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Adaptive estimation and identification algorithms involving unknown sym-

metric and positive definite (SPD) matrix-valued parameters are ubiquitous in en-

gineering applications. The problem of estimating the noise covariance matrices

in estimation algorithms is considered first. An adaptive Kalman filter to estimate

the noise covariance matrix of the noises entering a linear time invariant system is

introduced first. The convergence of the estimates as well as the states is guaran-

teed with mild assumptions on the system. Conditions of estimability of the noise

covariance matrix are discussed. The generalization of the adaptive Kalman fitler

to the linear time varying case is introduced next. To maintain positive definite-

ness of the noise covariance estimates a differential geometric approach is adopted.

The geometry of the manifold of SPD matrices is used to develop a Riemannian

optimization based adaptive Kalman filter that ensure positive definiteness of the
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estimate. The convergence of the Riemannian optimization-based estimate and the

adaptive Kalman filter is established under mild conditions of uniform observability

and uniform controllability of the system. An adaptive control problem with an un-

known SPD matrix is considered next. A novel projection scheme is introduced that

ensures that the estimates of the unknown SPD matrix are SPD. Adaptive update

laws for identifying the SPD matrix are also presented. The adaptive control laws

are shown to globally stabilize systems in problems such as the adaptive angular

velocity tracking, adaptive attitude control, and the adaptive trajectory tracking of

robotic manipulators with parameter uncertainties within the generalized mass ma-

trix. In general, such a method can be applied to estimation of symmetric matrices

with eigenvalue constraints.
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Chapter 1

Introduction

1.1 Motivation for SPD matrices

The set of symmetric and positive definite (SPD) matrices present a math-

ematically rich structure and are useful in various engineering applications. They

appear as covariance matrices in multivariate statistics and estimation theory [73].

In the computer vision applications, the covariance descriptor which is a popular

technique to depict the features in an image are also SPD matrices [148]. SPD

matrices are used to represent principal diffusion directions in Diffusion Tensors

Imaging [66] and to model the shape of objects in extended object tracking [83].

The inertial properties of a body in motion can also be represented at SPD matrices.

The non rotational part of a deformation gradient tensor in continuum physics is

modeled as a SPD matrix [93]. The compliance and the stiffness matrix of a robotic

mechanism must be also positive definite [66]. Positive definite Lyapunov func-

tions have also been used to estimate the largest basins of attraction of a dynamical

system [144]. Estimating such Lyapunov functions formed using polynomials of-

ten involve identifying appropriate SPD matrices. All the above SPD matrices are

critical to the behavior and properties of the system which they are a part of.

Estimation of SPD matrix parameters that drive physical systems is an im-
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portant aspect of system identification. For example, estimating covariance ma-

trices of a random variable from its samples is a well studied problem. Such an

estimation problem is especially challenging when the number of samples is much

less than the dimension of the covariance matrix [85, 61, 39]. The inertial prop-

erties of an body are estimated by observing its motion for improving the control

performance. Such procedures involve extensive experimentation with the system.

As more complex systems were designed, isolated experimentation became infeasi-

ble and in situ methods were developed. As a result, adaptive techniques for system

identification were popularized which enable on-line identification of parameters.

Since, the motion of the system depends heavily on the parameters to be estimated,

adaptive techniques demanded stronger stability properties of the system under in-

correct knowledge of the system parameters. Specifically for SPD matrix valued

parameters, such guarantees are challenging because of the nonlinear nature of the

eigenvalue constraint.

SPD matrices have been vital for various engineering application. In Kalman

filtering, apart from estimating the uncertainty in state estimation, identifying the

unknown noise covariance matrices that affect the dynamics and the observations

has been well studied in the system identification literature [101]. Matrices repre-

senting the inertia properties of a body are often estimated to obtain an accurate

model of the system. For example, in space applications, the measurements of the

angular velocity of an unidentified tumbling rigid body is used to estimate its iner-

tia, which in turn helps understanding its mass and density properties [2, 37]. Inertia

properties of the robotic manipulator handling an object cannot always be modeled
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since the object being manipulated may have different shapes, sizes and mass. In

such cases, the inertial properties of the combined manipulator object system has to

be estimated in order to grasp and manipulate the object effectively [139, 133, 46].

In extended object tracking, the shape of an object is modeled as an ellipse repre-

sented by a SPD matrix [83]. The shape of the object is estimated along with its

position to track multiple objects in the environment. In object detection and track-

ing, the covariance descriptor of the object is used as a measurement to estimate its

position and velocity. In this scenario, a SPD matrix is processed as a measurement

to track the object [148]. In all of the above examples, the estimate of the SPD

parameter must also be SPD for it to be meaningful to the system. For example,

having a negative eigenvalue in an inertia matrix or in the covariance of a Gaussian

random variable defies the basic physics of the system. Hence, estimating SPD

matrices need to be treated with special care.

1.2 Identification in Estimation

This dissertation addresses the problems of identifying SPD matrices while

focusing on two applications. First, the problem of covariance estimation in fil-

tering is considered, wherein the noise covariance matrices of the noises entering

the system and the measurement are unknown. The Kalman filter is optimal in the

mean squared sense for a linear system with additive white Gaussian process and

measurement noises [79, 78]. However, it is no longer optimal when the noise co-

variance matrices are unknown or some of the elements are uncertain. Additionally,

uncertain or unknown noise covariance matrices have been shown to cause filter
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divergence [128, 68, 94, 121, 127, 164]. These challenges associated with filter

divergence motivate the development of adaptive filtering algorithms that simulta-

neously estimate the system states along with the covariance matrices. Although

several adaptive formulations have found their application in many individual set-

tings, rigorous theoretical foundations are usually absent and if present, are accom-

panied by restrictive assumptions such as steady state conditions, invertibility of the

state transition and observation matrix or availability of the true state estimate.

An adaptive covariance matching technique for detectable linear systems

based on correlation methods to recursively estimate the state vector and the noise

covariance matrices are established in this dissertation. The salient features of the

novel technique are given below.

• Guarantees on stability of the filter as well as the covariance matrix estimates,

• Convergence of the estimates to their true values, and

• Assurance that the covariance matrix estimates are physically meaningful,

i.e., remain SPD.

1.3 Identification in Control

The second problem addressed in this dissertation is that of designing adap-

tive controllers in presence of an unknown SPD matrix parameters. Such problems

appear in attitude control problems in applications such as space autonomy, robotic

manipulators and underwater robots wherein the inertial properties of the object
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is unknown. Adaptive controllers have been designed to estimate the unknown

matrices and guarantee stability of the controller through Lyapunov direct theo-

rems [111]. A common assumption in these adaptive formulations is that the eigen-

values of the SPD matrix parameters are assumed to be bounded. In some cases,

the bounds themselves are used to calculate the adaptive control gains. However,

the update laws obtained from the Lyapunov analysis do not guarantee positive def-

initeness of the parameter estimates. Parameter constraints are often enforced by

projecting the adaptive update law. Although several projection laws have been

developed for vector parameters, they do not translate trivially to matrices with

eigenvalue constraints. In such scenarios, it is critical to ensure positive definite-

ness of the estimated parameters either through new update laws or new projection

schemes. A different projection scheme to enforce eigenvalue constraint would sig-

nificantly improve the state of the art identification algorithms since it would be

applicable to a larger class of problems. These issues motivate a new formulation

that has the following features.

• Ensures that the estimate of the SPD matrix valued parameter are indeed SPD,

• Guarantees stability of the control law in presence of the new update law, and

• Ensures that the update law is domain independent and applicable to a wide

variety of problems.

Most adaptive identification techniques treat the SPD matrix as a vector of

its unique elements. In this way, symmetry of the estimate is readily ensured. How-

ever, ensuring positive definiteness or in a general manner of speaking, enforcing
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eigenvalue constraints are more challenging due to their nonlinear nature. Ensuring

such constraints would not only provides a meaningful estimate, but also improve

the performance of existing adaptive techniques.

1.4 Geometric structure of SPD matrices

SPD matrices follow a rich geometric structure. They form a cone in the

vector space and also constitute a Riemannian manifold with a tangent identified

with the set of symmetric matrices. Because of its geometric structure, geometric

methods have been developed that respect the geometry of SPD matrices rather

than ignoring it. Such methods have already shown promise for other manifolds

over their Euclidean counterparts [30, 1]. Since ensuring positive definiteness is

critical to real world applications, this dissertation leverages differential geometric

methods to identify SPD matrix parameters for the problems mentioned above.

1.5 Contributions

In summary, the contributions of this dissertation are listed below.

• Derivation of an adaptive Kalman filter for a detectable linear system that

estimates the process and measurement noise covariance matrices along with

the states while ensuring stability and convergence is presented.

• A novel projection scheme is introduced that enforces eigenvalue constraints

of matrix valued parameters in adaptive control formulation. The projection

method is also shown to build stable controllers for a wide class of systems.
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This applicability of the projection method is demonstrated for the attitude

control problem and the trajectory tracking problem for robotic manipulators

with unknown inertial properties.

• Riemannian optimization based identification methods are then formulated

to obtain estimates for the problems of covariance estimation. Their global

optimality and convergence is also discussed.

The rest of the dissertation is organized as follows. Chapter 2 performs a

literature review of identification in estimation and control problems, as well as the

differential geometry of SPD matrices. Chapter 3 presents the Adaptive Kalman

filter to estimate the noise covariance matrices of a detectable linear time invariant

system. The filter derivation and convergence results are proved in this chapter.

The estimability of the noise covariance matrices is also discussed and certain lim-

itations of this work is presented. In light of the limitations of the adaptive Kalman

filter, a generalization to the linear time-varying case if presented in Chapter 5. A

Riemannian optimization method to guarantee symmetry and positive definiteness

of the noise covariance estimate is introduced. In particular, a least squares cost

function of the noise covariance matrix elements is minimized using a Riemannian

Trust-Region method. Global stability of the optimal solution is proved with as-

sumptions of sufficient excitation of the system. The problem identification of SPD

matrices in the context of adaptive control problems with an unknown SPD matrix

valued parameter is presented in Chapter 4. Saliently, a projection scheme is intro-

duced to bound the eigenvalues of the unknown SPD matrix parameter driving the

7



system. Consequently, a positive definite function that is included in the Lyapunov

analysis of systems is introduced and its boundedness properties are proved. Finally

Chapter 6 summarizes the dissertation and discusses potential directions of future

research.
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Chapter 2

Technical Background

This chapter reviews past work on identification of SPD matrices in the

context of covariance estimation and control problems. The discussion begins with

the problem of adaptive Kalman filters.

2.1 Adaptive Covariance Identification

Covariance estimation from the point of view of statistical theory has been

a topic of active research. In this field, the covariance matrix of a random variable

is estimated from its samples. This problem is especially challenging when the di-

mension of the samples is much larger than the number of sample available and

appear in the field of economics and finance [86, 57]. The focus of this disserta-

tion is on adaptive techniques for identification wherein the covariance matrices are

estimated on-line and the covariance estimate is used to estimate the states of the

system.

2.1.1 Background on Adaptive Estimation

Kalman filtering is an optimal estimation algorithm for linear systems when

driven by known inputs and white Gaussian noises. The optimality is lost when
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a complete knowledge of (a) the parameters that define the system model, (b) the

output relations, and (c) the statistical description of uncertainties, is missing [99].

In many practical applications, the parameters of the model may be uncertain and

estimation algorithms have to adjust to account for these uncertainties [20]. Vari-

ous adaptive estimation algorithms for linear systems have hence been developed

to that end. Even in the case when the system model is nonlinear, the algorithms

for linear systems can be applied via linearization. Uncertainties in a linear system

model can appear in various forms, namely, the state transition matrix and the ob-

servation matrix may be uncertain, the control inputs, if they exist, or their gains

may be unknown, and finally the noise covariance matrices for both the process and

measurement noise may be unknown.

An example of the case of unknown inputs is when an unknown object is

to be tracked. In this scenario, an alternative to estimating the control input is to

label the uncertainties in the input or its gain as an uncertainty in the system model.

Consequently, this transpires as uncertainties in the process noise covariance and

the covariance can then estimated or adjusted to account for the unknown control

inputs. An adaptive estimation technique is to augment the state of the system with

the unknown parameters. Such an approach requires an accurate characterization

of the prior distribution of the parameter given that it is unknown.

Another adaptive technique is the multiple model estimation wherein the

system is assumed to operate under finite number of modes [16, 17]. The parameter

is assumed to belong to a set of finite values and each mode corresponds to a value

from that set. A probability assigned to each model is then updated based on the
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measurements to choose the most probable value for estimation. Consequently, the

parameter is assumed to belong to a discrete probability mass distribution which is

updated using the system measurements. The unknown state transition and mea-

surement matrices are estimated can be estimated using MLE techniques that do

not require a priori information about the parameters [81, 98].

Finally, the uncertainties in the noise statistics are characterized by unknown

or uncertain process and measurement noise covariance matrices. Various estima-

tors have been derived [5, 23, 100, 101, 33, 122]. The methods to sequentially

adjust the noise covariance matrices is arguably more robust due to the following

reasons:

• The prior information for uncertain control inputs and system matrices may

not be readily available

• All kinds of uncertainties in the models discussed above can be aggregated

into uncertainties in the noise covariance matrices

• For nonlinear system, the above two issue are intensified by the presence of

non-linearities

The study of adaptive estimation of the noise covariance matrices is arguably the

most important and applicable form of adaptive filtering and hence is the topic of

Chapter 3 of this dissertation.

An early study of adaptive algorithms to estimate noise covariance matrices

is summarized in [101]. Broadly speaking, there are four approaches to adaptive

11



filtering, namely, Bayesian methods, maximum likelihood estimation, correlation

methods, and covariance matching techniques. For LTI systems, steady state con-

vergence of an adaptive filter using the innovation sequence for estimation of the

noise covariance matrix was originally reported in [100]. However, certain assump-

tions central to [100] such as steady-state conditions, observability, and invertibility

of the state transition matrix makes the filter restrictive. Moreover, technical in-

sufficiencies concerning the whiteness condition in [100] are clearly pointed out in

[128, 4]. Specific differences between [100] and this work are described in further

detail in the upcoming chapters. An approach to estimate only the process noise co-

variance using a backward shift operator is presented in [152]. This method uses a

left co-prime factorization which is either not guaranteed to exist or can be difficult

to analytically calculate. H∞ filtering is used to estimate the statistics of the noises

in [156]. This approach can be classified as offline since it uses the H∞ filter esti-

mate at future times to calculate the estimate of covariance matrices. The approach

given in [56] uses linear regression to derive a robust Kalman filter. The adaptive

filter presented in [167] does not provide rigorous convergence guarantees for their

filter and their estimates.

A recent survey of covariance estimation results for LTI systems using cor-

relation methods can be found in [55]. Standing out from among the various meth-

ods surveyed in [55] is the measurement averaging correlation method (MACM)

which forms a stacked measurement model wherein the observability matrix is re-

ferred to as the observation matrix. The work in this dissertation shares some of the

algebraic features of the MACM approach wherein a stacked measurement model
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is constructed. Another approach to estimate the process noise covariance matrix

of LTI systems assuming a left-invertible observation matrix is presented in [58].

In this case, a linear stationary time series is formed by inverting the observation

matrix and the covariance is estimated by squaring the sequence.

A covariance estimation result is presented in [53, 169, 90] for linear time-

varying (LTV) systems using the linear time series construction. Specifically, a

stacked measurement model is formed using an arbitrary N measurements to es-

timate the N-step predicted measurement and the measurement prediction error is

shown to form a linear time series. The sample auto covariance of the linear time

series is used to calculate estimates of the covariance matrices which is shown to

be consistent assuming a full rank condition. Although the focus of this work is

entirely on covariance estimation, no convergence guarantees are provided for the

state estimation part. Adaptive filtering operations require stability guarantees on

both the state and the covariance estimates which is missing from the literature.

2.1.2 The Covariance Matching Kalman Filter

Compared to previous approaches the developments in Chapter 3 takes a

significant next step – that of simultaneously estimating the state of the system. A

major contribution of this work is a proof of convergence for both the state as well

as the covariance estimator. For purposes of calculating the covariance estimate

using the covariance of the time series, full column rank of a certain coefficient

matrix in assumed in [53]. The filter developed in Chapter 3 adopts concepts based

on correlation methods, specifically in terms of forming a linear time series using
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the measurement sequence. Certain ideas from covariance matching techniques are

also embraced by way of formally enforcing covariance consistency. Moreover, this

result provides the explicit characterization of necessary conditions for estimability

of the process and measurement noise covariance matrices.

2.2 Differential Geometry of SPD matrices

Ensuring symmetry and positive definiteness dates back to the time when

the Kalman filter was introduced. In 1963, James Potter formulated the square-root

filter to improve numerical properties of the update equation for the error covari-

ance matrix of the extended Kalman filter used for the Apollo mission [22]. Con-

sequently, various kinds of decompositions like the Cholesky decomposition [64,

151], the spectral decomposition [115], and the UDU factorization [27] were intro-

duced for their numerical advantages. A byproduct of some of these decomposi-

tions was that symmetry and positive definiteness was automatically ensured.

A commonly adopted strategy to handle constrains such as SPD is to equip

them with a differential geometric structure. Differential geometric tools help per-

form calculus on a constrained space as if it had a vector space-like structure and

allow for developing optimal estimators similar to their vector space counterparts.

For problems such as that of attitude estimation, the invariant Kalman filter utilizes

the matrix lie group structure of rotation matrices [21]. The complimentary filter

developed in [95] performs filtering for attitude estimation. In this method, the Lie

Group structure of the SO(3) rotation matrices was used to develop novel estimators

that satisfy the constraint by virtue of the construction. Other methods for matrix
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lie groups have also been presented [168].

In this dissertation is the differential geometric structure of SPD matri-

ces. Covariance and inertia, both SPD matrices, have a rich geometric and non-

Euclidean structure [25]. Firstly, the set of n× n SPD matrices form a positive

half cone in set of n× n matrices. The neighborhood of every SPD matrix can be

viewed as being almost Euclidean. Mathematically, there exists a bijection between

the neighborhood of every SPD matrix and the set of symmetric matrices. Sets

containing such locally Euclidean structure are said to form manifolds embedded

in vector spaces [29, 69]. Furthermore, the set of SPD matrices form a differen-

tiable manifold with a Riemannian structure when equipped with an appropriate

metric [25, Chapter 6].

