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1 Abstract 
With electronic applications on the horizon for AM, comes the dilemma of how to consolidate 
conductors, semi-conductors, and insulators in close proximity. To answer this challenge, laser 
printing (selective deposition) was used in tandem with fiber laser consolidation (selective 
processing) to produce PCBs for the first time. This combination offers the potential to generate 
tracks with high mechanical integrity and excellent electrical conductivity (close to bulk metal) 
without prolonged exposure of the substrate to elevated temperatures. Herein are the findings of 
a two-year feasibility study for a “one-stop” solution for producing PCBs (including conductive 
tracks, dielectric layers, protective resists, and legends). 

 
 

2 Introduction 
The production of conventional PCBs is highly complex, requires a substantial investment in 
capital equipment and uses a wide variety of chemicals which are difficult/costly to safely 
dispose of. Current PCB production methods are “wet” processes consisting of two major steps: 
a) first a laminate board is clad with copper via electrodeposition and then b) the copper is 
selectively removed via chemical etching to leave conductive “tracks” of copper desired for the 
circuitry [1]. Often the ratio of electrodeposited copper to copper used in the tracks is as much as 
5:1 meaning that most of the cladding is removed via chemical etching into chloride solutions 
where is it difficult to reclaim, while very little of the copper ends up in the final product [2]. 

In an effort to overcome the shortcoming of conventional PCB manufacture there has been 
significant interest in the direct digital deposition of conductive tracks to form PCBs. Inkjet 
printing is by far the most widely explored due to its inherent ink formulation flexiblity, 
scalability and availability of off the shelf print heads (for example Xaar,Cambrige UK) [3-8]. 
Although significant progress has been made, it is largely predicated on the availability of very 
expensive gold or silver nanoparticles (desired for their high electrical conductivities, low melt 
temperatures, lower suceptibilities to oxidation than copper and amenability to suspend in ink 
formulation)[9]. Moreover, in ink jet printing the proportion of solid material is relatively low 
(typically < 25 vol.%) compared to the liquid carrier, thus limiting the deposition efficiency of 
the process [10, 11]. Furthermore, most direct deposition techniques rely on global processing 
via photonic fusing/curing approaches (such as pulsed light by Xenon) or post deposition furnace 
sintering (such as High Volume Print Forming by EoPlex) which subject the entire PCB to 
intense energy exposure [12]. Some alternatives offer room temperature processability such as 
highly viscous metal flake filled slurries have been deposited as a continuous bead extrusion to 
form conductive tracks (for example nScrypt Inc,) but this route is too slow to be effective for 
the manufacture of PCBs for production [13]. 
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In an effort to provide the maximum flexibility for deposition and consolidation of multiple 
materials side by side, laser printing (selective deposition) and laser melting (selective 
processing) have been combined for the first time. The speed, resolution and the ability to 
deposit dry powder provides significant advantages for laser printing in the production of PCBs 
as recognized by other researchers [14, 15]. The process is highly adaptable to different types of 
materials; commercial toners are based on polymers but researchers have already shown the 
potential to deposit metals and ceramics [15-19]. The selective laser melting (SLM) process has 
proven effective in fusing dry particles of: metal, ceramic, and polymer [20, 21]. 

A two-year fleet footed feasibility study was undertaken to consider the feasibility of 
incorporating digital deposition by laser printing and (digital) selective laser melting (SLM) 
principles into PCB production to provide a simple, low cost, flexible and environmentally 
friendly production method for low volume, high value PCBs.  

In addition to depositing the conductive tracks, the deposition of dielectric layers, etch resists, 
protective layers, seed layers for overplating, legends, and artwork were also evaluated in the 
project.  This paper will focus on the direct printing and melting of conductive tracks on 
electronics substrates. Proof of concept within the project was based on the manufacture of 
single sided boards, but could easily be applied to double sided, through-plated and multilayer 
PCBs.  

 
3 Selective Deposition of Conductive Tracks 

Selective deposition of conductive tracks has been an aspiration of digital printing processes for 
30 years. Core to this pursuit is the inverse relationship between particle size and melting 
temperature, which has driven material development and processing down into the 
nanoscale.[22, 23] 

The direct deposition of silver conductive tracks was planned for this project based on the 
upcoming commercial availability of conductive toner. A dilemma presented itself when the 
toner was not forthcoming in the expected timescales. It was decided that the lack of toner was 
an opportunity to explore the feasibility of developing a conductive toner and evaluate how well 
it printed. 

 
3.1 Choice of material for conductive tracks 
Many researchers have given attention to the direct deposition of gold or silver conductive tracks 
due to their high conductivity, availability as nano particles, and favorable sintering behavior [4, 
8, 16, 24]. Despite the successes demonstrated at research and pilot scales, the cost of precious 
and semi-precious metals is a significant disincentive for its use in large quantities. At least one 
major electronics manufacturer has announced its intention to focus on digital deposition of more 
conventional conductive materials such as copper [25].  

Excepting precious metals, copper and aluminum respectively are the next most electrically 
conductive metals known. The suitability of these for both toner preparation and laser melting 
were evaluated during the screening steps of the research. Copper was selected as the primary 
focus due to its universal acceptance in electronics applications, affordability and availability in 
nano- and micro-scale particles in the range which theoretically can be melted by laser. AlSi12 is 
a typical aluminum based casting alloy widely used in SLM and was investigated during initial 
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materials screening, but was discontinued due to industrial preference for copper. It also 
exhibited poor spreading onto unheated electronics substrates. 

The particle size range was correlated to the desired thickness of deposited conductive tracks. 
The thickness of conductive tracks on conventionally produced PCBs is determined by the 
weight of copper cladding electrodeposited onto it per square foot which is normally 1, 2, or 3 
oz. per square foot (equating to a copper thickness of 0.035, 0.070 and 0.105mm respectively). 
The standard for logic boards with very low operating voltage (typically 5 VDC) is 1 oz./ft2 
(0.035mm) which was the target for these experiments. Assuming a monolayer of spherical toner 
particles spread on the substrate in a simple cubic lattice with a packing density of 0.524 meant 
that fully melted particles would theoretically result in a layer that is approximately half the 
height of the particle mean diameter [26]. Planning to solidify two layers of powder, both the 
copper and AlSi12 were used in a standard SLM size range with mean particle sizes of ~40 µm 
diameter. In practice, spreading and substrate adhesion problems obliged the melting of thicker 
tracks (5-6 layers high). 

 
3.2 Toner preparation and print trials 
The laser printers used for these trials are configured with developers for nonconductive toners 
[27]. This development system requires that individual toner particles be sufficiently 
nonconductive so that they can be tribocharged (charged by friction) and maintain critical charge 
levels long enough to travel through the printer and be fixed to a substrate (generally for at least 
20 seconds) [28, 29].  

 
Figure 1 – Attempts to use un-treated copper powder as toner in an HP Laserjet 5 printer. 

Initially the untreated metal powder was exposed to the air and subsequently tested to see if the 
oxidized outer surface of the individual copper particles would sufficiently insulate them from 
each other enough to allow tribocharging. High conductivity 38-45 µm diameter 99.7% pure 
copper particles (Sandvik Osprey, Wales) were loaded into the developer unit of a Laserjet 5 
printer (Hewlett-Packard, USA) and printing was attempted as shown in Figure 1. Although 
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some deposition of copper particles is evident on the paper (as indicated by the arrows in Figure 
1 left) the bulk of the material in the developer leaked out irrespective of the electrostatic latent 
image generated in the printer (the loose powder contributed to the paper jamming as shown in 
Figure 1 right). This result indicated that any electrostatic charge generated on the particles in the 
developer was inadequate in strength and/or duration to control its behavior, and further 
treatment of the particles would be necessary to enable printing. 

The copper particles were next surface coated using metalloid oxide nanoparticles by the 
technique developed by Banerjee and Wimpenny to improve flow and charge control [30]. 
Printing was attempted using the same procedure above with similar results. This result again 
indicated that insufficient charge had been generated and retained on the toner particles. 

