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Abstract  

Selective laser melting (SLM) is a layer-wise material additive process for the direct 

fabrication of functional metallic parts. During the process, successive layers of metal powder are 

fully molten and consolidated on top of each other by the energy of a high intensity laser beam. 

The process is capable of producing almost fully dense three-dimensional parts having 

mechanical properties comparable to those of bulk materials. However, one of the problems 

encountered in SLM process is the occurrence of elevated ridges of the solidified material at the 

edges of the successive layers. Those ridges reduce the dimensional accuracy and topology of the 

top surface. The edge-effect problem is encountered not only in SLM, but also in other 

production techniques applying melting processes such as LENS® (The Laser Engineered Net 

Shaping) and EBM (Electron Beam Melting). In this study, the reasons for elevated edges and 

solutions to this problem are investigated and reported. Different scan strategies as well as 

different hatching and contour parameters are tested to reduce the edge-effect problem. Besides, 

the influence of applying laser re-melting in combination to selective laser melting has been 

investigated. It turns out that re-melting layers deposited by SLM improves the part density and 

surface roughness, but creates on its own elevated edges.  

 

1. INTRODUCTION 

The technology of Selective Laser Melting (SLM) is an additive production process providing 

fully functional, three-dimensional models, parts and tools by selectively consolidating 

successive layers of powdered metal material on top of each other [1]. During the process, a solid 

state laser source such as an Nd:YAG or fiber laser is used to fully melt powder particles, thereby 

making dense parts without need for any post-process densification [2].  A schematic view of the 

process is shown in Figure 1a.  

The process offers many advantages compared to conventional manufacturing techniques: 

shorter time to market, mass customization, geometrical freedom and ability to produce more 

functionality in the parts with unique design and intrinsic engineered features. Compared to other 

layer manufacturing technologies, SLM has the advantage to produce parts that have good 

mechanical properties comparable to those of bulk materials. SLM is now well established in 

production of complex parts, dental frames as well as for tooling.  

Despite significant progress in terms of the process, material flexibility and part quality in 

recent years, there are still some major drawbacks accompanying the process such as insufficient 

surface quality, stair-stepping effect, balling, residual stresses and poor dimensional accuracy [3]. 

Other than these problems, the formation of elevated edges of the solidified material may be a 

serious problem since it deteriorates the surface topology and dimensional accuracy (See Figure 

1b). The existence of the elevated edges, on the other hand, may also worsen the stair-stepping 

effect that is inherent to all layer manufacturing techniques. One of the important disadvantages 
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of having elevated edges on the contours of the parts is the collision of these edges with the 

coater blades. Since the height of the produced edges is higher than one layer thickness, the 

coater blades hit the edges causing vibrations during powder deposition. This results in waviness 

on the surface of deposited powder layer, thereby causing aligned porosity in the produced SLM 

parts, which in turn, may lead anisotropy for mechanical properties.  

This paper takes an experimental approach to investigate this phenomenon in detail. It has 

both a fundamental and an application purpose. The fundamental purpose is to gain better 

understanding of the underlying physical mechanisms of the incident. The application is to seek 

solutions to combat or reduce the edge-effect without sacrificing part properties.  

 

Figure 1: a) A typical SLM machine layout b) Edge-effect seen on a cross-section of an SLM part 

 

2. OVERVIEW OF THE PROBLEM 

The problem of elevated edges is not only encountered in Selective Laser Melting [4], but also 

in laser engineered net shaping (LENS®) [5, 6] and electron beam melting (EBM) [7]. In fact, the 

generation of circular cross-section tracks is a well known observation in metal melting 

technologies at some processing conditions. This phenomenon can be understood as the 

consequence of surface tension effect so that the melt track will assume a form such that its 

surface area will be a minimum and its volume a maximum i.e. cylindrical in shape with a 

rounded cross section. The latter incident may speed up through the absence of good wetting 

between the molten track and the underlying surface [2, 8, 9]. 