The differential geometry was first introduced to characterize a geometric

mean of a given set of SPD matrices [105]. Such a mean is the generalization of

the geometric mean of positive numbers to SPD matrices and was called the Rie-

mannian barycenter of a set of SPD matrices. As the arithmetic mean minimizes

the sum of Euclidean distance between the mean and the sample set, the Rieman-

nian barycenter minimizes a different distance function. The existence of a unique

minimizer was shown by Karcher [80] for Riemannian manifolds with non-positive

sectional curvature. Furthermore, the geometric mean was shown to satisfy addi-

tional properties relevant to the set of SPD matrices, such as invariance to inver-

sion. The concept Riemannian barycenter and its uniqueness for SPD manifold was

quickly adopted for applications such as averaging and classification of SPD tensors

in elasticity theory [107, 106], diffusion tensor imaging [14], and computer vision
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problems [149]. In spite of an elegant formulation, till date, there is no closed-form

solution for the Riemannian barycenter of a finite number of SPD matrices. Closed-

form solutions have been found for specific case of calculating the mean of 2 SPD

matrices. As a result, the all the applications of the geometric mean use iterative

methods in their analysis.

In the context of estimation theory, the Riemannian framework was applied

to covariance estimation problems, specifically, for estimation of covariance matri-

ces from samples [162, 18, 116, 163]. Various definitions of probability distribu-

tions on the SPD manifold were introduced using several new metrics [123, 124].

Iterative algorithms for statistical inference on manifold valued data was then intro-

duced [117, 118].

Kalman filtering algorithms for manifold valued states and observations

were also introduced [102, 67, 31, 84, 34, 125, 52, 50, 51, 112, 10, 136, 137, 135].

Specifically for filtering on the SPD manifold, Kalman filter like algorithms have

been introduced. The linear filter introduced in [150] provides a closed form update

law based on the Affine-Invariant metric. A simplified linear observation model

was used wherein, the full SPD state measurement was available. Such a method

does not extend trivially to other linear models. The work in [41] provides a dy-

namic system model to track SPD matrices for appearance tracking. However, the

problem of propagating and updating the estimates is approached with an optimiza-

tion based framework. A tractable state-space model was introduced once again

for full SPD state measurement and closed form update step was provided [165].

Closed form expressions for optimal filtering were also found for a specific class
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of models involving square root of the SPD state [157]. A Wishart prior and the

Jensen-Bregman LogDet divergence was minimized to attain a closed form expres-

sion. Some other closed-form expressions have also been found for simplified mod-

els in [158, 126, 40]. However, no known closed-form results exist for estimating a

linear model appearing in adaptive estimation that is found in Chapter 3.

For control problems, optimization based methods have utilized the differ-

ential geometric structure of the SPD inertia matrix [88, 89]. For discrete-time

formulation of a continuous-time linear systems with a symmetric state transition

matrix contains the exponential of a symmetric matrix, which is a SPD matrix.

Such systems models are common in applications such as electrical network sys-

tems, multiagent network systems, and temperature dynamics. An optimization

method was formulated for this problem using the Riemannian geometric structure

of SPD matrices [130]. The physical consistency of the inertia matrix in robotic

manipulators involves maintaining SPD properties of its estimate. An optimization

approach on manifolds to solve the inertia identification problem was presented in

various studies [147, 161, 161, 138]. Most recently, regularization methods have

emerged to ensure the physical consistency of the system [28]. Optimization meth-

ods to solve SPD matrix valued equations are developed to obtain SPD estimates

in Chapter 5 for the above identification problems of noise covariance estimation.

The concept of natural gradient or Riemannian gradient for cost functions is used

to obtain optimal solutions to the problem of identifying SPD matrices.
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2.3 Adaptive Identification of SPD matrices

Identification of SPD matrices also appear in adaptive control problems.

Various control theoretic applications such as rigid body control depends on a SPD

matrix parameter. The autonomous control of a rigid body is extensively studied

in the literature for applications pertaining to the control of spacecrafts, robotic

manipulators, and underwater robots [160, 49, 166, 155, 91, 60]. Despite the non-

linear nature of the system and the presence of uncertain parameters governing the

system, linear feedback controllers with appropriate parameter adaptations were

shown to provide global tracking of the states. Moreover, stability properties of the

controller, proved through assumptions of bounded signals and parameters, made

the controller highly applicable on physical systems. The inertial properties on the

system, realized through the inertia matrix, is an important system parameter that

drives the motion of the rigid body. Even though the inertia matrix is unknown,

inertia-free adaptive controllers have been shown to exhibit global stability proper-

ties. Chapter 4 presents a novel adaptation technique, that is applicable to a fairly

large set of problems is presented. Such a method, in the worst case, is shown to

perform as well as the adaptive controller without projection.

For the attitude control problem, several inertia-free adaptive controllers

have been developed in the literature. The work by Wen and Delgado [160] pre-

sented an adaptive controller with inertia matrix adaptation. An adaptive controller

to realize linear closed loop dynamics in a 3-parameter representation with un-

known inertia was presented in Ref. [76]. The work in [2] uses a similar PD+

controller with inertia adaptation with a quaternion representation and derives con-

18



ditions for estimability of the inertia matrix. Adaptive controller for angular ve-

locity tracking and inertia identification has been presented in [37]. In presence of

disturbances an almost globally stable inertia-free adaptive controller has also been

developed [129]. Certain non-rigid inertia models parametrized using constant un-

known parameters were presented in [145]. An adaptive controller was developed to

estimate the constant unknowns of the time varying model in this case. An adaptive

controller design with attitude measurements has also been developed based on the

certainty equivalence principle [103]. More recent work departs from the certainty

equivalence assumption by unifying the convergence analysis for the observer and

controller [47, 24]. Adaptive control of robotic manipulators also belongs to this

class of problems. Some of the early results on adaptive control of robotic ma-

nipulators is given in [46, 133, 104]. Since then, various adaptive control laws for

problems associated with robotics manipulators have been presented with uncertain

inertial properties of the manipulators [153, 146, 62].

A common trait of the above control problems is that the unknown inertia

matrix appears linearly in the dynamical equations of motion. In order to estimate

the inertia matrix, a vector of unknown elements of the inertia matrix is formed.

Consequently, adaptive update laws and control laws chosen through the Lyapunov

analysis guarantee stability of the system. The choice of controller gains that make

the derivative of the Lyapunov function negative depend on the bounds of the uncer-

tain parameters. In the event that the unknown parameters are constrained, projec-

tion schemes are used to ensure that the estimates satisfy the bounds. Various pro-

jection methods have been developed in the literature to enforce norm constraints
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on the estimated elements. The adaptation presented by Bakker et. al. [19] for linear

time-invariant systems bounds the scalar parameter estimate to lie between speci-

fied bounds. This adaptation was generalized to be applicable to a more general

class of linear systems [9]. The work by Akella et. al. [3] extends the above pa-

rameter adaptation by providing a smooth parameter projection method for scalars.

The projection method presented in [47] provides a differentiable projection opera-

tor for vectors to satisfy norm constraints. Such a projection was modified to a form

that is sufficiently smooth [35]. For matrix valued parameters, however, the tech-

niques mentioned above can not impose eigenvalue constraints. Even though norm

constraints on the unique elements of a symmetric matrix indirectly enforce some

upper bound on the maximum eigenvalue of the matrix, that bound can be explic-

itly chosen. Furthermore, lower bounding the eigenvalues is not possible via such

methodology. For the adaptive control of robotic manipulators, projection methods

have been introduced to maintain the uniform positive definiteness of the inertia

matrix. For example, the projection method given in Refs. [47, 35] constrains the

norm of the parameters.

A related problem in adaptive control of robotics manipulators is the prob-

lem of ensuring physical consistency of the inertial parameters. This problem re-

duces to maintaining positive definiteness of a R4×4 matrix containing the inertia

matrix and mass parameters of the links of the manipulator [147]. The work in

Ref. [154] projects the parameter update law such that the determinant of every

primary sub matrix of the inertia matrix is constrained to be positive. Although

a eigenvalue constraints could theoretically be imposed by including a diagonal
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matrix with eigenvalue bounds on the diagonal in the determinant function, this

method is restrictive because an iterative scheme is necessary to perform this pro-

jection. A recent work adopted a differential geometric approach to maintain the

physical consistency of the parameters [87]. A modified Bregman Divergence based

function was used as a Lyapunov function to maintain physical consistency of the

inertia matrix estimates. Although positive definiteness of the inertia matrix was

maintained, such an algorithm can not be trivially extended to handle eigenvalue

constraints. In light of these limitations, a novel projection method is presented in

Chapter 4 that allows for explicit bounds on the eigenvalues of a symmetric ma-

trix valued parameter. Specifically, the cases considered in this Chapter 4 when the

eigenvalues of the symmetric matrix valued parameter are (i) lower bounded, (ii)

upper bounded, and (iii) bounded above and below.

Constraining the eigenvalues of a symmetric matrix is performed using the

eigen decomposition of the estimate of the matrix. The computational complex-

ity of the eigen decomposition scales cubically with the dimension of the matrix.

For applications involving a lower dimensional matrix, this may not be an issue.

However, eigen decomposition may prove to be computationally expensive for ap-

plications such as the n-link manipulator problem in robotics. For this reason, a

methodology to minimize the computation by directly updating the eigenvalues

and the eigenvectors is provided in this section. This follows from the seminal

work by Kato [82] on perturbation theory of linear operators. Given the update

law for a matrix, the eigen decomposition of the matrix can be directly updated in

most scenarios. Such an update leads to huge computational savings for real world
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applications.
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Chapter 3

Adaptive Covariance Estimation in Kalman Filtering

This chapter presents an adaptive Kalman filter formulation for estimating

the states as well as the noise covariance matrices online and guarantee conver-

gence 1.

3.1 Problem Statement

Consider the LTI system of the form

xk+1 = F̃xk + w̃k
yk = H̃xk + vk

}
(3.1)

wherein w̃k and vk are the zero mean white Gaussian process and measurement

noises. The definition for detectability of a general linear system is provided be-

low [8].

Definition 3.1.1. The pair [F,H] is uniformly detectable if there exists integers s, t ≥

0 and constants d ∈ [0,1) and b∈ (0,∞) such that for all ζ ∈Rn and integers k that

make

‖Fk
ζ‖ ≥ d‖ζ‖

1The research presented in this chapter is performed by the author and is previously published in
a peer-reviewed journal:
Moghe, R., Zanetti, R., & Akella, M. R. (2019). Adaptive kalman filter for detectable linear time-
invariant systems. Journal of Guidance, Control, and Dynamics, 42(10), 2197-2205.
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true, the following is true as well.

ζ
T Msζ ≥ bζ

T
ζ

wherein Ms is defined by the sum

Ms =
s

∑
i=0

FT s
HT HFs (3.2)

In what follows we make the following assumption on the system in Eq. (3.1).

Assumption 1. The system given in Eq. (3.1) is uniformly detectable, i.e., the pair

(F̃ , H̃) is uniformly detectable.

According to Assumption 1, there exists an invertible state transformation

matrix W such that the system can be transformed into

zk+1 =

[
F11 000l×s
F21 F22

][
zO

k
zUO

k

]
+Ww̃k

yk =
[
H1 000p×s

][ zO
k

zUO
k

]
+ vk

 (3.3)

wherein, the state and the transformed state at time tk are respectively denoted by xk

and zk ∈ Rn. The integers l and s are the dimensions of the observable (O) and un-

observable (UO) subspace of the state respectively such that s+ l = n. Accordingly,

the observable state zO
k ∈ Rl and the unobservable state zUO

k ∈ Rs. The measure-

ment at time tk is given by yk ∈ Rp. The pair (F11,H1) is uniformly observable and

F22 is stable (i.e. all eigenvalues within the unit sphere). The matrix W is such that

zk = Wxk and define wk = Ww̃k =
[
wO

k
T wUO

k
T
]T

to be the transformed process

noise. The transformed state transition matrix is given by

F ,WF̃W−1 =

[
F11 000l×s
F21 F22

]
(3.4)
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and the observation matrix is defined as

H , H̃W−1 =
[
H1 000p×s

]
. (3.5)

The process noise wk ∈ Rn and the measurement noise vk ∈ Rp are white Gaussian

and uncorrelated with each other. The transformed state at time t0 is denoted by z0.

Hence, wk ∼ N(000n×1,Q) and vk ∼ N(000p×1,R), wherein Q can be partitioned into

observable and unobservable subspaces as Q =

[
QO QO,UO

QUO,O QUO

]
.

The baseline Kalman filter equations for known Q and R matrices are given

by [20]:
ẑO

k|k−1 = F11ẑO
k−1|k−1

ẑO
k|k = ẑO

k|k−1 +Kk(yk−H1ẑO
k|k−1)

Pk|k−1 = F11Pk−1|k−1FT
11 +QO

Kk = Pk|k−1HT
1 (H1Pk|k−1HT

1 +R)−1

Pk|k = Pk|k−1−KkH1Pk|k−1


(3.6)

wherein Kk is the Kalman gain, Pk|k−1 and Pk|k are the state error covariance ma-

trices after the prediction and update step respectively. The baseline Kalman filter

equations contain the observable part of the Q matrix only. The unobservable state

zUO
k cannot be estimated as the system is not fully observable. The noise covari-

ance matrices Q and R are constant for all time tk. If the process and measurement

noises are white Gaussian, the baseline Kalman filter in (3.6) is optimal in the mean

squared error sense and the state error covariance Pk|k converges to a steady-state

value [7].

3.1.1 Problem Description

Given full knowledge of the system matrices (F11, F21, F22, H1, Q and R),

the Kalman filter is the optimal estimator of the system given by (4.1). However,
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most practical applications approximate the values of Q and R. Given F11, F21,

F22, H1, and measurements yk, an adaptive algorithm to estimate both the state xk

and unknown elements of R and Q matrices is presented in this chapter. Certain

restrictions on the number of elements that can be estimated as stated through the

following assumptions.

3.1.2 Assumptions

The following assumptions are made.

Assumption 2. The matrices forming the transformed state transition matrix, i.e.,

F11, F21, and F22, and the observation matrix H1 are assumed to be completely

known. The measurement sequence yk is also assumed to be accessible.

Assumption 3. It is assumed that the matrices F and H, the process noise covari-

ance matrix Qk = Q � 0, and the measurement covariance matrix Rk = R � 0 are

constant with time.

Assumption 4. The pair (F̃ , H̃) is assumed completely uniformly detectable, i.e.,

the pair (F11,H1) is uniformly observable and the matrix F22 has all its eigenval-

ues inside the unit circle in the complex plane. The pair (F,Q
1
2 ) is assumed to be

stabilizable.

Remark 3.1.1. The preceding assumption ensures that the baseline Kalman filter

given in (3.6) converges to a steady state [8].

Assumption 5. The pair (F,Q
1
2 ) has no unreachable nodes on the unit circle in the

complex plane.

26



Remark 3.1.2. This assumption along with the others stated above ensure the ex-

istence of a stabilizing solution for the algebraic Riccati equation [128, 36].

There is an additional assumption that is required for the proposed result to

hold which is stated in the sequel.

3.2 Filter Derivation

The filter is derived in 3 subsections, namely, formulating modified stacked

measurement model, forming a linear strictly stationary time series and finally, es-

timating the covariance to calculate the unknown elements.

3.2.1 Modified measurement model

For the n-dimensional discrete-time stochastic linear system given by (4.1),

the observability matrix is defined by

O=


HFn−1

HFn−2

...
HF
H

 (3.7)

Since the (F,H) pair is detectable, it follows from assumption 4 that O is column-

rank deficient. However, since every system given by (4.1) can be transformed into

one given by (3.3), the observability matrix for the transformed system is given by

O=


H1Fn−1

11 000p×s
...

...
H1F11 000p×s

H1 000p×s

=
[
O1 000np×s

]
(3.8)
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where the O1 corresponds to the observability matrix of the pair (F11,H1). In this

chapter, 000a×b is matrix of zeros with size a×b for some positive integers a and b.

Without loss of generality

∃ m ∈ N, 1≤ m≤ n : Mo =


H1Fm−1

11
...

H1F11
H1

 : rank(Mo) = l (3.9)

wherein Mo ∈ Rmp×l . This follows from the definition of detectability for LTI

systems. The value of m corresponds to the buffer size, i.e., the number of past

measurements that are stored in memory at each time step. In order to minimize the

memory storage, a smallest such m which satisfies the rank condition. However,

one may choose a larger value of m so that the matrix M0 is well conditioned.

Using this result, a stacked measurement model is formulated by stacking precisely

m measurements,

zk+1 = Fzk +wk (3.10)

zk+2 = F2zk +Fwk +wk+1 (3.11)

zk+i = F izk +
j=i−1

∑
j=0

F jwk+i−1− j (3.12)

Now, the measurement equations for the corresponding times are given by

yk = Hzk + vk (3.13)

yk+1 = HFzk +Hwk + vk+1 (3.14)

yk+2 = HF2zk +HFwk +Hwk+1 + vk+2 (3.15)

yk+i = HF izk +
j=i−1

∑
j=0

HFk+i−1− jwk+ j + vk+i (3.16)
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wherein i = 0,1, . . . ,m−1. Coagulating all the equations and the measurements for

m time steps
yk+m−1
yk+m−2

...
yk


︸ ︷︷ ︸

,Yk

=


HFm−1

HFm−2

...
H


︸ ︷︷ ︸

O

zk+


H HF HF2 · · · HFm−2

000p×n H HF · · · HFm−3

...
... . . . ...