In order to impart and retain sufficient charge density on the toner particles a procedure to 
encapsulate each copper particle in polymer was developed. Although the particles were 
successfully encapsulated in very small batch quantities (<5g), it was outside the scope of the 
available resource to produce sufficient quantities for full-scale printing trials. 

 
3.3 Selective printing conclusions 
Despite reports of successful conductive toner deposition by electrophotography in the literature 
the current results showed very limited success [31]. Conductive toner development is a highly 
specialized area and future work would include reduction of the size of the copper powder, 
surface treatment prior to coating, and upscaling the encapsulation method. Rather than pursue 
these, the authors were aware of several development initiatives which promised a commercial 
supply of conductive toners in the near-term which would soon enable more extensive research 
of toner based electronics applications. 

 
 

4 Selectively Processing Conductives on Non-conductive Substrates 
Despite the possibilities which have been demonstrated using nanoscale particles and flash 
fusing methods, the conductivity achieved is generally only 10-20% that of the bulk conductive 
[32]. Furthermore, the mechanical integrity of those tracks was inferior when compared to 
conventionally processed PCBs, making them unsuitable for use where high-performance or 
flexible circuitry is specified. 

In pursuit of high mechanical integrity and conductivity comparable to bulk copper Selective 
Laser Melting (SLM) of aluminum and copper powder was attempted. Three different laser 
melting systems: SLM 100 (Realizer GmBH, Germany), SLM 250 (MTT Technologies Ltd, 
United Kingdom), and SLM 125 (MTT Technologies Ltd, United Kingdom) were used to 
explore the most favorable combination of system features and processing parameters. 

 
4.1 Need to use a non-conductive substrate for electronics 
In order to produce an electronic circuit, it was necessary to depart from the SLM convention of 
matching the feedstock powder with a build plate made from the same or very similar material. 
This practice normally ensures that the thermal characteristics of the substrate and the structure 
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being melted on top of it are similar enough to allow adequate wetting and adhesion while 
minimizing thermally induced distortion or cracking. 

Conventional electronics substrates include: “FR-4” grade glass fiber reinforced epoxy laminate, 
high temperature polymer film substrates such as Kapton®, ceramic substrates such as LTCC 
glass ceramic or alumina, and insulated metal substrates which are a sandwich construction 
consisting of a thin ceramic layer upon which the circuitry is made with a high thermal 
conductivity metal (such as aluminum) backing to dissipate heat. All of these substrate types 
were evaluated during the laser melting parameters optimization process. 

 
4.2 Low-temperature substrates in the SLM 100 
The initial attempts to use FR-4 and Kapton® film substrates in the SLM 100 with AlSi12 (MTT 
Technologies Ltd., United Kingdom) highlighted a variety of challenges. 

Firstly, FR-4 laminate (1 oz./ft2 single sided copper clad Kingboard) and Kapton® polyimide 
sheet (90 µm thick) required CNC routing and cutting respectively to fit onto the circular build 
platform. A single substrate was attached to the platform using double-sided tape 

Spreading the initial powder layers proved problematic because of the smoothness of the 
substrate in combination with the use of tape which prevented the normal use of the platform 
heater. The AlSi12 was particularly susceptible to poor flow in the absence of preheat. Only by 
spreading five to ten 50 µm layers of powder prior to firing the laser was it possible to uniformly 
cover the platform (the powder distribution was not uniform across the  platform because of the 
recoater pivoting, resulting in higher speeds at one end, as shown in Figure 2 left). However this 
thickness of a base layer inhibited the bonding of the melted powder to the substrate and any 
sintered material was swept away with each recoating because it was not anchored down. 
Increasing the surface roughness of the substrate (by steel wool and sand blasting) helped, but 
did not resolve the issue. The difficulty was overcome by preheating the upward facing surface 
of the substrates using a heat gun (Figure 2 right) to approximately 120°C and then transferring 
them directly into the SLM and starting the melting process immediately after the chamber 
reached vacuum. Lines 50mm in length with ascending widths were laser scanned at 0.030, 
0.050, 0.080, 0.125, 0.200, 0.250, 0.500, 0.750, 1, 2, 3, 4, 5, 7.5 and 10mm all with a 3mm gap 
between them, and 100W laser power with a maximum power density of 14.1 MW/cm2. 
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Figure 2 – Powder spreading challenges on FR-4 (left); Off-line substrate preheating (right) 

The next challenge was encountered when exposure to the laser caused the substrates to warp 
which prevented subsequent recoating as shown in Figure 3. Even with the laser power reduced 
to 50 W with a 30µm spot size scanning at 0.4m/s (with single raster boundaries, all in <0.2% 
Oxygen), the FR-4 and Kapton® film substrates were thermally damaged before the powder 
began to fuse. In addition to the need for better thermal management, this highlighted the need to 
attach substrates to the build platform in a way that kept them flat when heated. 

 

 
Figure 3 – Kapton® Film substrate warping in SLM (left) and laser induced damage (right) 

4.3 Reducing thermal damage using protective layers 
After the catastrophic failures of the most common electronics substrates, it became evident that 
the thermal mass of heated copper powder approaching its melt temperature was sufficient to 
burn the substrate without any direct contact from the laser. To protect the substrate from thermal 
damage during the laser melting process it was deemed necessary to deposit a temperature 
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resistant, low thermal conductivity layer which would become the build surface for the 
conductive track deposition/consolidation. 

As a first step to trial the concept of using protective under layers, the copper clad side of a sheet 
of FR-4 laminate was used with the hope that the copper cladding would act as a heat shield to 
protect the glass fiber substrate beneath it. Figure 4 (left) shows the sample during processing in 
the SLM at the same parameters as last time and the resulting thermal damage evident from the 
backside. For lines with thicknesses below 200 µm less thermal damage occurred (Figure 4 right) 
and some accumulation of consolidated powder is evident as shown in Figure 5. 

 

 
Figure 4 – SLM of AlSi12 onto copper clad FR-4 laminate (left) and thermal damage on the 
backside of the same sample after processing (right) 

 
Figure 5 – Deposition of laser melted AlSi12 on copper clad FR-4 laminate 

Building on the improved results above, a heat shield layer was applied to Kapton® film and a 
polycarbonate CD. Although electronic circuits are not generally produced on a polycarbonate 
CDs, they were exactly the right size and shape to fit on the platform without any routing and 
provided an approximate indicator of the effectiveness of the protective layer with a melt 
temperature in the range of FR-4 [33]. A ceramic paste was made using alumina powder 
(CT3000 SG, Almatis, Germany) and water. The paste was applied to several circular Kapton® 
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films and polycarbonate CDs and allowed to dry overnight to provide a weakly joined ceramic 
powder layer up to 500 µm thick. The ceramic covered films and CDs were then loaded into the 
SLM 100 one at a time and processed with the same parameters as the last two trials. 

 

 
Figure 6 – SLM of AlSi12 onto Kapton® film  and a CD, both protected with a ceramic coating 

Even with the protective layer, all of the samples made of Kapton® film warped severely (Figure 
6 left) after a single pass with the laser which necessitated aborting the build cycle. In each case 
the warping caused the ceramic layer to crack and delaminate from the substrate. Even though 
much of the ceramic layer flaked off with the warping and subsequent handling, it did provide a 
measure of shielding from the laser which is evident when comparing the damage on the coated 
(Figure 6 left) and uncoated Kapton® films (Figure 3). Virtually no AlSi12 adhered to the 
substrate. 

The nearly pure polycarbonate CDs resisted warping except in the widest of tracks. This allowed 
recoating so that six layers of AlSi12 were successfully processed with the same laser parameters 
as the previous trials. After observing significant cracking in the CD (Figure 6), the power was 
reduced to 20 W which resulted in minimal damage to the CD. As with the Kapton® film  
samples, it was clear that the protective layer had aided the survival of the substrate . The CDs 
did have a small accumulation of AlSi12, however, most of the consolidated powder was 
brushed away during recoating along with some of the protective ceramic coating. 

Although the ceramic powder layer was not very durable it did reduce the substrate damage by 
providing thermal shielding. This was a partial proof of concept toward enabling selective 
processing of high melt temperature conductives on low-temperature substrates. The next step 
was to provide a build surface which was stable enough to provide an anchor point for the metal 
as it solidified and contracted. It was also desirable to have more favorable wetting 
characteristics for the molten metal. 