During the SLM process, the first scan line of the layer that is being scanned (part’s border) is 

surrounded at both sides with powder particles with very low thermal conductivity. Due to the 

change of shape of the melt pool in most cases, more powder particles are dragged to the melt 

volume thereby increasing the size of melt pool as well as affecting the solidification rate of the 

melt. In addition, insufficient amount of powder remains for the subsequent scans. The first track 

then acts as a heat sink when the second is scanned, resulting in significant smaller track [10, 11]. 

Within the melt pool, on the other hand, surface tension gradients coupled with temperature 

gradients in the surface, result in rapid flow of melt known as thermo-capillary or Marangoni 

flow [2, 12]. This flow might be large enough to push the melt back while laser scans the powder 

bed.  

a) 
b) 
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3. EXPERIMENTATION 

The test specimens have been produced from two commercially available alloys of steel and 

titanium powders. A Concept Laser M3 Linear machine was used to produce the parts from AISI 

316L stainless steel.  The machine is equipped with a 100 W Nd:YAG laser and a laser beam 

diameter of about 180 µm at the powder bed surface. The titanium alloy Ti6Al4V was processed 

using an SLM apparatus, the LM machine, developed at K.U.Leuven. The LM machine employs 

a 300 W Yb-fiber laser with focus diameter of 80 µm, and has been described elsewhere [13].  

In order to study the influence of effective parameters on the edge-effect, series of cubic parts 

with various process parameters and scanning strategies were produced on both machines. The 

ultimate aim was to find a solution to produce parts having no significant edges, and without a 

density reduction either in the outer shell or in the core of the produced parts. Generally, 

decreasing the laser power or increasing the scan speed when approaching the edges results in 

better surface flatness as the consequence of a reduced energy input. However, this has a 

potential to weaken the connection between the contours and the part’s core.  

Although the M3 Linear equipment allows applying a few numbers of dedicated scanning 

strategies such as island scanning, it is possible to program the scanning strategy in any desired 

way in the LM machine. This paper reports the most promising tested scan strategies. The studied 

factors can be summarized as changing the contour or overall SLM parameters, applying multiple 

or no contours, island scanning, various filling strategies with uni- and bi-directional scanning, 

applying different profiles for the power in one scan vector and making one part as a combination 

of two parts such as core and shell made with different parameters.  

After production of sample parts, a contact surface profilometer, Talysurf 120L from Taylor 

Hobson Ltd., was used to measure the edge height of the top surface of as-processed parts. These 

measurements were carried out in three-dimensional by scanning an area of 8mm x 1mm 

considering 50 µm distance between consecutive measuring lines in y direction, and the average 

profile of top surface was then determined. Parts cross-section topography was also recorded 

using an optical microscopy. 

  

                                    

Figure 2: The edge height shown on an average cross-section 

rosalief
Typewritten Text
182



 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

Following the experimental method described in the previous section and from the average 

profile of top surface, the edge height is determined as the distance between the first peak located 

on the edge of the part and the mean value of the flat surface. An example is shown in Figure 2 

where h denotes the edge height. The remainder of this section presents results and discussion 

concerning the work on edge height in the conducted SLM experiments as individual sub-

sections. 

 

4.1  SLM process parameters effect 

The purpose of carrying out the first set of tests is to investigate the influence of SLM process 

parameters such as the scan speed and laser power on the edge effect. These experiments were 

conducted using 316L stainless steel powder of which the nominal scanning speed and laser 

power are given as 360 mm/s and around 100 W respectively. During these tests, the scan speed 

was varied between 120 to 360 mm/s while the laser power was changed from 72 W to 105 W. 