...
000p×n 000p×n 000p×n 000p×n H
000p×n 000p×n 000p×n 000p×n 000p×n




wk+m−2
wk+m−3

...
wk

+


vk+m−1
vk+m−2

...
vk


︸ ︷︷ ︸

,Vk
(3.17)

Rewriting (3.17) using the detectability definition and eliminating the unobservable

states

Yk =


H1Fm−1

11 000p×s

H1Fm−2
11 000p×s
... 000p×s

H1 000p×s


︸ ︷︷ ︸

O

[
zO

k
zUO

k

]
+

+



[
H1 000p×s

] [
H1F11 000p×s

]
· · ·

[
H1Fm−2

11 000p×s
]

000p×n
[
H1 000p×s

]
· · ·

[
H1Fm−3

11 000p×s
]

...
... . . . ...

000p×n 000p×n 000p×n
[
H1 000p×s

]
000p×n 000p×n 000p×n 000p×n




wO

k+m−2
wUO

k+m−2
wO

k+m−3
...

wUO
k

+Vk

Yk = MozO
k +


H1 H1F11 · · · H1Fm−2

11
000p×l H1 · · · H1Fm−3

11
...

... . . . ...
000p×l 000p×l 000p×l H1
000p×l 000p×l 000p×l 000p×l


︸ ︷︷ ︸

,Mw


wO

k+m−2
wO

k+m−3
...

wO
k


︸ ︷︷ ︸

,W O
k

+Vk. (3.18)

Writing the modified measurement equation at the next time step

Yk = MozO
k +MwW O

k +Vk (3.19)

Yk+1 = MozO
k+1 +MwW O

k+1 +Vk+1 (3.20)
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3.2.2 Formulating linear stationary time series

Since, the system is detectable, the matrix Mo is full column rank and hence

its pseudo-inverse is unique and is defined by M†
o = (MT

o Mo)
−1(M)T

o . Project-

ing (3.19) and (3.20) onto the state space

M†
oYk = zO

k +M†
oMwW O

k +M†
oVk (3.21)

M†
oYk+1 = zO

k+1 +M†
oMwW O

k+1 +M†
oVk+1 (3.22)

Eliminating the observable state zO
k by subtracting (3.21) from (3.22), the time series

is formulated

M†
oYk+1−F11M†

oYk︸ ︷︷ ︸
,Zk

= wO
k +M†

oMwW O
k+1−F11M†

oMwW O
k︸ ︷︷ ︸

,Wk

+M†
oVk+1−F11M†

oVk︸ ︷︷ ︸
,Vk

(3.23)

wherein Zk, Wk and Vk are concatenated of the measurement sequence, the process

noise and the measurement noise respectively at different times. Although there is

an abuse of notation in using the subscript k here, the actual time histories of the

noise and measurement sequences is clearly specified in (3.17). The expressions

of Wk and Vk as a co-efficient matrix multiplied by a concatenated vector of noise

terms

Wk = wO
k +M†

oMwW O
k+1−F11M†

oMwW O
k (3.24)

Wk =
[[

M†
oMw IIIl×l

]
−
[
000l×l F11M†

oMw
]]

︸ ︷︷ ︸
,A


wO

k+m−1
wO

k+m−2
...

wO
k

 (3.25)

Let A=
[
Am Am−1 · · · A1

]
, (3.26)
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wherein, the matrix IIIl×l is the identity matrix of dimension l. The sequence Wk

and its covariance can be written as follows.

Wk = A1wk +A2wk+1 + · · ·+Amwk+m−1 (3.27)

The sequence Vk and its covariance can be expressed in a similar way,

Vk = M†
oVk+1−F11M†

oVk (3.28)

Vk =
[[

M†
o 000l×p

]
−
[
000l×p F11M†

o
]]

︸ ︷︷ ︸
,B ∈Rl×(m+1)p


vk+m

vk+m−1
...

vk

 (3.29)

Let B=
[
Bm Bm−1 · · · B0

]
(3.30)

Vk = B0vk +B1vk+1 + · · ·+Bmvk+m (3.31)

3.2.3 Estimating the covariance matrices

Since the white Gaussian noise sequences wO
k and vk are both independent

and identically distributed (i.i.d.), the sequence Zk, which is a function of the mea-

surements, is a zero mean strictly stationary time series with these noise terms as

inputs. Therefore, the covariance of Zk is given by

Cov(Zk) =Cov(Wk)+Cov(Vk). (3.32)

Writing down the expressions for the covariances in (3.32) using (3.27) and (3.31)

Cov(Wk) = A1QOAT
1 + · · ·AmQOAT

m (3.33)

Cov(Vk) = B0RBT
0 + · · ·BmRBT

m (3.34)
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Note that the covariance matrices are constant for all time. Since Zk is a function

of the measurements, its covariance can be estimated using the following unbiased

estimator Λk.

Λk =
1
k

k

∑
i=1

ZiZ
T
i (3.35)

In order to calculate the covariance recursively, the following recursive estimator is

used with Λ0 = 0,

Λk =
k−1

k
Λk−1 +

1
k
ZkZ

T
k (3.36)

Note that first m measurements are used to get the first estimate of the covariance

matrices. In order to estimate the unknown elements of the covariance matrices,

Cov(Zk) is replaced with its estimator Λk. The entire equation is then vectorized

and the right hand side is split into a known part Θknown and a product of matrix S

and a vector of concatenated unknown elements to be estimated θ̂k.

vec(Λk) = Θknown +Sθ̂k (3.37)

The S matrix here is constructed using the matrices Ai and Bi from (3.27) and (3.31).

The final assumption is stated below.

Assumption 6. The matrix S used in (3.37) has full column rank.

This assumption ensures the estimability of the unknown elements in the

noise covariance matrices Q and R. This is well in line with a similar assumption

was made about the number of unknown elements in the Q matrix by Mehra [100].

The implications of this assumptions are discussed in further detail in section 3.4.

Hence, the unknown elements are calculated at each time using

θ̂k = S†(vec(Λk)−Θknown) (3.38)
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wherein S† = (ST S)−1ST is the unique pseudo-inverse. This is a generalization of

the case handled in [108]. It is clear that the estimability of the unknown elements

depends on whether or not S is full column rank. However, since S is a constant

matrix depending only on the state transition matrix F and the observation matrix

H, it can be pre calculated and the bounds on the number of unknown elements

or the conditions for estimability of the covariance matrices can be checked. This

analysis is performed in section 3.4.

It is noteworthy that this algorithm can incorporate linear constraints be-

tween the elements of the unknown matrix. For example, if two of the elements of

the unknown covariance matrix are known to be equal even though their value is

unknown, the two unknowns can be denoted by the same variable while splitting

the equation into known and unknown parts as in (3.37).

The special cases when only one of R or QO is unknown is given by

Λk−Cov(Wk) = B0R̂kBT
0 + · · ·BmR̂kBT

m. (3.39)

Vectorizing the above equation (denoted vec(·)), let vec(Λk−Cov(Wk)),U r
k

U r
k = vec(B0R̂kBT

0 + · · ·BmR̂kBT
m) (3.40)

U r
k = (B0⊗B0 + · · ·Bm⊗Bm)︸ ︷︷ ︸

,T1

vec(R̂k) (3.41)

vec(R̂k) = T †
1 U r

k (3.42)

wherein, ‘⊗’ is the Kronecker product.

Assumption 7. Matrix T1 given in Eq. 3.42 has full column rank.
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For unknown QO case

Λk−Cov(Vk) = A1Q̂O
k AT

1 + · · ·AmQ̂O
k AT

m. (3.43)

Let vec(Λk−Cov(Vk)),Uq
k . Hence, vectorizing the above equation

Uq
k = vec(A1Q̂O

k AT
1 + · · ·AmQ̂O

k AT
m) (3.44)

Uq
k = (A1⊗A1 + · · ·Am⊗Am)︸ ︷︷ ︸

,T2

vec(Q̂O
k ) (3.45)

Assuming that T2 has full column rank, the estimate Q̂O
k is given by

vec(Q̂O
k ) = T †vec(Uq

k ). (3.46)

3.2.4 Algorithm outline

The pseudo-code of the algorithm is summarized in Algorithm 1. Note that

since the covariance matrices estimated using the measurements use the vec(·) op-

eration, they may not positive definite due to the randomness in the measurements.

A simple condition check is embedded into the algorithm which ensures positive

definiteness of the estimated covariance matrices.

3.3 Convergence Analysis for noise covariance matrices

This section analyzes the stability of the algorithm under the stated assump-

tions. The convergence of the covariance estimates to their true values are inves-

tigated first. Then, the stability of the state error covariance matrix sequences is

evaluated and compared to the state error covariance of the baseline Kalman filter.
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Algorithm 1 The Covariance Matching Kalman Filter

1: Input: ẑO
0 , P0, Cov(Z)0 = 0, Q̂0, R̂0, {Qi j, Ri j known}, yi

∣∣k
i=1

2: Initialization: (Q̂k)1 = Q̂k−1, (R̂k)1 = R̂k−1
3: Output: ẑO

k , Q̂k, R̂k, Pk|k
4: for k = 1→ n do
5: Using {yk} calculate Yk . Eq. (3.17)
6: Using Yk calculate Zk . Eq. (3.23)
7: Using Zk calculate Λk . Eq. (3.36)
8: Estimate R̂k and Q̂O

k using Λk . Eq. (3.38)
9: if R̂k � 0 then

10: R̂k = R̂k−1
11: end if
12: if Q̂O

k � 0 then
13: Q̂O

k = Q̂O
k−1

14: end if
15: ẑO

k|k−1 = F11ẑO
k−1|k−1

16: ẑO
k|k = ẑO

k|k−1 +Kk(yk−H1ẑO
k|k−1)

17: Pk|k−1 = F11Pk−1|k−1FT
11 + Q̂O

k
18: Kk = Pk|k−1HT

1 (H1Pk|k−1HT
1 + R̂k)

−1

19: Pk|k = Pk|k−1−KkH1Pk|k−1
20: end for
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3.3.1 Convergence of noise covariance

Substituting the values of Wk and Vk using (3.27) and (3.31)

Zk =
m

∑
i=1

AiwO
k+i−1 +

m

∑
i=0

Bivk+i (3.47)

The above equation is a linear strictly stationary time series because of the zero

mean, white Gaussian, and uncorrelated noise assumptions in place. Consider the

autocovariance function of zero mean time series Zk given by

C(k,k+ τ) := E[ZkZ
T
k+τ ]. (3.48)

If |τ|>m, C(k,k+τ) = 0. Hence, the autocovariance function C(k1,k2) decays to 0

as k1 and k2 grow farther away from each other. Hence, the central limit theorem for

linear stationary time series applies here which uses the weak law of large numbers

[71]. This theorem ensures an element-wise convergence given by

√
k{Ĉ(k,k)−C(k,k)}i j

D−→N(0,Ωi j) (3.49)

wherein, Ĉ(k,k) is equal to the Λk calculated recursively in (3.36), the subscript

i j denotes the element corresponding to the ith row and jth column of the matrix

and the D signifies convergence in distribution. This result motivates the following

convergence,

∀ε > 0, Pr(|{Ĉ(k,k)−C(k,k)}i j|> ε)
k→∞−→ 0 (3.50)

The rate of convergence is directly proportional to k−
1
2 for all i and j. Using (3.38)

and the existence of the pseudo-inverse for S matrix

∀ε > 0, Pr(|{θ̂k−θ}i|> ε)
k→∞−→ 0 (3.51)
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wherein θ is the vector of true values of the unknown elements. Hence, the conver-

gence of the covariance matrices is given by

∀ε > 0, Pr(|{Q̂O
k −QO}i j|> ε)

k→∞−→ 0, (3.52)

∀ε > 0, Pr(|{R̂k−R}i j|> ε)
k→∞−→ 0 (3.53)

where i and j correspond to the unknown elements of the covariance matrix. A

similar convergence holds for autocovariance function with a lag τ 6= 0,

∀ε > 0, Pr(|{Ĉ(k,k+ τ)−C(k,k+ τ)}i j > ε)
k→∞−→ 0 (3.54)

wherein, Ĉ(k,k+τ) = 1
k

k
∑

i=1
ZiZ

T
i+τ

. Using additional autocovariance functions with

non-zero τ augment and improve the ability to estimate covariance matrices. How-

ever, more measurements will have to be stored in the memory which might not be

desirable. A trade off between the accuracy and memory may give the best perfor-

mance. It is important to note that the positive definiteness checks in the algorithm

do not affect the convergence of the covariance estimates. Retaining the previous

estimate when positive definiteness is violated affects state estimation and the state

error covariance matrix. However, since the autocovariance estimate Ĉ(k,k) is in-

dependent of the state estimate and is only dependent on the measurements, the

convergence of Ĉ(k,k) to its true value is guaranteed. This causes the covariance

estimate to converge to its true value. Hence, the results presented here hold regard-

less of the checks.
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3.3.2 Convergence of the state error covariance

Three different error covariance matrix sequences are compared in this sub-

section. The matrix P̂k is the one-step predictor error covariance of the filter which

is calculated by propagating the initial covariance matrix P0 using the estimated

Kalman gain K̂k and the estimated Q̂O
k and R̂k covariance matrices. The Pk matrix

is the true error covariance of the filter which propagates the covariance using the

estimated Kalman gain K̂k and the true QO and R. Finally, Pk,opt is the optimal error

covariance matrix of the baseline Kalman filter given full knowledge of the noise

statistics. Writing these matrix sequences down

P̂k+1 =
ˆ̄FkP̂k

ˆ̄FT
k + K̂kR̂kK̂T

k + Q̂O
k (3.55)

Pk+1 =
ˆ̄FkPk

ˆ̄FT
k + K̂kRK̂T

k +QO (3.56)

Pk+1,opt = F̄kPk,opt F̄T
k +KkRKT

k +QO (3.57)

wherein, K̂k = F11P̂kHT
1 (H1P̂kHT

1 + R̂k)
−1, (3.58)

Kk = F11Pk,optHT
1 (H1Pk,optHT

1 +R)−1, (3.59)

ˆ̄Fk = F11− K̂kH1, and F̄k = F11−KkH1 (3.60)

and the initial error covariances are equal, P̂0 = P0 = P0,opt . Subtracting (3.56)

from (3.55), the asymptotic of the matrix sequence P̂k−Pk can be analyzed by

P̂k+1−Pk+1 =
ˆ̄Fk(P̂k−Pk)

ˆ̄FT
k + K̂k(R̂k−R)K̂T

k +(Q̂O
k −QO) (3.61)

Since the initial error covariance is the same, the matrix sequence can be expanded

as

P̂k+1−Pk+1 =
k

∑
i=0
{φ̂iK̂i(R̂i−R)K̂T

i φ̂
T
i + φ̂i(Q̂O

i −QO)φ̂ T
i } (3.62)
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where φ̂i = ˆ̄Fi
ˆ̄Fi−1 · · · ˆ̄F0 is the state transition matrix corresponding to ˆ̄Fk from initial

time to the ith time. Consider the partial sum ∆Pm,n from m to n defined as

∆Pm,n = (P̂n+1−Pn+1)− (P̂m−Pm) (3.63)

∆Pm,n =
n

∑
i=m
{φ̂iK̂i(R̂i−R)K̂T

i φ̂
T
i + φ̂i(Q̂O

i −QO)φ̂ T
i } (3.64)

Each element of ∆Pm,n is a function of the elements of R̂i−R and Q̂O
i −QO. Since,

φ̂i and K̂i are bounded from above, there exist εr
i j, ε

q
i j, δ r

i j, δ
q
i j and corresponding Nr

i j

and Nq
i j such that

∀k > Nq
i j,Pr(|{Q̂O

k −QO}i j|< ε
q
i j)> 1−δ

q
i j (3.65)

∀k > Nr
i j,Pr(|{R̂k−R}i j|< ε

r
i j)> 1−δ

r
i j (3.66)

∀m,n > max
i, j

(Nq
i j,N

r
i j), Pr(|{∆Pm,n}i j|< ε

p
i j)> 1−δ

p
i j (3.67)

Here each of ε
p
i j and δ

p
i j are functions of all the ε

q
i j and εr

i j, and δ
q
i j and δ r

i j respec-

tively for all i and j. Using (3.67)

∀i, j ∀ε p
i j > 0 lim

m,n→∞
Pr(|{∆Pm,n}i j|> ε

p
i j)−→ 0 (3.68)

Hence, using the Cauchy criterion for random sequences given in Theorem 6.3.1

of [120]

∀i, j ∀ε p
i j > 0 lim

k→∞
Pr(|{P̂k−Pk}i j|> ε

p
i j)−→ 0 (3.69)

P̂k−Pk
P−→ 000l×l (3.70)

Now consider the matrices defined in (3.58) and (3.60). The gain matrix K̂k which

is a continuous function of P̂k, Q̂O
k , and R̂k. Hence using the continuous mapping

39



theorem given in Corollary 8.3.1 of [120]

K̂k−Kk
P−→ 000l×p (3.71)

K̂k−Kk
P−→ 000l×p =⇒ ˆ̄Fk− F̄k

P−→ 000l×l (3.72)

Hence using the above results

Pk−Pk,opt
P−→ 000l×l (3.73)

P̂k−Pk,opt
P−→ 000l×l (3.74)

3.4 Estimability of noise covariance matrices

In (3.38), the existence of a pseudo-inverse of S matrix was assumed so

that the unknown elements of QO and R matrix could be estimated. The S matrix

can be pre calculated and the estimability of the unknown elements can be checked

before the filter is deployed. However, a physical insight behind this assumption is

uncovered via mathematical analysis in this section.

3.4.1 Estimability of R matrix

Say that the entire R is unknown and needs to be estimated while QO matrix

is known. Consider the case when the system given by (4.1) has linearly dependent

measurements. This is mathematically expressed as

∃ ξ 6= 000p×1 : ξ
T H1 = 0001×l (3.75)[

ξ T . . . ξ T ]
1×mp Mo = 0001×l =⇒ M†

o
[
ξ T . . . ξ T ]T

mp×1 = 000l×1 (3.76)
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Hence, using the matrices defined in (3.30), the above condition translates to

Biξ = 000l×1, ∀ i = 0,1, . . . ,m =⇒
m

∑
i=0

(Biξ ξ
T BT

i ) = 000l×l (3.77)

(B0⊗B0 + · · ·+Bm⊗Bm)︸ ︷︷ ︸
T1

vec(ξ ξ
T ) = 000l2×1 (3.78)

Hence, a common null space for all the coefficient matrices Bi for i = 1,2, . . . ,m

was found. Therefore, the matrix vec(ξ ξ T ) belongs to the null space of the matrix

T1 defined in (3.41). In case of repeated or linearly dependent measurement, estima-

tion of the R matrix is ambiguous. It is important to note that this unintentionally

establishes a hard limit on the number of measurements available to the system.