 

4.4 Melting copper in the SLM 250 with protective layers 
Encouragement from the commercial partners shifted the focus of the laser melting work from 
AlSi12 to experimenting with copper. Previous work melting copper and copper alloys has been 
conducted using electron beam, Nd-Yag laser, and high power (1000 W) fiber lasers and full 
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density parts have been difficult to achieve [34-37]. Although the literature provided insights into 
the difficulties of fully melting copper it did not provide a set of parameters suitable for use with 
the 200 W pulsed infrared fiber laser in an SLM 250 which was used for the early stages of these 
trials. The reflectivity of pure copper in the infrared laser range (1060-1090nm) is 71% as 
measured by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) [20]. It 
should be noted that if an SLM machine was intended solely for use on highly reflective 
materials, a much shorter wavelength would be a far more energy efficient way of melting 
copper as opposed to using a higher power laser where much of the energy is reflected. 

In an attempt to provide a stable build surface as an anchoring point for laser melting, a 
commercially available insulated metal substrate (IMS-20, CCI Eurolam, France) was trialed. 
The IMS-20 is sold with a copper foil (35 µm) laminated onto a dielectric insulation layer (~100 
µm) which is backed with a sheet of aluminum (1.0mm) to dissipate the heat. Prior to use in the 
SLM, all of the copper foil was etched away leaving only the insulation layer with aluminum 
backing. The IMS-20 was mounted with the insulation layer up using screws at the four corners 
with a specially tapped build plate (Figure 7) which allowed the use of the platform heater. 

High conductivity 38 µm diameter 99.7% pure copper particles (Sandvik Osprey, Wales) were 
processed in the SLM 250 at 200 W with an 80 µm spot size (maximum power density of almost 
4 MW/cm2), scanning at 0.31 m/s for five 50 µm layers (all in <0.1% Oxygen). The build was 
started on a single layer thickness of powder spread onto the substrate after the platform 
substrate heater reached a stable 150°C. 5 mm wide tracks were attempted. The high reflectivity 
of the copper powder, especially when molten, is evident in Figure 7 (left). The result of the 
initial trial was that the laser had ablated through the insulating layer and into the aluminum and 
virtually no consolidated copper had adhered to the substrate (Figure 7 right). Another substrate 
was trialed with double the scan speed (0.6 m/s) and a double layer spread (100 µm) for the first 
layer with similar results. 

 

 
Figure 7 – Laser melting copper onto an insulated metal substrate covered with copper powder 
(left), and the resulting unintentional laser ablation of the substrate (right). 

A trial matrix was run at 0.3m/s and 0.6m/s and 200, 150, 100, 50 W laser powers with no 
substrate preheat, 0.15mm hatch spacing, a 100 µm first layer thickness, 50 µm layer thickness 
thereafter, and 50 µm wide tracks (where the laser scanned two lines side-by-side with a 50 µm 
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separation between the centerline of each). Only the highest two power inputs (200 & 150 W at 
0.3 m/s) resulted in loosely sintered tracks which could be handled, the rest fell apart. 

The results from these trials indicated that the insulating layer in the IMS-20 did not provide as 
much thermal shielding as the ceramic powder layer used previously. This may be the case for a 
number of reasons: a) perhaps the loosely bonded powder did not transfer the heat as well as a 
homogeneous insulating layer, b) the commercially produced insulating layer was only 1/5th as 
thick as the previous protective layer, c) the dielectric material could not sustain temperatures 
approaching the melt point of copper (1083°C), or d) the aluminum backing became molten 
underneath it (at 660 °C, well below the melt point of copper), and unsupported it, fractured and 
failed. The search for the perfect protective layer was stopped short in the interest of exploring 
the feasibility of sintering copper into conductive tracks. After all, there is no point to optimize a 
protective layer if it is not practical to laser melt copper onto it. 

 
4.5 Melting copper in the SLM 250 onto high temperature substrates 
In order to have the maximum flexibility to optimize laser processing parameters for copper, 
independent of the low-temperature substrate limitations, it was decided to use ceramic 
substrates. Early trials were made on white unglazed decorative tiles until 1 mm thick electronics 
grade (ADS-96R) alumina (Al2O3) substrate (Coorstek, Colorado, USA) was obtained. 

  

 
Figure 8 – Early conductive copper tracks on a decorative tile by SLM 

Figure 8 shows the results of a trial matrix that was run in the SLM 250 at 0.3m/s and 200 (far 
left rectangle in Figure 8), 150, 100, 50 W laser powers with no substrate preheat (tile fixed to 
substrate with double sided tape), a 100 µm first layer thickness, 50 µm layer thickness 
thereafter, and 50 µm wide tracks (where the laser scanned two lines side-by-side with a 50 µm 
separation between the centerline of each). 

Only the highest two power inputs delivered loosely sintered tracks which could be handled, 
even though they left much to be desired in terms of mechanical integrity and conductivity. 

Using the increasing line thickness test from before, samples were produced at 100 and 200 W 
power levels. Other conditions were kept the same: no substrate preheat, a 100 µm first layer 
thickness, 50 µm layer thickness thereafter, 80 µm spot size, and 0.3 m/s scanning speed.  
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The sample produced at 100 W is shown in Figure 9 and is characterized by electrical continuity 
to some degree in nearly all of the unbroken tracks and the fact that the substrate was not cracked 
during laser processing. Unfortunately the sample was broken during removal from the build 
platform as shown in Figure 9 (right). In the thicker tracks some delamination of the consolidated 
tracks from the substrate occurred, highlighting the relatively weak bond between consolidated 
metal and ceramic substrate. Microscopy shows tendencies toward balling and peeling, but 
overall this result was an encouraging indicator of the potential to laser melt copper. 

 

 
Figure 9 – Copper tracks on Al2O3 substrate, laser melted at 100 Watts 

 
Figure 10 – Microscopy of copper tracks laser melted at 100 Watts (left), dimensional analysis 
of the end of the same track – notice the variation in track height (right)   

Although less double-sided tape was used to secure the substrate for the 200 W sample, enough 
thermal stress was generated that a large crack propagating from the 7.5 mm wide track 
developed during laser processing. Despite the substrate failure, many of the thinner tracks (far 
left in Figure 11) exhibited evidence of more complete melting when viewed under a 
microscope. The higher laser power and slow raster speed increased balling tendencies due to the 
surface tension effects on a larger and less stable melt pool (which created more surface 
roughness  - compare the track in Figure 10 left, with the left track in Figure 11 center) [20, 38]. 
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Also, under high magnification surface cracking on melted powder was evident (Figure 11 right 
– indicated by the arrow). 

 
Figure 11 – Photos of copper tracks laser melted at 200 Watts (left & center), microscopy of 
area exhibiting “balling” and surface cracking as indicated by the arrow (right)  

After empirical testing a suitable set of parameters (Table 1) was found to enable fabrication of 
freestanding features such as the one cubic centimeter sample shown in Figure 12 which was 
produced with similar settings to before only using a 0.16 m/s scanning speed. 

 

 
Table 1 – Test matrix: finding a process window for pure copper melted with a 200 Watt fiber 
laser 

All with:
• SLM 250
• 200 Watts 

power
• 0.080mm 

spot dia.
• <0.1% 

Oxygen

Scan Speed (m/s)

0.308 0.286 0.266 0.250 0.235 0.160 0.114

H
at

ch
 d

is
ta

n
ce

 
(m

ill
im

et
re

s)

0.120 
mm □ □ □ □ □ ■ ◘

0.140 
mm ■ □ □ □ □ ■ ◘

0.150 
mm ■ □ □ □ □ ■ ◘

□ = washed away ■ = adhered to substrate        ■ = build aborted ◘ = cracked substrate

3mm 3mm 
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Figure 12 – 1 cm3 structure (left) and ceramic substrate broken due to thermal stresses (right) 

While attempting to increase the density of the melted copper by scanning even more slowly 
(0.11 m/s) the ceramic substrate cracked and the build was aborted (Figure 12).  