The contour of the parts was also scanned before the core, at the same processing parameters 

used for fill vectors. One set of the measured profiles for the scan speed of 120 mm/s, at the four 

laser powers of 72 W, 83 W, 93 W and 105 W is illustrated in Figure 3. The recorded profiles in 

all cases are qualitatively similar so that each part reveals an elevated edge regardless of the used 

parameters even though the edge height is affected by the laser power.   
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Figure 3: Different profiles derived with 120 mm/s with various laser power values 
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Figure 4 shows the measured edge heights of the parts as a function of laser pump current 

(laser power), for the two measured directions of side to side and top to bottom (Figure 5), at the 

four scan speeds from 120 mm/s to 360 mm/s. When the laser power is increased, the edges 

become more pronounced especially at low scan speeds (120 mm/s). At higher scan speeds, the 

effect of the laser power becomes less significant. The higher energy input entered to the powder 

bed, the higher the edges become. As the figures suggest different combinations of laser power 

and scan speed neither solve the edge problem, nor exhibit a significantly lower edge height than 

the nominal scan speed and laser power values.  
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Figure 4: Profiles derived with various scan speeds and laser powers:  

a) from top to bottom, b) from side to side 

 

 

Figure 5: The measurement directions shown on a sample 

 

4.2  Scanning direction effect 

In order to investigate the influence of vector scanning direction on the elevated edges of 

SLM parts, a number of specimens were built from Ti6Al4V material using uni-directional as 

well bi-directional scanning (raster) patterns. These samples were produced without contour 

scanning to eliminate the other parameters’ effects on the results. Figure 6 compares parts’ 

elevated edges for two scanning patterns.  While uni-directional scanning causes a very high edge 

on one side of the part and a rounded corner on the other side, bi-directional scanning is found to 

be a better scanning option lowering the edge height at both sides. The rapid flow motion caused 

by surface tension gradient within the melt pool might be responsible for expelling the melt pool 

thereby forming high edges at the starting points of scan lines.  

  

From side to side 

From top to bottom 

a) 
b) 
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Figure 6: Effect of uni-directional scanning versus bi-directional scanning 

 

4.3 Middle-fill and random-fill scan strategies 

This section is concerned with the first scan line conditions, in order to verify the hypothesis 

of formation of elevated ridges as the consequence of first line scanning. A number of test 

specimens were produced using Ti6Al4V powder at its nominal SLM parameters (laser power 

42W, scan speed 225 mm/s and scan spacing 74 µm) and without contour scanning. The scanning 

strategy comprised of starting with first line being scanned at the middle of the layer, followed by 

filling the area to the right and then to the left of middle line as depicted in Figure 7a. A scan 

speed of 750 mm/s for the first scan line was also used to avoid any peak in the middle of the 

part.      
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Figure 7: a) Fill middle scan strategy, the arrows represent the direction and order in which the 

surface was scanned, b) measured heights at left, middle and the right side of part 

 

Figure 7b shows the obtained elevated ridges that were measured in the direction 

perpendicular to the scan direction (from side to side). The measured profiles show no significant 

edges anymore at the left and the right borders of the part (edge height < 30µm, layer thickness). 

Instead a big ridge is visible at the middle of the top surface. The middle ridge height decreases 

with increasing scanning speed. This is in good agreement with the above mentioned hypothesis 

advancing the thesis that for every scanned layer, the first scan track is the largest and cause the 

edge effect.  

a) b) 
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In the foregoing experiments, the first line was always constant in place so that the location 

was not changed from layer to layer. For the next series of tests, the scanning program was 

modified to address that drawback by changing the location of first line scan for each layer in a 

random order. The recorded profile and the measured ridge height are depicted in Figure 8. Here 

the entire part was produced at 225 mm/s. It can be seen that not only no edge was formed in the 

part, but also the highest peak height was comparable with previous series when first line was 

scanned at 750mm/s. These findings imply that random-fill strategy may reduce the edge-effect 

without weakening the attainable density. 
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Figure 8: Profile derived with random-fill scan strategy alongside with the peak ridge 

 

4.4   Island scanning strategy and contour scanning 

In this set of experiments, the influence of “island scanning”, a patented scanning pattern 

from Concept Laser, was investigated as well as the effect of contour scanning. In order to 

decrease the thermal residual stresses, the area to be scanned is divided into smaller sectors 

( mm5mm5 × ), and these sectors are raster scanned with shorter scan tracks in a random order. 