If the number of measurements is greater than the number of states, there always

exists a ξ which satisfies the above condition and the R matrix cannot be unam-

biguously estimated. Intuitively, for example, say that the system has two identical

sensors, This algorithm is unable to estimate the cross-covariance between the two

noises of the identical sensors (with possibly different noise covariance matrices).

The measurement equation can be modified by averaging out the linearly depen-

dent measurements and estimating their aggregate covariance matrix. However,

note that this is not a sufficient condition for estimability of R. There can be other

cases which make rank(T1) = 0.

3.4.2 Estimability of QO matrix

For estimability of the QO matrix, it has been established that the number of

unknown elements that need be estimated cannot be more than l× p where p is the

number of independent measurements [100].
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Again let us assume that the entire QO matrix is to be estimated while R

matrix is completely known. Let the matrix X = (MT
o Mo)

−1 and M†
o is stated as

M†
o =

[
X(FT

11)
m−1HT

1 X(FT
11)

m−2HT
1 . . . XHT

1
]

(3.79)

Note that X is an invertible matrix. Similar to the case for unknown R ma-

trix, the idea is to find a null space common to all the matrix Ai, i = 1,2, . . . ,m.

First, the expression for M†
o can be expressed as

M†
o =

[
C1 C2 . . . Cm

]
(3.80)

Ci = X(FT
11)

m−iHT
1 i = 1,2, . . . ,m (3.81)

Using the above expression, the matrix M†
oMw is evaluated as

M†
oMw =

[
D1 D2 . . . Dm

]
(3.82)

D1 =C1H1 (3.83)

D2 =C1H1F11 +C2H1 (3.84)

...

Dm =C1H1Fm−2
11 +C2H1Fm−3

11 + · · ·+Cm−1H1 (3.85)

Evaluating A matrix using the expression above

A=
[[

M†
oMw III

]
−
[
000l×l F11M†

oMw
]]

(3.86)

Am = D1 =C1H1 (3.87)

...

A2 = Dm−F11Dm−1 (3.88)

A1 = III−F11Dm (3.89)
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Note that all matrices Ai ∈ Rl×l for i = 1,2, . . . ,m. However, due to the matrix

multiplication HT
1 H1, their rank cannot be more than p with an exception of A1. The

estimability of QO thus directly depends on rank(A1⊗A1+ . . .Am⊗Am) and one of

the cases in which this rank is 0 is if the null spaces of the matrices Ai, i= 1,2, . . . ,m

intersect. Let us say this is the case and there exists a non-zero vector κ ∈ Rl×1

such that Aiκ = 000l×1 for i = 1,2, . . . ,m. Trying to find an expression for κ

∀i = 1,2, . . . ,m Aiκ = 000l×1 =⇒ Diκ = 000l×1 (3.90)

However, note that in that case, A1κ 6= 000l×1. Hence, a contradiction is reached and

the matrices Ai do not share a part of their null space. However, since this is only

a necessary condition, this analysis does not provide a condition for estimability of

QO matrix.

3.5 Further comparison with prior literature

The problem of estimating the state and certain unknown elements of the

process and measurement noise covariance matrices has received significant atten-

tion in prior literature, most notably in [100]. Several important facts that highlight

crucial differences between [100] are stated below.

• In [100], the pair (F,Q
1
2 ) is assumed to be controllable and pair (F,H) is

taken to be observable. The work respectively assumes stabilizability and

detectability of the same matrix pairs as given in assumptions 4 which are

clearly weaker technical hypotheses. The results presented in this chapter are

applicable to a wider class of systems.
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• Both the optimal (case of known covariance matrices) and suboptimal (case

of unknown covariance matrices) are assumed to have reached steady-state

conditions in [100]. This assumption is central to the developments therein

since it is used to calculate the covariance matrix estimate. No such assump-

tion as the steady-state properties are proven and convergence guaranteed.

• The state transition matrix F is assumed to be non-singular in [100] which

is arguably a mild restriction. This assumption is subsequently used to cal-

culate the estimate of the noise covariance matrices and hence is crucial to

the formulation in [100]. On the other hand, the detectability assumption is

sufficient for convergence and no additional non-singularity restrictions are

placed upon the state transition matrix.

• The work in [128] analyzed discrete-time Kalman filtering with incorrect

noise covariances. Corollary 3.3 in [128] states that for incorrect noise co-

variances obtained simply by multiplying with a positive scalar, the sequences

are asymptotically white. This result, as the authors state, shows the insuffi-

ciency of the whiteness test used in [100] for estimating the noise covariance

matrices that are required for constructing the steady-state filter. For related

discussion, the readers are referred to [4]. This inadequacy of the whiteness

condition should be noted to be a major limitation of the approach in [100]

for estimating covariance matrices using the autocovariance function in case

of sub-optimality of the filter. The method presented here is impervious to the

above arguments involving the whiteness tests as the residual autocovariance

is not used.
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• In [100], convergence is proved for the asymptotic case, i.e., when the batch

size (N) becomes infinitely large. However, such a filter can be potentially

impractical (large memory buffer usage), and moreover, one has to always

initiate the filter with a fixed batch size, the chosen batch size may not be

large enough to guarantee convergence. In [100], it is assumed that the batch

size N is much larger than n. All the results that follow prove convergence of

the estimates for a large value of N. As given in (3.9), at most n measurements

are stacked and the number of stacked measurements is pre-calculated using

the system matrices (F and H).

3.6 Simulations

Consider a fictitious detectable system which satisfies the assumptions for

this algorithm to converge.

xk =

0.8 0.2 0
0.3 0.5 0
0.1 0.9 0.7

xk−1 +wk−1 (3.91)

yk =

[
1 0 0
0 1 0

]
xk + vk (3.92)

It is assumed that wk ∼ N(0,Q), and vk ∼ N(0,R) are both i.i.d white Gaussian

noises. The values of the covariance matrices are

R =

[
5 0
0 4

]
, Q =

 3 0.2 0
0.2 2 0
0 0 7.5


The elements R11, Q11, and Q22 are estimated and all other elements are known.

The initial estimates for all these elements was chosen to be 10. From Monte Carlo
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simulation results, the estimate time history of R̂k is given in Fig. 3.1. The time

histories of estimates of the unknown elements of Q̂O
k are shown to converge to its

true value in Fig. (3.2). The predictor and true state error covariance converges to

the optimal Kalman filter values Fig. (3.3) as shown in the simulations.

Figure 3.1: The estimate of the R11 element for 100 Monte Carlo simulations.

3.7 Conclusion

A novel algorithm to adaptively estimate the state and certain unknown ele-

ments of the process and measurement noise covariance matrices of a discrete lin-

ear time invariant stochastic system is formulated. The algorithm presented here is

derived using a judicious combination of established adaptive filtering approaches

such as correlation techniques and covariance matching techniques. The detectabil-

ity property of the system is utilized for observing the state and formulating a time

series containing measurement and process noise sequences independent of the

state. A proof for the probabilistic convergence of the new algorithm is presented

under additional assumptions of existence of a pseudo inverse used for unique-
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Figure 3.2: The estimates of the Q11 and Q12 elements for 100 Monte Carlo simu-
lations.
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Figure 3.3: The elements of the estimated error covariances matrix from (3.55)
along with the optimal Kalman filter truth from Eq. (3.57) for 100 Monte Carlo
simulations.
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ness of the estimates of the covariance matrices. This bears significant contrasts to

approaches for adaptive covariance estimation algorithms reported in existing liter-

ature. Firstly, the technical assumptions of detectability rather than observability,

no non-singularity requirements on the state transition and observation matrix like

invertibility, and no requirement of reaching steady-state are less restrictive. Sec-

ondly, the proposed algorithm is independent of sub optimality tests for whiteness

toward constructing the state-state filter. Lastly, the results do not require arbitrarily

large batch sizes for ensuring convergence but rather, the memory usage and buffer

size demands imposed by the algorithm can be a priori benchmarked in terms of

the dimensionality of the state-space. Monte Carlo simulations demonstrate the

effectiveness of the algorithm.
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Chapter 4

Differential Geometric Identification Methods

4.1 Introduction

In the previous chapter an adaptive Kalman filter was introduced to esti-

mate the noise covariance matrices for linear time invariant system. The positive

definiteness of the noise covariance estimates is necessary for the stability of the

resulting adaptive Kalman filter using the noise covariance matrix estimates. In

the previous chapter, the most recent positive definite estimates were stored and a

positive definiteness check on the estimates was required. Although the stability of

the adaptive Kalman filter and the convergence of the noise covariance matrix esti-

mates are immune to such an ad-hoc method, more effective identification methods

can be developed. In this chapter, positive definite estimates of the unknown noise

covariance matrices are obtained by adopting a differential geometric approach.

Such methods enable minimization methods with a positive definite constraint to

be transformed into unconstrained minimization on the manifold of symmetric and

positive definite (SPD) matrices.

SPD matrices have a rich geometric structure and form a manifold as the

topological space locally resembles the Euclidean space of symmetric matrices.

The earliest use of differential geometry can be traced back to evaluating the ge-
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ometric mean of a set of SPD matrices. Calculating the means are equivalent to

minimizing the sum of squared norms. Minimizing the Frobenius norm, however,

resulted in a swelling effect for SPD matrices [92]. This situation appears when

the determinants of SPD matrices on a path between SPD matrices are artificially

inflated. As a result, various other distance measures or metrics were used which

gave the SPD matrices a Riemannian manifold structure.

The most common and geometrically rich metric is the affine-invariant (AI)

metric [105, 118], also known as the GL-invariant metric or the Fischer metric

from information geometry. The mean calculated by minimizing the metric is

known as the Karcher mean or the Fréchet mean. The closed form solution to

the Fréchet mean of n SPD matrices does not exist except for the case when n is

two. Hence, optimization based methods have been derived to estimate the geomet-

ric mean [1, 30]. In spite of its geometrically rich nature of the AI metric, other

metrics were popularized for their computational simplicity that is missing from

the AI metric. Some other known metrics are the Log-Euclidean [14, 15], Cholesky

decomposition based [159, 114], Log-Cholesky [92], Wasserstein [26, 96], and the

Jensen-Bregman LogDet based metric [140, 42], and the Stein divergence [141].

In the context of adaptive identification of SPD matrices, several optimiza-

tion based approaches have been developed. Differential geometric techniques have

been applied to formulate various forms of Kalman filters to estimate manifold val-

ued variables [150, 165, 102, 41]. Estimating the covariance matrix can be formu-

lated as filtering on the SPD manifold. However, no closed form solution exists for

the updates without making simplifying assumptions on the model. For example,
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the linear filter developed in [150] contains a closed form solution for a linear er-

ror model that is calculated with respect to a nominal trajectory known as the base

model. However, the full manifold state observations are assumed to be available.

Linearity of the model is arguably not a restrictive assumption since SPD matrices

in most physical systems appear linearly. However, the affine model for covariance

estimation given in Eq. (3.32), (3.33), and (3.34) does not fit into the framework

given in [150]. The Stein center calculated using the square root of the LogDet

divergence metric employed a closed form recursive solution that can be calculated

using the square root of the SPD matrix [126]. However, such a recursive algo-

rithm can only be used to calculate the geometric mean of SPD matrices using the

Stein metric. Closed form solutions for a particular objective function were found

in [158, 40] but do not readily generalize to the covariance estimation problem at

hand.

In this chapter, the problem of estimating a symmetric positive definite ma-

trix is posed as an Riemannian optimization problem on the SPD manifold. Con-

sequently, SPD estimates of the noise covariance matrices are guaranteed. SPD

matrices form a convex cone in the set of matrices of the same size. They also form

a differentiable Riemannian manifold that is also a metric space with non positive

curvature [25]. This structure enables one to solve constrained Euclidean optimiza-

tion problems by posing them as unconstrained Riemannian optimization problems

on the manifold [143]. Algorithms involving Riemannian optimization techniques

have been used in the past for optimization on manifolds wherein manifold equiv-

alents of first-order methods, second-order methods, line-search, Newton methods,
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and trust region methods have been developed [1, 30]. These methods utilize the

concepts of geodesics, as well as, the gradients and possibly Hessians of objective

functions defined on manifolds to ensure that the estimates are geometry aware.

The advantages of such optimization methods over traditional optimization meth-

ods with additional constraint requiring the estimates to lie on the manifold have

been well documented in the literature [1].

The chapter is organized as follows. First, the expression for the adaptive

Kalman filter developed in Chapter 3 is restated here. A brief introduction to the ge-

ometry of the SPD manifold is presented. For brevity purposes, only relevant con-

cepts required for the Riemannian optimization are stated. Next, the cost function

which includes any additional element constraints on the noise covariance matrices

is described. The Riemannian Gradient and Hessian of the cost function are then

derived which are further used in a Riemannian Trust Region (RTR) optimization

framework to obtain SPD estimates. Numerical simulations using the RTR based

Adaptive Kalman filter to estimate the noise covariance matrices demonstrate the

efficacy of the proposed approach.

4.2 Adaptive Filter Formulation

The basic structure of the adaptive filter formulated in this section follows

from correlation based techniques [109, 53, 90].
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4.2.1 Problem Formulation

A discrete linear time-varying (LTV) system is considered here with the

system equations given by

xk+1 = Fkxk +Gkuk +wk

yk = Hkxk + vk

(4.1)

wherein the process noise wk∼N(000n×1,Q) and the measurement noise vk∼N(000p×1,R)

are uncorrelated white Gaussian noises with constant noise covariance matrices. Let

φi,k be the associated state transition matrix such that φk+1,k = Fk and φk,l = φk,qφq,l

for any q ∈ Z. No restrictions are made for the matrices Fk, Gk and Hk except for

uniform observability of pair (Fk,Hk) and uniform controllability of the (Fk,Q
1
2
k )

pair. To that end, the definition for uniform observability and uniform controllabil-

ity is given by [73, Chapter 7.5]

Definition 4.2.1. The pair (Fk,Hk) is uniformly observable if there exists an integer

s≥ 0 and constants 0 < α1 < α2 such that

α1III �Mk+s,k � α2III (4.2)

wherein,

Mk+s,k =
k+s

∑
i=k

φ
T
i,kHT

i Hiφi,k (4.3)

and let Mk+l,k for l < s be the partial observability Gramian.

Definition 4.2.2. The pair (Fk,Ek) is uniformly controllable if there exists an integer

s≥ 0 and constants 0 < β1 < β2 such that

β1III � Yk+s,k � β2III (4.4)
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wherein,

Yk+s,k =
k+s

∑
i=k

φk+s+1,i+1EiET
i φ

T
k+s+1,i+1 (4.5)

Assumption 8. Let the pair (Fk,Hk) be uniformly observable and the pair (Fk,Q
1
2
k )

be uniformly controllable.

The above assumption ensures the Kalman filter is exponentially stable [8,

Theorem 5.3]. Subsequently, the following assumption is made on the Q and R

noise covariance matrices.

Assumption 9. The noise covariance matrices Q and R are both assumed to be

constant and unknown.

The aim of this paper is to estimate the unknown Q and R matrices while

simultaneously estimating the states.

4.2.2 Measurement Difference Autocovariance approach

Since the pair (Fk,Hk) is uniformly controllable with constants s ≥ 0 and

0 < α1 < α2, consider m ≥ s measurements that are aggregated in time to form a

linear time series. Such a development is described in the following result.

Proposition 1. For the LTV system given by Eq. (4.1) with the Assumptions 9, and

a m ≥ s from Definition 4.2.1, the measurements yk of the system follow a linear

time series given by

m

∑
i=0

Ak
i yk−i−

m

∑
i=1

Bk
i Gk−iuk−i =

m

∑
i=1

Bk
i wk−i +

m

∑
i=0

Ak
i vk−i (4.6)
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wherein, the coefficients Ak
i and Bk

i are completely determined from the system ma-

trices Fk and Hk.

Proof. The proof follows from much of the past work on the measurement differ-

ence methods [53, 109]. We begin by accumulating m measurements by stack-

ing them one on top of the other to form a modified measurement model given

in Eq. (4.7). Defining Wk−1,k−m+1 = [wT
k−1, . . . ,w

T
k−m+1]

T and pre multiplying by


yk

yk−1
...

yk−m+1


︸ ︷︷ ︸
,Yk,k−m+1

=


Hkφk,k−m+1

Hk−1φk−1,k−m+1
...

Hk−m+1


︸ ︷︷ ︸

,Ok,k−m+1

xk−m+1

+


Hk HkFk−1 Hkφk,k−2 · · · Hkφk,k−m+2

000p×n Hk−1 Hk−1Fk−2 · · · Hk−1φk−1,k−m+2
...

... . . . ...
...

000p×n 000p×n 000p×n 000p×n Hk−m+2
000p×n 000p×n 000p×n 000p×n 000p×n


︸ ︷︷ ︸

,Mw
k−1,k−m+1

wk−1 +Gk−1uk−1
wk−2 +Gk−2uk−2

...
wk−m+1 +Gk−m+1uk−m+1


︸ ︷︷ ︸

,Uk−1,k−m+1

+


vk

vk−1
...

vk−m+1


︸ ︷︷ ︸
,Vk,k−m+1

(4.7)

Ok,k−m+1, the invertible observability Gramian Mk,k−m+1 defined in Eq. (4.3) is re-
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covered as shown below.