 

 
Figure 13 – SEM secondary electron image of the edge of the Cu cube melted with a 200 W 
laser, 0.16m/s scan speed & 0.12mm hatch distance 
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The cube was mounted, polished, and inspected via SEM (Gemini, Carl Zeiss, Stuttgart, 
Germany) as shown in Figure 13. A substantial amount of melting is evident despite some 
porosity. It is hypothesized that the porosity may be caused by the presence of copper oxide 
(probably formed on the outer surface of the powder during loading into the hopper which was 
not performed in an inert environment) which has a higher melt temperature than pure copper. 
The density of the cube was 6.55 g/cm3 (measured by direct measurement of volume) making it 
73% the full density of pure copper. 

 
4.6 Melting copper in the SLM 125 onto high temperature substrates 
The release of the MTT SLM 125 opened new possibilities for sintering copper because higher 
power densities than before were achievable due to the 200 W laser power and optics focusing it 
down to a 30 µm spot size (maximum power density of 28.3 MW/cm2). Additionally the build 
chamber management maintains the environment at fewer than 5 parts per million oxygen. In 
order to allow in-process substrate heating in the SLM 125 a bespoke build plate was made 
which held the ceramic substrates in a recessed pocket alleviating the need for double-sided tape 
or screws. Lastly, with the SLM 125 it was possible to load powder into the hopper in an inert 
environment to avoid any contamination to the oxidation prone powder. 

A simple circuit was designed as a benchmark to compare laser sintered tracks with tracks made 
by conductive silicone (SS-26F by Silicone Solutions, Twinsburg, OH, USA). To compensate for 
the relatively low conductivity of the silicone compared with pure copper, the circuitry tracks 
were designed with a large cross section (2.28mm2). 

 

 
Figure 14 – Laser melting copper tracks in the SLM 125 

Parameter optimization for processing the copper material on the new machine was done 
empirically. The printed circuit board tracks shown in Figure 14 were produced using: the same 
copper powder as in all trials in this paper, a substrate preheat of 150° C, 200 W of power, 30 µm 
spot size, 0.5 m/s scanning speed, 0.07mm hatch spacing, a 100 µm first layer thickness and 50 
µm layer thickness thereafter. 

652



 

 
Figure 15 – A fully populated and functional PCB with laser melted copper tracks 

The holes for the components were designed into the CAD of the circuitry so that they were 
incorporated into the copper tracks during the laser melting process and in that way, did not 
require drilling. Components were soldered on using conventional solder and soldering iron 
without any problems (Figure 15). The circuit functioned as expected. The higher power density 
of the laser and lower oxide content improved the result of the laser processing considerably over 
the tracks melted using the SLM 250. Conductivity measurements on tracks with such a large 
cross-sectional area (2.28mm2) reached the limit of the resolution of the meter, therefore making 
it difficult to quantify the expected conductivity reduction due to any oxides and porosity in the 
laser melted tracks compared to fully dense pure copper. 

This is the first PCB of laser consolidated copper tracks made from microscale powder known to 
the authors. 

 
 

5 Conclusions: double selection 
Producing a PCB by this method can be considered by some measures, as using a sledgehammer 
to crack a nut. In spite of the failed attempt at selectively depositing metal powder and the costly 
equipment for selectively melting it, the research journey has illustrated some of the challenges 
and potential benefits of selectively depositing and processing materials with dramatically 
different properties in close proximity.  
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6 Future Work 
Full characterization of the electrical characteristics of the laser melted tracks would enable 
direct comparison against other digitally deposited PCB production methods and act as a means 
of quantifying the potential benefits. 

Laser printing protective layers as powder which are then fused together may impart the thermal 
shielding and stability required for laser melting. Potential candidate materials include resin 
bonded ceramic composites. Toner formulations could be devised and tested to assess both their 
printing efficieny and ability to provide a protective layer. Additionally, by laser printing them 
the thickness could be varied to fine tune the desired shielding. 
In addition to the reflectivity of copper, its excellent thermal conduction properties make it 
difficult to laser melt because the heat is dissipated so quickly into surrounding particles in the 
powder bed. Truly selective deposition of copper powder onto a substrate with low thermal 
conductivity theoretically would localize the thermal input from the laser increasing its 
effectiveness because by isolating it from the powder bed there would be no other means by 
which the heat could be efficiently conducted away. 

Tailoring the conductive track cross section could also allow high power components to be 
integrated into the same PCBs as logic boards (operating at 5VDC) eliminating the current 
practice of producing separate boards for logic and power components. 

Mastering conductive tracks paves the way for future digitally printed electronics applications 
which is/will undoubtedly expand to include: generation of integral passive components 
(resistors, capacitors), direct deposition of conductive tracks and components onto packaging, 
production of smart tags/labels (for example RFID, EAS and electroluminescent labels) 
including potential to directly print onto packaging, generation of SMART devices (for example 
piezoelectric sensors/actuators) and manufacture of LED and display devices. 

 
 

7 References 
 
 

1. Ibrahim, Z., et al., Performance Evaluation Of Wavelet-Based Algorithm For Printed Circuit 
Board (PCB) Inspection. Jurnal Teknologi, 2001(35D): p. 39–54. 

2. Bergstedt, L. and P. Ligander Thin Dielectrics in PWB Techniques and its possibilities for DCA 
and High Density Applications. 2001. 

3. Jolke, P. and et al., One-step inkjet printing of conductive silver tracks on polymer substrates. 
Nanotechnology, 2009. 20(16): p. 165303. 

4. Büttner, D., W. Diel, and K. Krüger. Digital Printing of Conductive Silver Lines: Comparison 
between Inkjet and Laser Printing. in Proceedings of the 12th Conference of the European 
Ceramic Society – ECerS XII. 2011. Stockholm, Sweden. 

5. Woo, K., et al., Ink-Jet Printing of Cu−Ag-Based Highly Conductive Tracks on a Transparent 
Substrate. Langmuir, 2008. 25(1): p. 429-433. 

6. Kim, D. and J. Moon, Highly Conductive Ink Jet Printed Films of Nanosilver Particles for 
Printable Electronics. Electrochemical and Solid-State Letters, 2005. 8(11): p. J30-J33. 

7. Sridhar, A., D.J. van Dijk, and R. Akkerman, Inkjet printing and adhesion characterisation of 
conductive tracks on a commercial printed circuit board material. Thin Solid Films, 2009. 
517(16): p. 4633-4637. 

654



8. Nur, H.M., et al., Ink-jet printing of gold conductive tracks. Journal of Materials Science: 
Materials in Electronics, 2002. 13(4): p. 213-219. 

9. Bishop, P., et al., Printed gold for electronic applications. Gold Bulletin, 2010. 43(3): p. 181-188. 
10. Özkol, E., et al., Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet 

printing using a thermal inkjet printer. Journal of the European Ceramic Society, 2009. 29(3): p. 
403-409. 

11. Derby, B., Inkjet printing ceramics: From drops to solid. Journal of the European Ceramic 
Society, 2011. 31(14): p. 2543-2550. 

12. Ahmed, S. Printed Circuits from Light. 2011. 7. 
13. Kamyshny, A., J. Steinke, and S. Magdassi, Metal-based Inkjet Inks for Printed Electronics. The 

Open Applied Physics Journal, 2011. 4: p. 19-36. 
14. Aoki, H., et al. A Study of Electrophotography Process for Manufacturing Printed Circuit Board. 

in NIP20: International Conference on Digital Printing Technologies. 2004. Salt Lake City. 
15. Walker, A. and D.F. Baldwin, Initial investigations into low-cost ultra-fine pitch solder printing 

process based on innovative laser printing technology. Electronics Packaging Manufacturing, 
IEEE Transactions on, 1999. 22(4): p. 303-307. 

16. Büttner, D., et al. Laser Printing of Conductive Silver Lines. in NIP26: International Conference 
on Digital Printing Technologies and Digital Fabrication. 2010. Austin, Texas. 

17. Kumar Das, A., An Investigation on the Printing of Metal and Polymer Powders Using 
Electrophotographic Solid Freeform Fabrication, in Department of Mechanical and Aerospace 
Engineering 2004, University of Florida: Gainsville, Florida. p. 177. 

