝑓𝑖 − 𝑓)̅
2𝑁

𝑖=1

          (8) 

where 𝑓𝑖 and 𝑓𝑗 are the number of failures recorded for each two pipes 𝑖 and 𝑗 in 

the pipe failure database, 𝑁 is the number of pipes for which previous failures have been 
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observed, 𝑓 ̅ is the average number of failures per pipe across all 𝑁 pipes, 𝑤𝑖𝑗 is the 

pairwise spatial weight that represents the spatial relationship between the number of 

failures recorded for pipes 𝑖 and 𝑗; and 𝑊 is the sum of all the pairwise spatial weights 

𝑊 = ∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1 . The magnitude of 𝐼 reflects the strength of the spatial autocorrelation 

between the number of failures per pipe (the greater the magnitude of 𝐼, the stronger the 

autocorrelation), and the sign of 𝐼 reflects the nature of this clustering (𝐼 > 0 indicates 

clustering and 𝐼 < 0 indicates dispersion).  

In addition to revealing the strength of the spatial pattern, it is also important to 

verify whether this pattern is statistically significant compared to what could result from 

spatial randomness. To this end, the value of the global 𝐼 was converted into a 

standardized Z-score, which was calculated as 𝑍 = (𝐼 − 𝜇[𝐼]) 𝜎[𝐼]⁄ , where 𝜇[𝐼] and 𝜎[𝐼] 

are the mean and standard deviation of the distribution of 𝐼 values representing spatial 

randomness. The greater the magnitude of the standardized 𝑍, the more statistically 

significant the observed spatial pattern since this indicates that the calculated 𝐼 is very far 

from the expected value under spatial randomness, which means that the pipe failures are 

spatially distributed in a unique, non-random manner. The sign of 𝑍 also indicates the 

type of this pattern, whether it is spatial clustering (𝑍 > 0) or spatial dispersion (𝑍 < 0). 

The distribution of 𝐼 values under spatial randomness (represented by 𝜇[𝐼] and 𝜎[𝐼])  was 

generated using a numerical random permutation approach. This was done by randomly 

shuffling the number of failures per pipe 𝑓𝑖 across all pipes for a number of 𝑘 

permutations (𝑘 = 999 in this study) and recalculating the value of 𝐼 for each permutation 

to generate the distribution. 
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Local Spatial Autocorrelation Analysis 

After revealing the type of the spatial patterns exhibited by the pipe failures and 

validating that the patterns are statistically significant compared to spatial randomness, 

the local index of Moran’s I was computed for each pipe to reveal its hotspot/coldspot 

classification. Hotspots/coldspots are defined here as pipes with an above/below average 

number of previous failures that are surrounded by neighboring pipes with a similarly 

large/small number of previous failures. To reveal this classification, the local Moran’s 

index for each pipe (𝐼𝑖) was calculated as in Eq. 9 [56]: 

𝐼𝑖 =
𝑓𝑖 − 𝑓̅

𝑆2
∑ 𝑤𝑖𝑗(𝑓𝑗 − 𝑓)̅

𝑁

𝑗=1,𝑗≠𝑖
       (9) 

where 𝑆2 is the variance of the number of failures for all pipes. For each pipe, the value 

of the local 𝐼𝑖 reveals whether the number of failures recorded for this pipe is correlated 

with the number of failures recorded for neighboring pipes. A positive correlation (𝐼𝑖 >

0) indicates that the pipe is part of a spatial cluster of similarly high/low number of 

failures, while a negative correlation (𝐼𝑖 < 0) indicates that the pipe is a spatial outlier 

that is surrounded by neighboring pipes with a dissimilar number of failures.  

Upon identifying the pipes that belong to spatial clusters (𝐼𝑖 > 0) and the ones 

that are spatial outliers (𝐼𝑖 < 0), the hotspot/coldspot classification was revealed by 

comparing the number of failures for the pipe 𝑓𝑖 and its spatial lag 𝑙𝑖, which is the 

weighted average of the number of failures for neighboring pipes (𝑙𝑖 = ∑ 𝑤𝑖𝑗𝑓𝑗
𝑁
𝑗=1,𝑗≠𝑖 ), 

with the average number of failures across all pipes 𝑓.̅ Pipes with an above average 

number of failures (𝑓𝑖 > 𝑓)̅ that are also surrounded by neighboring pipes with an above 

average number of failures (𝑙𝑖 > 𝑓)̅ are classified as a hotspots. Conversely, pipes with 

both (𝑓𝑖 < 𝑓)̅ and (𝑙𝑖 < 𝑓)̅ are classified as coldspots. On the other hand, pipes with a high 

number of failures (𝑓𝑖 > 𝑓)̅ but are surrounded by neighboring pipes with a low number of 
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failures (𝑙𝑖 < 𝑓)̅ are considered high-low outliers. Conversely, pipes with (𝑓𝑖 < 𝑓)̅ and (𝑙𝑖 

> 𝑓)̅ are classified as low-high outliers. 