OT
k,k−m+1Yk,k−m+1 = Mk,k−m+1xk−m+1+

OT
k,k−m+1Mw

k−1,k−m+1Uk−1,k−m+1 +OT
k,k−m+1Vk,k−m+1

Inverting Mk,k−m+1 and using a one step predictor for the state xk−m+1, a linear time

series can be formed from the two equations given by

M−1
k,k−m+1OT

k,k−m+1Yk,k−m+1 = xk−m+1 +M−1
k,k−m+1OT

k,k−m+1Mw
k−1,k−m+1Uk−1,k−m+1

+M−1
k,k−m+1OT

k,k−m+1Vk,k−m+1

M−1
k−1,k−mOT

k−1,k−mYk−1,k−m = xk−m +M−1
k−1,k−mOT

k−1,k−mMw
k−2,k−mUk−2,k−m

+M−1
k−1,k−mOT

k−1,k−mVk−1,k−m

Substituting xk−m+1 = Fk−mxk−m +Gk−muk−m +wk−m and eliminating the state by

subtraction, we get a linear time series given by

AkYk,k−m =BkUk−1,k−m +AkVk,k−m (4.8)

wherein,

Ak = [M−1
k,k−m+1OT

k,k−m+1,000n×p]− [000n×p,Fk−mM−1
k−1,k−mOT

k−1,k−m] (4.9)

and
Bk = [M−1

k,k−m+1OT
k,k−m+1Mw

k−1,k−m+1, IIIn×n]

− [000n×n,Fk−mM−1
k−1,k−mOT

k−1,k−mMw
k−2,k−m]

(4.10)

Separating out individual components of the coefficients of yk

A0 = M−1
k,k−m+1φ

T
k,k−m+1HT

k

Ai = M−1
k,k−m+1φ

T
k−i,k−m+1HT

k−i−Fk−mM−1
k−1,k−mFT

k−mφ
T
k−i,k−m+1HT

k−i

Am =−Fk−mM−1
k−1,k−mFT

k−mHT
k−m
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wherein, i = 1, . . . ,m−1 above and the coefficients of wk is given by

B1 = M−1
k,k−m+1φ

T
k,k−m+1Mk,k

Bi = M−1
k,k−m+1φ

T
k−i+1,k−m+1Mk,k−i+1−Fk−mM−1

k−1,k−mφ
T
k−i+1,k−mMk−1,k−i+1

Bm = IIIn×n−Fk−mM−1
k−1,k−mFT

k−mMk−1,k−m+1

wherein, i = 2, . . . ,m−1 above. The statement of the proposition follows.

Defining Zk as the left hand side of Eq. (4.6), the autocovariance function

of Zk is given by

Ck,k−p = E[ZkZ
T
k−p] =

m

∑
i=p+1

Bk
i QBk−p

i−p
T
+

m

∑
i=p

Ak
i RAk−p

i−p
T

(4.11)

wherein p = 0, . . . ,m. Notice that the autocovariance Ck,k−p = 000n×n for p > m

vanishes. As long as the number of past measurements yk stored at every time

instant is greater than m+1, the autocovariance function can be estimated.

4.2.3 Covariance Matrix Estimation

The autocovariance is estimated using a single measurement as Ĉk,k−p =

ZkZ
T
k−p. The elements of the autocovariance function can be rearranged using the

vech(·) operation as follows.


vech(Ĉk,k)

vec(Ĉk,k−1)
...

vec(Ĉk,k−P)


︸ ︷︷ ︸

,bk

=



m
∑

i=1
Bk

i ⊗h Bk
i

m
∑

i=0
Ak

i ⊗h Ak
i

m
∑

i=2
Bk−1

i−1 ⊗u Bk
i

m
∑

i=1
Ak−1

i−1 ⊗u Ak
i

...
...

m
∑

i=P+1
Bk−P

i−P ⊗u Bk
i

m
∑

i=P
Ak−P

i−P ⊗u Ak
i


︸ ︷︷ ︸

,Dk

[
vech(Q)
vech(R)

]
︸ ︷︷ ︸

,θ

(4.12)
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A recursive least squares (RLS) estimation technique starting from an initial guess

(θ̂0,Ψ0) is given by

θ̂k+1 = θ̂k +Lk(bk−Dkθ̂k)

Ψk+1 = (III−LkDk)Ψk(III−LkDk)
T +LkRW LT

k

Lk = ΨkDT
k (RW +DkΨkDT

k )
−1

(4.13)

The convergence of the estimate has been established in Ref. [53, Theorem 8].

4.2.4 Adaptive Kalman Filter

Using the estimates Q̂k and R̂k of the noise covariance matrices, the follow-

ing equations constitute the adaptive Kalman filter equations.

x̂k|k−1 = Fk−1x̂k−1 +Gk−1uk−1

x̂k|k = x̂k|k−1 + K̂k(yk−Hkx̂k|k−1)

P̂k|k−1 = Fk−1P̂k−1|k−1FT
k−1 + Q̂k

K̂k = P̂k|k−1HT
k (HkP̂k|k−1HT

k + R̂k)
−1

P̂k|k = (III− K̂kHk)P̂k|k−1(III− K̂kHk)
T + K̂kR̂kK̂T

k

(4.14)

wherein, P̂k|k, P̂k|k−1, and K̂k are the estimates of the quantities in the nominal

Kalman filter [73, Chapter 7].

4.3 Riemannian Trust-Region method

Although the recursive least squares successfully estimates the elements of

the noise covariance matrices, it does not guarantee SPD estimates of the covari-

ance matrix. The convergence of the estimates to the true covariance matrices is

59



guaranteed provided the matrix Dk is persistently excited. However, the transients

are important when the covariance estimate is concurrently used to estimate the

state vector. In this case, the filter may run into a problem of loss of observability or

worse, provide negative information updates to the filter by virtue of a non positive

definite noise covariance matrix estimate. As a result, having a SPD noise covari-

ance matrix estimate is crucial to obtain a stable adaptive Kalman filter. To this

end, a geometric optimization approach that respects the geometry of SPD matrices

is introduced here. A brief summary of the geometry of SPD matrices is provided

below (for a comprehensive review, see, e.g., [25] for SPD matrices and [1] for

Riemannian optimization methods).

4.3.1 Geometry of Covariance Matrices

The space Sn
++ forms a manifold with its tangent space at a point X ∈ Sn

++

denoted by TXSn
++ and identified with Sn, the set of symmetric matrices. The affine

invariant metric at X ∈ Sn
++ defined by

〈V1,V2〉X = Tr{X−1V1X−1V2} V1,V2 ∈ TXSn
++ (4.15)

turns the manifold into a Riemannian manifold. The shortest path on the manifold

between two points X ,Y ∈ Sn
++ is called the geodesic curve and is parameterized as

γ(s) = X
1
2

(
X−

1
2Y X−

1
2

)s
X

1
2 s ∈ [0,1] (4.16)

wherein, γ(0) = X and γ(1) = Y denote the end points of the geodesic. A geodesic

curve emanating from a point X ∈ Sn
++ in the direction V ∈ TXSn

++ is parameterized
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by

γX ,V (s) = X
1
2 Exp

(
sX−

1
2V X−

1
2

)
X

1
2 (4.17)

and resides within Sn
++ for any s ∈ R. Given a smooth function f : Sn

++ → R, f̄

as the extension of f to Rn×n, a smooth geodesic curve γ : R→ Sn
++ such that

γ(0) = X ∈ Sn
++ and γ̇(0) = V ∈ TXSn

++, the Euclidean gradient ∇ f̄ defined using

the directional derivative D f̄ (X)[V ] of f̄ at X in the direction V is given as

Tr{V ∇ f̄ (X)}= D f̄ (X)[V ] (4.18)

The Riemannian gradient of f at X , denoted by grad f (X) ∈ TXSn
++ is similarly

defined as

〈V,grad f (X)〉X =
d
dt

f (γ(t))
∣∣
t=0 (4.19)

Note that the Riemannian gradient is obtained from the Euclidean gradient by

grad f (X) = Xsym(∇ f̄ (X))X (4.20)

From [74, Section 4.1.4], the Riemannian Hessian of f defined as a map Hess f (X) :

TXSn
++→ TXSn

++ is given by

Hess f (X)[V ] = D(grad f )(X)[V ]− sym(grad f (X)X−1V ) (4.21)

Using the above expressions for grad f , the Hessian can be expressed in terms of

the extension f̄ as

Hess f (X)[V ] = Xsym(D(∇ f̄ )(X)[V ])X + sym(V sym(∇ f̄ )X) (4.22)
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4.3.2 Cost function, Gradient and Hessian

The cost function for the recursive least squares minimization from Eq. (4.13)

is minimized with a Riemannian optimization framework. The recursive least squares

cost function is given by

Jk(θ) =
1
2
(Dkθ −bk)

T R−1
W (Dkθ −bk)+

1
2
(θ − θ̂k−1)

T
Ψ
−1
k−1(θ − θ̂k−1) (4.23)

Before evaluating the Riemannian gradient and the Riemannian Hessian, the cost

function must be reformatted to explicitly depend on Q and R matrices. Such re-

formatting is possible via simple algebraic manipulation. The unique elements of a

SPD matrix are given by

vech(X) =

 III0
nXei

...
IIIn−1

n Xen

=


III0

n 000 · · · 000
000 III1

n · · · 000
...

... . . . ...
000 000 · · · IIIn−1

n


︸ ︷︷ ︸

,In∈Rn(n+1)/2×n2

(IIIn⊗X)vec(IIIn) (4.24)

wherein, X ∈ Sn, ei ∈Rn is the ith canonical basis vector and IIIi
n ∈R(n−i)×n is formed

by deleting the first i rows of IIIn, the identity matrix. The following statement pro-

vides the expressions for the gradient of the least squares cost function.

Lemma 2. Given the cost function in Eq. (4.23), its Riemannian gradients at Q and

R are given by

gradJk(Q,R) = (Q∇QJ̄k Q,R∇RJ̄k R) (4.25)

wherein, J̄k is the Euclidean extension of the cost Jk and the expressions for ∇QJ̄k
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and ∇QJ̄k are given by

∇QJ̄k = BTrn

{
sym

(
vec(IIIn)

(
DQT

k R−1
W (Dkθ −bk)

+ [IIImq,000mq×mr ]Ψ
−1
k−1(θ − θ̂k−1)

)T
In

)} (4.26)

∇RJ̄k = BTrp

{
sym

(
vec(IIIp)

(
DRT

k R−1
W (Dkθ −bk)

+ [000mr×mq, IIImr ]Ψ
−1
k−1(θ − θ̂k−1)

)T
Ip

)} (4.27)

wherein, Dk = [DQ
k ,D

R
k ], θ = [vech(Q)T ,vech(R)T ]T , mq = n(n+ 1)/2 and mr =

p(p+1)/2.

Proof. Consider a geodesic γQ,VQ(t) as defined in Eq. (4.17). From the definition of

the gradient in Eq. (4.18), the expression for ∇QJ̄k is given by

DJ̄k(Q,R)[VQ,VR] =
∂ J̄k(γQ,VQ(s),γR,VR(s))

∂ s

∣∣∣
s=0

= Tr{∇QJ̄k VQ}+Tr{∇RJ̄k VR}

Separating the expressions into the parts containing Q and R, we get

Tr{∇QJ̄k VQ}= (Dkθ −bk)
T R−1

W

(
DQ

k InIIIn⊗VQvec(IIIn)
)

+(θ−θ̂k−1)
T

Ψ
−1
k−1[IIImq,000mq×mr ]

T InIIIn⊗VQvec(IIIn)

= Tr{vec(IIIn)
(

DQT

k R−1
W (Dkθ −bk)+ [IIImq ,000mq×mr ]Ψ

−1
k−1(θ − θ̂k−1)

)T
InIIIn⊗VQ}

Further simplification results in an expression given by

Tr{∇QJ̄k VQ}= Tr
{

BTrn

{
vec(IIIn)

(
DQT

k R−1
W (Dkθ −bk)

+[IIImq ,000mq×mr ]Ψ
−1
k−1(θ − θ̂k−1)

)T
In

}
VQ

}
wherein, the expression Tr{A(IIIn⊗B)} = Tr{BTrn{A}B} is used. Comparing the

expressions on both sides of the equations gives the result of the lemma. The expres-

sion for ∇RJ̄k results from a derivation similar to the one above and is omitted.
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The expression for the Riemannian Hessian of Jk can be derived from Eq. (4.22)

and is given through the following statement.

Lemma 3. The expression for the Riemannian Hessian of Jk from Eq. (4.22) is

given by

HessJk(Q,R)[VQ,VR] = (HessQJk(Q,R)[VQ,VR],HessRJk(Q,R)[VQ,VR]) (4.28)

wherein

HessQJk(Q,R)[VQ,VR] = Qsym(D(∇QJ̄k)(Q,R)[VQ,VR])Q+ sym(VQsym(∇QJ̄k)Q)

HessRJk(Q,R)[VQ,VR] = Rsym(D(∇RJ̄k)(Q,R)[VQ,VR])R+ sym(VRsym(∇RJ̄k)R)

The expressions for the directional derivatives of the Euclidean gradients are given

by

D(∇QJ̄k)(Q,R)[VQ,VR] = BTrn

{
sym

(
vec(IIIn)θ

T
v

(
DQT

k R−1
W Dk

+[IIImq,000mq×mr ]Ψ
−1
k−1

)T
In

)} (4.29)

and

D(∇RJ̄k)(Q,R)[VQ,VR] = BTrp

{
sym

(
vec(IIIp)θ

T
v

(
DRT

k R−1
W Dk

+[000mr×mq , IIImr ]Ψ
−1
k−1

)T
Ip

)} (4.30)

wherein, θv = [vech(VQ)
T , vech(VR)

T ]T .

Proof. The directional derivative of ∇QJ̄k(Q,R)[VQ,VR] is obtained as

D(∇QJ̄k)(Q,R)[VQ,VR] =
∂∇QJ̄k(γQ,VQ(s),γR,VR(s))

∂ s

∣∣∣
s=0

(4.31)

Since the gradient is affine in Q and R, the directional derivative is independent of

the points Q and R where it is evaluated. The expression is obtained trivially by

substituting VQ and VR in place of Q and R and removing the constant terms.
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4.3.3 Riemannian Trust-Region Method

The Riemannian trust-region (RTR) method is used to solve the quadratic

least squares cost function in Eq. (4.23). At each step the RTR method performs an

inner iteration that minimizes a quadratic approximation of a cost function at Q,R

given by

m̂(Q,R)(VQ,VR) = Jk(Q,R)+ 〈gradJk(Q,R),(VQ,VR)〉(Q,R)

+
1
2
〈HessJk(Q,R)[VQ,VR],(VQ,VR)〉(Q,R)

(4.32)

The optimal V ∗Q ∈ TQSn
++ and V ∗R ∈ TRPp are obtained subject to a norm constraint

on step size given by

‖(VQ,VR)‖(Q,R) =
√
〈(VQ,VR),(VQ,VR)〉(Q,R) ≤ ∆ (4.33)

wherein, ∆ is the trust-region radius. A truncated conjugate gradient (tCG) method [1,

Algorithm 11] solves the inner iteration at each step. Then a verification step eval-

uates the decrease in the true and approximate cost function given by the ratio

ρ =
Jk(Q,R)− Jk(γQ,V ∗Q(1),γR,V ∗R (1))

m̂(Q,R)(000n×n,000p×p)− m̂(Q,R)(V ∗Q,V
∗
R )

(4.34)

and decide whether the optimal (V ∗Q,V
∗
R ) are accepted and whether the radius ∆

should be decreased. Algorithm 2 describes the RTR algorithm. The constants

used are taken from [1, Algorithm 10].

Remark 4.3.1. The RTR algorithm ensures that the estimates are symmetric and

positive definite. However, in practice, the SPD noise covariance estimates may be

arbitrarily close to semidefiniteness. This may create numerical errors in the filter
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Algorithm 2 Riemannian Trust-Region Method
1: Input: Q̂k−1, R̂k−1, Ψk−1, Dk, bk, RW , ∆̄ > 0, ∆1 ∈ (0, ∆̄), ρ ∈ [0, 1

4)

2: Initialization: (Q̂k)1 = Q̂k−1, (R̂k)1 = R̂k−1
3: Output: Q̂k, R̂k
4: for k = 1→ n do
5: Minimize m̂(Q,R)(VQ,VR) . Eq. (4.32)
6: subject to norm constraint with ∆i . Eq. (4.33)
7: if ρi <

1
4 then

8: ∆i+1 =
1
4∆i

9: else if ρi >
3
4 and ‖(V ∗Q)i,(V ∗R )i‖= ∆i then

10: ∆i+1 = min(2∆i, ∆̄)
11: else
12: ∆i+1 = ∆i
13: end if
14: if ρi > ρmin then
15: ((Q̂k)i+1,(R̂k)i+1) = (γQ,V ∗Q(1),γr,V ∗R (1))
16: else
17: ((Q̂k)i+1,(R̂k)i+1) = ((Q̂k)i,(R̂k)i)
18: end if
19: end for
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updates. To avoid this situation, the minimum eigenvalue of Q̂k and R̂k is lower

bounded by a small positive constant ε > 0. The modified optimization variable is

given by

Q̂k = εIIIn + Q̂ε
k

R̂k = εIIIp + R̂ε
k

(4.35)

Such a modification ensures that the eigenvalues of the noise covariance estimates

obtained by the RTR method are lower bounded by ε instead of zero. Such a modi-

fication merely results in a shift of the origin and does not affect the RLS solution.

The algorithm for the RTR-based AKF is summarized below.

Algorithm 3 Riemannian Trust-Region based Adaptive Kalman Filter (RTRAKF)
1: Input: x̂0, Q̂0, R̂0, P̂0, Ψ0, m, P, yi, i = 1,2, . . .
2: Output: Q̂k, R̂k, P̂k, x̂k
3: for k = 1→ n do
4: if i > m+P then
5: Calculate Dk and bk . Eq. (4.12)
6: Calculate the Riemannian Gradient . Eq. (4.25)
7: Calculate the Riemannian Hessian . Eq. (4.28)
8: Use Algorithm 2 to obtain Q̂i and R̂i
9: Update x̂k and P̂k . Eq. (4.14)

10: end if
11: end for

4.4 Stability Analysis

In this section, the main contributions of this paper, i.e., stability of the

RTR-based covariance estimation scheme and the adaptive Kalman filter using the

RTR-based covariance estimates is presented.
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4.4.1 Convergence of the noise covariance estimates

The RTR method, by design, ensures that Q̂k and R̂k are SPD. Starting from

SPD initial guesses the following results establish the convergence of the RTR-

based noise covariance estimators by comparing them to the RLS solution.