The locations of the sectors are displaced by 1 mm in both x and y directions and the scan vectors 

are rotated by 90° in each sector from layer to layer. Figure 9 compares the results of island 

scanning to long vector raster scanning. These findings show that the island scanning does not 

worsen or improve the edge-effect, which means the vector length does not play any role on the 

edge height. The figure also is concerned with the effect of contour scanning on the edge height. 

The parts made without contours have lower edges regardless of being scanned in islands or with 

long scan vectors. The production of parts without contours solves the problem of edges but that 

cannot be used as an ultimate solution since the dimensional accuracy is highly affected by 

contour scanning. During SLM, the contours of a part are scanned on the powder bed firstly to 

define the borders of the melt pool, and then the inside the contours is scanned. Therefore, 

contours are necessary for the dimensional accuracy and cannot be left out during SLM. 

When too high edges are encountered, the general solution from the SLM equipment supplier 

is to alter the contour parameters. In order to verify this technique, the SLM parameters for filling 

were kept as nominal values whereas different combinations of laser power and scan speed were  
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Figure 9: Influence of island scanning on the edge-effect problem  

applied to the contours in the second set of tests. Eight scan speeds starting from 250 mm/s to 

700 mm/s together with 3 laser power values (105 W, 93 W and 83 W) were examined. The 

results are presented in Figure 10. Close to nominal scan speed, decreasing the laser power 

increases the edges. At high scan speeds, there seems to be a small reduction in the edge height 

with maximum laser power but the standard deviation is too high to assure reliable results. Thus, 

it is concluded that increasing the scan speed or decreasing the laser power of the contour section 

is not a feasible solution to the edge-effect problem encountered in the SLM process.  
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Figure 10: Different edge heights derived with various contour parameters at fixed filling 

parameters  

 

4.5  Fill vector scanning patterns  

This section is concerned with the effect of various filling vector scan patterns. Figure 11a 

reveals the edge height of 316L parts for four different cases which were produced with 
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parameters of a scan speed of 300 mm/s and a laser power of 105 W both for filling and contours. 

The arrow shows the direction of measuring the edges height for all cases. The first scan strategy 

consists of all horizontal scan tracks whereas the scanned area is exposed to laser radiation twice 

in the second one (i.e. re-melting). The third column represents the results for the scan strategy 

where all hatch lines were scanned diagonally. The last one is the case with the first one rotated 

for 90°. The 3D height maps of the same parts are shown in Figure 11b where the surface texture 

is clearly seen. In terms of the edge-effect, the second strategy which includes melting of the 

powder followed by re-melting with a rotation of 90° for the fill lines, the edge height is higher 

than the others. This is in good agreement with the results obtained for re-melting of stainless 

steel and Ti6Al4V powders [14]. The other three cases give more or less the same results. 

Consequently, it seems that laser re-melting during SLM used to improve density or surface 

quality, results in a more pronounced edge-effect. 
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Figure 11: a) Influence of different scan strategies on the edge-effect problem,  b) 3D height 

maps of the surfaces with different scan strategies 

 

4.6   Shell and core effect 

The last set of experiments conducted with AISI 316 L was the separation of a part into two 

sections such as core and shell applying different set of parameters to each section. The thickness 

of the shell was chosen to be 0.4 mm. In each layer, first the shell was scanned and then the core 

was followed to be scanned on already solidified shell. In these tests, the core SLM parameters 

were kept constant (laser power 300 mm/s and scan speed 105 W), but different parameters were 

applied to the shells. The results are presented in Figure 12. 