The statistical significance of the local 𝐼𝑖 computed for each pipe was tested by 

using a conditional permutation approach similar to the one used to test the statistical 

significance of the global 𝐼. This was done by generating a reference distribution of 𝐼𝑖 for 

each pipe by holding the 𝑓𝑖 value fixed and randomly shuffling the values of 𝑓𝑗 across the 

rest of the pipes for 𝑘 permutations. A p-value was then computed for each pipe as 𝑝𝑖 =

(𝑚 + 1)/(𝑘 + 1),  where 𝑚 is the number of instances from the generated distribution 

that are greater in magnitude than the computed 𝐼𝑖 index for the pipe. The smaller the 

value of 𝑝𝑖, the higher the statistical significance of the observed spatial pattern. The p-

values were corrected for multiple comparisons by means of the False Discovery Rate 

(FDR) method of Benjamini and Hochberg, (1995), and a significance level of 0.05 was 

considered. 

 

 Spatial Weights 

The pairwise spatial weights (𝑤𝑖𝑗) needed to calculate both the global 𝐼 and the 

local 𝐼𝑖 are determined using the following procedure: (I) the pairwise Euclidian distances 

were computed between the centroids of each pair of pipes in the dataset (𝑅𝑖,𝑗); (II) Using 

a cutoff threshold distance (𝑅𝑡), any two pipes whose (𝑅𝑖,𝑗 < 𝑅𝑡) were considered 

neighbors; (III) For neighboring pipes, the pairwise spatial weight (𝑤𝑖𝑗) was computed as 

the ratio between 𝑅𝑡 and 𝑅𝑖,𝑗 (𝑤𝑖,𝑗 = 𝑅𝑡/𝑅𝑖,𝑗), while for non-neighboring premises, the 

pairwise spatial weight was set to zero; (IV) the pairwise spatial weights were row-

standardized so that the standardized spatial weights for each premise sum up to unity. A 

threshold distance of 1000 ft was used in this study, which is nearly equivalent to the 



 

 62 

95th-percentile of the lengths of the pipes in the database. This threshold distance is also 

representative of the scope of pipe repair/replacement projects for the utility under study, 

which typically span 2-4 residential blocks at a time. 

Identifying spatial autocorrelation 

By analyzing the spatial distribution of failure events, the global SAA revealed a 

statistically significant clustering in the pipe failure data (𝐼 =  0.06, 𝑍 =  5.3). The local 

hotspot-coldspot analysis revealed the classification of 125 hotspot pipes (i.e., High-High 

(HH)) and 39 coldspot pipes (i.e., Low-Low (LL)), while the number of spatial outliers 

was 182 High-Low (HL) pipes and 166 Low-High (LH) pipes. The remaining 3,707 

pipes had a non-statistically significant spatial pattern (𝑝𝑖 > 0.05). The locations of the 

spatial clusters made up of HH and LL pipes, and outliers consisting of HL and LH pipes, 

are depicted in Figure 1. 

On average, hotspot pipes experienced 3.4 failures/pipe, which is almost twice the 

average number of failures per pipe across all pipes in the database (1.65 failures/pipe). 

Similarly, high-low pipes experienced 2.6 failures/pipe, which is around 60% more than 

the average number of failures per pipe across all pipes. On the other hand, both the 

coldspot and the low-high pipes experienced -on average- only one failure during the 20-

year observation period. 
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Figure 19. Hotspot-coldspot classification 

 

The hotspot-coldspot classification showed a relative clustering of failure 

probability such that hostpot pipes consisting of HH and HL labels seemed to indicate a 

general tendency towards higher failure probabilities as opposed to LH and LL pipes. 

This relationship is illustrated in Figure 20. 
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Figure 20. Histogram of failure probability per hotspot-coldspot classification 

When analyzed per spatial clustering, the histogram of scores is plotted per 

hotspot-coldspot classification as shown in Figure 21, it can be seen that scoring 

criticality is not systematically higher for hotspot pipes. In particular, score 3 represents 

the mode for coldspot pipes, whereas score 2 is the mode for hotspot pipes. Also, no 

hotspot pipe was assigned the highest score of 5 which consisted mostly of pipes with a 

failure probability of at least 0.9. This contrast might question whether condition 

criticality for a pipe spatially correlates with failure history. However, hotspot-coldspot 

classification was only significant for a small portion of the pipes with low Moran’s I 

value. Having a failure history covering a longer period could potentially provide a larger 

basis to evaluate the correlation of spatial patterns with pipe-level failure as well as 

include this information in the prediction model.  