Proposition 4. Given that Dk is persistently excited, Pr{Q̂RLS
i ∈Sn

++, R̂
RLS
k ∈Pp, ∀i>

k} k→∞−−−→ 1.

Proof. The convergence of the batch least squares estimate θ̂k in the mean squared

sense to the true value θ ∗ was established given that the combined coefficient matrix

D = [DT
1 ,D

T
2 , . . .]

T is full column rank [53, Theorem 8]. Since, Dk is persistently

excited, the full rank condition is automatically satisfied. Since, convergence in

the mean squared sense implies convergence in probability, we know that Pr{‖θ̂k−

θ ∗‖> 0} → 0. Consequently, for any constant δ > 0, Pr{‖θ̂k−θ ∗‖< δ} k→∞−−−→ 1.

We know that the true Q and R which are formed from the θ ∗ elements are SPD.

Hence, there exists a δ such that ∀ θ̂k : ‖θ̂k−θ ∗‖ < δ , θ̂k is such that the matrices

Q̂k and R̂k formed by its elements are SPD. Picking such a δ ensures that Pr{Q̂RLS
k ∈

Sn
++, R̂RLS

k ∈ Pp}
k→∞−−−→ 1 which in turn ensures the following statement.

Pr{∃i > k, Q̂RLS
i /∈ Sn

++, R̂
RLS
i /∈ Pp}

k→∞−−−→ 0.

The negation of the above statement proves the statement of the proposition.

Proposition 5. Given Q̂k ∈ Sn
++, R̂k ∈ Pp, Ψk ∈ Pmq+mr , and the one step RLS and

RTR solutions denoted by (Q̂RLS
k+1, R̂

RLS
k+1) and (Q̂RT R

k+1 , R̂
RT R
k+1 ) respectively, if Q̂RLS

k+1 ∈

Sn
++ and R̂RLS

k+1 ∈ Pp then (Q̂RLS
k+1, R̂

RLS
k+1) = (Q̂RT R

k+1 , R̂
RT R
k+1 ).
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Proof. The cost function given in Eq. (4.23) is quadratic with a positive definite

Euclidean Hessian and is hence convex in the argument θ . As a result, the recursive

least squares minimizer produces unique solutions up to the error due to the stop-

ping criterion. Similarly, the choice of constants in Algorithm 2 and the usage of ex-

act Hessian ensures that lim
k→∞

gradJk = 0 for the RTR algorithm [1, Theorem 7.4.4].

Since, Q̂k ∈ Sn
++ and R̂k ∈ Pp, gradJk = 0 =⇒ (∇QJ̄k,∇RJ̄k) = (0,0). Hence, this

solution exactly matches the solution from the RLS step up to the error induced due

by the stopping criterion. The statement of the proposition follows.

Theorem 6. Given that Dk is persistently excited, the sequences Q̂RT R
k and R̂RT R

k

found using the Algorithm 2 converge to their true values, Q and R respectively, in

probability.

Proof. From Proposition 4, we know that Pr{Q̂RLS
i ∈ Sn

++, R̂RLS
i ∈Pp, ∀i> k} k→∞−−−→

1. Hence, from Proposition 5, we get that Pr{(Q̂RLS
k , R̂RLS

k ) 6= (Q̂RT R
k , R̂RT R

k )} k→∞−−−→

0. Since the RLS solution converges to the true value in the mean squares sense and

the RT R solution matches the least squares solution with probability 1 as k→ ∞,

the RTR solution converges in probability to (Q,R).

4.4.2 Convergence of the state error covariance matrix

The stability properties of the adaptive Kalman filter using the RTR-based

noise covariance estimates are established through the following statement.

Proposition 7. Given the noise covariance estimates Q̂k and R̂k from the RTR Al-

gorithm described in Algorithm 2, the adaptive Kalman filter from Eq. (4.14) is
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exponentially stable.

Proof. The proof follows from [8, Theorem 5.3] and Definitions 4.2.1 and 4.2.2.

The observability Gramian for the pair (Fk, R̂
− 1

2
k Hk) corresponding to the adaptive

Kalman filter is given by

M̂k+m,k =
k+m

∑
i=k

φ
T
i,kHT

i R̂−1
i Hiφi,k

Since, R̂k � 0 and the observability Gramian Mk+m,k for the known case is SPD, the

observability Gramian M̂k+m,k for the adaptive Kalman filter using the RTR noise

covariance matrix estimates is also SPD. Hence, the pair (Fk, R̂
− 1

2
k Hk) is uniformly

observable. Given that Ŷk+s,k � 000, the controllability Gramian for the pair (Fk, Q̂
1
2
k )

corresponding to the adaptive Kalman filter for the same s > 0 is given by

Ŷk+s,k =
k+s

∑
i=k

φi,kQ̂iφ
T
i,k

Since Q̂k � 0, the Ŷk+s,k is non-singular and the pair (Fk, Q̂
1
2
k ) is uniformly control-

lable. Hence from [8, Theorem 5.3], the adaptive Kalman filter is exponentially

stable.

The following statement establishes the convergence of the state error co-

variance matrix of the adaptive Kalman filter.

Theorem 8. The state error covariance matrix sequence P̂k of the adaptive Kalman

filter converges to the state error covariance matrix oPk of the optimal Kalman filter

with probability 1.
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Proof. Consider three covariance sequences P̂k, Pk and oPk given by [109]

P̂k+1 =
ˆ̄FkP̂k

ˆ̄FT
k + K̂kR̂kK̂T

k + Q̂k (4.36)

Pk+1 =
ˆ̄FkPk

ˆ̄FT
k + K̂kRK̂T

k +Q (4.37)

oPk+1 = F̄k
oPkF̄T

k +KkRKT
k +Q (4.38)

wherein, F̄k = Fk− K̂kHk, ˆ̄Fk = Fk− K̂kHk,

K̂k = FkP̂kHT
k (HkP̂kHT

k + R̂k)
−1

Kk = Fk
oPkHT

k (Hk
oPkHT

k +R)−1

Each of the three sequences denotes the one-step predictor state covariance matrix.

The sequence P̂k denotes the apparent state error covariance matrix of the adaptive

Kalman filter and uses the noise covariance matrix estimates for its propagation.

The sequence Pk denotes the actual state error covariance matrix of the adaptive

Kalman filter and uses the Kalman gain from the apparent covariance sequence

along with the true noise covariance matrices. The sequence oPk denotes the opti-

mal state error covariance which represents the case when Q and R are fully known.

We will first prove the equivalence of P̂k and Pk in the limit. Assuming the same

error covariance at the initial time, the sequence formed by differencing P̂k and Pk

is given by

P̂k+1−Pk+1 = (FK− K̂kHk)(P̂k−Pk)(FK− K̂kHk)
T + K̂k(R̂k−R)K̂T

k +(Q̂k−Q)

Since the RTR method ensures that Q̂k and R̂k are SPD, we conclude that Fk− K̂kHk

is exponentially stable from Proposition 7. Additionally, from Theorem 6, both
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Q̂k and R̂k converge in probability to Q and R respectively as k→ ∞. Hence, the

exponentially stable matrix sequence converges to zero in probability, i.e., P̂k
k→∞−−−→
P

Pk. From the expression for K̂k, since P̂k
k→∞−−−→
P

Pk and R̂k
k→∞−−−→
P

R, we get

K̂k
k→∞−−−→
P

FkPkHT
k (HkPkHT

k +R)−1

as k→∞. Hence, the matrix sequence for Pk and oPk is identical in the limit as k→

∞ with probability 1. Invoking Proposition 7, the state transition matrix Fk−KkHk

is exponentially stable. The matrix sequence oPk has a unique limit [73, Theorem

7.5]. Hence, P̂k
k→∞−−−→
P

oPk as k → ∞. Finally, we conclude that P̂k
k→∞−−−→
P

oPk as

k→ ∞.

4.5 Numerical Simulations

A LTV system is simulated in this section to demonstrate the RTR based

adaptive Kalman filter. The dynamics of the system given in Eq. (4.1) with the

system matrices given below [53].

Fk =

[
0 1

−akbk −(ak +bk)

]
Gk =

[
1
1

]
Hk =

[
1 dk

]
(4.39)

wherein, {ak,bk}= ck± i(0.4+0.2sin(2πk/τ), ck =−0.7+0.2cos(2πk/τ), dk =

2sin(10πk/τ), and i is the imaginary unit. The measurements are assumed to be

available every 1/τ second with τ = 104. The true noise covariance matrices are

given by Q =

[
3 1
1 2

]
and R = 2. For the purposes of the simulation, the control

inputs uk are assumed to be drawn from a unit normal distribution. The number of
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measurements stacked at every time step are m = 3. Fig. 4.1 shows the Frobenius

norm of the error in estimating the Q matrix with the RTR and the RLS method.

The estimates from both methods are shown to converge to zero. A similar trend

is seen in the estimation error Frobenius norms in estimating R in Fig. 4.2 and the

error between the state covariances of the adaptive Kalman filter and the optimal

Kalman filter with known noise covariance matrices shown in Fig. 4.3. The differ-

ence between the two methods is seen when comparing the transient Q̂k eigenvalues

shown in Fig. 4.4. The RLS method sometimes leads to a negative eigenvalue while

RTR method lower bounds the eigenvalue by a prescribed minimum value of 0.1

(Remark 4.3.1). Since the R matrix is a scalar, A similar trend is seen in Fig. 4.5

that shows the time history of its estimate R̂k. The result of negative eigenvalues

of the noise covariance matrix estimates culminates as an inconsistent non positive

definite error state covariance P̂k+1|k shown in Fig. 4.6.
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Figure 4.1: The Frobenius norm of the Q estimation error.
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Figure 4.2: The Frobenius norm of the R estimation error.
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Figure 4.3: The Frobenius norm of the estimation error in the estimated state error
covariance matrix P̂k|k=1 and the optimal oPk|k−1.
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Figure 4.4: The transient eigenvalues of Q̂k, the true eigenvalues of Q, and λmin =
0.1 from Remark 4.3.1.
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Figure 4.5: The transient values of R̂k, the true R, and λmin = 0.1 from Remark 4.3.1.
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Figure 4.6: The transient eigenvalues of predicted state error covariance for the
RTR-based adaptive Kalman filter.
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4.6 Conclusion

A Riemannian Trust-Region (RTR) based Adaptive Kalman filter to esti-

mate the states as well as the process and measurement noise covariance matrices

is introduced in this chapter. A linear time series is constructed using a fixed buffer

of past measurements in time. The autocovariance function of the time series is a

linear function of the noise covariance matrices. A recursive least squares cost func-

tion is minimized using the RTR method to obtain symmetric and positive definite

(SPD) noise covariance matrix estimates. The noise covariance matrix estimates are

shown to converge to their true values provided there exists sufficient excitation of

the system. Furthermore, the stability of the Adaptive Kalman filter is established

by proving uniform observability and uniform controllability. The conditions of

sufficient excitation are the counterparts to the full rank conditions of the S matrix

in Eq. (3.37) for the LTI case.
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Chapter 5

Adaptive Identification in Control

This chapter presents an identification technique for SPD matrix valued pa-

rameters in adaptive control applications. The developments of this chapter focus

on continuous time formulations of identifying SPD matrices as opposed to the dis-

crete time formulations from the previous chapters. Continuous time identification

schemes for SPD matrix valued parameters frequently appear in control problems.

5.1 Notations and Preliminaries

Some notations and preliminaries specific to this chapter are presented here.

The attitude of a rigid body can be expressed as a member of the special orthogonal

group SO(n). The associated Lie-algebra of this set is represented by the set of

skew-symmetric matrices

so(n) = {K ∈ Rn×n|K =−KT}

The skew-symmetric map S : Rn → so(n) maps a vector to a member of the Lie-

algebra. For n = 3 this map outputs a skew-symmetric matrix as follows.

S(v) =

 0 v3 −v2
−v3 0 v1
v2 −v1 0

 (5.1)
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A matrix X can always be split into its symmetric and skew-symmetric parts,

X =
1
2
(X +XT )︸ ︷︷ ︸
,(X)S

+
1
2
(X−XT )︸ ︷︷ ︸
,(X)K

(5.2)

The element-wise product or the Hadamard product of matrices X ,Y ∈ Rm×n is

given by

(X ◦Y )i j = (X)i j(Y )i j (5.3)

The set of symmetric, symmetric and positive semidefinite, and symmetric and pos-

itive definite matrices are denoted by Sn, Sn
+, and Sn

++ respectively. Let σ(X) =

{λ |det(X −λ III) = 0} be the spectrum of the matrix X . The map Diag : Rn → Sn

which takes a vector and returns a diagonal matrix with the elements of the vector

on the diagonal. Similarly, the map diag : Rn×n→ Rn return the diagonal elements

of a matrix as a vector.

5.2 The Projection Scheme

The projection of symmetric matrices onto the cone positive semidefinite

matrices is well known [32] and is known to be the closest point in the positive

definite cone to the symmetric matrix with respect to the Frobenius norm.

PSn
++
(X) =UDiag(max(0,λ1), . . . ,max(0,λn))UT (5.4)

wherein, X = UDiag(λ )UT is an eigen decomposition. Consider two similarly

defined projection within the cone of symmetric matrices, one with α lower bound-

ing the minimum eigenvalue, and the other, with β upper bounding the maximum
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eigenvalue

P min
Sn (X ,α) =UDiag(max(α,λ1), . . . ,max(α,λn))UT

P max
Sn (X ,β ) =UDiag(min(β ,λ1), . . . ,min(β ,λn))UT

(5.5)

Note that P min
Sn (X ,α,β ) = PSn(X −αIII)+αIII and P max

Sn (X ,β ) = β III−PSn(β III−X)

are alternative expressions for the projection. The projection for both lower and

upper bounds is given by

PSn(X ,α,β ) =UDiag(λ α,β
1 , . . . ,λ α,β

n ))UT (5.6)

wherein, λ
α,β
i =min(β ,max(λi,α)) and PSn(X ,α,β )= P max

Sn (P min
Sn (X ,α),β ) is an-

other expression. Consider a set of eigenvalues of X that are greater than a positive

constant α indexed by the set given below.

Ω(X ,α,β ) = {k | α ≤ λk(X)≤ β}

Ω−(X ,α) = {k | λk(X)< α}

Ω+(X ,β ) = {k | λk(X)> β}

(5.7)

The notations Ω, Ω−, and Ω+ are used whenever the arguments are non ambiguous.

The above sets partition the set {1, . . . ,n} ∈ N. The above projection is differen-

tiable at all points except for at λi(X) ∈ {α,β} for all i. It is in fact C∞ at all points

where it is differentiable [97, 131].

5.2.1 Stability with the projection mechanism

In various applications of adaptive control, the stability of the system is es-

tablished using the Lyapunov direct method. For the case of unknown symmetric
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matrix, the Lyapunov candidate function for the states is augmented with the Lya-

punov function for the error in the symmetric matrix parameters

V (t) =Ve(t)+VJ(t)

wherein, the Ve(t) contains the state error term while VJ(t) contains the error in the

inertia matrix. In most cases, a squared term of the vector of unique elements of the

symmetric matrix is added to the Lyapunov function.

In this section, a new Lyapunov term is proposed that can be augmented to

the Lyapunov functions for a wide variety of applications. In the following let J be

symmetric and positive definite matrix to be estimated. The matrix J̄ ∈ Sn as the

matrix that tracks J and the estimate Ĵ as the projection of J̄ given the eigenvalue

bounds

Ĵ = PSn(J̄,α,β ) α,β > 0

Furthermore, the eigen decompositions for the matrices defined above are

J =V ΣV T

J̄ =UΛUT

Ĵ =UΛ
′UT

(5.8)

wherein, Λ′ is the diagonal matrix with entries trimmed to lie within (α,β ). A new

formulation for VJ(t) is presented below through a series of lemmas.

Lemma 9. Let J be such that it satisfies Assumption 10 with parameter α and/or β

and Ĵ = PSn(J̄,α,β ) is the projected matrix. Let

VJ(t) = Tr{(J− J̄)2− (J̄− Ĵ)2} (5.9)
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Given the above definition,

VJ(t)≥ 0

with equality whenever J = J̄.

Proof. Consider two cases for the eigenvalues of J̄,

1. All the eigenvalues of J̄ are within [α,β ]

2. Some of the eigenvalues are outside the interval [α,β ]

Case 1: Since Ω−(J̄,α) and Ω+(J̄,β ) are empty sets, Ĵ is equal to J̄.

VJ(t) = Tr{(J− J̄)(J− J̄)} ≥ 0 (5.10)

Since, J− J̄ is symmetric, the only way VJ(J, J̄) vanishes is when J and J̄ are equal.

Case 2: Consider the following algebraic manipulation.

VJ(t) = Tr{(J̄− J)2− (J̄− Ĵ)2}

= Tr{(J2−2JJ̄− Ĵ2 +2J̄Ĵ)}

= Tr{(J2−2JĴ+ Ĵ2 +2JĴ− Ĵ2−2JJ̄− Ĵ2 +2J̄Ĵ)}

= Tr{(Ĵ− J)2︸ ︷︷ ︸
�0

+2(J− Ĵ)(Ĵ− J̄)︸ ︷︷ ︸
Jc

}

The first term on the right hand side is the same as the first case and is non negative.

Using the eigen decomposition for the second term

Tr{Jc}= Tr{(V ΣV T −UΛ
′UT )(UΛ

′UT −UΛUT )}

= Tr{(UTV ΣV TU−Λ
′)(Λ′−Λ)}

= ∑
i∈Ω−

(dii−α)(α−λi)+ ∑
i∈Ω+

(dii−β )(β −λi)
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wherein, all the terms in the index set Ω(J̄,α,β ) vanish, and dii are the diagonal

terms of UTV ΣV TU . All the diagonal terms satisfy dii ∈ [α,β ] by Assumption 10.