18. Boivie, K.M., R. Karlsen, and d.E.C. van. Material Issues of the Metal Printing Process, MPP. in 
The Seventeenth Solid Freeform Fabrication Symposium. 2006. Austin, USA: University of 
Austin. 

19. Manjooran, N.J., A. Kumar, and W.M. Sigmund, Development of a liquid toner for electro-
photographic solid freeform fabrication. Journal of the European Ceramic Society, 2006. 26(13): 
p. 2459-2465. 

20. Khan, M. and P. Dickens, Selective Laser Melting (SLM) of pure gold. Gold Bulletin, 2010. 
43(2): p. 114-121. 

21. Gahler, A., J.G. Heinrich, and J. Gunster, Direct laser sintering of Al2O3-SiO2 dental ceramic 
components by layer-wise slurry deposition. Journal of the American Ceramic Society, 2006. 
89(10): p. 3076-3080. 

22. Nanda, K.K., S.N. Sahu, and S.N. Behera, Liquid-drop model for the size-dependent melting of 
low-dimensional systems. Physical Review A, 2002. 66(1). 

23. O'Neill, W. Emerging Commercial RM Technology Overview. in Time Compression 
Technologies Rapid Manufacturing Conference. 2008. 

24. Denneulin, A., et al., Infra-red assisted sintering of inkjet printed silver tracks on paper 
substrates. Journal of Nanoparticle Research, 2011: p. 1-9. 

25. Joo, D.-I. and S.-J. Kim. Commercialization of Inkjet Printing Technology as an Alternative 
Fabrication Route for Large Area Devices. in NIP26: International Conference on Digital 
Printing Technologies and Digital Fabrication. 2010. Austin, Texas, USA. 

26. Donev, A., et al., Improving the Density of Jammed Disordered Packings Using Ellipsoids. 
Science, 2004. 303(5660): p. 990-993. 

27. Jones, J.B., et al., Additive Manufacturing by Electrophotography: Challenges and Successes, in 
NIP26: International Conference on Digital Printing Technologies and Digital Fabrication2010: 
Austin, Texas. p. p. 549-553. 

28. Taylor, D.M., D.R. Owen, and J. Elias, An instrument for measuring static dissipation from 
materials. Journal of Electrostatics, 1987. 19(1): p. 53-64. 

29. Pai, D.M. and B.E. Springett, Physics of electrophotography. Reviews of Modern Physics, 1993. 
65(1): p. 163. 

655



30. Banerjee, S. and D.I. Wimpenny, Laser Printing of Polymeric Materials, in Solid Freeform 
Fabrication Symposium2006: Austin, TX, USA. 

31. Büttner, D., et al., Laser Printing of RFID Antenna Coils on Ceramic in 2011 IMAPS/ACerS 7th  
International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems 
Technologies2011: San Diego, California, USA. 

32. Perelaer, J., et al., Printed electronics: the challenges involved in printing devices, interconnects, 
and contacts based on inorganic materials. Journal of Materials Chemistry, 2010. 20(39): p. 
8446-8453. 

33. Brush, R.E., Melting Temperatures and Thermal Conductivities of Possible Substrates for Three-
Dimensional Conductive Ink Jet Printing in School of Engineering2004, University of Pittsburgh: 
Pittsburgh. 

34. Becker, D., W. Meiners, and K. Wissenbach, Additive manufacturing of components out of 
copper and copper alloys by Selective Laser Melting, in Additive Manufacturing Conference 
2011: Loughborough University, Loughborough, UK. 

35. Leong, C.C., et al., In-situ formation of copper matrix composites by laser sintering. Materials 
Science and Engineering A, 2002. 338(1-2): p. 81-88. 

36. Tang, Y., et al., Direct laser sintering of a copper-based alloy for creating three-dimensional 
metal parts. Journal of Materials Processing Technology, 2003. 140(1-3): p. 368-372. 

37. Cansizoglu, O., et al., Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via 
electron beam melting. Materials Science and Engineering: A, 2008. 492(1-2): p. 468-474. 

38. Kempen, K., et al. Microstructural Analysis and Process Optimization for Selective Laser 
Melting of AlSi10Mg. in Solid Freeform Fabrication Symposium. 2011. Austin, Texas: University 
of Texas. 

 
 

8 Acknowledgments 
Support from MTT Technologies Group Ltd, Quartz TSL Ltd, Merlin Flex-Ability Ltd, ZEAC, 
and the Technology Strategy Board funded project “Laser Printed Electronics” is gratefully 
acknowledged.  
 

9 Author Biography 
Jason has undertaken research in the field of Additive Manufacturing since 2005. He was 
appointed as a Senior Research Fellow in 2007 to lead collaborative research projects. He 
explores applications for customized products and develops new layer based manufacturing 
techniques by electrophotography and direct writing.  He is also actively developing 
international standards for Additive Manufacturing within ASTM. He currently shares research 
facilities with the University of Warwick and De Montfort University, both in the UK. 
For five years prior to his research appointment, he worked in the CNC & 3D printing industry 
as Technical Manager for Unimatic Engineers Ltd, in London, England. 
 

656


	PRINTED CIRCUIT BOARDS BY SELECTIVE DEPOSITION AND PROCESSING
	J. B. Jones*†, D. I. Wimpenny*, R. Chudasama*, & G. J. Gibbons†
	*Department of Engineering, De Montfort University, Leicester, England, LE1 5XY
	†Warwick Manufacturing Group, The University of Warwick, Coventry, England, CV4 7AL
	1 Abstract
	With electronic applications on the horizon for AM, comes the dilemma of how to consolidate conductors, semi-conductors, and insulators in close proximity. To answer this challenge, laser printing (selective deposition) was used in tandem with fiber laser consolidation (selective processing) to produce PCBs for the first time. This combination offers the potential to generate tracks with high mechanical integrity and excellent electrical conductivity (close to bulk metal) without prolonged exposure of the substrate to elevated temperatures. Herein are the findings of a two-year feasibility study for a “one-stop” solution for producing PCBs (including conductive tracks, dielectric layers, protective resists, and legends).
	2 Introduction
	The production of conventional PCBs is highly complex, requires a substantial investment in capital equipment and uses a wide variety of chemicals which are difficult/costly to safely dispose of. Current PCB production methods are “wet” processes consisting of two major steps: a) first a laminate board is clad with copper via electrodeposition and then b) the copper is selectively removed via chemical etching to leave conductive “tracks” of copper desired for the circuitry [1]. Often the ratio of electrodeposited copper to copper used in the tracks is as much as 5:1 meaning that most of the cladding is removed via chemical etching into chloride solutions where is it difficult to reclaim, while very little of the copper ends up in the final product [2].
	In an effort to overcome the shortcoming of conventional PCB manufacture there has been significant interest in the direct digital deposition of conductive tracks to form PCBs. Inkjet printing is by far the most widely explored due to its inherent ink formulation flexiblity, scalability and availability of off the shelf print heads (for example Xaar,Cambrige UK) [3-8]. Although significant progress has been made, it is largely predicated on the availability of very expensive gold or silver nanoparticles (desired for their high electrical conductivities, low melt temperatures, lower suceptibilities to oxidation than copper and amenability to suspend in ink formulation)[9]. Moreover, in ink jet printing the proportion of solid material is relatively low (typically < 25 vol.%) compared to the liquid carrier, thus limiting the deposition efficiency of the process [10, 11]. Furthermore, most direct deposition techniques rely on global processing via photonic fusing/curing approaches (such as pulsed light by Xenon) or post deposition furnace sintering (such as High Volume Print Forming by EoPlex) which subject the entire PCB to intense energy exposure [12]. Some alternatives offer room temperature processability such as highly viscous metal flake filled slurries have been deposited as a continuous bead extrusion to form conductive tracks (for example nScrypt Inc,) but this route is too slow to be effective for the manufacture of PCBs for production [13].
	In an effort to provide the maximum flexibility for deposition and consolidation of multiple materials side by side, laser printing (selective deposition) and laser melting (selective processing) have been combined for the first time. The speed, resolution and the ability to deposit dry powder provides significant advantages for laser printing in the production of PCBs as recognized by other researchers [14, 15]. The process is highly adaptable to different types of materials; commercial toners are based on polymers but researchers have already shown the potential to deposit metals and ceramics [15-19]. The selective laser melting (SLM) process has proven effective in fusing dry particles of: metal, ceramic, and polymer [20, 21].
	A two-year fleet footed feasibility study was undertaken to consider the feasibility of incorporating digital deposition by laser printing and (digital) selective laser melting (SLM) principles into PCB production to provide a simple, low cost, flexible and environmentally friendly production method for low volume, high value PCBs. 
	In addition to depositing the conductive tracks, the deposition of dielectric layers, etch resists, protective layers, seed layers for overplating, legends, and artwork were also evaluated in the project.  This paper will focus on the direct printing and melting of conductive tracks on electronics substrates. Proof of concept within the project was based on the manufacture of single sided boards, but could easily be applied to double sided, through-plated and multilayer PCBs. 
	3 Selective Deposition of Conductive Tracks
	Selective deposition of conductive tracks has been an aspiration of digital printing processes for 30 years. Core to this pursuit is the inverse relationship between particle size and melting temperature, which has driven material development and processing down into the nanoscale.[22, 23]
	The direct deposition of silver conductive tracks was planned for this project based on the upcoming commercial availability of conductive toner. A dilemma presented itself when the toner was not forthcoming in the expected timescales. It was decided that the lack of toner was an opportunity to explore the feasibility of developing a conductive toner and evaluate how well it printed.
	3.1 Choice of material for conductive tracks