 

 65 

 

Figure 21. Histogram of scores per hotspot-coldspot classification  



 

 66 

 Chapter 4: Conclusions 

To address pipe failure modeling, this thesis first presented a review of major 

published research as related to the scope of this work. Relevant research on identifying 

factors that influence deterioration was presented. Typically, pipe age, length, diameter, 

and material have been widely documented as statistically significant contributors in the 

pipe deterioration processes, but a thorough characterization of the influences is still 

needed. To further specify the relationship between these factors and failure outcomes, 

this thesis reviewed a range of published approaches and deterioration models 

categorized as physical or statistical. Physical models study the interaction on a pipe level 

and require detailed attributes in an attempt to fully specify the extent of the relationship 

between a set of factors and a condition. These models provide more of an in-depth 

characterization of concepts like corrosion and structural strength but often require costly 

information. On the other hand, statistical models study deterioration patterns on a higher 

level by investigating relationships across an entire dataset. These models only capture 

patterns observed across a network and assume that past records fully inform future 

observations, but they provide practical network-wide information for water utilities to 

act on. 

In addition to a review of previous research, the intended contribution of this 

thesis was to develop and apply a systematic approach to capture the criticality of pipes 

in a water supply system using GEE logistic regression and to assign practical condition 

scores for asset management prioritization. A pipe network dataset was first preprocessed 

to define a T-year failure response variable and extract covariates that provide 

information on soil, traffic, land use, failure history, and operational attributes. A GEE 

logistic regression model was then specified with reasonable accuracy in estimating the 
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probability of recording at least one failure in a 5-year time interval. Beyond a measure of 

a period specific criticality for pipes as provided by the logistic classifier, the MTF metric 

estimated the expected inter-failure times. The estimates were used to apply a flexible 

scoring approach to discriminate pipes based on their criticality. The pipe scoring 

provided condition metrics with a reasonable ability to predict poor condition.  

The presented promising results would still need further validation with larger 

datasets. An accuracy of 80% was achieved by the logistic classifier, but specifying the 

model on failure records covering a period longer than 20 years might mitigate the 

uncertainty related to the described performance metrics. Also, the MTF calculations use 

a fundamental assumption that past trend perpetuates. Because failure history is used only 

from the last 20 years, the model does not provide a full simulation of a pipe’s life cycle. 

As a result, accuracy is bound to decline as predictions are made farther into the future. 

Also, uncertainty underlying the logistic regression model is accumulated as the MTF 

calculations integrates probabilities infinitely into the future. The choice of the time-

interval in the logistic model is also a factor that influences this uncertainty.  It follows 

that failure probabilities generated by the logistic regression model are conceptually 

generated with a higher performance compared to pipe scores. However, failure 

probabilities only provide information on a period specific condition, whereas pipe scores 

attempt to additionally capture a practical measure of the service life. These limitations in 

the application of this methodology might justify for a water utility to choose between 

using probability outcomes or pipe scores depending on the applications. For example, a 

water utility that prepares a 5-year rehabilitation plan could use the 5-year failure 

probabilities as a measure of criticality. However, using 5-year failure probabilities might 

not suffice in integrating criticality in a long-term rehabilitation strategy, and the 

suggested pipe condition scores would then be more relevant. 
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The suggested framework demonstrates that useful results can be inferred using a 

GEE logistic model on a dataset covering a limited time interval and suffering potential 

censorship. Overall, the proposed methods provided two practical outcomes: (1) a 

predictive logistic regression model to help prioritize rehabilitation for a specific time 

interval that is determined based on the quality of the dataset and on the utility’s 

preference, and (2) an integrated condition scoring model to estimate pipe criticality. 

Future research could further assess the performance of the presented model by using 

larger and high-quality datasets as they become available. Also comparing the logistic 

regression model to other statistical and data-driven models could provide further 

analysis of the performance. Beyond a classical performance evaluation, this thesis 

intended to provide a flexible framework that can adapt to real world complexity that 

water utilities have to contend with. Research has shown that deterioration patterns can 

be region-specific, and results may differ per local conditions [5]. So, developing models 

that not only deliver good performance but also allow for flexible application is to be 

further explored.  
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