Similarly, for the index set Ω− and Ω+, λi < α and λi > β respectively. Hence,

Tr{Jc} is non negative. Equality, in this case, occurs when J and Ĵ are equal. How-

ever, this condition is never true as the set union Ω−
⋂

Ω+ is non empty under Case

two in general. Hence, the function VJ(t)≥ 0 with equality at J = J̄.

In applications involving Lyapunov functions, the derivative V̇ (t) involves

evaluating the derivative of VJ(t) to chose an update law for J̄. A general form of

the update law for a system with states given by x commanded to follow a reference

trajectory given by xr and derivative of the reference trajectory given by ẋr

˙̄J = Ψ(x,xr, ẋr)+Γ(J̄− Ĵ)+(J̄− Ĵ)Γ (5.11)

wherein, Ψ(·) is a symmetric matrix valued function and the projection Ĵ, and Γ is a

constant diagonal Hurwitz matrix. The particular definition of the function Ψ, states

and their reference trajectories may vary for different applications. The derivative

of the above Lyapunov function is bounded as shown in the following Lemma.

Lemma 10. If VJ(t) defined is as defined in Eq. (5.9), with an update law for J̄

as given in Eq. (5.11) and the eigen decomposition defined in Eq. (5.8) then the

following inequality is true almost everywhere.

V̇J(t)
a.e.
≤ 2Tr{(Ĵ− J)Ψ(x,xr, ẋr, Ĵ)}

wherein, the a.e. stands for almost everywhere. This means that the derivative V̇J(t)

is defined at all points except on a set of Lebesgue measure zero.
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Proof. Consider the expression for the derivative of VJ(t) below with J̃ defined as

the Ĵ− J error term.

V̇J(t) = 2Tr{(J̄− J) ˙̄J− (J̄− Ĵ)( ˙̄J− ˙̂J)}

= 2Tr{J̃Ψ(x,xr, ẋr, Ĵ)}+2Tr{2ΓJ̃(J̄− Ĵ)+(Ĵ− J̄) ˙̂J}

The matrix Ĵ is formed by the new projection method. Note that the projection

PSn(X ,α,β ) is differentiable at all points where α,β is does not belong to σ(X).

However, the set of points where the projection is not differentiable is of Lebesgue

measure zero. A Clarke Generalized gradient has been used as a gradient at the

points of non-differentiability [97]. The gradient of the projection map is given

below [131].

∇PSn(J̄,α,β )[H] =U(B(diag(Λ))◦ (UT HU))UT (5.12)

wherein, H ∈ Sn is the direction in which the gradient is evaluated, and the matrix

valued function B(·) is defined below.

{B(x)}i j =


1 xk ∈ (α,β ),k = i, j
0 xk /∈ (α,β ),k = i, j
xα,β

i −xα,β
j

xi−x j
o.w.

(5.13)

wherein, xα,β
i = min(β ,max(xi,α)). Since J̄ ∈ Sn

++, ˙̄J ∈ Sn and the derivative of Ĵ

wherever it exists is defined below.

˙̂J = ∇PSn(J̄,α,β )[ ˙̄J] (5.14)

Similar to the treatment in Lemma 9, the cross terms evaluate to

Tr{ΓJ̃(J̄− Ĵ)}= ∑
i∈Ω−

Γii(dii−α)(α−λi)+ ∑
i∈Ω+

Γii(dii−β )(β −λi)
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wherein, both the summations are negative due to the negative diagonal Γii terms

multiplying positive terms. The final term, denoted by Tr{Jx} = Tr{(Ĵ− J̄) ˙̂J)},

evaluates to the following expression at all points except for those in a set of 0

measure.

Tr{Jx}
a.e.
= Tr{(Λ′−Λ)(B(diag(Λ))◦ (UT ˙̄JU))}

Let bi j = (B(diag(Λ))◦UT ˙̄JU)i j denote the elements of the matrix.

Tr{Jx}
a.e.
= ∑

i∈Ω−

bii(α−λi)+ ∑
i∈Ω+

bii(λi−β )

The Trace expression vanishes since bii = 0 for i ∈ Ω−
⋂

Ω+ almost everywhere

and the statement of the lemma follows.

5.3 Adaptive Control Applications

In this section three different applications of adaptive control with unknown

symmetric matrices are considered. First, the adaptive angular velocity tracking

problem is considered [37]. Next, the full adaptive attitude control problem with

both orientation and angular velocity tracking is examined [160]. Lastly, the passivity-

based adaptive control of robotic manipulator system is modified with the novel

projection [133].

5.3.1 Adaptive Angular Velocity Tracking

The dynamical equations of motion are first described. Let ω(t) represents

the angular velocity of the rigid body expressed in the body fixed frame, the un-
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known J ∈ S3
++ be its inertia matrix and u(t) ∈ R3 be the control input. The dy-

namics of the angular velocity of the rigid body is described in its body fixed frame

as [37]

Jω̇(t) =−S(ω)Jω +u(t) (5.15)

For the angular velocity tracking problem, the reference angular velocity ωr(t) is

assumed to be available in the body fixed frame. Since the angular velocity of

the body is also expressed in the body fixed frame, the angular velocity error is

expressed as

ωe(t) = ω(t)−ωr(t) (5.16)

and the error dynamics are given by

Jω̇e =−S(ω)Jω +u(t)− Jω̇r (5.17)

Such a problem is relevant for system identification maneuvers in space applica-

tions.

Assumption 10. The eigenvalues of the true inertia matrix J are bounded. Either

the knowledge of either the lower bound is available in the form of a constant α ,

λmin(J)≥ α

or the knowledge of the upper bound is available in the form of a constant β > α ,

λmax(J)≤ β

or both the bounds are available.
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An adaptive controller to track the angular velocity in presence of an un-

known or uncertain inertia matrix that satisfies Assumption 10 is formulated below.

Consider the angular velocity tracking problem with the angular velocity error dy-

namics given in Eq. (5.17) with the adaptive control law given by

u(t) =−Kωe +S(ω)Ĵω + Ĵω̇r (5.18)

wherein, K ∈ Sn
++ is a positive definite gain matrix and Ĵ = PSn(J̄,α,β ) is the

projection defined in Eq. (5.6). Consequently, the update law for J̄ is designed as

˙̄J =−γ (Ξ(ω,ωr, ω̇r))S +Γ(J̄− Ĵ)+(J̄− Ĵ)Γ (5.19)

wherein, Ξ(·) = ωωT
e S(ωr)+ ω̇rω

T
e denoted by Ξ for brevity below. Note that the

update law for ˙̄J is in the form specified in Eq. (5.11). The stability properties of the

closed loop system under the above update law are proved in the following theorem.

Theorem 11. Consider a rigid body with error dynamics given by Eq. (5.17), the

adaptive control law in Eqs. (5.18), and inertia update specified by Eq. (5.19). Then

under Assumptions 10, the angular velocity error ωe converges to zero asymptoti-

cally.

Proof. Consider the following Lyapunov candidate function.

V (t) =
1
2

ω
T
e Jωe +

1
2γ

VJ(t) (5.20)

wherein, the expression for VJ(t) is given in Eq. (5.9). From Lemma 9, V (t) is

known to be non negative and that V (t) vanishes whenever ωe and J̃ = Ĵ−J vanish.
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Since, the derivative of VJ(t) does not exist on a set of measure 0, the derivative of

V (t) can be evaluated as follows almost everywhere.

V̇ (t) a.e.
= ω

T
e Jω̇e +

1
2γ

V̇J(t)

Substituting for the V̇J(t) and the equations of motion, and using Lemma 10

V̇ (t) a.e.
= −ω

T
e Kωe +ω

T
e S(ω)J̃ω +ω

T
e J̃ω̇r +

1
2γ

V̇J(t)

a.e.
= −ω

T
e Kωe +Tr{J̃ωω

T
e S(ωr)+ J̃ω̇rω

T
e }+

1
2γ

V̇J(t)

a.e.
≤ −ω

T
e Kωe +Tr{J̃(Ξ)K}

Since, the trace of the product of a symmetric matrix and a skew-symmetric ma-

trix is zero, the derivative of the Lyapunov candidate function evaluates to be non

positive almost everywhere.

V̇ (t)
a.e.
≤ −ω

T
e Kωe (5.21)

Since, the Lyapunov candidate function is not differentiable at all the points, the

Lyapunov direct theorem for stability does not directly apply here. However, the

non smooth Lyapunov function presented above satisfies the requirements of the

corollaries of LaSalle-Yoshizawa wherein V̇ (t) is upper bounded by a negative

semidefinite function almost everywhere. Hence, the following convergence result

is proved [59, 132, Collorary 1].

ωe
t→∞−→ 0
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5.3.2 Adaptive Attitude Tracking

An adaptive controller for the full attitude control problem is formulated

using the projection method described in Section 5.2. The dynamic equations are

first stated. Although the quaternion representation is used for the attitude in this

chapter, the convergence result with the projection can be similarly proved for for-

mulations using other representations. Let q be the unit norm quaternion repre-

senting the attitude of the system in the inertial frame of reference. Let q0 and qqqv

be the scalar and vector parts of the quaternion respectively. The Euler parameter

kinematic differential equation is as given in [77].

q̇qq(t) =
1
2

E(q(t))ω(t) =
1
2

[
−qqqT

v (t)
q0III +S(qqqv)

]
ω(t) (5.22)

Here, ω(t) represents the angular velocity of the rigid body expressed in the body

fixed frame and III denotes the 3× 3 identity matrix. The attitude dynamics of the

rigid body are governed by Eq. 5.15 The rotation matrix corresponding to the atti-

tude, also known as the Direction Cosine Matrix (DCM), is defined below.

C(qqq) = (q2
0−qqqT

v qqqv)III +2qqqvqqqT
v −2q0S(qqqv) (5.23)

Let qr be the target reference quaternion expressed in the inertial frame. The DCM

going from the reference frame to the body fixed frame is expressed as follows.

C(qqqe) =C(qqq)C(qqqr)
T (5.24)

wherein, qqqe = [qe0,qqq
T
ev
]T represents the error quaternion between the body fixed

frame and the reference frame. The angular velocity tracking error is expressed in
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the reference frame as

ωe = ω−C(qqqe)ωr (5.25)

Consequently, the error quaternion and angular velocity dynamics are given by

q̇qqe =
1
2

E(qqqe)ωe

Jω̇e =−S(ω)Jω +u+ J(S(ωe)C(qqqe)ωr−C(qqqe)ω̇r)

(5.26)

Let the adaptive control law be defined as

u(t) =−(K2K1 + III3×3)qqqev
−K2ωe +S(ω)Ĵω− Ĵ Φ(qqqe,ωe,ωr, ω̇r) (5.27)

wherein,

Φ(·) =S(ωe)C(qqqe)ωr−C(qqqe)ω̇r +
1
2

K1(qe0ωe +S(qqqev
)ωe)

denoted by Φ for brevity, and K1,K2 ∈ S3
++ are the controller gains. The estimate Ĵ

of the inertia matrix is defined using the projection as

Ĵ = PS3(J̄,α,β )

wherein, J̄ ∈ Sn is the unbounded symmetric matrix used to define the estimate.

The update law for J̄ is chosen as

˙̄J =−γ (S(qqqe,ωe,ωr, ω̇r))S +Γ(J̄− Ĵ)+(J̄− Ĵ)Γ (5.28)

wherein,

S(·) =ωω
T
e S(C(qqqe)ωr)+K1qqqT

ev
S(ω)−Φ (ωe +K1qqqev

)T

γ > 0 is a positive constant, and Γ ≺ 0 is a diagonal Hurwitz matrix. Note that the

update law for ˙̄J is once again in the form specified in Eq. (5.11). The stability of

the adaptive controller is established through the following theorem.

91



Theorem 12. Consider the rigid body with dynamics given in Eq. (5.26) with the

adaptive control law in Eqs. (5.27) and inertia update specified by Eq. (5.28). As-

sume that the inertia matrix J satisfies Assumption 10 with for some known con-

stants α or β or both. Then the states qqqev
and ωe converge to zero asymptotically.

Proof. Consider the Lyapunov candidate function given below.

V (t) =
1
2
(ωe +K1qqqev

)T J(ωe +K1qqqev
)+qqqT

ev
qqqev

+(q0−1)2 +
1
2γ

VJ(t) (5.29)

wherein, the expression for VJ(t) is given in Eq. (5.9). From Lemma 9, VJ(t) is

non negative and it vanishes whenever Ĵ = J. The rest of the Lyapunov candidate

function is also positive definite with equality at ωe = 0 and qqqe = [1,0,0,0]T unit

quaternion. The derivative of VJ(t) is evaluated at all the points where it is dif-

ferentiable. Since the set of points has Lebesgue measure 0, the equality below is

qualified with an a.e. which stands for almost everywhere. The derivative of V (t) is

given by

V̇ (t) a.e.
= (ωe +K1qqqev

)T J(ω̇e +K1q̇qqev
)−2q̇0 +

1
2γ

V̇J(t)

Expanding the above expression using the error dynamics and the control law

V̇ (t) a.e.
= −qqqT

ev
K1qqqev

− (ωe +K1qqqev
)T K2(ωe +K1qqqev

)+Tr{J̃S(qqqe,ωe,ωr, ω̇r)}+
1
2γ

V̇J(t)

The identity ωT
e S(ωe)J̃ω = 0 was used for simplification. Substituting the inequal-

ity for V̇J(t) from Lemma 10

V̇ (t)
a.e.
≤ −qqqT

ev
K1qqqev

− (ωe +K1qqqev
)T K2(ωe +K1qqqev

)+Tr{J̃(S(qqqe,ωe,ωr, ω̇r))K}
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The trace of the product of a symmetric matrix and a skew-symmetric matrix is

zero, the derivative of the Lyapunov candidate function evaluates to be non positive

almost everywhere.

V̇ (t)
a.e.
≤ −qqqT

ev
K1qqqev

− (ωe +K1qqqev
)T K2(ωe +K1qqqev

) (5.30)

The corollaries of LaSalle-Yoshizawa are again applied for the non smooth Lya-

punov function, wherein V̇ (t) is upper bounded by a negative semidefinite func-

tion almost everywhere. Such a theorem ensures the following convergence re-

sult [59, 132, Collorary 1]

qqqev

t→∞−→ 000 and ωe
t→∞−→ 000

5.3.3 Adaptive control of robotic manipulator

Next, the problem of adaptive control of a n-link robotics manipulator sys-

tem is considered. The dynamics of a n-link manipulator are given by [139]

M(q,Θ)q̈+C(q, q̇,Θ)q̇+G(q,Θ) = τ, (5.31)

wherein, q ∈ Rn is a vector of generalized coordinates, and M(·) ∈ Sn
++, C(·) ∈

Rn×n, and G(·)∈Rn denote the mass matrix, the Coriolis and the centrifugal terms,

and the gravitational force vector respectively, τ ∈Rn is the motor torque input, and

Θ = [θ T
1 , . . . ,θ

T
n ]

T ∈ R10n is a vector of unknown inertial parameters, wherein the

unknown inertial parameters of each link consists of

θi = [Ixx
i , Iyy

i , Izz
i , Ixy

i , Iyz
i , Izx

i ,hhhi,mi]
T ∈ R10
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wherein, mi, hhhi ∈R3, and Ii ∈ S3
++ are the mass, first mass moment (mass multiplied

by the location of the center of mass), and the second mass moment along any point

in the body fixed frame. The inertia matrix and its inverse is assumed to uniformly

positive definite

b1III �M(q,Θ)� b2III

for some b1,b2 > 0 and C matrix is chosen such that Ṁ− 2C is skew-symmetric.

The parameters defined above form the 4× 4 pseudo-inertia matrix introduced

in [161]

Ji =

[1
2Tr{Ii}− Ii hhhi

hhhT
i m

]
∈ S4

++ (5.32)

The physical consistency of the estimates of the inertial parameters was shown to

be equivalent to the positive definiteness of Ji, the pseudo-inertia matrix [161]. The

elements of the pseudo-inertia matrix are only dependent on the distribution of the

link mass and independent of the configuration. Additionally, the pseudo-inertia is

exhaustive in terms of parameters needed to define the inertial properties of the rigid

link. In order to ensure physical consistency of the inertia estimates, eigenvalue

bounds are imposed on the pseudo-inertia matrix for a link. Consequently, the

following assumption can be made for the robotic manipulator.

Assumption 11. Let there exist a set I ⊂ {1,2, . . . ,n} wherein, n is the number of

links of a manipulator, such that for all i ∈ I, the pseudo-inertia matrix for link i

defined in Eq. (5.32) satisfies Assumption 10 with some constants αi and βi.

Remark 5.3.1. Every link of the robotic manipulator has an associated pseudo-

inertia matrix. The adaptive control law formulated below does not require the
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knowledge of any eigenvalue bounds to be stable. However, given the bounds for

some or all of the links, the adaptive control law can benefit from this information.

At the very least, the pseudo-inertia matrix for every link can be constrained to have

positive eigenvalues (αi = 0 and βi = ∞).

A passivity-based adaptive controller is designed to control the manipula-

tor [133]

τ = M(q,Θ̂)q̈r +C(q, q̇,Θ̂)q̇r +G(q,Θ̂)−KDs

= Y (q, q̇, q̇r, q̈r)Θ̂−KDs
(5.33)

wherein, qd is the joint reference trajectory,

q̃ = q−qd

q̇r = q̇d−ϒq̃

s = q̇− q̇r = ˙̃q−ϒq̃

and the constant matrices KD ∈ Sn
++ and ϒ ∈ Sn

++ is diagonal. The stability for the

above controller with the new projection is proved through the following theorem.

Theorem 13. Consider the system given in Eq. (5.31) with the passivity-based

adaptive control law given in Eq. (5.33). Let the pseudo-inertia matrices of the

links satisfy Assumption 11 with a set I and the constants αi,βi where i ∈ I. Let J̄i

be designed to track the pseudo-inertia matrix Ji for all i∈ I and the corresponding

projection operator be defined as Ĵi = PSn(J̄i,αi,βi). The adaptive update law is

given by

˙̄Ji =−γBi(s,q, q̇, q̇r, q̈r)+Γ(J̄i− Ĵi)+(J̄i− Ĵi)Γ (5.34)
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wherein Bi(·) is a symmetric matrix given by

n

∑
i=0

Tr{J̃iBi(s,q, q̇, q̇r, q̈r)}= Θ̃
T Y T (q, q̇, q̇r, q̈r)s

for all links i under Assumption 11 with constants αi and/or βi. Under the above

control law, q̃ converges to 0 as t→ ∞.