	Many researchers have given attention to the direct deposition of gold or silver conductive tracks due to their high conductivity, availability as nano particles, and favorable sintering behavior [4, 8, 16, 24]. Despite the successes demonstrated at research and pilot scales, the cost of precious and semi-precious metals is a significant disincentive for its use in large quantities. At least one major electronics manufacturer has announced its intention to focus on digital deposition of more conventional conductive materials such as copper [25]. 
	Excepting precious metals, copper and aluminum respectively are the next most electrically conductive metals known. The suitability of these for both toner preparation and laser melting were evaluated during the screening steps of the research. Copper was selected as the primary focus due to its universal acceptance in electronics applications, affordability and availability in nano- and micro-scale particles in the range which theoretically can be melted by laser. AlSi12 is a typical aluminum based casting alloy widely used in SLM and was investigated during initial materials screening, but was discontinued due to industrial preference for copper. It also exhibited poor spreading onto unheated electronics substrates.
	The particle size range was correlated to the desired thickness of deposited conductive tracks. The thickness of conductive tracks on conventionally produced PCBs is determined by the weight of copper cladding electrodeposited onto it per square foot which is normally 1, 2, or 3 oz. per square foot (equating to a copper thickness of 0.035, 0.070 and 0.105mm respectively). The standard for logic boards with very low operating voltage (typically 5 VDC) is 1 oz./ft2 (0.035mm) which was the target for these experiments. Assuming a monolayer of spherical toner particles spread on the substrate in a simple cubic lattice with a packing density of 0.524 meant that fully melted particles would theoretically result in a layer that is approximately half the height of the particle mean diameter [26]. Planning to solidify two layers of powder, both the copper and AlSi12 were used in a standard SLM size range with mean particle sizes of ~40 µm diameter. In practice, spreading and substrate adhesion problems obliged the melting of thicker tracks (5-6 layers high).
	3.2 Toner preparation and print trials

	The laser printers used for these trials are configured with developers for nonconductive toners [27]. This development system requires that individual toner particles be sufficiently nonconductive so that they can be tribocharged (charged by friction) and maintain critical charge levels long enough to travel through the printer and be fixed to a substrate (generally for at least 20 seconds) [28, 29]. 
	//
	Figure 1 – Attempts to use un-treated copper powder as toner in an HP Laserjet 5 printer.
	Initially the untreated metal powder was exposed to the air and subsequently tested to see if the oxidized outer surface of the individual copper particles would sufficiently insulate them from each other enough to allow tribocharging. High conductivity 38-45 µm diameter 99.7% pure copper particles (Sandvik Osprey, Wales) were loaded into the developer unit of a Laserjet 5 printer (Hewlett-Packard, USA) and printing was attempted as shown in Figure 1. Although some deposition of copper particles is evident on the paper (as indicated by the arrows in Figure 1 left) the bulk of the material in the developer leaked out irrespective of the electrostatic latent image generated in the printer (the loose powder contributed to the paper jamming as shown in Figure 1 right). This result indicated that any electrostatic charge generated on the particles in the developer was inadequate in strength and/or duration to control its behavior, and further treatment of the particles would be necessary to enable printing.
	The copper particles were next surface coated using metalloid oxide nanoparticles by the technique developed by Banerjee and Wimpenny to improve flow and charge control [30]. Printing was attempted using the same procedure above with similar results. This result again indicated that insufficient charge had been generated and retained on the toner particles.
	In order to impart and retain sufficient charge density on the toner particles a procedure to encapsulate each copper particle in polymer was developed. Although the particles were successfully encapsulated in very small batch quantities (<5g), it was outside the scope of the available resource to produce sufficient quantities for full-scale printing trials.
	3.3 Selective printing conclusions

	Despite reports of successful conductive toner deposition by electrophotography in the literature the current results showed very limited success [31]. Conductive toner development is a highly specialized area and future work would include reduction of the size of the copper powder, surface treatment prior to coating, and upscaling the encapsulation method. Rather than pursue these, the authors were aware of several development initiatives which promised a commercial supply of conductive toners in the near-term which would soon enable more extensive research of toner based electronics applications.
	4 Selectively Processing Conductives on Non-conductive Substrates
	Despite the possibilities which have been demonstrated using nanoscale particles and flash fusing methods, the conductivity achieved is generally only 10-20% that of the bulk conductive [32]. Furthermore, the mechanical integrity of those tracks was inferior when compared to conventionally processed PCBs, making them unsuitable for use where high-performance or flexible circuitry is specified.
	In pursuit of high mechanical integrity and conductivity comparable to bulk copper Selective Laser Melting (SLM) of aluminum and copper powder was attempted. Three different laser melting systems: SLM 100 (Realizer GmBH, Germany), SLM 250 (MTT Technologies Ltd, United Kingdom), and SLM 125 (MTT Technologies Ltd, United Kingdom) were used to explore the most favorable combination of system features and processing parameters.
	4.1 Need to use a non-conductive substrate for electronics

	In order to produce an electronic circuit, it was necessary to depart from the SLM convention of matching the feedstock powder with a build plate made from the same or very similar material. This practice normally ensures that the thermal characteristics of the substrate and the structure being melted on top of it are similar enough to allow adequate wetting and adhesion while minimizing thermally induced distortion or cracking.
	Conventional electronics substrates include: “FR-4” grade glass fiber reinforced epoxy laminate, high temperature polymer film substrates such as Kapton®, ceramic substrates such as LTCC glass ceramic or alumina, and insulated metal substrates which are a sandwich construction consisting of a thin ceramic layer upon which the circuitry is made with a high thermal conductivity metal (such as aluminum) backing to dissipate heat. All of these substrate types were evaluated during the laser melting parameters optimization process.
	4.2 Low-temperature substrates in the SLM 100