Although the standard deviations of the edges derived in shell+core parts are higher than the 

reference part, the edge height decreases. Especially when 3D profiles are observed, it can be 

concluded that there is no significant edge formation (~40 µm height) for shell+core parts 

whereas in the last part which was scanned as one part with contour scanning, the edge is clearly 

distinguishable from the top of the surface. However, since low energy inputs are used in the 

shell, it is probable that the density is not as high as the density in the core [15]. 

a) b) 
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Figure 12: a) Shell and core part results b) 3D profiles of the core+shell parts 

 

4.7  Ramping laser power profile 

One important derivation of the tests with the LM machine was how the edge effect could be 

improved by using a ramp profile for the laser power in one scan vector. As the laser beam 

approaches the free edge, the laser power is gradually decreased, and this resulted in almost no 

edge as shown in Figure 13. The starting power was selected as 40 W which is around the 

nominal power for Ti6Al4V alloy and then as the laser moved to the core of the part, it was 

increased to 80 W which was very high and resulted in very porous structure as seen in the figure 

due to evaporation or key hole-effect taking place during the process. Normally, with the default 

parameters, it is possible to reach up to 99.5% relative density on that equipment with this 

material. However, when the edges are investigated, it is clear that the ramp profile for the power 

solves the problem but the starting and threshold laser powers should be optimized for part 

density.  

 

Figure 13: Result of ramp power profile 

 

4.8  Post-fill scan strategy 

The goal of this strategy was to compensate the edge-effect by filling up the valleys that were 

formed by the edges during the SLM processing. The test specimens from Ti6Al4V were 

1 2 3 4 

a) 
b) 
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produced at the material’s nominal parameters. The contour of the parts was scanned before the 

core at the same processing parameters used for fill vectors. The distance between the contour 

vectors and fill vectors was chosen to be 45 µm and 75 µm respectively. Upon completion of part 

scanning, either one or three extra powder layer(s) were deposited and scanned (with no contour) 

without lowering the building platform. 

Figure 14 is concerned with the post-fill strategy. Part (a) represents the measured edge 

heights for 45µm and 75µm fill- contour distances respectively. These findings suggest that post-

fill strategy gives the lowest edge height when a distance of 75µm between the contour and fill 

vectors, and three extra powder layers are selected. Part (b) shows the 3D map as well as the 

average profile of the mentioned setting. The heights of the edges of the part made by this 

strategy are about 35 µm. Since the edge height of a part made by standard scanning strategy is 

about 70µm, this strategy gives a reduction of the edge-effect by 50%. 
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Figure 14: a) Measured height of the left and right edge for parts made with post-fill scan 

strategies, b) 3D map and average profile of produced part having the lowest height of the edges 

 

5. CONCLUSIONS 

This paper has studied the edge-effect problem as one of deleterious phenomenon encountered 

during SLM process. It has demonstrated the main physical mechanisms that influence the 

elevated ridges within SLM part’s top surface. This incident is likely associated with the melt 

flow, and affected by materials properties as well as processing parameters.  

Experimental studies on the SLM of stainless steel and titanium alloy powders have shown 

that, whilst it is not possible, at this stage, to eliminate formation of elevated edges completely, 

the flatness of the top surface can be improved greatly by applying appropriate process 

parameters as well as adapted scanning strategies. 

It is found that contour scanning exaggerates the edge-effect, but, on the other hand, the part’s 

dimensional accuracy implies the borders of part to be scanned first. Dividing a part to the shell 

and the core sections with an overlap between them, not only may reduce the edge heights, but 

a) b) 
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also address the contour scanning issue. The part’s density homogeneity, however, has to be 

considered. 

Applying middle-fill scan strategy shows that the ridges from the part borders are displaced to 

the middle of the part, and the random-fill scan strategy almost vanishes the high height ridges 

from the top surface. In the latter technique, the first scan line’s position is changed in a random 

order for each layer being scanned. The contour scanning issue that still remains as a problem in 

this method could be compensated by applying the post-fill scan strategy. A reduction of 50% in 

edge height is obtained when an appropriate distance between the contour vectors and fill vectors 

is chosen during SLM process, and without lowering the building platform, three further extra 

powder layers are deposited and scanned upon completion of part.  

Another possibility for improving top surface flatness, in particular from top to bottom (laser 

scanning) direction, would be to apply a ramp profile for the laser power in one scan vector. In 

this approach, the laser power value is adapted based on the laser source position respect to the 

part so that the more close to the border, the less laser power.  
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