Proof. Consider the Lyapunov function given by

V (t) = sT M(q,Θ)s︸ ︷︷ ︸
,Vq(t)

+
1
2γ

n

∑
i=1

VJi(t) (5.35)

It has been shown [161] that the derivate of the first part of the Lyapunov function

is given by

V̇q(t) =−sT KDs+ Θ̃
TY T (q, q̇, q̇r, q̈r)

T s (5.36)

The derivative of the full Lyapunov function is given by

V̇ (t) a.e.
= −sT KDs+

n

∑
i=1

Tr{J̃iBi}+
1
2γ

n

∑
i=1

V̇Ji(t)

From Lemma 10, V̇Ji(t)
a.e.
≤ −2γTr{J̃iBi} and hence

V̇ (t)
a.e.
≤ −sT KDs (5.37)

The LaSalle-Yoshizawa corollary [59, Collorary 1] for non smooth systems is then

invoked to conclude that sT KDs→ 0 as t→∞. Consequently, as s→ 0, q̃ converges

to a sliding stable surface given by

˙̃q+ϒq̃ = 000

which in turn drives q̃→ 0.
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5.4 Computational Aspects of the Projection

Using the projection presented in this chapter requires computing the eigen

decomposition of J̄ at every time instant. The number of computations required for

eigen decomposition of a matrix scales approximately with the cube of the dimen-

sion of the matrix. Such a computation may not be expensive for applications such

as the three dimensional attitude control of spacecrafts. However, in robotics ap-

plications such as the attitude control of a n-link manipulator robot, evaluating the

eigen decomposition may prove to be expensive. For this reason, a methodology to

minimize the computation by directly updating the eigenvalues and the eigenvec-

tors is provided in this section. The development of such a direct update follows

from the perturbation theory of linear operators given by Kato [82].

Since, Ĵ was proven to be Lipschitz continuous [97] and assuming Ψ(·) is

at least continuous, J̄ is continuously differentiable. Even though Ĵ were to be a

smooth projection, additional assumption would be needed on the reference trajec-

tory ωr and ω̇r in order to conclude smoothness of J̄. The eigenvalues and eigen-

projections of the time varying matrix J̄ retain the continuous differentiability of

J̄ at all points except at exceptional points [82]. These are the points where the

eigenvalues of the matrix split, cross or merge. Away from the exceptional points,

a methodology to directly the eigenvalues and eigenprojections is presented below.

Consequently, the following assumption is made.

Assumption 12. Consider a time varying matrix X(t) ∈ Sn with the set of unique

eigenvalues denoted by λ1, . . . ,λs wherein, s ≤ n at a given time t. In the neigh-

borhood of t, X(t) does not contain exceptional points, i.e., the multiplicities of the
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eigenvalues remain constant in the neighborhood of t. Equivalently, there is no

splitting, merging or crossing of eigenvalues around t.

Remark 5.4.1. Note that the above assumption allows for repeated eigenvalues.

However, the multiplicity of each repeated eigenvalues remains constant.

In presence of repeated eigenvalues, the choice of eigenvectors is non unique

as eigenvectors belong to a subspace of Rn. However, the eigenprojections corre-

sponding to the eigenvalues are unique. The eigenprojections are defined below.

Definition 5.4.1. A projection matrix Pi = P2
i is known as the eigenprojection of the

matrix X corresponding to the eigenvalue λi if and only if

XPi = λiPi i = 1, . . . ,s

For a real symmetric matrix X ∈ Sn, the closed form expression for Pi is given by

Pi = ∑
Xui=λiui

uiuT
i (5.38)

wherein, ui’s are a orthonormal set of eigenvectors corresponding to the eigenvalue

λi.

The following lemma enables direct eigenvalue and eigenprojection update.

Lemma 14. Let J̄, updated according to the update law given in Eq. (5.11), be

differentiable at a given time t. Also, let the s unique eigenvalues of J̄ and their

corresponding eigenprojections be denoted by λ1, . . . ,λs and P1, . . . ,Ps respectively.
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If J̄ satisfies Assumption 12 around t, then the first derivative of the unique eigen-

values and their eigenprojections are as given below.

λ̇i =
Tr{Pi

˙̄J}
Tr{Pi}

(5.39)

Ṗi = Pi
˙̄JSi +Si

˙̄JPi (5.40)

wherein, Si = ∑
j 6=i

Pj
λi−λ j

.

Proof. Since, J̄ is differentiable at t, so are the eigenvalues and the eigenprojec-

tions [82, Theorem 5.4]. The value of the eigenprojection in the neighborhood U(t)

is given by

Pi(t ′) = Pi +(t ′− t)Ṗi(t)+O((t ′− t)2)

wherein, Ṗi(t) =Pi
˙̄JSi+Si

˙̄JPi and Si = ∑
j 6=i

Pj
λi−λ j

is known as the value of the reduced

resolvent of J̄ at λi and O(·) is the big-O notation. The expression for the eigenvalue

is similarly given by

λi(t ′) = λi +(t ′− t)λ̇i(t)+O((t ′− t)2) (5.41)

wherein, λ̇i(t) is the repeated eigenvalue of Pi
˙̄JPi defined as

Pi
˙̄JPiUi = λ̇t(t)Ui

wherein, Ui contains an orthonormal set of eigenvectors of Pi
˙̄JPi corresponding to

the repeated eigenvalue λ̇i. Pre-multiplying by UT
i and evaluating the trace

Tr{UT
i Pi

˙̄JPiUi}= λ̇i ni
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wherein, ni denotes the multiplicity of the λ̇i eigenvalue. By definition, the trace of

a eigenprojection is dimension of the eigen subspace. Hence, the expression for the

first derivative simplifies to

λ̇i(t) =
Tr{Pi

˙̄J}
Tr{Pi}

wherein, the identity P2
i = Pi was used for simplification.

In general, since J̄ is continuously differentiable, the number of exceptional

points are at most countable in an infinite interval. Hence, the direct eigenvalue and

eigenprojection update can be performed at all but countable points in any given

interval. As the eigenvalues are directly available, the computational complexity of

O(n3) eigen decomposition is eliminated.

The numerical simulations performed in the sequel use the above direct up-

date to evaluate the eigenvalues and the eigenprojections at all the times regardless

of the existence of exceptional points. Except for numerical errors accumulated

over time, no difference was found in the eigenvalues calculated using the eigen

decomposition and those calculated using the direct update law. In practical ap-

plications, exceptional points can be easily tracked by putting a threshold on the

eigenvalues that approach each other. The eigen decompositions can also be evalu-

ated at periodic intervals in time to minimize numerical errors.

5.5 Numerical Experiments

In this section, numerical simulation results showing the effectiveness of

the novel projection scheme in adaptive control design are presented. The three
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problems presented in the previous sections are simulated here. The inertia matrix

considered for the angular velocity tracking and the attitude tracking simulations is

given below [2, 37].

J =

25 1.2 0.9
1.2 17 1.4
0.9 1.4 15

 (5.42)

The initial angular velocity of the spacecraft is assumed to be ω = [0.4,0.2,−0.1]T

rad/s and its initial orientation with respect to the inertial frame (for attitude tracking

only) is given by the quaternion qqq = [0.9837,−0.1037,0.1037,−0.1037]T and the

initial value for both J̄ and Ĵ is given by

J̄(0) =

22 1.3 1.0
1.3 18 1.6
1.0 1.6 13

 (5.43)

5.5.1 Adaptive Angular Velocity Tracking

The initial condition of ωe(0) = [0,0,0]T for the angular velocity was used.

The reference angular velocity trajectory to be tracked is given by

ωr(t) =
[
sin(t) sin(2t) sin(3t)

]T (5.44)

The parameters for the adaptive controller are given in Table 5.1. The angular veloc-

ity error norm and the inertia matrix estimation error norm are given in Figs. (5.2),

and (5.3). The comparison of control histories was not provided since they were

found to be similar. The eigenvalues of the inertia matrix estimate given in Fig. (5.4)

show that the projection method ensures that the eigenvalues remain within the

specified bounds.
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K Γ α β γ

150 III3×3 −2.5 III3×3 14 26 100

Table 5.1: Controller parameters for angular velocity tracking of the sinusoidal
velocity profile.
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Figure 5.1: The norm of the angular velocity tracking error for angular velocity
control problem with projection (top) and without projection (bottom).
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Figure 5.2: The norm of the control input for the angular velocity control problem
with projection (top) and without projection (bottom).
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10 -5

10 0

Figure 5.3: The norm of the inertia matrix estimation error for the adaptive angular
velocity controller with (top) and without (bottom) projection.

K1 K2 Γ α β γ

10 III3×3 2.5 III3×3 −2.5 III3×3 14 26 1

Table 5.2: Controller parameters for adaptive attitude tracking of a coning maneu-
ver.

5.5.2 Adaptive Attitude Control

For the attitude tracking problem the spacecraft is commanded coning ma-

neuver given in Ref. [2]. The motion of the desired reference frame is given by the

3-2-1 Euler angles trajectory given by

ψ(t) = 0.1t rad

θ(t) =−0.2222π rad

φ(t) = 0.5t rad

and the reference trajectories are accordingly calculated. The parameters for the

adaptive controller are given in Table 5.2 The initial estimate of J̄ is as given in

Eq. (5.43). The norm of the velocity part of the error quaternion and the angular
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Figure 5.4: The eigenvalues of inertia matrix estimate for adaptive controller with
(top) and without (bottom) projection. The bounds for the eigenvalues as well as
the true eigenvalues are also provided.
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velocity tracking error norms is given in Figs. (5.5) and (5.7). The inertia matrix

estimation norm given in Fig. (5.8) shows a lower estimation error when using the

new projection. The eigenvalues of the estimates given in Fig. (5.9) shows that the

projection scheme ensures that the eigenvalues remain withing the specified bounds.
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Figure 5.5: The norm of the error quaternion between the body fixed frame and
the reference frame for the attitude control problem with (blue) and without (black)
projection.
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Figure 5.6: The norm of the angular velocity tracking error for attitude control
problem with (blue) and without (black) projection.
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Figure 5.7: The norm of the control input for attitude control problem with (blue)
and without (black) projection.
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Figure 5.8: The Frobenius norm of inertia matrix estimate error for adaptive attitude
controller with (blue) and without (black) projection.
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Figure 5.9: The eigenvalues of the inertia matrix estimate (blue), their true values
(red) and the eigenvalue bounds (black) for adaptive attitude controller with (top)
and without (bottom) projection.
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KD Γi αi βi γi
50 III3×3 −2.5 III3×3 0 1.5 1

Table 5.3: Parameters for the adaptive control of robotic manipulator with unknown
inertial parameters. Note that the same parameters values are used for both the links
i = 1,2.

5.5.3 Adaptive Control of Robotic Manipulator

A two link manipulator was commanded period reference trajectory for its

joints specified by

qd1(t) = 0.8cos
(

2πt
5

)
qd2(t) = 0.4cos

(
2πt
3

) (5.45)

The parameters are specified in Table 5.3. The true values of the link pseudo-inertia

matrices are given by

J1 =


0.59 0 0 0.4

0 0.25 0 0
0 0 1.25 0

0.4 0 0 1.0

 (5.46)

J2 =


0.39 0 0 0.6

0 0.25 0 0
0 0 1.25 0

0.6 0 0 1.0

 (5.47)

and the initial estimates were randomly generated with the true values as the mean

and 0.05 as the variance. The norm of the joint angle error and the joint velocity

error is given in Figs. (5.10) and (5.11). The errors in the pseudo-inertia matrix

(Eq. (5.32)) for both the links is given Fig. (5.13). The comparison of the eigenval-

ues of the pseudo-inertia matrix estimates is shown in Figs. (5.14) and (5.15).
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Figure 5.10: The comparison of the norm of the tracking error between the robot
manipulator angles and the reference trajectory with and without projection.
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Figure 5.11: The comparison of the norm of the link velocity error between the
robot manipulator angles and the reference trajectory with and without projection.
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Figure 5.12: The comparison of the norm of the 2 joint torque input for the robot
manipulator angles and the reference trajectory with and without projection.
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Figure 5.13: The Frobenius norm of pseudo-inertia matrix estimate error for the
link 1 (top) and link 2 (bottom) link with (blue) and without (black) projection.
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Figure 5.14: The eigenvalues of the link 1 inertia matrix estimate (blue), their true
values (red) and the eigenvalue bounds (black) for adaptive attitude controller with
(top) and without (bottom) projection.
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Figure 5.15: The eigenvalues of the link 2 inertia matrix estimate (blue), their true
values (red) and the eigenvalue bounds (black) for adaptive attitude controller with
(top) and without (bottom) projection.
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5.6 Conclusion

This chapter addresses the problem of adaptive control in presence of un-

known SPD matrix valued parameters. Such a problem is common in control ap-

plications such as attitude tracking wherein the inertia matrix is SPD and robotic

manipulators wherein the inertial properties of every link, that can be expressed as

an SPD matrix, are unknown. Previous chapters presented a methodology wherein

information to identify SPD matrices were obtained in a discrete time setting. In

this chapter, the tracking error of the control systems, that provides the information

needed to update SPD matrix is obtained in a continuous manner.

The approach presented here is designed to handle a wide variety of control

systems and not just systems with an SPD matrix parameter. In general, the projec-

tion method developed in this chapter can handle symmetric matrix valued param-

eters with eigenvalue constraints. Historic adaptive control formulations have not

used the eigenvalue bounds to obtain better control performance. In order to address

this gap in the literature, this chapter presented an globally convergent adaptive con-

trol formulations as well as ensure that the symmetric matrix parameter conforms

with the eigenvalue bounds.

A novel projection scheme was presented to estimate a symmetric matrix

valued parameter with bounded eigenvalues in adaptive control applications. A

Lyapunov-like function was introduced that can be used in conjunction with a wide

variety of adaptive control problems with symmetric matrix valued parameters.

Globally convergent adaptive control laws for angular velocity tracking, attitude

tracking, and the trajectory tracking of a robotic manipulator were derived. A direct
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update scheme to update the eigenvalues and the eigenprojection of a matrix with-

out explicitly performing the eigen decomposition was derived. The update scheme

was found to be stable even in the case of eigenvalue crossings. Numerical studies

on the three problems described above produced a lower tracking error and lower

estimation error as compared to existing adaptive control laws where the projection

was not used. The increase in control effort due to high controller gains was also

found to be less when the projection was used.

In spite of a non smooth projection, the control systems were shown to ex-

hibit global stability properties. This was possible because the set of number of

points of non-differentiability had Lebesgue measure 0. Smooth extensions of the

above projection method present an attractive avenue of future work. The projec-

tion method presented here operates on the eigenvalues and eigenprojections of the

symmetric matrix. Although the problem of performing eigen decomposition was

addressed in Section 5.4, adaptive update laws that do not require eigen decompo-

sitions and enforce eigenvalue constraints could be useful to the community and are

a topic of future research.
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Chapter 6

Conclusion

Symmetric and positive definite matrices are often used to model engineer-

ing systems. This dissertation presents various adaptive techniques for identifica-

tion of symmetric and positive definite (SPD) matrices. First, the problem of adap-

tive covariance estimation was introduced. An adaptive technique to estimate the

noise covariance matrices in a linear model was shown to guarantee convergence.

The rate of convergence of the estimates to the true value was shown to be propor-

tional to 1/
√

k where k is the time variable. Although many adaptive Kalman filters

have been developed in the literature, the algorithm presented here has two salient

features. The algorithm presented here only assumes detectability of the system.

The convergence of the state error covariance was also established in this disserta-

tion. The combination of these two features makes the adaptive filter unique and

widely applicable.

The adaptive covariance algorithm presented in this dissertation makes no

prior assumptions on the covariance matrix. The algorithm presented here is more

general than the Bayesian techniques that assume a prior distribution (Wishart or

Inverse-Wishart) on the covariance matrix. The covariance estimation part in the

formulation here is decoupled from the state estimation. This is because a linear
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time series is formed by eliminating the measurements. One way to make this al-

gorithm more applicable is to have a continuous-time formulation. However, this

requires an understanding of the derivative of noise and is a topic of future research.

In terms of identifiability of the covariance matrices Mehra [100] provided an upper

bound on the number of elements that could be estimated. This dissertation poses

the condition of identifiability as rank condition on a matrix similar to the observ-

ability conditions for the state vector. However, whether or not this condition is

stronger than the one presented by Mehra is important and is a direction of future

research.

Next, the problem of adaptive identification of inertia matrices in control

problems was addressed. The identification of inertia matrices in angular velocity

tracking, attitude control, and trajectory tracking in robotic manipulator control was

addressed. A general methodology to impose eigenvalue constraints on symmetric

matrices was developed. This methodology can broadly be applied to symmetric

matrices and not just SPD matrices. The projection method introduced projects the

matrix onto a cone formed by the eigenvalue constraints. Since such a projection

is non smooth, this leads to non smooth Lyapunov functions in stability analysis.

The non smooth extensions to the Lyapunov theorems are applied to establish the

stability under the new projection law. Although the projection is non smooth, the

Clarke generalized gradient has been defined to characterize the gradient of the

projection at the points of non differentiability [97, 131].

A geometric optimization approach for the estimation of covariance matri-

ces was formulated in this dissertation. Such a formulation ensures that the co-
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variance estimates are SPD and hence exponential stability of the adaptive Kalman

filter [8]. Optimization procedures have been used to solve the estimation problems

in the past. Although such procedures perform well on the problems in focus here,

iterative procedures do not enjoy the computational efficiency of the other tech-

niques developed in this dissertation. However, optimization procedures have to be

used largely because of the lack of elegant closed form solutions for the data manip-

ulation on the SPD manifold. Apart from the work in this dissertation, it is worth

noting here that the non-iterative solutions found in Refs. [150, 126, 40, 158, 87]

provide an attractive avenue for future work.
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