	The initial attempts to use FR-4 and Kapton® film substrates in the SLM 100 with AlSi12 (MTT Technologies Ltd., United Kingdom) highlighted a variety of challenges.
	Firstly, FR-4 laminate (1 oz./ft2 single sided copper clad Kingboard) and Kapton® polyimide sheet (90 µm thick) required CNC routing and cutting respectively to fit onto the circular build platform. A single substrate was attached to the platform using double-sided tape
	Spreading the initial powder layers proved problematic because of the smoothness of the substrate in combination with the use of tape which prevented the normal use of the platform heater. The AlSi12 was particularly susceptible to poor flow in the absence of preheat. Only by spreading five to ten 50 µm layers of powder prior to firing the laser was it possible to uniformly cover the platform (the powder distribution was not uniform across the  platform because of the recoater pivoting, resulting in higher speeds at one end, as shown in Figure 2 left). However this thickness of a base layer inhibited the bonding of the melted powder to the substrate and any sintered material was swept away with each recoating because it was not anchored down. Increasing the surface roughness of the substrate (by steel wool and sand blasting) helped, but did not resolve the issue. The difficulty was overcome by preheating the upward facing surface of the substrates using a heat gun (Figure 2 right) to approximately 120°C and then transferring them directly into the SLM and starting the melting process immediately after the chamber reached vacuum. Lines 50mm in length with ascending widths were laser scanned at 0.030, 0.050, 0.080, 0.125, 0.200, 0.250, 0.500, 0.750, 1, 2, 3, 4, 5, 7.5 and 10mm all with a 3mm gap between them, and 100W laser power with a maximum power density of 14.1 MW/cm2.
	//
	Figure 2 – Powder spreading challenges on FR-4 (left); Off-line substrate preheating (right)
	The next challenge was encountered when exposure to the laser caused the substrates to warp which prevented subsequent recoating as shown in Figure 3. Even with the laser power reduced to 50 W with a 30µm spot size scanning at 0.4m/s (with single raster boundaries, all in <0.2% Oxygen), the FR-4 and Kapton® film substrates were thermally damaged before the powder began to fuse. In addition to the need for better thermal management, this highlighted the need to attach substrates to the build platform in a way that kept them flat when heated.
	//
	Figure 3 – Kapton® Film substrate warping in SLM (left) and laser induced damage (right)
	4.3 Reducing thermal damage using protective layers

	After the catastrophic failures of the most common electronics substrates, it became evident that the thermal mass of heated copper powder approaching its melt temperature was sufficient to burn the substrate without any direct contact from the laser. To protect the substrate from thermal damage during the laser melting process it was deemed necessary to deposit a temperature resistant, low thermal conductivity layer which would become the build surface for the conductive track deposition/consolidation.
	As a first step to trial the concept of using protective under layers, the copper clad side of a sheet of FR-4 laminate was used with the hope that the copper cladding would act as a heat shield to protect the glass fiber substrate beneath it. Figure 4 (left) shows the sample during processing in the SLM at the same parameters as last time and the resulting thermal damage evident from the backside. For lines with thicknesses below 200 µm less thermal damage occurred (Figure 4 right) and some accumulation of consolidated powder is evident as shown in Figure 5.
	//
	Figure 4 – SLM of AlSi12 onto copper clad FR-4 laminate (left) and thermal damage on the backside of the same sample after processing (right)
	/
	Figure 5 – Deposition of laser melted AlSi12 on copper clad FR-4 laminate
	Building on the improved results above, a heat shield layer was applied to Kapton® film and a polycarbonate CD. Although electronic circuits are not generally produced on a polycarbonate CDs, they were exactly the right size and shape to fit on the platform without any routing and provided an approximate indicator of the effectiveness of the protective layer with a melt temperature in the range of FR-4 [33]. A ceramic paste was made using alumina powder (CT3000 SG, Almatis, Germany) and water. The paste was applied to several circular Kapton® films and polycarbonate CDs and allowed to dry overnight to provide a weakly joined ceramic powder layer up to 500 µm thick. The ceramic covered films and CDs were then loaded into the SLM 100 one at a time and processed with the same parameters as the last two trials.
	//
	Figure 6 – SLM of AlSi12 onto Kapton® film  and a CD, both protected with a ceramic coating
	Even with the protective layer, all of the samples made of Kapton® film warped severely (Figure 6 left) after a single pass with the laser which necessitated aborting the build cycle. In each case the warping caused the ceramic layer to crack and delaminate from the substrate. Even though much of the ceramic layer flaked off with the warping and subsequent handling, it did provide a measure of shielding from the laser which is evident when comparing the damage on the coated (Figure 6 left) and uncoated Kapton® films (Figure 3). Virtually no AlSi12 adhered to the substrate.
	The nearly pure polycarbonate CDs resisted warping except in the widest of tracks. This allowed recoating so that six layers of AlSi12 were successfully processed with the same laser parameters as the previous trials. After observing significant cracking in the CD (Figure 6), the power was reduced to 20 W which resulted in minimal damage to the CD. As with the Kapton® film  samples, it was clear that the protective layer had aided the survival of the substrate . The CDs did have a small accumulation of AlSi12, however, most of the consolidated powder was brushed away during recoating along with some of the protective ceramic coating.
	Although the ceramic powder layer was not very durable it did reduce the substrate damage by providing thermal shielding. This was a partial proof of concept toward enabling selective processing of high melt temperature conductives on low-temperature substrates. The next step was to provide a build surface which was stable enough to provide an anchor point for the metal as it solidified and contracted. It was also desirable to have more favorable wetting characteristics for the molten metal.
	4.4 Melting copper in the SLM 250 with protective layers

	Encouragement from the commercial partners shifted the focus of the laser melting work from AlSi12 to experimenting with copper. Previous work melting copper and copper alloys has been conducted using electron beam, Nd-Yag laser, and high power (1000 W) fiber lasers and full density parts have been difficult to achieve [34-37]. Although the literature provided insights into the difficulties of fully melting copper it did not provide a set of parameters suitable for use with the 200 W pulsed infrared fiber laser in an SLM 250 which was used for the early stages of these trials. The reflectivity of pure copper in the infrared laser range (1060-1090nm) is 71% as measured by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) [20]. It should be noted that if an SLM machine was intended solely for use on highly reflective materials, a much shorter wavelength would be a far more energy efficient way of melting copper as opposed to using a higher power laser where much of the energy is reflected.
	In an attempt to provide a stable build surface as an anchoring point for laser melting, a commercially available insulated metal substrate (IMS-20, CCI Eurolam, France) was trialed. The IMS-20 is sold with a copper foil (35 µm) laminated onto a dielectric insulation layer (~100 µm) which is backed with a sheet of aluminum (1.0mm) to dissipate the heat. Prior to use in the SLM, all of the copper foil was etched away leaving only the insulation layer with aluminum backing. The IMS-20 was mounted with the insulation layer up using screws at the four corners with a specially tapped build plate (Figure 7) which allowed the use of the platform heater.
	High conductivity 38 µm diameter 99.7% pure copper particles (Sandvik Osprey, Wales) were processed in the SLM 250 at 200 W with an 80 µm spot size (maximum power density of almost 4 MW/cm2), scanning at 0.31 m/s for five 50 µm layers (all in <0.1% Oxygen). The build was started on a single layer thickness of powder spread onto the substrate after the platform substrate heater reached a stable 150°C. 5 mm wide tracks were attempted. The high reflectivity of the copper powder, especially when molten, is evident in Figure 7 (left). The result of the initial trial was that the laser had ablated through the insulating layer and into the aluminum and virtually no consolidated copper had adhered to the substrate (Figure 7 right). Another substrate was trialed with double the scan speed (0.6 m/s) and a double layer spread (100 µm) for the first layer with similar results.
	//
	Figure 7 – Laser melting copper onto an insulated metal substrate covered with copper powder (left), and the resulting unintentional laser ablation of the substrate (right).
	A trial matrix was run at 0.3m/s and 0.6m/s and 200, 150, 100, 50 W laser powers with no substrate preheat, 0.15mm hatch spacing, a 100 µm first layer thickness, 50 µm layer thickness thereafter, and 50 µm wide tracks (where the laser scanned two lines side-by-side with a 50 µm separation between the centerline of each). Only the highest two power inputs (200 & 150 W at 0.3 m/s) resulted in loosely sintered tracks which could be handled, the rest fell apart.
	The results from these trials indicated that the insulating layer in the IMS-20 did not provide as much thermal shielding as the ceramic powder layer used previously. This may be the case for a number of reasons: a) perhaps the loosely bonded powder did not transfer the heat as well as a homogeneous insulating layer, b) the commercially produced insulating layer was only 1/5th as thick as the previous protective layer, c) the dielectric material could not sustain temperatures approaching the melt point of copper (1083°C), or d) the aluminum backing became molten underneath it (at 660 °C, well below the melt point of copper), and unsupported it, fractured and failed. The search for the perfect protective layer was stopped short in the interest of exploring the feasibility of sintering copper into conductive tracks. After all, there is no point to optimize a protective layer if it is not practical to laser melt copper onto it.
	4.5 Melting copper in the SLM 250 onto high temperature substrates

	In order to have the maximum flexibility to optimize laser processing parameters for copper, independent of the low-temperature substrate limitations, it was decided to use ceramic substrates. Early trials were made on white unglazed decorative tiles until 1 mm thick electronics grade (ADS-96R) alumina (Al2O3) substrate (Coorstek, Colorado, USA) was obtained.
	/
	Figure 8 – Early conductive copper tracks on a decorative tile by SLM
	Figure 8 shows the results of a trial matrix that was run in the SLM 250 at 0.3m/s and 200 (far left rectangle in Figure 8), 150, 100, 50 W laser powers with no substrate preheat (tile fixed to substrate with double sided tape), a 100 µm first layer thickness, 50 µm layer thickness thereafter, and 50 µm wide tracks (where the laser scanned two lines side-by-side with a 50 µm separation between the centerline of each).
	Only the highest two power inputs delivered loosely sintered tracks which could be handled, even though they left much to be desired in terms of mechanical integrity and conductivity.
	Using the increasing line thickness test from before, samples were produced at 100 and 200 W power levels. Other conditions were kept the same: no substrate preheat, a 100 µm first layer thickness, 50 µm layer thickness thereafter, 80 µm spot size, and 0.3 m/s scanning speed. 
	The sample produced at 100 W is shown in Figure 9 and is characterized by electrical continuity to some degree in nearly all of the unbroken tracks and the fact that the substrate was not cracked during laser processing. Unfortunately the sample was broken during removal from the build platform as shown in Figure 9 (right). In the thicker tracks some delamination of the consolidated tracks from the substrate occurred, highlighting the relatively weak bond between consolidated metal and ceramic substrate. Microscopy shows tendencies toward balling and peeling, but overall this result was an encouraging indicator of the potential to laser melt copper.
	//
	Figure 9 – Copper tracks on Al2O3 substrate, laser melted at 100 Watts
	//
	Figure 10 – Microscopy of copper tracks laser melted at 100 Watts (left), dimensional analysis of the end of the same track – notice the variation in track height (right)  
	Although less double-sided tape was used to secure the substrate for the 200 W sample, enough thermal stress was generated that a large crack propagating from the 7.5 mm wide track developed during laser processing. Despite the substrate failure, many of the thinner tracks (far left in Figure 11) exhibited evidence of more complete melting when viewed under a microscope. The higher laser power and slow raster speed increased balling tendencies due to the surface tension effects on a larger and less stable melt pool (which created more surface roughness  - compare the track in Figure 10 left, with the left track in Figure 11 center) [20, 38]. Also, under high magnification surface cracking on melted powder was evident (Figure 11 right – indicated by the arrow).
	///
	Figure 11 – Photos of copper tracks laser melted at 200 Watts (left & center), microscopy of area exhibiting “balling” and surface cracking as indicated by the arrow (right) 
	After empirical testing a suitable set of parameters (Table 1) was found to enable fabrication of freestanding features such as the one cubic centimeter sample shown in Figure 12 which was produced with similar settings to before only using a 0.16 m/s scanning speed.
	/
	Table 1 – Test matrix: finding a process window for pure copper melted with a 200 Watt fiber laser
	//
	Figure 12 – 1 cm3 structure (left) and ceramic substrate broken due to thermal stresses (right)
	While attempting to increase the density of the melted copper by scanning even more slowly (0.11 m/s) the ceramic substrate cracked and the build was aborted (Figure 12). 
	/
	Figure 13 – SEM secondary electron image of the edge of the Cu cube melted with a 200 W laser, 0.16m/s scan speed & 0.12mm hatch distance
	The cube was mounted, polished, and inspected via SEM (Gemini, Carl Zeiss, Stuttgart, Germany) as shown in Figure 13. A substantial amount of melting is evident despite some porosity. It is hypothesized that the porosity may be caused by the presence of copper oxide (probably formed on the outer surface of the powder during loading into the hopper which was not performed in an inert environment) which has a higher melt temperature than pure copper. The density of the cube was 6.55 g/cm3 (measured by direct measurement of volume) making it 73% the full density of pure copper.
	4.6 Melting copper in the SLM 125 onto high temperature substrates

	The release of the MTT SLM 125 opened new possibilities for sintering copper because higher power densities than before were achievable due to the 200 W laser power and optics focusing it down to a 30 µm spot size (maximum power density of 28.3 MW/cm2). Additionally the build chamber management maintains the environment at fewer than 5 parts per million oxygen. In order to allow in-process substrate heating in the SLM 125 a bespoke build plate was made which held the ceramic substrates in a recessed pocket alleviating the need for double-sided tape or screws. Lastly, with the SLM 125 it was possible to load powder into the hopper in an inert environment to avoid any contamination to the oxidation prone powder.
	A simple circuit was designed as a benchmark to compare laser sintered tracks with tracks made by conductive silicone (SS-26F by Silicone Solutions, Twinsburg, OH, USA). To compensate for the relatively low conductivity of the silicone compared with pure copper, the circuitry tracks were designed with a large cross section (2.28mm2).
	//
	Figure 14 – Laser melting copper tracks in the SLM 125
	Parameter optimization for processing the copper material on the new machine was done empirically. The printed circuit board tracks shown in Figure 14 were produced using: the same copper powder as in all trials in this paper, a substrate preheat of 150° C, 200 W of power, 30 µm spot size, 0.5 m/s scanning speed, 0.07mm hatch spacing, a 100 µm first layer thickness and 50 µm layer thickness thereafter.
	/
	Figure 15 – A fully populated and functional PCB with laser melted copper tracks
	The holes for the components were designed into the CAD of the circuitry so that they were incorporated into the copper tracks during the laser melting process and in that way, did not require drilling. Components were soldered on using conventional solder and soldering iron without any problems (Figure 15). The circuit functioned as expected. The higher power density of the laser and lower oxide content improved the result of the laser processing considerably over the tracks melted using the SLM 250. Conductivity measurements on tracks with such a large cross-sectional area (2.28mm2) reached the limit of the resolution of the meter, therefore making it difficult to quantify the expected conductivity reduction due to any oxides and porosity in the laser melted tracks compared to fully dense pure copper.
	This is the first PCB of laser consolidated copper tracks made from microscale powder known to the authors.
	5 Conclusions: double selection
	Producing a PCB by this method can be considered by some measures, as using a sledgehammer to crack a nut. In spite of the failed attempt at selectively depositing metal powder and the costly equipment for selectively melting it, the research journey has illustrated some of the challenges and potential benefits of selectively depositing and processing materials with dramatically different properties in close proximity. 
	6 Future Work
	Full characterization of the electrical characteristics of the laser melted tracks would enable direct comparison against other digitally deposited PCB production methods and act as a means of quantifying the potential benefits.
	Laser printing protective layers as powder which are then fused together may impart the thermal shielding and stability required for laser melting. Potential candidate materials include resin bonded ceramic composites. Toner formulations could be devised and tested to assess both their printing efficieny and ability to provide a protective layer. Additionally, by laser printing them the thickness could be varied to fine tune the desired shielding.
	In addition to the reflectivity of copper, its excellent thermal conduction properties make it difficult to laser melt because the heat is dissipated so quickly into surrounding particles in the powder bed. Truly selective deposition of copper powder onto a substrate with low thermal conductivity theoretically would localize the thermal input from the laser increasing its effectiveness because by isolating it from the powder bed there would be no other means by which the heat could be efficiently conducted away.
	Tailoring the conductive track cross section could also allow high power components to be integrated into the same PCBs as logic boards (operating at 5VDC) eliminating the current practice of producing separate boards for logic and power components.
	Mastering conductive tracks paves the way for future digitally printed electronics applications which is/will undoubtedly expand to include: generation of integral passive components (resistors, capacitors), direct deposition of conductive tracks and components onto packaging, production of smart tags/labels (for example RFID, EAS and electroluminescent labels) including potential to directly print onto packaging, generation of SMART devices (for example piezoelectric sensors/actuators) and manufacture of LED and display devices.
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